Sample records for organic pollution patterns

  1. Effects of organic pollution on biological communities of marine biofilm on hard substrata.

    PubMed

    Sanz-Lázaro, C; Fodelianakis, S; Guerrero-Meseguer, L; Marín, A; Karakassis, I

    2015-06-01

    We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ(13)C and δ(15)N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A review of environmental and human exposure to persistent organic pollutants in the Pearl River Delta, South China.

    PubMed

    Zhang, Kai; Wei, Yan-Li; Zeng, Eddy Y

    2013-10-01

    Rapid economic growth in South China (including Guangdong Province, Hong Kong, and Macau), particularly within the Pearl River Delta region, has resulted in severe pollution of the natural eco-environment in the last three decades. Large amounts of monitoring data on organic pollution in the Pearl River Delta have been accumulated, which allows us to conduct a fairly comprehensive assessment of the state of the Pearl River Delta and elucidate spatial and temporal patterns of pollution on a regional scale. Of various causes for environmental deterioration, negative impact from persistent organic pollutants (POPs) is a global concern. This review examines the current levels and distribution patterns of several POPs, namely DDT (and its metabolites DDD and DDE), hexachlorocyclohexanes, and polybrominated diphenyl ethers, in various environmental compartments of South China. The general information on environmental occurrence, regional behaviors, ecological effects, and human exposure of these POPs in this region are reviewed. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Characterization and risk assessment of seasonal and weather dynamics in organic pollutant mixtures from discharge of a separate sewer system.

    PubMed

    Beckers, Liza-Marie; Busch, Wibke; Krauss, Martin; Schulze, Tobias; Brack, Werner

    2018-05-15

    Sites of wastewater discharge are hotspots for pollution of freshwaters with organic micropollutants and are often associated with adverse effects to aquatic organisms. The assessment, monitoring and managment of these hotspots is challenged by variations in the pollutant mixture composition due to season, weather conditions and random spills. In this study, we unraveled temporal exposure patterns in organic micropollutant mixtures from wastewater discharge and analyzed respective acute and sublethal risks for aquatic organisms. Samples were taken from two components of a separate sewer system i) a wastewater treatment plant (WWTP) and ii) a rain sewer of a medium size town as well as from the receiving river in different seasons. Rain sewer samples were separately collected for rain and dry - weather conditions. We analyzed 149 compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS). By considering the pollution dynamics in the point sources, we reduced the complexity of pollutant mixtures by k-means clustering to a few emission groups representing temporal and weather-related pollution patterns. From these groups, we derived biological quality element (BQE) - specific risk patterns. In most cases, one main risk driving emission group and a few individual risk driving compounds were identified for each BQE. While acute risk for fish was quite low, algae were exposed to seasonally emitted herbicides (terbuthylazine, spiroxamine) and crustaceans to randomly spilled insecticides (diazinon, dimethoate). Sublethal risks for all BQE were strongly influenced by constantly emitted pollutants, above all, pharmaceuticals. Variability of risks in the river was mainly driven by water discharge of the river rather than by season or peak events. Overall, the studied WWTP represented the major pollution source with a specific emission of agricultural compounds. However, the investigated rain sewer showed to be a constant pollution source due to illicit connections and was an important entry route for high loads of insecticides and biocides due to spills or incorrect disposal. By considering these pollution and risk dynamics, monitoring strategies may be optimized with a special focus on times of low flow conditions in the river, rain events and seasonally emitted risk drivers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Bioaccumulation of organic pollutants in Indo-Pacific humpback dolphin: A review on current knowledge and future prospects.

    PubMed

    Sanganyado, Edmond; Rajput, Imran Rashid; Liu, Wenhua

    2018-06-01

    Indo-Pacific humpback dolphin (Sousa chinensis) are chronically exposed to organic pollutants since they inhabit shallow coastal waters that are often impacted by anthropogenic activities. The aim of this review was to evaluate existing knowledge on the occurrence of organic pollutants in Indo-Pacific humpback dolphins, identify knowledge gaps, and offer recommendations for future research directions. We discussed the trends in the bioaccumulation of organic pollutants in Indo-Pacific humpback dolphins focusing on sources, physicochemical properties, and usage patterns. Furthermore, we examined factors that influence bioaccumulation such as gender, age, dietary intake and tissue-specific distribution. Studies on bioaccumulation in Indo-Pacific humpback dolphin remain scarce, despite high concentrations above 13,000 ng/g lw we previously detected for PFOS, ∑PBDE and chlorinated paraffins. The maximum concentration of organochlorines detected was 157,000 ng/g wt. Furthermore, variations in bioaccumulation were shown to be caused by factors such as usage patterns and physicochemical properties of the pollutant. However, restrictions in sampling inhibit investigations on exposure pathway and toxicity of organic pollutants in Indo-Pacific humpback dolphin. We proposed the use of biopsy sampling, predictive bioaccumulation and toxicity modeling, and monitoring other emerging contaminants such as microplastics and pharmaceuticals for future health risk assessment on this critically endangered marine mammal species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Selected organic pollutant emissions from unvented kerosene space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, G.W.; Apte, M.G.; Sokol, H.A.

    1990-08-01

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emissions rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emissions. Each heater was operated in a 27-m{sup 3} chamber with a prescribed on/off pattern. Organic compounds were collected on Teflon-impregnated glass filters backed by XAD-2 resin and analyzed by gas chromatography/mass spectrometry. Pollutant source strengths were calculated by use of a mass balance equation. The results show that kerosene heaters can emit polycyclic aromatic hydrocarbons (PAHs); nitrated PAHs; alkylbenzenes, phthalates; hydronaphthalenes; aliphatic hydrocarbons,more » alcohols, and ketones; and other organic compounds, some of which are known mutagens.« less

  6. Spatial and temporal variation in size of polar bear (Ursus maritimus) sexual organs and its use in pollution and climate change studies.

    PubMed

    Sonne, Christian; Dietz, Rune; Born, Erik W; Riget, Frank F; Leifsson, Pall S; Bechshøft, Thea Ø; Kirkegaard, Maja

    2007-11-15

    Sexual organs and their development are susceptible to atmospheric transported environmental xenoendocrine pollutants and climate change (food availability). We therefore investigated sexual organs from 55 male and 44 female East Greenland polar bears (Ursus maritimus) to obtain information about growth/size and sexual maturity. Then, the genitalia size was compared with those previously reported from Canadian and Svalbard polar bears. Growth models showed that East Greenland male polar bears reached sexual maturity around 7 years of age and females around 4 years of age. When comparing East Greenland and Svalbard polar bears, the size of baculum and uterus were significantly lower in the East Greenland polar bears (ANOVA: all p < 0.05). Based on previously published baculum mean values from Canadian polar bears, a similar baculum pattern was found for East Greenland vs. Canadian polar bears. It is speculated whether this could be a result of the general high variation in polar bear body size, temporal distribution patterns of anthropogenic long-range transported persistent organic pollutants or climate change (decreasing food availability). The present investigation represents conservation and background data for future spatial and temporal assessments of hunting, pollution and climate change scenarios.

  7. What's in our soil?: how soil pollution affects earthworm movement patterns

    NASA Astrophysics Data System (ADS)

    Whitmore, T.

    2017-12-01

    Earthworms are an important member of many ecosystems because they contribute to soil quality and are a major food source for many organisms. In this project, we assessed the impacts soil pollution has on the burrowing patterns of earthworms. In each experiment, we introduced 10 earthworms to a unique pollutant and let them equilibrate for up to a week. The results indicated that earthworms migrate towards the introduced liquid regardless of its impact on them. The liquid pollutants introduced seemed to attract the earthworms. This can have harmful consequences, especially in the case of the motor oil, which killed multiple worms.

  8. Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems.

    PubMed

    Roinas, Georgios; Mant, Cath; Williams, John B

    2014-01-01

    Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants.

  9. New insight into PM2.5 pollution patterns in Beijing based on one-year measurement of chemical compositions.

    PubMed

    Tan, Tianyi; Hu, Min; Li, Mengren; Guo, Qingfeng; Wu, Yusheng; Fang, Xin; Gu, Fangting; Wang, Yu; Wu, Zhijun

    2018-04-15

    In recent years, air pollution has become a major concern in China, especially in the capital city of Beijing. Haze events occur in Beijing over all four seasons, exhibiting distinct characteristics. In this study, the typical evolution patterns of atmospheric particulate matter with a diameter of less than 2.5μm (PM 2.5 ) in each season were illustrated by episode-based analysis. In addition, a novel method was developed to elucidate the driving species of pollution, which is the largest contributor to the incremental PM 2.5 (ΔPM 2.5 ), not PM 2.5 . This method revealed a temporal variation of the driving species throughout the year: nitrate-driven spring, sulfate-driven summer, nitrate-driven early fall, and organic matters (OM)-driven late fall and winter. These results suggested that primary organic particles or volatile organic compounds emissions were dominant in the heating season due to residential heating, while NOx and SO 2 emissions dominated in the other seasons. Besides, nitrate formation seemed more significant than sulfate formation during severe pollution episodes. It was also found that the pollution formation mechanism in the winter showed some unique features in comparison with the other seasons: aqueous reactions were more important in the winter, while multiple pathways coexisted in the other seasons. Furthermore, this study confirmed that the PM 2.5 in Beijing was moderately acidic despite a fully neutralized system. In addition, the acidity variation during pollution episodes displayed different patterns between seasons and was driven by both the variation of aerosol water and chemical compositions. These results provide a new perspective to understand the characteristics and mechanisms of aerosol pollution in Beijing. However, more accurate measurements are necessary for effective air pollution control that depends on the seasonal variation of fine particle formation in Beijing and the surrounding areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Response of Living Benthic Foraminifera at an Organically Polluted Locality in Eastern Bahrain

    NASA Astrophysics Data System (ADS)

    Arslan, Muhammad; Kaminski, Michael; Frontalini, Fabrizio

    2017-04-01

    This study examines the response of living benthic foraminifera at a polluted site in eastern Bahrain, with the aim to determine the effects of anthropogenic pollution on their distribution patterns and the occurrence of morphological deformities. The boat harbor in Askar (Bahrain) is subjected to pollution by nutrients, organic matter, and hydrocarbons. Foraminiferal density is found to be higher at the polluted site compared with a nearby unpolluted site, suggesting a higher amount of available food for the benthic foraminifera. Seven taxonomical groups were recognized in the organically polluted transect including Ammonia, Glabratellina, Murrayinella, Elphidium, Brizalina, miliolids, and peneroplids. By comparing the foraminiferal assemblages with a nearby unpolluted transect, the genus Murrayinella appeared to be a dominant and pervasive taxon that was able to proliferate in an organically polluted environment. Strong correlations of Murrayinella with nitrates, sulfates, TOC, and THC put forward the opportunistic behavior of this taxon. Our results contrast with previously published findings on modern foraminiferal assemblage in the Arabian Gulf, as Murrayinella is rarely reported. The population of miliolids was drastically reduced at the polluted site, which suggests that the group was adversely affected by organic pollution when compared with the unpolluted transect. This reaffirms the sensitive nature of the miliolid group of foraminifera, supporting the findings of previous studies of the effect of historical coastal eutrophication on foraminiferal assemblages in the Gulf of Mexico and Japan. Therefore, the miliolids might be considered as a pollution proxy for future biomonitoring studies in the Gulf region.

  11. Toxicity Assessment of Contaminated Soils of Solid Domestic Waste Landfill

    NASA Astrophysics Data System (ADS)

    Pasko, O. A.; Mochalova, T. N.

    2014-08-01

    The paper delivers the analysis of an 18-year dynamic pattern of land pollutants concentration in the soils of a solid domestic waste landfill. It also presents the composition of the contaminated soils from different areas of the waste landfill during its operating period. The authors calculate the concentrations of the following pollutants: chrome, nickel, tin, vanadium, lead, cuprum, zinc, cobalt, beryllium, barium, yttrium, cadmium, arsenic, germanium, nitrate ions and petrochemicals and determine a consistent pattern of their spatial distribution within the waste landfill area as well as the dynamic pattern of their concentration. Test-objects are used in experiments to make an integral assessment of the polluted soil's impact on living organisms. It was discovered that the soil samples of an animal burial site are characterized by acute toxicity while the area of open waste dumping is the most dangerous in terms of a number of pollutants. This contradiction can be attributed to the synergetic effect of the polluted soil, which accounts for the regularities described by other researchers.

  12. Microbial Diffraction Gratings as Optical Detectors for Heavy Metal Pollutants

    NASA Technical Reports Server (NTRS)

    Noever, David; Matsos, Helen; Brittain, Andrew; Obenhuber, Don; Cronise, Raymond; Armstrong, Shannon

    1996-01-01

    As a significant industrial pollutant, cadmium is implicated as the cause of itai-itai disease. For biological detection of cadmium toxicity, an assay device has been developed using the motile response of the protozoa species, Tetrahymena pyriformis. This mobile protozoa measures 50 microns in diameter, swims at 10 body lengths per second, and aggregates into macroscopically visible patterns at high organism concentrations. The assay demonstrates a Cd(+2) sensitivity better than 1 micro-M and a toxicity threshold to 5 micro-M, thus encouraging the study of these microbial cultures as viable pollution detectors. Using two-dimensional diffraction patterns within a Tetrahymena culture, the scattered light intensity varies with different organism densities (population counts). The resulting density profile correlates strongly with the toxic effects at very low dosages for cadmium (less than 5 ppm) and then for poison protection directly (with nickel and copper antagonists competing with cadmium absorption). In particular, copper dosages as low as 0.1-0.5 mM Cu have shown protective antagonism against cadmium, have enhanced density variability for cultures containing 1 mM Cd(+2) and therefore have demonstrated the sensitivity of the optical detection system. In this way, such microbial diffraction patterns give a responsive optical measure of biological culture changes and toxicity determination in aqueous samples of heavy metals and industrial pollutants.

  13. Differentiating the Spatiotemporal Distribution of Natural and Anthropogenic Processes on River Water-Quality Variation Using a Self-Organizing Map With Factor Analysis.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Lee, Jin-Jing

    2015-08-01

    To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution]. The SOM revealed that the water quality improved substantially over time. However, the downstream river water quality was still classified as high pollution because of an increase in anthropogenic activity. FA showed the spatiotemporal pattern of each factor score decreasing over time, but the organic pollution factor downstream of the Tamsui River, as well as the SS factor scores in the upstream major tributary (the Dahan Stream), remained within the high pollution level. Therefore, we suggest that public sewage-treatment plants should be upgraded from their current secondary biological processing to advanced treatment processing. The conservation of water and soil must also be reinforced to decrease the SS loading of the Dahan Stream from natural erosion processes in the future.

  14. Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review.

    PubMed

    Harmens, H; Foan, L; Simon, V; Mills, G

    2013-02-01

    Worldwide there is concern about the continuing release of persistent organic pollutants (POPs) into the environment. In this study we review the application of mosses as biomonitors of atmospheric deposition of POPs. Examples in the literature show that mosses are suitable organisms to monitor spatial patterns and temporal trends of atmospheric concentrations or deposition of POPs. These examples include polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). The majority of studies report on PAHs concentrations in mosses and relative few studies have been conducted on other POPs. So far, many studies have focused on spatial patterns around pollution sources or the concentration in mosses in remote areas such as the polar regions, as an indication of long-range transport of POPs. Very few studies have determined temporal trends or have directly related the concentrations in mosses with measured atmospheric concentrations and/or deposition fluxes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Su, Shiliang; Zhi, Junjun; Lou, Liping; Huang, Fang; Chen, Xia; Wu, Jiaping

    Characterizing the spatio-temporal patterns and apportioning the pollution sources of water bodies are important for the management and protection of water resources. The main objective of this study is to describe the dynamics of water quality and provide references for improving river pollution control practices. Comprehensive application of neural-based modeling and different multivariate methods was used to evaluate the spatio-temporal patterns and source apportionment of pollution in Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites for the period of 2001-2004. A self-organizing map classified the 41 monitoring sites into three groups (Group A, B and C), representing different pollution characteristics. Four significant parameters (dissolved oxygen, biochemical oxygen demand, total phosphorus and total lead) were identified by discriminant analysis for distinguishing variations of different years, with about 80% correct assignment for temporal variation. Rotated principal component analysis (PCA) identified four potential pollution sources for Group A (domestic sewage and agricultural pollution, industrial wastewater pollution, mineral weathering, vehicle exhaust and sand mining), five for Group B (heavy metal pollution, agricultural runoff, vehicle exhaust and sand mining, mineral weathering, chemical plants discharge) and another five for Group C (vehicle exhaust and sand mining, chemical plants discharge, soil weathering, biochemical pollution, mineral weathering). The identified potential pollution sources explained 75.6% of the total variances for Group A, 75.0% for Group B and 80.0% for Group C, respectively. Receptor-based source apportionment was applied to further estimate source contributions for each pollution variable in the three groups, which facilitated and supported the PCA results. These results could assist managers to develop optimal strategies and determine priorities for river pollution control and effective water resources management.

  16. Mapping Exposure to Multi-Pollutants Using Environmental Biomonitors-A Multi-Exposure Index.

    PubMed

    Serrano, Helena C; Köbel, Melanie; Palma-Oliveira, José; Pinho, Pedro; Branquinho, Cristina

    2017-01-01

    Atmosphere is a major pathway for transport and deposition of pollutants in the environment. In industrial areas, organic compounds are released or formed as by-products, such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F's). Inorganic chemical elements, including lead and arsenic, are also part of the pollutants mixture, and even in low concentrations may potentially be toxic and carcinogenic. However, assessing the spatial pattern of their deposition is difficult due to high spatial and temporal heterogeneity. Lichens have been used as biomonitors of atmospheric deposition, because these organisms encompass greater spatial detail than air monitoring stations and provide an integration of overall pollution. Based upon the ability of lichens to concentrate pollutants such as PCDD/F and chemical elements, the main objectives of this study were to develop a new semi-quantitative multi-pollutant toxicity exposure index (TEQ-like), derived from risk estimates, in an attempt to correlate several atmospheric pollutants to human exposure levels. The actual pollutant concentrations were measured in the environment, from biomonitors (organisms that integrate multi-pollutants), enabling interpolation and mapping of contaminant deposition within the region. Thus, the TEQ-like index provides a spatial representation not from absolute accumulation of the different pollutants, but from the accumulation weighted by their relative risk. The assessment of environmental human exposure to multi-pollutants through atmospheric deposition may be applied to industries to improve mitigation processes or to health stakeholders to target populations for a comprehensive risk assessment, epidemiological studies, and health recommendations.

  17. Influence of the land use pattern on the concentrations and fluxes of priority pollutants in urban stormwater.

    PubMed

    Zgheib, S; Moilleron, R; Chebbo, G

    2011-01-01

    This paper presents the results of the concentrations (μg/L) and fluxes (g/ha) of priority substances in stormwater from three watersheds with different land use patterns (namely, residential, urban dense, high urban density). Samples were collected at the outlet of these watersheds. Thirteen chemical groups were investigated corresponding to 88 individual substances before treatment. Results showed that stormwater discharges contained 55 substances, among them some metals, organotins, PAHs, PCBs, alkylphenols, pesticides, phthalates, cholorophenols and volatile organic compounds. Therefore, stormwater was highly contaminated. However, this contamination was often comparable from site to site, since no significant difference of the pollutant load was observed between the land use patterns.

  18. Late Holocene evolution and increasing pollution in Guanabara Bay, Rio de Janeiro, SE Brazil.

    PubMed

    Vilela, Claudia Gutterres; Figueira, Brígida Orioli; Macedo, Mariana Cardoso; Baptista Neto, José Antonio

    2014-02-15

    To detect changes during the Late Holocene and historical periods in Guanabara Bay, the paleoecological and ecological parameters from nine cores were analysed using foraminiferal assemblages and bioindicators. Using radiocarbon dates and sedimentation rates in the cores, it was possible to detect the first Europeans' arrival in the 16th century. Foraminiferal bioindicators of organic matter and human pollution were correlated with radiocarbon dates from the bottom and middle of the cores in each region and revealed an increase in pollution along the cores. The foraminiferal results were compared with total organic carbon (TOC) values before, during and after European settlement and showed a historical increase in organic matter. Pristine mangrove ecosystems are characterised by agglutinated species such as Ammotium salsum, and the presence of this organism also confirmed the extent of historical mangrove forests. Ammonia tepida, Buliminella elegantissima and Elphidium excavatum were the dominant species, but they presented distinct patterns over time. B. elegantissima was dominant before the European influence in older sediments with high organic matter content that were found at deeper intervals. A. tepida is dominant in younger sediments at upper intervals, as a bioindicator of human pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Anthropogenic pollutants: a threat to ecosystem sustainability?

    PubMed

    Rhind, S M

    2009-11-27

    Pollutants, including synthetic organic materials and heavy metals, are known to adversely affect physiological systems in all animal species studied to date. While many individual chemicals can perturb normal functions, the combined actions of multiple pollutants are of particular concern because they can exert effects even when each individual chemical is present at concentrations too low to be individually effective. The biological effects of pollutants differ greatly between species reflecting differences in the pattern of exposure, routes of uptake, metabolism following uptake, rates of accumulation and sensitivity of the target organs. Thus, understanding of the effects of pollutants on wildlife and ecosystems will require detailed study of many different species, representing a wide range of taxa. However, such studies can be informed by knowledge obtained in more controlled conditions which may indicate likely mechanisms of action and suitable endpoint measurements. Responses may be exacerbated by interactions between the effects of pollutants and environmental stressors, such as under-nutrition or osmotic stresses and so changes in such variables associated with climatic changes may exacerbate physiological responses to pollutant burdens.

  20. Deposition patterns and transport mechanisms for the endocrine disruptor 4-nonylphenol across the Sierra Nevada Mountains, California.

    PubMed

    Lyons, Rebecca; Van de Bittner, Kyle; Morgan-Jones, Sean

    2014-12-01

    Dust and particulate distribution patterns are shifting as global climate change brings about longer drought periods. Particulates act as vehicles for long range transport of organic pollutants, depositing at locations far from their source. Nonylphenol, a biodegradation product of nonylphenol polyethoxylate, is a known endocrine disruptor. Nonylphenol polyethoxylate enters the environment as an inert ingredient in pesticide sprays, potentially traveling great distances from its application site. This is of concern when a highly agricultural region, California's Central Valley, lies adjacent to sensitive areas like the Eastern Sierra Nevada Mountains. The distribution and transport mechanisms for 4-nonylphenol were investigated in Eastern Sierra Nevada canyons. Regions close to canyon headwalls showed trace amounts of 4-nonylphenol in surface water, snow, and atmospheric deposition. Exposed areas had yearly average concentrations as high as 9 μg/L. Distribution patterns are consistent with particulate-bound transport. This suggests with increasing drought periods, higher levels of persistent organic pollutants are likely. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Soil fauna and soil microflora as possible indicators of soil pollution.

    PubMed

    Eijsackers, H

    1983-09-01

    Research on biological indicators of soil pollution is hampered by soil variability and temporal and spatial fluctuations of numbers of soil animals. These characters on the other hand promote a high biological diversity in the soil. A high diversity combined with persistent soil pollutants increases the chance to select good indicators. However research on these topics is still limited. Examples of specific indicators are the changed arthropod species patterns due to pesticide influence and the changed soil enzyme activity under the influence of specific heavy metals. Another approach is to look for organisms that give a general indication of soil pollution. In this respect the earthworm species Allolobophora caliginosa proved to be sensitive for different types of manure especially pig manure with copper, for sewage sludge, for municipal waste compost and for fly ash. A third way of indication is by organisms accumulating pollutants. For some heavy metals (Cd, Zn), earthworms are very efficient accumulators. More research is needed especially on the specific relation between biological responses and abiotic soil characteristics.

  2. Humidity plays an important role in the PM₂.₅ pollution in Beijing.

    PubMed

    Cheng, Yuan; He, Ke-Bin; Du, Zhen-Yu; Zheng, Mei; Duan, Feng-Kui; Ma, Yong-Liang

    2015-02-01

    Heavily-polluted PM₂.₅ (fine particulate matter) episodes frequently impacting Beijing, especially during winter, have become a substantial concern. We found that during winter, the daily variation of PM2.5 in Beijing tracked the pattern of relative humidity (RH). With the increase of PM₂.₅ (or RH), water-soluble components (especially inorganic ions) became more abundant, and the water-soluble organic carbon to organic carbon ratios increased. The nitrate to sulfate ratios also exhibited dependence on RH, and were higher than those measured about a decade ago, consistent with the increasing trend of nitrogen oxides emissions. Surprisingly, the ratios of water-insoluble organic carbon to elemental carbon showed significant increase at high RH levels, presumably indicating the formation of secondary organic aerosol that is not soluble in water. In addition, humid winters were occasionally identified during 1996-2013 which are expected to be favorable for the formation of air pollution episodes with high PM₂.₅ concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases.

    PubMed

    D'Amato, Gennaro; Baena-Cagnani, Carlos E; Cecchi, Lorenzo; Annesi-Maesano, Isabella; Nunes, Carlos; Ansotegui, Ignacio; D'Amato, Maria; Liccardi, Gennaro; Sofia, Matteo; Canonica, Walter G

    2013-02-11

    The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase.Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world.Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health.The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world.Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions.The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases.Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual's response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend only on the increased production of air pollution, but rather on atmospheric factors that favour the accumulation of air pollutants at ground level.Considering these aspects governments worldwide and international organizations such as the World Health Organization and the European Union are facing a growing problem of the respiratory effects induced by gaseous and particulate pollutants arising from motor vehicle emissions.

  4. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases

    PubMed Central

    2013-01-01

    The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase. Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world. Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health. The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world. Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases. Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual’s response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend only on the increased production of air pollution, but rather on atmospheric factors that favour the accumulation of air pollutants at ground level. Considering these aspects governments worldwide and international organizations such as the World Health Organization and the European Union are facing a growing problem of the respiratory effects induced by gaseous and particulate pollutants arising from motor vehicle emissions. PMID:23398734

  5. Nematodes as Sentinels of Heavy Metals and Organic Toxicants in the Soil

    PubMed Central

    Ekschmitt, Klemens; Korthals, Gerard W.

    2006-01-01

    Field and laboratory research has repeatedly shown that free-living soil nematodes differ in their sensitivity to soil pollution. In this paper, we analyze whether nematode genera proved sensitive or tolerant toward heavy metals and organic pollutants in six long-term field experiments. We discuss overlaps between nematode physiological responses to heavy metals and to organic pollutants, which may explain why nematodes can exhibit co-tolerance toward several contaminants. We propose a simple method for separating direct effects of soil contamination on nematode populations from indirect effects mediated through the food chain. Finally, we analyze the extent to which nematodes exhibited consistent responses across the experiments analyzed. Our results show that (a) indirect effects of pollution were generally strong; (b) fewer nematode genera were tolerant than sensitive; (c) many genera, including practically all Adenophorea, exhibited a common response pattern to contaminants; and (d) several genera of the Secernentea exhibited differential tolerance toward particular pollutants. We conclude that bioindication of soil contamination should preferentially be based on tolerant, and less on sensitive, nematodes. We provide a list of nematode genera that may potentially serve as differential bioindicators for specific soil contaminants. PMID:19259425

  6. Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application.

    PubMed

    Wu, Qimei; Wang, Xin; Zhou, Qixing

    2014-05-01

    Persistent organic pollutants (POPs) have aroused environmentalists and public concerns due to their toxicity, bioaccumulation and persistency in the environment. However, monitoring atmospheric POPs using conventional instrumental methods is difficult and expensive, and POP levels in air samples represent an instantaneous value at a sampling time. Biomonitoring methods can overcome this limitation, because biomonitors can accumulate POPs, serve as long-term integrators of POPs and provide reliable information to assess the impact of pollutants on the biota and various ecosystems. Recently, mosses are increasingly employed to monitor atmospheric POPs. Mosses have been applied to indicate POP pollution levels in the remote continent of Antarctica, trace distribution of POPs in the vicinity of pollution sources, describe the spatial patterns at the regional scale, and monitor the changes in the pollution intensity along time. In the future, many aspects need to be improved and strengthened: (i) the relationship between the concentrations of POPs in mosses and in the atmosphere (different size particulates and vapor phases); and (ii) the application of biomonitoring with mosses in human health studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Historical trends of organic pollutants in sediment cores from Hong Kong.

    PubMed

    Wei, S; Wang, Y; Lam, James C W; Zheng, Gene J; So, M K; Yueng, Leo W Y; Horii, Y; Chen, L Q; Yu, Hongxia; Yamashita, N; Lam, Paul K S

    2008-01-01

    Recent studies have indicated the occurrence of a wide range of trace organic contaminants, including polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in the Hong Kong environment. These contaminants are potentially harmful to ecological systems, particularly in coastal areas. In this study, two sediment cores (4m) were collected from southern waters of Hong Kong in 2004 to study the historical trends, distribution patterns, and potential sources of trace organic contaminants. DDTs (p,p'-DDT, o,p'-DDT, p,p'-DDD, o,p'-DDD and p,p'-DDE), hexachlorohexanes (HCHs) (alpha and gamma), hexachlorobenzene (HCB), and PCBs were detected in the samples, whereas other target compounds were all below detection limits. Many OCPs have not been produced or used for many years due to toxicological or environmental concerns and PCB use is prohibited in Hong Kong. However, some compounds were still detectable in recent years, and were found to be widely distributed in the environment, likely because of pollutant inputs from the highly industrialized Pearl River Delta region. These results provide important information on current and historical contamination in Hong Kong, and help to reconstruct the pollution history of these trace organic pollutants in Hong Kong coastal waters.

  8. Spatial variation in diesel-related elemental and organic PM2.5 components during workweek hours across a downtown core.

    PubMed

    Tunno, Brett J; Shmool, Jessie L C; Michanowicz, Drew R; Tripathy, Sheila; Chubb, Lauren G; Kinnee, Ellen; Cambal, Leah; Roper, Courtney; Clougherty, Jane E

    2016-12-15

    Capturing intra-urban variation in diesel-related pollution exposures remains a challenge, given its complex chemical mix, and relatively few well-characterized ambient-air tracers for the multiple diesel sources in densely-populated urban areas. To capture fine-scale spatial resolution (50×50m grid cells) in diesel-related pollution, we used geographic information systems (GIS) to systematically allocate 36 sampling sites across downtown Pittsburgh, PA, USA (2.8km 2 ), cross-stratifying to disentangle source impacts (i.e., truck density, bus route frequency, total traffic density). For buses, outbound and inbound trips per week were summed by route and a kernel density was calculated across sites. Programmable monitors collected fine particulate matter (PM 2.5 ) samples specific to workweek hours (Monday-Friday, 7 am-7 pm), summer and winter 2013. Integrated filters were analyzed for black carbon (BC), elemental carbon (EC), organic carbon (OC), elemental constituents, and diesel-related organic compounds [i.e., polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes]. To our knowledge, no studies have collected this suite of pollutants with such high sampling density, with the ability to capture spatial patterns during specific hours of interest. We hypothesized that we would find substantial spatial variation for each pollutant and significant associations with key sources (e.g. diesel and gasoline vehicles), with higher concentrations near the center of this small downtown core. Using a forward stepwise approach, we developed seasonal land use regression (LUR) models for PM 2.5 , BC, total EC, OC, PAHs, hopanes, steranes, aluminum (Al), calcium (Ca), and iron (Fe). Within this small domain, greater concentration differences were observed in most pollutants across sites, on average, than between seasons. Higher PM 2.5 and BC concentrations were found in the downtown core compared to the boundaries. PAHs, hopanes, and steranes displayed different spatial patterning across the study area by constituent. Most LUR models suggested a strong influence of bus-related emissions on pollution gradients. Buses were more dominant predictors compared to truck and vehicular traffic for several pollutants. Overall, we found substantial variation in diesel-related concentrations in a very small downtown area, which varied across elemental and organic components. Copyright © 2016. Published by Elsevier B.V.

  9. Characterization of Wind Patterns over Texas Using Self-Organizing Maps: Impact on Dallas-Fort Worth Long Term Ozone Trends

    NASA Astrophysics Data System (ADS)

    Kotsakis, A.; Choi, Y.; Souri, A.; Jeon, W.; Flynn, J. H., III

    2017-12-01

    From the years 2000 to 2014, Dallas-Fort Worth (DFW) has seen a decrease in ozone exceedances due to decreased emissions of ozone precursors. In this study, a wind pattern analysis was done to gain a better understanding of the meteorological patterns that have historically contributed to ozone exceedances over the DFW area. Long-term trends in ozone and the seasonal distribution of ozone exceedances were analyzed using surface monitoring data. Using a clustering algorithm called self-organizing maps, characteristic regional wind patterns from 2000-2014 were determined. For each of the wind pattern clusters, the frequency over the last 15 years and average ozone from monitors across DFW was analyzed. Finally, model simulations were performed to determine if pollution transported out of Houston affected incoming background ozone into DFW.

  10. Digestive enzymatic patterns as possible biomarkers of endocrine disruption in the red mullet (Mullus barbatus): A preliminary investigation.

    PubMed

    Caruso, Gabriella; De Pasquale, Francesca; Mita, Damiano Gustavo; Micale, Valeria

    2016-04-15

    During two seasonal trawl surveys (April and October, 2012), red mullet specimens were caught from two sites of the northern Sicilian coast (Western Mediterranean), characterized by different degrees of pollution, to assess whether their digestive enzymes could be cost-effective diagnostic tools for endocrine disruption. Pepsin, chymotrypsin, carboxypeptidases A and B, amylase and lipase were measured in the digestive tract of each fish. During both samplings, significant differences in the digestive enzymatic patterns of fish collected from the two sites were found. In April, pepsin and lipase contents were significantly lower in fish from the most impacted site than in those from the reference site. In October, the enzymatic patterns showed trends different from spring, with controversial results for carboxypeptidases A and B and amylase. Pepsin and lipase patterns suggest a detrimental effect played by organic pollutants and the use of these enzymes as possible biomarkers of exposure to endocrine disruptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mass fluxes of organic pollutants between groundwater, streambed sediments and surface water

    NASA Astrophysics Data System (ADS)

    Schirmer, Mario; Kalbus, Edda; Schmidt, Christian

    2010-05-01

    Rivers and groundwater are commonly hydraulically connected and thus also pollutants migrate between one and the other. Particularly in small lowland streams, pollutant transport by discharging groundwater can deteriorate the surface water quality. Moreover, in urban and industrial areas streambed sediments are often polluted with a variety of organic and inorganic substances. For planning measures to improve surface water quality or to mitigate pollutant migration, it is an essential prerequisite to understand pollutant pathways and mass fluxes between the stream, the streambed sediment and the connected aquifer. We present methodological approaches and results of a study conducted at a small man-made stream located in the industrial area of Bitterfeld-Wolfen, Germany. This site is characterized by a diffuse groundwater contamination with a variety of aliphatic and aromatic organic substances. The underlying approach of this study was to quantify the mass fluxes between the aquifer, the streambed and the stream by combining high-resolution with integral monitoring approaches. Magnitudes and pattern of water fluxes were obtained by mapping streambed temperatures. The method was applied to a reach of 280 m in length. The mass fluxes from the aquifer towards the stream were estimated by combining the water fluxes with representative, average pollutant concentrations. The concentrations were obtained from an integral pumping test with four simultaneously pumped wells operated for the period of five days. For monochlorobenzene (MCB), the main groundwater pollutant at the site, the resulting average mass flux from the aquifer towards the stream was estimated to 724 µg/m²/d. Mass flux calculations with average aqueous concentrations of MCB in the streambed were found to be higher than those originating from the aquifer. Consequently, the streambed sediments represent a secondary pollutant source for the surface water. Pollutant concentrations in the streambed were lower at locations with high groundwater discharge and vice versa. Hence, the spatial heterogeneity of water fluxes must be considered when mass fluxes between surface water and streambed sediments are assessed. River restoration could improve the structural state of rivers and may thus result in an enhanced biodegradation of organic pollutants in the streambed. However, before any physical measure is applied a profound knowledge of pollutant concentration and pathways is required in order to avoid mobilization of sediment-bound pollutants.

  12. Odor composition analysis and odor indicator selection during sewage sludge composting

    PubMed Central

    Zhu, Yan-li; Zheng, Guo-di; Gao, Ding; Chen, Tong-bin; Wu, Fang-kun; Niu, Ming-jie; Zou, Ke-hua

    2016-01-01

    ABSTRACT On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography–mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Implications: Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities. PMID:27192607

  13. Odor composition analysis and odor indicator selection during sewage sludge composting.

    PubMed

    Zhu, Yan-Li; Zheng, Guo-di; Gao, Ding; Chen, Tong-Bin; Wu, Fang-Kun; Niu, Ming-Jie; Zou, Ke-Hua

    2016-09-01

    On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography-mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities.

  14. Characterizing the spatial distribution of multiple pollutants and populations at risk in Atlanta, Georgia.

    PubMed

    Pearce, John L; Waller, Lance A; Sarnat, Stefanie E; Chang, Howard H; Klein, Mitch; Mulholland, James A; Tolbert, Paige E

    2016-08-01

    Exposure metrics that identify spatial contrasts in multipollutant air quality are needed to better understand multipollutant geographies and health effects from air pollution. Our aim is to improve understanding of: (1) long-term spatial distributions of multiple pollutants; and (2) demographic characteristics of populations residing within areas of differing air quality. We obtained average concentrations for ten air pollutants (p=10) across a 12 km grid (n=253) covering Atlanta, Georgia for 2002-2008. We apply a self-organizing map (SOM) to our data to derive multipollutant patterns observed across our grid and classify locations under their most similar pattern (i.e, multipollutant spatial type (MST)). Finally, we geographically map classifications to delineate regions of similar multipollutant characteristics and characterize associated demographics. We found six MSTs well describe our data, with profiles highlighting a range of combinations, from locations experiencing generally clean air to locations experiencing conditions that were relatively dirty. Mapping MSTs highlighted that downtown areas were dominated by primary pollution and that suburban areas experienced relatively higher levels of secondary pollution. Demographics show the largest proportion of the overall population resided in downtown locations experiencing higher levels of primary pollution. Moreover, higher proportions of nonwhites and children in poverty reside in these areas when compared to suburban populations that resided in areas exhibiting relatively lower pollution. Our approach reveals the nature and spatial distribution of differential pollutant combinations across urban environments and provides helpful insights for identifying spatial exposure and demographic contrasts for future health studies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species.

    PubMed

    Moses, Sara K; Harley, John R; Lieske, Camilla L; Muir, Derek C G; Whiting, Alex V; O'Hara, Todd M

    2015-11-15

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species

    PubMed Central

    Moses, Sara K.; Harley, John R.; Lieske, Camilla L.; Muir, Derek C.G.; Whiting, Alex V.; O'Hara, Todd M.

    2015-01-01

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals. PMID:26440545

  17. Hibernation-associated changes in persistent organic pollutant (POP) levels and patterns in British Columbia grizzly bears (ursus arctos horribilis).

    PubMed

    Christensen, Jennie R; MacDuffee, Misty; Yunker, Mark B; Ross, Peter S

    2007-03-15

    We hypothesized that depleted fat reserves in grizzly bears (Ursus arctos horribilis) following annual hibernation would reveal increases in persistent organic pollutant (POP) concentrations compared to those present in the fall. We obtained fat and hair from British Columbia grizzly bears in early spring 2004 to compare with those collected in fall 2003, with the two tissue types providing contaminant and dietary information, respectively. By correcting for the individual feeding habits of grizzlies using a stable isotope-based approach, we found that polychlorinated biphenyls (sigmaPCBs) increased by 2.21x, polybrominated diphenylethers (sigmaPBDEs) increased by 1.58x, and chlordanes (sigmaCHL) by 1.49x in fat following hibernation. Interestingly, individual POPs elicited a wide range of hibernation-associated concentration effects (e.g., CB-153, 2.25x vs CB-169, 0.00x), resulting in POP pattern convergence in a PCA model of two distinct fall feeding groups (salmon-eating vs non-salmon-eating) into a single spring (post-hibernation) group. Our results suggest that diet dictates contaminant patterns during a feeding phase, while metabolism drives patterns during a fasting phase. This work suggests a duality of POP-associated health risks to hibernating grizzly bears: (1) increased concentrations of some POPs during hibernation; and (2) a potentially prolonged accumulation of water-soluble, highly reactive POP metabolites, since grizzly bears do not excrete during hibernation.

  18. Climate change and air pollution: Effects on pollen allergy and other allergic respiratory diseases.

    PubMed

    D'Amato, Gennaro; Bergmann, Karl Christian; Cecchi, Lorenzo; Annesi-Maesano, Isabella; Sanduzzi, Alessandro; Liccardi, Gennaro; Vitale, Carolina; Stanziola, Anna; D'Amato, Maria

    The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollen grains especially in the presence of specific weather conditions. Although genetic factors are important in the development of asthma and allergic diseases, their rising trend can be explained only by changes occurring in the environment and urban air pollution by motor vehicles has been indicated as one of the major risk factors responsible for this increase. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world. Due to climate change, air pollution patterns are changing in several urbanized areas of the world with a significant effect on respiratory health. The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases. In addition, it is important to recall that an individual's response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend only on the increased production of air pollution, but rather on atmospheric factors that favor the accumulation of air pollutants at ground level. Associations between thunderstorms and asthma morbidity of pollinosis-affected people have also been identified in multiple locations around the world ( Fig. 1). Cite this as D'Amato G, Bergmann KC, Cecchi L, Annesi-Maesano I, Sanduzzi A, Liccardi G, Vitale C, Stanziola A, D'Amato M. Climate change and air pollution - Effects on pollen allergy and other allergic respiratory diseases. Allergo J Int 2014; 23: 17-23 DOI 10.1007/s40629-014-0003-7 A factor clouding the problem is that laboratory evaluations do not reflect what happens during natural exposition. Considering these aspects, governments worldwide, international organizations, and cooperations such as the World Health Organization (WHO) and the European Health Policy of the European Union (EU) are facing a growing problem of the respiratory effects induced by gaseous and particulate pollutants arising from motor vehicle emissions.

  19. Environmentally relevant concentrations of tramadol and citalopram alter behaviour of an aquatic invertebrate.

    PubMed

    Buřič, M; Grabicová, K; Kubec, J; Kouba, A; Kuklina, I; Kozák, P; Grabic, R; Randák, T

    2018-05-14

    Environmental pollution by pharmaceutically active compounds, used in quantities similar to those of pesticides and other organic micropollutants, is increasingly recognized as a major threat to the aquatic environment. These compounds are only partly removed from wastewaters and, despite their low concentrations, directly and indirectly affect behaviour of freshwater organisms in natural habitats. The aim of this study was to behaviourally assess the effects of an opioid painkiller (tramadol) and antidepressant drug (citalopram) on behaviour patterns of a clonal model species, marbled crayfish. Animals exposed to environmentally relevant concentrations of both tested compounds (∼1 μg l -1 ) exhibited significantly lower velocity and shorter distance moved than controls. Crayfish exposed to tramadol spent more time in shelters. Results were obtained by a simple and rapid method recommended as suitable for assessment of behaviour in aquatic organisms exposed to single pollutants and combinations. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Toxic airborne S, PAH, and trace element legacy of the superhigh-organic-sulphur Raša coal combustion: Cytotoxicity and genotoxicity assessment of soil and ash.

    PubMed

    Medunić, Gordana; Ahel, Marijan; Mihalić, Iva Božičević; Srček, Višnja Gaurina; Kopjar, Nevenka; Fiket, Željka; Bituh, Tomislav; Mikac, Iva

    2016-10-01

    This paper presents the levels of sulphur, polycyclic aromatic hydrocarbons (PAHs), and potentially toxic trace elements in soils surrounding the Plomin coal-fired power plant (Croatia). It used domestic superhigh-organic-sulphur Raša coal from 1970 until 2000. Raša coal was characterised by exceptionally high values of S, up to 14%, making the downwind southwest (SW) area surrounding the power plant a significant hotspot. The analytical results show that the SW soil locations are severely polluted with S (up to 4%), and PAHs (up to 13,535ng/g), while moderately with Se (up to 6.8mg/kg), and Cd (up to 4.7mg/kg). The composition and distribution pattern of PAHs in the polluted soils indicate that their main source could be airborne unburnt coal particles. The atmospheric dispersion processes of SO2 and ash particles have influenced the composition and distribution patterns of sulphur and potentially toxic trace elements in studied soils, respectively. A possible adverse impact of analysed soil on the local karstic environment was evaluated by cytotoxic and genotoxic methods. The cytotoxicity effects of soil and ash water extracts on the channel catfish ovary (CCO) cell line were found to be statistically significant in the case of the most polluted soil and ash samples. However, the primary DNA-damaging potential of the most polluted soil samples on the CCO cells was found to be within acceptable boundaries. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Application of multiple geochemical markers to investigate organic pollution in a dynamic coastal zone.

    PubMed

    Liu, Liang-Ying; Wang, Ji-Zhong; Wong, Charles S; Qiu, Jian-Wen; Zeng, Eddy Y

    2013-02-01

    Multiple geochemical markers, including aliphatic hydrocarbons (n-alkanes), linear alkylbenzenes (LABs), and polycyclic aromatic hydrocarbons (PAHs), were employed to relate sediment organic chemical pollution in the coastal zone off South China to socioeconomic development there. Concentrations of Σn-C(15-35) (n-alkanes with 15-35 carbon atoms), ΣLAB (sum of C(10) to C(13) LABs), and Σ(26) PAH (sum of 26 PAH compounds) ranged from 110 to 3,160, 11 to 160, and 26 to 600 ng/g, with medians of 730, 40, and 230 ng/g, respectively. Natural hydrocarbons were mainly derived from terrestrial higher plant waxes, and in minor amounts from aquatic plankton and bacteria. Compositions of LABs indicated that considerable amounts of poorly treated wastewater had been directly discharged or transported to the eastern and western coastal areas of Guangdong Province. In addition, anthropogenic hydrocarbons were derived largely from vehicular emissions and combustion of domestic coal and biomass and to a lesser extent from oil spills. Eastern and western coastal sediments contained higher levels of LABs but lower levels of PAHs than those of the Pearl River Estuary, a coastal area of the Pearl River Delta. This spatial pattern of organic pollution was consistent with chemical use patterns. The eastern and western regions of Guangdong Province are economically less developed than the Pearl River Delta region, where more domestic wastewater treatment plants have been built. However, greater amounts of energy are consumed in the latter region to produce more combustion-derived PAH contamination. Copyright © 2012 SETAC.

  2. Persistent organic pollutants in British Columbia grizzly bears: consequence of divergent diets.

    PubMed

    Christensen, Jennie R; MacDuffee, Misty; Macdonald, Robie W; Whiticar, Michael; Ross, Peter S

    2005-09-15

    Nitrogen and carbon stable isotope signatures in growing hair reveal that while some British Columbia grizzly bears (Ursus arctos horribilis) rely entirely on terrestrial foods, others switch in late summer to returning Pacific salmon (Oncorynchus spp.). Implications for persistent organic pollutant (POP) concentrations and patterns measured in the two feeding groups of grizzly bears were profound. While the bears consuming a higher proportion of terrestrial vegetation ("interior" grizzlies) exhibited POP patterns dominated bythe more volatile organochlorine (OC) pesticides and the heavier polybrominated diphenyl ethers (PBDEs: e.g., BDE-209), the bears consuming salmon were dominated by the more bioaccumulative POPs (e.g., DDT, chlordanes, and BDE-47). The ocean-salmon-bear pathway appeared to preferentially select for those contaminants with intermediate partitioning strength from water into lipid (log Kow approximately 6.5). This pattern reflects an optimum contaminant log Kow range for atmospheric transport, deposition into the marine environment, uptake into marine biota, accumulation through the food web, and retention in the bear tissues. We estimate that salmon deliver 70% of all OC pesticides, up to 85% of the lower brominated PBDE congeners, and 90% of PCBs found in salmon-eating grizzly bears, thereby inextricably linking these terrestrial predators to contaminants from the North Pacific Ocean.

  3. Spatial distribution of organic pollutants in industrial construction and demolition waste and their mutual interaction on an abandoned pesticide manufacturing plant.

    PubMed

    Huang, Sheng; Zhao, Xin; Sun, Yanqiu; Ma, Jianli; Gao, Xiaofeng; Xie, Tian; Xu, Dongsheng; Yu, Yi; Zhao, Youcai

    2016-04-01

    A comprehensive field investigation of organic pollutants was examined in industrial construction and demolition waste (ICDW) inside an abandoned pesticide manufacturing plant. Concentrations of eight types of pesticides, a metabolite and two intermediates were studied. The ICDW was under severe and long-term contamination by organophosphorus, intermediates and pyrethroid pesticide with mean concentrations of 23,429, 3538 and 179.4 mg kg(-1), respectively. FT-IR analysis suggested that physical absorption and chemical bonding were their mutual interaction forms. Patterns of total pesticide spatial distribution showed good correlations with manufacturing processes spreading all over the plant both in enclosed workshops and in residues randomly dumped outside, while bricks and coatings were the most vulnerable to pollutants. Ultimately the fate of the OPPs was diversified as the immersion of ICDW in water largely transferred the pollutants into aquatic systems while exposure outside did not largely lead to pesticide degradation. The adoption of centralized collections for the disposal of wastes could only eliminate part of the contaminated ICDW, probably due to lack of knowledge and criteria. Correlation matrix and cluster analysis indicated that regulated disposal and management of polluted ICDW was effective, thus presenting the requirement for its appropriate disposal.

  4. Insights into Mechanistic Models for Evaporation of Organic Liquids in the Environment Obtained by Position-Specific Carbon Isotope Analysis.

    PubMed

    Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S; Parinet, Julien; Höhener, Patrick

    2015-11-03

    Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.

  5. Consumption of organic meat does not diminish the carcinogenic potential associated with the intake of persistent organic pollutants (POPs).

    PubMed

    Hernández, Ángel Rodríguez; Boada, Luis D; Mendoza, Zenaida; Ruiz-Suárez, Norberto; Valerón, Pilar F; Camacho, María; Zumbado, Manuel; Almeida-González, Maira; Henríquez-Hernández, Luis A; Luzardo, Octavio P

    2017-02-01

    Numerous studies have shown an epidemiological link between meat consumption and the incidence of cancer, and it has been suggested that this relationship may be motivated by the presence of carcinogenic contaminants on it. Among the most frequently detected contaminants in meat are several types of persistent organic pollutants (POPs), and it is well known that many of them are carcinogenic. On the other hand, an increasing number of consumers choose to feed on what are perceived as healthier foods. Thus, the number of consumers of organic food is growing. However, environmental contamination by POPs is ubiquitous, and it is therefore unlikely that the practices of organic food production are able to prevent this contamination. To test this hypothesis, we acquired 76 samples of meat (beef, chicken, and lamb) of two modes of production (organic and conventional) and quantified their levels of 33 carcinogenic POPs. On this basis, we determined the human meat-related daily dietary exposure to these carcinogens using as a model a population with a high consumption of meat, such as the Spanish population. The maximum allowable meat consumption for this population and the carcinogenic risk quotients associated with the current pattern of consumption were calculated. As expected, no sample was completely free of carcinogenic contaminants, and the differences between organically and conventionally produced meats were minimal. According to these results, the current pattern of meat consumption exceeded the maximum limits, which are set according to the levels of contaminations, and this is associated with a relevant carcinogenic risk. Strikingly, the consumption of organically produced meat does not diminish this carcinogenic risk, but on the contrary, it seems to be even higher, especially that associated with lamb consumption.

  6. Organic micropollutants discharged by combined sewer overflows - Characterisation of pollutant sources and stormwater-related processes.

    PubMed

    Launay, Marie A; Dittmer, Ulrich; Steinmetz, Heidrun

    2016-11-01

    To characterise emissions from combined sewer overflows (CSOs) regarding organic micropollutants, a monitoring study was undertaken in an urban catchment in southwest Stuttgart, Germany. The occurrence of 69 organic micropollutants was assessed at one CSO outfall during seven rain events as well as in the sewage network at the influent of the wastewater treatment plant (WWTP) and in the receiving water. Several pollutant groups like pharmaceuticals and personal care products (PPCPs), urban biocides and pesticides, industrial chemicals, organophosphorus flame retardants, plasticisers and polycyclic aromatic hydrocarbons (PAHs) were chosen for analysis. Out of the 69 monitored substances, 60 were detected in CSO discharges. The results of this study show that CSOs represent an important pathway for a wide range of organic micropollutants from wastewater systems to urban receiving waters. For most compounds detected in CSO samples, event mean concentrations varied between the different events in about one order of magnitude range. When comparing CSO concentrations with median wastewater concentrations during dry weather, two main patterns could be observed depending on the source of the pollutant: (i) wastewater is diluted by stormwater; (ii) stormwater is the most important source of a pollutant. Both wastewater and stormwater only play an important role in pollutant concentration for a few compounds. The proportion of stormwater calculated with the conductivity is a suitable indicator for the evaluation of emitted loads of dissolved wastewater pollutants, but not for all compounds. In fact, this study demonstrates that remobilisation of in-sewer deposits contributed from 10% to 65% to emissions of carbamazepine in CSO events. The contribution of stormwater to CSO emitted loads was higher than 90% for all herbicides as well as for PAHs. Regarding the priority substance di(2-ethylhexyl)phthalate (DEHP), this contribution varied between 39% and 85%. The PAH concentrations found along the river indicate environmental risk, especially during rainfall events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Geochemistry of the suspended sediment in the estuaries of the Mandovi and Zuari rivers, central west coast of India.

    PubMed

    Kessarkar, Pratima M; Shynu, R; Rao, V Purnachandra; Chong, Feng; Narvekar, Tanuja; Zhang, Jing

    2013-05-01

    The geochemistry of the suspended particulate matter (SPM) collected during the monsoon was determined to identify the sources of SPM and to understand the physicochemical processes in the Mandovi and Zuari river estuaries. The concentrations of SPM decrease seaward in both estuaries, but are relatively high at bay stations. Kaolinite is the most dominant clay mineral in the upstream of both rivers. Smectite increases seaward in both estuaries and is abundant in the bay. Upstream stations of Mandovi, where ore deposits are stored on the shore, exhibit high Fe, Mn, total rare earth elements (∑REE), and middle REE- and heavy REE-enriched patterns. Channel stations of both estuaries exhibit middle REE- and light REE-enriched patterns, which gradually changed seaward to middle REE- and heavy REE-enriched patterns. Canal stations exhibit the highest concentrations of major and trace metals. High metal/Al ratios occur at stations in the upstream of Zuari and at the confluence of canals in the Mandovi estuary. Enrichment factors of metals indicate that Mn is significantly polluted while other metals are moderately polluted. The δ(13)C and δ(15)N of organic matter indicate that the terrigenous organic matter at the upstream is diluted seaward by marine organic matter. Organic matter at bay stations is largely marine and altered-type. The compositions of SPM are controlled by the particulates from ore dust, the geology of the drainage basins, and the physicochemical processes in the estuaries. Particulates resuspended from the bay are dominated by ore dust, which are advected into the channels of both estuaries during the lull periods of the monsoon.

  8. Congener Patterns of Persistent Organic Pollutants Establish the Extent of Contaminant Biotransport by Pacific Salmon in the Great Lakes.

    PubMed

    Gerig, Brandon S; Chaloner, Dominic T; Janetski, David J; Rediske, Richard R; O'Keefe, James P; Moerke, Ashley H; Lamberti, Gary A

    2016-01-19

    In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.

  9. Relationship between heavy metal accumulation and morphometric parameters in European hare (Lepus europaeus) inhabiting various types of landscapes in southern Poland.

    PubMed

    Wajdzik, Marek; Halecki, Wiktor; Kalarus, Konrad; Gąsiorek, Michał; Pająk, Marek

    2017-11-01

    To evaluate the influence of hazardous substances in the environment, studies of pollutant accumulation in wild living animals are needed. Studies dealing with heavy metal contamination in mammals usually focus on a single organ. We investigated accumulation of heavy metals as well as iron in European hare (Lepus europaeus) living in southern Poland, Małopolska Province. Hares were captured during the hunting season. We tested metal accumulation in 14 organs and tissues using 35 individuals with known body weight and sex inhabiting agricultural, industrial and other types of landscapes. To obtain deeper insight into contamination patterns, we used accumulation data from the liver since it is the most frequently investigated organ and prone to pollution accumulation. Based on the data obtained for the liver, we tested the impact of metal pollution on hare morphology, including body length and several skull cranimetric parameters. Metals content differed between organs. Moreover, individuals from industrial areas had higher Cd content in their body. We distinguished two groups of elements: the first group, Cd, Fe and Zn, revealed the highest toxic effect in the liver and kidneys; the second group, Cr, Ni, and Pb, accumulated primarily in the brain. Hares inhabiting industrial areas had higher concentration of Cd and Pb, and lower levels of Cr and Fe in their liver in comparison with those from agricultural and forest habitats. Heavy metals had an effect on body length that was negatively associated with Cr levels. Skull diastema length was associated positively with accumulation of Cd and Pb. We showed that hare organs and tissues could be used as bioindicators of environmental pollution by heavy metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Environmental Pollution: An Under-recognized Threat to Children’s Health, Especially in Low- and Middle-Income Countries

    PubMed Central

    Suk, William A.; Ahanchian, Hamid; Asante, Kwadwo Ansong; Carpenter, David O.; Diaz-Barriga, Fernando; Ha, Eun-Hee; Huo, Xia; King, Malcolm; Ruchirawat, Mathuros; da Silva, Emerson R.; Sly, Leith; Sly, Peter D.; Stein, Renato T.; van den Berg, Martin; Zar, Heather; Landrigan, Philip J.

    2016-01-01

    Summary Exposures to environmental pollutants during windows of developmental vulnerability in early life can cause disease and death in infancy and childhood as well as chronic, non-communicable diseases that may manifest at any point across the life span. Patterns of pollution and pollution-related disease change as countries move through economic development. Environmental pollution is now recognized as a major cause of morbidity and mortality in low- and middle-income countries (LMICs). According to the World Health Organization, pollution is responsible for 8.9 million deaths around the world each year; of these, 94% (8.4 million) are in LMICs. Toxic chemical pollution is growing into a major threat to children’s health in LMICs. The disease and disability caused by environmental pollution have great economic costs, and these costs can undercut trajectories of national development. To combat pollution, improved programs of public health and environmental protection are needed in countries at every level of development. Pollution control strategies and technologies that have been developed in high-income countries must now be transferred to LMICs to assist these emerging economies to avoid the mistakes of the past. A new international clearinghouse is needed to define and track the health effects of pollution, quantify the economic costs of these effects, and direct much needed attention to environmental pollution as a risk factor for disease. PMID:26930243

  11. Environmental Pollution: An Under-recognized Threat to Children's Health, Especially in Low- and Middle-Income Countries.

    PubMed

    Suk, William A; Ahanchian, Hamid; Asante, Kwadwo Ansong; Carpenter, David O; Diaz-Barriga, Fernando; Ha, Eun-Hee; Huo, Xia; King, Malcolm; Ruchirawat, Mathuros; da Silva, Emerson R; Sly, Leith; Sly, Peter D; Stein, Renato T; van den Berg, Martin; Zar, Heather; Landrigan, Philip J

    2016-03-01

    Exposures to environmental pollutants during windows of developmental vulnerability in early life can cause disease and death in infancy and childhood as well as chronic, non-communicable diseases that may manifest at any point across the life span. Patterns of pollution and pollution-related disease change as countries move through economic development. Environmental pollution is now recognized as a major cause of morbidity and mortality in low- and middle-income countries (LMICs). According to the World Health Organization, pollution is responsible for 8.9 million deaths around the world each year; of these, 94% (8.4 million) are in LMICs. Toxic chemical pollution is growing into a major threat to children's health in LMICs. The disease and disability caused by environmental pollution have great economic costs, and these costs can undercut trajectories of national development. To combat pollution, improved programs of public health and environmental protection are needed in countries at every level of development. Pollution control strategies and technologies that have been developed in high-income countries must now be transferred to LMICs to assist these emerging economies to avoid the mistakes of the past. A new international clearinghouse is needed to define and track the health effects of pollution, quantify the economic costs of these effects, and direct much needed attention to environmental pollution as a risk factor for disease.

