Science.gov

Sample records for organic solid matter

  1. Advanced solid-state NMR spectroscopy of natural organic matter.

    PubMed

    Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus

    2017-05-01

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state (13)C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on (13)C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used (15)N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Advanced solid-state NMR spectroscopy of natural organic matter

    USDA-ARS?s Scientific Manuscript database

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially the systematic approach to NOM characterization, and their ...

  3. Electron Shuttling Capacity of Solid-Phase Organic Matter in Forest Soils

    NASA Astrophysics Data System (ADS)

    Patel, A.; Zhao, Q.; Yang, Y.

    2015-12-01

    Soil organic matter, as an electron shuttle, plays an important role in regulating the biogeochemical cycles of metals, especially the redox reactions for iron. Microorganisms can reduce soil organic matter under anaerobic conditions, and biotically-reduced soil organic matter can abiotically donate electrons to ferric oxides. Such soil organic matter-mediated electron transport can facilitate the interactions between microorganisms and insoluble terminal electron acceptors, i.e. iron minerals. Most previous studies have been focused on the electron shuttling processes through dissolved soil organic matter, and scant information is available for solid-phase soil organic matter. In this study, we aim to quantify the electron accepting capacity for solid-phase organic matter in soils collected from four different forests in the United States, including Truckee (CA), Little Valley (NV), Howland (ME) and Hart (MI). We used Shewanella oneidensisMR-1 to biotically reduce soil slurries, and then quantified the electrons transferred to solid-phase and solution-phase organic matter by reacting them with Fe(III)-nitrilotriacetic acid (Fe(III)-NTA). The generation of Fe(II) was measured by a ferrozine assay to calculate the electron accepting capacity of soil organic matter. Our preliminary results showed that the Truckee soil organic matter can accept 0.51±0.07 mM e-/mol carbon. We will measure the electron accepting capacity for four different soils and correlate them to the physicochemical properties of soils. Potential results will provide information about the electron accepting capacity of solid-phase soil organic matter and its governing factors, with broad implication on the coupled biogeochemical cycles of carbon and iron.

  4. Municipal solid waste incineration bottom ash: Characterization and kinetic studies of organic matter

    SciTech Connect

    Dugenest, S.; Casabianca, H.; Grenier-Loustalot, M.F.; Combrisson, J.

    1999-04-01

    Bottom ash is the main solid residue which is produced by municipal solid waste incineration (MSWI) facilities. To be reused in public works, it has to be stored previously a few months. This material is composed primarily of a mineral matrix but also contains unburnt organic matter. The mineral content and its change in the course of aging are relatively well-known, in contrast with the organic content. So in order to detect the phenomena responsible for changes in organic matter and their effects during aging, the concentrations of the main organic compounds previously characterized, the number of microorganisms, and the release of carbon dioxide were followed kinetically in model laboratory conditions. The results showed that the aging process led to the natural biodegradation of the organic matter available in bottom ash, composed essentially of carboxylic acids and n-alkanes (steroids and PAH`s to a lesser extent), and consequently that it would improve the bottom ash quality. Furthermore these results were confirmed by the study of aging conducted in conditions used in the industrial scale.

  5. Cu Binding to Iron Oxide-Organic Matter Coprecipitates in Solid and Dissolved Phases

    NASA Astrophysics Data System (ADS)

    Vadas, T. M.; Koenigsmark, F.