  12. Source apportionments of PM2.5 organic carbon during the elevated pollution episodes in the Ordos region, Inner Mongolia, China.

    PubMed

    Khuzestani, Reza Bashiri; Schauer, James J; Shang, Jing; Cai, Tianqi; Fang, Dongqing; Wei, Yongjie; Zhang, Lulu; Zhang, Yuanxun

    2018-05-01

    The Ordos region in the southwestern part of Inner Mongolia experiences frequent PM concentrations in excess of the national PM 2.5 air quality standards. In order to determine the key sources of PM 2.5 contributing to these pollution episodes, the main sources of PM 2.5 OC during elevated PM episodes in the Inner Mongolia were analyzed and compared with non-polluted days. This will provide insight to the main sources of particulate matter pollution during the high-pollution episodes and the effective seasonal strategies to control sources of particulate matter during months and with the highest PM concentrations that need to be controlled. The PMF source contributions to OC demonstrated that the industrial/coal combustion (4762.77 ± 1061.54 versus 2726.49 ± 469.75 ng/m 3 ; p < 0.001) and mobile source factors (4651.14 ± 681.82 versus 2605.55 ± 276.50 ng/m 3 ; p value < 0.001) showed greater contributions to the elevated concentrations during the episode. The spatial analysis of secondary organic carbon (SOC) factors, regional biomass burning, and biogenic sources did not show significant difference in the pollution episodes and the non-polluted months. In addition, the bivariate polar plots and CWT maps of the industrial/coal combustion and mobile illustrated a regional long-range transport patterns from the external sources to the study area, however, adjacent areas were mostly controlling the contributions of these factors during the PM elevated episodes. The SOC sources, regional biomass burning, and biogenic sources illustrated a regional long-range transport with similar locations found during the elevated pollution episodes compared to the normal situations.

  13. Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate.

    PubMed

    Luarte, T; Bonta, C C; Silva-Rodriguez, E A; Quijón, P A; Miranda, C; Farias, A A; Duarte, C

    2016-11-01

    The continued growth of human activity and infrastructure has translated into a widespread increase in light pollution. Natural daylight and moonlight cycles play a fundamental role for many organisms and ecological processes, so an increase in light pollution may have profound effects on communities and ecosystem services. Studies assessing ecological light pollution (ELP) effects on sandy beach organisms have lagged behind the study of other sources of disturbance. Hence, we assessed the influence of this stressor on locomotor activity, foraging behavior, absorption efficiency and growth rate of adults of the talitrid amphipod Orchestoidea tuberculata. In the field, an artificial light system was assembled to assess the local influence of artificial light conditions on the amphipod's locomotor activity and use of food patches in comparison to natural (ambient) conditions. Meanwhile in the laboratory, two experimental chambers were set to assess amphipod locomotor activity, consumption rates, absorption efficiency and growth under artificial light in comparison to natural light-dark cycles. Our results indicate that artificial light have significantly adverse effects on the activity patterns and foraging behavior of the amphipods, resulting on reduced consumption and growth rates. Given the steady increase in artificial light pollution here and elsewhere, sandy beach communities could be negatively affected, with unexpected consequences for the whole ecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Differential gene expression revealed with RNA-Seq and parallel genotype selection of the ornithine decarboxylase gene in fish inhabiting polluted areas.

    PubMed

    Vega-Retter, C; Rojas-Hernandez, N; Vila, I; Espejo, R; Loyola, D E; Copaja, S; Briones, M; Nolte, A W; Véliz, D

    2018-03-19

    How organisms adapt to unfavorable environmental conditions by means of plasticity or selection of favorable genetic variants is a central issue in evolutionary biology. In the Maipo River basin, the fish Basilichthys microlepidotus inhabits polluted and non-polluted areas. Previous studies have suggested that directional selection drives genomic divergence between these areas in 4% of Amplified Fragment Length Polymorphism (AFLP) loci, but the underlying genes and functions remain unknown. We hypothesized that B. microlepidotus in this basin has plastic and/or genetic responses to these conditions. Using RNA-Seq, we identified differentially expressed genes in individuals from two polluted sites compared with fish inhabiting non-polluted sites. In one polluted site, the main upregulated genes were related to cellular proliferation as well as suppression and progression of tumors, while biological processes and molecular functions involved in apoptotic processes were overrepresented in the upregulated genes of the second polluted site. The ornithine decarboxylase gene (related to tumor promotion and progression), which was overexpressed in both polluted sites, was sequenced, and a parallel pattern of a heterozygote deficiency and increase of the same homozygote genotype in both polluted sites compared with fish inhabiting the non-polluted sites was detected. These results suggest the occurrence of both a plastic response in gene expression and an interplay between phenotypic change and genotypic selection in the face of anthropogenic pollution.

  15. Defining a "Zone of Impact": Transport Processes and Patterns for Small-Scale Land Runoff.

    NASA Astrophysics Data System (ADS)

    Largier, J. L.; Basdurak, B.

    2016-12-01

    Nearshore pollution is a well-recognized environmental problem, yet the pattern of this pollution is not well studied and it is little recognized in policy. Whether nutrients, pathogens or toxins, the highest concentrations of pollutants in the nearfield are controlled by transport and mixing, rather than decay of the constituent. Thus, this becomes a challenge to determine patterns of runoff (and tidal outflow) and to account for the dominant processes that control these patterns. Salinity and fecal indicator bacteria data exhibit coherent space-time patterns, indicating that a coherent "zone of impact" can be determined, i.e., a time-varying spatial zone in which the constituent of concern exceeds a reference concentration (level of concern). To explain field observations, modeling of small-scale runoff plumes and wave-driven transport can be used. In contrast to larger river plumes, wind forcing is a critical factor in plume behavior and the resultant pattern of pollution. This preliminary work suggests that coherent spatio-temporal patterns can explain the apparently not-so-well-behaved patterns of pollution that are reported when concentrations are under-sampled. And it throws out a challenge to nearshore oceanographers to better explain transport and mixing patterns for the benefit of reducing coastal pollution and its impacts.

  16. Integrated methodology for assessing the HCH groundwater pollution at the multi-source contaminated mega-site Bitterfeld/Wolfen.

    PubMed

    Wycisk, Peter; Stollberg, Reiner; Neumann, Christian; Gossel, Wolfgang; Weiss, Holger; Weber, Roland

    2013-04-01

    A large-scale groundwater contamination characterises the Pleistocene groundwater system of the former industrial and abandoned mining region Bitterfeld/Wolfen, Eastern Germany. For more than a century, local chemical production and extensive lignite mining caused a complex contaminant release from local production areas and related dump sites. Today, organic pollutants (mainly organochlorines) are present in all compartments of the environment at high concentration levels. An integrated methodology for characterising the current situation of pollution as well as the future fate development of hazardous substances is highly required to decide on further management and remediation strategies. Data analyses have been performed on regional groundwater monitoring data from about 10 years, containing approximately 3,500 samples, and up to 180 individual organic parameters from almost 250 observation wells. Run-off measurements as well as water samples were taken biweekly from local creeks during a period of 18 months. A kriging interpolation procedure was applied on groundwater analytics to generate continuous distribution patterns of the nodal contaminant samples. High-resolution geological 3-D modelling serves as a database for a regional 3-D groundwater flow model. Simulation results support the future fate assessment of contaminants. A first conceptual model of the contamination has been developed to characterise the contamination in regional surface waters and groundwater. A reliable explanation of the variant hexachlorocyclohexane (HCH) occurrence within the two local aquifer systems has been derived from the regionalised distribution patterns. Simulation results from groundwater flow modelling provide a better understanding of the future pollutant migration paths and support the overall site characterisation. The presented case study indicates that an integrated assessment of large-scale groundwater contaminations often needs more data than only from local groundwater monitoring. The developed methodology is appropriate to assess POP-contaminated mega-sites including, e.g. HCH deposits. Although HCH isomers are relevant groundwater pollutants at this site, further organochlorine pollutants are present at considerably higher levels. The study demonstrates that an effective evaluation of the current situation of contamination as well as of the related future fate development requires detailed information of the entire observed system.

  17. Characteristics of major volatile organic hazardous air pollutants in the urban air of Kaohsiung city.

    PubMed

    Huang, Mei-Chuan; Lin, Jim Juimin

    2007-10-01

    The concentrations and characteristics of volatile organic hazardous air pollutants (HAPs) in the urban city of Kaohsiung from motor vehicles and dense pollutant sources has become a national concern. To continuously monitor volatile organic HAPs, sampling sites were selected near the four air-quality monitoring stations established by Ethe nvironmental Protection Administration of Taiwan ROC, namely Nan-tz, Tso-ying, San-min and Hsiao-kang, from north to south. An on-site automated online monitor of volatile organic compounds (VOCs) was used for continuous monitoring. This study performed two consecutive days of 24-h monitoring of five volatile organic HAPs form August to October 2005 at the four monitoring sites, which cover the northern, central, and southern areas of Kaohsiung city. The average monitored concentration was 2.78-4.84 ppb for benzene, 5.90-9.66 ppb for toluene, 3.62-5.90 ppb for ethylbenzene, 3.73-5.34 ppb for m,p-xylene, 3.38-4.22 ppb for o-xylene, and 4.48-7.00 ppb for styrene. The average monitored concentrations of the major volatile organic HAPs tended to follow the pattern San-min > Nan-tz > Hsiao-kang > Tso-ying. Among all the species monitored in this study, toluene had the highest ambient concentration, followed by styrene, m,p-xylene, ethylbenzene, o-xylene, and benzene. The results showed that the concentration at night was higher than that in the day for toluene at Nan-tz, San-min, Hsiao-kang, and for benzene at Nan-tz and Hsiao-kang.

  18. Spatial organization of agricultural landscape, farming activities and hydrological risk assessment

    NASA Astrophysics Data System (ADS)

    Viaud, V.; Merot, P.

    2003-04-01

    Agriculture intensification is considered as a major cause of water pollution since it has gone both with an increasing use of fertilisers and significant changes in land-use patterns. Among the prescriptions for pollution control, the management of buffer zones at the landscape scale is supported by the environmental policies, but often without consideration of the systems of human activities they are aimed at. Agricultural landscapes, with fields potentially source of pollution and buffer zones, are spatially organized and managed by farming activities. In a perspective of sustainable management, an integrating approach of environmental issues and farming activities is thus required. This approach was applied to bocage landscapes (landscapes with cultivated fields surrounded by hedgerow systems) in Brittany (Western France). Bocage landscapes are frequently encountered, especially in Europe, and many studies put forward their hydrological and hydrochemical buffer functions. Those results provide informations on the link between spatial organization of hedgerow systems and their environmental effectiveness. They enable to design models of functional bocage landscapes. The objective of this work was to pick out, among those theoretical models, the models compatible with the farming activities. The results will be presented and the additional constraints for the farming systems created by a functional landscape, from a hydrological and hydrochemical perspective, will be discussed.

  19. Reduced graphene oxide-mediated Z-scheme BiVO4/CdS nanocomposites for boosted photocatalytic decomposition of harmful organic pollutants.

    PubMed

    Clament Sagaya Selvam, N; Kim, Yeong Gyeong; Kim, Dong Jin; Hong, Won-Hwa; Kim, Woong; Park, Sung Hyuk; Jo, Wan-Kuen

    2018-09-01

    The efficient photocatalytic degradation of harmful organic pollutants (isoniazid (ISN) and 1,4-dioxane (DX)) via the Z-scheme electron transfer mechanism was accomplished using a photostable composite photocatalyst consisting of BiVO 4 , CdS, and reduced graphene oxide (RGO). Compared to their pristine counterparts, the RGO-mediated Z-scheme CdS/BiVO 4 (CdS/RGO-BiVO 4 ) nanocomposites exhibited superior degradation activities, mainly attributed to the prolonged charge separation. RGO was found to be involved in visible-light harvesting and acted as a solid-state electron mediator at the CdS/BiVO 4 interface to realize an effective Z-scheme electron transfer pathway, avoid photocatalyst self-oxidation, and lengthen the life span of charge carriers. The results of reactive species scavenging experiments, photoluminescence measurements, and transient photocurrent measurements, as well as the calculated band potentials of the synthesized photocatalysts, supported the Z-scheme electron/hole pair separation mechanism. Additionally, the intermediates formed during the degradation of ISN and DX were identified, and a possible fragmentation pattern was proposed. This systematic work aims to develop photostable Z-scheme composites as unique photocatalytic systems for the efficient removal of harmful organic pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Spatiotemporal Patterns, Monitoring Network Design, and Environmental Justice of Air Pollution in the Phoenix Metropolitan Region: A Landscape Approach

    NASA Astrophysics Data System (ADS)

    Pope, Ronald L.

    Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity, age, and socioeconomic classes. The results indicate that changing the scale of the analysis can change the equitable relationship between pollution and demographics. The scientific findings of the scale-dependent relationships among air pollution patterns, network design, and population demographics, brought to light through this study, can help policymakers make informed decisions for protecting the human health and the urban environment in the Phoenix metropolitan region and beyond.

  1. A sub-decadal trend in diacids in atmospheric aerosols in eastern Asia

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Kawamura, K.; Kobayashi, M.; Tachibana, E.; Lee, M.; Fu, P. Q.; Jung, J.

    2016-01-01

    Change in secondary organic aerosols (SOAs) has been predicted to be highly uncertain in the future atmosphere in Asia. To better quantify the SOA change, we examine the sub-decadal (2001-2008) trend in major surrogate compounds (C2-C10 diacids) of SOA in atmospheric aerosols from Gosan site on Cheju Island, South Korea. The Gosan site is influenced by pollution outflows from eastern Asia. The molecular distributions of diacids were characterized by the predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids in each year. The seasonal variations in diacids in each year were characterized by the highest concentrations of saturated diacids in spring and unsaturated diacids in winter. The consistent molecular distributions and seasonal variations along with significantly similar air mass transport patterns are indicative of similar pollution sources for diacids in eastern Asia on a sub-decadal scale. However, the intensity of the pollution sources has increased as evidenced by the increases in major diacids at the rate of 3.9-47.4 % per year, particularly in April. The temporal variations in atmospheric tracer compounds (carbon monoxide, levoglucosan, 2-methyltetrols, pinic acid, glyoxylic acid, glyoxal and methylglyoxal) suggest that the increases in diacids are due to enhanced precursor emissions associated with more anthropogenic than biogenic activities followed by the compounds' chemical processing in the atmosphere. The trends in diacids contrast with the reported decreases in sulfate, nitrate and ammonium in recent years in eastern Asia. This study demonstrates that recent pollution control strategies in eastern Asia were not able to decrease organic acidic species in the atmosphere. The increases in water-soluble organic acid fraction could modify the aerosol organic composition and its sensitivity to climate relevant physical properties.

  2. Environmental quality of mussel farms in the Vigo estuary: pollution by PAHs, origin and effects on reproduction.

    PubMed

    Ruiz, Y; Suarez, P; Alonso, A; Longo, E; Villaverde, A; San Juan, F

    2011-01-01

    This work analyzes the influence of environmental and physiological parameters on PAHs accumulation in cultured mussels. Lipid content and reproductive stage are directly related with PAHs accumulation pattern. We observed a rapid accumulation and depuration of PAHs, mainly during periods of nutrients accumulation, spawns and gonadic restorations. Correlations between PAHs accumulation and physiological status indicate when mussels are more susceptible to adverse effects of these pollutants. A positive correlation between mutagenic congener's accumulation and occurrence of gonadic neoplastic disorders is shown for the first time in mussels. Molecular indices were used to identify the origin of hydrocarbons accumulated by Mytilus, showing a chronic pyrolytic pollution and pollutant episodes by petrogenic sources and biomass combustion in the studied area. Multivariate analysis suggests the possibility of including physiological parameters of sentinel organisms in environmental biomonitoring programs, mainly in aquaculture areas, taking into account their two aspects: farms productivity and human food safety. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. 2D FTIR correlation spectroscopy and EPR analysis of Urtica dioica leaves from areas of different environmental pollution

    NASA Astrophysics Data System (ADS)

    Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria

    2018-01-01

    Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed.

  4. Solid waste containing persistent organic pollutants in Serbia: From precautionary measures to the final treatment (case study).

    PubMed

    Stevanovic-Carapina, Hristina; Milic, Jelena; Curcic, Marijana; Randjelovic, Jasminka; Krinulovic, Katarina; Jovovic, Aleksandar; Brnjas, Zvonko

    2016-07-01

    Sustainable solid waste management needs more dedicated attention in respect of environmental and human health protection. Solid waste containing persistent organic pollutants is of special concern, since persistent organic pollutants are persistent, toxic and of high risk to human health and the environment. The objective of this investigation was to identify critical points in the Serbian system of solid waste and persistent organic pollutants management, to assure the life cycle management of persistent organic pollutants and products containing these chemicals, including prevention and final destruction. Data were collected from the Serbian competent authorities, and led us to identify preventive actions for solid waste management that should reduce or minimise release of persistent organic pollutants into the environment, and to propose actions necessary for persistent organic pollutants solid waste. The adverse impact of persistent organic pollutants is multidimensional. Owing to the lack of treatment or disposal plants for hazardous waste in Serbia, the only option at the moment to manage persistent organic pollutants waste is to keep it in temporary storage and when conditions are created (primarily financial), such waste should be exported for destruction in hazardous waste incinerators. Meanwhile, it needs to be assured that any persistent organic pollutants management activity does not negatively impact recycling flows or disturb progress towards a more circular economy in Serbia. © The Author(s) 2016.

  5. Inputs and spatial distribution patterns of Cr in Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2018-03-01

    Cr pollution in marine bays has been one of the critical environmental issues, and understanding the input and spatial distribution patterns is essential to pollution control. In according to the source strengths of the major pollution sources, the input patterns of pollutants to marine bay include slight, moderate and heavy, and the spatial distribution are corresponding to three block models respectively. This paper analyzed input patterns and distributions of Cr in Jiaozhou Bay, eastern China based on investigation on Cr in surface waters during 1979-1983. Results showed that the input strengths of Cr in Jiaozhou Bay could be classified as moderate input and slight input, and the input strengths were 32.32-112.30 μg L-1 and 4.17-19.76 μg L-1, respectively. The input patterns of Cr included two patterns of moderate input and slight input, and the horizontal distributions could be defined by means of Block Model 2 and Block Model 3, respectively. In case of moderate input pattern via overland runoff, Cr contents were decreasing from the estuaries to the bay mouth, and the distribution pattern was parallel. In case of moderate input pattern via marine current, Cr contents were decreasing from the bay mouth to the bay, and the distribution pattern was parallel to circular. The Block Models were able to reveal the transferring process of various pollutants, and were helpful to understand the distributions of pollutants in marine bay.

  6. Sustainable nitrogen fertilisation in sweet pepper: assessing growth and fruit quality and the potential nitrate pollution from different organic manures.

    PubMed

    Gómez-López, María D; del Amor, Francisco M

    2013-03-30

    The use of organic cultivation with manures does not avoid the risk of high nitrate concentrations if nutrient management is inefficient. So we studied the influence of three organic manures combined or not with additional chemical fertilisers on growth and yield of sweet pepper (Capsicum annuum L.), and on the soil and plant N concentrations. After 3 years of organic cultivation, poultry manure caused the highest soil pollution. The evolution of nitrate and organic matter in soil showed a pattern close to that of plant growth. The addition of mineral fertiliser increased vegetative growth and yield, and a cumulative season effect was observed. In treatments with no additional mineral fertiliser N translocation from leaves to fruits happened. A cumulative effect of seasons on fruit quality and a reduction near to 30% was observed in the first fruit quality category after 3 years. The fruit vitamin C content was reduced by increasing N fertilisation. The effects of organic fertiliser on soil and plant growth and yield depended on the type of manure used, its rate, and consecutive crop seasons. Horse manure gave the best combination of agricultural and environmental characteristics and could be used without additional fertigation. © 2012 Society of Chemical Industry.

  7. Simultaneous determination of indoor ammonia pollution and its biological metabolite in the human body with a recyclable nanocrystalline lanthanide-functionalized MOF

    NASA Astrophysics Data System (ADS)

    Hao, Ji-Na; Yan, Bing

    2016-01-01

    A Eu3+ post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu3+@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability.A Eu3+ post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu3+@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability. Electronic supplementary information (ESI) available: Experimental section; XPS spectra; N2 adsorption-desorption isotherms; ICP data; SEM image; PXRD patterns and other luminescence data. See DOI: 10.1039/c5nr06066d

  8. Interdependence of soil and agricultural practice in a two - year phytoremediation in situ experiment

    NASA Astrophysics Data System (ADS)

    Nwaichi, Eucharia; Onyeike, Eugene; Frac, Magdalena; Iwo, Godknows

    2016-04-01

    A two - year plant - based soil clean - up was carried out at a crude oil spill agricultural site in a Niger Delta community in Nigeria to access further clean - up potentials of Cymbopogon citratus. Applied diagnostic ratios identified mixed petrogenic and pyrogenic sources as the main contributors of PAHs. Up to 90.8% sequestration was obtained for carcinogenic PAHs especially Benz (a) pyrene in a 2 - phase manner. A community level approach for assessing patterns of sole carbon source utilization by mixed microbial samples was employed to differentiate spatial and temporal changes in the soil microbial communities. In relation to pollution, soil conditioning notably decreased the lag times and showed mixed effects for colour development rates, maximum absorbance and the overall community pattern. For rate and utilization of different carbon substrates in BIOLOG wells, after day 3, in comparison to control soil communities, contamination with hydrocarbons and associated types increased amines and amides consumption. Consumption of carbohydrates in all polluted and unamended regimes decreased markedlyin comparison to those cultivated with C. citratus. We found a direct relationship between cellulose breakdown, measurable with B-glucosidase activity, organic matter content and CO2 realease within all soils in the present study. Organic amendment rendered most studied contaminants unavailable for uptake in preference to inorganic fertilizer in both study years. Generally, phytoremediation improved significantly the microbial community activity and thus would promote ecosystem restoration in relation to most patronised techniques. Supplementation with required nutrients, in a long - term design would present many ecological benefits. Keywords: Agricultural soils; Recovery; Hydrocarbon pollution; Ecology; Management practice.

  9. [A landscape ecological approach for urban non-point source pollution control].

    PubMed

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  10. Priority pollutants in urban stormwater: part 2 - case of combined sewers.

    PubMed

    Gasperi, Johnny; Zgheib, Sally; Cladière, Mathieu; Rocher, Vincent; Moilleron, Régis; Chebbo, Ghassan

    2012-12-15

    This study has evaluated the quality of combined sewer overflows (CSOs) in an urban watershed, such as Paris, by providing accurate data on the occurrence of priority pollutants (PPs) and additional substances, as well as on the significance of their concentrations in comparison with wastewater and stormwater. Of the 88 substances monitored, 49 PPs were detected, with most of these also being frequently encountered in wastewater and stormwater, thus confirming their ubiquity in urban settings. For the majority of organic substances, concentrations range between 0.01 and 1 μgl(-1), while metals tend to display concentrations above 10 μgl(-1). Despite this ubiquity, CSO, wastewater and stormwater feature a number of differences in both their concentration ranges and pollutant patterns. For most hydrophobic organic pollutants and some particulate-bound metals, CSOs exhibit higher concentrations than those found in stormwater and wastewater, due to the contribution of in-sewer deposit erosion. For pesticides and Zn, CSOs have shown concentrations close to those of stormwater, suggesting runoff as the major contributor, while wastewater appears to be the main source of volatile organic compounds. Surprisingly, similar concentration ranges have been found for DEHP and tributyltin compounds in CSOs, wastewater and stormwater. The last section of this article identifies substances for which CSO discharges might constitute a major risk of exceeding Environmental Quality Standards in receiving waters and moreover indicates a significant risk for PAHs, tributyltin compounds and chloroalkanes. The data generated during this survey can subsequently be used to identify PPs of potential significance that merit further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Spatial patterns of heavy metals in soil under different geological structures and land uses for assessing metal enrichments.

    PubMed

    Krami, Loghman Khoda; Amiri, Fazel; Sefiyanian, Alireza; Shariff, Abdul Rashid B Mohamed; Tabatabaie, Tayebeh; Pradhan, Biswajeet

    2013-12-01

    One hundred and thirty composite soil samples were collected from Hamedan county, Iran to characterize the spatial distribution and trace the sources of heavy metals including As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, and Fe. The multivariate gap statistical analysis was used; for interrelation of spatial patterns of pollution, the disjunctive kriging and geoenrichment factor (EF(G)) techniques were applied. Heavy metals and soil properties were grouped using agglomerative hierarchical clustering and gap statistic. Principal component analysis was used for identification of the source of metals in a set of data. Geostatistics was used for the geospatial data processing. Based on the comparison between the original data and background values of the ten metals, the disjunctive kriging and EF(G) techniques were used to quantify their geospatial patterns and assess the contamination levels of the heavy metals. The spatial distribution map combined with the statistical analysis showed that the main source of Cr, Co, Ni, Zn, Pb, and V in group A land use (agriculture, rocky, and urban) was geogenic; the origin of As, Cd, and Cu was industrial and agricultural activities (anthropogenic sources). In group B land use (rangeland and orchards), the origin of metals (Cr, Co, Ni, Zn, and V) was mainly controlled by natural factors and As, Cd, Cu, and Pb had been added by organic factors. In group C land use (water), the origin of most heavy metals is natural without anthropogenic sources. The Cd and As pollution was relatively more serious in different land use. The EF(G) technique used confirmed the anthropogenic influence of heavy metal pollution. All metals showed concentrations substantially higher than their background values, suggesting anthropogenic pollution.

  12. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT

    NASA Astrophysics Data System (ADS)

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia

    2018-05-01

    The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.

  13. COMPARISON OF SPATIAL PATTERNS OF POLLUTANT DISTRIBUTION WITH CMAQ PREDICTIONS

    EPA Science Inventory

    One indication of model performance is the comparison of spatial patterns of pollutants, either as concentration or deposition, predicted by the model with spatial patterns derived from measurements. If the spatial patterns produced by the model are similar to the observations i...

  14. 40 CFR Table 4 to Subpart F of... - Organic Hazardous Air Pollutants Subject to Cooling Tower Monitoring Requirements in § 63.104

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Organic Hazardous Air Pollutants...

  15. 40 CFR Table 4 to Subpart F of... - Organic Hazardous Air Pollutants Subject to Cooling Tower Monitoring Requirements in § 63.104

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Organic Hazardous Air Pollutants...

  16. 40 CFR Table 4 to Subpart F of... - Organic Hazardous Air Pollutants Subject to Cooling Tower Monitoring Requirements in § 63.104

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Organic Hazardous Air Pollutants...

  17. How multiagency partnerships can successfully address large-scale pollution problems: a Hawaii case study.

    PubMed

    Donohue, Mary J

    2003-06-01

    Oceanic circulation patterns deposit significant amounts of marine pollution, including derelict fishing gear from North Pacific Ocean fisheries, in the Hawaiian Archipelago [Mar. Pollut. Bull. 42(12) (2001) 1301]. Management responsibility for these islands and their associated natural resources is shared by several government authorities. Non-governmental organizations (NGOs) and private industry also have interests in the archipelago. Since the marine debris problem in this region is too large for any single agency to manage, a multiagency marine debris working group (group) was established in 1998 to improve marine debris mitigation in Hawaii. To date, 16 federal, state, and local agencies, working with industry and NGOs, have removed 195 tons of derelict fishing gear from the Northwestern Hawaiian Islands. This review details the evolution of the partnership, notes its challenges and rewards, and advocates its continued use as an effective resource management tool.

  18. Interaction of Soil Heavy Metal Pollution with Industrialisation and the Landscape Pattern in Taiyuan City, China

    PubMed Central

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning. PMID:25251460

  19. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China.

    PubMed

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.

  20. Redefining the importance of nitrate during haze pollution to help optimize an emission control strategy

    NASA Astrophysics Data System (ADS)

    Pan, Yuepeng; Wang, Yuesi; Zhang, Junke; Liu, Zirui; Wang, Lili; Tian, Shili; Tang, Guiqian; Gao, Wenkang; Ji, Dongsheng; Song, Tao; Wang, Yonghong

    2016-09-01

    Nitrate salts represent a major component of fine mode aerosols, which play an important role in air pollution worldwide. Based on on-line and off-line aerosol measurements in urban Beijing for both clean and haze conditions, we demonstrate that the absolute and relative concentrations of nitrate increased with visibility degradation (relative humidity), whereas the variations of organics tracked the patterns of mixing-layer height and temperature. We propose that the increase in the relative contribution of nitrate to PM1 observed during the early stages of haze pollution was due to new particle formation, whereas the nitrate formed in PM1-2.5 during the latter stages was due to heterogeneous formation and hygroscopic growth. The increasing trend of nitrate (and also sulfate and ammonium) but decreasing trends of organics during haze development, together with the increase of the NO2/SO2 molar ratio with increasing proximity to downtown Beijing and with visibility degradation, provide further evidence that controlling NOx emissions should be a priority for improving air quality in mega cities. Additional large-scale investigation is required to adequately characterize the regional features of NOx-induced haze pollution in China. Such studies may provide insight into the formation of critical nuclei or the subsequent growth of freshly nucleated particles and advance our understanding of the role of nitrate in new particle formation.

  1. Evaluation of architectural and histopathological biomarkers in the intestine of brown trout (Salmo trutta Linnaeus, 1758) challenged with environmental pollution.

    PubMed

    Barišić, Josip; Filipović Marijić, Vlatka; Mijošek, Tatjana; Čož-Rakovac, Rozelindra; Dragun, Zrinka; Krasnići, Nesrete; Ivanković, Dušica; Kružlicová, Dáša; Erk, Marijana

    2018-06-14

    In the present study novel histopathological approach, using fish intestine as a sensitive bioindicator organ of pollution impact in the freshwater ecosystem, was proposed. Histopathological alterations were compared between native brown trout (Salmo trutta Linnaeus, 1758) from the reference (Krka River spring) and pollution impacted location (influence of technological/municipal wastewaters and agricultural runoff near the Town of Knin) of the karst Krka River in Croatia. In brown trout from both locations, severe parasitic infestation with acanthocephalan species Dentitruncus trutae was found, enabling evaluation of acanthocephalan infestation histopathology, which indicated parasite tissue reaction in a form of inflammatory, necrotic and hyperplastic response that extended throughout lamina epithelialis mucosae, lamina propria, and lamina muscularis mucosae. New semi-quantitative histological approach was proposed in order to foresee alterations classified in three reaction patterns: control tissue appearance, moderate (progressive) tissue impairment and severe (regressive and inflammatory) tissue damage. The most frequent progressive alteration was hyperplasia of epithelium on the reference site, whereas the most frequent regressive alterations were atrophy and necrosis seen on the polluted site. Furthermore, histopathological approach was combined with micromorphological and macromorphological assessment as an additional indicator of pollution impact. Among 15 observed intestinal measures, two biomarkers of intestinal tissue damage were indicated as significant, height of supranuclear space (hSN) and number of mucous cells over 100 μm fold distance of intestinal mucosa (nM), which measures were significantly lower in fish from polluted area compared to the reference site. Obtained results indicated that combined histological and morphological approach on fish intestinal tissue might be used as a valuable biological tool for assessing pollution impact on aquatic organisms. Therefore, semi quantitative scoring and multiparametric morphological assessment of intestinal tissue lesion magnitude should become a common approach to handle environmental pollution impact. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. [Characteristics of organic pollutants in the sediments from a typical electronics industrial zone].

    PubMed

    Liu, Jin; Deng, Dai-Yong; Xu, Mei-Ying; Sun, Guo-Ping

    2013-03-01

    In order to investigate the contamination status of organic pollutants in a river of a typical electrical equipment industrial area, Ronggui, Foshan, the sediments were sampled for the composition, concentration and occurrence analysis of organic pollutants. The polar and non-polar fractionation methods were employed for the fingerprint establishment of organic pollutants. One hundred and seventy-one of organic chemicals including ten categories of alkanes, alkenes, polycyclic aromatic hydrocarbons, benzene, heterocyclic compounds, phthalate esters, aldehydes, ketones, polar compounds, silicon-containing material as well as alkyl esters were examined. The number of different categories of the detected organic pollutants in a descending order was: alkanes > polar compounds > polycyclic aromatic hydrocarbons > aldehydes and ketones > heterocyclic compounds > benzene homologues, phthalate ester > alkyl esters > silicon material > olefins. The abundance of detected organic pollutants in a descending order was: alkanes > polar compounds > alkyl esters > olefins > polycyclic aromatic hydrocarbons > phthalates > silicon material > aldehydes and ketones > heterocyclic compounds > benzene homologues. Among the 51 kinds of alkanes detected, nonadecane accounted for 14.83%, and the persistent organic pollutants accounted for 2.33% of the total organic matter. Compared to similar studies, there were 51 kinds of alkanes and they accounted for 55.5% of the total organic chemicals, showing high diversity and abundance. In addition, some electronics industry-related organic pollutants such as silicone materials were also detected in high frequency.

  3. Pollutant Dilution and Diffusion in Urban Street Canyon Neighboring Streets

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Fu, Zh. M.

    2011-09-01

    In the present study we investigated the airflow patterns and air quality of a series of typical street canyon combinations, developed a mass balance model to determine the local pollutant dilution rate, and discuss the impact of upstream canyon on the air quality of downstream canyon. The results indicated that the geometrical size of upstream and downstream buildings have significant impacts on the ambient airflow patterns. The pollution distribution within the canyons varies with different building combinations and flow patterns. Within the upstream canyon, pollution always accumulates to the low building side for non-symmetrical canyon, and for symmetrical canyon high level of pollution occurs at the leeward side. The height of the middle and downstream buildings can evidently change the pollutant dispersion direction during the transport process. Within the polluted canyon, the pollutant dilution rate (PDR) also varies with different street canyon combinations. The highest PDR is observed when the upstream buildings are both low buildings no matter the height of downstream building. However, the two cases are likely to contribution pollution to the downstream canyon. The H-L-H combination is mostly against local pollution remove, while the L-H-L case is considered the best optimistic building combination with both the ability of diluting local pollution and not remarkably decreasing air quality of downstream canyon. The current work is expected instructive for city designers to optimize traffic patterns under typical existing geometry or in the development of urban geometry modification for air quality control.

  4. Microbial succession in response to pollutants in batch-enrichment culture

    PubMed Central

    Jiao, Shuo; Chen, Weimin; Wang, Entao; Wang, Junman; Liu, Zhenshan; Li, Yining; Wei, Gehong

    2016-01-01

    As a global problem, environmental pollution is an important factor to shape the microbial communities. The elucidation of the succession of microbial communities in response to pollutants is essential for developing bioremediation procedures. In the present study, ten batches of soil-enrichment subcultures were subjected to four treatments: phenanthrene, n-octadecane, phenanthrene + n-octadecane, or phenanthrene + n-octadecane + CdCl2. Forty pollutant-degrading consortia, corresponding to each batch of the four treatments were obtained. High-throughput sequencing of the 16S rRNA gene revealed that the diversity, richness and evenness of the consortia decreased throughout the subculturing procedure. The well-known hydrocarbon degraders Acinetobacter, Gordonia, Sphingobium, Sphingopyxis, and Castellaniella and several other genera, including Niabella and Naxibacter, were detected in the enriched consortia. The predominant microbes varied and the microbial community in the consortia gradually changed during the successive subculturing depending on the treatment, indicating that the pollutants influenced the microbial successions. Comparison of the networks in the treatments indicated that organic pollutants and CdCl2 affected the co-occurrence patterns in enriched consortia. In conclusion, single environmental factors, such as the addition of nutrients or selection pressure, can shape microbial communities and partially explain the extensive differences in microbial community structures among diverse environments. PMID:26905741

  5. 2D FTIR correlation spectroscopy and EPR analysis of Urtica dioica leaves from areas of different environmental pollution.

    PubMed

    Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria

    2018-01-15

    Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. 40 CFR Table 2 to Subpart F of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table 2 Table 2 to Subpart F of Part 63—Organic Hazardous... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Organic Hazardous Air Pollutants 2...

  7. 40 CFR Table 2 to Subpart F of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table 2 Table 2 to Subpart F of Part 63—Organic Hazardous... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Organic Hazardous Air Pollutants 2...

  8. 40 CFR Table 2 to Subpart F of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table 2 Table 2 to Subpart F of Part 63—Organic Hazardous... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Organic Hazardous Air Pollutants 2...

  9. Economic growth and energy regulation in the environmental Kuznets curve.

    PubMed

    Lorente, Daniel Balsalobre; Álvarez-Herranz, Agustín

    2016-08-01

    This study establishes the existence of a pattern of behavior, between economic growth and environmental degradation, consistent with the environmental Kuznets curve (EKC) hypothesis for 17 Organization for Economic Cooperation and Development (OECD) countries between 1990 and 2012. Based on this EKC pattern, it shows that energy regulation measures help reduce per capita greenhouse gas (GHG) emissions. To validate this hypothesis, we also add the explanatory variables: renewable energy promotion, energy innovation processes, and the suppression effect of income level on the contribution of renewable energy sources to total energy consumption. It aims to be a tool for decision-making regarding energy policy. This paper provides a two-stage econometric analysis of instrumental variables with the aim of correcting the existence of endogeneity in the variable GDP per capita, verifying that the instrumental variables used in this research are appropriate for our aim. To this end, it first makes a methodological contribution before incorporating additional variables associated with environmental air pollution into the EKC hypothesis and showing how they positively affect the explanation of the correction in the GHG emission levels. This study concludes that air pollution will not disappear on its own as economic growth increases. Therefore, it is necessary to promote energy regulation measures to reduce environmental pollution.

  10. Effects of hypoxia caused by mussel farming on benthic foraminifera in semi-closed Gamak Bay, South Korea.

    PubMed

    Lee, Yeon Gyu; Jeong, Da Un; Lee, Jung Sick; Choi, Yang Ho; Lee, Moon Ok

    2016-08-15

    Seawater monitoring and geochemical and benthic foraminiferal analysis of sediments were conducted to identify the effects of hypoxia created by a mussel farm on benthic foraminifera in a semi-closed bay. Extremely polluted reductive conditions with a high content of organic matter (OM) at >12.0% and oxygen minimum zones (OMZs) with dissolved oxygen (DO) <0.4mg∙L(-1) were formed below the mussel farm in the northwest area of Gamak Bay, and gradually diffused toward the south. Highly similar patterns of variation were observed in species diversity, abundance frequency, and benthic foraminiferal assemblage distributed from Elphidium subarcticum-Ammonia beccarii in the northwest area through E. subarcticum-A. beccarii-Trochammina hadai, E. subarcticum-A. beccarii-Elphidiumclavatum, and E. clavatum-Ammonia ketienziensis in the southern area. These phenomena were caused by hydrodynamics in the current water mass. It was thought that E. subarcticum is a bioindicator of organic pollution caused by the mussel farm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Temporal and spatial changes in persistent organic pollutants in Vietnamese coastal waters detected from plastic resin pellets.

    PubMed

    Le, Dung Quang; Takada, Hideshige; Yamashita, Rei; Mizukawa, Kaoruko; Hosoda, Junki; Tuyet, Dao Anh

    2016-08-15

    Plastic resin pellets collected at Minh Chau island and Ba Lat estuary between 2007 and 2014 in Vietnam were analyzed for dichloro-diphenyl-trichloroethanes (DDTs), polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCHs). The study was carried out as part of the International Pellet Watch program for monitoring the global distribution of persistent organic pollutants (POPs). Higher levels of DDTs compared to PCBs indicated agricultural inputs rather than industrial discharges in the region. Most POP concentrations on both beaches decreased over the period, with the exception of HCH isomers. Though the concentration of DDTs showed a drastic decline on both beaches between 2007/2008 and 2014, DDTs accounted for 60-80% of total DDTs, suggesting that there is still a fresh input of these chemicals in the region. This study strongly recommends further investigations to track temporal and spatial patterns of POP levels in the marine environment using plastic resin pellets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. POPs monitoring in Australia and New Zealand using plastic resin pellets, and International Pellet Watch as a tool for education and raising public awareness on plastic debris and POPs.

    PubMed

    Yeo, Bee Geok; Takada, Hideshige; Taylor, Heidi; Ito, Maki; Hosoda, Junki; Allinson, Mayumi; Connell, Sharnie; Greaves, Laura; McGrath, John

    2015-12-15

    Persistent organic pollutants (i.e. PCBs, DDTs, and HCHs) were analyzed along Australia and New Zealand North Island coastlines. PCB concentrations were high in urban areas (107-294 ng/g-pellet), with Sydney Harbour the most polluted. Hepta-chlorinated PCB was abundant, with ~30% in urban areas suggesting legacy pollution. DDT concentrations showed similar pattern except in rural agricultural sites, Taupo Bay and Ahipara, New Zealand (23 and 47 ng/g-pellet). p,p'-DDE predominance at these 2 sites suggested historical input; they also had high HCH concentrations (17 and 29 ng/g-pellet). The role of International Pellet Watch (IPW) in science communication was studied through feedbacks from IPW volunteers, case studies and examples. IPW data were categorized into understandable terms and tailored reports based on volunteers' backgrounds complemented with pollution maps. The effectiveness of IPW science communication has led to its use in awareness and education activities focusing on both POPs and plastic debris issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute volume fraction, showing that measurable aging of the aerosol population occurs during the day, on the timescale of a few hours. The mixing state of the aerosol, also showing a consistent diurnal pattern, clearly correlates with a chemical tracer for local combustion sources. Chapter 4 describes results from the GoMACCS field study, in which the CCNc was subsequently deployed on an airborne field campaign in Houston, Texas during August-September, 2006. GoMACCS tested our ability to predict CCN for highly polluted conditions with limited chemical information. Assuming the particles were composed purely of ammonium sulfate, CCN closure was obtained with a 10% overprediction bias on average for CCN concentrations ranging from less than 100 cm-3 to over 10,000 cm-3, but with on average 50% variability. Assuming measured concentrations of organics to be internally mixed and insoluble tended to reduce the overprediction bias for less polluted conditions, but led to underprediction bias in the most polluted conditions. A likely explanation is that the high organic concentrations in the polluted environments depress the surface tension of the droplets, thereby enabling activation at lower soluble fractions.

  14. [Groundwater organic pollution source identification technology system research and application].

    PubMed

    Wang, Xiao-Hong; Wei, Jia-Hua; Cheng, Zhi-Neng; Liu, Pei-Bin; Ji, Yi-Qun; Zhang, Gan

    2013-02-01

    Groundwater organic pollutions are found in large amount of locations, and the pollutions are widely spread once onset; which is hard to identify and control. The key process to control and govern groundwater pollution is how to control the sources of pollution and reduce the danger to groundwater. This paper introduced typical contaminated sites as an example; then carried out the source identification studies and established groundwater organic pollution source identification system, finally applied the system to the identification of typical contaminated sites. First, grasp the basis of the contaminated sites of geological and hydrogeological conditions; determine the contaminated sites characteristics of pollutants as carbon tetrachloride, from the large numbers of groundwater analysis and test data; then find the solute transport model of contaminated sites and compound-specific isotope techniques. At last, through groundwater solute transport model and compound-specific isotope technology, determine the distribution of the typical site of organic sources of pollution and pollution status; invest identified potential sources of pollution and sample the soil to analysis. It turns out that the results of two identified historical pollution sources and pollutant concentration distribution are reliable. The results provided the basis for treatment of groundwater pollution.

  15. Evaluating Multipollutant Exposure and Urban Air Quality: Pollutant Interrelationships, Neighborhood Variability, and Nitrogen Dioxide as a Proxy Pollutant

    PubMed Central

    Levy, Ilan; Mihele, Cristian; Lu, Gang; Narayan, Julie; Brook, Jeffrey R.

    2013-01-01

    Background: Although urban air pollution is a complex mix containing multiple constituents, studies of the health effects of long-term exposure often focus on a single pollutant as a proxy for the entire mixture. A better understanding of the component pollutant concentrations and interrelationships would be useful in epidemiological studies that exploit spatial differences in exposure by clarifying the extent to which measures of individual pollutants, particularly nitrogen dioxide (NO2), represent spatial patterns in the multipollutant mixture. Objectives: We examined air pollutant concentrations and interrelationships at the intraurban scale to obtain insight into the nature of the urban mixture of air pollutants. Methods: Mobile measurements of 23 air pollutants were taken systematically at high resolution in Montreal, Quebec, Canada, over 34 days in the winter, summer, and autumn of 2009. Results: We observed variability in pollution levels and in the statistical correlations between different pollutants according to season and neighborhood. Nitrogen oxide species (nitric oxide, NO2, nitrogen oxides, and total oxidized nitrogen species) had the highest overall spatial correlations with the suite of pollutants measured. Ultrafine particles and hydrocarbon-like organic aerosol concentration, a derived measure used as a specific indicator of traffic particles, also had very high correlations. Conclusions: Our findings indicate that the multipollutant mix varies considerably throughout the city, both in time and in space, and thus, no single pollutant would be a perfect proxy measure for the entire mix under all circumstances. However, based on overall average spatial correlations with the suite of pollutants measured, nitrogen oxide species appeared to be the best available indicators of spatial variation in exposure to the outdoor urban air pollutant mixture. Citation: Levy I, Mihele C, Lu G, Narayan J, Brook JR. 2014. Evaluating multipollutant exposure and urban air quality: pollutant interrelationships, neighborhood variability, and nitrogen dioxide as a proxy pollutant. Environ Health Perspect 122:65–72; http://dx.doi.org/10.1289/ehp.1306518 PMID:24225648

  16. The impact of dissolved oxygen on sulfate radical-induced oxidation of organic micro-pollutants: A theoretical study.

    PubMed

    Zhang, Rui; Wang, Xiaoxiang; Zhou, Lei; Liu, Zhu; Crump, Doug

    2018-05-15

    Sulfate radical (SO 4 .- )-induced oxidation is an important technology in advanced oxidation processes (AOPs) for the removal of pollutants. To date, few studies have assessed the effects of dissolved oxygen (DO) on the SO 4 .- -induced oxidation of organic micro-pollutants. In the present work, a quantum chemical calculation was used to investigate the influence of the external oxygen molecule on the Gibbs free energy (G pollutant ) and HOMO-LUMO gap (ΔE) of 15 organic micro-pollutants representing four chemical categories. Several thermodynamic and statistical models were combined with the data from the quantum chemical calculation to illustrate the impact of DO on the oxidation of organic micro-pollutants by SO 4 .- . Results indicated that the external oxygen molecule increased G pollutant of all studied chemicals, which implies DO has the potential to decrease the energy barrier of the SO 4 .- -induced oxidation and shift the chemical equilibrium of the reaction towards the side of products. From the perspective of kinetics, DO can accelerate the oxidation by decreasing ΔE of organic micro-pollutants. In addition, changes of G pollutant and ΔE of the SO 4 .- -induced oxidation were both significantly different between open-chain and aromatic chemicals, and these differences were partially attributed to the difference of polarizability of these two types of chemicals. Furthermore, we revealed that all changes of G pollutant and ΔE induced by DO were dependent on the DO content. Our study emphasizes the significance of DO on the oxidation of organic micro-pollutants by SO 4 .- , and also provides a theoretical method to study the effect of components in wastewater on removal of organic pollutants in AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Temporal variability of air-pollutants over Abu Dhabi, UAE

    NASA Astrophysics Data System (ADS)

    Ghedira, H.; Ben Romdhane, H.; Beegum S, N.

    2013-12-01

    Air quality, the measure of the concentrations of gaseous pollutants and size or number of particulate matter, is one of the most important problems worldwide and has strong implications on human health, ecosystems, as well as regional and global climate. The levels of air pollutants such as sulphur dioxide (SO2), particulate matters (PM10, PM2.5), Ozone (O3), Nitrogen dioxide (NO2), Carbon monoxide (CO), etc. show an alarming increase in urban cities across the world and in many cases, the concentrations have grown well above the World Health Organization's guidelines for ambient air-quality standards. Here, we present the periodic fluctuations observed in the concentrations of air pollutants such as SO2, NO2, O3, CO, H2S, NMHC (Non methane Hydro Carbon) and VOC (volatile organic compounds) based on the measurements collected during the period 2008-2010 at Masdar City, Abu Dhabi (24.42oN, 54.61oE, 7m MSL). The measurements were carried out using an Air Quality Monitoring System (AQM60). All these pollutant species showed statistical periodic: diurnal, monthly, seasonal and annual variations. Diurnally, all the species, except ozone, depicted an afternoon low and nighttime/early morning high, attributed to the dynamics of the local atmospheric boundary layer. Whereas, an opposite pattern with daytime high and nighttime low was observed for O3, as the species is formed in the troposphere by catalytic photochemical reactions of NOx with CO, CH4 and other VOCs. Seasonally, the pollutants depicted higher values during summer and relatively lower values during winter, associated with changes in synoptic airmass types and/or removal processes. Concentrations of all the gaseous pollutants are within the National Ambient Air Quality Standards (NAAQS) throughout the year, whereas the PM10 often exceeded the limits, especially during dust storm episodes.

  18. Relationship Between Air Quality and Outdoor Exercise Behavior in China: a Novel Mobile-Based Study.

    PubMed

    Hu, Liang; Zhu, Li; Xu, Yaping; Lyu, Jiaying; Imm, Kellie; Yang, Lin

    2017-08-01

    Based on data collected from an exercise app, the study aims to provide empirical evidence on the relationship between air quality and patterns of outdoor exercise in China. Objective outdoor exercise data spanning 160 days were collected from 153 users of an exercise app, Tulipsport in China. Each exercise mode (running, biking, and walking, respectively) was organized into five air quality categories based on Air Quality Index (AQI): excellent, good, mild pollution, moderate pollution, and serious pollution. Key parameters of each app user were calculated and analyzed: the total number of exercise bouts, the average duration, and the average distance of each exercise mode in each air quality category. Multivariate analyses of variance indicate that the users were less likely to participate in outdoor running, biking, and walking (F = 24.16, p < .01, Wilk's Λ = 0.64) as levels of air pollution increased. However, there is no difference in terms of average distance and duration of exercise across different air pollution categories. People's participation in outdoor exercise is impeded by air pollution severity, but they stick to their exercise routines once exercise is initiated. Although people should protect themselves from health damages caused by exercising under pollution, the decreases in physical activity associated with air pollution may also pose an indirect risk to public health. The interactive relationship between air quality, exercise, and health warrants more empirical and interdisciplinary explorations.

  19. An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia.

    PubMed

    Allen, Ryan W; Gombojav, Enkhjargal; Barkhasragchaa, Baldorj; Byambaa, Tsogtbaatar; Lkhasuren, Oyuntogos; Amram, Ofer; Takaro, Tim K; Janes, Craig R

    2013-03-01

    Epidemiologic studies have consistently reported associations between outdoor fine particulate matter (PM 2.5 ) air pollution and adverse health effects. Although Asia bears the majority of the public health burden from air pollution, few epidemiologic studies have been conducted outside of North America and Europe due in part to challenges in population exposure assessment. We assessed the feasibility of two current exposure assessment techniques, land use regression (LUR) modeling and mobile monitoring, and estimated the mortality attributable to air pollution in Ulaanbaatar, Mongolia. We developed LUR models for predicting wintertime spatial patterns of NO 2 and SO 2 based on 2-week passive Ogawa measurements at 37 locations and freely available geographic predictors. The models explained 74% and 78% of the variance in NO 2 and SO 2 , respectively. Land cover characteristics derived from satellite images were useful predictors of both pollutants. Mobile PM 2.5 monitoring with an integrating nephelometer also showed promise, capturing substantial spatial variation in PM 2.5 concentrations. The spatial patterns in SO 2 and PM, seasonal and diurnal patterns in PM 2.5 , and high wintertime PM 2.5 /PM 10 ratios were consistent with a major impact from coal and wood combustion in the city's low-income traditional housing (ger) areas. The annual average concentration of PM 2.5 measured at a centrally located government monitoring site was 75 μg/m 3 or more than seven times the World Health Organization's PM 2.5 air quality guideline, driven by a wintertime average concentration of 148 μg/m 3 . PM 2.5 concentrations measured in a traditional housing area were higher, with a wintertime mean PM 2.5 concentration of 250 μg/m 3 . We conservatively estimated that 29% (95% CI, 12-43%) of cardiopulmonary deaths and 40% (95% CI, 17-56%) of lung cancer deaths in the city are attributable to outdoor air pollution. These deaths correspond to nearly 10% of the city's total mortality, with estimates ranging to more than 13% of mortality under less conservative model assumptions. LUR models and mobile monitoring can be successfully implemented in developing country cities, thus cost-effectively improving exposure assessment for epidemiology and risk assessment. Air pollution represents a major threat to public health in Ulaanbaatar, Mongolia, and reducing home heating emissions in traditional housing areas should be the primary focus of air pollution control efforts.

  20. SELECTED ORGANIC POLLUTANT EMISSIONS FROM UNVENTED KEROSENE HEATERS

    EPA Science Inventory

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emission rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emiss...

  1. Persistent organic pollutants (POPs) in fish with different feeding habits inhabiting a shallow lake ecosystem.

    PubMed

    Barni, María F Silva; Ondarza, Paola M; Gonzalez, Mariana; Da Cuña, Rodrigo; Meijide, Fernando; Grosman, Fabián; Sanzano, Pablo; Lo Nostro, Fabiana L; Miglioranza, Karina S B

    2016-04-15

    The occurrence of persistent organic pollutants (POPs) in the environment can affect organisms inhabiting aquatic systems, in particular shallow lakes that are vulnerable to environmental stressors. This study aimed to assess POPs accumulation and changes at histological and physiological levels in tissues of three fish species with different trophic habits. Gills, brain, muscle, liver and gonads of Odontesthes bonariensis, Oligosarcus jenynsii and Cyphocharax voga were collected from the shallow lake La Peregrina, located in an agricultural area from Argentina. In addition, contaminant levels in surface water (SW), suspended particulate matter (SPM) and bottom sediments (BS) were assessed. Histological lesions were evaluated in fish tissues and levels of vitellogenin (VTG) were assessed in plasma of male fish in order to correlate these alterations with the presence of POPs in the environment. Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were determined by GC-ECD. Biotic and abiotic samples showed the same POPs distribution pattern: OCPs>PCBs>PBDEs. Although tissue distribution of OCPs was species-specific, muscle showed the lowest levels in all species. The most abundant contaminants were endosulfans, suggesting their widespread use in the area. O. bonariensis showed the highest endosulfans levels in liver (184.2-219ngg(-1)wet w), which was associated with the high SPM levels considering this species is a filter feeder. The occurrence of PCBs and PBDEs shows the ubiquity of these pollutants in the area. Histological lesions in gills and liver of O. bonariensis and O. jenynsii, might be related with the high levels of endosulfans in these organs. The detection of VTG in males warns about a possible exposure to estrogenic compounds in the environment. In conclusion, the simultaneous exposure of fish to multiple environmental pollutants leads to different alterations, so measures should be taken in order to prevent their occurrence and toxic effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Exploring the interaction between O₃ and NOx pollution patterns in the atmosphere of Barcelona, Spain using the MCR-ALS method.

    PubMed

    Malik, Amrita; Tauler, Roma

    2015-06-01

    This work focuses on understanding the behaviour and patterns of three atmospheric pollutants namely, nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) along with their mutual interactions in the atmosphere of Barcelona, North Spain. Hourly samples were collected for NO, NO2 and O3 from the same city location for three consecutive years (2010-2012). The study explores the seasonal, annual and weekday-weekend variations in their diurnal profiles along with the possible identification of their source and mutual interactions in the region. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) was applied to the individual datasets of these pollutants, as well as to all of them simultaneously (augmented mode) to resolve the profiles related to their source and variation patterns in the atmosphere. The analysis of the individual datasets confirmed the source pattern variations in the concerned pollutant's profiles; and the resolved profiles for augmented datasets suggested for the mutual interaction of the pollutants along with their patterns variations, simultaneously. The study suggests vehicular pollution as the major source of atmospheric nitrogen oxides and presence of weekend ozone effect in the region. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. ENVIRONMENTAL CHARACTERISTICS AFFECTING REDUCTIVE TRANSFORMATION OF ORGANIC POLLUTANTS IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Reductive transformations are important processes for determining the fate of organic pollutants in anoxic environments. These processes are most often microbially mediated by both direct and indirect means. For example, specific bacteria transform organic pollutants directly as ...

  4. Neoteric environmental detoxification of organic pollutants and pathogenic microbes via green synthesized ZnO nanoparticles.

    PubMed

    Jaffri, Shaan Bibi; Ahmad, Khuram Shahzad

    2018-06-13

    Present study has for the first time reported Prunus cerasifera leaf extract mediated zinc oxide nanoparticles in a green and one pot synthetic mode without utilization of any chemical reducing agents. Synthesized nanoparticles were analyzed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), fourier transmission infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). UV-Vis peak was detected at 380 nm due to surface plasmon resonance (SPR). Variety of biomolecules were revealed by FTIR involved in reduction cum stabilization of zinc oxide nanoparticles. Wurtzite hexagonal geometry with an average crystallite size of 12 nm was obtained from XRD diffraction pattern. SEM exhibited size ranges of 80-100 nm and 60- 100 nm for 200 ℃ and 600 ℃ calcination temperatures. Synthesized nanoparticles were used as bio-cleaning photocatalysts against organic pollutants i.e. bromocresol green, bromophenol blue, methyl red and methyl blue, which yielded pseudo first order reaction kinetics (R 2 = 0.98, 0.92, 0.92, 0.90 respectively). Pollutants expressed higher degradation percentages in less than 14 min in direct solar irradiance. Moreover, synthesized nanoparticles were tested against resistant microbes i.e. Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Aspergillus terreus, Penicillium chrysogenum, Fusarium solani, Lasiodiplodia theobromae, Xanthomonas axonopodis pv. citri and Psuedomonas syringae for development of new generation of antimicrobial agents.

  5. Lake sediments record prehistoric lead pollution related to early copper production in North America.

    PubMed

    Pompeani, David P; Abbott, Mark B; Steinman, Byron A; Bain, Daniel J

    2013-06-04

    The mining and use of copper by prehistoric people on Michigan's Keweenaw Peninsula is one of the oldest examples of metalworking. We analyzed the concentration of lead, titanium, magnesium, iron, and organic matter in sediment cores recovered from three lakes located near mine pits to investigate the timing, location, and magnitude of ancient copper mining pollution. Lead concentrations were normalized to lithogenic metals and organic matter to account for processes that can influence natural (or background) lead delivery. Nearly simultaneous lead enrichments occurred at Lake Manganese and Copper Falls Lake ∼8000 and 7000 years before present (yr BP), indicating that copper extraction occurred concurrently in at least two locations on the peninsula. The poor temporal coherence among the lead enrichments from ∼6300 to 5000 yr BP at each lake suggests that the focus of copper mining and annealing shifted through time. In sediment younger than ∼5000 yr BP, lead concentrations remain at background levels at all three lakes, excluding historic lead increases starting ∼150 yr BP. Our work demonstrates that lead emissions associated with both the historic and Old Copper Complex tradition are detectable and can be used to determine the temporal and geographic pattern of metal pollution.

  6. Research on persistent organic pollutants in China on a national scale: 10 years after the enforcement of the Stockholm Convention.

    PubMed

    Liu, Li-Yan; Ma, Wan-Li; Jia, Hong-Liang; Zhang, Zi-Feng; Song, Wei-Wei; Li, Yi-Fan

    2016-10-01

    As a signatory of the Stockholm Convention and the largest developing country, China plays a very important role in implementation of the convention to reduce and finally eliminate persistent organic pollutants (POPs) in the world. In the past ten years after the enforcement in 2004, Chinese Government and scientists have made great progress on the study of POPs. The present work aims to provide an overview on recent studies on POPs in China, with particular focus on usage/emission inventory, residue inventory, and pollution status of POPs on national scale. Several legend (old) and new target POPs were comprehensively summarized with progress on inventory. Furthermore, several national scale monitoring programs have been selected for the occurrence, spatial and temporal trends of POPs in China, which are compared with Asian data and Global data. Based on the observed results, some important scientific issues, such as the primary and secondary distribution patterns, the primary and secondary fractionations, and air-soil exchange of POPs, are also discussed. It is proposed that more studies should be carried out for the new targeted POPs in future for both the national and global interests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Shu, Lei; Xie, Min; Gao, Da; Wang, Tijian; Fang, Dexian; Liu, Qian; Huang, Anning; Peng, Liwen

    2017-11-01

    Regional air pollution is significantly associated with dominant weather systems. In this study, the relationship between the particle pollution over the Yangtze River Delta (YRD) region and weather patterns is investigated. First, the pollution characteristics of particles in the YRD are studied using in situ monitoring data (PM2.5 and PM10) in 16 cities and Terra/MODIS AOD (aerosol optical depth) products collected from December 2013 to November 2014. The results show that the regional mean value of AOD is high in the YRD, with an annual mean value of 0.71±0.57. The annual mean particle concentrations in the cities of Jiangsu Province all exceed the national air quality standard. The pollution level is higher in inland areas, and the highest concentrations of PM2.5 and PM10 are 79 and 130 µg m-3, respectively, in Nanjing. The PM2.5 : PM10 ratios are typically high, thus indicating that PM2.5 is the overwhelmingly dominant particle pollutant in the YRD. The wintertime peak of particle concentrations is tightly linked to the increased emissions during the heating season as well as adverse meteorological conditions. Second, based on NCEP (National Center for Environmental Prediction) reanalysis data, synoptic weather classification is conducted and five typical synoptic patterns are objectively identified. Finally, the synthetic analysis of meteorological fields and backward trajectories are applied to further clarify how these patterns impact particle concentrations. It is demonstrated that air pollution is more or less influenced by high-pressure systems. The relative position of the YRD to the anti-cyclonic circulation exerts significant effects on the air quality of the YRD. The YRD is largely influenced by polluted air masses from the northern and the southern inland areas when it is located at the rear of the East Asian major trough. The significant downward motion of air masses results in stable weather conditions, thereby hindering the diffusion of air pollutants. Thus, this pattern is quite favorable for the accumulation of pollutants in the YRD, resulting in higher regional mean PM10 (116.5 ± 66.9 µg m-3), PM2.5 (75.9 ± 49.9 µg m-3), and AOD (0.74) values. Moreover, this pattern is also responsible for the occurrence of most large-scale regional PM2.5 (70.4 %) and PM10 (78.3 %) pollution episodes. High wind speed and clean marine air masses may also play important roles in the mitigation of pollution in the YRD. Especially when the clean marine air masses account for a large proportion of all trajectories (i.e., when the YRD is affected by the cyclonic system or oceanic circulation), the air in the YRD has a lesser chance of being polluted. The observed correlation between weather patterns and particle pollution can provide valuable insight into making decisions about pollution control and mitigation strategies.

  8. Molecular impact of juvenile hormone agonists on neonatal Daphnia magna.

    PubMed

    Toyota, Kenji; Kato, Yasuhiko; Miyakawa, Hitoshi; Yatsu, Ryohei; Mizutani, Takeshi; Ogino, Yukiko; Miyagawa, Shinichi; Watanabe, Hajime; Nishide, Hiroyo; Uchiyama, Ikuo; Tatarazako, Norihisa; Iguchi, Taisen

    2014-05-01

    Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Understanding the Patterns and Drivers of Air Pollution on Multiple Time Scales: The Case of Northern China.

    PubMed

    Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang

    2018-06-01

    China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM 2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM 2.5 and PM 10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM 2.5 accumulation; low wind speed and high relative humidity constrained PM 10 accumulation; and short sunshine duration and high wind speed constrained O 3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.

  10. Understanding the Patterns and Drivers of Air Pollution on Multiple Time Scales: The Case of Northern China

    NASA Astrophysics Data System (ADS)

    Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang

    2018-06-01

    China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM2.5 and PM10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM2.5 accumulation; low wind speed and high relative humidity constrained PM10 accumulation; and short sunshine duration and high wind speed constrained O3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.

  11. [Application of synthetic biology in environmental remediation].

    PubMed

    Tang, Hongzhi; Wang, Weiwei; Zhang, Lige; Huang, Ling; Lu, Xinyu; Xu, Ping

    2017-03-25

    Environmental problems are the most serious challenges in the 21st century. With the rapid development of modern industry and agriculture, ecological and environmental deterioration have become the most important factors to restrict the sustainable development of social economy. Microbial cells have strong ability for environmental remediation, but their evolution speed is slower than the speed of emerging pollutants. Therefore, the treatment using the synthetic biology is in urgent need. Full understanding of the microbial degradation characteristics (pathways) of refractory organic pollutants with the help of abundant microbial and gene resources in China is important. Using synthetic biology to redesign and transform the existing degrading strain will be used to degrade particular organic pollutants or multiple organic pollutants. For the complex pollutants, such as wastewater, based on the establishment of metabolic or regulation or resistance related gene modules of typical organic pollutants, artificial flora could be designed to solve the complex pollutants. The rational design and construction of engineering bacteria for typical environmental organic pollutants can effectively promote microbial catabolism of emerging contaminants, providing technical support for environmental remediation in China.

  12. Using stable isotope systematics and trace metals to constrain the dispersion of fish farm pollution

    NASA Astrophysics Data System (ADS)

    Torchinsky, A.; Shiel, A. E.; Price, M.; Weis, D. A.

    2010-12-01

    Fish farming is a growing industry of great economic importance to coastal communities. Unfortunately, open-net fish farming is associated with the release of organic and metal pollution, which has the potential to adversely affect the coastal marine environment. The dispersion of fish farm pollution and its environmental impact are not well understood/quantified. Pollutants released by fish farms include organic products such as uneaten feed pellets and fish feces, as well as chemicals and pharmaceuticals, all of which may enter marine ecosystems. In this study, we took advantage of bioaccumulation in passive suspension feeding Manila Clams collected at varying distances from an open-net salmon farm located in the Discovery Islands of British Columbia. Measurements of stable C and N isotopes, as well as trace metal concentrations, in the clams were used to investigate the spread of pollutants by detecting the presence of fish farm waste in the clams’ diet. Lead isotopic measurements were used to identify other significant anthropogenic pollution sources, which may impact the study area. Clams located within the areal extent of waste discharged by a fish farm are expected to exhibit anomalous light stable isotope ratios and metal concentrations, reflecting the presence of pollutants accumulated directly from seawater and from their diet. Clams were collected in the Discovery Islands from three sites in the Octopus Islands, located 850 m, 2100 m and 3000 m north of the Cyrus Rocks salmon farm (near Quadra Island) and from a reference site on Penn Island. Light stable isotope ratios (δN = ~10‰, with little variation between sites, and δC from -14.5 to -17.3‰) of the clams suggest that the most distal site (i.e., 3000 m away) is most impacted by organic fish farm waste (i.e., food pellets and feces) and that contributions of organic waste actually decrease closer to the farm. Not surprisingly, the smallest contribution of organic waste was detected in clams from the reference site. It is thought that resuspension of particulate waste could be responsible for concentrating waste far from the fish farm. No pattern was observed in the trace metal concentration measurements (Cu = 4.11 - 9.64 ppm, Zn 40.0 - 107 ppm and Pb 0.008 - 0.086 ppm) of the clams suggesting differences in the dispersion of metal contaminants and organic waste. Lead isotope ratios (1.14874 to 1.74100 for 206Pb /207Pb and 2.07579 to 2.10615 for 208Pb /206Pb) indicate the importance of anthropogenic Pb sources in the study area (i.e., unleaded gasoline and diesel fuel consumption and metal smelting), however, the anthropogenic Pb sources are unlikely to be associated with the open-net salmon farm. Waste dispersion from open-net fish farms is complicated by physical oceanographic conditions, which characterize individual study areas, this must be taken into account when interpreting results and designing future studies.

  13. The Effects of Organic Pollutants in Soil on Human Health

    NASA Astrophysics Data System (ADS)

    Burgess, Lynn

    2013-04-01

    The soil has always been depository of the organic chemicals produced naturally or anthropogenically. Soil contamination is a serious human and environmental problem. A large body of evidence has shown the risks of adverse health effects with the exposure to contaminated soil due to the large quantities of organic chemicals used in agriculture and urban areas that have a legacy of environmental pollution linked to industrial activities, coal burning, motor vehicle emissions, waste incineration and waste dumping. In agricultural areas, because of the effort to provide adequate quantities of agricultural products, farmers have been using an increasing amount of organic chemicals, but the resulting pollution has enormous potential for environmental damage. The types of organic pollutants commonly found in soils are polychlorinated biphenyls, polybrominated biphenyls, polychlorinated dibenzofurans, polycyclic aromatic hydrocarbons, organophosphorus and carbamate insecticides, herbicides and organic fuels, especially gasoline and diesel. Another source of soil pollution is the complex mixture of organic chemicals, metals and microorganisms in the effluent from septic systems, animal wastes and other sources of biowaste. The soils of the world are a vast mixture of chemicals and although conditions are such that an individual is rarely exposed to a single compound, the great majority of people are exposed to a vast chemical mixture of organics, their metabolites, and other compounds at low concentrations Human exposure to organic pollutants in the soil is an area of toxicology that is very difficult to study due to the low concentration of the pollutants. The toxicological studies of single organic pollutants found in soils are limited and research on the metabolites and of chemical mixtures is very limited. The majority of toxicological studies are conducted at relatively high doses and for short periods of exposure. This makes the application of this data to exposure from soil very difficult, with the exposure from soil usually being chronic and at very low concentrations. The vastness of the soil has led to the dilution of these pollutants and most of the pollutants remain on or near the surface of the soil unless they have moved by the action of water, organisms, or mechanical mixing. This dilution has reduced the toxicity of these pollutants but the unknown factor is the action of the soil, its chemistry, and the combined action of all the microorganisms, plants, and invertebrates that live in the soil. This biological action combined with the influences of the soil components has the potential of creating new metabolites and chemicals. Toxicologists needs expand their studies to include the persistent organic pollutants and the organic pollutants that can bioaccumulate in organisms. We do not know if the addition of organics chemicals to the soil is creating very toxic xenobiotics and at very low concentrations but with important health effects to humans and other organisms. These unknown compounds could be accumulating in plants that we use for food or as forage for our livestock, then bioaccumulating in the livestock and then on into us.

  14. Non-target screening analyses of organic contaminants in river systems as a base for monitoring measures

    NASA Astrophysics Data System (ADS)

    Schwarzbauer, J.

    2009-04-01

    Organic contaminants discharged to the aquatic environment exhibit a high diversity with respect to their molecular structures and the resulting physico-chemical properties. The chemical analysis of anthropogenic contamination in river systems is still an important feature, especially with respect to (i) the identification and structure elucidation of novel contaminants, (ii) to the characterisation of their environmental behaviour and (iii) to their risk for natural systems. A huge proportion of riverine contamination is caused by low-molecular weight organic compounds, like pesticides plasticizers, pharmaceuticals, personal care products, technical additives etc. Some of them, like PCB or PAH have already been investigated thoroughly and, consequently, their behaviour in aqueous systems is very well described. Although analyses on organic substances in river water traditionally focused on selected pollutants, in particular on common priority pollutants which are monitored routinely, the occurrence of further contaminants, e.g. pharmaceuticals, personal care products or chelating agents has received increasing attention within the last decade. Accompanied, screening analyses revealing an enormous diversity of low-molecular weight organic contaminants in waste water effluents and river water become more and more noticed. Since many of these substances have been rarely noticed so far, it will be an important task for the future to study their occurrence and fate in natural environments. Further on, it should be a main issue of environmental studies to provide a comprehensive view on the state of pollution of river water, in particular with respect to lipophilic low molecular weight organic contaminants. However, such non-target-screening analyses has been performed only rarely in the past. Hence, we applied extended non-target screening analyses on longitudinal sections of the rivers Rhine, Rur and Lippe (Germany) on the base of GC/MS analyses. The investigations revealed complex pattern of anthropogenic contaminants comprising a lot of still unnoticed pollutants (e.g. specific sulfones, trifluoromethyl substituted substances, nitrogen heterocycles etc.) or still unidentified compounds (such as selected brominated aromatics) of obviously high environmental relevance. In this presentation, a selection of several different contaminants will be discussed in detail comprising their emission sources, their emission behaviour, their fate within the river water bodies and in particular their structural properties. Generally. this investigation demonstrated the need to expand our analytical focus on a broader spectrum of organic contaminants, in particular to build up an adapted base for advanced monitoring studies.

  15. Environmental Perception and Citizen Response: a Denver, Colorado Air Pollution Case Study.

    NASA Astrophysics Data System (ADS)

    Naomi, Leaura M.

    Denver, a high altitude city, suffers from air pollution. Automobile emissions, as well as wood and coal burning contribute to Denver's air pollution. In order to reduce its air pollution, Denver hosted a no-drive campaign, The Better Air Campaign. This study examined how Denver -area citizens perceived their air pollution, responded to their air pollution, and responded to their no-drive campaign. First, I conducted personal interviews of twenty Denver air pollution decision-makers to ascertain their perceptions and definitions of Denver's air pollution problem. Second, I created a theoretical model of environmental perception and behavioral response to air pollution. Third, I conducted a telephone survey of 500 Denver-area residents to examine the usefulness of the model. By segmenting a sample of 500 Denver-area residents via a modified values and lifestyles (VALS) technique included in a telephone survey, the perceptions and behaviors of residents fell into a clear pattern. This values and lifestyles pattern coincided with a conventional innovation-adoption pattern, including innovators, the bandwagon, and laggards. Thus, the research determined the population's perceptions and behavioral responses to their air pollution. The research also pointed a direction for Denver's air pollution decision-makers to follow in order to reduce use of the gasoline-powered automobile. And, for those interested in encouraging public acceptance of ecological sustainability, it suggested application of the VALS technique for reaching the public.

  16. [Analysis and research on the degradation and migration of organic pollutants in textile wastewater treatment process by GC-MS].

    PubMed

    Liu, Wei-jing; Zhang, Long; Wu, Wei; Tu, Yong

    2010-04-01

    In order to analyze the advantages/disadvantages of the combined treatment process between "physicochemical + biochemical" and "biochemical + physicochemical" in treatment of textile wastewater, gas chromatography-mass spectrometry (GC-MS) was used to determine the degradation process of organic pollutants in this two totally different treatment processes. The same analysis was also conducted to the sludge and discharged water. The results showed that the "physicochemical + biochemical" process displayed a poorer effect than "biochemical + physicochemical" in degrading the organic pollutants. The latter was 6.2% higher than the former in removing the organic pollutants averagely. The difference was mainly manifested in the efficiency of anaerobic hydrolysis in the two coupled processes. Moreover, the implement of "physicochemical + biochemical" process resulted in the migration of plenty of typical organic pollutants to sludge from primary coagulation sedimentation process and to the discharged water, which would cause secondary pollution easily.

  17. Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment.

    PubMed

    Liu, Ruimin; Men, Cong; Liu, Yongyan; Yu, Wenwen; Xu, Fei; Shen, Zhenyao

    2016-09-15

    To analyze the spatial distribution patterns and ecological risks of heavy metals, 30 sediment samples were taken in the Yangtze River Estuary (YRE) in May 2011. The content of Al, As, Cr, Cu, Fe, Mn, Ni and Pb increased as follows: inner-region

  18. Organic contaminants and heavy metals in indoor dust from e-waste recycling, rural, and urban areas in South China: Spatial characteristics and implications for human exposure.

    PubMed

    He, Chun-Tao; Zheng, Xiao-Bo; Yan, Xiao; Zheng, Jing; Wang, Mei-Huan; Tan, Xiao; Qiao, Lin; Chen, She-Jun; Yang, Zhong-Yi; Mai, Bi-Xian

    2017-06-01

    The concentrations of several organic contaminants (OCs) and heavy metals were measured in indoor dust from e-waste recycling, rural, and urban areas in South China to illustrate the spatial characteristics of these pollutants and to further evaluate human exposure risks. The median concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), and dechlorane plus (DPs) were 38.6-3560, 2360-30,100, 665-2720, and 19.5-1860ng/g, while the median concentrations of Cd, Pb, Cu, Cr, and Zn were 2.46-40.4, 206-1380, 217- 1200, 25.3-134, and 176-212μg/g in indoor dust. The levels of all pollutants, except Zn, in dust from the e-waste recycling area were significantly higher than those from the other areas. Cd, Pb, and most OCs exhibited similar pollution patterns in the three areas, indicating that e-waste recycling activities are the major pollution source. In contrast, Cu, Cr, Zn, and penta-BDE are likely derived from household products in the rural and urban areas. The highest estimated daily intakes (EDIs) of PCBs, PBDEs, DBDPE, and DPs were 0.15-163, 3.97-1470, 1.26-169, and 0.11-134ng/kg bw/day for toddlers and adults. The highest EDIs of BDE 209 and Pb in toddlers in the e-waste recycling area were 16% and 18 times higher than the reference doses, indicating the high exposure risk of these pollutants in the e-waste recycling area. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Arabidopsis and the Genetic Potential for the Phytoremediation of Toxic Elemental and Organic Pollutants

    PubMed Central

    Cobbett, Christopher S.; Meagher, Richard B.

    2002-01-01

    In a process called phytoremediation, plants can be used to extract, detoxify, and/or sequester toxic pollutants from soil, water, and air. Phytoremediation may become an essential tool in cleaning the environment and reducing human and animal exposure to potential carcinogens and other toxins. Arabidopsis has provided useful information about the genetic, physiological, and biochemical mechanisms behind phytoremediation, and it is an excellent model genetic organism to test foreign gene expression. This review focuses on Arabidopsis studies concerning: 1) the remediation of elemental pollutants; 2) the remediation of organic pollutants; and 3) the phytoremediation genome. Elemental pollutants include heavy metals and metalloids (e.g., mercury, lead, cadmium, arsenic) that are immutable. The general goal of phytoremediation is to extract, detoxify, and hyperaccumulate elemental pollutants in above-ground plant tissues for later harvest. A few dozen Arabidopsis genes and proteins that play direct roles in the remediation of elemental pollutants are discussed. Organic pollutants include toxic chemicals such as benzene, benzo(a)pyrene, polychlorinated biphenyls, trichloroethylene, trinitrotoluene, and dichlorodiphenyltrichloroethane. Phytoremediation of organic pollutants is focused on their complete mineralization to harmless products, however, less is known about the potential of plants to act on complex organic chemicals. A preliminary survey of the Arabidopsis genome suggests that as many as 700 genes encode proteins that have the capacity to act directly on environmental pollutants or could be modified to do so. The potential of the phytoremediation proteome to be used to reduce human exposure to toxic pollutants appears to be enormous and untapped. PMID:22303204

  20. Impact of organic solvents and environmental pollutants on the physiological function in petrol filling workers.

    PubMed

    Uzma, Nazia; Salar, B M Khaja Mohinuddin; Kumar, B Santhosh; Aziz, Nusrat; David, M Anthony; Reddy, V Devender

    2008-09-01

    Long term exposure to solvents and air pollutants can lead to deleterious effects on respiratory, haematological and thyroid functioning. The aim of this study was to investigate whether chronic exposure to solvents like benzene and pollutants like carbon monoxide in petrol filling workers had adverse effect on blood parameters, thyroid and respiratory functions. The study group consisted of 42 healthy, non-smoker petrol filling workers, aged 20-50 years with work (exposure) duration from 2-15 years while 36 healthy subjects of the same age group served as controls. Physical examination and measurement of pulmonary functions by portable electronic spirometer were performed. Complete blood pictures (CBP) were determined by normal haematology lab procedure and hormones by Chemiluminescence immunoassay (CLIA) light absorption techniques. There was a significant decrease in the lung volumes and capacities; the restrictive pattern was more prevalent in the workers when compared with the control groups. But in the workers exposed for long period (more than 10 years) the restrictive pattern was changed to mixed pattern. A significant increase in haemoglobin (Hb) (>16 mg %) and red blood cells (RBC) (5.4 million cells/mm3) were observed in workers with longer period of exposure when compared with the control subjects (14.483 mg% and 4.83 million cells/mm3 for Hb and RBC respectively). White blood cell count except eosinophils and platelets were significantly lower in workers compared to controls. Marked increase in the tetra iodothyroinine (T4), free thyroxine (T4F) level and significant decrease in thyroid stimulating hormones (TSH), and tri-iodothyronine (T3) were observed between long term exposed and non-exposed groups. Till now researchers focused only on the effect of solvents in workers professionally exposed to solvents without considering the effect of concomittant air pollution. The result obtained from present study indicates that there is a significant toxic effect of solvents and air pollutants on workers exposed for longer duration. Improved detection and prevention technologies are needed to answer environmentally related health questions for petrol filling workers.

  1. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China.

    PubMed

    Zeng, Lixi; Wang, Thanh; Ruan, Ting; Liu, Qian; Wang, Yawei; Jiang, Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80-52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C(11) and Cl(7,8) were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r(2) ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes.

    PubMed

    Mladenov, N; Sommaruga, R; Morales-Baquero, R; Laurion, I; Camarero, L; Diéguez, M C; Camacho, A; Delgado, A; Torres, O; Chen, Z; Felip, M; Reche, I

    2011-07-26

    Remote lakes are usually unaffected by direct human influence, yet they receive inputs of atmospheric pollutants, dust, and other aerosols, both inorganic and organic. In remote, alpine lakes, these atmospheric inputs may influence the pool of dissolved organic matter, a critical constituent for the biogeochemical functioning of aquatic ecosystems. Here, to assess this influence, we evaluate factors related to aerosol deposition, climate, catchment properties, and microbial constituents in a global dataset of 86 alpine and polar lakes. We show significant latitudinal trends in dissolved organic matter quantity and quality, and uncover new evidence that this geographic pattern is influenced by dust deposition, flux of incident ultraviolet radiation, and bacterial processing. Our results suggest that changes in land use and climate that result in increasing dust flux, ultraviolet radiation, and air temperature may act to shift the optical quality of dissolved organic matter in clear, alpine lakes. © 2011 Macmillan Publishers Limited. All rights reserved.

  3. Industrial waste pollution

    NASA Technical Reports Server (NTRS)

    Jensen, L. D.

    1972-01-01

    The characteristics and effects of industrial waste pollution in the Chesapeake Bay are discussed. The sources of inorganic and organic pollution entering the bay are described. The four types of pollutants are defined as: (1) inorganic chemical wastes, (2) naturally occurring organic wastes, (3) synthetic organic wastes (exotics) and (4) thermal effluents. The ecological behavior of industrial wastes in the surface waters is analyzed with respect to surface film phenomena, interfacial phenomena, and benthis phenomena

  4. STRESS IN THE AIR: INHALED POLLUTANTS AND MULTI-ORGAN IMPAIRMENT

    EPA Science Inventory

    Air pollution has been blamed for nearly 7 million premature deaths worldwide. For decades, the research on how air pollution impacts human health has centered on cardiopulmonary consequences. However, more recently it is clearly evident that air pollution affects every organ in ...

  5. Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils.

    PubMed

    Meite, Fatima; Alvarez-Zaldívar, Pablo; Crochet, Alexandre; Wiegert, Charline; Payraudeau, Sylvain; Imfeld, Gwenaël

    2018-03-01

    The combined influence of soil characteristics, pollutant aging and rainfall patterns on the export of pollutants from topsoils is poorly understood. We used laboratory experiments and parsimonious modeling to evaluate the impact of rainfall characteristics on the ponding and the leaching of a pollutant mixture from topsoils. The mixture included the fungicide metalaxyl, the herbicide S-metolachlor, as well as copper (Cu) and zinc (Zn). Four rainfall patterns, which differed in their durations and intensities, were applied twice successively with a 7days interval on each soil type. To evaluate the influence of soil type and aging, experiments included crop and vineyard soils and two stages of pollutant aging (0 and 10days). The global export of pollutants was significantly controlled by the rainfall duration and frequency (P<0.01). During the first rainfall event, the longest and most intense rainfall pattern yielded the largest export of metalaxyl (44.5±21.5% of the initial mass spiked in the soils), S-metolachlor (8.1±3.1%) and Cu (3.1±0.3%). Soil compaction caused by the first rainfall reduced in the second rainfall the leaching of remaining metalaxyl, S-metolachlor, Cu and Zn by 2.4-, 2.9-, 30- and 50-fold, respectively. In contrast, soil characteristics and aging had less influence on pollutant mass export. The soil type significantly influenced the leaching of Zn, while short-term aging impacted Cu leaching. Our results suggest that rainfall characteristics predominantly control export patterns of metalaxyl and S-metolachlor, in particular when the aging period is short. We anticipate our study to be a starting point for more systematic evaluation of the dissolved pollutant ponding/leaching partitioning and the export of pollutant mixtures from different soil types in relation to rainfall patterns. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The toxicology of climate change: environmental contaminants in a warming world.

    PubMed

    Noyes, Pamela D; McElwee, Matthew K; Miller, Hilary D; Clark, Bryan W; Van Tiem, Lindsey A; Walcott, Kia C; Erwin, Kyle N; Levin, Edward D

    2009-08-01

    Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate-pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.

  7. Study of landscape patterns of variation and optimization based on non-point source pollution control in an estuary.

    PubMed

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui; Wu, Haiyan

    2014-10-15

    Appropriate increases in the "sink" of a landscape can reduce the risk of non-point source pollution (NPSP) to the sea at relatively lower costs and at a higher efficiency. Based on high-resolution remote sensing image data taken between 2003 and 2008, we analyzed the "source" and "sink" landscape pattern variations of nitrogen and phosphorus pollutants in the Jiulongjiang estuary region. The contribution to the sea and distribution of each pollutant in the region was calculated using the LCI and mGLCI models. The results indicated that an increased amount of pollutants was contributed to the sea, and the "source" area of the nitrogen NPSP in the study area increased by 32.75 km(2). We also propose a landscape pattern optimization to reduce pollution in the Jiulongjiang estuary in 2008 through the conversion of cultivated land with slopes greater than 15° and paddy fields near rivers, and an increase in mangrove areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Impacts of environmental and anthropogenic stresses on macrozoobenthic communities in Jinhae Bay, Korea.

    PubMed

    Bae, Hanna; Lee, Jung-Ho; Song, Sung Joon; Park, Jinsoon; Kwon, Bong-Oh; Hong, Seongjin; Ryu, Jongseong; Choi, Kyungsik; Khim, Jong Seong

    2017-03-01

    In this study, spatiotemporal dynamics of macrofaunal assemblages and their associations with environmental conditions were examined in Jinhae Bay (10 sites), where the obvious sources of pollution including industries, oyster farms (hanging cultures), and municipal discharges has surrounded. The survey had performed over five consecutive seasons in 2013-2014. Target sedimentary variables included grain size, organic content, C/N ratio, carbon and nitrogen stable isotope ratios, and some heavy metals. Five ecological quality indices (EcoQ) were calculated from the benthic community data to evaluate ecological qualities in site-specific manner. Jinhae Bay is a shallow (depths range, 11-24 m) and typical semi-enclosed bay. The benthic environments represented mud dominated bottoms (>70%) with fairly substantial organic content levels (>2%) over all five seasons. Seasonal patterns were observed with peak abundances in the spring and distinctive macrozoobenthos species shifts in the summer. The spring bloom could be explained by drastic increases of some polychaetes, mainly Capitella sp., at certain site, particularly near the shore. The oyster farms situated in the innermost locations seem to provide organic-rich bottoms being dominated by opportunistic species and/or organic pollution indicator species, such as Lumbrineris longifolia, Capitella sp., and Paraprionospio patiens. In general, the EcoQ indicators indicated that Jinhae Bay was moderately polluted, with exceptionally poor EcoQ in a few locations during the specific season(s). Overall, adverse effects on benthic community was broadly attributable to contaminations of heavy metals and nearby aquatic farm activities in Jinhae Bay, which requires a prompt action toward ecosystem-based management practice in the given area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.

    PubMed

    Afzal, Muhammad; Khan, Qaiser M; Sessitsch, Angela

    2014-12-01

    Recently, there has been an increased effort to enhance the efficacy of phytoremediation of contaminated environments by exploiting plant-microbe interactions. The combined use of plants and endophytic bacteria is an emerging approach for the clean-up of soil and water polluted with organic compounds. In plant-endophyte partnerships, plants provide the habitat as well as nutrients to their associated endophytic bacteria. In response, endophytic bacteria with appropriate degradation pathways and metabolic activities enhance degradation of organic pollutants, and diminish phytotoxicity and evapotranspiration of organic pollutants. Moreover, endophytic bacteria possessing plant growth-promoting activities enhance the plant's adaptation and growth in soil and water contaminated with organic pollutants. Overall, the application of endophytic bacteria gives new insights into novel protocols to improve phytoremediation efficiency. However, successful application of plant-endophyte partnerships for the clean-up of an environment contaminated with organic compounds depends on the abundance and activity of the degrading endophyte in different plant compartments. Although many endophytic bacteria have the potential to degrade organic pollutants and improve plant growth, their contribution to enhance phytoremediation efficiency is still underestimated. A better knowledge of plant-endophyte interactions could be utilized to increase the remediation of polluted soil environments and to protect the foodstuff by decreasing agrochemical residues in food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Removal of Organic Pollutants from Water Using Superwetting Materials.

    PubMed

    Li, Lingxiao; Zhang, Junping; Wang, Aiqin

    2018-02-01

    The frequent occurrence of water pollution accidents and the leakage of organic pollutants have caused severe environmental and ecological crisis. It is thus highly imperative to find efficient materials to solve the problem. Inspired by the lotus leaf, superwetting materials are receiving increasing attention in the field of removal of organic pollutants from water. Various superwetting materials have been successfully generated and integrated into devices for removal of organic pollutants from water. On the basis of our previous work in the field, we summarized in this account the progress of removal of (1) floating and underwater insoluble, (2) emulsified insoluble, and (3) both insoluble and soluble organic pollutants from water using superwetting materials including superhydrophobic & superoleophilic materials, superhydrophilic & underwater superoleophobic materials, and materials with controllable wettability. The superwetting materials are in the forms of 2D porous materials, 3D porous materials and particles, etc. Finally, the current state and future challenges in this field are discussed. We hope this account could shed light on the design of novel superwetting materials for efficient removal of organic pollutants from water. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Decontaminating soil organic pollutants with manufactured nanoparticles.

    PubMed

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  12. Characterization of inhalable particulate matter, volatile organic compounds and other chemical species measured in urban areas in New Jersey—I. Summertime episodes

    NASA Astrophysics Data System (ADS)

    Lioy, Paul J.; Daisey, Joan M.; Reiss, Nathan M.; Harkov, Ronald

    The 1981 Summer Campaign results of the New Jersey Project on Airborne Toxic Elements and Organic Substances (ATEOS) have been examined for the accumulation of various pollutants during photochemical smog type episodes in Newark, Elizabeth and Camden, N.J. Background data were provided from a rural site in Ringwood, N.J. The interrelationships among inhalable particulate matter (IPM), particulate organic matter (POM), polycyclic aromatic hydrocarbons (PAH), SO 2-4, V, Pb, O 3, volatile organic compounds and alkylating agents are described. In addition, the prevailing synoptic meteorology was examined to characterize the episodes and define situations that significantly affected the accumulation patterns. The concentrations of PAH, toluene, benzene, V and Pb usually varied independently of the episodes indicating primary source contributions. The alkylating agent concentrations appeared to increase in association with episode periods. The results also indicated that 50-60% of the IPM mass in the urban areas was composed of the sum of SO 2-4 and POM. Between site analysis of the SO 2-4 indicated primarily a regional distribution pattern, while the POM appeared to be related to contributions from both local and regional sources.

  13. Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use

    NASA Astrophysics Data System (ADS)

    Schot, P. P.; van der Wal, J.

    1992-06-01

    The relations between groundwater composition, land use, soil conditions and flow patterns on a regional scale are studied for the Gooi and Vechtstreek area in the Netherlands. This densely populated area consists of a glacier-created ridge with dry sand soils bordered by the Vecht and Eem River plains with wet peat and clay soils. R-mode factor analysis and Q-mode cluster analysis were applied to a set of 1349 groundwater analyses to determine the factors controlling groundwater composition and the main resulting water types. The results indicate that groundwater composition in the study area is affected on a regional scale by human activities through changes in land use and intervention in natural flow patterns. On the ridge, ground water is recharged by precipitation, which dissolves carbonates from the matrix of the sandy aquifer. Increased solute concentrations in shallow ground water, especially of nitrate, sulphate and potassium, indicate increased pollution resulting from urbanization and increasingly intensive agricultural activity over the past decades. In the Vecht River plain infiltration occurs as a result of drainage of polders and groundwater extraction on the ridge. Recharge occurs by precipitation and from polluted surface water to which ammonium, organic complexes and carbonic acid are added through decomposition of organic matter in the peat and clay soils. The carbonic acid results in enhanced dissolution of carbonates present in the soil and the underlying sandy aquifer. Oxygen depletion and subsequent low redox potentials result in denitrification, dissolution of manganese and iron oxides, and sulphate reduction. The flow of ground water from high-level to low-level polders causes displacement of a former stagnant brakish groundwater body under the Vecht River plain accompanied by increased mixing of fresh and brackish ground water.

  14. [Regulation framework of watershed landscape pattern for non-point source pollution control based on 'source-sink' theory: A case study in the watershed of Maluan Bay, Xiamen City, China].

    PubMed

    Huang, Ning; Wang, Hong Ying; Lin, Tao; Liu, Qi Ming; Huang, Yun Feng; Li, Jian Xiong

    2016-10-01

    Watershed landscape pattern regulation and optimization based on 'source-sink' theory for non-point source pollution control is a cost-effective measure and still in the exploratory stage. Taking whole watershed as the research object, on the basis of landscape ecology, related theories and existing research results, a regulation framework of watershed landscape pattern for non-point source pollution control was developed at two levels based on 'source-sink' theory in this study: 1) at watershed level: reasonable basic combination and spatial pattern of 'source-sink' landscape was analyzed, and then holistic regulation and optimization method of landscape pattern was constructed; 2) at landscape patch level: key 'source' landscape was taken as the focus of regulation and optimization. Firstly, four identification criteria of key 'source' landscape including landscape pollutant loading per unit area, landscape slope, long and narrow transfer 'source' landscape, pollutant loading per unit length of 'source' landscape along the riverbank were developed. Secondly, nine types of regulation and optimization methods for different key 'source' landscape in rural and urban areas were established, according to three regulation and optimization rules including 'sink' landscape inlay, banding 'sink' landscape supplement, pollutants capacity of original 'sink' landscape enhancement. Finally, the regulation framework was applied for the watershed of Maluan Bay in Xiamen City. Holistic regulation and optimization mode of watershed landscape pattern of Maluan Bay and key 'source' landscape regulation and optimization measures for the three zones were made, based on GIS technology, remote sensing images and DEM model.

  15. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition.

    PubMed

    Leoni, Cecilia; Pokorná, Petra; Hovorka, Jan; Masiol, Mauro; Topinka, Jan; Zhao, Yongjing; Křůmal, Kamil; Cliff, Steven; Mikuška, Pavel; Hopke, Philip K

    2018-03-01

    Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter <100 nm exhibit the highest deposition efficiency in human lungs. To permit apportionment of PM sources at the hot-spot including nanoparticles, Positive Matrix Factorization (PMF) was applied to highly time resolved particle number size distributions (NSD, 14 nm-10 μm) and PM 0.09-1.15 chemical composition. Diurnal patterns, meteorological variables, gaseous pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM 0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM 1 were found to be associated with coal combustion factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Matrix effects on organic pollutants analysis in marine sediment

    NASA Astrophysics Data System (ADS)

    Azis, M. Y.; Asia, L.; Piram, A.; Buchari, B.; Doumenq, P.; Setiyanto, H.

    2018-05-01

    Interference from the matrix sample can influence of the accurate analytical method. Accelerated Solvent Extraction and their purification methods were tried to separate the organic micropollutants respectively in marine sediment. Those matrix were as organic pollutants evaluation in marine environment. Polychlorinated Biphenyls (PCBs) and Organochlorine pesticides (OCPs) are two examples organic pollutant in environment which are carcinogenic and mutagenic. Marine sediments are important matrices of information regarding the human activities in coastal areas as well as the fate and behavior of organic pollutants, which are persistent in long-term. This research purpose to evaluate the matrice effect and the recovery from marine sediment spiking with several standar solution and deuterium of molecular target from organic pollutants in not polluted sample of sediment. Matrice samples was tested from indicate in unpolluted location. The methods were evaluated with standard calibration curve (linearity < 0.999, LOQ various ranged 0.5-1000 pg.μL-1 and LOD > LOQ). Recovery (YE) relative, Matrice Effect (ME) relative correction with deuteriated standar were evaluated the interference the matrix. Interference effect for OCPs compounds were higher than PCBs in marine sediment.

  17. Indicating anthropogenic effectson urban water system - indicators and extension

    NASA Astrophysics Data System (ADS)

    Strauch, G.; Ufz-Team

    2003-04-01

    Urban water systems are polluted by diffusive and direct contribution of anthropogenic activities. Besides industrial contaminants like aromatic and chlorinated HC and other persistent organic compounds, the urban aquatic environment is increasingly polluted by low concentrated but high eco-toxic compounds as pharmaceuticals, fragrances, plasticizers which most have disrupt endocrine functions, and trace elements carried in by surface and sub-surface waste water and seeping processes. This contamination could have a longtime impact on the urban ecosystem and on the human health. The interdisciplinary project on risk assessment of water pollution was initiated to explore new methodologies for assessing human activities on the urban water system and processes among urban watersheds. In a first assumption we used a flow model concept with in- and output and surface water transport represented by the city of Halle, Germany, and the river Saale. The river Saale acts as surface water system collecting waste water inputs along the city traverse. We investigated the anthropogenic effect on the urban water system using the indicators hydrological parameters, compound specific pattern of complex organic substances and trace elements, isotopic signatures of water (H, O) and dissolved substances (sulfate, DIC, nitrate), pathogens, and microbiota. A first balance modeling showed that main ions are not very sensitive concerning the direct urban input into the river. Depending on the discharge of the river in high and low flood stages the load of dissolved matter has no specific urban effect. However, the concentration pattern of fragrances (tonalid, galaxolid) and endocrine disrupters (t-nonylphenol) point to a different pollution along the city traverse: downstream of the sewage plant a higher load was observed in comparison to the upstream passage. Furthermore, a degradation ability of fungi and bacteria occurred in the bank sediments could be detected in lab experiments concerning the fragrances, and endocrine disrupters (t-nonylphenol, phthalate). The Saale water samples contain components able to eco-toxic and immunomodulated effects as measured on the vitality and cytokine-secretion profile of human peripheral blood mononuclear cells (PBMC). Even fragrances caused such effects which are unknown so far. The study of assessing urban effects onto the water system is still under investigation.

  18. Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change

    NASA Astrophysics Data System (ADS)

    Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick

    2017-02-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. We quantify here for the first time the global sanitation crisis through its impact on organic river pollution from the threats of (1) increasing wastewater discharge due to urbanization and intensification of livestock farming, and (2) reductions in river dilution capacity due to climate change and water extractions. Using in-stream Biochemical Oxygen Demand (BOD) as an overall indicator of organic river pollution, we calculate historical (2000) and future (2050) BOD concentrations in global river networks. Despite significant self-cleaning capacities of rivers, the number of people affected by organic pollution (BOD >5 mg/l) is projected to increase from 1.1 billion in 2000 to 2.5 billion in 2050. With developing countries disproportionately affected, our results point to a growing need for affordable wastewater solutions.

  19. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    PubMed

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  20. Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change.

    PubMed

    Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick

    2017-02-23

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. We quantify here for the first time the global sanitation crisis through its impact on organic river pollution from the threats of (1) increasing wastewater discharge due to urbanization and intensification of livestock farming, and (2) reductions in river dilution capacity due to climate change and water extractions. Using in-stream Biochemical Oxygen Demand (BOD) as an overall indicator of organic river pollution, we calculate historical (2000) and future (2050) BOD concentrations in global river networks. Despite significant self-cleaning capacities of rivers, the number of people affected by organic pollution (BOD >5 mg/l) is projected to increase from 1.1 billion in 2000 to 2.5 billion in 2050. With developing countries disproportionately affected, our results point to a growing need for affordable wastewater solutions.

  1. Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change

    PubMed Central

    Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick

    2017-01-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. We quantify here for the first time the global sanitation crisis through its impact on organic river pollution from the threats of (1) increasing wastewater discharge due to urbanization and intensification of livestock farming, and (2) reductions in river dilution capacity due to climate change and water extractions. Using in-stream Biochemical Oxygen Demand (BOD) as an overall indicator of organic river pollution, we calculate historical (2000) and future (2050) BOD concentrations in global river networks. Despite significant self-cleaning capacities of rivers, the number of people affected by organic pollution (BOD >5 mg/l) is projected to increase from 1.1 billion in 2000 to 2.5 billion in 2050. With developing countries disproportionately affected, our results point to a growing need for affordable wastewater solutions. PMID:28230079

  2. 40 CFR 63.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry § 63.101... 71. Organic hazardous air pollutant or organic HAP means one of the chemicals listed in table 2 of... or more organic reactants to produce one or more organic compounds. Air oxidation reactor includes...

  3. 40 CFR 63.101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry § 63.101... 71. Organic hazardous air pollutant or organic HAP means one of the chemicals listed in table 2 of... or more organic reactants to produce one or more organic compounds. Air oxidation reactor includes...

  4. 40 CFR 63.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry § 63.101... 71. Organic hazardous air pollutant or organic HAP means one of the chemicals listed in table 2 of... or more organic reactants to produce one or more organic compounds. Air oxidation reactor includes...

  5. Association of PM2.5 pollution with the pattern of human activity: A case study of a developed city in eastern China.

    PubMed

    Bao, Chengzhen; Chai, Pengfei; Lin, Hongbo; Zhang, Zhenyu; Ye, Zhenhua; Gu, Mengjia; Lu, Huaichu; Shen, Peng; Jin, Mingjuan; Wang, Jianbing; Chen, Kun

    2016-12-01

    Recently, air pollution has attracted a substantial amount of attention in China, which can be influenced by a variety of factors, but the association between air pollution and human activity is not quite clear. Based on real-time online data (January 1, 2014, to December 31, 2014) of air pollution and meteorology reported by official sites, and demographic, economic, and environmental reform data in a statistical yearbook, the influences of meteorological factors (temperature, relative humidity, precipitation intensity, and wind force) and human activities on PM 2.5 pollution were explored. After correlation analysis, logistic regression analysis, and a nonparametric test, weak negative correlations between temperature and PM 2.5 pollution were found. In most cases, festival and morning peak hours were protection and risk factors of PM 2.5 pollution, respectively. In addition, government actions, such as an afforestation project and increasing financial expenditure for energy saving and environmental protection, could greatly contribute to alleviating pollution of PM 2.5 . The findings could help officials formulate effective laws and regulations, and then PM 2.5 pollution related to the pattern of human activity would be ameliorated. Most of the time, festival and morning peak hours are protection and risk factors for PM 2.5 pollution, respectively. Increasing the percentage of afforestation area and financial expenditure for energy saving and environmental protection could significantly reduce PM 2.5 pollution. The findings can help officials formulate effective laws and regulations, and then PM 2.5 pollution related to the pattern of human activity, especially government action, will be ameliorated.

  6. National review of ambient air toxics observations.

    PubMed

    Strum, Madeleine; Scheffe, Richard

    2016-02-01

    Ambient air observations of hazardous air pollutant (HAPs), also known as air toxics, derived from routine monitoring networks operated by states, local agencies, and tribes (SLTs), are analyzed to characterize national concentrations and risk across the nation for a representative subset of the 187 designated HAPs. Observations from the National Air Toxics Trend Sites (NATTS) network of 27 stations located in most major urban areas of the contiguous United States have provided a consistent record of HAPs that have been identified as posing the greatest risk since 2003 and have also captured similar concentration patterns of nearly 300 sites operated by SLTs. Relatively high concentration volatile organic compounds (VOCs) such as benzene, formaldehyde, and toluene exhibit the highest annual average concentration levels, typically ranging from 1 to 5 µg/m(3). Halogenated (except for methylene chloride) and semivolatile organic compounds (SVOCs) and metals exhibit concentrations typically 2-3 orders of magnitude lower. Formaldehyde is the highest national risk driver based on estimated cancer risk and, nationally, has not exhibited significant changes in concentration, likely associated with the large pool of natural isoprene and formaldehyde emissions. Benzene, toluene, ethylbenzene, and 1,3-butadiene are ubiquitous VOC HAPs with large mobile source contributions that continue to exhibit declining concentrations over the last decade. Common chlorinated organic compounds such as ethylene dichloride and methylene chloride exhibit increasing concentrations. The variety of physical and chemical attributes and measurement technologies across 187 HAPs result in a broad range of method detection limits (MDLs) and cancer risk thresholds that challenge confidence in risk results for low concentration HAPs with MDLs near or greater than risk thresholds. From a national monitoring network perspective, the ability of the HAPs observational database to characterize the multiple pollutant and spatial scale patterns influencing exposure is severely limited and positioned to benefit by leveraging a variety of emerging measurement technologies. Ambient air toxics observation networks have limited ability to characterize the broad suite of hazardous air pollutants (HAPs) that affect exposures across multiple spatial scales. While our networks are best suited to capture major urban-scale signals of ubiquitous volatile organic compound HAPs, incorporation of sensing technologies that address regional and local-scale exposures should be pursued to address major gaps in spatial resolution. Caution should be exercised in interpreting HAPs observations based on data proximity to minimum detection limit and risk thresholds.

  7. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae

    PubMed Central

    2013-01-01

    Background Limitations in the ability of organisms to tolerate environmental stressors affect their fundamental ecological niche and constrain their distribution to specific habitats. Evolution of tolerance, therefore, can engender ecological niche dynamics. Forest populations of the afro-tropical malaria mosquito Anopheles gambiae have been shown to adapt to historically unsuitable larval habitats polluted with decaying organic matter that are found in densely populated urban agglomerates of Cameroon. This process has resulted in niche expansion from rural to urban environments that is associated with cryptic speciation and ecological divergence of two evolutionarily significant units within this taxon, the molecular forms M and S, among which reproductive isolation is significant but still incomplete. Habitat segregation between the two forms results in a mosaic distribution of clinally parapatric patches, with the M form predominating in the centre of urban agglomerates and the S form in the surrounding rural localities. We hypothesized that development of tolerance to nitrogenous pollutants derived from the decomposition of organic matter, among which ammonia is the most toxic to aquatic organisms, may affect this pattern of distribution and process of niche expansion by the M form. Results Acute toxicity bioassays indicated that populations of the two molecular forms occurring at the extremes of an urbanization gradient in Yaounde, the capital of Cameroon, differed in their response to ammonia. The regression lines best describing the dose-mortality profile differed in the scale of the explanatory variable (ammonia concentration log-transformed for the S form and linear for the M form), and in slope (steeper for the S form and shallower for the M form). These features reflected differences in the frequency distribution of individual tolerance thresholds in the two populations as assessed by probit analysis, with the M form exhibiting a greater mean and variance compared to the S form. Conclusions In agreement with expectations based on the pattern of habitat partitioning and exposure to ammonia in larval habitats in Yaounde, the M form showed greater tolerance to ammonia compared to the S form. This trait may be part of the physiological machinery allowing forest populations of the M form to colonize polluted larval habitats, which is at the heart of its niche expansion in densely populated human settlements in Cameroon. PMID:23294940

  8. Blood parameters as biomarkers of cadmium and lead exposure and effects in wild wood mice (Apodemus sylvaticus) living along a pollution gradient.

    PubMed

    Tête, Nicolas; Afonso, Eve; Bouguerra, Ghada; Scheifler, Renaud

    2015-11-01

    Small mammal populations living on contaminated sites are exposed to various chemicals. Lead (Pb) and cadmium (Cd), two well-known nonessential trace metals, accumulate in different organs and are known to cause multiple adverse effects. To develop nonlethal markers in ecotoxicology, the present work aimed to study the relationships between blood parameters (hematocrit, leukocyte levels and granulated erythrocyte levels) and Cd and Pb concentrations in the soil and in the liver and kidneys of wood mice (Apodemus sylvaticus). Individuals were trapped along a pollution gradient with high levels of Cd, Pb and zinc (Zn) contamination. The results indicated that hematological parameters were independent of individual characteristics (age and gender). Blood parameters varied along the pollution gradient, following a pattern similar to the accumulation of Cd in the organs of the wood mice. No relationship was found between the blood parameters studied and Pb concentrations in the organs or in the environment. The hematocrit and leukocyte number decreased with increasing concentrations of Cd in the kidneys and/or in the liver. Moreover, the hematocrit was lower in the animals that were above the thresholds (LOAELs) for Cd concentrations in the liver. These responses were interpreted as a warning of potential negative effects of Cd exposure on the oxygen transport capacity of the blood (e.g., anemia). The present results suggest that blood parameters, notably hematocrit, may offer a minimally invasive biomarker for the evaluation of Cd exposure in further ecotoxicological studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Comparison of Sewage and Animal Fecal Microbiomes by Using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups

    PubMed Central

    Fisher, Jenny C.; Eren, A. Murat; Green, Hyatt C.; Shanks, Orin C.; Morrison, Hilary G.; Vineis, Joseph H.; Sogin, Mitchell L.

    2015-01-01

    Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts. PMID:26231648

  10. Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign.

    PubMed

    Tombrou, M; Bossioli, E; Kalogiros, J; Allan, J D; Bacak, A; Biskos, G; Coe, H; Dandou, A; Kouvarakis, G; Mihalopoulos, N; Percival, C J; Protonotariou, A P; Szabó-Takács, B

    2015-02-15

    High-resolution measurements of gas and aerosols' chemical composition along with meteorological and turbulence parameters were performed over the Aegean Sea (AS) during an Etesian outbreak in the framework of the Aegean-GAME airborne campaign. This study focuses on two distinct Etesian patterns, with similarities inside the Marine Atmospheric Boundary Layer (MABL) and differences at higher levels. Under long-range transport and subsidence the pollution load is enhanced (by 17% for CO, 11% for O3, 28% for sulfate, 62% for organic mass, 47% for elemental carbon), compared to the pattern with a weaker synoptic system. Sea surface temperature (SST) was a critical parameter for the MABL structure, turbulent fluxes and pollutants' distribution at lower levels. The MABL height was below 500 m asl over the eastern AS (favoring higher accumulation), and deeper over the western AS. The most abundant components of total PM1 were sulfate (40-50%) and organics (30-45%). Higher average concentrations measured over the eastern AS (131 ± 76 ppbv for CO, 62.5 ± 4.1 ppbv for O3, 5.0 ± 1.1 μg m(-3) for sulfate, 4.7 ± 0.9 μg m(-3) for organic mass and 0.5 ± 0.2 μg m(-3) for elemental carbon). Under the weaker synoptic system, cleaner but more acidic air masses prevailed over the eastern part, while distinct aerosol layers of different signature were observed over the western part. The Aitken and accumulation modes contributed equally during the long-range transport, while the Aitken modes dominated during local or medium range transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Spatial assessment of air quality patterns in Malaysia using multivariate analysis

    NASA Astrophysics Data System (ADS)

    Dominick, Doreena; Juahir, Hafizan; Latif, Mohd Talib; Zain, Sharifuddin M.; Aris, Ahmad Zaharin

    2012-12-01

    This study aims to investigate possible sources of air pollutants and the spatial patterns within the eight selected Malaysian air monitoring stations based on a two-year database (2008-2009). The multivariate analysis was applied on the dataset. It incorporated Hierarchical Agglomerative Cluster Analysis (HACA) to access the spatial patterns, Principal Component Analysis (PCA) to determine the major sources of the air pollution and Multiple Linear Regression (MLR) to assess the percentage contribution of each air pollutant. The HACA results grouped the eight monitoring stations into three different clusters, based on the characteristics of the air pollutants and meteorological parameters. The PCA analysis showed that the major sources of air pollution were emissions from motor vehicles, aircraft, industries and areas of high population density. The MLR analysis demonstrated that the main pollutant contributing to variability in the Air Pollutant Index (API) at all stations was particulate matter with a diameter of less than 10 μm (PM10). Further MLR analysis showed that the main air pollutant influencing the high concentration of PM10 was carbon monoxide (CO). This was due to combustion processes, particularly originating from motor vehicles. Meteorological factors such as ambient temperature, wind speed and humidity were also noted to influence the concentration of PM10.

  12. Using high complexity analysis to probe the evolution of organic aerosol during pollution events in Beijing

    NASA Astrophysics Data System (ADS)

    Hamilton, J.; Dixon, W.; Dunmore, R.; Squires, F. A.; Swift, S.; Lee, J. D.; Rickard, A. R.; Sun, Y.; Xu, W.

    2017-12-01

    There is increasing evidence that exposure to air pollution results in significant impacts on human health. In Beijing, home to over 20 million inhabitants, particulate matter levels are very high by international standards, with official estimates of an annual mean PM2.5 concentration in 2014 of 86 μg m-3, nearly 9 times higher than the WHO guideline. Changes in particle composition during pollution events will provide key information on sources and can be used to inform strategies for pollution mitigation and health benefits. The organic fraction of PM is an extremely complex mixture reflecting the diversity of sources to the atmosphere. In this study we attempt to harness the chemical complexity of OA by developing an extensive database of over 700 mass spectra, built using literature data and sources specific tracers (e.g. diesel emission characterisation experiments and SOA generated in chamber simulations). Using a high throughput analysis method (15 min), involving UHPLC coupled to Orbitrap mass spectrometry, chromatograms are integrated, compared to the library and a list of identified compounds produced. Purpose built software based on R is used to automatically produce time series, alongside common aerosol metrics and data visualisation techniques, dramatically reducing analysis times. Offline measurements of organic aerosol composition were made as part of the Sources and Emissions of Air Pollutants in Beijing project, a collaborative program between leading UK and Chinese research groups. Rather than studying only a small number of 24 hr PM samples, we collected 250 filters samples at a range of different time resolutions, from 30 minutes to 12 hours, depending on the time of day and PM loadings. In total 643 species were identified based on their elemental formula and retention time, with species ranging from C2-C22 and between 1-13 oxygens. A large fraction of the OA species observed were organosulfates and/or nitrates. Here we will present preliminary results on the factors that impact the evolution of organic aerosol in Beijing, highlighting the role of biomass burning in winter and photochemistry in summer. Modern data mining and statistical analysis methods will be used to identify patterns in the OA composition along with co-variances with simultaneous gas and particle measurements.

  13. The organic pollutant status of rivers in Bosnia and Herzegovina as determined by a combination of active and passive sampling methods.

    PubMed

    Harman, Christopher; Grung, Merete; Djedjibegovic, Jasmina; Marjanovic, Aleksandra; Fjeld, Eirik; Braaten, Hans Fredrik Veiteberg; Sober, Miroslav; Larssen, Thorjørn; Ranneklev, Sissel Brit

    2018-04-15

    There is an overall lack of data concerning the pollution status of Bosnia Herzegovina, which is confounded by fragmented national environmental management. The present study aimed to provide some initial data for concentrations of priority substances in two major Bosnian Rivers, using two types of passive sampler (PS) as well as by using high volume water sampling (HVWS). Overall, concentrations of most persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and legacy pesticides, were shown to be low. However, around the town of Doboj on the Bosna River, concentrations of polycyclic aromatic hydrocarbons (PAH) breached European standards for several compounds and reached 67 ng L -1 for freely dissolved concentrations and 250 ng L -1 for total concentrations. In general, contamination was lower in the Neretva River compared to the Bosna, although for brominated diphenyl ethers (PBDEs), results suggested an active source of PBDEs at one location based on the ratio of congeners 47 and 99. Direct comparisons between the different sampling techniques used are not straightforward, but similar patterns of PAH contamination were shown by HVWS and PS in the Bosna River. There are both scientific and practical considerations when choosing which type of sampling technique to apply, and this should be decided based on the goals of each individual study.

  14. Dynamic assessment of exposure to air pollution using mobile phone data.

    PubMed

    Dewulf, Bart; Neutens, Tijs; Lefebvre, Wouter; Seynaeve, Gerdy; Vanpoucke, Charlotte; Beckx, Carolien; Van de Weghe, Nico

    2016-04-21

    Exposure to air pollution can have major health impacts, such as respiratory and cardiovascular diseases. Traditionally, only the air pollution concentration at the home location is taken into account in health impact assessments and epidemiological studies. Neglecting individual travel patterns can lead to a bias in air pollution exposure assessments. In this work, we present a novel approach to calculate the daily exposure to air pollution using mobile phone data of approximately 5 million mobile phone users living in Belgium. At present, this data is collected and stored by telecom operators mainly for management of the mobile network. Yet it represents a major source of information in the study of human mobility. We calculate the exposure to NO2 using two approaches: assuming people stay at home the entire day (traditional static approach), and incorporating individual travel patterns using their location inferred from their use of the mobile phone network (dynamic approach). The mean exposure to NO2 increases with 1.27 μg/m(3) (4.3%) during the week and with 0.12 μg/m(3) (0.4%) during the weekend when incorporating individual travel patterns. During the week, mostly people living in municipalities surrounding larger cities experience the highest increase in NO2 exposure when incorporating their travel patterns, probably because most of them work in these larger cities with higher NO2 concentrations. It is relevant for health impact assessments and epidemiological studies to incorporate individual travel patterns in estimating air pollution exposure. Mobile phone data is a promising data source to determine individual travel patterns, because of the advantages (e.g. low costs, large sample size, passive data collection) compared to travel surveys, GPS, and smartphone data (i.e. data captured by applications on smartphones).

  15. Persistent organic pollutants monitoring in marine coastal environment using beached plastic resin pellets and effective risk communication via International Pellet Watch (IPW) as a tool.

    NASA Astrophysics Data System (ADS)

    Yeo, B. G. M.; Takada, H.; Hosoda, J.