    2015-12-01

    Recent studies indicate that Cu is released from wetlands following storm events. Assymetrical field flow field fractionation (AF4) analyses as well as total and dissolved metal concentration measurements suggest iron oxide-organic matter complexes control Cu retention and release. Coprecipitation products of Fe oxide and organic matter were prepared under conditions similar to the wetland to assess Cu partitioning to and availability from solid phases that settle from solution as well as phases remaining suspended. Cu coprecipitation and sorption to organomineral precipitation solids formed at different Fe:organic carbon (OC) ratios were compared for net Cu removal and extractability. As more humic acid was present during precipitation of Fe, TEM images indicated smaller Fe oxide particles formed within an organic matrix as expected. In coprecipitation reactions, as the ratio of Fe:OC decreased, more Cu was removed from solution at pH 5.5 and below. However, in sorption reactions, there was an inhibition of Cu removal at low OC concentrations. As the pH increased from 5.5 to 7 and as solution phase OC concentration increased, more Cu remained dissolved in both coprecipitation and sorption reactions. The addition of Ca2+, glycine, histidine and citric acid or lowering the pH resulted in more extractable Cu from the coprecipitation compared with the sorption reactions. The variations in Cu extraction were likely due to a combination of a more amorphous structure in CPT products, and the relative abundance of available Fe oxide or OC binding sites. Suspended Fe oxide-organic matter coprecipitates were assessed using AF4 coupled to online TOC analysis and ICP-MS. In laboratory prepared samples, Cu was observed in a mixture of small 1-5 nm colloids of Fe oxide-organic matter precipitates, but the majority was observed in larger organic matter colloids and were not UV absorbing, suggesting more aliphatic carbon materials. In field samples, up to 60% of the dissolved Cu

  6. Characterization of sewage sludge organic matter using solid-state carbon-13 nuclear magnetic resonance spectroscopy.

    PubMed

    Smernik, Ronald J; Oliver, Ian W; Merrington, Graham

    2003-01-01

    Six sewage sludges from five sewage treatment plants in Australia were characterized using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Spectra were acquired both before and after removal of mineral components through treatment with hydrofluoric acid (HF). Carbon mass balance indicated that little organic matter was lost on HF treatment, which significantly improved NMR sensitivity and spectral resolution, and decreased acquisition time and hence cost of NMR analysis. Two NMR techniques were used, the standard cross polarization (CP) technique and Bloch decay (BD). The BD technique had not been applied previously to the analysis of sewage sludge. For each sludge sample, both before and after HF treatment, the BD spectrum contained significantly more alkyl carbon. Spin counting, another technique applied to sewage sludge here for the first time, showed that the BD spectra of the HF-treated sludges were quantitative, while approximately 30% of the CP NMR signal went undetected. The discrepancy between CP and BD spectra was attributed to the presence of alkyl carbon with such high molecular mobility that the efficiency of cross polarization is affected. This study shows that sewage sludge organic matter is significantly different in chemistry to soil organic matter and has implications for the application of sewage sludge to agricultural land.

  7. ENVIRONMENTAL RESEARCH BRIEF: CHARACTERIZATION OF ORGANIC MATTER IN SOIL AND AQUIFER SOLIDS

    EPA Science Inventory

    The focus of this work was the evaluation of analytical methods to determine and characterize fractions of subsurface organic matter. Major fractions of total organic carbon (TOC) include: particulate organic carbon (POC) in aquifer material, dissolved organic carbon (DOC) and ...

  8. Advanced solid-state carbon-13 nuclear magnetic resonance spectroscopic studies of sewage sludge organic matter: detection of organic "domains".

    PubMed

    Smernik, Ronald J; Oliver, Ian W; Merrington, Graham

    2003-01-01

    Two novel solid-state 13C nuclear magnetic resonance (NMR) spectroscopic techniques, PSRE (proton spin relaxation editing) and RESTORE [Restoration of Spectra via T(CH) and T(1rho)H (T One Rho H) Editing], were used to provide detailed chemical characterization of the organic matter from six Australian sewage sludges. These methods were used to probe the submicrometer heterogeneity of sludge organic matter, and identify and quantify spatially distinct components. Analysis of the T1H relaxation behavior of the sludges indicated that each sludge contained two types of organic domains. Carbon-13 PSRE NMR subspectra were generated to determine the chemical nature of these domains. The rapidly relaxing component of each sludge was rich in protein and alkyl carbon, and was identified as dead bacterial material. The slowly relaxing component of each sludge was rich in carbohydrate and lignin structures, and was identified as partly degraded plant material. The bacterial domains were shown, using the RESTORE technique, to also have characteristically rapid T(1rho)H relaxation rates. This rapid T(1rho)H relaxation was identified as the main cause of underrepresentation of these domains in standard 13C cross polarization (CP) NMR spectra of sludges. The heterogeneous nature of sewage sludge organic matter has implications for land application of sewage sludge, since the two components are likely to have different capacities for sorbing organic and inorganic toxicants present in sewage sludge, and will decompose at different rates.

  9. Solid- and solution-phase organics dictate copper distribution and speciation in multicomponent systems containing ferrihydrite, organic matter, and montmorillonite.

    PubMed

    Martínez-Villegas, Nadia; Martínez, Carmen Enid

    2008-04-15

    Copper retention by ferrihydrite, leaf compost, and montmorillonite was studied over 8 months in systems that emulate a natural soil where different solid phases compete for Cu through a common solution in a compartmentalized batch reactor. Copper speciation in solution (total dissolved, DPASV-labile, and free) and exchangeable and total Cu in individual solid phases were determined. Organic carbon in solution (DOC) and that retained by the mineral phases were also determined. Cu sorption reached steady-state after 4 months and accounted for 80% of the Cu initially added to the system (0.15 mg L(-1)). The remaining 20% stayed in solution as nonlabile (82.8%), labile (17%), and free (0.2%) Cu species. Copper sorption followed the order organic matter > silicate clays > iron oxides. Within each solid phase, exchangeable Cu was < or = 10% of the total Cu sorbed. DOC reached steady state (22 mg L(-1)) after 4 months and seemed to control Cu solubility and sorption behavior by the formation of soluble Cu-DOC complexes and by sorbing onto the mineral phases. DOC sorption onto ferrihydrite prevented Cu retention by this solid phase. Using a multicomponent system and 8 months equilibrations, we were able to capture some of the more important aspects of the complexity of soil environments bytaking into account diffusion processes and competition among solid- and solution-phase soil constituents in the retention of a metal cation.

  10. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash.

    PubMed

    Van Zomeren, André; Comans, Rob N J

    2004-07-15

    The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is a concern in many countries and may inhibit the beneficial reuse of this secondary material. The enhanced leaching of copper from three MSWI bottom ash samples by dissolved organic carbon (DOC) was investigated with specific attention for the nature of the organic ligands. A competitive ligand exchange-solvent extraction (CLE-SE) method was used to measure Cu binding to DOC. Two types of binding sites for Cu were identified and geochemical modeling showed that the organically bound fraction varied from 82% to 100% between pH 6.6 and 10.6. Model calculations showed that complexation by previously identified aliphatic and aromatic acids was unable to explain the enhanced Cu leaching from the MSWI residues. High-performance size-exclusion chromatography (HPSEC) and the standard extraction procedure to isolate and purify natural organic matter revealed that about 0.5% of DOC consists of humic acids and 14.3-25.6% consists of fulvic acids. Calculated Cu binding isotherms based on these natural organic compounds, and the nonideal competitive adsorption-Donnan (NICA-Donnan) model, provide an adequate description of the organic Cu complexation in the bottom ash leachates. The results show that fulvic acid-type components exist in MSWI bottom ash leachates and are likely responsible for the generally observed enhanced Cu leaching from these residues. These findings enable the use of geochemical speciation programs, which include models and intrinsic parameters for metal binding to natural organic matter, to predict Cu leaching from this widely produced waste material under variable environmental conditions (e.g., pH, ionic strength, and concentrations of competing metals). The identified role of fulvic acids in the leaching of Cu and possibly other heavy metals can also be used in the development of techniques to improve the environmental quality of MSWI bottom ash.

  11. Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions.

    PubMed

    Niu, Lin; Liu, Xinfeng; Cong, Chunxiao; Wu, Chunyang; Wu, Di; Chang, Tay Rong; Wang, Hong; Zeng, Qingsheng; Zhou, Jiadong; Wang, Xingli; Fu, Wei; Yu, Peng; Fu, Qundong; Najmaei, Sina; Zhang, Zhuhua; Yakobson, Boris I; Tay, Beng Kang; Zhou, Wu; Jeng, Horng Tay; Lin, Hsin; Sum, Tze Chien; Jin, Chuanhong; He, Haiyong; Yu, Ting; Liu, Zheng

    2015-12-16

    High-quality organic and inorganic van der Waals (vdW) solids are realized using methylammonium lead halide (CH3 NH3 PbI3 ) as the organic part (organic perovskite) and 2D inorganic monolayers as counterparts. By stacking on various 2D monolayers, the vdW solids exhibit dramatically different light emissions. Futhermore, organic/h-BN vdW solid arrays are patterned for red-light emission.