    2014-12-01

    International Pellet Watch (IPW) is an ongoing global monitoring of persistent organic pollutants (POPs) using preproduction plastic resin pellets. These pellets are easily collected and transported allowing the general public worldwide to get involved. Thus, risk communication toward the pellet collectors is a significant part of IPW to ensure continuous effort and interest. The pellet samples were analyzed for polychlorinated biphenyl (PCBs), dichlorodiphenyltrichloroethane and degradation products (DDTs), and hexachlorocyclohexanes (HCHs). Additional pollutants such as polycyclic aromatic hydrocarbons (PAHs) and Hopanes were also analyzed for some samples. Analytical results showed distinct patterns with high concentrations (< 200ng/g-pellet) of PCBs in urban and industrialized areas mainly in the United States, Japan, and some European countries. These countries are prone to legacy pollution where PCBs were used extensively before the ban in the late 1980's. Pesticide DDTs instead were found to be higher in developing countries such as Brazil and Vietnam (> 500ng/g-pellet). These countries may still be using DDTs as a vector control mostly to combat malaria. High concentrations of DDTs were also found in Greece, China and Australia (> 100ng/g-pellet) suggesting the possibility of illegal usage as pesticide or anti fouling paint. HCHs concentrations were mostly low due to its low retention in the environment. However, high HCHs concentrations were mostly found in the southern hemisphere. Very high concentration of PAHs in pellet samples can be utilized for early identification of recent oil pollution. High PAHs concentration in Tauranga, New Zealand was found to be caused by local oil spill. Hopanes in pellets can be used for source identification of oil pollution. Global mapping and comparison among IPW data can be used to provide better explanations to IPW volunteers by sorting concentrations into pollution categories. Communication reports are tailor written based on the volunteers familiarity to IPW's issues, educational background, occupation and their potential to further spread awareness. Based on feedbacks, the volunteers were grateful to receive reports of their samples felt personally involved in IPW. This was shown to empowered and encouraged efforts from the volunteers.

  16. [Preliminary determination of organic pollutants in agricultural fertilizers].

    PubMed

    Mo, Ce-hui; Li, Yun-hui; Cai, Quan-ying; Zeng, Qiao-yun; Wang, Bo-guang; Li, Hai-qin

    2005-05-01

    Organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in agricultural fertilizers are new problem deserved more study. Eight kinds of organic pollutants including 43 compounds classified as US EPA priority pollutants in twenty one agricultural fertilizers which were universally used in China were determined by Gas chromatography-mass spectrum (GC-MS). Three kinds of organic pollutants including more than 5 compounds were detected in most fertilizers, composing mainly of phthalic acid esters (PAEs), nitrobenzenes (NBs) and polycyclic aromatic hydrocarbons (PAHs). There were 26 compounds detected in at least one fertilizer, five of them especially PAEs detected in most fertilizer and even in all fertilizers. Benzo(a)pyrene, a strongly carcinogenic compound was detected in two fertilizers. Higher concentrations of compounds were determined in those fertilizers such as multifunction compound fertilizers and coated fertilizers.

  17. Assessing the toxicity of sediments using the medaka embryo-larval assay and 2 other bioassays.

    PubMed

    Barhoumi, Badreddine; Clérandeau, Christelle; Landi, Laure; Pichon, Anaïk; Le Bihanic, Florane; Poirier, Dominique; Anschutz, Pierre; Budzinski, Hélène; Driss, Mohamed Ridha; Cachot, Jérôme

    2016-09-01

    Sediments are sinks for aquatic pollutants, and analyzing toxicity in such complex matrices is still challenging. To evaluate the toxicity of bioavailable pollutants accumulated in sediments from the Bizerte lagoon (Tunisia), a novel assay, the medaka embryo-larval assay by sediment contact, was applied. Japanese medaka (Oryzias latipes) embryos were incubated in direct contact with sediment samples up to hatching. Lethal and sublethal adverse effects were recorded in embryos and larvae up to 20 d postfertilization. Results from medaka embryo-larval assay were compared with cytotoxicity (Microtox®), genotoxicity (SOS chromotest), and pollutant content of sediments. The results highlight differences in the contamination profile and toxicity pattern between the different studied sediments. A significant correlation was shown between medaka embryo-larval assay by sediment contact and SOS chromotest responses and concentrations of most organic pollutants studied. No correlation was shown between pollutant levels and Microtox. According to the number of sediment samples detected as toxic, medaka embryo-larval assay by sediment contact was more sensitive than Microtox, which in turn was more sensitive than the SOS chromotest; and medaka embryo-larval assay by sediment contact allowed sediment toxicity assessment of moderately polluted sediments without pollutant extraction and using an ecologically realistic exposure scenario. Although medaka embryo-larval assay by sediment contact should be tested on a larger sample set, the results show that it is sensitive and convenient enough to monitor the toxicity of natural sediments. Environ Toxicol Chem 2016;35:2270-2280. © 2016 SETAC. © 2016 SETAC.

  18. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils.

    PubMed

    Clarke, Lorraine Weller; Jenerette, G Darrel; Bain, Daniel J

    2015-02-01

    Heavy metals in urban soils can compromise human health, especially in urban gardens, where gardeners may ingest contaminated dust or crops. To identify patterns of urban garden metal contamination, we measured concentrations and bioavailability of Pb, As, and Cd in soils associated with twelve community gardens in Los Angeles County, CA. This included sequential extractions to partition metals among exchangeable, reducible, organic, or residual fractions. Proximity to road increased all metal concentrations, suggesting vehicle emissions sources. Reducible Pb increased with neighborhood age, suggesting leaded paint as a likely pollutant source. Exchangeable Cd and As both increased with road proximity. Only cultivated soils showed an increase in exchangeable As with road proximity, potentially due to reducing humic acid interactions while Cd bioavailability was mitigated by organic matter. Understanding the geochemical phases and metal bioavailability allows incorporation of contamination patterns into urban planning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Distribution pattern of anthropogenic marine debris along the gastrointestinal tract of green turtles (Chelonia mydas) as implications for rehabilitation.

    PubMed

    Colferai, André S; Silva-Filho, Rodolfo Pinho; Martins, Aryse Moreira; Bugoni, Leandro

    2017-06-15

    Pollution from anthropogenic marine debris (AMD) is currently the most widely distributed and lasting anthropic impact in the marine environment, affecting hundreds of species, including all sea turtles. In this study, the patterns of AMD distribution along the gastrointestinal tract (GT) and their relationship with obstructions and faecalomas in 62 green turtles (Chelonia mydas) that died during rehabilitation in southern Brazil were determined. The GT was split in seven sections, corresponding to the natural organs and intestinal areas morphologically and physiologically distinct. Mean mass (4.24g) and area (146.74cm 2 ) of AMD in the stomach were higher than in other sections. The anterior portion of the rectum had the highest number of obstructions, followed by the stomach. AMD was associated with the obstructions, with positive correlation between faecalomas and AMD masses. Organs and subdivisions showed marked differences in susceptibility to obstructions caused by AMD, which deserves attention in clinical interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Proteomics to assess the role of phenotypic plasticity in aquatic organisms exposed to pollution and global warming.

    PubMed

    Silvestre, Frédéric; Gillardin, Virginie; Dorts, Jennifer

    2012-11-01

    Nowadays, the unprecedented rates of anthropogenic changes in ecosystems suggest that organisms have to migrate to new distributional ranges or to adapt commensurately quickly to new conditions to avoid becoming extinct. Pollution and global warming are two of the most important threats aquatic organisms will have to face in the near future. If genetic changes in a population in response to natural selection are extensively studied, the role of acclimation through phenotypic plasticity (the property of a given genotype to produce different phenotypes in response to particular environmental conditions) in a species to deal with new environmental conditions remains largely unknown. Proteomics is the extensive study of the protein complement of a genome. It is dynamic and depends on the specific tissue, developmental stage, and environmental conditions. As the final product of gene expression, it is subjected to several regulatory steps from gene transcription to the functional protein. Consequently, there is a discrepancy between the abundance of mRNA and the abundance of the corresponding protein. Moreover, proteomics is closer to physiology and gives a more functional knowledge of the regulation of gene expression than does transcriptomics. The study of protein-expression profiles, however, gives a better portrayal of the cellular phenotype and is considered as a key link between the genotype and the organismal phenotype. Under new environmental conditions, we can observe a shift of the protein-expression pattern defining a new cellular phenotype that can possibly improve the fitness of the organism. It is now necessary to define a proteomic norm of reaction for organisms acclimating to environmental stressors. Its link to fitness will give new insights into how organisms can evolve in a changing environment. The proteomic literature bearing on chronic exposure to pollutants and on acclimation to heat stress in aquatic organisms, as well as potential application of proteomics in evolutionary issues, are outlined. While the transcriptome responses are commonly investigated, proteomics approaches now need to be intensified, with the new perspective of integrating the cellular phenotype with the organismal phenotype and with the mechanisms of the regulation of gene expression, such as epigenetics.

  1. Removal of triazine-based pollutants from water by carbon nanotubes: Impact of dissolved organic matter (DOM) and solution chemistry.

    PubMed

    Engel, Maya; Chefetz, Benny

    2016-12-01

    Adsorption of organic pollutants by carbon nanotubes (CNTs) in the environment or removal of pollutants during water purification require deep understanding of the impacts of the presence of dissolved organic matter (DOM). DOM is an integral part of environmental systems and plays a key role affecting the behavior of organic pollutants. In this study, the effects of solution chemistry (pH and ionic strength) and the presence of DOM on the removal of atrazine and lamotrigine by single-walled CNTs (SWCNTs) was investigated. The solubility of atrazine slightly decreased (∼5%) in the presence of DOM, whereas that of lamotrigine was significantly enhanced (by up to ∼70%). Simultaneous introduction of DOM and pollutant resulted in suppression of removal of both atrazine and lamotrigine, which was attributed to DOM-pollutant competition or blockage of adsorption sites by DOM. However the decrease in removal of lamotrigine was also a result of its complexation with DOM. Pre-introduction of DOM significantly reduced pollutant adsorption by the SWCNTs, whereas introduction of DOM after the pollutant resulted in the release of adsorbed atrazine and lamotrigine from the SWCNTs. These data imply that DOM exhibits higher affinity for the adsorption sites than the triazine-based pollutants. In the absence of DOM atrazine was a more effective competitor than lamotrigine for adsorption sites in SWCNTs. However, competition between pollutants in the presence of DOM revealed lamotrigine as the better competitor. Our findings help unravel the complex DOM-organic pollutant-CNT system and will aid in CNT-implementation in water-purification technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment.

    PubMed

    Murray, Kyle E; Thomas, Sheeba M; Bodour, Adria A

    2010-12-01

    Organic chemicals have been detected at trace concentrations in the freshwater environment for decades. Though the term trace pollutant indicates low concentrations normally in the nanogram or microgram per liter range, many of these pollutants can exceed an acceptable daily intake (ADI) for humans. Trace pollutants referred to as emerging contaminants (ECs) have recently been detected in the freshwater environment and may have adverse human health effects. Analytical techniques continue to improve; therefore, the number and frequency of detections of ECs are increasing. It is difficult for regulators to restrict use of pollutants that are a human health hazard; scientists to improve treatment techniques for higher priority pollutants; and the public to modify consumption patterns due to the vast number of ECs and the breadth of literature on the occurrence, use, and toxicity. Hence, this paper examines literature containing occurrence and toxicity data for three broad classes of trace pollutants and ECs (industrials, pesticides, and pharmaceuticals and personal care products (PPCPs)), and assesses the relevance of 71 individual compounds. The evaluation indicates that widely used industrials (BPF) and PPCPs (AHTN, HHCB, ibuprofen, and estriol) occur frequently in samples from the freshwater environment but toxicity data were not available; thus, it is important to establish their ADI. Other widely used industrials (BDE-47, BDE-99) and pesticides (benomyl, carbendazim, aldrin, endrin, ethion, malathion, biphenthrin, and cypermethrin) have established ADI values but occurrence in the freshwater environment was not well documented. The highest priority pollutants for regulation and treatment should include industrials (PFOA, PFOS and DEHP), pesticides (diazinon, methoxychlor, and dieldrin), and PPCPs (EE2, carbamazepine, βE2, DEET, triclosan, acetaminophen, and E1) because they occur frequently in the freshwater environment and pose a human health hazard at environmental concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    PubMed

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Quantification of Aerosol Derived Particulate Matter and Trace gases in the Coastal Belt of Kochi, Kerala, India

    NASA Astrophysics Data System (ADS)

    H, S. C.

    2016-02-01

    Aerosol chemistry is a window to unravel the various environmental health hazard problems. This open forum which deals with the study of formation, interaction, transformation of aerosol species, which could enable in the assessment of biogeochemical cycling of anthropogenic and toxic species. It also preserves the temperature balance and reservoir and sink for nutrients, trace metals and organic species. An inventory of air pollutants is a proactive and necessary first step towards the control of air pollution. Surveys and studies on the sources of pollution and their apportionment to different sources are a pre-requisite for alleviating environmental disorder. The Kochi City (The Queen of Arabian Sea), Kerala, India is a fast growing industrial region where mounting urbanization has been affecting the quality of the atmospheric environment. Cochin estuarine environment is progressively affected by marine pollution concomitant by industrial hazardous chemicals and municipal waste. Further, rapid urbanization and industrialization has lead to lofting and large scale advection of these omnipresent species in the atmosphere. Studies were conducted to assess the significance and potential impact occupied to these ubiquitous species. The major gaseous pollutants include gases like sulphur dioxide, nitrogen dioxide, ammonia and particulate matter (PM). An attempt was performed to unravel the inorganic species in the atmosphere and programmed by means of quantification of PM10 and trace gases. Their distribution pattern and outcomes are inferred.

  5. [Changes of regional environment quality pattern in China since 1986-2008].

    PubMed

    Guan, Wei-Hua; Sun, Ming-Kun; Lu, Yu-Qi

    2011-03-01

    For further study of regional differences and the pattern of changes in environmental quality in China since 1986-2008, we perform the principal component analysis, standard deviation, Mann-Kendall and cluster analysis on 18 environmental quality indexes in 28 provinces of China in this paper. Those indexes refer to pollutant emission, pollutants treatment capacities and pollutant emission of per unit land area, etc. The paper indicates that regional environmental quality in China has been increased slightly during this period. It can be divided into four stages: 1986-2000, 2000-2001, 2001-2005 and 2005-2008. The overall patterns of regional environmental quality is the West is higher than the East in general, while the environmental quality of the eastern part have been changed somewhat. For more details, the regional environmental quality in China in 1986 is composed of two parts, the eastern part and the western part, while in 2000 and 2001 the eastern part, the middle part and the western part appears as the overall pattern. For the year of 2005, the regional environmental quality in the western is higher than that of the eastern; meanwhile, the eastern can be divided into the northern part, the middle part and the southern part, and the environmental quality in northern part is better than that of the southern part, southern part is better than that of the middle part. This pattern hardly changed in 2008, except that the area with poor environment quality region had expanded. Pollutant emission of per unit land area played as a main factor; yet both the pollutant emission and the reuse of pollutants impacted the pattern specifically. In addition, the national macro policies, the regional policies, the regional economic and the industrial structure can be primary reason for the change of regional environmental quality pattern in China as well.

  6. Chemical Components, Variation, and Source Identification of PM1 during the Heavy Air Pollution Episodes in Beijing in December 2016

    NASA Astrophysics Data System (ADS)

    Zhang, Yangmei; Wang, Yaqiang; Zhang, Xiaoye; Shen, Xiaojing; Sun, Junying; Wu, Lingyan; Zhang, Zhouxiang; Che, Haochi

    2018-02-01

    Air pollution is a current global concern. The heavy air pollution episodes (HPEs) in Beijing in December 2016 severely influenced visibility and public health. This study aims to survey the chemical compositions, sources, and formation processes of the HPEs. An aerodyne quadruple aerosol mass spectrometer (Q-AMS) was utilized to measure the non-refractory PM1 (NR-PM1) mass concentration and size distributions of the main chemical components including organics, sulfate, nitrate, ammonium, and chloride in situ during 15-23 December 2016. The NR-PM1 mass concentration was found to increase from 6 to 188 μg m-3 within 5 days. During the most serious polluted episode, the PM1 mass concentration was about 2.6 times that during the first pollution stage and even 40 times that of the clean days. The formation rates of PM2.5 in the five pollution stages were 26, 22, 22, 32, and 67 μg m-3 h-1, respectively. Organics and nitrate occupied the largest proportion in the polluted episodes, whereas organics and sulfate dominated the submicron aerosol during the clean days. The size distribution of organics is always broader than those of other species, especially in the clean episodes. The peak sizes of the interested species grew gradually during different HPEs. Aqueous reaction might be important in forming sulfate and chloride, and nitrate was formed via oxidization and condensation processes. PMF (positive matrix factorization) analysis on AMS mass spectra was employed to separate the organics into different subtypes. Two types of secondary organic aerosol with different degrees of oxidation consisted of 43% of total organics. By contrast, primary organics from cooking, coal combustion, and traffic emissions comprised 57% of the organic aerosols during the HPEs.

  7. Springtime trans-Pacific transport of Asian pollutants characterized by the Western Pacific (WP) pattern

    NASA Astrophysics Data System (ADS)

    Koo, Ja-Ho; Kim, Jaemin; Kim, Jhoon; Lee, Hanlim; Noh, Young Min; Lee, Yun Gon

    2016-12-01

    Springtime trans-Pacific transport of Asian air pollutants has been investigated in many ways to figure out its mechanism. Based on the Western Pacific (WP) pattern, one of climate variabilities in the Northern Hemisphere known to be associated with the pattern of atmospheric circulation over the North Pacific Ocean, in this study, we characterize the pattern of springtime trans-Pacific transport using long-term satellite measurements and reanalysis datasets. A positive WP pattern is characterized by intensification of the dipole structure between the northern Aleutian Low and the southern Pacific High over the North Pacific. The TOMS/OMI Aerosol Index (AI) and MOPITT CO show the enhancement of Asian pollutant transport across the Pacific during periods of positive WP pattern, particularly between 40 and 50°N. This enhancement is confirmed by high correlations of WP index with AI and CO between 40 and 50°N. To evaluate the influence of the WP pattern, we examine several cases of trans-Pacific transport reported in previous research. Interestingly, most trans-Pacific transport cases are associated with the positive WP pattern. During the period of negative WP pattern, reinforced cyclonic wave breaking is consistently found over the western North Pacific, which obstructs zonal advection across the North Pacific. However, some cases show the trans-Pacific transport of CO in the period of negative WP pattern, implying that the WP pattern is more influential on the transport of particles mostly emitted near ∼40°N. This study reveals that the WP pattern can be utilized to diagnose the strength of air pollutant transport from East Asia to North America.

  8. UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

  9. Semi volatile organic compounds in the snow of Russian Arctic islands: Archipelago Novaya Zemlya.

    PubMed

    Lebedev, A T; Mazur, D M; Polyakova, O V; Kosyakov, D S; Kozhevnikov, A Yu; Latkin, T B; Andreeva Yu, I; Artaev, V B

    2018-04-18

    Environmental contamination of the Arctic has widely been used as a worldwide pollution marker. Various classes of organic pollutants such as pesticides, personal care products, PAHs, flame retardants, biomass burning markers, and many others emerging contaminants have been regularly detected in Arctic samples. Although numerous papers have been published reporting data from the Canadian, Danish, and Norwegian Arctic regions, the environmental situation in Russian Arctic remains mostly underreported. Snow analysis is known to be used for monitoring air pollution in the regions with cold climate in both short-term and long-term studies. This paper presents the results of a nontargeted study on the semivolatile organic compounds detected and identified in snow samples collected at the Russian Artic Archipelago Novaya Zemlya in June 2016. Gas chromatography coupled to a high-resolution time-of-flight mass spectrometer enabled the simultaneous detection and quantification of a variety of pollutants including those from the US Environmental Protection Agency (EPA) priority pollutants list, emerging contaminants (plasticizers, flame retardants-only detection), as well as the identification of novel Arctic organic pollutants, (e.g., fatty acid amides and polyoxyalkanes). The possible sources of these novel pollutants are also discussed. GC-HRMS enabled the detection and identification of emerging contaminants and novel organic pollutants in the Arctic, e.g., fatty amides and polyoxyalkanes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Application of nano filter for organic pollutant degradation

    NASA Astrophysics Data System (ADS)

    Qandalee, Mohammad; Hatami, Mehdi; Majedi, Ali; Bateni, Mohsen; Vahdat, Seyed Mohammad

    2012-12-01

    In this study, the possibility of using a novel nanocomposite structure based on nanoscale titanium dioxide as a filter toward elimination of organic pollutant was investigated. Methyl Orange (MO) was selected as a typical organic pollutant and effect of lamp intensity, addition of hydrogen peroxide and MO concentration were investigated. The photocatalytic degradation of MO was modeled using Langmuir-Hinshelwood equation and the removal rates were simulated.

  11. COP-compost: a software to study the degradation of organic pollutants in composts.

    PubMed

    Zhang, Y; Lashermes, G; Houot, S; Zhu, Y-G; Barriuso, E; Garnier, P

    2014-02-01

    Composting has been demonstrated to be effective in degrading organic pollutants (OP) whose behaviour depends on the composting conditions, the microbial populations activated and interactions with organic matters. The fate of OP during composting involves complex mechanisms and models can be helpful tools for educational and scientific purposes, as well as for industrialists who want to optimise the composting process for OP elimination. A COP-Compost model, which couples an organic carbon (OC) module and an organic pollutant (OP) module and which simulates the changes of organic matter, organic pollutants and the microbial activities during the composting process, has been proposed and calibrated for a first set of OP in a previous study. The objectives of the present work were (1) to introduce the COP-Compost model from its convenient interface to a potential panel of users, (2) to show the variety of OP that could be simulated, including the possibility of choosing between degradation through co-metabolism or specific metabolism and (3) to show the effect of the initial characteristics of organic matter quality and its microbial biomass on the simulated results of the OP dynamic. In the model, we assumed that the pollutants can be adsorbed on organic matter according to the biochemical quality of the OC and that the microorganisms can degrade the pollutants at the same time as they degrade OC (by co-metabolism). A composting experiment describing two different (14)C-labelled organic pollutants, simazine and pyrene, were chosen from the literature because the four OP fractions simulated in the model were measured during the study (the mineralised, soluble, sorbed and non-extractable fractions). Except for the mineralised fraction of simazine, a good agreement was achieved between the simulated and experimental results describing the evolution of the different organic fractions. For simazine, a specific biomass had to be added. To assess the relative importance of organic matter dynamics on the organic pollutants' behaviour, a sensitivity analysis was conducted. The sensitivity analysis demonstrated that the parameters associated with organic matter dynamics and its initial microbial biomass greatly influenced the evolution of all the OP fractions, although the initial biochemical quality of the OC did not have a significant impact on the OP evolution.

  12. The present and future of microplastic pollution in the marine environment.

    PubMed

    Ivar do Sul, Juliana A; Costa, Monica F

    2014-02-01

    Recently, research examining the occurrence of microplastics in the marine environment has substantially increased. Field and laboratory work regularly provide new evidence on the fate of microplastic debris. This debris has been observed within every marine habitat. In this study, at least 101 peer-reviewed papers investigating microplastic pollution were critically analysed (Supplementary material). Microplastics are commonly studied in relation to (1) plankton samples, (2) sandy and muddy sediments, (3) vertebrate and invertebrate ingestion, and (4) chemical pollutant interactions. All of the marine organism groups are at an eminent risk of interacting with microplastics according to the available literature. Dozens of works on other relevant issues (i.e., polymer decay at sea, new sampling and laboratory methods, emerging sources, externalities) were also analysed and discussed. This paper provides the first in-depth exploration of the effects of microplastics on the marine environment and biota. The number of scientific publications will increase in response to present and projected plastic uses and discard patterns. Therefore, new themes and important approaches for future work are proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation.

    PubMed

    Alkorta, Itziar; Epelde, Lur; Garbisu, Carlos

    2017-10-16

    Bioremediation, based on the use of microorganisms to break down pollutants, can be very effective at reducing soil pollution. But the climate change we are now experiencing is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc. Many climate-induced effects on soil microorganisms occur indirectly through changes in plant growth and physiology derived from increased atmospheric CO2 concentrations and temperatures, the alteration of precipitation patterns, etc., with a concomitant effect on rhizoremediation performance (i.e. the plant-assisted microbial degradation of pollutants in the rhizosphere). But these effects are extremely complex and mediated by processes such as acclimation and adaptation. Besides, soil microorganisms form complex networks of interactions with a myriad of organisms from many taxonomic groups that will also be affected by climate change, further complicating data interpretation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Winds of change: reducing transboundary air pollutants.

    PubMed

    Reuther, C G

    2000-04-01

    Sulfur dioxide, nitrogen oxides, volatile organic compounds, persistent organic pollutants, particulate matter, and heavy metals---air pollutants once thought to be problems that could be solved locally, where the effects occur---are all currently being discussed in international forums. A spate of meetings and agreements in recent months has shown many international governments to be more willing than ever to try to limit the amount of their air pollution that drifts into other countries. Prompting this policy shift are increasing emissions in some parts of the world, better monitoring, and an improved understanding of air pollution transport and the effects of air pollution. In most regions of the world, however, no international agreements on air pollution exist at all, while in others, many overlapping local, multilateral, and global agreements address the problem simultaneously. According to the World Health Organization, air pollution causes nearly 3 million deaths per year, and the U.S. Environmental Protection Agency estimates that ground-level ozone causes damage to U.S. crops totaling $1-2 billion each year.

  15. Factors influencing time-location patterns and their impact on estimates of exposure: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air).

    PubMed

    Spalt, Elizabeth W; Curl, Cynthia L; Allen, Ryan W; Cohen, Martin; Williams, Kayleen; Hirsch, Jana A; Adar, Sara D; Kaufman, Joel D

    2016-06-01

    We assessed time-location patterns and the role of individual- and residential-level characteristics on these patterns within the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) cohort and also investigated the impact of individual-level time-location patterns on individual-level estimates of exposure to outdoor air pollution. Reported time-location patterns varied significantly by demographic factors such as age, gender, race/ethnicity, income, education, and employment status. On average, Chinese participants reported spending significantly more time indoors and less time outdoors and in transit than White, Black, or Hispanic participants. Using a tiered linear regression approach, we predicted time indoors at home and total time indoors. Our model, developed using forward-selection procedures, explained 43% of the variability in time spent indoors at home, and incorporated demographic, health, lifestyle, and built environment factors. Time-weighted air pollution predictions calculated using recommended time indoors from USEPA overestimated exposures as compared with predictions made with MESA Air participant-specific information. These data fill an important gap in the literature by describing the impact of individual and residential characteristics on time-location patterns and by demonstrating the impact of population-specific data on exposure estimates.

  16. Elucidating the relationship between aerosol concentration and summertime boundary layer structure in central China.

    PubMed

    Liu, Lin; Guo, Jianping; Miao, Yucong; Liu, Lin; Li, Jian; Chen, Dandan; He, Jing; Cui, Chunguang

    2018-06-11

    Wuhan, a megacity in central China, suffers from frequent aerosol pollution and is accompanied by meteorological factors at both synoptic and local scales. Partly due to the lack of appropriate observations of planetary boundary layer (PBL), the associations between synoptic conditions, PBL, and pollution there are not yet fully understood. Thus, systematic analyses were conducted using the fine-resolution soundings, surface meteorological measurements, and aerosol observations in Wuhan during summer for the period 2013-2016, in combination with T-mode principal component analysis and simulations of backward trajectory. The results showed that the variations of boundary layer height (BLH) not only modulated the diurnal variation of PM 2.5 concentration in Wuhan, but also the daily pollution level. Five different synoptic patterns during summer in Wuhan were identified from reanalysis geopotential height fields. Among these synoptic patterns, two types characterized by northeasterly prevailing winds, were found to be associated with heavy pollution in Wuhan. Driven by the northeasterly winds, the polluted air mass from the heavily polluted regions could be easily transported to Wuhan, such as North China Plain and Yangtze River Delta. Such regional transports of pollutants must be partly responsible for the aerosol pollution in Wuhan. In addition, these two synoptic patterns were also featured by the relatively high cloud cover and low boundary layer height in Wuhan, which would favor the occurrence of pollution there. Overall, this study has important implications for understanding the important roles of meteorological factors in modulating aerosol pollution in central China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Moving Environmental Justice Indoors: Understanding Structural Influences on Residential Exposure Patterns in Low-Income Communities

    PubMed Central

    Zota, Ami R.; Fabian, M. Patricia; Chahine, Teresa; Julien, Rhona; Spengler, John D.; Levy, Jonathan I.

    2011-01-01

    Objectives. The indoor environment has not been fully incorporated into the environmental justice dialogue. To inform strategies to reduce disparities, we developed a framework to identify the individual and place-based drivers of indoor environment quality. Methods. We reviewed empirical evidence of socioeconomic disparities in indoor exposures and key determinants of these exposures for air pollutants, lead, allergens, and semivolatile organic compounds. We also used an indoor air quality model applied to multifamily housing to illustrate how nitrogen dioxide (NO2) and fine particulate matter (PM2.5) vary as a function of factors known to be influenced by socioeconomic status. Results. Indoor concentrations of multiple pollutants are elevated in low-socioeconomic status households. Differences in these exposures are driven by the combined influences of indoor sources, outdoor sources, physical structures, and residential activity patterns. Simulation models confirmed indoor sources’ importance in determining indoor NO2 and PM2.5 exposures and showed the influence of household-specific determinants. Conclusions. Both theoretical models and empirical evidence emphasized that disparities in indoor environmental exposure can be significant. Understanding key determinants of multiple indoor exposures can aid in developing policies to reduce these disparities. PMID:21836112

  18. A PILOT STUDY OF CHILDREN'S TOTAL EXPOSURE TO PERSISTENT PESTICIDES AND OTHER PERSISTENT ORGANIC POLLUTANTS (CTEPP)

    EPA Science Inventory

    The Pilot Study of Children's Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP) investigated the aggregate exposures of 257 preschool children and their primary adult caregivers to pollutants commonly detected in their everyday environments. ...

  19. Removing environmental organic pollutants with bioremediation and phytoremediation.

    PubMed

    Kang, Jun Won

    2014-06-01

    Hazardous organic pollutants represent a threat to human, animal, and environmental health. If left unmanaged, these pollutants could cause concern. Many researchers have stepped up efforts to find more sustainable and cost-effective alternatives to using hazardous chemicals and treatments to remove existing harmful pollutants. Environmental biotechnology, such as bioremediation and phytoremediation, is a promising field that utilizes natural resources including microbes and plants to eliminate toxic organic contaminants. This technology offers an attractive alternative to other conventional remediation processes because of its relatively low cost and environmentally-friendly method. This review discusses current biological technologies for the removal of organic contaminants, including chlorinated hydrocarbons, focusing on their limitation and recent efforts to correct the drawbacks.

  20. Direct analysis of organic priority pollutants by IMS

    NASA Technical Reports Server (NTRS)

    Giam, C. S.; Reed, G. E.; Holliday, T. L.; Chang, L.; Rhodes, B. J.

    1995-01-01

    Many routine methods for monitoring of trace amounts of atmospheric organic pollutants consist of several steps. Typical steps are: (1) collection of the air sample; (2) trapping of organics from the sample; (3) extraction of the trapped organics; and (4) identification of the organics in the extract by GC (gas chromatography), HPLC (High Performance Liquid Chromatography), or MS (Mass Spectrometry). These methods are often cumbersome and time consuming. A simple and fast method for monitoring atmospheric organics using an IMS (Ion Mobility Spectrometer) is proposed. This method has a short sampling time and does not require extraction of the organics since the sample is placed directly in the IMS. The purpose of this study was to determine the responses in the IMS to organic 'priority pollutants'. Priority pollutants including representative polycyclic aromatic hydrocarbons (PAHs), phthalates, phenols, chlorinated pesticides, and polychlorinated biphenyls (PCB's) were analyzed in both the positive and negative detection mode at ambient atmospheric pressure. Detection mode and amount detected are presented.

  1. Water Pollution, Causes and Cures.

    ERIC Educational Resources Information Center

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of water pollution and water pollution treatment systems is accompanied by graphic illustrations. Sources of pollution such as lake bottom vegetation, synthetic organic pollutants, heat pollution, radioactive substance pollution, and human and industrial waste products are discussed. Several types of water purification…

  2. Ex-Situ Remediation Technologies for Environmental Pollutants: A Critical Perspective.

    PubMed

    Kuppusamy, Saranya; Palanisami, Thavamani; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2016-01-01

    Pollution and the global health impacts from toxic environmental pollutants are presently of great concern. At present, more than 100 million people are at risk from exposure to a plethora of toxic organic and inorganic pollutants. This review is an exploration of the ex-situ technologies for cleaning-up the contaminated soil, groundwater and air emissions, highlighting their principles, advantages, deficiencies and the knowledge gaps. Challenges and strategies for removing different types of contaminants, mainly heavy metals and priority organic pollutants, are also described.

  3. Effects of multi-walled carbon nanotubes on mineralization and mobility of nonylphenol and sodium dodecyl sulfate in agricultural soils

    NASA Astrophysics Data System (ADS)

    Lillotte, Julia; Marschner, Bernd; Stumpe, Britta

    2014-05-01

    Nanotechnology is one of the major scientific research fields in this decade. One of the most wide-spread nanomaterials are carbon based nanoparticles (CNPs) which are increasingly be used in industry. Several studies shows that CNPs are interacting with other chemical compounds and organic pollutants in the environment. It is assumed that the interactions between CNPs and organic pollutants are affected by solution and aggregate behavior. Based on the knowledge of the behavior of CNPs and organic pollutants in aquatic systems the interactions of CNPs and organic pollutants in agricultural soils have to be studied. As organic pollutants two environmental substances, nonylphenol (NP) and sodium dodecyl sulfate (SDS) were selected as model substances. They occur frequently in aqueous systems and also show different solubility behavior. As CNP representatives, two different multi-walled carbon nanotubes (MWNT) were selected. They differed either in length or outer diameter. Conclusions therefrom are to be closed the influence of length and diameter of the sorption capacity of different organic pollutants. In addition, two agricultural soils (sandy and silty soil) and one forest soil (sandy soil) were chosen. Mineralization and sorption experiments were conducted to provide information about the degradation of organic pollutants in presence of multi-walled carbon nanotubes in soils. To analyze the CNPs mineralization potential, peroxidase activity was measured. Further extraction experiments were conducted to detect the extractable part of organic pollutants. The results show that the surface area of the MWNT has a significant impact on the sorption behav-ior of NP and SDS in soils. The sorption of NP and SDS is much higher than without MWNT. However, the properties of the organic pollutants (different water solubility and hydrophobicity) are equally important and should be noted. The degradation of both pollutants is influenced by MWNT. Due to the strong sorption of NP and SDS on the MWNT, the degradation of these pollutants in soils, is slower than without MWNT. The peroxidase activity did not contribute to NP and SDS degradation. But the peroxidase activity in agricultural soils is higher than in forest soils. The extractable fraction of NP and SDS is very low and amounts to a maximum of 2 %. Due to the lower degradation of NP and SDS in the presence of MWNT a longer retention of the substances in the soils and potential toxic effects for humans and animals, as a result of plant uptake may be taken into account.

  4. 40 CFR 63.2495 - How do I comply with the pollution prevention standard?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing Alternative Means of Compliance § 63.2495 How do I comply with the pollution... volatile organic compounds (VOC), you must demonstrate an equivalent reduction in the production-indexed...

  5. 40 CFR 63.2495 - How do I comply with the pollution prevention standard?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing Alternative Means of Compliance § 63.2495 How do I comply with the pollution... volatile organic compounds (VOC), you must demonstrate an equivalent reduction in the production-indexed...

  6. Discriminatory Air Pollution

    ERIC Educational Resources Information Center

    McCaull, Julian

    1976-01-01

    Described are the patterns of air pollution in certain large urban areas. Persons in poverty, in occupations below the management or professional level, in low-rent districts, and in black population are most heavily exposed to air pollution. Pollution paradoxically is largely produced by high energy consuming middle-and upper-class households.…

  7. Taxonomic and functional diversity of a coastal planktonic bacterial community in a river-influenced marine area.

    PubMed

    Thiele, Stefan; Richter, Michael; Balestra, Cecilia; Glöckner, Frank Oliver; Casotti, Raffaella

    2017-04-01

    The Gulf of Naples is a dynamical area with intense exchanges between offshore oligotrophic and coastal eutrophic waters with frequent freshwater inputs. The Sarno River, one of the most polluted rivers in Europe, strongly contributes to the pollution of the area, discharging high amounts of heavy metals and organic wastes from heavily cultivated and industrial areas. This paper reports on the diversity and community structure of the marine residential Bacteria and Archaea of the Gulf of Naples in an area close to the river Sarno plume and investigates their small-scale taxonomic diversity and expression patterns as a proxy of potential metabolic activity using metagenomics and metatranscriptomics. Bacteria and Archaea were mainly represented by marine clades, with only minor contributors from freshwater ones. The community was dominated by Alpha- and Gammaproteobacteria, of which Rhodospirillales, Pelagibacteriales, and Oceanospirilalles were most represented. However, Alteromonadales and Rhodobacterales were the most active, despite their relative lower abundance, suggesting that they are important for overall ecosystem functioning and nutrient cycling. Nitrification and a reversed form of dissimilatory sulfate reduction were the major metabolic processes found in the metatrascriptomes and were mainly associated to Nitrosopumilales and Pelagibacter, respectively. No clear indication of transcripts related to stress induced by heavy metals or organic pollutants was found. In general, despite the high loads of pollutants discharged continuously by the Sarno River, the microbial community did not show marks of stress-induced changes neither structural nor functional, thus suggesting that this river has little or no effect on the planktonic bacterial community of the Gulf of Naples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Morbidity Forecast in Cities: A Study of Urban Air Pollution and Respiratory Diseases in the Metropolitan Region of Curitiba, Brazil.

    PubMed

    de Souza, Fabio Teodoro

    2018-05-29

    In the last two decades, urbanization has intensified, and in Brazil, about 90% of the population now lives in urban centers. Atmospheric patterns have changed owing to the high growth rate of cities, with negative consequences for public health. This research aims to elucidate the spatial patterns of air pollution and respiratory diseases. A data-based model to aid local urban management to improve public health policies concerning air pollution is described. An example of data preparation and multivariate analysis with inventories from different cities in the Metropolitan Region of Curitiba was studied. A predictive model with outstanding accuracy in prediction of outbreaks was developed. Preliminary results describe relevant relations among morbidity scales, air pollution levels, and atmospheric seasonal patterns. The knowledge gathered here contributes to the debate on social issues and public policies. Moreover, the results of this smaller scale study can be extended to megacities.

  9. USE OF FLUORESCENT POLYCYLIC AROMATIC HYDROCARBON PROBES IN STUDYING THE IMPACT OF COLLOIDS ON POLLUTANT TRANSPORT IN GROUNDWATER

    EPA Science Inventory

    A fluorescence-quenching method was developed to assess the hydrophobic organic pollutant binding potential of organic colloids (OC) in unaltered natural waters. This method allows (1) direct assessment of the importance of OC-enhanced pollutant transport for environmental sam- p...

  10. Assessing environmental impact from gas and oil exploration in the SW Barents Sea using benthic foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Dijkstra, N.; Junttila, J.; Husum, K.; Carroll, J.; Hald, M.

    2012-04-01

    During the last decades petroleum industry and shipping activities have increased in the SW Barents Sea. Oil exploration wells were drilled in the 1980s with production starting in 2007. These activities are projected to expand in the coming years. As part of the Northern Environmental Waste Management (EWMA) project, a competence cluster for petroleum industry related waste handling, we investigate the impacts of enhanced anthropogenic activities on benthic foraminiferal assemblages in the SW Barents Sea. Sediment cores (0-20 cm) from sites in proximity to two oil- and gas fields are under investigation. These sediment cores, dated with the 210Pb method, represent the last 90 to 150 years. Both dead and living benthic foraminifera (100 µm-1 mm) were counted to elucidate differences in foraminiferal assemblages between pre-impact and recent conditions. In addition, the heavy metal concentrations, persistent organic pollutant (POP) concentrations, grain size and total organic content (TOC) of the sediment cores have been analyzed. Pollution levels of the surface sediments (0-1 cm) are of background to good level (level I-II) according to the definitions of the Water Framework Directorate (WFD). Patterns in living benthic foraminiferal assemblages identified in the sea floor surface sediments, are the result of natural environmental changes such as depth, water mass and sediment composition. Further downcore (1-20 cm) pollution levels are in general of background environmental status (WFD level I). However, at some depth intervals, especially in sediment cores from the near proximity of the oil- and gas- fields, pollution levels are slightly enhanced (WFD level II). Further work will include statistical comparison of dead and living foraminiferal assemblages with sediment pollution levels, sediment properties, and oceanographic conditions. This research contributes to the development of foraminifera as a useful bio-monitoring technique for the Arctic region as industrial activities increase in the coming years.

  11. Global impacts of the meat trade on in-stream organic river pollution: the importance of spatially distributed hydrological conditions

    NASA Astrophysics Data System (ADS)

    Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick

    2018-01-01

    In many regions of the world, intensive livestock farming has become a significant source of organic river pollution. As the international meat trade is growing rapidly, the environmental impacts of meat production within one country can occur either domestically or internationally. The goal of this paper is to quantify the impacts of the international meat trade on global organic river pollution at multiple scales (national, regional and gridded). Using the biological oxygen demand (BOD) as an overall indicator of organic river pollution, we compute the spatially distributed organic pollution in global river networks with and without a meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis reveals a reduction in the livestock population and production of organic pollutants at the global scale as a result of the international meat trade. However, the actual environmental impact of trade, as quantified by in-stream BOD concentrations, is negative; i.e. we find a slight increase in polluted river segments. More importantly, our results show large spatial variability in local (grid-scale) impacts that do not correlate with local changes in BOD loading, which illustrates: (1) the significance of accounting for the spatial heterogeneity of hydrological processes along river networks, and (2) the limited value of looking at country-level or global averages when estimating the actual impacts of trade on the environment.

  12. PROBABILISTIC MODELING FOR ADVANCED HUMAN EXPOSURE ASSESSMENT

    EPA Science Inventory

    Human exposures to environmental pollutants widely vary depending on the emission patterns that result in microenvironmental pollutant concentrations, as well as behavioral factors that determine the extent of an individual's contact with these pollutants. Probabilistic human exp...

  13. Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre.

    PubMed

    Brach, Laurent; Deixonne, Patrick; Bernard, Marie-France; Durand, Edmée; Desjean, Marie-Christine; Perez, Emile; van Sebille, Erik; Ter Halle, Alexandra

    2018-01-01

    There are fundamental gaps in our understanding of the fates of microplastics in the ocean, which must be overcome if the severity of this pollution is to be fully assessed. The predominant pattern is high accumulation of microplastic in subtropical gyres. Using in situ measurements from the 7th Continent expedition in the North Atlantic subtropical gyre, data from satellite observations and models, we show how microplastic concentrations were up to 9.4 times higher in an anticyclonic eddy explored, compared to the cyclonic eddy. Although our sample size is small, this is the first suggestive evidence that mesoscale eddies might trap, concentrate and potentially transport microplastics. As eddies are known to congregate nutrients and organisms, this phenomenon should be considered with regards to the potential impact of plastic pollution on the ecosystem in the open ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, F.

    A method for containment and deflection of inorganic and organic aqueous surface pollutants, such as an oil slick, flotsam, debris, and jellyfish, and an apparatus for the operation of such method are described. This method comprises the generation of an air or bubble barrier which permits the passage of surface vessels and large fish, but halts the movement of floating surface pollutants by the creation of a flexible continuous band of surface turbulence. The system in one specific application is designed to protect harbor and beach areas and fishing grounds from contamination with oil from oil tankers and also actsmore » as an air wall to keep harmful jellyfish from beach areas. The system can also be employed to recover oil from sunken or leaking tankers at sea by containment and collection of the oil released within the circumference of the bubble barrier wall created in a geometric pattern about the location of the stricken vessel. (10 claims)« less

  15. Urban snow indicates pollution originating from road traffic.

    PubMed

    Kuoppamäki, Kirsi; Setälä, Heikki; Rantalainen, Anna-Lea; Kotze, D Johan

    2014-12-01

    Traffic is a major source of pollutants in cities. In this well-replicated study we analysed a broad array of contaminants in snowpacks along roads of different traffic intensities. The majority of pollutants showed a similar pattern with respect to traffic intensity: pH and conductivity as well as concentrations of PAHs, total suspended solids, phosphorus and most heavy metals were higher next to high intensity roads compared to low intensity roads. These pollutant levels also decreased considerably up to 5 m distance from the roads. Furthermore, apart from nitrogen, these variables increased in concentration from control sites in urban forest patches to road bank sites next to roads of low, intermediate and high traffic intensities. The deposition pattern of various traffic-derived pollutants--whether gaseous or particle-bound--was the same. Such information can be useful for the purposes of managing pollutants in urban areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Linking sewage pollution and water quality to spatial patterns of Porites lobata growth anomalies in Puako, Hawaii.

    PubMed

    Yoshioka, Reyn M; Kim, Catherine J S; Tracy, Allison M; Most, Rebecca; Harvell, C Drew

    2016-03-15

    Sewage pollution threatens the health of coastal populations and ecosystems, including coral reefs. We investigated spatial patterns of sewage pollution in Puako, Hawaii using enterococci concentrations and δ(15)N Ulva fasciata macroalgal bioassays to assess relationships with the coral disease Porites lobata growth anomalies (PGAs). PGA severity and enterococci concentrations were high, spatially variable, and positively related. Bioassay algal δ(15)N showed low sewage pollution at the reef edge while high values of resident algae indicated sewage pollution nearshore. Neither δ(15)N metric predicted PGA measures, though bioassay δ(15)N was negatively related to coral cover. Furthermore, PGA prevalence was much higher than previously recorded in Hawaii and the greater Indo-Pacific, highlighting Puako as an area of concern. Although further work is needed to resolve the relationship between sewage pollution and coral cover and disease, these results implicate sewage pollution as a contributor to diminished reef health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Strengthen the collaboration between the River Basin Management Organization of China and International Environmental Specimen Bank Group.

    PubMed

    Tan, Lingzhi; Liu, Hui; Shu, Jinxiang; Xia, Fan

    2015-02-01

    Several types of emerging organic contaminants were investigated in many recent researches, such as persistent toxic substance (PTS), persistent organic pollutants (POPs), endocrine disrupters (EDs), and volatile organic compounds (VOCs). But the Chinese country standard detection methods of emerging organic pollutants were not developed with the dramatic increasing of the organic substances production. Hence, it is necessary to obtain the latest informations about the long-term storage of representative environmental specimens, which could provide scientific basis for environmental management and environmental decision-making of the water resources protection and management organization. As the significant water resource conservation organization, the Water Environment Monitoring Center of Yangtze River Basin is experienced in water environmental monitoring and records many useful water resources and environment informations. It is also our responsibility to monitor all the pollutants in water environment of the Yangtze River valley, especially the emerging organic contaminants. Meanwhile, the International Environmental Specimen Bank (IESB) accumulates lots environmental organic pollution specimens and plays a significant role in environmental monitoring. Thus, the collaboration between the two parties will be greatly helpful for each further researches and monitoring work of organic contaminants in Yangtze River Basin.

  18. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    NASA Astrophysics Data System (ADS)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  19. Variability of Surface pollutants and aerosol concentration over Abu Dhabi, UAE - sources, transport and current levels

    NASA Astrophysics Data System (ADS)

    Phanikumar, Devulapalli V.; Basha, Ghouse; Ouarda, Taha B. M. J.

    2015-04-01

    In the view of recent economic, industrial, and rapid development, Abu Dhabi (24.4oN; 54.4oE; 27m msl) has become one of the most populated regions in the world despite of extreme heat, frequent dust storms, and with distinctive topography. The major sources of air pollution are from the dust and sand storms, greenhouse gas emissions, and to some extent from industrial pollution. In order to realize the accurate and comprehensive understanding of air quality and plausible sources over this region, we have made a detailed analysis of three years simultaneous measurements during 2011-13 of pollutants such as O3, SO2, NO2, CO, and PM10 concentrations. Diurnal variation of meteorological parameters such as temperature and wind speed/relative humidity clearly shows daytime maximum/minimum in summer followed by pre-monsoon, post-monsoon and winter. The prevailing winds over this region are mostly from northwesterly direction (Shamal wind). Diurnal wind pattern showed a clear contrast with the majority of the wind pattern during nighttime and early morning is from the westerly/northwesterly and daytime is from southwesterly/southeasterly directions. The diurnal pattern of O3 shows minimum during 08 LT and increases thereafter reaching maximum at 17 LT and decreases during nighttime. However, the diurnal pattern of SO2 and NO2 show a peak at ~ 08 LT and dip at ~ 14 LT during all the seasons with some variability in each season. On the other hand, the diurnal pattern of CO shows a peculiar picture of elevated levels during daytime peaking at ~ 10 LT (prominent in summer and post-monsoon) followed by a sharp decrease and minimum is ~14 LT. PM10 concentration has an early morning peak at ~ 02 LT and then decreases to a minimum value at ~11 LT and again increases in the afternoon hours (maximum at ~17 LT) depicting a forenoon-afternoon asymmetry. Monthly variation of PM10 shows maximum in pre-monsoon season and minimum in winter. Our observations show the diurnal pattern of pollutants are in contrast with the diurnal pattern of wind speed as evident from the previous observations. Wind rose diagram of pollutants reveal that the dominant source directions are scattered from northwesterly to southwesterly. Our results (2011-13) are compared with earlier observations from the same region (2007-08) and no alarming differences were observed in the pollutant levels. Our observations are discussed in the light of current understanding of pollutants sources over this region.

  20. Identification of coliform genera recovered from water using different technologies.

    PubMed

    Fricker, C R; Eldred, B J

    2009-12-01

    Methods for the detection of coliforms in water have changed significantly in recent years with procedures incorporating substrates for the detection of beta-d-galactosidase becoming more widely used. This study was undertaken to determine the range of coliform genera detected with methods that rely on lactose fermentation and compare them to those recovered using methods based upon beta-d-galactosidase. Coliform isolates were recovered from sewage-polluted water using m-endo, membrane lauryl sulfate broth, tergitol TTC agar, Colilert-18, ChromoCult and ColiScan for primary isolation. Organisms were grouped according to whether they had been isolated based upon lactose fermentation or beta-d-galactosidase production. A wide range of coliform genera were detected using both types of methods. There was considerable overlap between the two groups, and whilst differences were seen between the genera isolated with the two method types, no clear pattern emerged. Substantial numbers of 'new' coliforms (e.g. Raoutella spp.) were recovered using both types of methods. The results presented here confirm that both methods based on lactose fermentation or detection of beta-d-galactosidase activity recover a range of coliform organisms. Any suggestion that only methods which are based upon fermentation of lactose recover organisms of public health or regulatory significance cannot be substantiated. Furthermore, the higher recovery of coliform organisms from sewage-polluted water using methods utilizing beta-d-galactosidase-based methods does not appear to be because of the recovery of substantially more 'new' coliforms.

  1. Source and path identification of metals pollution in a mining area by PMF and rare earth element patterns in road dust.

    PubMed

    Tian, Shuhan; Liang, Tao; Li, Kexin; Wang, Lingqing

    2018-08-15

    To better assess pollution and offer efficient protection for local residents, it is necessary to both conduct an exhaustive investigation into pollution levels and quantify its contributing sources and paths. As it is the biggest light rare earth element (REE) reserve in the world, Bayan Obo deposit releases large amounts of heavy metals into the surrounding environment. In this study, road dust from zones located at different distances to the mining area was collected and sieved using seven sizes. This allowed for subsequent analysis of size-dependent influences of mining activities. A receptor model was used to quantitatively assess mine contributions. REE distribution patterns and other REE parameters were compared with those in airborne particulates and the surrounding soil to analyze pollution paths. Results showed that 27 metals were rated as moderately to extremely polluted (2

  2. The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke.

    PubMed

    Tong, Kun; Lin, Aiguo; Ji, Guodong; Wang, Dong; Wang, Xinghui

    2016-05-05

    The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation. Copyright © 2016. Published by Elsevier B.V.

  3. A simulation study to determine the attenuation and bias in health risk estimates due to exposure measurement error in bi-pollutant models

    EPA Science Inventory

    To understand the combined health effects of exposure to ambient air pollutant mixtures, it is becoming more common to include multiple pollutants in epidemiologic models. However, the complex spatial and temporal pattern of ambient pollutant concentrations and related exposures ...

  4. Climate change, extreme weather events, air pollution and respiratory health in Europe.

    PubMed

    De Sario, M; Katsouyanni, K; Michelozzi, P

    2013-09-01

    Due to climate change and other factors, air pollution patterns are changing in several urbanised areas of the world, with a significant effect on respiratory health both independently and synergistically with weather conditions; climate scenarios show Europe as one of the most vulnerable regions. European studies on heatwave episodes have consistently shown a synergistic effect of air pollution and high temperatures, while the potential weather-air pollution interaction during wildfires and dust storms is unknown. Allergen patterns are also changing in response to climate change, and air pollution can modify the allergenic potential of pollens, especially in the presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known; the health consequences vary from decreases in lung function to allergic diseases, new onset of diseases, exacerbation of chronic respiratory diseases, and premature death. These multidimensional climate-pollution-allergen effects need to be taken into account in estimating both climate and air pollution-related respiratory effects, in order to set up adequate policy and public health actions to face both the current and future climate and pollution challenges.

  5. Diffuse pollution by persistent organic pollutants as measured in plastic pellets sampled from various beaches in Greece.

    PubMed

    Karapanagioti, H K; Endo, S; Ogata, Y; Takada, H

    2011-02-01

    Plastic pellets found stranded on beaches are hydrophobic organic materials and thus, they are a favourable medium for persistent organic pollutants to absorb to. In the present study, plastic pellets are used to determine the diffuse pollution of selected Greek beaches. Samples of pellets were taken from these beaches and were analyzed for PCBs, DDTs, HCHs, and PAHs. The observed differences among pellets from various sampling sites are related to the pollution occurring at each site. Plastic pellets collected in Saronikos Gulf beaches demonstrate much higher pollutant loading than the ones collected in a remote island or close to an agricultural area. Based on data collected in this study and the International Pellet Watch program, pollution in Saronikos Gulf, Greece, is comparable to other heavily industrialized places of the world. The present study demonstrates the potential of pellet watch to be utilized as a detailed-scale monitoring tool within a single country. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Liu, Huan; Li, Zhanqing; Zhang, Wanchun; Zhai, Panmao

    2017-02-01

    Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining numerical simulations, measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 µm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925 hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. The horizontal transport of pollutants induced by the synoptic forcings may be the most important factor affecting the air quality of Beijing in summer. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The high CLD reduced the solar radiation reaching the surface, and suppressed the thermal turbulence, leading to lower BLH. Besides, the numerical sensitive experiments show that cold advection induced by the large-scale synoptic forcing may have cooled the PBL, leading to an increase in near-surface stability and a decrease in the BLH in the afternoon. Moreover, when warm advection appeared simultaneously above the top level of the PBL, the thermal inversion layer capping the PBL may have been strengthened, resulting in the further suppression of PBL and thus the deterioration of aerosol pollution levels. This study has important implications for understanding the crucial roles that meteorological factors (at both synoptic and local scales) play in modulating and forecasting aerosol pollution in Beijing and its surrounding area.

  7. Method for detecting pollutants. [through chemical reactions and heat treatment

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Richards, R. R.; Conway, E. J. (Inventor)

    1976-01-01

    A method is described for detecting and measuring trace amounts of pollutants of the group consisting of ozone, nitrogen dioxide, and carbon monoxide in a gaseous environment. A sample organic solid material that will undergo a chemical reaction with the test pollutant is exposed to the test environment and thereafter, when heated in the temperature range of 100-200 C., undergoes chemiluminescence that is measured and recorded as a function of concentration of the test pollutant. The chemiluminescence of the solid organic material is specific to the pollutant being tested.

  8. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation.

    PubMed

    van den Dungen, Myrthe W; Murk, Albertinka J; Kok, Dieuwertje E; Steegenga, Wilma T

    2017-04-01

    Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what extent DNA methylation can be related to gene transcription. Adipocyte differentiation was induced in two human cell models with continuous exposure to different POPs throughout differentiation. From the seven tested POPs, perfluorooctanesulfonic acid (PFOS) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) decreased lipid accumulation, while tributyltin (TBT) increased lipid accumulation. In human mesenchymal stem cells (hMSCs), TCDD and TBT induced opposite gene expression profiles, whereas after PFOS exposure gene expression remained relatively stable. Genome-wide DNA methylation analysis showed that all three POPs affected DNA methylation patterns in adipogenic and other genes, possibly related to the phenotypic outcome, but without concomitant gene expression changes. Differential methylation was predominantly detected in intergenic regions, where the biological relevance of alterations in DNA methylation is unclear. This study demonstrates that POPs, at environmentally relevant levels, are able to induce differential DNA methylation in human differentiating adipocytes. Copyright © 2017 Wageningen University. Published by Elsevier Ltd.. All rights reserved.

  9. The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants.

    PubMed

    Kallenborn, Roland; Halsall, Crispin; Dellong, Maud; Carlsson, Pernilla

    2012-11-01

    The effect of climate change on the global distribution and fate of persistent organic pollutants (POPs) is of growing interest to both scientists and policy makers alike. The impact of warmer temperatures and the resulting changes to earth system processes on chemical fate are, however, unclear, although there are a growing number of studies that are beginning to examine these impacts and changes in a quantitative way. In this review, we examine broad areas where changes are occurring or are likely to occur with regard to the environmental cycling and fate of chemical contaminants. For this purpose we are examining scientific information from long-term monitoring data with particular emphasis on the Arctic, to show apparent changes in chemical patterns and behaviour. In addition, we examine evidence of changing chemical processes for a number of environmental compartments and indirect effects of climate change on contaminant emissions and behaviour. We also recommend areas of research to address knowledge gaps. In general, our findings indicate that the indirect consequences of climate change (i.e. shifts in agriculture, resource exploitation opportunities, etc.) will have a more marked impact on contaminants distribution and fate than direct climate change.

  10. Bioaccumulation of mercury and polychlorinated dibenzo-p-dioxins and dibenzofurans in salty water organisms.

    PubMed

    Liao, Pei-Yu; Liu, Chen-Wuing; Liu, Wen-Yao

    2016-01-01

    Mercury and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) accumulate in organisms through food webs and exert potentially toxic effects on aquatic organisms and humans. This study examined the levels of mercury and PCDD/Fs in organisms and sediment samples collected from a saltwater pond at the An-Shun site, a chloralkali factory that shut down in Tainan City, Taiwan. It was also a pentachlorophenol production plant. After the factories were shut down in the 1980s, mercury and PCDD/Fs contamination remained, posing severe health hazards. The correlation between PCDD/Fs congener accumulation patterns in distinct fish organs and the sediment was evaluated. Mercury and PCDD/Fs levels in all the fish samples exceeded food safety limits, and the concentrations of mercury and PCDD/Fs in each species were closely correlated (n = 12, Spearman's rank correlation [R] = 0.811, p < 0.01). The mercury concentrations were positively but non-significantly correlated with the weight (n = 11, R = 0.741, p < 0.01) and length (n = 11, R = 0.618, p < 0.05) of the species. The fish likely accumulated the contaminants through ingestion of other organisms or the sediment. However, after the pollutants entered a fish, they exhibited distinct accumulation patterns because of their differing chemical properties. Specifically, the mercury concentration was correlated with organism weight and length, whereas the PCDD/Fs concentration was associated with organ lipid content. The study results are valuable for assessing the health risks associated with ingesting mercury- and PCFF/F-contaminated seafood from the study site.