  12. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste.

    PubMed

    He, Xiaosong; Xi, Beidou; Wei, Zimin; Guo, Xujing; Li, Mingxiao; An, Da; Liu, Hongliang

    2011-01-01

    This paper aims to characterize the evolution of water extractable organic matter (WEOM) during the composting of municipal solid waste (MSW), and investigate the correlation between maturity and WEOM characteristics. WEOM was extracted at different stages of MSW composting (0, 7, 14, 21, and 51 d) and characterized by FTIR, UV-Vis, and fluorescence spectroscopy. The results obtained show that the composting process decreased aliphatics, alcohols, polysaccharides, as well as protein-like materials, and increased aromatic polycondensation, humification, oxygen-containing functional groups, molecular weight, and humic-like materials. The maturity of MSW during composting was characterized by the presence of the peak with an excitation/emission wavelength pair of 289/421 nm in excitation-emission matrix spectra.

  13. Competition Between Organic Matter and Solid Surface for Cation Sorption: Ce and Rare Earth Element as Proxy

    NASA Astrophysics Data System (ADS)

    Davranche, M.; Pourret, O.; Gruau, G.; Dia, A.

    2006-12-01

    Aquatic or soil organic matter are well-known to be strong adsorbent of many cations due to their adsorption capacity. Among these cations, the trivalent rare earth element (REE) and particularly Ce seem to be promising tools to investigate the impact of competition in between organic or inorganic ligands. Ce (III) is oxidized into Ce (IV) by oxidative surface such as Fe and Mn oxyhydroxides. Since Ce (IV) is preferentially adsorbed (as compared to other REE), a positive and negative Ce anomaly is developed respectively onto the solid and within the solution. Previous studies (Davranche et al., 2004, 2005) highlighted the suppression of this feature when Ce occurs to be complexed with organic matter (as humate species). Recent experiments were designed to evaluate the competition between humate and Mn oxide for REE complexation (each reactant being added simultaneously). Two parameters control the competition: time and pH. While organic matter does adsorb immediately the free REE, a desorption of REE occurs through time. Desorption is marked by the development of a Ce anomaly in the REE pattern that reflects the complexation with Mn oxide surface. Along the time, solid surface becomes thus more competitive than the organic matter. PH still influences the competition since at basic pH, REE and organic matter - probably as REE-organic complexes - are adsorbed onto the solid surface. Ultrafiltration analyses at 5 KD were also performed to separate organic matter and organic complexes from the solution. Results provide evidence that in presence of a solid surface, HREE (high rare earth element) desorption from the organic matter occurs through time. This leads to HREE enrichment in solution. All these results suggest that complexation of organic matter is kinetically favoured as compared to the complexation with solid surfaces. However, the organic complex formed during the first stage of the complexation process involves weak bindings. These bindings are easily broken

  14. Heat impact caused molecular level changes in solid and dissolved soil organic matter

    NASA Astrophysics Data System (ADS)

    Hofmann, Diana; Steffen, Bernhard; Eckhardt, Kai-Uwe; Leinweber, Peter

    2015-04-01

    The ubiquitous abundance of pyrolysed, highly aromatic organic matter, called "Black Carbon" (BC), in all environmental compartments became increasingly important in different fields of research beyond intensive investigated atmospheric aerosol due to climatic relevance. Its predominant high resistance to abiotic and biotic degradation resulted in turnover times from less than a century to several millennia. This recalcitrance led to the enrichment of BC in soils, accounting for 1-6% (European forest soils) to 60% (Chernozems) of total soil organic matter (SOM). Hence, soil BC acts an important sink in the global carbon cycle. In contrast, consequences for the nitrogen cycle up to date are rather inconsistently discussed. Soil related dissolved organic matter (DOM) is a major controlling factor in soil formation, an important pathway of organic matter transport and one of the largest active carbon reservoirs on earth, if considering oceans and other bodies of water. The aim of this study was to evaluate the effects of artificially simulated wildfire by thermal treatment on the molecular composition of water extractable soil organic matter (DOM). Soils from two outdoor lysimeters with different management history were investigated. Soil samples, non-heated and heated up to 350°C were analyzed for elemental composition (carbon, nitrogen and sulfur) and for bulk molecular composition by Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS) and synchrotron-based X-ray Absorption Near-Edge Spectroscopy (XANES) at the C- and N K-edges. DOM-samples obtained by hot water extraction, desalting and concentration by solid phase extraction were subsequently analyzed by flow injection analysis in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS), equipped with an ESI source and a 7 T supra-conducting magnet (LTQ-FT Ultra, ThermoFisher Scientific). This technique is the key technique for the analysis of complex samples due to its outstanding mass

  15. Gas chromatographic analysis of organic marker compounds in fine particulate matter using solid-phase microextraction.

    PubMed

    Lin, Lin; Lee, Milton L; Eatough, Delbert J

    2007-01-01

    A gas chromatographic method that uses solid-phase microextraction for analysis of organic marker compounds in fine particulate matter (PM2.5) is reported. The target marker compounds were selected for specificity toward emission from wood smoke, diesel or gasoline combustion, or meat cooking. Temperature-programmed volatilization analysis was used to characterize the thermal stabilities and volatile properties of the compounds of interest. The compounds were thermally evaporated from a quartz filter, sorbed to a solid phase microextraction (SPME) fiber, and thermally desorbed at 280 degrees C in a gas chromatograph injection port connected via a DB 1701 capillary separating column. Various experimental parameters (fiber type, time, and temperature of sorption) were optimized. It was found that high extraction yield could be achieved using a polyacrylate fiber for polar substances, such as levoglucosan, and a 7-microm polydimethylsiloxane (PDMS)-coated fiber for nonpolar compounds, such as hopanes and polyaromatic hydrocarbon. A compromise was made by selecting a carboxen/PDMS fiber, which can simultaneously extract all of the analytes of interest with moderate-to-high efficiency at 180 degrees C within a 30-min accumulation period. The optimized method was applied to the determination of levoglucosan in pine wood combustion emissions. The simplicity, rapidity, and selectivity of sample collection with a polymer-coated SPME coupled to capillary gas chromatography (GC) made this method potentially useful for atmospheric chemistry studies.

  16. Anaerobic co-digestion of solid waste: Effect of increasing organic loading rates and characterization of the solubilised organic matter.

    PubMed

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Steyer, Jean Philippe; Lugardon, Aurelien; Delgenes, Jean Philippe

    2013-02-01

    The impact of stepwise increase in OLR (up to 7.5kgVS/m(3)d) on methane production, reactor performance and solubilised organic matter production in a high-loading reactor were investigated. A reference reactor operated at low OLR (<2.0kgVS/m(3)d) was used solely to observe the methane potential of the feed substrate. Specific methane yield was 0.33lCH(4)/gVS at the lowest OLR and dropped by about 20% at the maximum OLR, while volumetric methane production increased from 0.35 to 1.38m(3)CH(4)/m(3)d. At higher loadings, solids hydrolysis was affected, with consequent transfer of poorly-degraded organic material into the drain solids. Biodegradability and size-fractionation of the solubilised COD were characterized to evaluate the possibility of a second stage liquid reactor. Only 18% of the organics were truly soluble (<1kD). The rest were in colloidal and very fine particulate form which originated from grass and cow manure and were non-biodegradable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Dissolved organic matter: Fractional composition and sorbability by the soil solid phase (Review of literature)

    NASA Astrophysics Data System (ADS)

    Karavanova, E. I.