  11. Radial metal concentration profiles in trees growing on highly contaminated soils.

    PubMed

    Superville, Pierre-Jean; de Winter, Niels; Phung, Anh Tuan; Proix, Nicolas; Baeyens, Willy; Gao, Yue

    2017-04-01

    The soil around Metaleurop, a big smelter, is heavily contaminated by Zn, Pb, Cd and Cu. In order to compare the impact of different soil amendments on the metal availability to trees, the polluted soil section was divided in a reference parcel and two others with either sulfo-calcic or silico-aluminous ash amendments. Five different tree species were planted on the parcels and the uptake of heavy metals in these trees was studied. Total and labile metal fractions were assessed in each of the 3 parcels. The mobility and assimilation of the metals was highest in the non-amended, reference soil parcel which had the lowest pH, organic matter and carbonate content. In all soils, pH decreased while organic matter content and mobility of the metals increased over time. Highest bulk concentrations of trace metals were found in white willow trees (Salix alba L.). Laser ablation-ICPMS was used to study changes in metal accumulation over a period of 10 years after planting the trees. The radial metal profiles in the trunk core samples varied between elements and tree species, however, in all willow trees the radial Cd and Zn profiles were significantly correlated. Radial pollutant concentration patterns are discussed in terms of seasonal effects, health status, tree species and metal mobility in the soil. For Cd and Zn, the profiles were influenced by their mobility in the soils. In general, periodical patterns were observed for Pb. Cu concentration profiles were decreasing over time, with the strongest decrease in the initial growth period. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Modulation in Persistent Organic Pollutant Concentration and Profile by Prey Availability and Reproductive Status in Southern Resident Killer Whale Scat Samples.

    PubMed

    Lundin, Jessica I; Ylitalo, Gina M; Booth, Rebecca K; Anulacion, Bernadita; Hempelmann, Jennifer A; Parsons, Kim M; Giles, Deborah A; Seely, Elizabeth A; Hanson, M Bradley; Emmons, Candice K; Wasser, Samuel K

    2016-06-21

    Persistent organic pollutants (POPs), specifically PCBs, PBDEs, and DDTs, in the marine environment are well documented, however accumulation and mobilization patterns at the top of the food-web are poorly understood. This study broadens the understanding of POPs in the endangered Southern Resident killer whale population by addressing modulation by prey availability and reproductive status, along with endocrine disrupting effects. A total of 140 killer whale scat samples collected from 54 unique whales across a 4 year sampling period (2010-2013) were analyzed for concentrations of POPs. Toxicant measures were linked to pod, age, and birth order in genotyped individuals, prey abundance using open-source test fishery data, and pregnancy status based on hormone indices from the same sample. Toxicant concentrations were highest and had the greatest potential for toxicity when prey abundance was the lowest. In addition, these toxicants were likely from endogenous lipid stores. Bioaccumulation of POPs increased with age, with the exception of presumed nulliparous females. The exceptional pattern may be explained by females experiencing unobserved neonatal loss. Transfer of POPs through mobilization of endogenous lipid stores during lactation was highest for first-borns with diminished transfer to subsequent calves. Contrary to expectation, POP concentrations did not demonstrate an associated disruption of thyroid hormone, although this association may have been masked by impacts of prey abundance on thyroid hormone concentrations. The noninvasive method for measuring POP concentrations in killer whales through scat employed in this study may improve toxicant monitoring in the marine environment and promote conservation efforts.

  13. ANALYTICAL METHODS DEVELOPED FOR THE CHILDREN'S TOTAL EXPOSURES TO PERSISTENT PESTICIDES AND OTHER PERSISTENT ORGANIC POLLUTANTS (CTEPP) STUDY

    EPA Science Inventory

    The Children's Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP) study was designed by the U.S. EPA to collect data on young children's exposures to pesticides and other pollutants in their everyday environments in support of the Food Quality...

  14. BEHAVIOR AND ASSIMILATION OF ORGANIC AND INORGANIC PRIORITY POLLUTANTS CODISPOSED WITH MUNICIPAL REFUSE. A Project Summary. (EPA/SR-93/137)

    EPA Science Inventory

    Research was undertaken to demonstrate and evaluate the capacity of landfill systems to assimilate and attenuate inorganic and organic priority pollutants loadings codisposed with municipal refuse and to determine the fate and effect of the codisposed pollutants as landfill stabi...

  15. Marine molluscs in environmental monitoring. III. Trace metals and organic pollutants in animal tissue and sediments

    NASA Astrophysics Data System (ADS)

    Feldstein, Tamar; Kashman, Yoel; Abelson, Avigdor; Fishelson, Lev; Mokady, Ofer; Bresler, Vladimir; Erel, Yigal

    2003-10-01

    Concentrations of trace elements and organic pollutants were determined in marine sediments and molluscs from the Mediterranean and Red Sea coasts of Israel. Two bivalve species (Donax trunculus, Pteria aegyptia), two gastropod species (Patella caerulea, Cellana rota) and sediments were sampled at polluted and relatively clean, reference, sites. Along the Mediterranean coast of Israel, sediments and molluscs from Haifa Bay stations were enriched with both organic and trace element contaminants. In the Red Sea, differences between the polluted and reference sites were less pronounced. Bio-concentration factors indicate a significant concentration of Zn, As, Cd, Sn and Pb in animal tissue relative to the concentrations of these elements in the sediments. In contrast, Ce, La and U were not concentrated in molluscs. The trace element results indicate a saturation of the detoxification mechanisms in molluscs from polluted sites. The concentrations of organic pollutants at the same sites are at the lower range of values recorded in other studies. However, synergistic effects between these compounds and between them and metals can lead to acute toxicity.

  16. In Situ Miniaturised Solid Phase Extraction (m-SPE) for Organic Pollutants in Seawater Samples

    PubMed Central

    Abaroa-Pérez, B.; Sánchez-Almeida, G.; Hernández-Brito, J. J.

    2018-01-01

    Solid phase extraction (SPE) is a consolidated technique for determining pollutants in seawater samples. The current tendency is to miniaturise systems that extract and determine pollutants in the environment, reducing the use of organic solvents, while maintaining the quality in the extraction and preconcentration. On the other hand, there is a need to develop new extraction systems that can be fitted to in situ continual monitoring buoys, especially for the marine environment. This work has developed a first model of a low-pressure micro-SPE (m-SPE) for persistent organic pollutants (POPs) that can be simply applied to in situ monitoring in the marine environment. This system reduces the volumes of sample and solvents required in the laboratory in comparison with conventional SPE. In the future, it could be used in automated or robotic systems in marine technologies such as marine gliders and oceanographic buoys. This system has been optimised and validated to determine polycyclic aromatic hydrocarbons (PAH) in seawater samples, but it could also be applied to other kinds of persistent organic pollutants (POPs) and emerging pollutants. PMID:29805837

  17. 40 CFR 63.2430 - What is the purpose of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical... national emission standards for hazardous air pollutants (NESHAP) for miscellaneous organic chemical...

  18. 40 CFR 63.2430 - What is the purpose of this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical... national emission standards for hazardous air pollutants (NESHAP) for miscellaneous organic chemical...

  19. The Cardiopulmonary Effects of Ambient Air Pollution and Mechanistic Pathways: A Comparative Hierarchical Pathway Analysis

    PubMed Central

    Thomas, Duncan C.; Zhang, Junfeng; Kipen, Howard M.; Rich, David Q.; Zhu, Tong; Huang, Wei; Hu, Min; Wang, Guangfa; Wang, Yuedan; Zhu, Ping; Lu, Shou-En; Ohman-Strickland, Pamela; Diehl, Scott R.; Eckel, Sandrah P.

    2014-01-01

    Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001) and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005). These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours) and the hemostasis pathway responds gradually over a 2–3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system. PMID:25502951

  20. Toxicity of natural mixtures of organic pollutants in temperate and polar marine phytoplankton.

    PubMed

    Echeveste, Pedro; Galbán-Malagón, Cristóbal; Dachs, Jordi; Berrojalbiz, Naiara; Agustí, Susana

    2016-11-15

    Semivolatile and persistent organic pollutants (POPs) undergo atmospheric transport before being deposited to the oceans, where they partition to phytoplankton organic matter. The goal of this study was to determine the toxicity of naturally occurring complex mixtures of organic pollutants to temperate and polar phytoplankton communities from the Mediterranean Sea, the North East (NE) Atlantic, and Southern Oceans. The cell abundance of the different phytoplankton groups, chlorophyll a concentrations, viability of the cells, and growth and decay constants were monitored in response to addition of a range of concentrations of mixtures of organic pollutants obtained from seawater extracts. Almost all of the phytoplankton groups were significantly affected by the complex mixtures of non-polar and polar organic pollutants, with toxicity being greater for these mixtures than for single POPs or simple POP mixtures. Cocktails' toxicity arose at concentrations as low as tenfold the field oceanic levels, probably due to a higher chemical activity of the mixture than of simple POPs mixtures. Overall, smaller cells were the most affected, although Mediterranean picophytoplankton was significantly more tolerant to non-polar POPs than picophytoplankton from the Atlantic Ocean or the Bellingshausen Sea microphytoplankton. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Determining organic pollutants in automotive industry sludge.

    PubMed

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue.

  2. 40 CFR 63.2430 - What is the purpose of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing What This Subpart... standards for hazardous air pollutants (NESHAP) for miscellaneous organic chemical manufacturing. This...

  3. 40 CFR 63.2430 - What is the purpose of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing What... emission standards for hazardous air pollutants (NESHAP) for miscellaneous organic chemical manufacturing...

  4. 40 CFR 63.2430 - What is the purpose of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing What This Subpart... standards for hazardous air pollutants (NESHAP) for miscellaneous organic chemical manufacturing. This...

  5. Study of atmospheric diffusion using LANDSAT

    NASA Technical Reports Server (NTRS)

    Torsani, J. A.; Viswanadham, Y.

    1982-01-01

    The parameters of diffusion patterns of atmospheric pollutants under different conditions were investigated for use in the Gaussian model for calculation of pollution concentration. Value for the divergence pattern of concentration distribution along the Y axis were determined using LANDSAT images. Multispectral scanner images of a point source plume having known characteristics, wind and temperature data, and cloud cover and solar elevation data provided by LANDSAT, were analyzed using the 1-100 system for image analysis. These measured values are compared with pollution transport as predicted by the Pasquill-Gifford, Juelich, and Hoegstroem atmospheric models.

  6. NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...

  7. [Impacts of landscape patterns on heavy metal contamination of agricultural top soils in the Pearl River Delta, South China].

    PubMed

    Li, Cheng; Li, Fang-bai; Wu, Zhi-feng; Cheng, Jiong

    2015-04-01

    Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P < 0.05). On the contrary, the proportion, mean patch area and aggregation degree of forest land negatively correlated with soil Pb and Ni levels (P < 0.05); and 4) the closer to the industry land were the soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal pollution control and remediation, especially for agricultural soils in the PRD.

  8. Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment.

    PubMed

    Zhu, Xiuping; Logan, Bruce E

    2013-05-15

    Electro-Fenton reactions can be very effective for organic pollutant degradation, but they typically require non-sustainable electrical power to produce hydrogen peroxide. Two-chamber microbial fuel cells (MFCs) have been proposed for pollutant treatment using Fenton-based reactions, but these types of MFCs have low power densities and require expensive membranes. Here, more efficient dual reactor systems were developed using a single-chamber MFC as a low-voltage power source to simultaneously accomplish H2O2 generation and Fe(2+) release for the Fenton reaction. In tests using phenol, 75 ± 2% of the total organic carbon (TOC) was removed in the electro-Fenton reactor in one cycle (22 h), and phenol was completely degraded to simple and readily biodegradable organic acids. Compared to previously developed systems based on two-chamber MFCs, the degradation efficiency of organic pollutants was substantially improved. These results demonstrate that this system is an energy-efficient and cost-effective approach for industrial wastewater treatment of certain pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Persistent organic pollutants and polycyclic aromatic hydrocarbons in penguins of the genus Pygoscelis in Admiralty Bay - An Antarctic specially managed area.

    PubMed

    Montone, Rosalinda C; Taniguchi, Satie; Colabuono, Fernanda I; Martins, César C; Cipro, Caio Vinícius Z; Barroso, Hileia S; da Silva, Josilene; Bícego, Márcia C; Weber, Rolf R

    2016-05-15

    Persistent organic pollutants were assessed in fat samples of the Gentoo (Pygoscelis papua), Chinstrap (Pygoscelis antarcticus) and Adélie (Pygoscelis adeliae) penguins collected during the austral summers of 2005/06 and 2006/07 in Admiralty Bay, King George Island, Antarctica. The predominant organic pollutants were PCB (114 to 1115), polycyclic aromatic hydrocarbons (PAHs) (60.1 to 238.7), HCB (<0.3 to 132.2) and BDE-47 (<1.0 to 10.7) in ng g(-1) wet weight. The mean concentrations of the majority of organic pollutants were similar among the three species of penguins. Chicks of all three species showed similar profiles of PCB congeners, with predominance of lower chlorinated compounds. The distribution of PAHs was similar in all birds, with a predominance of naphthalene and alkyl-naphthalene, which are the main constituents of arctic diesel fuel. These data contribute to the monitoring of the continued exposure to organic pollutants in the Antarctic biota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Investigation of the environmental change pattern of Japan

    NASA Technical Reports Server (NTRS)

    Maruyasu, T. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery clearly identifies the relationships between the status of erosion, effluent patterns affected by the coastal current, and the cultural construction activities. Simple photographic techniques can be used for detecting water mass distribution separately from cloud cover and also noise caused by reflected sunlight from wave surfaces. Polluted water does not diffuse continuously into the oceanic water, but forms masses in the water in the Kuroshio area. The polluted or turbid water in the area just north of the Tomogashima Channel, the south outlet of the Osaka Bay, shows that the northward tidal current runs in a clockwise eddy at the tidal period when the imagery was taken. Such an eddy-like pattern of tidal current had never been revealed by conventional oceanographic data. A front between an oceanic water mass and a polluted water mass runs in a NW-SE direction in the central part of the Osaka Bay. The patterns of turbid water discharged from the Kii River and Yoshino River show a northward tidal current in the North Kii Straits. The pattern of lighter turbid or polluted water located in the northwest region of the North Kii straits suggests the existence of a clockwise eddy in the straits.

  11. Applicability of a neuroprobabilistic integral risk index for the environmental management of polluted areas: a case study.

    PubMed

    Nadal, Martí; Kumar, Vikas; Schuhmacher, Marta; Domingo, José L

    2008-04-01

    Recently, we developed a GIS-Integrated Integral Risk Index (IRI) to assess human health risks in areas with presence of environmental pollutants. Contaminants were previously ranked by applying a self-organizing map (SOM) to their characteristics of persistence, bioaccumulation, and toxicity in order to obtain the Hazard Index (HI). In the present study, the original IRI was substantially improved by allowing the entrance of probabilistic data. A neuroprobabilistic HI was developed by combining SOM and Monte Carlo analysis. In general terms, the deterministic and probabilistic HIs followed a similar pattern: polychlorinated biphenyls (PCBs) and light polycyclic aromatic hydrocarbons (PAHs) were the pollutants showing the highest and lowest values of HI, respectively. However, the bioaccumulation value of heavy metals notably increased after considering a probability density function to explain the bioaccumulation factor. To check its applicability, a case study was investigated. The probabilistic integral risk was calculated in the chemical/petrochemical industrial area of Tarragona (Catalonia, Spain), where an environmental program has been carried out since 2002. The risk change between 2002 and 2005 was evaluated on the basis of probabilistic data of the levels of various pollutants in soils. The results indicated that the risk of the chemicals under study did not follow a homogeneous tendency. However, the current levels of pollution do not mean a relevant source of health risks for the local population. Moreover, the neuroprobabilistic HI seems to be an adequate tool to be taken into account in risk assessment processes.

  12. Trace elements bioaccumulation in liver and fur of Myotis myotis from two caves of the eastern side of Sicily (Italy): A comparison between a control and a polluted area.

    PubMed

    Ferrante, Margherita; Spena, Maria Teresa; Hernout, Béatrice Veronique; Grasso, Alfina; Messina, Andrea; Grasso, Rosario; Agnelli, Paolo; Brundo, Maria Violetta; Copat, Chiara

    2018-05-07

    Environmental pollution is a topic of great interest because it directly affects the quality of ecosystems and of all living organisms at different trophic and systematic levels. Together with the global climate change, the long-term surviving of many species of plants and animals is threaten, distributional patterns at global and regional levels are altered and it results in local assemblages of species that are quite different from those that currently constitute coevolved communities. .For this study, the species Myotis myotis was used as bioindicator and it was sampled from two caves in the south-east of Sicily, Pipistrelli chosen as control area and Palombara chosen as polluted area, to measure the concentrations of trace elements in fur and liver tissues. Results showed higher content of essential elements in fur in bats sampled from Pipistrelli. Conversely, higher concentrations of toxic metals in liver such as As, Cd, Pb and Hg were measured in bat samples in Palombara cave, where specimens have a hunting area extended within the boundaries of the petrochemical plant. Nevertheless, we cannot consider Palombara population as polluted by metal contamination since their tissue concentrations are overall lower than toxic thresholds values suggested for small mammals. Likewise, we cannot exclude other kind of pollutants as potential stressors of the examined population, contributing with the decreasing of bat colonies in Sicily. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Set organic pollution as an impact category to achieve more comprehensive evaluation of life cycle assessment in wastewater-related issues.

    PubMed

    Zhao, Xinyue; Yang, Jixian; Ma, Fang

    2018-02-01

    For wastewater-related issues (WRI), life cycle assessment (LCA) is often used to evaluate environmental impacts and derive optimization strategies. To promote the application of LCA for WRI, it is critical to incorporate local impact of water pollutants. Organic pollution, a main type of water pollution, has not been given much consideration in current LCA systems. This paper investigates the necessity of setting a regionalized impact category to reflect the local impact of organic pollution. A case study is conducted concerning an upgraded wastewater treatment plant (WWTP) in China, which is assumed to meet different sewage control strategies. Chemical oxygen demand (COD) is selected to represent the organic pollution and treated as an individual impact category. CML 2002 is used to quantify the environmental impacts of different strategies. Results show that abnormal LCA results are generated with the traditional eutrophication impact category, and after the introduction of COD, more reasonable LCA results are obtained, making the entire comparison of different control strategies more meaningful and compelling. Moreover, BEES, Ecovalue 08, and Chinese factors are adopted here as different weighting methods. Different weighting results exhibited various trade-offs for the increasingly strict control strategies; the results of BEES and Ecovalue08 underlined the potential environmental burden, but the results of Chinese factors only emphasized the local environmental improvement. It is concluded that setting regionalized impact category for organic pollution can make LCA results more reasonable in wastewater treatment, especially in evaluating Chinese cases because of the serious water pollution caused by large quantities of COD emission.

  14. Organic Liquids Distribution: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) for organic liquidsdistribution (OLD) (non-gasoline) operations. Includes rule history, Federal Registry citations, implementation and compliance information.

  15. Harvesting Hydrogen Gas from Air Pollutants with an Unbiased Gas Phase Photoelectrochemical Cell.

    PubMed

    Verbruggen, Sammy W; Van Hal, Myrthe; Bosserez, Tom; Rongé, Jan; Hauchecorne, Birger; Martens, Johan A; Lenaerts, Silvia

    2017-04-10

    The concept of an all-gas-phase photoelectrochemical (PEC) cell producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward PEC remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Distribution of Cr, Pb, Cd, Zn, Fe and Mn in Lake Victoria sediments, East Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onyari, J.M.; Wandiga, S.O.

    1989-06-01

    The presence of many metals at trace or ultra-trace levels in the human environment has received increased global attention. Sediments as a sink for pollutants are widely recognized pollution sources and diagenesis and biochemical transformations within the sediment may mobilize pollutants posing a threat to a wider biological community. The natural (background) concentrations of heavy metals in lake sediments can be estimated either by analysis of surface sediments in non-polluted regions or by analysis of core samples antedating modern pollution. The distribution pattern of heavy metals in tropical freshwater systems has been little studied. The authors found increased concentrations ofmore » lead and other trace metals in Lake Victoria. Thus this study was initiated in order to further investigate the distribution patterns of lead and other metals in Lake Victoria.« less

  17. Development and Application of Nonlinear Land-Use Regression Models

    NASA Astrophysics Data System (ADS)

    Champendal, Alexandre; Kanevski, Mikhail; Huguenot, Pierre-Emmanuel

    2014-05-01

    The problem of air pollution modelling in urban zones is of great importance both from scientific and applied points of view. At present there are several fundamental approaches either based on science-based modelling (air pollution dispersion) or on the application of space-time geostatistical methods (e.g. family of kriging models or conditional stochastic simulations). Recently, there were important developments in so-called Land Use Regression (LUR) models. These models take into account geospatial information (e.g. traffic network, sources of pollution, average traffic, population census, land use, etc.) at different scales, for example, using buffering operations. Usually the dimension of the input space (number of independent variables) is within the range of (10-100). It was shown that LUR models have some potential to model complex and highly variable patterns of air pollution in urban zones. Most of LUR models currently used are linear models. In the present research the nonlinear LUR models are developed and applied for Geneva city. Mainly two nonlinear data-driven models were elaborated: multilayer perceptron and random forest. An important part of the research deals also with a comprehensive exploratory data analysis using statistical, geostatistical and time series tools. Unsupervised self-organizing maps were applied to better understand space-time patterns of the pollution. The real data case study deals with spatial-temporal air pollution data of Geneva (2002-2011). Nitrogen dioxide (NO2) has caught our attention. It has effects on human health and on plants; NO2 contributes to the phenomenon of acid rain. The negative effects of nitrogen dioxides on plants are the reduction of the growth, production and pesticide resistance. And finally, the effects on materials: nitrogen dioxide increases the corrosion. The data used for this study consist of a set of 106 NO2 passive sensors. 80 were used to build the models and the remaining 36 have constituted the testing set. Missing data have been completed using multiple linear regression and annual average values of pollutant concentrations were computed. All sensors are dispersed homogeneously over the central urban area of Geneva. The main result of the study is that the nonlinear LUR models developed have demonstrated their efficiency in modelling complex phrenomena of air pollution in urban zones and significantly reduced the testing error in comparison with linear models. Further research deals with the development and application of other non-linear data-driven models (Kanevski et al. 2009). References Kanevski M., Pozdnoukhov A. and Timonin V. (2009). Machine Learning for Spatial Environmental Data. Theory, Applications and Software. EPLF Press, Lausanne.

  18. Remote Sensing of Water Pollution

    NASA Technical Reports Server (NTRS)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  19. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution.

    PubMed

    Han, Shenjie; Sun, Qingfeng; Zheng, Huanhuan; Li, Jingpeng; Jin, Chunde

    2016-01-20

    Carbon-based aerogel fabricated from waste biomass is a potential absorbent material for solving organic pollution. Herein, the lightweight, hydrophobic and porous carbon aerogels (CAs) have been synthesized through freezing-drying and post-pyrolysis by using waste newspaper as the only raw materials. The as-prepared CAs exhibited a low density of 18.5 mg cm(-3) and excellent hydrophobicity with a water contact angle of 132° and selective absorption for organic reagents. The absorption capacity of CA for organic compounds can be 29-51 times its own weight. Moreover, three methods (e.g., squeezing, combustion, and distillation) can be employed to recycle CA and harvest organic pollutants. Combined with waste biomass as raw materials, green and facile fabrication process, excellent hydrophobicity and oleophilicity, CA used as an absorbent material has great potential in application of organic pollutant solvents absorption and environmental protection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Patterns of household concentrations of multiple indoor air pollutants in China.

    PubMed

    He, Gongli; Ying, Bo; Liu, Jiang; Gao, Shirong; Shen, Shaolin; Balakrishnan, Kalpana; Jin, Yinlong; Liu, Fan; Tang, Ning; Shi, Kai; Baris, Enis; Ezzati, Majid

    2005-02-15

    Most previous studies on indoor air pollution from household use of solid fuels have used either indirect proxies for human exposure or measurements of individual pollutants at a single point, as indicators of (exposure to) the mixture of pollutants in solid fuel smoke. A heterogeneous relationship among pollutant-location pairs should be expected because specific fuel-stove technology and combustion and dispersion conditions such as temperature, moisture, and air flow are likely to affect the emissions and dispersion of the various pollutants differently. We report on a study for monitoring multiple pollutants--including respirable particles (RPM), carbon monoxide, sulfur dioxide, fluoride, and arsenic--at four points inside homes that used coal and/or biomass fuels in Guizhou and Shaanxi provinces of China. All pollutants exhibited large variability in emissions and spatial dispersion within and between provinces and were generally poorly correlated. RPM, followed by SO2, was generally higher than common health-based guidelines/standards and provided sufficient resolution for assessing variations within and between households in both provinces. Indoor heating played an important role in the level and spatial patterns of pollution inside homes, possibly to an extent more important than cooking. The findings indicate the need for monitoring of RPM and selected other pollutants in longer-term health studies, with focus on both cooking and living/sleeping areas.

  1. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data.

    PubMed

    Apte, Joshua S; Messier, Kyle P; Gani, Shahzad; Brauer, Michael; Kirchstetter, Thomas W; Lunden, Melissa M; Marshall, Julian D; Portier, Christopher J; Vermeulen, Roel C H; Hamburg, Steven P

    2017-06-20

    Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km 2 area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO 2 , and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.

  2. USE OF EMERGENCY ROOM PATIENT POPULATIONS IN AIR POLLUTION EPIDEMIOLOGY

    EPA Science Inventory

    The long-term objective of this project was the design and implementation of a particular epidemiological approach to investigation of ambient pollutant effects: the correlation of pollutant exposure with patterns of hospital emergency room utilization. The report covers the init...

  3. Novel Approaches for Estimating Human Exposure to Air Pollutants

    EPA Science Inventory

    Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying on solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal varia...

  4. Characterizing climate change impacts on human exposures to air pollutants

    EPA Science Inventory

    Human exposures to air pollutants such as ozone (O3) have the potential to be altered by changes in climate through multiple factors that drive population exposures, including: ambient pollutant concentrations, human activity patterns, population sizes and distributions, and hous...

  5. Seasonal patterns of polycyclic aromatic hydrocarbons in digestive gland and arm of octopus (Octopus vulgaris) from the Northwest Atlantic.

    PubMed

    Semedo, Miguel; Oliveira, Marta; Gomes, Filipa; Reis-Henriques, Maria Armanda; Delerue-Matos, Cristina; Morais, Simone; Ferreira, Marta

    2014-05-15

    Among organic pollutants existing in coastal areas, polycyclic aromatic hydrocarbons (PAHs) are of great concern due to their ubiquity and carcinogenic potential. The aim of this study was to evaluate the seasonal patterns of PAHs in the digestive gland and arm of the common octopus (Octopus vulgaris) from the Northwest Atlantic Portuguese coast. In the different seasons, 18 PAHs were determined and the detoxification capacity of the species was evaluated. Ethoxyresorufin O-deethylase (EROD) and ethoxycoumarin O-deethylase (ECOD) activities were measured to assess phase I biotransformation capacity. Individual PAH ratios were used for major source (pyrolytic/petrogenic) analysis. Risks for human consumption were determined by the total toxicity equivalence approach. Generally, low levels of PAHs were detected in the digestive gland and in the arm of octopus, with a predominance of low molecular over high molecular weight compounds. PAHs exhibited seasonality in the concentrations detected and in their main emission sources. In the digestive gland, the highest total PAH levels were observed in autumn possibly related to fat availability in the ecosystem and food intake. The lack of PAH elimination observed in the digestive gland after captivity could be possibly associated to a low biotransformation capacity, consistent with the negligible/undetected levels of EROD and ECOD activity in the different seasons. The emission sources of PAHs found in the digestive gland varied from a petrogenic profile observed in winter to a pyrolytic pattern in spring. In the arm, the highest PAH contents were observed in June; nevertheless, levels were always below the regulatory limits established for food consumption. The carcinogenic potential calculated for all the sampling periods in the arm were markedly lower than the ones found in various aquatic species from different marine environments. The results presented in this study give relevant baseline data for environmental monitoring of organic pollution in coastal areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Links between global meat trade and organic river pollution

    NASA Astrophysics Data System (ADS)

    Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick

    2017-04-01

    Rising demand of meat boosts livestock farming intensification. Due to international meat trade, the environmental costs of production are becoming increasingly separated from where the meat is consumed. However, little is known about the impact of trade on the environment for both importers and exporters. Combining multi-scale (national, regional and gridded) data, we present a new method to quantify the impacts of international meat trade on global river organic pollution. We computed spatially distributed organic pollution in global river networks with and without meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis indicates high potential savings of livestock population and pollutants production at the global scale due to the international meat trade. The spatially detailed analysis shows that current trade contributes to organic pollution reductions in meat importing regions, especially in rich nations. The deterioration of river water quality, especially in developing regions, points to an urgent need for affordable infrastructure and technology development and wastewater solutions.

  7. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    PubMed

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  8. Sandy beaches: state of the art of nematode ecology.

    PubMed

    Maria, Tatiana F; Vanaverbeke, Jan; Vanreusel, Ann; Esteves, André M

    2016-01-01

    In this review, we summarize existing knowledge of the ecology of sandy-beach nematodes, in relation to spatial distribution, food webs, pollution and climate change. We attempt to discuss spatial scale patterns (macro-, meso- and microscale) according to their degree of importance in structuring sandy-beach nematode assemblages. This review will provide a substantial background on current knowledge of sandy-beach nematodes, and can be used as a starting point to delineate further investigations in this field. Over decades, sandy beaches have been the scene of studies focusing on community and population ecology, both related to morphodynamic models. The combination of physical factors (e.g. grain size, tidal exposure) and biological interactions (e.g. trophic relationships) is responsible for the spatial distribution of nematodes. In other words, the physical factors are more important in structuring nematodes communities over large scale of distribution while biological interactions are largely important in finer-scale distributions. It has been accepted that biological interactions are assumed to be of minor importance because physical factors overshadow the biological interactions in sandy beach sediments; however, the most recent results from in-situ and ex-situ experimental investigations on behavior and biological factors on a microscale have shown promise for understanding the mechanisms underlying larger-scale patterns and processes. Besides nematodes are very promising organisms used to understand the effects of pollution and climate changes although these subjects are less studied in sandy beaches than distribution patterns.

  9. Polychlorinated terphenyl patterns and levels in selected marine mammals and a river fish from different continents.

    PubMed

    Rosenfelder, Natalie; Vetter, Walter

    2014-01-01

    Polychlorinated terphenyls (PCTs) are a class of persistent organic pollutants which have been used from the 1920s to the 1980s for similar purposes as polychlorinated biphenyls (PCBs). Comparably little data was available on the PCT distribution in the environment mainly due to analytical difficulties in their determination. By means of a calculation algorithm recently developed we now studied the PCT pattern in individual marine mammal samples and one fish sample from different continents. Altogether, 97 PCTs were detected in eight samples and twelve to 66 tetra- to nonachloroterphenyl (tetra- to nonaCT) congeners were detected in individual samples. PCTs were present in all marine mammal samples which originated from four continents, but the PCT pattern was varied. TetraCTs were dominant in the sample from Africa, Australia, Spitsbergen (European Arctic) and in a sample from the Baltic Sea, heptaCTs in samples from the North Sea and octaCTs in a sample from Iceland. The abundance of sumPCTs relative to PCB 153, estimated from the GC/ECNI-MS response corrected for the degree of chlorination, ranged from 0.9 to 8.8%, corresponding with ~0.22-2.2% of the total PCB content. The highest PCT level detected was 980 mg/kg lipid in a harbour seal from the North Sea, Germany. The results from this study indicated that samples from certain areas, e.g. the North Sea may still be polluted with PCTs. © 2013.

  10. AN ORGANIZATION GUIDE TO POLLUTION PREVENTION

    EPA Science Inventory

    This Pollution Prevention (P2) Guide provides information to help organizations get P2 programs started on t re-evaluate existing P2 programs. It presents an alternative method for working on P2 projects and four approaches to implementing a P2 program in an organization. The int...

  11. Synthetic Organic Chemical Manufacturing Industry: Organic National Emission Standards for Hazardous Air Pollutants (NESHAP) - 40 CFR 63 Subparts F,G,H,I

    EPA Pesticide Factsheets

    Read about the National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Synthetic Organic Chemical Manufacturing Industry. Read the rules, find the CFR text, dockets, effective dates, rule history and compliance information.

  12. Measurements and Analysis of Chemical Composition of Particulate Matter during High Pollution Events at Guanzhong Plain, China

    NASA Astrophysics Data System (ADS)

    Junji, C.

    2017-12-01

    Particulate matter pollution is a serious environmental problem which influencing air quality, regional and global climates, and human health. PM2.5 samples were collected at Guanzhong Plain with six sampling sites atdifferent cities in the year scale from 2012 to 2014. All of the six sites exhibited highest organic carbon (OC)and elemental carbon (EC) values in winter and lowest values in summer. OC correlates well with EC indicating similar emission sources. The contributions of secondary species SO42-, NO3- and NH4+ in total ions were greatest, and the high concentrations in winter were mainly due to emissions from coal combustion and biomass burning.During autumn the haze days were severest in Xi'an city with similar tendency of PM2.5 variations, and it was proved that biomass burning may be the main emission source of the regional pollution. In winter pollution episodes, the pollution patterns in Guanzhong Plain were similar which was resulted from strong secondary reactions and coal burning.Source apportionment using a positive matrix factorizationreceptor model indicates that on average secondary aerosol was the main source of PM2.5 (39.3%), followed by coal burning (17.3%), motor vehicle/industrial emissions (15.7%), fugitive dust (14.9%), and biomass burning (12.8%). The online, in situ measurement airborne species, especially the chemical composition of non-refectory submicron aerosol, during a heavyhaze-fog event, was analyzed in detailed.The formation of secondary sulfate and organic aerosol were observed during the event. The sulfur oxidation ratio (SOR), defined as sulfate/(SO2+sulfate) were mostly over 0.10, with a maximum of 0.30, when relative humidity > 80%. The aging product of organic aerosol (OA) were also observed in the event. The wet scattering coefficient was influenced by secondary sulfate, in the form of (NH4)2SO4, with contribution of 48.9% of wet particulate phase scattering. Thus decreased the visibility dramatically with a minimum of 128m. The current WRF-Chem model study suggested the secondary sulfate formation was essential to the increasing of sulfate concentration. The formation of secondary species was a decisive reason to form severe haze after fog event.

  13. Short-chain chlorinated paraffins in terrestrial bird species inhabiting an e-waste recycling site in South China.

    PubMed

    Luo, Xiao-Jun; Sun, Yu-Xin; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian

    2015-03-01

    Short-chain chlorinated paraffins (SCCPs) are under review by the Stockholm Convention on Persistent Organic Pollutants. Currently, limited data are available about SCCPs in terrestrial organisms. In the present study, SCCP concentration in the muscles of seven terrestrial bird species (n = 38) inhabiting an e-waste recycling area in South China was determined. This concentration varied from 620 to 17,000 ng/g lipid. Resident birds accumulated significantly higher SCCP concentrations than migratory birds (p < 0.01). Trophic magnification was observed for migratory bird species but not for resident, which was attributed to high heterogeneity of SCCP in e-waste area. Two different homologue group patterns were observed in avian samples. The first pattern was found in five bird species dominated by C10 and C11 congeners, while the second was found in the remains, which show rather equal abundance of homologue groups. This may be caused by two sources of SCCPs (local and e-waste) in the study area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  15. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach.

    PubMed

    Pinichka, Chayut; Makka, Nuttapat; Sukkumnoed, Decharut; Chariyalertsak, Suwat; Inchai, Puchong; Bundhamcharoen, Kanitta

    2017-01-01

    Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs). We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand. We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA) framework developed by the World Health Organization (WHO) and the Global Burden of Disease study (GBD). We integrated geographical information systems (GIS)-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR) relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD) of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR) and concentration of air pollutants from the epidemiological literature. We estimated 650-38,410 ambient air pollution-related fatalities and 160-5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF) of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality attributable to NO2 was 7.8% for respiratory mortality in Thailand. Mortality due to ambient air pollution in Thailand varies across the country. Geographical distribution estimates can identify high exposure areas for planners and policy-makers. Our results suggest that the benefits of a 20% reduction in ambient air pollution concentration could prevent up to 25% of avoidable fatalities each year in all-causes, respiratory and cardiovascular categories. Furthermore, our findings can provide guidelines for future epidemiological investigations and policy decisions to achieve the SDGs.

  16. Global marine pollutants inhibit P-glycoprotein: Environmental levels, inhibitory effects, and cocrystal structure

    PubMed Central

    Nicklisch, Sascha C. T.; Rees, Steven D.; McGrath, Aaron P.; Gökirmak, Tufan; Bonito, Lindsay T.; Vermeer, Lydia M.; Cregger, Cristina; Loewen, Greg; Sandin, Stuart; Chang, Geoffrey; Hamdoun, Amro

    2016-01-01

    The world’s oceans are a global reservoir of persistent organic pollutants to which humans and other animals are exposed. Although it is well known that these pollutants are potentially hazardous to human and environmental health, their impacts remain incompletely understood. We examined how persistent organic pollutants interact with the drug efflux transporter P-glycoprotein (P-gp), an evolutionarily conserved defense protein that is essential for protection against environmental toxicants. We identified specific congeners of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers that inhibit mouse and human P-gp, and determined their environmental levels in yellowfin tuna from the Gulf of Mexico. In addition, we solved the cocrystal structure of P-gp bound to one of these inhibitory pollutants, PBDE (polybrominated diphenyl ether)–100, providing the first view of pollutant binding to a drug transporter. The results demonstrate the potential for specific binding and inhibition of mammalian P-gp by ubiquitous congeners of persistent organic pollutants present in fish and other foods, and argue for further consideration of transporter inhibition in the assessment of the risk of exposure to these chemicals. PMID:27152359

  17. Surface Modification of Graphene Oxides by Plasma Techniques and Their Application for Environmental Pollution Cleanup.

    PubMed

    Wang, Xiangxue; Fan, Qiaohui; Chen, Zhongshan; Wang, Qi; Li, Jiaxing; Hobiny, Aatef; Alsaedi, Ahmed; Wang, Xiangke

    2016-02-01

    Graphene oxides (GOs) have come under intense multidisciplinary study because of their unique physicochemical properties and possible applications. The large amount of oxygen-containing functional groups on GOs leads to a high sorption capacity for the removal of various kinds of organic and inorganic pollutants from aqueous solutions in environmental pollution cleanup. However, the lack of selectivity results in difficulty in the selective removal of target pollutants from aqueous solutions in the presence of other coexisting pollutants. Herein, the surface grafting of GOs with special oxygen-containing functional groups using low-temperature plasma techniques and the application of the surface-modified GOs for the efficient removal of organic and inorganic pollutants in environmental pollution are reviewed. This paper gives an account of our research on the application of GO-based nanomaterials in environmental pollution cleanup, including: (1) the synthesis and surface grafting of functional groups on GOs, summarizing various types of low-temperature plasma techniques for the synthesis of graphene/GOs; and (2) the application of graphene/GOs and their composites for the efficient removal of organic and inorganic pollutants from aqueous solutions, including the interaction mechanism according to recently published results. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Copper in indigenous and transplanted zebra mussels in relation to changing water concentrations and body weight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mersch, J.; Wagner, P.; Pihan, J.C.

    Zebra mussels, Dreissena polymorpha, were collected monthly from a copper-contaminated reservoir over a period of nearly 3 years. Copper concentrations in the organisms showed marked fluctuations reflecting changes in the water contamination. Bioconcentration patterns were influenced by the specific capacity of this sentinel organism to biologically integrate the continuously evolving water pollution; the sampling pattern, which inevitably introduced a certain subjectivity into monitoring results; and weight changes in the animals within the yearly cycle. Consequently, the successive monthly indications obtained with the zebra mussels provided a current biological assessment of a complex dynamic contamination situation. In a second experiment, cagedmore » mussels from three different populations were transferred for 3 months into the reservoir and sampled on six occasions. Mortality rates, attachment capacity, and a condition index revealed no substantial fitness disturbances in the transplanted organisms. Differences in dry weight throughout the experiment were attributable to the initial characteristics of each population. The influence of body mass on monitoring results was eliminated by replacing copper concentrations ({micro}g/g dry weight) with copper burdens ({micro}g/specimen). In terms of copper burdens, the three transplanted populations exhibited very similar metal patterns. Moderate quantitative differences between introduced and indigenous populations were interpreted as the result of physiological adaptation of the indigenous mussels to their contaminated environment. This study showed that the transfer technique with D. polymorpha is a useful tool for active biomonitoring programs.« less

  19. Organic/inorganic hybrid filters based on dendritic and cyclodextrin "nanosponges" for the removal of organic pollutants from water.

    PubMed

    Arkas, Michael; Allabashi, Roza; Tsiourvas, Dimitris; Mattausch, Eva-Maria; Perfler, Reinhard

    2006-04-15

    Long-alkyl chain functionalized poly(propylene imine) dendrimer, poly(ethylene imine) hyperbranched polymer, and beta-cyclodextrin derivatives, which are completely insoluble in water, have the property of encapsulating organic pollutants from water. Ceramic porous filters can be impregnated with these compounds resulting in hybrid organic/ inorganic filter modules. These hybrid filter modules were tested for the effective purification of water, by continuous filtration experiments, employing a variety of water pollutants. It has been established that polycyclic aromatic hydrocarbons (PAHs) can be removed very efficiently (more than 95%), and final concentrations of several ppb (microg/ L) are easily obtained. Representatives of the pollutant group of trihalogen methanes (THMs), monoaromatic hydrocarbons (BTX), and pesticides (simazine) can also be removed (>80%), although the filters are saturated considerably faster in these cases.

  20. Applicability of Fluorescence and Absorbance Spectroscopy to Estimate Organic Pollution in Rivers

    PubMed Central

    Knapik, Heloise Garcia; Fernandes, Cristovão Vicente Scapulatempo; de Azevedo, Júlio Cesar Rodrigues; do Amaral Porto, Monica Ferreira

    2014-01-01

    Abstract This article explores the applicability of fluorescence and absorbance spectroscopy for estimating organic pollution in polluted rivers. The relationship between absorbance, fluorescence intensity, dissolved organic carbon, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and other water quality parameters were used to characterize and identify the origin and the spatial variability of the organic pollution in a highly polluted watershed. Analyses were performed for the Iguassu River, located in southern Brazil, with area about 2,700 km2 and ∼3 million inhabitants. Samples were collect at six monitoring sites covering 107 km of the main river. BOD, COD, nitrogen, and phosphorus concentration indicates a high input of sewage to the river. Specific absorbance at 254 and 285 nm (SUVA254 and A285/COD) did not show significant variation between sites monitored, indicating the presence of both dissolved compounds found in domestic effluents and humic and fulvic compounds derived from allochthonous organic matter. Correlations between BOD and tryptophan-like fluorescence peak (peak T2, r=0.7560, and peak T1, r=0.6949) and tyrosine-like fluorescence peak (peak B, r=0.7321) indicated the presence of labile organic matter and thus confirmed the presence of sewage in the river. Results showed that fluorescence and absorbance spectroscopy provide useful information on pollution in rivers from critical watersheds and together are a robust method that is simpler and more rapid than traditional methods employed by regulatory agencies. PMID:25469076

  1. Organic contamination and remediation in the agricultural soils of China: A critical review.

    PubMed

    Sun, Jianteng; Pan, Lili; Tsang, Daniel C W; Zhan, Yu; Zhu, Lizhong; Li, Xiangdong

    2018-02-15

    Soil pollution is a global problem in both developed and developing countries. Countries with rapidly developing economies such as China are faced with significant soil pollution problems due to accelerated industrialization and urbanization over the last decades. This paper provides an overview of published scientific data on soil pollution across China with particular focus on organic contamination in agricultural soils. Based on the related peer-reviewed papers published since 2000 (n=203), we evaluated the priority organic contaminants across China, revealed their spatial and temporal distributions at the national scale, identified their possible sources and fates in soil, assessed their potential environmental risks, and presented the challenges in current remediation technologies regarding the combined organic pollution of agricultural soils. The primary pollutants in Northeast China were polycyclic aromatic hydrocarbons (PAHs) due to intensive fossil fuel combustion. The concentrations of organochlorine pesticides (OCPs) and phthalic acid esters (PAEs) were higher in North and Central China owing to concentrated agricultural activities. The levels of polychlorinated biphenyls (PCBs) were higher in East and South China primarily because of past industrial operations and improper electronic waste processing. The co-existence of organic contaminants was severe in the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei Region, which are the most populated and industrialized regions in China. Integrated biological-chemical remediation technologies, such as surfactant-enhanced bioremediation, have potential uses in the remediation of soil contaminated by multiple contaminants. This critical review highlighted several future research directions including combined pollution, interfacial interactions, food safety, bioavailability, ecological effects, and integrated remediation methods for combined organic pollution in soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Short term recovery of periphyton photosynthesis after pulse exposition to the photosystem II inhibitors atrazine and isoproturon.

    PubMed

    Laviale, Martin; Morin, Soizic; Créach, Anne

    2011-07-01

    Aquatic organisms are exposed to fluctuating concentrations of herbicides which contaminate rivers following their use for agricultural or domestic purposes. The development of sensitive bioanalytical tests enabling us not only to detect the effects of those pollutants but to take into account this pattern of exposure should improve the ecological relevance of river toxicity assessment. In this respect, the use of chlorophyll fluorescence measurements is a convenient way to probe the effect of photosystem II (PSII) inhibitors on primary producers. This study was devoted to validate the combined use of two fluorescence parameters, the effective and the optimal quantum yields of PSII photochemistry (Φ(PSII) and F(v)/F(m)), as reliable biomarkers of initial isoproturon (IPU) or atrazine (ATZ) toxicity to natural periphyton in a pulse exposition scenario. Φ(PSII) and F(v)/F(m) were regularly estimated during a 7 h-exposure to each pollutant (0-100 μM) and also later after being transferred in herbicide-free water (up to 36 h). Our results showed that IPU was more toxic than ATZ, but with effects reversible within 12 h. Moreover, these two similarly acting herbicides (i.e. same target site) presented contrasted short term recovery patterns, regarding the previous exposure duration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Effects of land-use patterns on in-stream nitrogen in a highly-polluted river basin in Northeast China.

    PubMed

    Bu, Hongmei; Zhang, Yuan; Meng, Wei; Song, Xianfang

    2016-05-15

    This study investigated the effects of land-use patterns on nitrogen pollution in the Haicheng River basin in Northeast China during 2010 by conducting statistical and spatial analyses and by analyzing the isotopic composition of nitrate. Correlation and stepwise regressions indicated that land-use types and landscape metrics were correlated well with most river nitrogen variables and significantly predicted them during different sampling seasons. Built-up land use and shape metrics dominated in predicting nitrogen variables over seasons. According to the isotopic compositions of river nitrate in different zones, the nitrogen sources of the river principally originated from synthetic fertilizer, domestic sewage/manure, soil organic matter, and atmospheric deposition. Isotope mixing models indicated that source contributions of river nitrogen significantly varied from forested headwaters to densely populated towns of the river basin. Domestic sewage/manure was a major contributor to river nitrogen with the proportions of 76.4 ± 6.0% and 62.8 ± 2.1% in residence and farmland-residence zones, respectively. This research suggested that regulating built-up land uses and reducing discharges of domestic sewage and industrial wastewater would be effective methods for river nitrogen control. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. From Antarctica to the subtropics: Contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.).

    PubMed

    Carravieri, Alice; Cherel, Yves; Brault-Favrou, Maud; Churlaud, Carine; Peluhet, Laurent; Labadie, Pierre; Budzinski, Hélène; Chastel, Olivier; Bustamante, Paco

    2017-09-01

    Seabirds integrate bioaccumulative contaminants via food intake and have revealed geographical trends of contamination in a variety of ecosystems. Pre-fledging seabird chicks are particularly interesting as bioindicators of chemical contamination, because concentrations in their tissues reflect primarily dietary sources from the local environment. Here we measured 14 trace elements and 18 persistent organic pollutants (POPs) in blood of chicks of skuas that breed in four sites encompassing a large latitudinal range within the southern Indian Ocean, from Antarctica (Adélie Land, south polar skua Catharacta maccormicki), through subantarctic areas (Crozet and Kerguelen Islands, brown skua C. lonnbergi), to the subtropics (Amsterdam Island, C. lonnbergi). Stables isotopes of carbon (δ 13 C, feeding habitat) and nitrogen (δ 15 N, trophic position) were also measured to control for the influence of feeding habits on contaminant burdens. Concentrations of mercury (Hg) and selenium (Se) were very high at all the four sites, with Amsterdam birds having the highest concentrations ever reported in chicks worldwide (4.0 ± 0.8 and 646 ± 123 μg g -1 dry weight, respectively). Blood Hg concentrations showed a clear latitudinal pattern, increasing from chicks in Antarctica to chicks in the subantarctic and subtropical islands. Interestingly, blood Se concentrations showed similar between-population differences to Hg, suggesting its involvement in protective mechanisms against Hg toxicity. Chicks' POPs pattern was largely dominated by organochlorine pesticides, in particular DDT metabolites and hexachlorobenzene (HCB). Skua chicks from subantarctic islands presented high concentrations and diversity of POPs. By contrast, chicks from the Antarctic site overall had the lowest concentrations and diversity of both metallic and organic contaminants, with the exception of HCB and arsenic. Skua populations from these sites, being naturally exposed to different quantities of contaminants, are potentially good models for testing toxic effects in developing chicks in the wild. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The use of multiple endpoints to assess cellular responses to environmental contaminants in the interstitial marine ciliate Euplotes crassus.

    PubMed

    Gomiero, A; Sforzini, S; Dagnino, A; Nasci, C; Viarengo, A

    2012-06-15

    This paper presents the results of investigations on the suitability of Euplotes crassus, an interstitial marine ciliate, to be used as model organism in ecotoxicology and thereafter to evaluate the toxicity of estuarine and coastal sediments upon laboratory exposure. Nowadays, anthropogenic activities have resulted in accumulation of metals and organic pollutants in the environment as well as in the food chain hence leading to serious ecological and human health problems. This may pose a risk to benthic and epibenthic organisms and it is crucial to discover toxicity tests that will identify adverse effects of sediment-associated chemicals on benthic organisms. Due to their nature as a eukaryotic cell/organism and their position in the food web, ciliated protozoa are suitable models for evaluating the effects of pollution on aquatic communities. Lethal and sublethal effects of exposure to inorganic and organic pollutants were tested on the cell mortality, replication rate, lysosomal membrane stability and endocytosis rate of E. crassus. Increasing nominal concentrations of individual and mixtures of mercury, copper, and benzo(a)pyrene were investigated in this study as they might be bioavailable in naturally occurring polluted sites. A significant decrease in the mean replication rate (p<0.05) was found after 24h exposures to m/μM concentrations of all tested pollutants. At the same time, significant decreases of lysosomal membrane stability (p<0.05) were observed for Cu (5 μM), Hg (10 nM), and B(a)P (200 nM). Among the entire suite of tests, endocytosis rate test demonstrated the highest sensitivity. Exposures to binary mixtures of all studied pollutants were performed showing both inorganic-organic and inorganic-inorganic additive and/or antagonist effects. Moreover, medium salinity was also varied to mimic estuarine-like environmental conditions linking biological response to ionic strengths. Under these conditions significant increases of both endocytosis rate and lysosomal membrane stability were observed and related to the increment of some Hg- and Cu-related toxic complexes. The studied biomarkers were always able to discriminate between the effects of organic and inorganic pollutants. Together with the short time and simplicity of the test procedures, results obtained in this study indicate that E. crassus is a promising and convenient bioindicator for evaluating the toxicity of different environmental matrixes like pore water, sediments and wastewaters--polluted by metals and organic pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Organochlorine compounds in ice melt water from Italian Alpine rivers.

    PubMed

    Villa, Sara; Negrelli, Christian; Finizio, Antonio; Flora, Onelio; Vighi, Marco

    2006-01-01

    Organochlorine chemicals (OCs) (dichlorodiphenyltrichloroethanes, hexachlorocyclohexanes, and hexachlorobenzene) were measured in ice melt water from five glaciers in the Italian Alps. Even though the data collected may not be sufficient for a precise description of persistent organic pollutant release patterns from glacier melting, they have, however, highlighted the potential for surface water contamination. Concentrations were of the same order of magnitude in all glacial streams, indicating comparable contamination levels in different glaciers of the alpine region. OC levels in nonglacial springs sampled in the same areas are usually lower. Even if differences during the melting season (from spring to autumn) have been identified, a regular seasonal pattern in OC concentrations was not observed. Risk for the aquatic environment is excluded through direct water exposure, but it is likely to occur through biomagnification and secondary poisoning exposure.

  7. Assessment of persistent organic pollutants accumulation and lipid peroxidation in two reproductive stages of wild silverside (Odontesthes bonariensis).

    PubMed

    Barni, María Florencia Silva; Gonzalez, Mariana; Miglioranza, Karina S B

    2014-01-01

    Persistent organic pollutants (POPs) in streamwater can sometimes exceed the guidelines values reported for biota and human protection in watersheds with intensive agriculture. Oxidative stress and cytotoxicity are some of the markers of exposure to POPs in fish. Accumulation of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) as well as lipid peroxidation (LPO) was assessed in wild silverside (Odontesthes bonariensis) from maturation and pre-spawning stages sampled in a typical soybean growing area. Pollutants were quantified by gas chromatography with electron capture detection and LPO by the method of thiobarbituric acid reactive substances. Concentrations of POPs were in the following order: OCPs>PCBs>PBDEs in all organs and stages. Liver, gills and gonads had the highest OCP concentrations in both sexes and stages with a predominance of endosulfan in all samples. Matured individuals, sampled after endosulfan application period, showed higher endosulfan concentrations than pre-spawning individuals. The predominance of endosulfan sulfate could be due to direct uptake from diet and water column, as well as to the metabolism of the parent compounds in fish. The prevalence of p,p'-DDE in liver would also reflect both the direct uptake and the metabolic transformation of p,p'-DDT to p,p'-DDE by fish. The highest levels of PBDEs and PCBs were found in gills and brain of both stages of growth. The pattern BDE-47>BDE-100 in all samples corresponds to pentaBDE exposure. In the case of PCBs, penta (#101 and 110) and hexa-CB congeners (#153 and 138) dominated in the maturation stages and tri (#18) and tetra-CB (#44 and 52) in pre-spawning stages, suggesting biotransformation or preferential accumulation of heavier congeners during gonadal development. Differences in LPO levels in ovaries were associated with growth dilution and reproductive stage. Differences in LPO levels in gills were related with pesticide application periods. As a whole, endosulfan, a current-use pesticide, constituted the main pollutant found in wild silverside reflecting the intense agriculture activity in the study area. Moreover endosulfan was positively correlated with LPO. © 2013 Published by Elsevier Inc.

  8. Stable sulfur isotope ratios and chemical compositions of fine aerosols (PM2.5) in Beijing, China.

    PubMed

    Wei, Lianfang; Yue, Siyao; Zhao, Wanyu; Yang, Wenyi; Zhang, Yingjie; Ren, Lujie; Han, Xiaokun; Guo, Qingjun; Sun, Yele; Wang, Zifa; Fu, Pingqing

    2018-08-15

    Pervasive particulate pollution has been observed over large areas of the North China Plain. The high level of sulfate, a major component in fine particles, is pronounced during heavy pollution periods. Being different from source apportionments by atmospheric chemistry-transport model and receptor modeling methods, here we utilize sulfur isotopes to discern the potential emission sources. Sixty-five daily PM 2.5 samples were collected at an urban site in Beijing between September 2013 and July 2014. Inorganic ions, organic/elemental carbon and stable sulfur isotopes of sulfate were analyzed. The "fingerprint" characteristics of stable sulfur isotopic composition, together with trajectory clustering modeled by HYSPLIT-4 (HYbrid Single-Particle Lagrangian Integrated Trajectory) and FLEXPART ("FLEXible PARTicle dispersion model"), was employed to identify potential aerosol sources in Beijing. Results exhibited a distinctive seasonality with sulfate, nitrate, ammonium, organic matter, and element carbon being the dominant species of PM 2.5 . Elevated concentrations of chloride with high organic matter were found in autumn and winter as a result of enhanced fossil fuel (mainly coal) combustion. The δ 34 S values of the Beijing aerosols ranged from 2.8‰ to 9.9‰ with an average of 6.0 ± 1.8‰, further indicating that the major sulfur source was direct coal burning emission. Owing to the changing patterns between oxidation pathways of S(IV) in different seasons, δ 34 S values varied with a winter maximum (8.2 ± 1.1‰) and a summer minimum (4.9 ± 1.9‰). The results of trajectory clustering and FLEXPART demonstrated that higher concentrations of sulfate with lower sulfur isotope ratios (4.6 ± 0.8‰) were associated with air masses from the south or east, whereas lower sulfate concentrations with heavier sulfur isotope ratios (6.7 ± 1.6‰) were observed when the air masses were mainly from the north or northwest. These results suggested that the fine aerosol pollution in Beijing, especially sulfate pollution, was mainly due to coal combustion sources from regional and local regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment

    PubMed Central

    Dias, Daniela; Tchepel, Oxana

    2018-01-01

    Analyzing individual exposure in urban areas offers several challenges where both the individual’s activities and air pollution levels demonstrate a large degree of spatial and temporal dynamics. This review article discusses the concepts, key elements, current developments in assessing personal exposure to urban air pollution (seventy-two studies reviewed) and respective advantages and disadvantages. A new conceptual structure to organize personal exposure assessment methods is proposed according to two classification criteria: (i) spatial-temporal variations of individuals’ activities (point-fixed or trajectory based) and (ii) characterization of air quality (variable or uniform). This review suggests that the spatial and temporal variability of urban air pollution levels in combination with indoor exposures and individual’s time-activity patterns are key elements of personal exposure assessment. In the literature review, the majority of revised studies (44 studies) indicate that the trajectory based with variable air quality approach provides a promising framework for tackling the important question of inter- and intra-variability of individual exposure. However, future quantitative comparison between the different approaches should be performed, and the selection of the most appropriate approach for exposure quantification should take into account the purpose of the health study. This review provides a structured basis for the intercomparing of different methodologies and to make their advantages and limitations more transparent in addressing specific research objectives. PMID:29558426

  10. The effects of the pollutant, sodium cyanide, on the morphology and physiology of oedogonium cardiacum

    NASA Technical Reports Server (NTRS)

    Sparks, E.

    1977-01-01

    OEDOGONIUM cardiacum exposed to varying concentrations of sodium cyanide for 15 day periods exhibited both morphological and physiological alterations. Organisms were exposed to the pollutant in concentrations of 1, 10, 25, 50, and 100 parts per million. Exposure period for organisms in each concentration was 15 days. As the concentration of the pollutant increased fragmentation also increased. Exposure also caused organisms to lose chlorophyll. The third morphological alteration was the incidence of rupture. Physiological effects altered by exposure included: reduced oxygen evolution, retardation of starch production and death. Death occurs when organisms are exposed to high concentrations over the total 15 day period.

  11. PHARMACEUTICALS AND PERSONAL CARE PRODUCTS: ISSUES REGARDING HUMAN EXPOSURE

    EPA Science Inventory

    Since the 1970s, the impact of chemical pollution has focused almost exclusively on conventional "priority pollutants", especially on those collectively referred to as "persistent, bioaccumulative, toxic" (PBT) pollutants, persistent organic pollutants" (POPs) or "bioaccumulative...