    2013-08-01

    The behavior of dissolved organic matter (DOM) in soils under varying environmental conditions represents a poorly studied aspect of the problem of organic matter loss from soils. The equilibrium and sustainable development of ecosystems in the northern latitudes are largely determined by the balance between the formation of DOM, its accumulation in the lower soil horizons, and its input with runoff into surface waters. The residence time, retention strength in the soil, and thermodynamic and biochemical stabilities depend on the localization of DOM in the pore space and its chemical structure. Amphiphilic properties represent a valuable diagnostic parameter, which can be used to predict the behavior of DOM in the soil. Acidic components of hydrophobic and hydrophilic nature constitute the major portion of DOM in forest soils of the temperate zone. The hydrophilic fraction includes short-chain aliphatic carboxylic acids, hydrocarbons, and amino acids and is poorly sorbed by the solid phase. However, the existence of this fraction in soil solution is also limited both in space (in the finest pores) and time because of higher accessibility to microbial degradation. The hydrophilic fraction composes the major portion of labile DOM in soils. The hydrophobic fraction consists of soluble degradation products of lignin; it is enriched in structural ortho-hydroxybenzene fragments, which ensure its selective sorption and strong retention in soils. Sorption is favored by low pH values (3.5-5), the high ionic strength of solution, the heavy texture and fine porous structure of soil, the high contents of oxalate- and dithionite-soluble iron (and aluminum) compounds, and hydrological conditions characterized by slow water movement. The adsorbed DOM is chemically and biochemically recalcitrant and significantly contributes to the humus reserves in the low mineral horizons of soils.

  18. Variation in some chemical parameters and organic matter in soils regenerated by the addition of municipal solid waste

    NASA Astrophysics Data System (ADS)

    Garcia, Carlos; Hernandez, Teresa; Costa, Francisco

    1992-11-01

    The organic fraction of a municipal solid waste was added in different doses to an eroded soil formed of loam and with no vegetal cover. After three years, the changes in macronutrient content and the chemical-structural composition of its organic matter were studied. The addition of the organic fraction from a municipal solid waste had a positive effect on soil regeneration, the treated soils being covered with spontaneous vegetation from 1 yr onwards. An increase in electrical conductivity and a fall in pH were noted in the treated soils as were increases in macronutrients, particularly N and available P and the different carbon fractions. Optical density measurements of the organic matter extracted with sodium pyrophosphate showed that the treated soils contained an organic matter with less condensed compounds and with a greater tendency to evolve than the control. A pyrolysis-gas chromatography study of the organic matter extracted with pyrophosphate showed large quantities of benzene both in the treated soils and control; pyrrole was also relatively abundant, although this fragment decreased as the dose rose. Xylenes and pyridine were present in greater quantities in the control and furfural in the treated soils. Three years after addition to the soil, the organic matter had a higher proportion of fragments derived from aromatic compounds and a smaller proportion derived from hydrocarbons. Similarity indices showed that, although the added and newly formed organic matter 3 yr after addition continued to differ from that of the original soil and to be more mineralizable, the transformations it has undergone made it more similar to the original organic matter of the soil than it was at the moment of being added.

  19. Effect of organic matter and moisture on the calorific value of solid wastes: an update of the Tanner diagram.

    PubMed

    Komilis, Dimitrios; Kissas, Konstantinos; Symeonidis, Avraam

    2014-02-01

    Objective of the work was to experimentally determine the effect of the organic matter and moisture contents on the calorific value of organic solid wastes. Nine substrates (i.e. newsprint, biodried municipal solid wastes, municipal solid waste derived composts, wastewater sludges, and sea weed derived compost), with organic matter contents that ranged from 12% to 91% (dry weight) were used in the experiments. All substrates were dried and ground and deionized water was artificially added in order to achieve certain target moisture contents per substrate. The higher heating value (HHV) was, then, determined experimentally for each sample using a bomb calorimeter. Best reduced models were developed to describe the higher and lower heating values as a function of organic matter, ash and moisture contents. A triangular plot was constructed and the self-combustion area was determined and compared to that of the Tanner diagram. Response surfaces were drawn to visually assess the effect of organic matter and moisture contents on the calorific value of the wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Chemical and biological characterization of organic matter during composting of municipal solid waste

    SciTech Connect

    Chefetz, B.; Yona Chen; Hadar, Y.; Hatcher, P.G.

    1996-07-01

    Composting of municipal solid waste (MSW) was studied in an attempt to elaborate transformations of organic matter (OM) during the process and define parameters for the degree of maturity of the product. Composting was performed in 1-m{sup 3} plastic boxes and the following parameters were measured in 13 samples during 132 d of composting: temperature, C/N ratio, ash content, humic substance contents, and fractions (humic acid, fulvic acid, and nonbumic fraction-HA, FA and NHF, respectively). Spectroscopic methods (CPMAS {sup 13}C-NMR, DRIFT) were used to study the chemical composition of the OM. A bioassay based on growth of cucumber (Cucumis satifus L. cv. Dlila) plants was correlated to other parameters. The C/N ratio and ash content showed a typical high rate of change during the first 60 d and reached a plateau thereafter. The HA content increased to a maximum at 112 d, corresponding to the highest plant dry weight and highest 1650/1560 (cm{sup {minus}1}/cm{sup {minus}1}) peak ratios calculated from DRIFT spectra. {sup 13}C-NMR and DRIFT spectra of samples taken from the composting MSW during the process showed that the residual OM contained an increasing level of aromatic structures. Plant-growth bioassay, HA content, and the DRIFT spectra indicated that MSW compost described in this study, stabilized and achieved maturity after about 110 d. 31 refs., 8 figs., 2 tabs.

  1. Multi-chamber microbial desalination cell for improved organic matter and dissolved solids removal from wastewater.

    PubMed

    Pradhan, Harapriya; Ghangrekar, M M

    2014-01-01

    A five-chamber microbial desalination cell (MDC) with anode, cathode, one central desalination chamber and two concentrate chambers separated by ion exchange membranes was operated in batch mode for more than 60 days. The performance of the MDC was evaluated for chemical oxygen demand (COD) removal, total dissolved solids (TDS) removal and energy production. An average COD removal of 81 ± 2.1% was obtained using acetate-fed wastewater as substrate in the anodic chamber inoculated with mixed anaerobic sludge. TDS removals of 58, 70 and 78% were observed with salt concentration of 8, 20 and 30 g/L, respectively, in the middle desalination chamber. The MDC produced a maximum power output of 16.87 mW/m(2) during polarization. The highest Coulombic efficiency of 12 ± 2.4% was observed in this system using mixed anaerobic sludge as inoculum. The system effectively demonstrated capability for simultaneous organic matter removal and desalination along with power generation.

  2. The organic matter of Comet Halley as inferred by joint gas phase and solid phase analyses

    NASA Astrophysics Data System (ADS)

    Krueger, F. R.; Korth, A.; Kissel, J.

    1991-04-01

    During encounters with Comet Halley, the experiment PICCA onboard Giotto measured the gas-phase organic ion composition of the coma, and the experiment PUMA onboard Vega-1 measured the dust composition. Joining both results gives a consistent picture of the parent organic matter from which dust and gas is produced: a complex unsaturated polycondensate, which splits during coma formation into the more refractory C=C,C-N-containing dust part and the more volatile C=C,C-O-containing gas part. The responsible exothermal chemical reactions, which are triggered by sunlight, may play a major role in the dynamics of coma formation.

  3. Selectivity of solid phase extraction for dissolved organic matter in the hypersaline Da Qaidam Lake, China.

    PubMed

    Yang, Keli; Zhang, Yaoling; Dong, Yaping; Li, Wu

    2017-09-19

    Dissolved organic matter (DOM) was isolated from the hypersaline Da Qaidam Lake using solid-phase extraction (SPE) methods with five different adsorbents: ENVI-Carb (non-porous graphitized carbon), HLB, PPL, and XAD-8 (polymer based), and ENVI-18 (silica based). Structure-selective assessments of SPE-DOM isolated using the different adsorbents were conducted using a combination of complementary analysis techniques, including dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) analysis, as well as elemental analysis, Fourier transformed infrared spectroscopy (FTIR), (1)H nuclear magnetic resonance ((1)H NMR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). The results indicated that the modified polymer based adsorbents (PPL and HLB) exhibited higher DOC recoveries than the others. The PPL and ENVI-Carb cartridges can recover representative nitrogen-containing organic components from the hypersaline lake. The SPE-DOM isolates obtained using ENVI-18 and XAD-8 adsorbents contained higher proportions of purely aliphatic, alkene, and aromatic compounds; the ENVI-Carb and PPL adsorbents showed higher affinity for polar functionalized aliphatic and nitrogen-containing compounds; HLB isolate was enriched with oxygen-rich organic compounds and sulphur-bearing components. The structural and compositional features of SPE-DOM from the hypersaline Da Qaidam Lake indicated the predominately autochthonous sources of organic matter in the lake.