  12. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  13. Response of Benthic Foraminifera to Organic Matter Quantity and Quality and Bioavailable Concentrations of Metals in Aveiro Lagoon (Portugal)

    PubMed Central

    Martins, Maria Virgínia Alves; Silva, Frederico; Laut, Lazaro L. M.; Frontalini, Fabrizio; Clemente, Iara M. M. M.; Miranda, Paulo; Figueira, Rubens; Sousa, Silvia H. M.; Dias, João M. Alveirinho

    2015-01-01

    This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to metals enrichment. PMID:25706860

  14. Effects of air pollution on ecosystems and biological diversity in the eastern United States.

    PubMed

    Lovett, Gary M; Tear, Timothy H; Evers, David C; Findlay, Stuart E G; Cosby, B Jack; Dunscomb, Judy K; Driscoll, Charles T; Weathers, Kathleen C

    2009-04-01

    Conservation organizations have most often focused on land-use change, climate change, and invasive species as prime threats to biodiversity conservation. Although air pollution is an acknowledged widespread problem, it is rarely considered in conservation planning or management. In this synthesis, the state of scientific knowledge on the effects of air pollution on plants and animals in the Northeastern and Mid-Atlantic regions of the United States is summarized. Four air pollutants (sulfur, nitrogen, ozone, and mercury) and eight ecosystem types ranging from estuaries to alpine tundra are considered. Effects of air pollution were identified, with varying levels of certainty, in all the ecosystem types examined. None of these ecosystem types is free of the impacts of air pollution, and most are affected by multiple pollutants. In aquatic ecosystems, effects of acidity, nitrogen, and mercury on organisms and biogeochemical processes are well documented. Air pollution causes or contributes to acidification of lakes, eutrophication of estuaries and coastal waters, and mercury bioaccumulation in aquatic food webs. In terrestrial ecosystems, the effects of air pollution on biogeochemical cycling are also very well documented, but the effects on most organisms and the interaction of air pollution with other stressors are less well understood. Nevertheless, there is strong evidence for effects of nitrogen deposition on plants in grasslands, alpine areas, and bogs, and for nitrogen effects on forest mycorrhizae. Soil acidification is widespread in forest ecosystems across the eastern United States and is likely to affect the composition and function of forests in acid-sensitive areas over the long term. Ozone is known to cause reductions in photosynthesis in many terrestrial plant species. For the most part, the effects of these pollutants are chronic, not acute, at the exposure levels common in the eastern United States. Mortality is often observed only at experimentally elevated exposure levels or in combination with other stresses such as drought, freezing, or pathogens. The notable exceptions are the acid/aluminum effects on aquatic organisms, which can be lethal at levels of acidity observed in many surface waters in the region. Although the effects are often subtle, they are important to biological conservation. Changes in species composition caused by terrestrial or aquatic acidification or eutrophication can propagate throughout the food webs to affect many organisms beyond those that are directly sensitive to the pollution. Likewise, sublethal doses of toxic pollutants may reduce the reproductive success of the affected organisms or make them more susceptible to potentially lethal pathogens. Many serious gaps in knowledge that warrant further research were identified. Among those gaps are the effects of acidification, ozone, and mercury on alpine systems, effects of nitrogen on species composition of forests, effects of mercury in terrestrial food webs, interactive effects of multiple pollutants, and interactions among air pollution and other environmental changes such as climate change and invasive species. These gaps in knowledge, coupled with the strong likelihood of impacts on ecosystems that have not been studied in the region, suggests that current knowledge underestimates the actual impact of air pollutants on biodiversity. Nonetheless, because known or likely impacts of air pollution on the biodiversity and function of natural ecosystems are widespread in the Northeast and Mid-Atlantic regions, the effects of air pollution should be considered in any long-term conservation strategy. It is recommended that ecologically relevant standards, such as "critical loads," be adopted for air pollutants and the importance of long-term monitoring of air pollution and its effects is emphasized.

  15. Water organic pollution and eutrophication influence soil microbial processes, increasing soil respiration of estuarine wetlands: site study in jiuduansha wetland.

    PubMed

    Zhang, Yue; Wang, Lei; Hu, Yu; Xi, Xuefei; Tang, Yushu; Chen, Jinhai; Fu, Xiaohua; Sun, Ying

    2015-01-01

    Undisturbed natural wetlands are important carbon sinks due to their low soil respiration. When compared with inland alpine wetlands, estuarine wetlands in densely populated areas are subjected to great pressure associated with environmental pollution. However, the effects of water pollution and eutrophication on soil respiration of estuarine and their mechanism have still not been thoroughly investigated. In this study, two representative zones of a tidal wetland located in the upstream and downstream were investigated to determine the effects of water organic pollution and eutrophication on soil respiration of estuarine wetlands and its mechanism. The results showed that eutrophication, which is a result of there being an excess of nutrients including nitrogen and phosphorus, and organic pollutants in the water near Shang shoal located upstream were higher than in downstream Xia shoal. Due to the absorption and interception function of shoals, there to be more nitrogen, phosphorus and organic matter in Shang shoal soil than in Xia shoal. Abundant nitrogen, phosphorus and organic carbon input to soil of Shang shoal promoted reproduction and growth of some highly heterotrophic metabolic microorganisms such as β-Proteobacteria, γ-Proteobacteria and Acidobacteria which is not conducive to carbon sequestration. These results imply that the performance of pollutant interception and purification function of estuarine wetlands may weaken their carbon sequestration function to some extent.

  16. Water Organic Pollution and Eutrophication Influence Soil Microbial Processes, Increasing Soil Respiration of Estuarine Wetlands: Site Study in Jiuduansha Wetland

    PubMed Central

    Zhang, Yue; Wang, Lei; Hu, Yu; Xi, Xuefei; Tang, Yushu; Chen, Jinhai; Fu, Xiaohua; Sun, Ying

    2015-01-01

    Undisturbed natural wetlands are important carbon sinks due to their low soil respiration. When compared with inland alpine wetlands, estuarine wetlands in densely populated areas are subjected to great pressure associated with environmental pollution. However, the effects of water pollution and eutrophication on soil respiration of estuarine and their mechanism have still not been thoroughly investigated. In this study, two representative zones of a tidal wetland located in the upstream and downstream were investigated to determine the effects of water organic pollution and eutrophication on soil respiration of estuarine wetlands and its mechanism. The results showed that eutrophication, which is a result of there being an excess of nutrients including nitrogen and phosphorus, and organic pollutants in the water near Shang shoal located upstream were higher than in downstream Xia shoal. Due to the absorption and interception function of shoals, there to be more nitrogen, phosphorus and organic matter in Shang shoal soil than in Xia shoal. Abundant nitrogen, phosphorus and organic carbon input to soil of Shang shoal promoted reproduction and growth of some highly heterotrophic metabolic microorganisms such as β-Proteobacteria, γ-Proteobacteria and Acidobacteria which is not conducive to carbon sequestration. These results imply that the performance of pollutant interception and purification function of estuarine wetlands may weaken their carbon sequestration function to some extent. PMID:25993326

  17. The influence of roadside solid and vegetation barriers on near-road air quality

    NASA Astrophysics Data System (ADS)

    Ghasemian, Masoud; Amini, Seyedmorteza; Princevac, Marko

    2017-12-01

    The current study evaluates the influence of roadside solid and vegetation barriers on the near-road air quality. Reynolds Averaged Navier-Stokes (RANS) technique coupled with the k - ε realizable turbulence model is utilized to investigate the flow pattern and pollutant concentration. A scalar transport equation is solved for a tracer gas to represent the roadway pollutant emissions. In addition, a broad range of turbulent Schmidt numbers are tested to calibrate the scalar transport equation. Three main scenarios including flat terrain, solid barrier, and vegetative barrier are studied. To validate numerical methodology, predicted pollutant concentration is compared with published wind tunnel data. Results show that the solid barrier induces an updraft motion and lofts the vehicle emission plume. Therefore, the ground-level pollutant concentration decreases compared to the flat terrain. For the vegetation barrier, different sub-scenarios with different vegetation densities ranging from approximately flat terrain to nearly solid barrier are examined. Dense canopies act in a similar manner as a solid barrier and mitigate the pollutant concentration through vertical mixing. On the other hand, the high porosity vegetation barriers reduce the wind speed and lead to a higher pollutant concentration. As the vegetation density increases, i.e. the barrier porosity decreases, the recirculation zone behind the canopy becomes larger and moves toward the canopy. The dense plant canopy with LAD = 3.33m-2m3 can improve the near-road air quality by 10% and high porosity canopy with LAD = 1m-2m3 deteriorates near-road air quality by 15%. The results of this study can be implemented as green infrastructure design strategies by urban planners and forestry organizations.

  18. Implementation of artificial neural networks (ANNs) to analysis of inter-taxa communities of benthic microorganisms and macroinvertebrates in a polluted stream.

    PubMed

    Kim, Byunghyuk; Lee, Se-Eun; Song, Mi-Young; Choi, Jung-Hye; Ahn, Soon-Mo; Lee, Kun-Seop; Cho, Eungchun; Chon, Tae-Soo; Koh, Sung-Cheol

    2008-02-01

    This study was performed to gain an understanding of the structural and functional relationships between inter-taxa communities (macroinvertebrates as consumers, and microbes as decomposers or preys for the invertebrates) in a polluted stream using artificial neural networks techniques. Sediment samples, carrying microorganisms (eubacteria) and macroinvertebrates, were seasonally collected from similar habitats in streams with different levels of pollution. Microbial community taxa and densities were determined using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA sequence analysis techniques. The identity and density of macroinvertebrates were concurrently determined. In general, differences were observed on grouping by self-organizing map (SOM) in polluted, clean and recovering sites based on the microbial densities, while the community patterns were partly dependent on the sampling period. A Spearman rank order correlation analysis revealed correlations of several eubacterial species with those of macroinvertebrates: a negative correlation was observed between Acidovorax sp. (from polluted sites) and Gammaridae (mostly from the clean site), while Herbaspirillum sp. and Janthinobacterium sp. appeared to have positive correlations with some macroinvertebrate species. The population dynamics of the tolerant texa, Tubificidae and Chironomidae, appeared to be related with changes in the densities of Acidovorax sp. This study revealed community relationships between macroinvertebrates and microorganisms, reflecting the connectivity between the two communities via the food chain. A further physio-ecological and symbiological study on the invertebrate-microorganism relationships will be required to understand the degradation and utilization of detritus in aquatic ecosystems as well as to elucidate the roles of the inter-taxa in the recovery of polluted aquatic environments.

  19. Air pollution monitoring using emission inventories combined with the moss bag approach.

    PubMed

    Iodice, P; Adamo, P; Capozzi, F; Di Palma, A; Senatore, A; Spagnuolo, V; Giordano, S

    2016-01-15

    Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Organic pollutant removal from edible oil process wastewater using electrocoagulation

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Can, O. T.; Hammed, M.; Nawarathna, D.; Simsek, H.

    2018-03-01

    Wastewaters generated from vegetable oil industries contain a high concentration of organic pollutants that are detrimental to the aquatic ecosystem. Electrochemical processes are gaining importance in the treatment of inorganic and resistant organic pollutants in wastewaters. In this study, electrocoagulation (EC) was applied to remove organic pollutants and oil and grease from canola oil wastewater using aluminum (Al) and iron (Fe) electrodes. The application of EC in the wastewater achieved more than 80% removal of organic carbon and nearly 100% removal of suspended solids (SS). The effectiveness of EC is influenced mainly by current density, pH, electrolyte (NaCl), electrode contact time and electrode type. It was observed that Al electrode combination yielded better removal at a lesser time compared to that of Fe electrodes. However, varying current densities had its significance in terms of coagulation time only. Increase in current density achieved decrease in coagulation time. Both Al and Fe could remove between 52-59% of oil and grease from canola oil wastewater

  1. Ground Level Ozone Regional Background Characteristics In North-west Pacific Rim

    NASA Astrophysics Data System (ADS)

    Chiang, C.; Fan, J.; Chang, J. S.

    2007-12-01

    Understanding the ground level ozone regional background characteristics is essential in understanding the contribution of long-range transport of pollutants from Asia Mainland to air quality in downwind areas. In order to understand this characteristic in north-west Pacific Rim, we conducted a coupled study using ozone observation from regional background stations and 3-D regional-scale chemical transport model simulations. We used O3, CO, wind speed and wind direction data from two regional background stations and ¡§other stations¡¨ over a ten year period and organized several numerical experiments to simulate one spring month in 2003 to obtain a deeper understanding. The so called ¡§other stations¡¨ had actually been named as background stations under various governmental auspices. But we found them to be often under strong influence of local pollution sources with strong diurnal or slightly longer time variations. We found that the Yonagunijima station (24.74 N, 123.02 E) and Heng-Chuen station (21.96 N,120.78 E), about a distance of 400 km apart, have almost the same ozone time series pattern. For these two stations in 2003, correlation coefficients (R2) for annual observed ozone concentration is about 0.64, in the springtime it is about 0.7, and in a one-month period at simulation days it is about 0.76. These two stations have very little small scale variations in all the variables studied. All variations are associated with large scale circulation changes. This is especially so at Yonagunijima station. Using a 3-D regional-scale chemical transport model for East Asia region including contribution from Asia continental outflow and neighboring island pollution areas we found that the Yonagunijima and HengChuen station are indeed free of pollutants from all neighboring areas keeping in mind that pollutants from Taiwan area is never far away. Ozone concentrations in these two stations are dominated by synoptic scale weather patterns, with diffused pollutant contribution from distant sources. When the weather system brings in air mass from the low latitude of western Pacific Ocean, ozone concentrations are about 10-20 ppb. When the China high pressure system moves eastward and with the accompanying Asian continental outflow plume, ozone concentrations are about 65-80 ppb.

  2. Understanding the Behaviour of Contamination Spread in Nagarjuna Sagar Reservoir Using Temporal Landsat Data

    NASA Astrophysics Data System (ADS)

    Tarun Teja, K.; Rajan, K. S.

    2016-06-01

    LANDSAT images are used to identify organic contaminants in water bodies, but, there is no enough evidence in present literature that LANDSAT is also good in identifying a mixture of organic and mineral contaminants such as agricultural waste. The focus of this paper is to evaluate the effectiveness of LANDSAT imagery to identify organic and mineral contamination (OMC) and to identify spread extent variations of pollution over the season/year in the Nagarjuna Sagar (NS) reservoir using only satellite images. A new band combination is proposed in order to detect OMC, because existing formulae based on band ratio proved to be inadequate in detecting the contamination in NS. Difference in reflectance values of Red and Green channel of an image helps clearly distinguish clear water from OMC water. This procedure was applied over LANDSAT data of the calendar years 2008, 2014 and 2015 to understand the contamination spread pattern through the reservoir. Results show that contamination is following a similar pattern over these calendar years. In January contamination starts at inlets and by May contamination spreads to almost 90% of the reservoir when the total area of water spread is also reduced by half. Contamination spread is low during the monsoonal period of June to September due to heavy inflow and heavy outflow of waters from NS reservoir. Post monsoon NS is contaminated again because of heavy inflow of runoffs from neighboring land use and limited water outflow. This contamination spread pattern matches the agricultural seasons and fertilizer application pattern in this region, indicating that agricultural use of fertilizers could be one of the primary causes of contamination for this waterbody.

  3. Are Changing Emission Patterns Across the Northern Hemisphere Influencing Long-range Transport Contributions to Background Air Pollution?

    EPA Science Inventory

    Air pollution reduction strategies for a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Contrasting changes in emissio...

  4. 40 CFR Table 2 to Subpart Ooo of... - Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of Amino/Phenolic Resins

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (HAP) From the Manufacture of Amino/Phenolic Resins 2 Table 2 to Subpart OOO of Part 63 Protection of... Pollutant Emissions: Manufacture of Amino/Phenolic Resins Pt. 63, Subpt. OOO, Table 2 Table 2 to Subpart OOO of Part 63—Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of Amino/Phenolic Resins...

  5. 40 CFR Table 2 to Subpart Ooo of... - Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of Amino/Phenolic Resins

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (HAP) From the Manufacture of Amino/Phenolic Resins 2 Table 2 to Subpart OOO of Part 63 Protection of... Pollutant Emissions: Manufacture of Amino/Phenolic Resins Pt. 63, Subpt. OOO, Table 2 Table 2 to Subpart OOO of Part 63—Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of Amino/Phenolic Resins...

  6. PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events.

    PubMed

    Ming, Lili; Jin, Ling; Li, Jun; Fu, Pingqing; Yang, Wenyi; Liu, Di; Zhang, Gan; Wang, Zifa; Li, Xiangdong

    2017-04-01

    Fine particle (PM 2.5 ) samples were collected simultaneously at three urban sites (Shanghai, Nanjing, and Hangzhou) and one rural site near Ningbo in the Yangtze River Delta (YRD) region, China, on a weekly basis from September 2013 to August 2014. In addition, high-frequency daily sampling was conducted in Shanghai and Nanjing for one month during each season. Severe regional PM 2.5 pollution episodes were frequently observed in the YRD, with annual mean concentrations of 94.6 ± 55.9, 97.8 ± 40.5, 134 ± 54.3, and 94.0 ± 57.6 μg m -3 in Shanghai, Nanjing, Hangzhou, and Ningbo, respectively. The concentrations of PM 2.5 and ambient trace metals at the four sites showed clear seasonal trends, with higher concentrations in winter and lower concentrations in summer. In Shanghai, similar seasonal patterns were found for organic carbon (OC), elemental carbon (EC), and water-soluble inorganic ions (K + , NH 4 + , Cl - , NO 3 - , and SO 4 2- ). Air mass backward trajectory and potential source contribution function (PSCF) analyses implied that areas of central and northern China contributed significantly to the concentration and chemical compositions of PM 2.5 in Shanghai during winter. Three heavy pollution events in Shanghai were observed during autumn and winter. The modelling results of the Nested Air Quality Prediction Modeling System (NAQPMS) showed the sources and transport of PM 2.5 in the YRD during the three pollution processes. The contribution of secondary species (SOC, NH 4 + , NO 3 - , and SO 4 2- ) in pollution event (PE) periods was much higher than in BPE (before pollution event) and APE (after pollution event) periods, suggesting the importance of secondary aerosol formation during the three pollution events. Furthermore, the bioavailability of Cu, and Zn in the wintertime PM 2.5 samples from Shanghai was much higher during the pollution days than during the non-pollution days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Directory of National Organizations Concerned With Land Pollution Control.

    ERIC Educational Resources Information Center

    Freed Publishing Co., New York, NY.

    Included in this directory are 133 national organizations, agencies, institutes and/or private groups concerned with the reduction or prevention of land pollution. Arranged in alphabetical order, each annotation gives the complete name of the organization, its address, telephone number, person to contact, and a short description of the scope of…

  8. Directory of National Organizations Concerned with Land Pollution Control, 1971.

    ERIC Educational Resources Information Center

    Freed Publishing Co., New York, NY.

    Included in this directory are 204 national organizations, agencies, institutes, and/or private groups concerned with the reduction or prevention of land pollution. Arranged in alphabetical order, each annotation gives the complete name of the organization, its address, telephone number, person to contact, and a short description of the scope of…

  9. AGGREGATE EXPOSURES OF NINE PRESCHOOL CHILDREN TO PERSISTENT ORGANIC POLLUTANTS AT DAY CARE AND AT HOME

    EPA Science Inventory

    In the summer of 1997, we measured the aggregate exposures of nine preschool children, ages two to five years, to a suite of organic pesticides and other persistent organic pollutants that are commonly found in the home and school environment. The children attended either of t...

  10. Source identification, spatio-temporal distribution and ecological risk of persistent organic pollutants in sediments from the upper Danube catchment.

    PubMed

    Kukučka, Petr; Audy, Ondřej; Kohoutek, Jiří; Holt, Eva; Kalábová, Tereza; Holoubek, Ivan; Klánová, Jana

    2015-11-01

    Riverine sediments, collected on a monthly basis during a period of one year, from five sites in a mixed land use region of the Czech Republic were analysed for chlorinated and brominated persistent organic pollutants (POPs). The region is located in the upper catchment of the Danube River. The POPs concentrations were as follows: 11-930 pg g(-1) polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs), 170-980 pg g(-1) dioxin-like polychlorinated biphenyls (dl-PCBs), 34-13,700 pg g(-1) polychlorinated naphthalenes (PCNs), 5.7-29,200 pg g(-1) polybrominated diphenylethers (PBDEs) and 0.21-351 ng g(-1) hexabromocyclododecanes (HBCDs). Concentrations expressed as toxic equivalents (TEQs), for PCDD/F+dl-PCB+PCN (TEQPCDD/F+dl-PCB+PCN) ranged from 0.37 to 19 pg g(-1). The results revealed a clear spatial separation between sites based on concentration and congener profile. There were also some obvious temporal patterns of selected POPs, which were related to river flow (seasonality) and organic carbon (TOC) of the sediment. Potential sources of POPs include local municipalities (flame retardants), some diffuse sources (PCNs and PCDDs/Fs) and potential point sources (PBDEs). Risk assessment based on risk quotients (RQ) revealed limited to medium ecological risk from PBDEs. TEQPCDD/F+dl-PCB+PCN were low relative to other European rivers, hence the risk to aquatic organisms was considered to be low. PCNs contributed significantly to overall TEQ in several cases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evaluating the temporal variability of concentrations of POPs in a glacier-fed stream food chain using a combined modeling approach.

    PubMed

    Morselli, Melissa; Semplice, Matteo; Villa, Sara; Di Guardo, Antonio

    2014-09-15

    Falling snow acts as an efficient scavenger of contaminants from the atmosphere and, accumulating on the ground surface, behaves as a temporary storage reservoir; during snow aging and metamorphosis, contaminants may concentrate and be subject to pulsed release during intense snow melt events. In high-mountain areas, firn and ice play a similar role. The consequent concentration peaks in surface waters can pose a risk to high-altitude ecosystems, since snow and ice melt often coincide with periods of intense biological activity. In such situations, the role of dynamic models can be crucial when assessing environmental behavior of contaminants and their accumulation patterns in aquatic organisms. In the present work, a dynamic fate modeling approach was combined to a hydrological module capable of estimating water discharge and snow/ice melt contributions on an hourly basis, starting from hourly air temperatures. The model was applied to the case study of the Frodolfo glacier-fed stream (Italian Alps), for which concentrations of a number of persistent organic pollutants (POPs), such as polychlorinated biphenyl (PCBs) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) in stream water and four macroinvertebrate groups were available. Considering the uncertainties in input data, results showed a satisfying agreement for both water and organism concentrations. This study showed the model adequacy for the estimation of pollutant concentrations in surface waters and bioaccumulation in aquatic organisms, as well as its possible role in assessing the consequences of climate change on the cycle of POPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Latitudinal exposure to DDTs, HCB, PCBs, PBDEs and DP in giant petrels (Macronectes spp.) across the Southern Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roscales, Jose L., E-mail: jlroscales@iqog.csic.es; González-Solís, Jacob; Zango, Laura

    Studies on Persistent Organic Pollutants (POPs) in Antarctic wildlife are scarce, and usually limited to a single locality. As a result, wildlife exposure to POPs across the Southern Ocean is poorly understood. In this study, we report the differential exposure of the major southern ocean scavengers, the giant petrels, to POPs across a wide latitudinal gradient. Selected POPs (PCBs, HCB, DDTs, PBDEs) and related compounds, such as Dechlorane Plus (DP), were analyzed in plasma of southern giant petrels (Macronectes giganteus) breeding on Livingston (62°S 61°W, Antarctica), Marion (46°S 37°E, sub-Antarctic), and Gough (40°S 10°W, cool temperate) islands. Northern giant petrelsmore » (Macronectes halli) from Marion Island were also studied. Stable isotope ratios of C and N (δ{sup 13}C and δ{sup 15}N) were used as dietary tracers of the marine habitat and trophic level, respectively. Breeding locality was a major factor explaining petrel exposure to POPs compared with species and sex. Significant relationships between δ{sup 13}C values and POP burdens, at both inter- and intra-population levels, support latitudinal variations in feeding grounds as a key factor in explaining petrel pollutant burdens. Overall, pollutant levels in giant petrels decreased significantly with latitude, but the relative abundance (%) of the more volatile POPs increased towards Antarctica. DP was found at negligible levels compared with legacy POPs in Antarctic seabirds. Spatial POP patterns found in giant petrels match those predicted by global distribution models, and reinforce the hypothesis of atmospheric long-range transport as the main source of POPs in Antarctica. Our results confirm that wildlife movements out of the polar region markedly increase their exposure to POPs. Therefore, strategies for Antarctic wildlife conservation should consider spatial heterogeneity in exposure to marine pollution. Of particular relevance is the need to clarify the exposure of Antarctic predators to emerging contaminants that are not yet globally regulated. - Highlights: • Latitude of petrels' foraging areas explains their exposure to legacy and emerging POPs. • Spatial patterns of POPs in giant petrels across the Southern Ocean are congener-dependent. • Overall POP burdens in giant petrels decrease southwards across the Southern Ocean. • Latitudinal patterns of POP in giant petrels agree with global distribution models. • POP patterns in giant petrels suggest long-range transport as their main source.« less

  13. [Fluorescence excitation-emission matrix spectroscopy of CDOM from Yundang Lagoon and its indication for organic pollution].

    PubMed

    Zhuo, Jian-Fu; Guo, Wei-Dong; Deng, Xun; Zhang, Zhi-Ying; Xu, Jing; Huang, Ling-Feng

    2010-06-01

    Fluorescence excitation-emission matrix spectroscopy (EEMs) combined with absorption spectroscopy were applied to study the optical properties of CDOM samples from highly-polluted Yundang Lagoon in Xiamen in order to demonstrate the feasibility of using these spectral properties as a tracer of the degree of organic pollution in similar polluted coastal waters. Surface water samples were collected from 13 stations 4 times during April and May, 2008. Parallel factor analysis (PARAFAC) model was used to resolve the EEMs of CDOM. Five separate fluorescent components were identified, including two humic-like components (C1: 240, 325/422 nm; C5: 260, 380/474 nm), two protein-like components (C2: 225, 275/350 nm; C4: 240, 300/354 nm) and one xenobiotic-like component (C3: 225/342 nm), which could be used as a good tracer for the input of the anthropogenic organic, pollutants. The concentrations of component C3 and dissolved organic carbon (DOC) are much higher near the inlet of sewage discharge, demonstrating that the discharge of surrounding sewage is a major source of organic pollutants in Yundang Lagoon. CDOM absorption coefficient alpha (280) and the score of humic-like component C1 showed significant linear relationships with COD(Mn), and a strong positive correlation was also found between the score of protein-like component C2 and BOD5. This suggested that the optical properties of CDOM may provide a fast in-situ way to monitor the variation of the water quality in Yundang Lagoon and that of similar polluted coastal waters.

  14. Persistent organic pollutants and histological lesions in Mayan catfish Ariopsis assimilis from the Bay of Chetumal, Mexico.

    PubMed

    Noreña-Barroso, E; Simá-Alvarez, R; Gold-Bouchot, G; Zapata-Pérez, O

    2004-02-01

    Livers of catfish (Ariopsis assimilis) from the Bay of Chetumal were analyzed for organochlorine compounds and hydrocarbons as part of a study to diagnose the environmental health of the Bay after a catfish mass mortality that occurred in 1996. The presence of histological lesions in several organs of the fish as result of chemical exposure was also evaluated. The concentrations of organic pollutants found in the Bay may be considered high if compared to the levels reported for sites affected by chemical pollution. High prevalences of cellular alteration histopathologies were found in liver, including hepatic tumors. The presence of some lesions may be related statistically to environmental pollution in the Bay, specially with chlorinated compounds.

  15. Immunomodulation by Persistent Organic Pollutants

    EPA Science Inventory

    Persistent organic pollutants (POPs) are widely distnbuted in the environment, are resistant to degradation, and increase in concentration (biomagnify) in the food chain. Concentrations in apical predators may be tens to hundreds of times greater than concentrations in their pref...

  16. Article "403. Toxicology of Persistent Organic Pollutants (POPs)"

    EPA Science Inventory

    Persistent Organic Pollutants (POPs) are all synthetic chemicals, either intentionally or unintentionally produced/released. Some POPs are pesticides. Others are industrial products or unintended by-products resulting from industrial processes or combustions (see figure 1). POPs ...

  17. Toxic organic pollutants from kerosene space heaters in Iran.

    PubMed

    Keyanpour-Rad, Mansoor

    2004-03-01

    The aim of this study was to investigate qualitatively the emission of toxic organic pollutants from an unventilated conventional kerosene space heater commonly used in Iran. A brand new common convective kerosene space heater, the "Aladdin," was used for this study. The well-tuned convective heater was operated in a 2.6-m(3) test chamber and then the emission was tested for organic pollutants. The emission was collected on Teflon-impregnated glass-fiber filters and XAD-2 resin and then analyzed by gas chromatography-mass spectroscopy. It was found that in addition to the ordinary pollutant gases, the heater emits aliphatic hydrocarbons, alcohols, polyaromatic hydrocarbons and the related nitrated compounds, phthalates, naphthalenes, and some other toxic organic compounds. However, it was found that the heater did not emit fluoranthene, cyclohexane, benzoic acid, and higher-molecular-weight alkylbenzenes, which could have resulted from the combustion of some other types of kerosene.

  18. Heavy Metal Pollution of Lakes along the Mid-Lower Reaches of the Yangtze River in China: Intensity, Sources and Spatial Patterns

    PubMed Central

    Zeng, Haiao; Wu, Jinglu

    2013-01-01

    Lakes in the middle and lower reaches of the Yangtze River form a shallow lake group unique in the World that is becoming increasingly polluted by heavy metals. Previous studies have largely focused on individual lakes, with limited exploration of the regional pattern of heavy metal pollution of the lake group in this area. This paper explores the sources, intensity and spatial patterns of heavy metal pollution of lake sediments. A total of 45 sample lakes were selected and the concentrations of key metal elements in the sediments of each lake were measured. The cluster analysis (CA), principal component analysis (PCA) and Geo-accumulation index (Ig) analysis permitted analysis of the source and pollution intensity of the target lakes. Results suggested a notable spatial variation amongst the sample lakes. Lakes in the upper part of the lower reach of the Yangtze River surrounded by typical urban landscapes were strongly or extremely polluted, with high concentrations of Pb, Zn, Cu and Cd in their sediments. This was attributed to large amount of untreated industrial discharges and municipal sewage produced within the lake catchments. In contrast, the heavy-metal pollution of lakes in the Taihu Delta area was notably lower due to industrial restructuring and implementation of effective environmental protection measures. Lakes along the middle reach of Yangtze River surrounded by agricultural areas were unpolluted to moderately polluted by heavy metals overall. Our results suggested that lakes in the central part of China require immediate attention and efforts should be made to implement management plans to prevent further degradation of water quality in these lakes. PMID:23442559

  19. Spatial and temporal microbial pollution patterns in a tropical estuary during high and low river flow conditions.

    PubMed

    Wiegner, T N; Edens, C J; Abaya, L M; Carlson, K M; Lyon-Colbert, A; Molloy, S L

    2017-01-30

    Spatial and temporal patterns of coastal microbial pollution are not well documented. Our study examined these patterns through measurements of fecal indicator bacteria (FIB), nutrients, and physiochemical parameters in Hilo Bay, Hawai'i, during high and low river flow. >40% of samples tested positive for the human-associated Bacteroides marker, with highest percentages near rivers. Other FIB were also higher near rivers, but only Clostridium perfringens concentrations were related to discharge. During storms, FIB concentrations were three times to an order of magnitude higher, and increased with decreasing salinity and water temperature, and increasing turbidity. These relationships and high spatial resolution data for these parameters were used to create Enterococcus spp. and C. perfringens maps that predicted exceedances with 64% and 95% accuracy, respectively. Mapping microbial pollution patterns and predicting exceedances is a valuable tool that can improve water quality monitoring and aid in visualizing FIB hotspots for management actions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Contamination status by persistent organic pollutants of the Atlantic spotted dolphin (Stenella frontalis) at the metapopulation level.

    PubMed

    Méndez-Fernandez, Paula; Taniguchi, Satie; Santos, Marcos C O; Cascão, Irma; Quérouil, Sophie; Martín, Vidal; Tejedor, Marisa; Carrillo, Manuel; Rinaldi, Carolina; Rinaldi, Renato; Montone, Rosalinda C

    2018-05-01

    The Atlantic spotted dolphin (Stenella frontalis) is an endemic species of the tropical-temperate Atlantic Ocean with widespread distribution. Although this species has been the subject of a large number of studies throughout its range, it remains in the "data deficient" category of the International Union for Conservation of Nature (IUCN). Chemical pollution by persistent organic pollutants (POPs) has been listed as one of the major threats to this species, however, there is no information on a wide scale. Thus, the aim of the present study was to investigate the contamination status of spotted dolphins on the metapopulation level as well as determine spatial and temporal variations in POP concentrations and bio-accumulation. A total of 115 blubber samples collected from a large part of the Atlantic basin were analysed for PCBs, DDTs, PBDEs, chlordanes, HCB and mirex. Although PCBs and DDTs were the predominant compounds in all areas, inter-location differences in POP concentrations were observed. Dolphins found at São Paulo, southeastern coast of Brazil, had the highest PCB concentrations (median: 10.5 μg/g lw) and Canary Islands dolphins had the highest DDT concentrations (median: 5.13 μg/g lw). Differences in PCB patterns among locations were also observed. Dolphins from the Azores and São Paulo demonstrated a similar pattern, with relatively highly contributions of tetra- (6.8 and 5.2%, respectively) and penta-CBs (25.6 and 23.8%, respectively) and lower contributions of hepta-CBs (20.8 and 23.5%, respectively) in comparison to other areas. Moreover, the sex of the animals and the year in which sampling or capture occurred exerted an important influence on the majority of the POPs analysed. Comparisons with toxicity thresholds available in the literature reveal that the São Paulo and Canary Island dolphins are the most vulnerable populations and should be considered in future conservation and management programs for the Atlantic spotted dolphin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effects of chronic crude oil exposure on early developmental stages of the Northern krill (Meganyctiphanes norvegica).

    PubMed

    Arnberg, Maj; Moodley, Leon; Dunaevskaya, Evgenia; Ramanand, Sreerekha; Ingvarsdóttir, Anna; Nilsen, Marianne; Ravagnan, Elisa; Westerlund, Stig; Sanni, Steinar; Tarling, Geraint A; Bechmann, Renée K

    2017-01-01

    Rising oil and gas activities in northern high latitudes have led to an increased risk of petroleum pollution in these ecosystems. Further, seasonal high UV radiation at high latitudes may elevate photo-enhanced toxicity of petroleum pollution to marine organisms. Zooplanktons are a key ecological component of northern ecosystems; therefore, it is important to assess their sensitivity to potential pollutants of oil and gas activity. As ontogenetic development may be particularly sensitive, the aim of this study was to examine the impact of chronic exposure to oil water dispersion (OWD) on development and feeding of early life stages of the Northern krill, Meganyctiphanes norvegica. In a range of experiments, embryonic, nonfeeding, and feeding larval stages were exposed to concentrations of between 0.01 and 0.1 mg/L of oil or photo-modified oil for 19 and 21 d. No significant effects on egg respiration, hatching success, development, length and larval survival were observed from these treatments. Similarly, evolution of fatty acid composition patterns during ontogenetic development was unaffected. The results indicates a high degree of resilience of these early developmental stages to such types and concentrations of pollutants. However, feeding and motility in later calyptopis-stage larvae were significantly impaired at exposure of 0.1 mg/L oil. Data indicate that feeding larval stage of krill was more sensitive to OWD than early nonfeeding life stages. This might be attributed to the narcotic effects of oil pollutants, their direct ingestion, or accumulated adverse effects over early development.

  2. A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence.

    PubMed

    Fan, Mingyi; Hu, Jiwei; Cao, Rensheng; Ruan, Wenqian; Wei, Xionghui

    2018-06-01

    Water pollution occurs mainly due to inorganic and organic pollutants, such as nutrients, heavy metals and persistent organic pollutants. For the modeling and optimization of pollutants removal, artificial intelligence (AI) has been used as a major tool in the experimental design that can generate the optimal operational variables, since AI has recently gained a tremendous advance. The present review describes the fundamentals, advantages and limitations of AI tools. Artificial neural networks (ANNs) are the AI tools frequently adopted to predict the pollutants removal processes because of their capabilities of self-learning and self-adapting, while genetic algorithm (GA) and particle swarm optimization (PSO) are also useful AI methodologies in efficient search for the global optima. This article summarizes the modeling and optimization of pollutants removal processes in water treatment by using multilayer perception, fuzzy neural, radial basis function and self-organizing map networks. Furthermore, the results conclude that the hybrid models of ANNs with GA and PSO can be successfully applied in water treatment with satisfactory accuracies. Finally, the limitations of current AI tools and their new developments are also highlighted for prospective applications in the environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Fiber optic micromirror sensor for volatile organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, M.A.; Ricco, A.J.; Buss, R.

    With the growing concern over environmental pollution, there is a need for sensors to locate and measure the distribution of a wide range of pollutants. In this paper the authors report a fiber optic sensor, based on a thin film micromirror, which responds to a wide range of volatile organic compounds (VOCs). This generic class of sensor will be useful for monitoring applications where the pollutant has already been identified.

  4. Removal of Organic Pollutants from Municipal Wastewater by Applying High-Rate Algal Pond in Addis Ababa, Ethiopia

    NASA Astrophysics Data System (ADS)

    Alemu, Keneni; Assefa, Berhanu; Kifle, Demeke; Kloos, Helmut

    2018-05-01

    The discharge of inadequately treated municipal wastewater has aggravated the pollution load in developing countries including Ethiopia. Conventional wastewater treatment methods that require high capital and operational costs are not affordable for many developing nations, including Ethiopia. This study aimed to investigate the performance of two high-rate algal ponds (HRAPs) in organic pollutant removal from primary settled municipal wastewater under highland tropical climate conditions in Addis Ababa. The experiment was done for 2 months at hydraulic retention times (HRTs) ranging from 2 to 8 days using an organic loading rates ranging 333-65 kg {BOD}5 /ha/day using two HRAPs, 250 and 300 mm deep, respectively. In this experiment, Chlorella sp., Chlamydomonas sp., and Scenedesmus sp., the class of Chlorophyceae, were identified as the dominant species. Chlorophyll-a production was higher in the shallower ponds (250 mm) throughout the course of the study, whereas the deeper HRAP (300 mm) showed better dissolved oxygen production. The maximum COD and {BOD}5 removal of 78.03 and 81.8% was achieved at a 6-day HRT operation in the 250-mm-deep HRAP. Therefore, the 300-mm-deep HRAP is promising for scaling up organic pollutant removal from municipal wastewater at a daily average organic loading rate of 109.3 kg {BOD}5 /ha/day and a 6-day HRT. We conclude that the removal of organic pollutants in HRAP can be controlled by pond depth, organic loading rate, and HRT.

  5. Zinc oxide tetrapods as efficient photocatalysts for organic pollutant degradation

    NASA Astrophysics Data System (ADS)

    Liu, Fangzhou; Leung, Yu Hang; Djurisić, Aleksandra B.; Liao, Changzhong; Shih, Kaimin

    2014-03-01

    Bisphenol A (BPA) and other organic pollutants from industrial wastewater have drawn increasing concern in the past decades regarding their environmental and biological risks, and hence developing strategies of effective degradation of BPA and other organic pollutants is imperative. Metal oxide nanostructures, in particular titanium oxide (TiO2) and zinc oxide (ZnO), have been demonstrated to exhibit efficient photodegradation of various common organic dyes. ZnO tetrapods are of special interest due to their low density of native defects which consequently lead to lower recombination losses and higher photocatalytic efficiency. Tetrapods can be obtained by relatively simple and low-cost vapor phase deposition in large quantity; the micron-scale size would also be advantageous for catalyst recovery. In this study, the photodegradation of BPA with ZnO tetrapods and TiO2 nanostructures under UV illumination were compared. The concentration of BPA dissolved in DI water was analyzed by high-performance liquid chromatography (HPLC) at specified time intervals. It was observed that the photocatalytic efficiency of ZnO tetrapods eventually surpassed Degussa P25 in free-standing form, and more than 80% of BPA was degraded after 60 min. Photodegradation of other organic dye pollutants by tetrapods and P25 were also examined. The superior photocatalytic efficiency of ZnO tetrapods for degradation of BPA and other organic dye pollutants and its correlation with the material properties were discussed.

  6. 40 CFR 455.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Organic Pesticide Chemicals....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...

  7. 40 CFR 455.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Organic Pesticide Chemicals....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...

  8. 40 CFR 455.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Organic Pesticide Chemicals....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...

  9. 40 CFR 455.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Organic Pesticide Chemicals Manufacturing....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...

  10. 40 CFR 455.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Organic Pesticide Chemicals Manufacturing....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...

  11. Microplastic pollution in the surface waters of the Bohai Sea, China.

    PubMed

    Zhang, Weiwei; Zhang, Shoufeng; Wang, Juying; Wang, Yan; Mu, Jingli; Wang, Ping; Lin, Xinzhen; Ma, Deyi

    2017-12-01

    The ubiquitous presence and persistency of microplastics in aquatic environments is of particular concern because these pollutants represent an increasing threat to marine organisms and ecosystems. An identification of the patterns of microplastic distribution will help to understand the scale of their potential effect on the environment and on organisms. In this study, the occurrence and distribution of microplastics in the Bohai Sea are reported for the first time. We sampled floating microplastics at 11 stations in the Bohai Sea using a 330 μm trawling net in August 2016. The abundance, composition, size, shape and color of collected debris samples were analyzed after pretreatment. The average microplastic concentration was 0.33 ± 0.34 particles/m 3 . Micro-Fourier transform infrared spectroscopy analysis showed that the main types of microplastics were polyethylene, polypropylene, and polystyrene. As the size of the plastics decreased, the percentage of polypropylene increased, whereas the percentages of polyethylene and polystyrene decreased. Plastic fragments, lines, and films accounted for most of the collected samples. Accumulation at some stations could be associated with transport and retention mechanisms that are linked to wind and the dynamics of the rim current, as well as different sources of the plastics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Analysis of the Elodea nuttallii transcriptome in response to mercury and cadmium pollution: development of sensitive tools for rapid ecotoxicological testing.

    PubMed

    Regier, Nicole; Baerlocher, Loïc; Münsterkötter, Martin; Farinelli, Laurent; Cosio, Claudia

    2013-08-06

    Toxic metals polluting aquatic ecosystems are taken up by inhabitants and accumulate in the food web, affecting species at all trophic levels. It is therefore important to have good tools to assess the level of risk represented by toxic metals in the environment. Macrophytes are potential organisms for the identification of metal-responsive biomarkers but are still underrepresented in ecotoxicology. In the present study, we used next-generation sequencing to investigate the transcriptomic response of Elodea nuttallii exposed to enhanced concentrations of Hg and Cd. We de novo assembled more than 60 000 contigs, of which we found 170 to be regulated dose-dependently by Hg and 212 by Cd. Functional analysis showed that these genes were notably related to energy and metal homeostasis. Expression analysis using nCounter of a subset of genes showed that the gene expression pattern was able to assess toxic metal exposure in complex environmental samples and was more sensitive than other end points (e.g., bioaccumulation, photosynthesis, etc.). In conclusion, we demonstrate the feasibility of using gene expression signatures for the assessment of environmental contamination, using an organism without previous genetic information. This is of interest to ecotoxicology in a wider sense given the possibility to develop specific and sensitive bioassays.

  13. Persistent organic pollutants in chinook salmon (Oncorhynchus tshawytscha): implications for resident killer whales of British Columbia and adjacent waters.

    PubMed

    Cullon, Donna L; Yunker, Mark B; Alleyne, Carl; Dangerfield, Neil J; O'Neill, Sandra; Whiticar, Michael J; Ross, Peter S

    2009-01-01

    We measured persistent organic pollutant (POP) concentrations in chinook salmon (Oncorhynchus tshawytscha) in order to characterize dietary exposure in the highly contaminated, salmon-eating northeastern Pacific resident killer whales. We estimate that 97 to 99% of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dichlorodiphenyltrichloroethane (DDT), and hexachlorocyclohexane (HCH) in returning adult chinook were acquired during their time at sea. Highest POP concentrations (including PCBs, PCDDs, PCDFs, and DDT) and lowest lipids were observed in the more southerly chinook sampled. While feeding by salmon as they enter some more POP-contaminated near-shore environments inevitably contribute to their contamination, relationships observed between POP patterns and both lipid content and delta13C also suggest a migration-related metabolism and loss of the less-chlorinated PCB congeners. This has implications for killer whales, with the more PCB-contaminated salmon stocks in the south partly explaining the 4.0 to 6.6 times higher estimated daily intake for sigmaPCBs in southern resident killer whales compared to northern residents. We hypothesize that the lower lipid content of southerly chinook stocks may cause southern resident killer whales to increase their salmon consumption by as much as 50%, which would further increase their exposure to POPs.

  14. Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction

    NASA Astrophysics Data System (ADS)

    Muthu, Karuppiah; Priya, Sethuraman

    2017-05-01

    Cassia auriculata L., the flower aqueous extract was fractionated by separating funnel using n-hexane (A1), chloroform (A2), ethyl acetate (A3) and triple distilled water (A4). The A4 fraction was concentrated and determined the presence of preliminary phytochemicals such as tannins, flavonoids, glycosides, carbohydrates and polyphenolic compounds. These phytochemical compounds acted as reducing as well as a stabilizing agent in the green synthesis of Ag NPs from aqueous silver ions. Initially, the colour change and UV-vis absorbance surface Plasmon resonance strong, wide band located at 435 nm has confirmed the synthesis of Ag NPs. The X-ray diffraction (XRD) pattern of Ag NPs shows a face-centered cubic crystal structure. The observed values were calculated by Debye-Scherrer equation to theoretical confirms the particle size of 18 nm. The surface morphology of Ag NPs was viewed by HRTEM, the particles are spherical and triangle shapes with sizes from 10 to 35 nm. Further, the Ag NPs was effective catalytic activity in the reduction of highly environmental polluted organic compounds of 4-nitrophenol and methyl orange. The green synthesis of Ag NPs seems to eco-friendly, cost-effective, conventional one spot synthesis and greater performance of catalytic degradation of environmentally polluted organic dyes.

  15. METHODOLOGIES FOR QUANTIFYING POLLUTION PREVENTION BENEFITS FROM LANDFILL GAS CONTROL AND UTILIZATION

    EPA Science Inventory

    The report describes developing emission factors for controlled primary pollutants (e.g., nonmethane organic compounds) and secondary air pollutants (e.g., carbon monoxide). The report addresses the following criteria air pollutants and greenhouse gases: carbon dioxide, carbon mo...

  16. Multidirectional Translation of Environmental Health Science in Community Settings: The Case of Oxidative Stress Pathways.

    PubMed

    Sampson, Natalie R; Tetteh, Myra M; Schulz, Amy J; Ramirez, Erminia; Wilkins, Donele; de Majo, Ricardo; Mentz, Graciela; Johnson-Lawrence, Vicki

    2016-01-01

    Translation of environmental health science in vulnerable communities is particularly important to promote public health and reduce health inequities. We describe a structured, multidirectional process used to develop a suite of health promotion tools (e.g., fact sheets, video, maps) documenting patterning of local air pollution sources and availability of antioxidant-rich foods in Detroit, Michigan as factors that jointly affect oxidative stress (OS). OS underlies many pathological processes associated with air pollution, including asthma, metabolic syndrome, cancer, diabetes, and obesity. This translational effort involved a 2-year dialogue among representatives from community-based and environmental organizations, health service providers, and academic researchers. This dialogue led to development of tools, as well as new opportunities to inform related policies and research. Through this example, we highlight how collaborative partnerships can enhance multidirectional dialogue to inform translation of environmental health science by promoting consideration of multilevel risk factors, local priorities and context, and diverse audiences.

  17. Atmospheric pollutants and trace gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranieri, A.; Schenone, G.; Lencioni, L.

    1994-03-01

    Pumpkin [Cucurbita pepo (L.) cv. Ambassador] plants were grown under either nonfiltered or filtered ambient air in open-top field chambers (OTCs) near the urban area of Milan, Northern Italy. The effects of ambient air pollution on the enzymatic detoxfication system of the leaves, both in terms of activity and isoform pattern were investigated. The data on air quality showed that ozone was the main phytotoxic pollutant present in ambient air, reaching a 7 h mean of 63 nL L{sup -1} and a maximum hourly peak of 104 nL L{sup -1} The peroxidase and catalase activities increased fourfold and twofold, respectivelymore » in the nonfiltered air plants In comparison to the filtered air ones. The peroxidase patterns were very modified in the polluted plants. In contrast no significant changes were found in the activity and isoenzyme pattern of superoxide dismutase. The data reported here suggest that in field-grown pumpkin plants exposed to ambient levels of photooxidants, a stimulation of the peroxddase-catalase detoxification system takes place. 32 refs., 3 figs., 3 tabs.« less

  18. [Effect of chemical air pollution on congenital morphogenetic variants].

    PubMed

    Kotysheva, E N

    2011-01-01

    The paper presents the results of investigating the impact of chemical ambient air pollution on congenital morphogenetic variants (CMVs) in 4-7-year-old children. CMVs have been ascertained to depend on the pattern and level of chemical ambient air pollution. Mild morphogenetic disorders develop in the conceptive, organogenetic, and early fetogenetic periods.

  19. Hydrocarbons, PCBs and DDT in the NW Mediterranean deep-sea fish Mora moro

    NASA Astrophysics Data System (ADS)

    Solé, Montserrat; Porte, Cinta; Albaigés, Joan

    2001-02-01

    Data on aliphatic and polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and DDTs in the deep-sea fish Mora moro are reported in relation to the animal's weight/size and tissues (muscle, liver, digestive tube and gills). Fish samples were collected in the Gulf of Lions (NW Mediterranean) at an approximate depth of 1000 m. The concentrations of these organic pollutants followed the trend muscle

  20. Spatial/Temporal Variations of Elemental Carbon, Organic Carbon, and Trace Elements in PM10 and the Impact of Land-Use Patterns on Community Air Pollution in Paterson, NJ

    PubMed Central

    Yu, Chang Ho; Fan, Zhi-Hua; Meng, Qingyu; Zhu, Xianlei; Korn, Leo; Bonanno, Linda J.

    2014-01-01

    An urban community PM10 (particulate matter ≤ 10 μm in aerodynamic diameter) air pollution study was conducted in Paterson, NJ, a mixed land-use community that is interspersed with industrial, commercial, mobile, and residential land-use types. This paper examines (1) the spatial/temporal variation of PM10, elemental carbon (EC), organic carbon (OC), and nine elements; and (2) the impact of land-use type on those variations. Air samples were collected from three community-oriented locations in Paterson that attempted to capture industrial, commercial, and mobile source-dominated emissions. Sampling was conducted for 24 hr every 6 days from November 2005 through December 2006. Samples were concurrently collected at the New Jersey Department of Environmental Protection-designated air toxics background site in Chester, NJ. PM10 mass, EC, OC, and nine elements (Ca, Cu, Fe, Pb, Mn, Ni, S, Ti, and Zn) that had more than 50% of samples above detection and known sources or are toxic were selected for spatial/temporal analysis in this study. The concentrations of PM10, EC, OC, and eight elements (except S) were significantly higher in Paterson than in Chester (P < 0.05). The concentrations of these elements measured in Paterson were also found to be higher during winter than the other three seasons (except S), and higher on weekdays than on weekends (except Pb). The concentrations of EC, Cu, Fe, and Zn at the commercial site in Paterson were significantly higher than the industrial and mobile sites; however, the other eight species were not significantly different within the city (P > 0.05). These results indicated that anthropogenic sources of air pollution were present in Paterson. The source apportionment confirmed the impact of vehicular and industrial emissions on the PM10 ambient air pollution in Paterson. The multiple linear regression analysis showed that categorical land-use type was a significant predictor for all air pollution levels, explaining up to 42% of the variability in concentration by land-use type only. PMID:21751583

  1. A REVIEW OF BIOACCUMULATION MODELING APPROACHES FOR PERSISTENT ORGANIC POLLUTANTS

    EPA Science Inventory

    Persistent organic pollutants and mercury are likely to bioaccumulate in biological components of the environment, including fish and wildlife. The complex and long-term dynamics involved with bioaccumulation are often represented with models. Current scientific developments in t...

  2. A novel approach combining self-organizing map and parallel factor analysis for monitoring water quality of watersheds under non-point source pollution

    PubMed Central

    Zhang, Yixiang; Liang, Xinqiang; Wang, Zhibo; Xu, Lixian

    2015-01-01

    High content of organic matter in the downstream of watersheds underscored the severity of non-point source (NPS) pollution. The major objectives of this study were to characterize and quantify dissolved organic matter (DOM) in watersheds affected by NPS pollution, and to apply self-organizing map (SOM) and parallel factor analysis (PARAFAC) to assess fluorescence properties as proxy indicators for NPS pollution and labor-intensive routine water quality indicators. Water from upstreams and downstreams was sampled to measure dissolved organic carbon (DOC) concentrations and excitation-emission matrix (EEM). Five fluorescence components were modeled with PARAFAC. The regression analysis between PARAFAC intensities (Fmax) and raw EEM measurements indicated that several raw fluorescence measurements at target excitation-emission wavelength region could provide similar DOM information to massive EEM measurements combined with PARAFAC. Regression analysis between DOC concentration and raw EEM measurements suggested that some regions in raw EEM could be used as surrogates for labor-intensive routine indicators. SOM can be used to visualize the occurrence of pollution. Relationship between DOC concentration and PARAFAC components analyzed with SOM suggested that PARAFAC component 2 might be the major part of bulk DOC and could be recognized as a proxy indicator to predict the DOC concentration. PMID:26526140

  3. [Identification of using organic carbon isotopic composition of soil pollution process].

    PubMed

    Guo, Qing-Jun; Chen, Tong-Bin; Yang, Jun; Strauss, Harald; Lei, Mei; Zhu, Guang-Xu; Li, Yan-Mei; Zhou, Xiao-Yong; Li, Xiao-Yan

    2011-10-01

    This study has taken advantage of the characteristics of concentration of soil organic matter (SOC) and delta13 C(SOC) values to provide proofs for environment quality assessment and to know more about polluted sources, sizes and processes in Beijing steel company area. delta13C values of SOC is good for tracing sources and documenting shifts in community composition and distribution. Two sections (Beijing steel company area and Yongledian, Tongzhou) which belong to two different soil types collected in Beijing, and organic carbon isotopic composition and total soil organic carbon were analyzed. These results shows that SOC of soil samples from Beijing steel company area are quite high, and even 9.7% at the surface sample, however SOC from unpolluted area (Yongledian area) is lower than those of industrial area. delta13 C(SOC) from soils of Beijing steel company area and Yongledian area respectively vary from -24.8 per thousand to -23.1 per thousand and -26.4 per thousand to -20.5 per thousand, the results are quite different. The results reflect that there are different organic carbon sources in different types' soil: Organic carbon from Beijing steel company area has been mainly affected by coal burning, soil organic carbon concentrations are quite high, and pollution can affect on soils 70 cm deep underground; and soils from Yongledian area, have been not polluted, and organic matter is from natural litter (C3 plants). Although there are different soil organic carbon concentrations and isotope compositions, two soil sections have similar variation trends. This study provides proofs for environment quality assessment and know more about polluted and natural sources, sizes in Beijing.

  4. COMPENDIUM OF METHODS FOR THE DETERMINATION ...

    EPA Pesticide Factsheets

    This Second Edition of the Compendium has been prepared to provide regional, state and local environmental regulatory agencies with step-by-step sampling and analysis procedures for the determination of selected toxic organic pollutants in ambient air. It is designed to assist those persons responsible for sampling and analysis of toxic organic pollutants in complying with the requirements of Title III of the Clean Air Act. This revised Compendium presents a set of 17 methods in a standardized format with a variety of applicable sampling methods, as well as several analytical techniques, for specific classes of organic pollutants, as appropriate to the specific pollutant compound, its level, and potential interferences. Consequently, this treatment allows the user flexibility in selecting alternatives to complement his or her background and laboratory capability. Information

  5. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets.

    PubMed

    Lasko, Kristofer; Vadrevu, Krishna Prasad; Nguyen, Thanh Thi Nhat

    2018-01-01

    Air pollution is one of the major environmental concerns in Vietnam. In this study, we assess the current status of air pollution over Hanoi, Vietnam using multiple different satellite datasets and weather information, and assess the potential to capture rice residue burning emissions with satellite data in a cloud-covered region. We used a timeseries of Ozone Monitoring Instrument (OMI) Ultraviolet Aerosol Index (UVAI) satellite data to characterize absorbing aerosols related to biomass burning. We also tested a timeseries of 3-hourly MERRA-2 reanalysis Black Carbon (BC) concentration data for 5 years from 2012-2016 and explored pollution trends over time. We then used MODIS active fires, and synoptic wind patterns to attribute variability in Hanoi pollution to different sources. Because Hanoi is within the Red River Delta where rice residue burning is prominent, we explored trends to see if the residue burning signal is evident in the UVAI or BC data. Further, as the region experiences monsoon-influenced rainfall patterns, we adjusted the BC data based on daily rainfall amounts. Results indicated forest biomass burning from Northwest Vietnam and Laos impacts Hanoi air quality during the peak UVAI months of March and April. Whereas, during local rice residue burning months of June and October, no increase in UVAI is observed, with slight BC increase in October only. During the peak BC months of December and January, wind patterns indicated pollutant transport from southern China megacity areas. Results also indicated severe pollution episodes during December 2013 and January 2014. We observed significantly higher BC concentrations during nighttime than daytime with peaks generally between 2130 and 0030 local time. Our results highlight the need for better air pollution monitoring systems to capture episodic pollution events and their surface-level impacts, such as rice residue burning in cloud-prone regions in general and Hanoi, Vietnam in particular.

  6. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets

    PubMed Central

    Vadrevu, Krishna Prasad; Nguyen, Thanh Thi Nhat

    2018-01-01

    Air pollution is one of the major environmental concerns in Vietnam. In this study, we assess the current status of air pollution over Hanoi, Vietnam using multiple different satellite datasets and weather information, and assess the potential to capture rice residue burning emissions with satellite data in a cloud-covered region. We used a timeseries of Ozone Monitoring Instrument (OMI) Ultraviolet Aerosol Index (UVAI) satellite data to characterize absorbing aerosols related to biomass burning. We also tested a timeseries of 3-hourly MERRA-2 reanalysis Black Carbon (BC) concentration data for 5 years from 2012–2016 and explored pollution trends over time. We then used MODIS active fires, and synoptic wind patterns to attribute variability in Hanoi pollution to different sources. Because Hanoi is within the Red River Delta where rice residue burning is prominent, we explored trends to see if the residue burning signal is evident in the UVAI or BC data. Further, as the region experiences monsoon-influenced rainfall patterns, we adjusted the BC data based on daily rainfall amounts. Results indicated forest biomass burning from Northwest Vietnam and Laos impacts Hanoi air quality during the peak UVAI months of March and April. Whereas, during local rice residue burning months of June and October, no increase in UVAI is observed, with slight BC increase in October only. During the peak BC months of December and January, wind patterns indicated pollutant transport from southern China megacity areas. Results also indicated severe pollution episodes during December 2013 and January 2014. We observed significantly higher BC concentrations during nighttime than daytime with peaks generally between 2130 and 0030 local time. Our results highlight the need for better air pollution monitoring systems to capture episodic pollution events and their surface-level impacts, such as rice residue burning in cloud-prone regions in general and Hanoi, Vietnam in particular. PMID:29738543

  7. 40 CFR Table 9 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Soluble Hazardous Air Pollutants 9...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic...

  8. 40 CFR Table 9 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Soluble Hazardous Air Pollutants 9...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic...

  9. Changes in atmospheric composition during the 2014 APEC conference in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Li, Yunting; Chen, Tian; Li, Lingjun; Liu, Baoxian; Zhang, Dawei; Sun, Feng; Wei, Qiang; Jiang, Lei; Pan, Libo

    2015-12-01

    Five sites were selected to investigate the impact of regional-scale air pollutant control strategies during the Asia-Pacific Economic Cooperation (APEC) conference (1-12 November 2014) in and around Beijing. Concentrations of most of the air pollutants in the APEC period were significantly lower than those in the adjacent time period, especially when the enhanced reduction measures were implemented. Compared with the same time period in the previous 5 years (PM2.5 was compared with the last year), average concentrations of SO2, NO2, PM10, and PM2.5 in the five sites during the APEC period decreased by 62%, 41%, 36%, and 47% respectively, whereas average concentration of O3 increased by 102%. A possible cause of the increase of O3 concentrations is the stricter reduction measure on NOx compared to that applied to volatile organic compounds. Compared with the non-APEC period in autumn 2014, concentrations of most of the chemical compositions of PM2.5 decreased significantly in the APEC period, especially SO42-, NO3-, and NH4+ (sulfate, nitrate, and ammonium). The aerosol optical depth and the columnar NO2 in the area of 39.5°-40.5°N, 116°-117°E showed a changing pattern similar to the typical gas pattern. The net effectiveness of the emission reduction measures was calculated through a comparison of concentrations of air pollutants under similar meteorological conditions. Through the reduction measures imposed during the APEC period, concentrations of CO, SO2, NO, NO2, PM10, and PM2.5 decreased by 54%, 74%, 64%, 48%, 67%, and 65%, respectively, whereas concentrations of O3 increased by 189%.

  10. Changes in atmospheric composition during 2014 APEC conference in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2016-12-01

    Five sites were selected to investigate the impact of regional-scale air pollutant control strategies during the Asia-Pacific Economic Cooperation (APEC) conference (November 1-12, 2014) in and around Beijing. Concentrations of most of the air pollutants in the APEC period were significantly lower than those in the adjacent time period, especially when the enhanced reduction measures were implemented. Compared with the same time period in the previous five years (PM2.5 was compared with the last year), average concentrations of SO2, NO2, PM10, and PM2.5 in the five sites during the APEC period decreased by 62%, 41%, 36% and 47% respectively, whereas average concentration of O3 increased by 102%. A possible cause of the increase of O3 concentrations is the stricter reduction measure on NOx compared to that applied to volatile organic compounds (VOCs). Compared with the non-APEC period in autumn 2014, concentrations of most of the chemical compositions of PM2.5 decreased significantly in the APEC period, especially SO42-, NO3-, and NH4+(Sulfate, nitrate and ammonium, SNA). The aerosol optical depth (AOD) and the columnar NO2 in the area of 39.5°-40.5°N, 116°-117°E showed a changing pattern similar to the typical gas pattern. The net effectiveness of the emission reduction measures was calculated through a comparison of concentrations of air pollutants under similar meteorological conditions. Through the reduction measures imposed during the APEC period, concentrations of CO, SO2, NO, NO2, PM10 and PM2.5, decreased by 54%, 74%, 64%, 48%, 67%, and 65%, respectively, whereas concentrations of O3 increased by 189%.

  11. Relationship between legacy and emerging organic pollutants in Antarctic seabirds and their foraging ecology as shown by δ13C and δ15N.

    PubMed

    Mello, Flávia V; Roscales, Jose L; Guida, Yago S; Menezes, Jorge F S; Vicente, Alba; Costa, Erli S; Jiménez, Begoña; Torres, João Paulo M

    2016-12-15

    Foraging ecology and the marine regions exploited by Antarctic seabirds outside of breeding strongly influence their exposure to persistent organic pollutants (POPs). However, relationships between them are largely unknown, an important knowledge gap given that many species are capital breeders and POPs may be deleterious to seabirds. This study investigates the relationship between Antarctic seabird foraging ecology (measured by δ 13 C and δ 15 N) and POPs accumulated in their eggs prior to breeding. Organochlorinated pesticides, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and dechlorane plus (DP) were measured in eggs of chinstrap, Adélie, and gentoo penguins (Pygoscelis antarctica, P. adeliae, P. papua), as well as south polar skua (Catharacta maccormicki), sampled on King George Island. Total POP levels were as follows: skua (3210±3330ng/g lipid weight)>chinstrap (338±128ng/g)>Adélie (287±43.3ng/g)>gentoo (252±49.4ng/g). Trophic position and pre-breeding foraging sites were important in explaining POP accumulation patterns across species. The most recalcitrant compounds were preferentially accumulated in skuas, occupying one trophic level above penguins. In contrast, their Antarctic endemism, coupled with influence from cold condensation of pollutants, likely contributed to penguins exhibiting higher concentrations of more volatile compounds (e.g., hexachlorobenzene, PCB-28 and -52) than skuas. Regional differences in penguin pre-breeding foraging areas did not significantly affect their POP burdens, whereas the trans-equatorial migration and foraging sites of skuas were strongly reflected in their pollutant profiles, especially for PBDEs and DPs. Overall, our results provide new insights on migratory birds as biovectors of POPs, including non-globally regulated compounds such as DP, from northern regions to Antarctica. Copyright © 2016. Published by Elsevier B.V.

  12. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste.

    PubMed

    Chandra, Ram; Kumar, Vineet

    2017-01-01

    The safe disposal of post-methanated distillery sludge (PMDS) in the environment is challenging due to high concentrations of heavy metals along with other complex organic pollutants. The study has revealed that PMDS contained high amounts of Fe (2403), Zn (210), Mn (126), Cu (73.62), Cr (21.825), Pb (16.33) and Ni (13.425 mg kg -1 ) along with melanoidins and other co-pollutants. The phytoextraction pattern in 15 potential native plants growing on sludge showed that the Blumea lacera, Parthenium hysterophorous, Setaria viridis, Chenopodium album, Cannabis sativa, Basella alba, Tricosanthes dioica, Amaranthus spinosus L., Achyranthes sp., Dhatura stramonium, Sacchrum munja and Croton bonplandianum were noted as root accumulator for Fe, Zn and Mn, while S. munja, P. hysterophorous, C. sativa, C. album, T. dioica, D. stramonium, B. lacera, B. alba, Kalanchoe pinnata and Achyranthes sp. were found as shoot accumulator for Fe. In addition, A. spinosus L. was found as shoot accumulator for Zn and Mn. Similarly, all plants found as leaf accumulator for Fe, Zn and Mn except A. spinosus L. and Ricinus communis. Further, the BCF of all tested plants were noted <1, while the TF showed >1. This revealed that metal bioavailability to plant is poor due to strong complexation of heavy metals with organic pollutants. This gives a strong evidence of hyperaccumulation for the tested metals from complex distillery waste. Furthermore, the TEM observations of root of P. hysterophorous, C. sativa, Solanum nigrum and R. communis showed formation of multi-nucleolus, multi-vacuoles and deposition of metal granules in cellular component of roots as a plant adaptation mechanism for phytoextraction of heavy metal-rich polluted site. Hence, these native plants may be used as a tool for in situ phytoremediation and eco-restoration of industrial waste-contaminated site.

  13. Analysis of ambient SO 2 concentrations and winds in the complex surroundings of a thermal power plant

    NASA Astrophysics Data System (ADS)

    Mlakar, P.

    2004-11-01

    SO2 pollution is still a significant problem in Slovenia, especially around large thermal power plants (TPPs), like the one at Šoštanj. The Šoštanj TPP is the exclusive source of SO2 in the area and is therefore a perfect example for air pollution studies. In order to understand air pollution around the Šoštanj TPP in detail, some analyses of emissions and ambient concentrations of SO2 at six automated monitoring stations in the surroundings of the TPP were made. The data base from 1991 to 1993 was used when there were no desulfurisation plants in operation. Statistical analyses of the influence of the emissions from the three TPP stacks at different measuring points were made. The analyses prove that the smallest stack (100 m) mainly pollutes villages and towns near the TPP within a radius of a few kilometres. The medium stack's (150 m) influence is noticed at shorter as well as at longer distances up to more than ten kilometres. The highest stack (230 m) pollutes mainly at longer distances, where the plume reaches the higher hills. Detailed analyses of ambient SO2 concentrations were made. They show the temporal and spatial distribution of different classes of SO2 concentrations from very low to alarming values. These analyses show that pollution patterns at a particular station remain the same if observed on a yearly basis, but can vary very much if observed on a monthly basis, mainly because of different weather patterns. Therefore the winds in the basin (as the most important feature influencing air pollution dispersion) were further analysed in detail to find clusters of similar patterns. For cluster analysis of ground-level winds patterns in the basin around the Šoštanj Thermal Power Plant, the Kohonen neural network and Leaders' method were used. Furthermore, the dependence of ambient SO2 concentrations on the clusters obtained was analysed. The results proved that effective cluster analysis can be a useful tool for compressing a huge wind data base in order to find the correlation between winds and pollutant concentrations. The analyses made provide a better insight into air pollution over complex terrain.

  14. Recognize PM2.5 sources and emission patterns via high-density sensor network: An application case in Beijing

    NASA Astrophysics Data System (ADS)

    Ba, Yu tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Zhang, Da wei; Yin, Wen jun

    2017-04-01

    Beijing suffered severe air pollution during wintertime, 2016, with the unprecedented high level pollutants monitored. As the most dominant pollutant, fine particulate matter (PM2.5) was measured via high-density sensor network (>1000 fixed monitors across 16000 km2 area). This campaign provided precise observations (spatial resolution ≈ 3 km, temporal resolution = 10 min, error of measure < 5 ug/m3) to track potential emission sources. In addition, these observations coupled with WRF-Chem model (Weather Research and Forecasting model coupled with Chemistry) were analyzed to elucidate the effects of atmospheric transportations across regions, both horizontal and vertical, on emission patterns during this haze period. The results quantified the main cause of regional transport and local emission, and highlighted the importance of cross-region cooperation in anti-pollution campaigns.

  15. A numerical experiment on light pollution from distant sources

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.

    2011-08-01

    To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.

  16. NOx profile around a signalized intersection of busy roadway

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hwan; Lee, Seung-Bok; Woo, Sung Ho; Bae, Gwi-Nam

    2014-11-01

    The NOx pollution profile around a signalized intersection of a busy roadway was investigated to understand the effect of traffic control on urban air pollution. Traffic flow patterns were classified into three categories of quasi-cruising, a combination of deceleration and acceleration, and a combination of deceleration, idling, and acceleration. The spatial distribution of air pollution levels around an intersection could be represented as a quasi-normal distribution, whose peak height was aggravated by increased emissions due to transient driving patterns. The peak concentration of NOx around the signalized intersection for the deceleration, idling, and acceleration category was five times higher than that for the quasi-cruising category. Severe levels of NOx pollution tailed off approximately 400 m from the center of the intersection. Approximately 200-1000 ppb of additional NOx was observed when traffic was decelerating, idling, and accelerating within the intersection zone, resulting in high exposure levels for pedestrians around the intersection. We propose a fluctuating horizontal distribution of motor vehicle-induced air pollutants as a function of time.

  17. Association between air pollution and cardiovascular mortality in China: a systematic review and meta-analysis

    PubMed Central

    Zhao, Lei; Liang, Heng-Rui; Chen, Feng-Ying; Chen, Zi; Guan, Wei-Jie; Li, Jian-Hua

    2017-01-01

    Air pollutant levels in many Chinese cities remained significantly higher than the upper limits stated in World Health Organization guidelines. In light of limited evidence in China, we conducted a meta-analysis summarizing the association between acute exposure of air pollution and cardiovascular mortality. We searched PubMed, and CNKI databases etc. for literature published in English or Chinese up to January 2017. Outcomes were pooled and compared using random-effects model. Excess risks (ERs) per 10 μg/m3 increase in PM2.5, PM10, NO2, SO2 and O3 were evaluated. Subgroup analysis was conducted according to lag patterns (lags 0, 1, 2, 0–1, 0–2 days), gender (male vs. female), temperature (cool vs. warm) and age (< 65 vs. ≥ 65). Study bias was detected using Begg’s and Egger’s test. Of 299 articles identified, 30 met inclusion criteria. Each 10 μg/m3 increase in the concentration was associated with a higher incidence of cardiovascular mortality for PM2.5 (0.68%, 95% CI: 0.39–0.97%), PM10 (0.39%, 95% CI: 0.26–0.53%), NO2 (1.12%, 95% CI: 0.76–1.48%), SO2 (0.75%, 95% CI: 0.42–1.09%), and O3 (0.62%, 95% CI: 0.33–0.92%), respectively. Air pollution conferred greater adverse impacts on cardiovascular mortality for longer duration of exposures. Strongest associations were seen for lag 0–1 day of exposure among all pollutants. Female, lower temperature, and age > 65 years were associated with greater risks of cardiovascular mortality for all pollutants. Higher concentrations of air pollutants correlated with a greater short-term increase in cardiovascular mortality. Further high-quality studies in China are urgently warranted to determine the susceptible population, which would offer reference for policy-making to minimize adverse health effects. PMID:29029525

  18. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.

    PubMed

    Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui

    2013-12-01

    Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.

  19. Graphene and graphene nanocomposites for the removal of aromatic organic compounds from the water: systematic review

    NASA Astrophysics Data System (ADS)

    Monsores Paixão, Monique; Tadeu Gomes Vianna, Marco; Marques, Marcia

    2018-01-01

    Aromatic organic pollutants are highly toxic to the human and environmental health and are considered as priority pollutants by regulatory agencies. Managing contaminated sites with organic pollutants is one of the major environmental challenges today. Of all technologies that have been proposed to remove contaminants, adsorption is recognized worldwide as an attractive option due to its versatility, wide applicability and economic viability. Recent studies report the use of graphene (GN), a recently carbon nanomaterial, and its derivatives in sorption processes for the removal of aromatic organic compounds. The present review has shown that GN structures are a promising alternative to traditional adsorbent materials, with excellent results in the removal of organic compounds from water, due to their unique structural characteristics and great adsorption capacity for organic compounds. Although, there is still a long way to go until that practical applications can be implemented.

  20. Historic and newer persistent organic pollutants in food

    USDA-ARS?s Scientific Manuscript database

    This book chapter reviews the literature published over the past five years with regard to the concentrations of historic and newly-listed persistent organic pollutants (POPs) in foods. The chemical classes selected for this review include historic POPs (dioxins, polychlorinated biphenyls, and DDT) ...

  1. 40 CFR Table 3 to Subpart F of... - General Provisions Applicability to Subparts F, G, and H a to Subpart F

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table 3 Table 3 to Subpart...

  2. 40 CFR Table 3 to Subpart F of... - General Provisions Applicability to Subparts F, G, and H a to Subpart F

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table 3 Table 3 to Subpart...

  3. 40 CFR Table 3 to Subpart F of... - General Provisions Applicability to Subparts F, G, and H a to Subpart F

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table 3 Table 3 to Subpart...

  4. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING SOLID FOOD SAMPLES FOR ANALYSIS OF PERSISTENT ORGANIC POLLUTANTS (SOP-5.20)

    EPA Science Inventory

    This SOP describes the procedures for homogenizing, extracting and concentrating solid food samples for persistent organic pollutants such as organochlorine compounds, organophosphate compounds, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, substituted phenols, and...

  5. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING LIQUID FOOD SAMPLES FOR ANALYSIS OF PERSISTENT ORGANIC POLLUTANTS (SOP-5.19)

    EPA Science Inventory

    This SOP describes the procedures for homogenizing, extracting, and concentrating liquid food samples for neutral persistent organic pollutants such as organochlorine compounds, organophosphate compounds, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and phenols.

  6. Tracking contaminants in seabirds of Arctic Canada: temporal and spatial insights.

    PubMed

    Mallory, Mark L; Braune, Birgit M

    2012-07-01

    Levels and trends of persistent organic pollutants and trace elements in seabirds breeding in the vast Canadian Arctic have been monitored since 1975. Data from this monitoring have indicated both spatial and temporal variation across the region, attributable in part to differences in species' diets, differences in regional deposition patterns, and unidirectional trends in contaminants reaching this area from emissions in temperate and tropical areas to the south. Seabird tissues have served as effective biomonitors to examine this variation, and national and international collaboration in this monitoring effort has promoted valuable synthetic assessments of spatial and temporal patterns in Arctic contaminants. Here we review the history of the monitoring program, the critical role played by Environment Canada's National Wildlife Specimen Bank, and we summarize important spatial and temporal trends in various contaminants in Canadian Arctic seabirds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Multi-pollutant interactions in hyporheic zones

    NASA Astrophysics Data System (ADS)

    Krause, S.; Weatherill, J.; Bonet, B.; Blaen, P.; Khamis, K.; Cassidy, N. J.; Hannah, D. M.; Rivett, M. O.; Lynch, I.; Ullah, S.

    2017-12-01

    Hyporheic zones represent hotspots of biogeochemical reactivity, with the potential to attenuate pollutants and ameliorate their impact on ecosystem functioning. Sources and types of pollutants in streambed environments are manifold, with legacy industry contaminants, agricultural pollution and emerging pollutants such as pharmaceuticals or engineered nanoparticles entering hyporheic zones along different flow paths where they mix and potentially react with each other. Current conceptualizations of drivers and controls of biogeochemical turnover in hyporheic zones highlight primarily the role of transport and reaction times but do not account for potential interactions between different pollutants. This study presents two case studies of multi-pollutant interactions to illustrate the need to consider interferences between different pollutants, their transport and reaction pathways for adequate impact assessment. We discuss in the first instance how the natural attenuation of a Trichloroethylene (TCE) groundwater plume in an agricultural catchment is limited by high riparian and hyporheic nitrate concentrations. As nitrate outcompeted TCE in its reaction with organic carbon as electron donor, TCE attenuation was in this case limited to hyporheic denitrification hotspots. Hence any pollution control measures to reduce the impact of this TCE plume require a reduction of agricultural nitrate loads, highlighting the connectedness of legacy (TCE) and more recent (nitrate) pollution problems. In the second case, we investigate how the labile organic carbon content of streambed sediments as main control of hyporheic respiration is overridden by exposure to different silver nanoparticle concentrations, representing emerging pollutants in many of our rivers. Also in this case, the impacts of different stressors (nanoparticle exposure) and drivers (availability of organic matter, water temperature) are interacting in their impacts on hyporheic zone functioning. We argue that with both, urban and rural freshwater bodies being exposed to an increasing complexity of pollutants and stressors, also the respective pollutant - stressor interactions need to be taken into account for adequate assessment of pollution attenuation and impact analysis.

  8. Modeling residential exposure to secondhand tobacco smoke

    NASA Astrophysics Data System (ADS)

    Klepeis, Neil E.; Nazaroff, William W.

    We apply a simulation model to explore the effect of a house's multicompartment character on a nonsmoker's inhalation exposure to secondhand tobacco smoke (SHS). The model tracks the minute-by-minute movement of people and pollutants among multiple zones of a residence and generates SHS pollutant profiles for each room in response to room-specific smoking patterns. In applying the model, we consider SHS emissions of airborne particles, nicotine, and carbon monoxide in two hypothetical houses, one with a typical four-room layout and one dominated by a single large space. We use scripted patterns of room-to-room occupant movement and a cohort of 5000 activity patterns sampled from a US nationwide survey. The results for scripted and cohort simulation trials indicate that the multicompartment nature of homes, manifested as inter-room differences in pollutant levels and the movement of people among zones, can cause substantial variation in nonsmoker SHS exposure.

  9. Linkage of iron elution and dissolved oxygen consumption with removal of organic pollutants by nanoscale zero-valent iron: Effects of pH on iron dissolution and formation of iron oxide/hydroxide layer.

    PubMed

    Fujioka, Nanae; Suzuki, Moe; Kurosu, Shunji; Kawase, Yoshinori

    2016-02-01

    The iron elution and dissolved oxygen (DO) consumption in organic pollutant removal by nanoscale zero-valent iron (nZVI) was examined in the range of solution pH from 3.0 to 9.0. Their behaviors were linked with the removal of organic pollutant through the dissolution of iron and the formation of iron oxide/hydroxide layer affected strongly by solution pH and DO. As an example of organic pollutants, azo-dye Orange II was chosen in this study. The chemical composition analyses before and after reaction confirmed the corrosion of nZVI into ions, the formation of iron oxide/hydroxide layer on nZVI surface and the adsorption of the pollutant and its intermediates. The complete decolorization of Orange II with nZVI was accomplished very quickly. On the other hand, the total organic carbon (TOC) removal was considerably slow and the maximum TOC removal was around 40% obtained at pH 9.0. The reductive cleavage of azo-bond by emitted electrons more readily took place as compared with the cleavage of aromatic rings of Orange II leading to the degradation to smaller molecules and subsequently the mineralization. A reaction kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach was developed to elucidate mechanisms for organic pollutant removal controlled by the formation of iron oxide/hydroxide layer, the progress of which could be characterized by considering the dynamic concentration changes in Fe(2+) and DO. The dynamic profiles of Orange II removal linked with Fe(2+) and DO could be reasonably simulated in the range of pH from 3.0 to 9.0. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils.

    PubMed

    Xu, Yongfeng; Dai, Shixiang; Meng, Ke; Wang, Yuting; Ren, Wenjie; Zhao, Ling; Christie, Peter; Teng, Ying

    2018-07-15

    The residual levels and risk assessment of several potentially toxic elements (PTEs), phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in rural soils near different types of pollution sources in Tianjin, China, were studied. The soils were found to be polluted to different extents with PTEs, PAEs and PAHs from different pollution sources. The soil concentrations of chromium (Cr), nickel (Ni), di-n-butyl phthalate (DnBP), acenaphthylene (Any) and acenaphthene (Ane) were higher than their corresponding regulatory reference limits. The health risk assessment model used to calculate human exposure indicates that both non-carcinogenic and carcinogenic risks from selected pollutants were generally acceptable or close to acceptable. Different types of pollution sources and soil physicochemical properties substantially affected the soil residual concentrations of and risks from these pollutants. PTEs in soils collected from agricultural lands around industrial and residential areas and organic pollutants (PAEs and PAHs) in soils collected from agricultural areas around livestock breeding were higher than those from other types of pollution sources and merit long-term monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. 77 FR 3389 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... regulates a mixture of air pollutants including organics (dioxins/furans), carbon monoxide, metals (cadmium... procedure, Air pollution control, Aluminum, Fertilizers, Fluoride, Intergovernmental relations, Paper and...

  12. Fractionation of persistent organic pollutants in fish oil by high-performance liquid chromatography on a 2-(1-pyrenyl)ethyl silica column.

    PubMed

    Ortiz, X; Martí, R; Montaña, M J; Gasser, M; Margarit, L; Broto, F; Díaz-Ferrero, J

    2010-09-01

    The analysis of persistent organic pollutants in foodstuffs has become necessary for control of their levels in products for human and animal consumption. These analytical procedures usually require a fractionation step in order to separate the different families of pollutants to avoid interferences during the instrumental determination. In this study the separation was carried out on a 2-(1-pyrenyl)ethyl silica column, where analyte fractionation was based on differences in planarity and aromaticity. The fractionation of several types of persistent organic pollutants found in fish oil samples was studied; the pollutants included polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, polybrominated diphenyl ethers, and some organochlorine pesticides. Fractions were analyzed by high-resolution gas chromatography with electron-capture detection and high-resolution gas chromatography-high resolution mass spectroscopy. Finally, the whole method (including the purification, fractionation, and instrumental determination steps) was validated and successfully applied to the analysis of several samples of fish oil.

  13. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach

    PubMed Central

    Pinichka, Chayut; Makka, Nuttapat; Sukkumnoed, Decharut; Chariyalertsak, Suwat; Inchai, Puchong

    2017-01-01

    Background Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs). We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand. Methods We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA) framework developed by the World Health Organization (WHO) and the Global Burden of Disease study (GBD). We integrated geographical information systems (GIS)-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR) relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD) of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR) and concentration of air pollutants from the epidemiological literature. Results We estimated 650–38,410 ambient air pollution-related fatalities and 160–5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF) of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality attributable to NO2 was 7.8% for respiratory mortality in Thailand. Conclusion Mortality due to ambient air pollution in Thailand varies across the country. Geographical distribution estimates can identify high exposure areas for planners and policy-makers. Our results suggest that the benefits of a 20% reduction in ambient air pollution concentration could prevent up to 25% of avoidable fatalities each year in all-causes, respiratory and cardiovascular categories. Furthermore, our findings can provide guidelines for future epidemiological investigations and policy decisions to achieve the SDGs. PMID:29267319

  14. Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River

    PubMed Central

    Kirschner, A.K.T.; Reischer, G.H.; Jakwerth, S.; Savio, D.; Ixenmaier, S.; Toth, E.; Sommer, R.; Mach, R.L.; Linke, R.; Eiler, A.; Kolarevic, S.; Farnleitner, A.H.

    2017-01-01

    The microbial faecal pollution of rivers has wide-ranging impacts on a variety of human activities that rely on appropriate river water quality. Thus, detailed knowledge of the extent and origin of microbial faecal pollution is crucial for watershed management activities to maintain safe water use. In this study, the microbial faecal pollution levels were monitored by standard faecal indicator bacteria (SFIB) along a 2580 km stretch of the Danube, the world's most international river, as well as the Danube's most important tributaries. To track the origin of faecal pollution, host-associated Bacteroidetes genetic faecal marker qPCR assays for different host groups were applied in concert with SFIB. The spatial resolution analysis was followed by a time resolution analysis of faecal pollution patterns over 1 year at three selected sites. In this way, a comprehensive faecal pollution map of the total length of the Danube was created, combining substantiated information on both the extent and origin of microbial faecal pollution. Within the environmental data matrix for the river, microbial faecal pollution constituted an independent component and did not cluster with any other measured environmental parameters. Generally, midstream samples representatively depicted the microbial pollution levels at the respective river sites. However, at a few, somewhat unexpected sites, high pollution levels occurred in the lateral zones of the river while the midstream zone had good water quality. Human faecal pollution was demonstrated as the primary pollution source along the whole river, while animal faecal pollution was of minor importance. This study demonstrates that the application of host-associated genetic microbial source tracking markers in concert with the traditional concept of microbial faecal pollution monitoring based on SFIB significantly enhances the knowledge of the extent and origin of microbial faecal pollution patterns in large rivers. It constitutes a powerful tool to guide target-oriented water quality management in large river basins. PMID:28806705

  15. Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River.

    PubMed

    Kirschner, A K T; Reischer, G H; Jakwerth, S; Savio, D; Ixenmaier, S; Toth, E; Sommer, R; Mach, R L; Linke, R; Eiler, A; Kolarevic, S; Farnleitner, A H

    2017-11-01

    The microbial faecal pollution of rivers has wide-ranging impacts on a variety of human activities that rely on appropriate river water quality. Thus, detailed knowledge of the extent and origin of microbial faecal pollution is crucial for watershed management activities to maintain safe water use. In this study, the microbial faecal pollution levels were monitored by standard faecal indicator bacteria (SFIB) along a 2580 km stretch of the Danube, the world's most international river, as well as the Danube's most important tributaries. To track the origin of faecal pollution, host-associated Bacteroidetes genetic faecal marker qPCR assays for different host groups were applied in concert with SFIB. The spatial resolution analysis was followed by a time resolution analysis of faecal pollution patterns over 1 year at three selected sites. In this way, a comprehensive faecal pollution map of the total length of the Danube was created, combining substantiated information on both the extent and origin of microbial faecal pollution. Within the environmental data matrix for the river, microbial faecal pollution constituted an independent component and did not cluster with any other measured environmental parameters. Generally, midstream samples representatively depicted the microbial pollution levels at the respective river sites. However, at a few, somewhat unexpected sites, high pollution levels occurred in the lateral zones of the river while the midstream zone had good water quality. Human faecal pollution was demonstrated as the primary pollution source along the whole river, while animal faecal pollution was of minor importance. This study demonstrates that the application of host-associated genetic microbial source tracking markers in concert with the traditional concept of microbial faecal pollution monitoring based on SFIB significantly enhances the knowledge of the extent and origin of microbial faecal pollution patterns in large rivers. It constitutes a powerful tool to guide target-oriented water quality management in large river basins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Occurrence, composition and ecological restoration of organic pollutants in water environment of South Canal, China

    NASA Astrophysics Data System (ADS)

    Wang, Y. Z.; Lin, C.; Zhou, X. S.; Zhang, Y.; Han, C. G.

    2017-08-01

    Ecological restoration of polluted river water was carried out in South Canal by adding microbial water purifying agents and biological compound enzymes. The objective of present study was to investigate the ecological restoration effect of organic pollutants by this efficient immobilized microbial technologies, analysis the occurrence and composition of organic pollutants including fifteen persistent organochlorine pesticides (OCPs), seventeen polycyclic aromatic hydrocarbons (PAHs) and eighteen organophosphorus pesticides (OPPs) both in natural water environment and ecological restoration area of South Canal, China. Results showed that the total concentrations of OCPs ranged from 1.11 to 1.78 ng·L-1, PAHs from 52.76 to 60.28 ng·L-1, and OPPs from 6.51 to 17.50 ng·L-1. Microbial water purifying agents and biological compound enzymes essentially had no effects on biological degradation of OCPs and PAHs in the river, but could remove OPPs with degradation rates ranging from 19.6% to 62.8% (35.2% in average). Degradation mechanisms of microbial water purifying agents and biological compound enzymes on OCPs, PAHs and OPPs remained to be further studied. This technology has a certain value in practical ecological restoration of organic pollutants in rivers and lakes.

  17. Evaluation of gas-particle partitioning in a regional air quality model for organic pollutants

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christos I.; Matejovičová, Jana; Bieser, Johannes; Lammel, Gerhard

    2016-12-01

    Persistent organic pollutants (POPs) are of considerable concern due to their well-recognized toxicity and their potential to bioaccumulate and engage in long-range transport. These compounds are semi-volatile and, therefore, create a partition between vapour and condensed phases in the atmosphere, while both phases can undergo chemical reactions. This work describes the extension of the Community Multiscale Air Quality (CMAQ) modelling system to POPs with a focus on establishing an adaptable framework that accounts for gaseous chemistry, heterogeneous reactions, and gas-particle partitioning (GPP). The effect of GPP is assessed by implementing a set of independent parameterizations within the CMAQ aerosol module, including the Junge-Pankow (JP) adsorption model, the Harner-Bidleman (HB) organic matter (OM) absorption model, and the dual Dachs-Eisenreich (DE) black carbon (BC) adsorption and OM absorption model. Use of these descriptors in a modified version of CMAQ for benzo[a]pyrene (BaP) results in different fate and transport patterns as demonstrated by regional-scale simulations performed for a European domain during 2006. The dual DE model predicted 24.1 % higher average domain concentrations compared to the HB model, which was in turn predicting 119.2 % higher levels compared to the baseline JP model. Evaluation with measurements from the European Monitoring and Evaluation Programme (EMEP) reveals the capability of the more extensive DE model to better capture the ambient levels and seasonal behaviour of BaP. It is found that the heterogeneous reaction of BaP with O3 may decrease its atmospheric lifetime by 25.2 % (domain and annual average) and near-ground concentrations by 18.8 %. Marginally better model performance was found for one of the six EMEP stations (Košetice) when heterogeneous BaP reactivity was included. Further analysis shows that, for the rest of the EMEP locations, the model continues to underestimate BaP levels, an observation that can be attributed to low emission estimates for such remote areas. These findings suggest that, when modelling the fate and transport of organic pollutants on large spatio-temporal scales, the selection and parameterization of GPP can be as important as degradation (reactivity).

  18. Impact of a changing environment on the built heritage

    NASA Astrophysics Data System (ADS)

    Grossi, C. M.; Brimblecombe, P.; Bonazza, A.

    2012-04-01

    Stone monuments are degraded by both climate and pollution. Deterioration by pollution was especially intense from the 1700s and until the late 20th century the dominant impact of air pollution was the sulfation of surfaces. The parallel deposition of soot caused blackening and on some surfaces dark coloured crusts. The decrease of sulfur and soot from coal combustion during the last decades of the 20th century led to cleaner air in cities, a decrease of pollution-decay rates on building stones and a public desire for cleaner buildings. Although there were decreases in SO2, it was replaced by ozone, nitrogen oxides and particles richer in organic compounds, the result of an extensive use of automobiles. Deposited organic compounds can oxidise in modern urban environments in a yellowing process. The future may reveal variation in building colour from biological growth in a changing climate. In urban atmospheres with less sulfur, biological growth is more effective. A greater rate of delivery of nitrate to building surfaces that acts as "airborne fertiliser" favours colonisation. Depending on climate, there might be different processes (e.g. greening or reddening) and patterns of colouration. Climate is also a relevant factor in the weathering of monuments. Recent research suggests the concept of Heritage Climatology in the study of climate interactions with monuments, materials and sites. These parameters concentrate on aspects and combinations of meteorological variables that relate to material damage. The Köppen-Geiger climate classification can be a good approximation for some heritage risks. For instance, the number of salt transitions shows distinct seasonality which can be related to Köppen-Geiger climate types and their change during the 21th century. The study of changing pollution and climate impacts on the built heritage needs the output of pollution emissions and climate change models, which are prone to uncertainties. The use of multiple climate models or ENSEMBLES may improve the accuracy and reliability of predictions. This approach has been used to predict salt damage. However, more work is needed on the uncertainty in predictions and the way this affects the management of stone heritage. There is public availability of climate and pollution data, but frequently these need to be unified and made user-friendly for cultural heritage researchers in many countries, e.g. the UKCP09 user interface is a good example of friendly-availability for probabilistic projections and downscaled climate change data, but available data are limited to the UK. The utilisation of these improved techniques can contribute to better strategies for managing buildings.

  19. [Progress of research on the microbial fuel cells in the application of environment pollution treatment--a review].

    PubMed

    Yang, Yonggang; Sun, Guoping; Xu, Meiying

    2010-07-01

    Microbial fuel cells (MFCs) are bio-electrochemical reactors that have the capacity to convert chemical energy of biodegradable organic chemicals to electrical energy, and developed rapidly in the past few years. With an increasing concern for energy crisis and environment pollution, MFCs has became a promising technology in the researches of environment pollution treatments and biology electricity. In this paper, we offered a comprehensive review of the recent research progress of MFCs in environment pollution treatment, includes denitrification, desufurization, organic pollutants degradation, heavy metal reduction and landfill leachate treatment. Also, we pointed out the challenges and problems which were bottle necks for a wide application of MFCs and the potential future development.

  20. [Monitoring of the chemical composition of snow cover pollution in the Moscow region].

    PubMed

    Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N

    2014-01-01

    Monitoring of snow cover pollution as an indicator of ambient air pollution in 20 districts in the Moscow region during 2009-2013 was performed. The identification with a quantitative assessment of a wide array of organic compounds and the control of the main physical and chemical and inorganic indices of snow water pollution were carried out. More than 60 organic substances for most of which there are no the hygienic standards were established. The assessment of pollution levels of basic inorganic indices was given by means of the comparing them with the average values in the snow cover in the European territory of Russia and natural content in areas not been exposed to human impact.

  1. BEHAVIOR AND ASSIMILATION OF ORGANIC AND INORGANIC PRIOIRTY POLLUTANTS CODISPOSED WITH MUNICIPAL REFUSE - VOLUME II - APPENDICES

    EPA Science Inventory

    Organic and inorganic priority pollutants codisposed with municipal solid waste (MSW) in ten pilot-scale simulated landfill columns, operated under single pass leaching or leachate recycle, were capable of being attenuated by microbially-mediated landfill stabilization processes....

  2. New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants

    USDA-ARS?s Scientific Manuscript database

    This study investigated the sorption potential of hydrochars, produced from hydrothermally carbonizing livestock wastes, towards organic pollutants (OPs) with a wide range of hydrophobicity, and compared their sorption capacity with that of pyrochars obtained from conventional dry pyrolysis from the...

  3. Organic pollution and salt intrusion in Cai Nuoc District, Ca Mau Province, Vietnam.

    PubMed

    Tho, Nguyen; Vromant, Nico; Hung, Nguyen Thanh; Hens, Luc

    2006-07-01

    In Ca Mau, Vietnam, farmers converted from rice to shrimp farming, while ignoring the degradation of the aquatic environment. We assessed the seasonal variations in organic pollution of the surface water and salt intrusion in one district and assessed the difference in chemical characteristics of the surface water of shrimp ponds and canals. Several variables reflecting salinity and organic pollution were measured in the wet and dry season. The results show that in the dry season salinity increased to 37.36-42.73 g l(-1) and COD and suspended solids increased to a maximum of 268.7 mg l(-1) and 1312.0 mg l(-1), respectively. In the wet season salinity values of 8.16 to 10.60 g l(-1) were recorded, indicating that salinity could no longer be washed out completely in this season. It is concluded that salinity and suspended solids in the aquatic environment in the Cai Nuoc district are increased by shrimp monoculture, whereas organic pollution is contributed by human population pressure.

  4. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    PubMed

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  5. RESEARCH AREA -- MUNICIPAL WASTE COMBUSTION (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The municipal waste combustion (MWC) program supports the development of revised rules for air pollutant emissions from the MWC source category. Basic research is performed on MWC pollutant formation and control mechanisms for acid gas, trace organic, and trace metal emissions. T...

  6. Spatial variations of particulate matter and air toxics in communities adjacent to the Port of Oakland.

    PubMed

    Fujita, Eric M; Campbell, David E; Arnott, W Patrick; Lau, Virginia; Martien, Philip T

    2013-12-01

    The Bay Area Air Quality Management District (BAAQMD) sponsored the West Oakland Monitoring Study (WOMS) to provide supplemental air quality monitoring that will be used by the BAAQMD to evaluate local-scale dispersion modeling of diesel emissions and other toxic air contaminants for the area within and around the Port of Oakland. The WOMS was conducted during two seasonal periods of 4 weeks in summer 2009 and winter 2009/2010. Monitoring data showed spatial patterns of pollutant concentrations that were generally consistent with proximity to vehicle traffic. Concentrations of directly emitted pollutants were highest on heavily traveled roads with consistently lower concentrations away from the roadways. Pollutants that have higher emission rates from diesel trucks (nitric oxide, black carbon) tended to exhibit sharper gradients than pollutants that are largely associated with gasoline vehicles, such as carbon monoxide and volatile organic compounds, including benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX concentrations in West Oakland were similar to those measured at the three air toxics monitoring network sites in the Bay Area (San Francisco, Fremont, and San Jose). Aldehyde levels were higher in Fremont and San Jose than in West Oakland, reflecting greater contributions from photo-oxidation of hydrocarbons downwind of the Bay Area. A 2005 modeling-based health risk assessment of diesel particulate matter concentrations is consistent with aerosol carbon concentrations measured during the WOMS after adjusting for recent mitigation measures and improved estimates of heavy-duty truck traffic volumes.

  7. Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling.

    PubMed

    Nazeer, Summya; Ali, Zeshan; Malik, Riffat Naseem

    2016-07-01

    The present study was designed to determine the spatiotemporal patterns in water quality of River Soan using multivariate statistics. A total of 26 sites were surveyed along River Soan and its associated tributaries during pre- and post-monsoon seasons in 2008. Hierarchical agglomerative cluster analysis (HACA) classified sampling sites into three groups according to their degree of pollution, which ranged from least to high degradation of water quality. Discriminant function analysis (DFA) revealed that alkalinity, orthophosphates, nitrates, ammonia, salinity, and Cd were variables that significantly discriminate among three groups identified by HACA. Temporal trends as identified through DFA revealed that COD, DO, pH, Cu, Cd, and Cr could be attributed for major seasonal variations in water quality. PCA/FA identified six factors as potential sources of pollution of River Soan. Absolute principal component scores using multiple regression method (APCS-MLR) further explained the percent contribution from each source. Heavy metals were largely added through industrial activities (28 %) and sewage waste (28 %), nutrients through agriculture runoff (35 %) and sewage waste (28 %), organic pollution through sewage waste (27 %) and urban runoff (17 %) and macroelements through urban runoff (39 %), and mineralization and sewage waste (30 %). The present study showed that anthropogenic activities are the major source of variations in River Soan. In order to address the water quality issues, implementation of effective waste management measures are needed.

  8. Defect engineered oxides for enhanced mechanochemical destruction of halogenated organic pollutants.

    PubMed

    Cagnetta, Giovanni; Huang, Jun; Lu, Mengnan; Wang, Bin; Wang, Yujue; Deng, Shubo; Yu, Gang

    2017-10-01

    Mechanochemical activation of metal oxides is studied by a novel methodology based on solid state reaction with a stable radical specie. Such approach corroborates that vacancy formation by high energy ball milling, also in nonreducible oxides, is responsible for electron release on particles' surfaces. This finding suggests a new defect engineering strategy to improve effectiveness of metal oxides as co-milling reagent for halogenated organic pollutant destruction. Results prove that high valent metal doping of a commonly employed co-milling reagent such as CaO determines 2.5 times faster pollutant degradation rate. This enhancement is due to electron-rich defects generated by the dopant; electrons are transferred to the organic pollutant thus causing its mineralization. The proposed strategy can be easily applied to other reagents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Multiple imputation for assessment of exposures to drinking water contaminants: evaluation with the Atrazine Monitoring Program.

    PubMed

    Jones, Rachael M; Stayner, Leslie T; Demirtas, Hakan

    2014-10-01

    Drinking water may contain pollutants that harm human health. The frequency of pollutant monitoring may occur quarterly, annually, or less frequently, depending upon the pollutant, the pollutant concentration, and community water system. However, birth and other health outcomes are associated with narrow time-windows of exposure. Infrequent monitoring impedes linkage between water quality and health outcomes for epidemiological analyses. To evaluate the performance of multiple imputation to fill in water quality values between measurements in community water systems (CWSs). The multiple imputation method was implemented in a simulated setting using data from the Atrazine Monitoring Program (AMP, 2006-2009 in five Midwestern states). Values were deleted from the AMP data to leave one measurement per month. Four patterns reflecting drinking water monitoring regulations were used to delete months of data in each CWS: three patterns were missing at random and one pattern was missing not at random. Synthetic health outcome data were created using a linear and a Poisson exposure-response relationship with five levels of hypothesized association, respectively. The multiple imputation method was evaluated by comparing the exposure-response relationships estimated based on multiply imputed data with the hypothesized association. The four patterns deleted 65-92% months of atrazine observations in AMP data. Even with these high rates of missing information, our procedure was able to recover most of the missing information when the synthetic health outcome was included for missing at random patterns and for missing not at random patterns with low-to-moderate exposure-response relationships. Multiple imputation appears to be an effective method for filling in water quality values between measurements. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Exploring Oil Pollution

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1974-01-01

    Discusses damages of oil tanker spillage to the marine organisms and scientists' research in oil pollution removal techniques. Included is a list of learning activities concerning the causes and effects of oil pollution and methods of solving the problem. (CC)

  11. Local cartography of persistent organic pollutants (PCDD/F, PCB) concentrations in soils of three French departments. How to define background concentrations?

    NASA Astrophysics Data System (ADS)

    Clozel, Blandine

    2017-04-01

    As part of the Regional Health Plan for the Rhône-Alpes area (France), a cartography of soil contamination by persistent organic pollutants (dioxins/furans (PCDD/PCDF) and polychlorinated biphenyls (PCB)) was undertaken in order to define the background concentrations of soils located away from point source pollution. In the natural environment, PCDD/PCDF and PCB comes from air pollution and accumulate in the upper part of the soils. To define the background concentration of persistent organic pollutants from diffuse atmospheric origin in soils, sampling was carried out within the first 5 centimeters of soils that have been very little anthropized and untilled for more than 15 years. In such soils mixing and dilution of the pollutants is very limited. 170 samples were collected following a systematic plan of grid type (mesh of 8 x 8 km) in an area of 14 000km2, avoiding soil of high altitude and from urban area. Beyond their total concentration, the ratio of the congeners of PCBs (7 indicators and 12 dioxin-like) and of the 17 dioxins/furans was also used for interpretation. As expected, the concentrations in pollutants are globally lower in the rural zones than in the more industrialized ones. However, the pollutants are relatively enriched in valleys, confirming that the meteorological conditions and the local topography play a significant role in the repartition of the diffuse atmospheric pollution. For the vast majority of samples, even some of those presenting the highest total concentration, the ratio of the various congeners argues for an ancient origin of the contamination. All studies at the French or European level of the atmospheric concentration of organic pollutants indicate a progressive decrease in emissions of these contaminants for about 20 years. However, the soils have been receptors since a long time and such pollutants have accumulated. The congeners ratio give evolved signature of pollution indicating, on one hand, it is mainly due to past activities but, on the other hand, indicate that it will persist because of its high stability. These results show the importance of knowing the spatial distribution of the concentrations of PCDD/PCDF and PCB and taking into account the signature of their congeners when defining the reference value of background concentration which are applied to distinguish a recent point source pollution

  12. Chemical Diversity and Defence Metabolism: How Plants Cope with Pathogens and Ozone Pollution

    PubMed Central

    Iriti, Marcello; Faoro, Franco

    2009-01-01

    Chemical defences represent a main trait of the plant innate immune system. Besides regulating the relationship between plants and their ecosystems, phytochemicals are involved both in resistance against pathogens and in tolerance towards abiotic stresses, such as atmospheric pollution. Plant defence metabolites arise from the main secondary metabolic routes, the phenylpropanoid, the isoprenoid and the alkaloid pathways. In plants, antibiotic compounds can be both preformed (phytoanticipins) and inducible (phytoalexins), the former including saponins, cyanogenic glycosides and glucosinolates. Chronic exposure to tropospheric ozone (O3) stimulates the carbon fluxes from the primary to the secondary metabolic pathways to a great extent, inducing a shift of the available resources in favour of the synthesis of secondary products. In some cases, the plant defence responses against pathogens and environmental pollutants may overlap, leading to the unspecific synthesis of similar molecules, such as phenylpropanoids. Exposure to ozone can also modify the pattern of biogenic volatile organic compounds (BVOC), emitted from plant in response to herbivore feeding, thus altering the tritrophic interaction among plant, phytophagy and their natural enemies. Finally, the synthesis of ethylene and polyamines can be regulated by ozone at level of S-adenosylmethionine (SAM), the biosynthetic precursor of both classes of hormones, which can, therefore, mutually inhibit their own biosynthesis with consequence on plant phenotype. PMID:20111684

  13. Temporal variability of selected air toxics in the United States

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Hafner, Hilary R.; Chinkin, Lyle R.; Charrier, Jessica G.

    Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990-2005, 1995-2005, and 2000-2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.

  14. Emissions of unintentional persistent organic pollutants from open burning of municipal solid waste from developing countries

    EPA Science Inventory

    Open burning of waste is the most significant source of polychlorinated dibenzo-para-dioxins and dibenzofurans (PCDD/PCDF) in many national inventories prepared pursuant to the Stockholm Convention on Persistent Organic Pollutants (POPs). This is particularly true for developing ...

  15. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review

    USDA-ARS?s Scientific Manuscript database

    Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...

  16. Environmental contamination in Antarctic ecosystems.

    PubMed

    Bargagli, R

    2008-08-01

    Although the remote continent of Antarctica is perceived as the symbol of the last great wilderness, the human presence in the Southern Ocean and the continent began in the early 1900s for hunting, fishing and exploration, and many invasive plant and animal species have been deliberately introduced in several sub-Antarctic islands. Over the last 50 years, the development of research and tourism have locally affected terrestrial and marine coastal ecosystems through fuel combustion (for transportation and energy production), accidental oil spills, waste incineration and sewage. Although natural "barriers" such as oceanic and atmospheric circulation protect Antarctica from lower latitude water and air masses, available data on concentrations of metals, pesticides and other persistent pollutants in air, snow, mosses, lichens and marine organisms show that most persistent contaminants in the Antarctic environment are transported from other continents in the Southern Hemisphere. At present, levels of most contaminants in Antarctic organisms are lower than those in related species from other remote regions, except for the natural accumulation of Cd and Hg in several marine organisms and especially in albatrosses and petrels. The concentrations of organic pollutants in the eggs of an opportunistic top predator such as the south polar skua are close to those that may cause adverse health effects. Population growth and industrial development in several countries of the Southern Hemisphere are changing the global pattern of persistent anthropogenic contaminants and new classes of chemicals have already been detected in the Antarctic environment. Although the Protocol on Environmental Protection to the Antarctic Treaty provides strict guidelines for the protection of the Antarctic environment and establishes obligations for all human activity in the continent and the Southern Ocean, global warming, population growth and industrial development in countries of the Southern Hemisphere will likely increase the impact of anthropogenic contaminants on Antarctic ecosystems.

  17. Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater.

    PubMed

    Kalmykova, Yuliya; Björklund, Karin; Strömvall, Ann-Margret; Blom, Lena

    2013-03-01

    Partitioning of organic pollutants is essential to their fate, mobility and removal from water and soil. To study the partitioning behavior of selected alkylphenols, bisphenol A, phthalates and polycyclic aromatic hydrocarbons (PAHs), a method for separating the truly dissolved and colloidal phase of organic pollutants was developed, verified and applied to samples of landfill leachate and stormwater from urban areas and waste-sorting sites. Alkylphenols, bisphenol A, phthalates and PAHs were detected in all the untreated samples (total concentrations), most of the filtered samples and frequently in the colloid-bound phase. Concentrations of alkylphenols and PAHs in urban stormwater were one order of magnitude lower than in the landfill leachates and stormwater from waste-sorting sites. The difference between total, dissolved and colloid-bound concentrations in the water samples was not statistically significant for any phenols or phthalates, but for three of the PAHs; naphthalene (mostly dissolved), phenanthrene and fluoranthene (mostly particulate). These results indicate that in landfill leachates and stormwaters, organic pollutants are predominantly attached to colloids and/or truly dissolved in contrast to their expected strong sorption to particulate matter. Occurrence and concentrations of pollutants in dissolved and colloid-bound phases correlated negatively with the K(OW). However, even highly hydrophobic compounds were frequently detected in filtered samples, i.e. the dissolved phases, and it is suggested that the organic content in the colloids decreases the compounds' partition to particles. The results confirm that the K(OW) values of specific organic pollutants well describe the compounds partition-binding process to dissolved organic carbon (DOC) colloids. Our findings call for a re-assessment of the organic pollutants' mobility and associated risks. This knowledge can also serve as a base for selecting efficient treatment methods for stormwater and landfill leachates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Marine biological diversity: Some important issues, opportunities and critical research needs

    NASA Astrophysics Data System (ADS)

    Butman, Cheryl Ann; Carlton, James T.

    1995-07-01

    Marine biological diversity is changing, dramatically in some cases, and most recent changes are due to broad-scale human activities. Knowledge of "biodiversity" — the variety of genomes (the genetic material specifying all characteristics and functions within an organism), species and ecosystems — is the foundation for understanding and predicting how human and natural effects can change the ocean's ecosystems. Evaluating the scale and ultimate consequences to life in the sea of a plethora of anthropogenic effects is difficult, however, because there is inadequate knowledge of both the patterns of and the processes that control marine biodiversity. Recognizing change and evaluating its consequences require sufficient knowledge of present and historical natural patterns of biodiversity, and sufficient understanding of how and why these patterns vary in space and time. Data on biodiversity patterns and their causes are sorely lacking for most marine ecosystems. Adequate understanding of what creates and maintains diversity must be the scientific underpinning for policy decisions regarding pollutant and waste disposal, habitat alteration, fisheries management and the preservation of threatened or endangered species. The inability, at this time, to provide such information to policy makers may have important implications for the conservation of marine life [Norse, 1993].

  19. Physical Activity, a Critical Exposure Factor of Environmental Pollution in Children and Adolescents Health Risk Assessment.

    PubMed

    Dong, Jingmei; Zhang, Su; Xia, Li; Yu, Yi; Hu, Shuangshuang; Sun, Jingyu; Zhou, Ping; Chen, Peijie

    2018-01-23

    It is an extremely urgent problem that physical fitness promotion must face not only the increasing air pollution but also the decline of physical activity level of children and adolescents worldwide at present, which is the major reason that forms an inactive lifestyle and does harm to adolescents' health. Thus, it is necessary to focus on the exposure factor in environmental health risk assessment (EHRA) which conducts supervision of environmental pollution and survey of adolescents' activity patterns according to the harmful characteristics of air pollutant and relationship between dose and response. Some countries, such as USA, Canada and Australia, regard both respiratory rate and physical activity pattern as main exposure factors for adolescents in both air pollution health risk assessment and exercise risk assessment to forecast a safe exposing condition of pollutant for adolescents while they are doing exercise outdoors. In addition, it suggests that the testing indexes and testing methods of these two exposure factors, such as investigating the time of daily physical activity, strength, and characteristic of frequency, help to set up the quantitative relationship between environmental pollution index and the time, strength, frequency of daily activities, and formulate children's and adolescents' activity instructions under different levels of environmental pollutions. As smog becomes increasingly serious at present, it is meaningful to take physical activity as a critical composition of exposure factor and establish physical activity guideline, so as to reduce the risk of air pollution, and promote physical health of children and adolescents effectively.

  20. [Effects of combined pollution of lead and benzo[a] pyrene on seed growth of wheat in soils].

    PubMed

    Wang, Hong-Qi; Wang, Shuai; Ning, Shao-Wei; Sun, Yan-Ling; Hou, Ze-Qing

    2011-03-01

    Seed germination, root elongation, shoot elongation and ratio of shoot to root of wheat in soils polluted by lead (Pb) and benzo (a)pyrene (B[a] P) with medium-low concentrations were studied to reveal the ecological effects of combined pollution and screen the indicative markers. Results indicated that seed germination was not sensitive to single or combined pollution of Pb or B[a] P. Root elongation was inhibited by single pollution of Pb or B[a]P to different extents. Extensive interactions between Pb and B[a]P occurred to root elongation of wheat, including synergistic-stimulatory effect and antagonistic-inhibitory effect. The joint action was mainly antagonistic. Single pollution of B [a] P had an inhibitory effect on shoot elongation. Under combined pollution conditions, the shoot elongation of wheat correlated well with Pb contents (p < 0.01). B[a] P or the interactions between pollutants had little effect on shoot elongation of wheat. The joint action on shoot elongation was consistently antagonistic. The response pattern of the ratio of shoot to root was similar to the response pattern of shoot elongation. However, the former had better correlation than the latter, indicating it as a more suitable indicative marker for Pb pollution. If lead acetate was employed instead of lead nitrate, longer root elongation, shorter shoot elongation and no effect on ratio of shoot to root were found. Therefore, the forms of Pb salt had significant influence on seed growth of wheat in soils.

  1. Fraction of organic carbon predicts labile desorption rates of chlorinated organic pollutants in laboratory-spiked geosorbents.

    PubMed

    Ginsbach, Jake W; Killops, Kato L; Olsen, Robert M; Peterson, Brittney; Dunnivant, Frank M

    2010-05-01

    The resuspension of large volumes of sediments that are contaminated with chlorinated pollutants continues to threaten environmental quality and human health. Whereas kinetic models are more accurate for estimating the environmental impact of these events, their widespread use is substantially hampered by the need for costly, time-consuming, site-specific kinetics experiments. The present study investigated the development of a predictive model for desorption rates from easily measurable sorbent and pollutant properties by examining the relationship between the fraction of organic carbon (fOC) and labile release rates. Duplicate desorption measurements were performed on 46 unique combinations of pollutants and sorbents with fOC values ranging from 0.001 to 0.150. Labile desorption rate constants indicate that release rates predominantly depend upon the fOC in the geosorbent. Previous theoretical models, such as the macro-mesopore and organic matter (MOM) diffusion model, have predicted such a relationship but could not accurately predict the experimental rate constants collected in the present study. An empirical model was successfully developed to correlate the labile desorption rate constant (krap) to the fraction of organic material where log(krap)=0.291-0.785 . log(fOC). These results provide the first experimental evidence that kinetic pollution releases during resuspension events are governed by the fOC content in natural geosorbents. Copyright (c) 2010 SETAC.

  2. Temporal variation of persistent organic pollutant (POP) residue concentrations in sediments from the bay of Chetumal, Mexico.

    PubMed

    Noreña-Barroso, E; Gold-Bouchot, G; Ceja-Moreno, V

    2007-08-01

    Bay of Chetumal is a transboundary priority area for the Mesoamerican Barrier Reef Systems project, which has been studied because it is the receiving body of pollutants from a large agricultural area and the city of Chetumal. Levels of persistent organic pollutants in sediments from the Bay were assessed a few years after a mass mortality event of Mayan catfish (Ariopsis assimilis) occurred in 1996. Recent sediments were collected in the rainy season (1999) and dry season (2000); results show concentrations in general lower than those reported after the fish kill, and a change of chemical profiles in chemical pollution.

  3. Emerging pollutants in the Esmeraldas watershed in Ecuador: discharge and attenuation of emerging organic pollutants along the San Pedro-Guayllabamba-Esmeraldas rivers.

    PubMed

    Voloshenko-Rossin, A; Gasser, G; Cohen, K; Gun, J; Cumbal-Flores, L; Parra-Morales, W; Sarabia, F; Ojeda, F; Lev, O

    2015-01-01

    Water quality characteristics and emerging organic pollutants were sampled along the San Pedro-Guayllabamba-Esmeraldas River and its main water pollution streams in the summer of 2013. The annual flow rate of the stream is 22 000 Mm(3) y(-1) and it collects the wastewater of Quito-Ecuador in the Andes and supplies drinking water to the city of Esmeraldas near the Pacific Ocean. The most persistent emerging pollutants were carbamazepine and acesulfame, which were found to be stable along the San Pedro-Guayllabamba-Esmeraldas River, whereas the concentration of most other organic emerging pollutants, such as caffeine, sulfamethoxazole, venlafaxine, O-desmethylvenlafaxine, and steroidal estrogens, was degraded to a large extent along the 300 km flow. The mass rate of the sum of cocaine and benzoylecgonine, its metabolite, was increased along the stream, which may be attributed to coca plantations and wild coca trees. This raises the possibility of using river monitoring as an indirect way to learn about changes in coca plantations in their watersheds. Several organic emerging pollutants, such as venlafaxine, carbamazepine, sulphamethoxazole, and benzoylecgonine, survived even the filtration treatment at the Esmeraldas drinking water system, though all except for benzoylecgonine are found below 20 ng L(-1), and are therefore not likely to cause adverse health effects. The research provides a way to compare drug consumption in a major Latin American city (Quito) and shows that the consumption of most sampled drugs (carbamazepine, venlafaxine, O-desmethylvenlafaxine, sulphamethoxazole, ethinylestradiol) was below their average consumption level in Europe, Israel, and North America.

  4. 78 FR 72609 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ..., subpart B and part 62, subpart A. Section 129 of the CAA regulates air pollutants that include organics... pollution control, Aluminum, Fertilizers, Fluoride, Intergovernmental relations, Paper and paper products...

  5. Marine environment pollution: The contribution of mass spectrometry to the study of seawater.

    PubMed

    Magi, Emanuele; Di Carro, Marina

    2016-09-09

    The study of marine pollution has been traditionally addressed to persistent chemicals, generally known as priority pollutants; a current trend in environmental analysis is a shift toward "emerging pollutants," defined as newly identified or previously unrecognized contaminants. The present review is focused on the peculiar contribution of mass spectrometry (MS) to the study of pollutants in the seawater compartment. The work is organized in five paragraphs where the most relevant groups of pollutants, both "classical" and "emerging," are presented and discussed, highlighting the relative data obtained by the means of different MS techniques. The hyphenation of MS and separative techniques, together with the development of different ion sources, makes MS and tandem MS the analytical tool of choice for the determination of trace organic contaminants in seawater. © 2016 Wiley Periodicals, Inc. Mass Spec Rev. © 2016 Wiley Periodicals, Inc.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Authors, Various

    Planning a rational energy future requires anticipating the environmental consequences of various technologies. This is difficult to do with precision as the effects of pollutants are often determined by interactions between and among complex physical (abiotic) and biological (biotic) systems. A given pollutant may affect human beings through direct exposure or indirectly through inducing changes to biological systems which humans need to utilize. The concentration of a toxin in the food chain or the destruction of organisms necessary for the maintenance of high quality water are examples of indirect effects. Pollutants can be transformed and/or degraded as they establish residencemore » in various components of an ecosystem. Anticipation and amelioration of pollutant effects involves the integration of a vast range of data. This data includes: (1) physical and chemical characterization cf the pollutant as it enters the environment; (2) determining effects on the various components (biotic and abiotic) within the context of the functioning ecosystem of interest; (3) transformation in movements and/or degradation of the pollutant within that ecosystem and within specific organisms and physical components; and (4) determining a detailed biochemical and biological picture of the interactions of pollutants with particular organisms and/or their cellular components judged salient for various processes. The major programs described below are designed to answer parts of the above fundamental questions relevant to pollutants generated by energy related technologies. Their emphasis is on anticipating consequences to the biological components of various ecosystems. The work ranges from studies involving parts of a single cell (the membranes) to studies involving the whole ecosystem (in the pelagic zone of a lake). The programs take advantage of expertise and technical abilities present at LBL. Two small exploratory projects which were of brief duration and not related to anticipating biological effects of pollutants are included in this section. They concern geothermal technology and its improvement using techniques based on organic and physical properties of certain materials.« less

  7. Exposure to Severe Urban Air Pollution Influences Cognitive Outcomes, Brain Volume and Systemic Inflammation in Clinically Healthy Children

    ERIC Educational Resources Information Center

    Calderon-Garciduenas, Lilian; Engle, Randall; Mora-Tiscareno, Antonieta; Styner, Martin; Gomez-Garza, Gilberto; Zhu, Hongtu; Jewells, Valerie; Torres-Jardon, Ricardo; Romero, Lina; Monroy-Acosta, Maria E.; Bryant, Christopher; Gonzalez-Gonzalez, Luis Oscar; Medina-Cortina, Humberto; D'Angiulli, Amedeo

    2011-01-01

    Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes,…

  8. Quantifying and Reducing Light Pollution

    NASA Astrophysics Data System (ADS)

    Gokhale, Vayujeet; Caples, David; Goins, Jordan; Herdman, Ashley; Pankey, Steven; Wren, Emily

    2018-06-01

    We describe the current level of light pollution in and around Kirksville, Missouri and around Anderson Mesa near Flagstaff, Arizona. We quantify the amount of light that is projected up towards the sky, instead of the ground, using Unihedron sky quality meters installed at various locations. We also present results from DSLR photometry of several standard stars, and compare the photometric quality of the data collected at locations with varying levels of light pollution. Presently, light fixture shields and ‘warm-colored’ lights are being installed on Truman State University’s campus in order to reduce light pollution. We discuss the experimental procedure we use to test the effectiveness of the different light fixtures shields in a controlled setting inside the Del and Norma Robison Planetarium.Apart from negatively affecting the quality of the night sky for astronomers, light pollution adversely affects migratory patterns of some animals and sleep-patterns in humans, increases our carbon footprint, and wastes resources and money. This problem threatens to get particularly acute with the increasing use of outdoor LED lamps. We conclude with a call to action to all professional and amateur astronomers to act against the growing nuisance of light pollution.

  9. Bacterial Pollution Indicators in the Intestinal Tract of Freshwater Fish

    PubMed Central

    Geldreich, Edwin E.; Clarke, Norman A.

    1966-01-01

    A study was made of the occurrence, distribution, and persistence of coliforms, fecal coliforms, and fecal streptococci in the intestinal tract of freshwater fish. A total of 132 fish representing 14 different species were used in various phases of these experiments. Examination of the intestinal contents of 78 fish from moderately polluted sections of the Little Miami River indicated that fecal coliform densities were lowest in bluegills (less than 20 per gram) and highest in catfish (1,090,000 per gram). Levels of fecal streptococci for these two species were 220 and 240,000 per gram, respectively. The occurrence of fecal coliforms in fish caught in this stream reflected the warm-blooded-animal-pollution level of the water. All fish used in this phase of the study were caught during July, August, and September when the water temperatures were between 13 and 18 C. The fate of fecal coliforms and Streptococcus faecalis in the fish intestine indicated that these organisms can probably survive and multiply when fish and water temperatures are 20 C or higher, but only when the organisms are retained in the gut for periods beyond 24 hr. Based on the biochemical reactions for 3,877 coliform strains isolated from 132 freshwater fish of 14 different species, 91.4% of all strains were composed of five IMViC types. In a similar study of the biochemical reactions of 850 streptococci isolated from the intestinal tract of 55 freshwater fish, the predominant strains included S. faecalis and various closely associated biotypes. No consistently recurring pattern for either coliforms or streptococci could be developed to identify species of fish investigated. The composition of the intestinal flora is, however, related in varying degree to the level of contamination of water and food in the environment. Images Fig. 1 Fig. 2 PMID:6008184

  10. Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems.

    PubMed

    Gasperi, J; Gromaire, M C; Kafi, M; Moilleron, R; Chebbo, G

    2010-12-01

    An observatory of urban pollutants was created in Paris for the purpose of assessing the dynamics of wastewater and wet weather flow (WW and WWF) pollutant loads within combined sewers. This observatory is composed of six urban catchments, covering land areas ranging in size from 42 ha to 2581 ha. For a wide array of parameters including total suspended solids (TSS), chemical and biochemical oxygen demand (COD and BOD(5)), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), heavy metals (Cu and Zn) and polycyclic aromatic hydrocarbons (PAHs), this article is intended to evaluate the contributions of wastewater, runoff and in-sewer processes to WWF pollutant loads through the use of an entry-exit mass balance approach. To achieve this objective, a total of 16 rain events were sampled on these sites between May 2003 and February 2006. This study has confirmed that at the considered catchment scale (i.e. from 42 ha to 2581 ha) the production and transfer processes associated with WWF pollutant loads do not vary with basin scale. Entry-exit chemical mass balances over all catchments and for a large number of rain events indicate that wastewater constitutes the main source of organic and nitrogenous pollution, while runoff is the predominant source of Zn. For Cu, PAHs and TSS, the calculation underscores the major role played by in-sewer processes, specifically by sediment erosion, as a source of WWF pollution. A significant loss of dissolved metals was also observed during their transfer within the sewer network, likely as a consequence of the adsorption of dissolved metals on TSS and/or on sewer deposits. Moreover, the nature of eroded particles was examined and compared to the various sewer deposits. This comparison has highlighted that such particles exhibit similar organic and PAH contents to those measured in the organic layer, thus suggesting that the deposit eroded during a wet weather period is organic and of a nature comparable to the organic layer. Despite the extent of initial field investigations, no organic deposit was observed to be present on sewer lines within the catchments, which implies that this organic deposit is probably present in another form or to be found elsewhere in the main trunks. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Using local biodiversity to prevent pollution transfers to environmental components of a Mediterranean semi-arid ecosystem

    NASA Astrophysics Data System (ADS)

    Heckenroth, Alma; Rabier, Jacques; Laffont-Schwob, Isabelle

    2014-05-01

    In arid and semi-arid Mediterranean coastal areas, metals and metalloids (MM) pollution coming from unreclaimed brownfields has increased the negative environmental stresses leading to ecosystems degradations as soil erosion and losses of organic matter and biodiversity. On these sites, maintaining or restoring a local vegetation cover is considered as a key step to stop the degradation cycle. Furthermore, in a context of high pollution occurring in natural areas, phytoremediation is considered as an attractive alternative to conventional soil remediation techniques, the first reducing pollution transfers, improving the soil quality. In protected or natural areas, it is also important to perceive then design phytoremediation as a way to assist ecosystems recovery, using the restoration ecology concepts. However, only few works in the literature deal with the potential use of native Mediterranean plant species for phytoremediation. On the South-East coast of Marseille (France), the activity of the former smelting factory of l'Escalette, ceased since 1925. However, its brownfield is still a source of pollution by trace metals and metalloids for abiotic and biotic components of the surrounding massif. This massif hosts a rich biodiversity with rare and protected plant species despite the metallic pollution and this area has been included in the recently created first peri-urban French National Park of Calanques. In this context, an integrated research project is being conducted with local actors and stakeholders, from the selection of native plant species, assessment and optimization of phytostabilization capacities of selected species, to the development of ecological engineering techniques well adapted to local constraints and phytostabilization field trials. The first part of this study has been conducted on two areas, corresponding to different pollution pattern, plant communities and environmental drivers: a halophytic area, characterized by typical coastal plants, mostly halophytic or halo-tolerant calcareous grass and shrubs and medium levels of MM pollution and an area at the bottom of the creeping chimney of the factory, that corresponds to a hot-spot of pollution, with shrublands and stands of Aleppo pines. Phytoecological samplings and soil MM analyses were conducted on 20 sampling plots on each area, organised in transects corresponding to environmental and potential pollution gradients. For each area, few variables related to distances from pollution or disturbances sources, natural and anthropogenic, were added for statistical treatments. Data were analysed using correlation matrix and PCA to identify which variables had major influences on the composition of plant communities. On the halophytic area, where natural constraints are drastic and despite the soil pollution, sea spray still appeared to be a decisive factor on plant community organization. However, anthropogenic disturbances seemed also to be influent drivers. On the chimney area, the results of the multivariate analysis indicated that a century of MM pollution pressure produced a noticeable effect on plant population dynamics. These results suggest that some native plant species have successfully developed tolerance or resistance mechanisms to face MM impacts. As a result, a grid of criteria has been chosen based on statistical relationships between occurrence of plant species and variables to select native plant species to be studied for their phytoremediation potential, taking into account the specificity of each study area.

  12. DEVELOPMENT OF A SAMPLER FOR PARTICULATE-ASSOCIATED AND LOW VOLATILITY ORGANIC POLLUTANTS IN RESIDENTIAL AIR

    EPA Science Inventory

    The report describes the development of a sampler for particulate-associated and low volatility organic pollutants in residential air. The performance of the sampler inlet, which is compatible with the proposed PM-10 regulations for particulate sampling, is documented under a var...

  13. PERSONAL COMPUTER MONITORS: A SCREENING EVALUATION OF VOLATILE ORGANIC EMISSIONS FROM EXISTING PRINTED CIRCUIT BOARD LAMINATES AND POTENTIAL POLLUTION PREVENTION ALTERNATIVES

    EPA Science Inventory

    The report gives results of a screening evaluation of volatile organic emissions from printed circuit board laminates and potential pollution prevention alternatives. In the evaluation, printed circuit board laminates, without circuitry, commonly found in personal computer (PC) m...

  14. CTEPP OVERVIEW: A PILOT STUDY OF CHILDREN'S TOTAL EXPOSURE TO PERSISTENT PESTICIDES AND OTHER PERSISTENT ORGANIC POLLUTANTS

    EPA Science Inventory

    The research study, "Children's Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants," (CTEPP) is a pilot-scale project involving about 260 children in their everyday surroundings. The objectives of CTEPP are twofold: (1) To measure the agg...

  15. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING AIR SAMPLES FOR ANALYSIS OF POLAR PERSISTENT ORGANIC POLLUTANTS (SOP-5.13)

    EPA Science Inventory

    The method for extracting and preparing indoor and outdoor air samples for analysis of polar persistent organic pollutants is summarized in this SOP. It covers the preparation of samples that are to be analyzed by gas chromatography/mass spectrometry.

  16. Multiplex screening of persistent organic pollutants in fish using spectrally encoded microspheres

    USDA-ARS?s Scientific Manuscript database

    Persistent organic pollutants (POPs) are food contaminants of global public health concern and known to be carcinogenic and endocrine disruptors. Their monitoring is essential and an easy-to-use, rapid and affordable multi-analyte screening method with simplified sample preparation can be a valuable...

  17. TREATMENT OF URBAN STORMWATER FOR DISSOLVED POLLUTANTS: A COMPARATIVE STUDY OF THREE NATURAL ORGANIC MEDIA

    EPA Science Inventory

    The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...

  18. An Evaluation of Hazardous Air Pollutants and Volatile Organic Compound Emissions from Tank Barges in Memphis, TN

    EPA Science Inventory

    Many urban centers have population centers near river ports, which may be affected by volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions from tank barge traffic. This study will examine Memphis, Tennessee and West Memphis, Arkansas. Both cities (located ...

  19. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Boat... content, percent by mass Typical organic HAP, percent by mass Aliphatic (Mineral Spirits 135, Mineral...

  20. PARAMETRIC EVALUATION OF VOC/HAP (VOLATILE ORGANIC COMPOUNDS-HAZARDOUS/TOXIC AIR POLLUTANTS) DESTRUCTION VIA CATALYTIC INCINERATION

    EPA Science Inventory

    The report describes the use of a pilot-scale catalytic incineration unit/solvent generation system to investigate the effectiveness of catalytic incineration as a way to destroy volatile organic compounds (VOCs) and hazardous/toxic air pollutants (HAPs). Objectives of the study ...

  1. How chemical pollution becomes a social problem. Risk communication and assessment through regional newspapers during the management of PCB pollutions of the Rhône River (France).

    PubMed

    Comby, Emeline; Le Lay, Yves-François; Piégay, Hervé

    2014-06-01

    The case study of the polychlorinated biphenyl (PCB) pollutions of the Rhône River (France) offers the possibility of studying criteria for the construction of social problems that result from chemical pollution (2005-2010). We investigated the dynamics of competition that create and define pollution as a social problem and entail its decline. News outlets are crucial for determining how an environmental issue emerges locally or nationally; this study used newspapers to highlight the potential of new outlets as a data source to analyze discourse variability, science-policy-media connections and the hydrosphere. Media coverage was based on a content analysis and textual data analysis of 75 articles. Analytical frameworks such as the Downs Model and the Public Arena Model (Hilgartner and Bosk, 1988) that consider time and stakeholders were tested to determine how human alteration of the hydrosphere can become a social problem and to analyze different communication strategies held by stakeholders. In terms of management, we described the temporal dynamics of the social problem based on the case study and considered an explanation of the selections. We considered the organization of particular stakeholders who define the social problem from its beginning to end by focusing on their discourses, relationships, decision-making and political choices, and scientific studies. Despite some biases, newspapers are useful for retrospectively evaluating the emergence of a social problem in the public arena by describing it through discourse and then understanding the temporal patterns of information. Despite uncertainties and information flow, decisions are made and science is translated to the public. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. [Priority pollutants ranking and screening of coke industry based on USEtox model].

    PubMed

    Hao, Tian; Du, Peng-Fei; Du, Bin; Zeng, Si-Yu

    2014-01-01

    Thesis aims at evaluating and setting priority to human toxicity and ecotoxicity of coking pollutants. A field research and sampling project are conducted in coke plant in Shanxi so as to complete the coke emission inventory. The USEtox model representing recommended practice in LCIA characterization is applied to the emission inventory to quantify the potential impacts on human toxicity and ecotoxicity of emerging pollutants. Priority pollutants, production procedures and effects of changing plant site on the toxicity are analyzed. As conclusions, benzo(a) pyrene, benzene, Zn and As are identified as the priority pollutants in human toxicity, while pyrene and anthracene in ecotoxicity. Coal charging is the dominant procedure for organic toxicity and priority pollutants include benzo (a) pyrene, benzene, naphthalene, etc. While coke drenching is the dominant procedure for metal toxicity and priority pollutants include Zn, As, Ti, Hg etc. Emission to rural environment can reduce the organic toxicity significantly compared to the emission to urban environment. However, the site changing has no effect on metal toxicity and might increase the risk of the metal pollution to rural water and soil.

  3. Sophisticated Clean Air Strategies Required to Mitigate Against Particulate Organic Pollution

    NASA Astrophysics Data System (ADS)

    Grigas, T.; Ovadnevaite, J.; Ceburnis, D.; Moran, E.; McGovern, F. M.; Jennings, S. G.; O'Dowd, C.

    2017-03-01

    Since the 1980’s, measures mitigating the impact of transboundary air pollution have been implemented successfully as evidenced in the 1980-2014 record of atmospheric sulphur pollution over the NE-Atlantic, a key region for monitoring background northern-hemisphere pollution levels. The record reveals a 72-79% reduction in annual-average airborne sulphur pollution (SO4 and SO2, respectively) over the 35-year period. The NE-Atlantic, as observed from the Mace Head research station on the Irish coast, can be considered clean for 64% of the time during which sulphate dominates PM1 levels, contributing 42% of the mass, and for the remainder of the time, under polluted conditions, a carbonaceous (organic matter and Black Carbon) aerosol prevails, contributing 60% to 90% of the PM1 mass and exhibiting a trend whereby its contribution increases with increasing pollution levels. The carbonaceous aerosol is known to be diverse in source and nature and requires sophisticated air pollution policies underpinned by sophisticated characterisation and source apportionment capabilities to inform selective emissions-reduction strategies. Inauspiciously, however, this carbonaceous concoction is not measured in regulatory Air Quality networks.

  4. Sophisticated Clean Air Strategies Required to Mitigate Against Particulate Organic Pollution.

    PubMed

    Grigas, T; Ovadnevaite, J; Ceburnis, D; Moran, E; McGovern, F M; Jennings, S G; O'Dowd, C

    2017-03-17

    Since the 1980's, measures mitigating the impact of transboundary air pollution have been implemented successfully as evidenced in the 1980-2014 record of atmospheric sulphur pollution over the NE-Atlantic, a key region for monitoring background northern-hemisphere pollution levels. The record reveals a 72-79% reduction in annual-average airborne sulphur pollution (SO 4 and SO 2 , respectively) over the 35-year period. The NE-Atlantic, as observed from the Mace Head research station on the Irish coast, can be considered clean for 64% of the time during which sulphate dominates PM 1 levels, contributing 42% of the mass, and for the remainder of the time, under polluted conditions, a carbonaceous (organic matter and Black Carbon) aerosol prevails, contributing 60% to 90% of the PM 1 mass and exhibiting a trend whereby its contribution increases with increasing pollution levels. The carbonaceous aerosol is known to be diverse in source and nature and requires sophisticated air pollution policies underpinned by sophisticated characterisation and source apportionment capabilities to inform selective emissions-reduction strategies. Inauspiciously, however, this carbonaceous concoction is not measured in regulatory Air Quality networks.

  5. [Use of macroalgae for the evaluation of organic pollution in the Preto river, northwest of São Paulo State].

    PubMed

    Necchi Júnior, O; Branco, H Z; Dip, M R

    1994-01-01

    The Preto River, located in the northwest of São Paulo State, receives a total wastewater load of 15.150 kg DBO day-1, from which 13.685 kg DBO day-1 (90.5%) corresponds to domestic sewage, and the city of São José do Rio Preto contributes with 12.400 kg DBO day-1 (90% of domestic sewage). During the period from August 1990 through January 1991, monthly sampling was carried out to evaluate the use of macroalgae as bioindicator of organic pollution. Five sampling sites were established along the main river and the following variables were analised: temperature, conductance, turbidity, dissolved oxygen, BOD, COD, total and fecal coliforms, and composition and abundance of macroalgal communities. Data were submitted to analysis of variance, correlation coefficient, cluster analysis (four different approaches) and converted to biological indices (species deficit, relative pollution, saprobity, diversity and uniformity indices). A wide range in water quality was found (particularly for conductance, oxygen, BOD and COD) among the sampling sites, which were classified into three groups (polluted, moderately polluted and unpolluted/weakly polluted). As regards the occurrence and abundance of macroalgae the Rhodophyta were found only in unpolluted or weakly polluted sites, whereas Cyanophyta occurred mostly under high pollution load; the Chlorophyta species were observed under a wide range of conditions. Among the biological indices, saprobity was the most sensitive and correlated to all water variables and the other indices. Cluster analyses showed that the composition of macroalgal communities was consistent with the levels of organic pollution in the Preto River.

  6. Concentrations and patterns of polychlorinated biphenyls at different process stages of cement kilns co-processing waste incinerator fly ash.

    PubMed

    Liu, Guorui; Yang, Lili; Zhan, Jiayu; Zheng, Minghui; Li, Li; Jin, Rong; Zhao, Yuyang; Wang, Mei

    2016-12-01

    Cement kilns can be used to co-process fly ash from municipal solid waste incinerators. However, this might increase emission of organic pollutants like polychlorinated biphenyls (PCBs). Knowledge of PCB concentrations and homolog and congener patterns at different stages in this process could be used to assess the possibility of simultaneously controlling emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and "dioxin-like" compounds. To date, emissions from cement kilns co-processing fly ash from municipal solid waste incinerators have not been analyzed for PCBs. In this study, stack gas and particulate samples from two cement kilns co-processing waste incinerator fly ash were analyzed for PCBs. The average total tri- to deca-chlorinated biphenyl (∑ 3-10 PCB) concentration in the stack gas samples was 10.15ngm -3 . The ∑ 3-10 PCB concentration ranges in particulate samples from different stages were 0.83-41.79ngg -1 for cement kiln 1and0.13-1.69ngg -1 for cement kiln 2. The ∑ 3-10 PCB concentrations were much higher in particulate samples from the suspension pre-heater boiler, humidifier tower, and kiln back-end bag filters than in particulate samples from other stages. For these three stages, PCBs contributed to 15-18% of the total PCB, PCDD/F, and polychlorinated naphthalene toxic equivalents in stack gases and particulate matter. The PCB distributions were similar to those found in other studies for PCDD/Fs and polychlorinated naphthalenes, which suggest that it may be possible to simultaneously control emissions of multiple organic pollutants from cement kilns. Homolog patterns in the particulate samples were dominated by the pentachlorobiphenyls. CB-105, CB-118, and CB-123 were the dominant dioxin-like PCB congeners that formed at the back-end of the cement kiln. A mass balance of PCBs in the cement kilns indicated that the total mass of PCBs in the stack gases and clinker was about half the mass of PCBs in the raw materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The pollutants from livestock and poultry farming in China-geographic distribution and drivers.

    PubMed

    Gan, Ling; Hu, Xisheng

    2016-05-01

    Livestock and poultry farming is a major source of agricultural pollution. However, our knowledge of the constraining factors of the geographic distribution of pollutants from livestock and poultry farming is still limited. In this study, using the optimized pollutant generation coefficients, we estimated the annual pollutant productions of eight livestock and poultry species at the provincial level in 2005 and 2013 and their growth rates during the study period in China; using canonical correlation analysis, we also explored the association between the eight pollutant measurements as dependent variables and 14 factors (including resource endowment, developmental level, and economic structure factors) as independent variables. Results indicate that there exist spatial disparity in the distribution of pollutants from livestock and poultry farming across regions, with provinces in the Huang-Huai-Hai region and the southwestern region accounting for approximately 50 % of the total productions in the nation. Cattle, pig, and poultry constitute the primary pollution sources in terms of livestock and poultry farming not only at the national level but also at the province level. While the species constitute and their respective growth rates of the pollutants can be also characterized by spatial disparity across regions, canonical correlation analysis shows that the observed regional patterns of the pollutants can be largely explained by the resource endowment factors (positive effects) and the developmental level factors (negative effects). In addition, we found that the development of livestock and poultry farming is negatively associated with the growing rate of both the resource endowment and the socioeconomic factors. This indicates that there exist different driving patterns in the gross and increment of the pollutant productions. Our research has significant implications for the appropriate environmental protection policy formulation and implementation in livestock sector.

  8. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples.

    PubMed

    Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S

    2018-01-01

    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Profile of Tax Subsidies and Investment Behavior in Six Major Polluting Industries (1997)

    EPA Pesticide Factsheets

    Reviews investment trends in pollution control technology to determine existing patterns and to highlight the likely investment incentives that six industries, metals mining, petroleum, primary metals, pulp and paper, chemicals, and electric utilities.

  10. Biologic Effects of Atmospheric Pollutants: Asbestos - The Need For and Feasibility of Air Pollution Controls

    EPA Pesticide Factsheets

    This 1971 report sets forth in a well-organized fashion the currently available information on asbestos as an air pollutant, with special attention to sources health effects, measurements, and feasibility of control.

  11. Air Pollution and Environmental Justice Awareness

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.

    2014-12-01

    Air pollution is not equally dispersed in all neighborhoods and this raises many social concerns, such as environmental justice. "Real world" data, whether extracted from online databases or collected in the field, can be used to demonstrate air quality patterns. When students explore these trends, they not only learn about atmospheric chemistry, but they also become socially aware of any inequities. This presentation outlines specific ways to link air pollution and environmental justice suitable for an undergraduate upper division Air Pollution or Atmospheric Chemistry course.

  12. Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies.

    PubMed

    Fischer, Anko; Manefield, Mike; Bombach, Petra

    2016-10-01

    Stable isotope tools are increasingly applied for in-depth evaluation of biodegradation of organic pollutants at contaminated field sites. They can be divided into three methods i) determination of changes in natural abundance of stable isotopes using compound-specific stable isotope analysis (CSIA), ii) detection of incorporation of stable-isotope label from a stable-isotope labelled target compound into degradation and/or mineralisation products and iii) determination of stable-isotope label incorporation into biomarkers using stable isotope probing (SIP). Stable isotope tools have been applied as key monitoring tools for multiple-line-of-evidence-approaches (MLEA) for sensitive evaluation of pollutant biodegradation. This review highlights the application of CSIA, SIP and MLEA including stable isotope tools for assessing natural and stimulated biodegradation of organic pollutants in field studies dealing with soil and groundwater contaminations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Interior Landscape Plants for Indoor Air Pollution Abatement

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Johnson, Anne; Bounds, Keith

    1989-01-01

    In this study, the leaves, roots, soil, and associated microorganisms of plants have been evaluated as a possible means of reducing indoor air pollutants. Additionally, a novel approach of using plant systems for removing high concentrations of indoor air pollutants such as cigarette smoke, organic solvents, and possibly radon has been designed from this work. This air filter design combines plants with an activated carbon filter. The rationale for this design, which evolved from wastewater treatment studies, is based on moving large volumes of contaminated air through an activated carbon bed where smoke, organic chemicals, pathogenic microorganisms (if present), and possibly radon are absorbed by the carbon filter. Plant roots and their associated microorganisms then destroy the pathogenic viruses, bacteria, and the organic chemicals, eventually converting all of these air pollutants into new plant tissue. It is believed that the decayed radon products would be taken up the plant roots and retained in the plant tissue.

  14. [Monitoring of environmental pollution in Armenia and certain issues on reproductive health and cytogenetic status of organism].

    PubMed

    Tadevosian, N S; Muradian, S A; Tadevosian, A E; Khachatrian, B G; Dzhandzhapanian, A N; Parsadanian, G G; Pogosian, S B; Gevorkian, N B; Guloian, A A

    2012-01-01

    Investigations aimed at the study on the state of environment from the point of pollution by organochlorine pesticides and their metabolites (HCH, DDT, DDE and DDD), as well as on possible unfavorable impact due to carriage of mentioned persistent organic pollutants (POPs) towards reproductive health and cytogenetic status of organism were done. In parallel, monitoring of possible mutagenic components of the environment was also conducted. As to obtained data, residues of organochlorine pesticides are continually determined with high frequency both in environmental media, agricultural foodstuffs and biomedia of rural population of observed region (Aragatsotn marz, Armenia). No changes in mutagenic background were registered. The represented results of the study make fragment of complex social-hygienic, monitoring investigations on environmental quality that would further serve as a platform for working out the recommendations on reduction of environmental pollution and improvement of health protection issues in Armenia.

  15. The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes.

    PubMed

    Redlarski, Grzegorz; Lewczuk, Bogdan; Żak, Arkadiusz; Koncicki, Andrzej; Krawczuk, Marek; Piechocki, Janusz; Jakubiuk, Kazimierz; Tojza, Piotr; Jaworski, Jacek; Ambroziak, Dominik; Skarbek, Łukasz; Gradolewski, Dawid

    2015-01-01

    Current technologies have become a source of omnipresent electromagnetic pollution from generated electromagnetic fields and resulting electromagnetic radiation. In many cases this pollution is much stronger than any natural sources of electromagnetic fields or radiation. The harm caused by this pollution is still open to question since there is no clear and definitive evidence of its negative influence on humans. This is despite the fact that extremely low frequency electromagnetic fields were classified as potentially carcinogenic. For these reasons, in recent decades a significant growth can be observed in scientific research in order to understand the influence of electromagnetic radiation on living organisms. However, for this type of research the appropriate selection of relevant model organisms is of great importance. It should be noted here that the great majority of scientific research papers published in this field concerned various tests performed on mammals, practically neglecting lower organisms. In that context the objective of this paper is to systematise our knowledge in this area, in which the influence of electromagnetic radiation on lower organisms was investigated, including bacteria, E. coli and B. subtilis, nematode, Caenorhabditis elegans, land snail, Helix pomatia, common fruit fly, Drosophila melanogaster, and clawed frog, Xenopus laevis.

  16. The Influence of Electromagnetic Pollution on Living Organisms: Historical Trends and Forecasting Changes

    PubMed Central

    Żak, Arkadiusz; Koncicki, Andrzej; Piechocki, Janusz; Jakubiuk, Kazimierz; Tojza, Piotr; Jaworski, Jacek; Ambroziak, Dominik; Skarbek, Łukasz

    2015-01-01

    Current technologies have become a source of omnipresent electromagnetic pollution from generated electromagnetic fields and resulting electromagnetic radiation. In many cases this pollution is much stronger than any natural sources of electromagnetic fields or radiation. The harm caused by this pollution is still open to question since there is no clear and definitive evidence of its negative influence on humans. This is despite the fact that extremely low frequency electromagnetic fields were classified as potentially carcinogenic. For these reasons, in recent decades a significant growth can be observed in scientific research in order to understand the influence of electromagnetic radiation on living organisms. However, for this type of research the appropriate selection of relevant model organisms is of great importance. It should be noted here that the great majority of scientific research papers published in this field concerned various tests performed on mammals, practically neglecting lower organisms. In that context the objective of this paper is to systematise our knowledge in this area, in which the influence of electromagnetic radiation on lower organisms was investigated, including bacteria, E. coli and B. subtilis, nematode, Caenorhabditis elegans, land snail, Helix pomatia, common fruit fly, Drosophila melanogaster, and clawed frog, Xenopus laevis. PMID:25811025

  17. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    PubMed

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and pH. Nitrate supply and temperature finally decided the spatiotemporal distribution patterns of urban riparian denitrification. Considering both the low DR of existing riparian soils and the significance of nonpoint source nitrogen pollution, the substantial denitrification potential of urban riparian soils should be utilized to reduce nitrogen pollution using proper engineering measures that would collect the polluted urban rainfall runoff and make it flow through the riparian zones.

  18. Exploring EKC, trends of growth patterns and air pollutants concentration level in Malaysia: A Nemerow Index Approach

    NASA Astrophysics Data System (ADS)

    Bekhet, Hussain A.; >Tahira Yasmin,

    2013-06-01

    The present study examines an Environmental Kuznets Curve (EKC) hypothesis by analyzing annual data of air pollutants concentartion and per capita GDP as economic indicator over the (1996-2010) period in Malaysia. Nemerow Index Approach (I) used to generate a measures of air pollution. The results show that ambient air quality indicators supports the EKC hypothesis which stated that pollution levels increase as a country develops, but begin to decrease as rising incomes pass beyond a turning poin. Also, the I result is justifying that most pollutants are showing value less than 1.

  19. Integrated Application of Multivariate Statistical Methods to Source Apportionment of Watercourses in the Liao River Basin, Northeast China

    PubMed Central

    Chen, Jiabo; Li, Fayun; Fan, Zhiping; Wang, Yanjie

    2016-01-01

    Source apportionment of river water pollution is critical in water resource management and aquatic conservation. Comprehensive application of various GIS-based multivariate statistical methods was performed to analyze datasets (2009–2011) on water quality in the Liao River system (China). Cluster analysis (CA) classified the 12 months of the year into three groups (May–October, February–April and November–January) and the 66 sampling sites into three groups (groups A, B and C) based on similarities in water quality characteristics. Discriminant analysis (DA) determined that temperature, dissolved oxygen (DO), pH, chemical oxygen demand (CODMn), 5-day biochemical oxygen demand (BOD5), NH4+–N, total phosphorus (TP) and volatile phenols were significant variables affecting temporal variations, with 81.2% correct assignments. Principal component analysis (PCA) and positive matrix factorization (PMF) identified eight potential pollution factors for each part of the data structure, explaining more than 61% of the total variance. Oxygen-consuming organics from cropland and woodland runoff were the main latent pollution factor for group A. For group B, the main pollutants were oxygen-consuming organics, oil, nutrients and fecal matter. For group C, the evaluated pollutants primarily included oxygen-consuming organics, oil and toxic organics. PMID:27775679

  20. Self-Propelled Micromotors for Cleaning Polluted Water

    PubMed Central

    2013-01-01

    We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction–diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water. PMID:24180623

  1. Insights into bioassessment of marine pollution using body-size distinctness of planktonic ciliates based on a modified trait hierarchy.

    PubMed

    Xu, Henglong; Jiang, Yong; Xu, Guangjian

    2016-06-15

    Based on a modified trait hierarchy of body-size units, the feasibility for bioassessment of water pollution using body-size distinctness of planktonic ciliates was studied in a semi-enclosed bay, northern China. An annual dataset was collected at five sampling stations within a gradient of heavy metal contaminants. Results showed that: (1) in terms of probability density, the body-size spectra of the ciliates represented significant differences among the five stations; (2) bootstrap average analysis demonstrated a spatial variation in body-size rank patterns in response to pollution stress due to heavy metals; and (3) the average body-size distinctness (Δz(+)) and variation in body-size distinctness (Λz(+)), based on the modified trait hierarchy, revealed a clear departure pattern from the expected body-size spectra in areas with pollutants. These results suggest that the body-size diversity measures based on the modified trait hierarchy of the ciliates may be used as a potential indicator of marine pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  3. Active biomonitoring in freshwater environments: early warning signals from biomarkers in assessing biological effects of diffuse sources of pollutants

    NASA Astrophysics Data System (ADS)

    Wepener, V.; van Vuren, J. H. J.; Chatiza, F. P.; Mbizi, Z.; Slabbert, L.; Masola, B.

    Effluents are a main source of direct and continuous input of pollutants in aquatic ecosystems. Relating observed effects to specific pollutants or even classes of pollutants remains a very difficult task due to the usually unknown, complex and often highly variable composition of effluents. It is recognized that toxicants interfere with organism integrity at the biochemical level and give rise to effects at the individual level and is manifested in reduced ecologically relevant characteristics such as growth, reproduction and survival, and ultimately at the ecosystem level. By integrating multiple endpoints at different ecologically relevant levels of organization within one test organism, it should be possible to gain understanding in how different levels of organization within this organism respond to toxic exposure and how responses at these different levels are interrelated. This paper presents results from a field study in the Rietvlei Wetland system, Gauteng, South Africa using the freshwater mollusk ( Melanoides tuberculata) and freshwater fish ( Oreochromis mossambicus) as bioindicator organisms. Active biomonitoring (ABM) exposures were conducted where organisms were exposed for 28 days in an effluent dominated river during high flow conditions in April 2003. The river receives effluent from a wastewater treatment plant and an industrial complex, so that up to 75% of the total flow of the river is effluent-based. Effects of field exposure were determined using cellular biomarkers e.g. DNA damage, HSP 70, metallothionein, acetylcholine esterase, lactate dehydrogenase and ethoxyresorufin-o-deethylase activity. The results clearly indicate that although the traditional mortality-based whole effluent toxicity testing did not indicate any toxicity, the in situ exposed organisms were stressed. A multivariate statistical approach was particularly useful for integrating the biomarker responses and highlighting sites at which more detailed analysis of chemical contamination would be useful. Based on the individual biomarker results’ contributing towards the distinct groupings it is possible to conclude that Site 1 is subjected to organic pollutants, whereas Sites 2 and 3 undergo a combination of metallic and organic pollutant stress. However, it is essential that a rapid and sensitive biomarker that is representative of the responses of a suite of biomarkers be tested before ABM can be implemented as a routine biomonitoring practice in water resource management.

  4. Multi-element sewer slime impact pattern--a quantitative characteristic enabling identification of the source of heavy metal discharges into sewer systems.

    PubMed

    Kintrup, J; Wünsch, G

    2001-11-01

    The capability of sewer slime to accumulate heavy metals from municipal wastewater can be exploited to identify the sources of sewage sludge pollution. Former investigations of sewer slime looked for a few elements only and could, therefore, not account for deviations of the enrichment efficiency of the slime or for irregularities from sampling. Results of ICP-MS multi element determinations were analyzed by multivariate statistical methods. A new dimensionless characteristic "sewer slime impact" is proposed, which is zero for unloaded samples. Patterns expressed in this data format specifically extract the information required to identify the type of pollution and polluter quicker and with less effort and cost than hitherto.

  5. Clays and clay minerals in Bikaner: Sources, environment pollution and management

    NASA Astrophysics Data System (ADS)

    Gayatri, Sharma; Anu, Sharma

    2016-05-01

    Environmental pollution can also be caused by minerals which include natural as well as human activities. Rapid urbanization, consumerist life style, anthropogenic deeds are increasing environmental pollution day by day. Fluctuation in our ecosystem or polluted environment leads to many diseases and shows adverse effects on living organisms. The main aim of this paper is to highlight the environmental pollution from clays and clay minerals and their mitigation..

  6. Effect of chemical pollution on forms of 137Cs, 90Sr and 239,240Pu in arctic soil studied by sequential extraction.

    PubMed

    Puhakainen, M; Riekkinen, I; Heikkinen, T; Jaakkola, T; Steinnes, E; Rissanen, K; Suomela, M; Thørring, H

    2001-01-01

    The aim of the present study was to determine the forms of 137Cs, 90Sr and 239,240Pu occurring in different soil horizons using sequential extraction of samples taken from four sites located along a pollution gradient from the copper-nickel smelter at Monchegorsk in the Kola Peninsula, Russia, and from a reference site in Finnish Lapland in 1997. A selective sequential-leaching procedure was employed using a modification of the method of Tessier, Cambell and Bisson ((1979). Analytical Chemistry, 51, 844-851). For 137Cs the organic (O) and uppermost mineral (E1) layer were studied, for 90Sr and 239,240Pu only the uppermost organic layer (Of). The fraction of 137Cs occurring in readily exchangeable form in the organic layer was about 50% at the reference site and decreased as a function of pollution, being 15% at the most polluted site in the Kola Peninsula. There was a clear positive correlation in the O layer between the distance from the smelter and the percentage of 137Cs extracted in the readily exchangeable fraction (Spearman correlation rsp = 0.7805, p = 0.0001), whereas in the E1 layer no correlation was evident. The distribution of 90Sr in the Of layer was similar at all sites, with the highest amounts occurring in exchangeable form and bound to organic matter, whereas stable Sr showed a somewhat different distribution with the highest amount in the oxide fraction. Most of the 239,240Pu was bound to organic matter. Chemical pollution affected the exchangeable fraction of 239,240Pu, which was about 1% at the most polluted site and 4-6% at the other sites.

  7. Persistent organic pollutants in marine fish from Yongxing Island, South China Sea: levels, composition profiles and human dietary exposure assessment.

    PubMed

    Sun, Yu-Xin; Hao, Qing; Xu, Xiang-Rong; Luo, Xiao-Jun; Wang, Shuai-Long; Zhang, Zai-Wang; Mai, Bi-Xian

    2014-03-01

    Little data is available on the bioaccumulation of persistent organic pollutants (POPs) in marine organisms from South China Sea (SCS). Five marine fish species were collected from Yongxing Island, SCS to investigate the presence of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs). PBDEs, PCBs, and DDTs concentrations ranged from 2.0-117, 6.3-199, and 9.7-5831 ng g(-1) lw, respectively. In general, contaminants measured in this study were at the lower end of the global range. Concentrations of PBDEs and PCBs were significantly correlated in fish samples, implying that PBDEs are as prevalent as PCBs in Yongxing Island. Among the five fish species studied, yellow striped goatfish had the highest concentrations of PBDEs, PCBs, and DDTs, probably attributed to its different living and feeding habits. The contaminant distribution pattern indicated that agrochemical source is more important than industrial source in Yongxing Island, SCS. The average estimated daily intakes of PBDEs, PCBs, and DDTs via fish consumption by local residents in the coastal areas of South China ranged from 1.42-5.91, 3.20-13.3, and 8.08-33.6 ng d(-1), which were lower than those in previous studies, suggesting that consumption of marine fish in Yongxing Island, SCS, might not subject local residents to significant health risk as far as POPs are concerned. This is the first study to report the occurrence of POPs in marine biota from SCS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. 77 FR 58063 - Approval and Promulgation of Implementation Plans; Texas; Reasonably Available Control Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    .... (1) Control of Air Pollution from Motor Vehicles, (2) Control of Air Pollution from Volatile Organic... discussed below. The first component concerns revisions to 30 TAC Chapter 114 Control of Air Pollution from... component of the June 13, 2007 submittal concerns revisions to 30 TAC, Chapter 115 Control of Air Pollution...

  9. Use of compost to restore a contaminated site in Southern Italy: preliminary study to assess compost efficiency in remediating a heavily polluted soil in Taranto city.

    NASA Astrophysics Data System (ADS)

    Ancona, Valeria; Campanale, Claudia; Calabrese, Angelantonio; Vito Felice, Uricchio; Simona, Regano

    2014-05-01

    Soil pollution is one of the most soil relevant threats recognized in the world. Contamination affects soil quality and soil capacity to react against several land degradation processes (erosion, organic depletion, desertification, etc.). The identification of opportune strategies to hinder pollution is a fundamental requirement to restore soil quality. In particular, large attentions have got the techniques, which promote the decontamination, and at the same time, improve fertility allowing a new use of a soil restored. In this work we present a preliminary study to assess the use of compost (an organic fertilizer produced through a process of transformation and controlled stabilization of selected organic waste at the source) in remediating a heavily polluted soil in southern Italy. The study site is located in Taranto city (Apulia Region) and is contaminated predominantly by heavy metals and lightly by organic toxic compounds such us polychlorinated biphenyls (PCBs). An exhaustive chemical characterization has been carried out on soil samples and then, a treatment with compost was applied on the study site. Successively, two data acquisition campaigns have been realized (after 4 and 7 months by compost treatment, respectively). Soil chemical analyses of texture, electrical conductivity, pH, organic carbon content, total nitrogen, available phosphorous, carbonate and water content have been carried out to investigate soil properties. In the polluted site chemical analyses of characterization showed low content of nutrients (nitrogen and phosphorous) and high level of carbonate. Heavy metals screenings, carried out through ICP-MS equipment, evidenced a massive contamination by Be, Se, Sn, Pb, Cr, Zn, while GC-MS investigations revealed a lower pollution by PCBs. The results of the monitoring campaigns showed a consistent reduction of the heavy metals concentrations: a higher decrease is observed after 7 months by compost treatment. At the same time, a considerable increase of organic carbon, nitrogen and phosphorus is also registered. The overall results suggest that the use of compost contributed to improve soil physico-chemical properties and promote a relevant decrease of pollution suggesting that a process of soil quality restoration is performing.

  10. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    EPA Science Inventory

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  11. Addressing species diversity in biotransformation: Variability in expressed transcripts of Phase I and II hepatic enzymes among fishes

    EPA Science Inventory

    The ability of an organism to metabolize a pollutant is critical to understanding the risk the chemical poses to the organism. In the environment, fish are uniquely exposed to pollutants found in agricultural runoff and discharges from industry and wastewater treatment plants. M...

  12. 40 CFR Table 35 to Subpart G of... - Control Requirements for Items of Equipment That Meet the Criteria of § 63.149 of Subpart G

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage...

  13. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING SOLID FOOD SAMPLES FOR ANALYSIS OF POLAR ORGANIC POLLUTANTS (SOP-5.28)

    EPA Science Inventory

    This SOP describes the extraction and preparation of a solid food sample for analysis of acidic persistent organic pollutants such as acid herbicides, pentachlorphenol, and 3,5,6-trichloro-2-phenol. It covers the extraction, concentration and derivatization of samples that are to...

  14. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING DUST AND SOIL SAMPLES FOR ANALYSIS OF NEUTRAL PERSISTENT ORGANIC POLLUTANTS (SOP-5.14)

    EPA Science Inventory

    This SOP summarizes the method for extracting and preparing a dust or soil sample for analysis of neutral persistent organic pollutants. It covers the extraction and concentration of samples that are to be analyzed by gas chromatography/mass spectrometry.

  15. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING DERMAL WIPE SAMPLES FOR ANALYSIS OF NEUTRAL PERSISTENT ORGANIC POLLUTANTS (SOP-5.16)

    EPA Science Inventory

    The method for extracting and preparing a dermal (hand) wipe sample for analysis of neutral persistent organic pollutants is summarized in this SOP. It covers the extraction and concentration of samples that are to be analyzed by gas chromatography/mass spectrometry.

  16. PERSISTENT ORGANIC POLLUTANTS IN DUSTS THAT SETTLED AT INDOOR AND OUTDOOR LOCATIONS IN LOWER MANHATTAN AFTER 11 SEPTEMBER, 2001

    EPA Science Inventory

    During the initial days that followed the explosion and collapse of the World Trade Center (WTC) on September 11th, 2001, fourteen bulk samples of settled dusts were collected at locations surrounding the epicenter of the disaster, and analyzed for persistent organic pollutants, ...

  17. CTEPP STANDARD OPERATING PROCEDURE FOR COLLECTION OF FIXED SITE INDOOR AND OUTDOOR AIR SAMPLES FOR PERSISTENT ORGANIC POLLUTANTS (SOP-2.12)

    EPA Science Inventory

    This SOP describes the procedures to set up, calibrate, initiate and terminate air sampling for persistent organic pollutants. This method is used to sample air, indoors and outdoors, at homes and at day care centers over a 48-hr period.

  18. Passive Sampling to Measure Baseline Dissolved Persistent Organic Pollutant Concentrations in the Water Column of the Palos Verdes Shelf Superfund Site

    EPA Science Inventory

    Passive sampling was used to deduce water concentrations of persistent organic pollutants (POPs) in the vicinity of a marine Superfund site on the Palos Verdes Shelf, California, USA. Pre-calibrated solid phase microextraction (SPME) fibers and polyethylene (PE) strips that were...

  19. ORGANIC POLLUTANT DEPOSITION TO THE SIERRA NEVADA (CALIFORNIA, USA) SNOWPACK AND ASSOCIATED LAKE AND STREAM ECOSYSTEM

    EPA Science Inventory

    High elevation ecosystems in the western USA and Canada are receiving deposition of persistent organic pollutants (POPs) that presumably originate in the USA as well as outside its borders. In April 1992 we obtained paired snowpack samples from each of two watersheds located in t...

  20. PROTOCOL FOR DETERMINING BIOAVAILABILITY AND BIOKINETICS OF ORGANIC POLLUTANTS IN DISPERSED, COMPACTED AND INTACT SOIL SYSTEMS TO ENHANCE IN SITU BIOREMEDIATION

    EPA Science Inventory

    The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and o...

  1. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING LIQUID FOOD SAMPLES FOR ANALYSIS OF POLAR ORGANIC POLLUTANTS (SOP-5.29)

    EPA Science Inventory

    This SOP describes the extraction and preparation of a liquid food sample for analysis of acidic persistent organic pollutants such as acid herbicides, pentachlorphenol, and 3,5,6-trichloro-2-phenol. It covers the extraction, concentration and derivatization of samples that are t...

  2. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  3. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  4. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  5. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  6. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  7. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  8. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  9. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  10. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  11. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  12. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  13. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  14. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  15. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  16. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  17. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  18. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  19. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  20. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  1. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  2. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  3. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  4. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  5. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Printing, Coating...

  6. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  7. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  8. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  9. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  10. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  11. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  12. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  13. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  14. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  15. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  16. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  17. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Printing, Coating...

  18. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  19. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  20. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  1. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  2. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  3. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  4. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  5. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  6. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  7. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  8. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  9. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  10. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  11. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  12. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  13. Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review.

    PubMed

    Trojanowicz, Marek; Bojanowska-Czajka, Anna; Capodaglio, Andrea G

    2017-09-01

    The increasing role of chemistry in industrial production and its direct and indirect impacts in everyday life create the need for continuous search and efficiency improvement of new methods for decomposition/removal of different classes of waterborne anthropogenic pollutants. This review paper addresses a highly promising class of water treatment solutions, aimed at tackling the pressing problem of emerging contaminants in natural and drinking waters and wastewater discharges. Radiation processing, a technology originating from radiation chemistry studies, has shown encouraging results in the treatment of (mainly) organic water pollution. Radiation ("high energy") processing is an additive-free technology using short-lived reactive species formed by the radiolysis of water, both oxidative and reducing, to carry out decomposition of organic pollutants. The paper illustrates the basic principles of radiolytic treatment of organic pollutants in water and wastewaters and specifically of one of its most practical implementations (electron beam processing). Application examples, highlighting the technology's strong points and operational conditions are described, and a discussion on the possible future of this technology follows.

  14. Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States.

    PubMed Central

    Jorgenson, J L

    2001-01-01

    In the last decade four international agreements have focused on a group of chemical substances known as persistent organic pollutants (POPs). Global agreement on the reduction and eventual elimination of these substances by banning their production and trade is a long-term goal. Negotiations for these agreements have focused on the need to correlate data from scientists working on soil and water sampling and air pollution monitoring. Toxicologists and epidemiologists have focused on wildlife and human health effects and understanding patterns of disease requires better access to these data. In the last 20 years, substantial databases have been created and now are becoming available on the Internet. This review is a detailed examination of 2 of the 12 POPs, aldrin and dieldrin, and how scientific groups identify and measure their effects. It draws on research findings from a variety of environmental monitoring networks in the United States. An overview of the ecologic and health effects of aldrin and dieldrin provides examples of how to streamline some of the programs and improve access to mutually useful scientific data. The research groups are located in many government departments, universities, and private organizations. Identifying databases can provide an "information accelerator" useful to a larger audience and can help build better plant and animal research models across scientific fields. PMID:11250811

  15. In vitro assessment of environmental stress of persistent organic pollutants on the Indo-Pacific humpback dolphin.

    PubMed

    Jia, Kuntong; Ding, Liang; Zhang, Lingli; Zhang, Mei; Yi, Meisheng; Wu, Yuping

    2015-12-25

    Persistent organic pollutants (POPs) are detected ubiquitously and are linked to range of adverse health effects. The Indo-Pacific humpback dolphin inhabited the Pearl River Estuary (PRE), China, where high concentrations of POPs have been reported. This study evaluated the threats posed by POPs in the environment to the dolphin using an in vitro system. We selected BNF(β-naphthoflavone) and four POPs (DDTs (dichlorodiphenyltrichloroethanes), CHLs(chlorides), HCHs(hexachlorocyclohexanes) and HCB(hexachlorobenzene)) which had been accumulated in the dolphin with high concentrations to treat the cultured skin fibroblast cells (ScSF cells) of the dolphin, and investigated the expression patterns of the ecological stress biomarkers CYP1A1, AHR and HSP70 in the cell line. The results showed that CYP1A1 was up-regulated after being exposed to different concentrations of BNF, DDTs and HCHs. CHLs, HCHs and HCB promoted AHR expression. HSP70 expression was increased by high concentrations of BNF and DDTs. Moreover, comet assay experiments revealed that DDTs produced higher degree of DNA damage to ScSF cells than other POPs, implying that the Indo-Pacific humpback dolphin in the PRE has been threatened by POPs accumulated in the body, especially by DDTs. Our results provided important information to assess the risk of the Indo-Pacific humpback dolphin raised by environmental POPs in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Environment and human exposure to persistent organic pollutants (POPs) in India: a systematic review of recent and historical data.

    PubMed

    Sharma, Brij Mohan; Bharat, Girija K; Tayal, Shresth; Nizzetto, Luca; Cupr, Pavel; Larssen, Thorjørn

    2014-05-01

    Persistent organic pollutants (POPs) have been used in a wide range of agricultural and industrial commodities, resulting in vigorous deterioration of environment and human health. A number of studies on the occurrence of POPs confirm their presence in various environmental compartments and human body. In order to deal with this global concern, India has recently prepared the National Implementation Plan (NIP) of the Stockholm Convention. Common beliefs point at India as a hot spot of POP contamination and human exposure; however no systematic analysis was ever performed so far considering all available past data on POP occurrence. This review aims to examine the distribution pattern of POPs in multicompartment environment and human samples, meta-analysis of time trends in exposure levels to environment and humans, and cross country comparison of POP contamination with China. Based on this review, it can be concluded that the Indian environment and human population are highly contaminated by DDTs and HCHs; however scarcity of data on other POPs makes it challenging to assess their nationwide human and environmental exposure. No evidence of a general decline in DDT and HCH residues in the environment and human body come out from the meta-analysis of time trend. While comparing contamination levels between India and China, tendency towards decline in POP contamination is visible in China, unlike India. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Risk assessment and toxic effects of metal pollution in two cultured and wild fish species from highly degraded aquatic habitats.

    PubMed

    Omar, Wael A; Zaghloul, Khalid H; Abdel-Khalek, Amr A; Abo-Hegab, S

    2013-11-01

    Lake Qaroun is an inland lake at the lowest part of El-Fayoum depression, Egypt. It receives agricultural and domestic non-treated drainage waters, which are also used for aquaculture in Qaroun area. The results of the present study aimed to provide comparable data between wild (collected from Lake Qaroun) and cultured (collected from Qaroun fish farms and the reference site) Nile tilapia Oreochromis niloticus and mullet Mugil cephalus, as indicators of natural and anthropogenic impacts on aquatic ecosystem as well as to evaluate the human hazard index associated with fish consumption. Metal concentrations in fish tissues showed a species-specific bioaccumulation pattern. Statistically significant differences were observed in the mean metal concentrations with lower bioavailability in M. cephalus compared with O. niloticus in internal vital organs (liver, kidney, and muscle) but much higher in external organs (gill and skin). Histopathological alterations and evident damages were observed in gill, liver, and kidney of both species collected from Lake Qaroun and Qaroun fish farms compared with those from the reference site. The results showed significant increase of plasma aspartate aminotransferase and alanine aminotransferase activity as well as creatinine and uric acid concentration in both fish species from polluted locations. The human health hazard index showed that the cumulative risk greatly increases with increasing fish consumption rate, thus yielding an alarming concern for consumer health.

  18. Potential risks from UV/H2O2 oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products.

    PubMed

    Wang, Wen-Long; Wu, Qian-Yuan; Huang, Nan; Xu, Zi-Bin; Lee, Min-Yong; Hu, Hong-Ying

    2018-05-15

    UV based advanced oxidation processes (UV-AOPs) that efficiently eliminate organic pollutants during water treatment have been the subject of numerous investigations. Most organic pollutants are not completely mineralized during UV-AOPs but are partially oxidized into transformation products (TPs), thereby adding complexity to the treated water and posing risks to humans, ecological systems, and the environment. While the degradation kinetics and mechanisms of pollutants have been widely documented, there is little information about the risks associated with TPs. In this review, we have collated recent knowledge about the harmful TPs that are generated in UV/H 2 O 2 and UV photocatalysis, two UV-AOPs that have been studied extensively. Toxic and assimilable TPs were ubiquitously observed in more than 80% of UV-AOPs of organic pollutants, of which the toxicity and assimilability levels changed with variations in the reaction conditions, such as the UV fluence and oxidant dosage. Previous studies and modeling assessments showed that toxic and assimilable TPs may be generated during hydroxylation, dealkylation, decarboxylation, and deamination. Among various reactions, TPs generated from dealkylation and decarboxylation were generally less and more toxic than the parent pollutants, respectively; TPs generated from decarboxylation and deamination were generally less and more assimilable than the parent pollutants, respectively. There is also potential concern about the sensory-unpleasant TPs generated by oxidations and subsequent metabolism of microorganisms. In this overview, we stress the need to include both the concentrations of organic pollutants and the evaluations of the risks from TPs for the quality assessments of the water treated by UV-AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Tracing organic and inorganic pollution sources of agricultural crops and water resources in Güzelhisar Basin of the Aegean Region - Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Anac, Dilek; Düring, Rolf-Alexander

    2014-05-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel factories, but also areas of agriculture. Steel industry in Aliaga is causing metal pollution. Around Güzelhisar Basin and nearby, the dominant crop fields are cotton, maize, vegetables, olive trees and vineyards. Güzelhisar stream and dam water is used for irrigation of the agricultural land. Due to contamination from metal industry in Aliaga, organic farming is not allowed in this region. Industrial activities in the region present a threat on sustainable agriculture. The region is a multi-impacted area in terms of several pollutant sources affecting soil and water quality. The overall objective of the project is to trace back plant nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B), hazardous substances (i. e. persistent organic pollutants), radionuclides (40K, 232Th, 226Ra/238U), and metal contents (As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, and Zn) by examining the soils, agricultural crops and natural plants from Güzelhisar Basin and water and sediments from Güzelhisar stream and dam. Spatial distribution of pollution will be evaluated by regionalization methods. For this, an advanced analytical methodology will be applied which provides an understanding of sources and occurrence of the respective substances of concern. An innovative multi-tracer approach comprising organic and inorganic marker substances, will identify and quantitatively assess sources and their impact on water pollution and the pollutant pathways in this agricultural crop production system.

  20. [Pollution load and the first flush effect of BOD5 and COD in urban runoff of Wenzhou City].

    PubMed

    Wang, Jun; Bi, Chun-juan; Chen, Zhen-lou; Zhou, Dong

    2013-05-01

    Four typical rainfalls were monitored in two different research areas of Wenzhou Municipality. Concentrations of BOD5 and COD in six different urban runoffs were measured. In addition the event mean concentration (EMC), M (V) curve and BOD5/COD of pollutant were calculated. The results showed that concentrations of BOD5 and COD in different urban runoffs of Wenzhou ranged from ND to 69.21 mg x L(-1) and ND to 636 mg x L(-1). Concentrations of BOD5 and COD in different urban runoffs were decreasing over time, so it is greatly significant to manage the initial runoff for reducing organic pollution. Judged by EMC of BOD5 and COD in these five rainfalls, concentrations of pollutant in some urban runoffs were out of the integrated wastewater discharge standard. If these runoffs flowed into river, it would cause environmental pressure to the next level receiving water bodies. According to the M (V) curve, the first flush effect of COD in most urban runoffs was common; while the first flush effect of BOD5 was same as that of COD. The result also showed that organic pollution was serious at the beginning of runoff. The underlying surface type could affect the concentration of BOD5 and COD in urban runoff. While the results of BOD5/COD also suggested that biodegradation was considered as one of the effective ways to decrease the pollution load of organics in urban runoff, and the best management plans (BMPs) should be selected for various urban runoff types for the treatment of organic pollution.

Top