  4. The assessment of solid-phase organic matter transport in soils with the use of the magnetic tracer method

    NASA Astrophysics Data System (ADS)

    Koshovskii, Timur

    2015-04-01

    Soil organic matters are important product of soil-forming processes, which affects soil fertility, structural, and other soil properties. In addition, soil organic carbon (SOC) stocks of the soil are an significant reservoir of global carbon stock. In this paper we made an attempt to quantify the mass of carbon transported in the solid phase, in the watershed forest-steppe zone (Tula region). The basic erosion and accumulation zone of SOC was identifying in the watershed. Assume the factors that influence the distribution of SOC stocks in the watershed. We used the magnetic tracer method, allowing estimating the volume of soil substance, which transport in solid form. It is based on an assessment of the distribution fly ash in soils. Fly ash drop to the soil surface evenly, and their movement in the soil - it is the result of solid-phase migration. To calculate the volume of transported organic matter, we have assumed that the substance being transferred to the same extent saturated with humus, as well as the substance of the arable layer of chernozems. The transport of SOC in forest-steppe landscapes occurs in the form of dissolved organic carbon (DOC) in runoff water and particulate organic carbon (POC) in erosion sediments. The humus in chernozems is mainly in solid form and therefore poorly transport in a dissolved form. Thus, the calculation of the solid-phase soil material produced by the magnetic tracer method [1], the calculation of the transported POC - by multiplying the humus content on the amount of the transported solid-phase soil material. The object of study was a small watershed area of 0.96 square kilometers, in the Central Russian Upland, Tula region, Russia. Watershed fully plowed, except the steep slopes of the ravine. Predominant soil is a Luvic Chernozems. Within a watershed along 10 catens selected 70 samples from two depths (0-25 and 25-50 cm). In the samples was determined by total organic carbon content and the content of spherical

  5. [Study on spectral characteristic of dissolved organic matter fractions extracted from municipal solid waste landfill leachate].

    PubMed

    Zhang, Jun-Zheng; Yang, Qian; Xi, Bei-Dou; Wei, Zi-Min; He, Xiao-Song; Li, Ming-Xiao; Yang, Tian-Xue

    2008-11-01

    In the present study, the samples of landfill leachate of 0, 5, 10-year-old were respectively taken from landfill plant. Based on a modified Leenheer fractionation scheme, dissolved organic matter (DOM) extracted from landfill leachate of three different ages was fractioned according to their polarities and charge characteristics by using XAD-8 resin, and the fractions of hydrophobic acid (HOA), neutral (HON) and hydrophilic matter (HIM) were obtained, Then the fluorescence and UV spectra of DOM fractions were determined. The fluorescence synchronous scan spectra of DOM fractions exhibited a primary peak at 280 nm for 0-year-old, while the primary peak exhibited at 340nm for 5 and 10 year-old, suggesting that DOM fractions contained mainly protein-like matter at initial stage of landfill, and with the increase in landfill ages, aromatic structures of DOM fractions in leachate were enriched. Among the DOM fractions of HOA, HON and HIM at different ages of landfill leachate, the fluorescence and UV spectra all indicated that the molecular weight, content of aromatic compounds and degree of condensation were all in the order of HOA>HON>HIM. The ratio of UV absorbance at 253 nm to that at 203 nm (A253/A203) showed, that the substituent on the aromatic ring of HOA and HON fractions consisted mainly of carbonyl, carboxyl and hydroxyl; while that of HIM consisted of aliphatic chains, and the content of aromatic compounds was lower than that of HOA and HON; which implied that the HIM displayed a lower molecular weight and simpler structure compared to HOA and HON. Altogether, the results obtained from fluorescence and UV spectra indicate that the degree of aromatization increased in DOM fractions of leachate with the landfill ages, in the following order: HOA > HON > HIM.

  6. Organic Solid Matter as a Coloring Agent in Outer Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; DalleOre, C. M.; Roush, T. L.; Khare, B. N.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Small bodies in the outer Solar System OSS, exhibit a range of color, or slope of the reflectance in the photovisual spectral region, ranging from neutral to very red, sometimes with and sometimes without distinct absorption bands. These objects range in geometric albedo from 0.03 to 1.0, with the higher albedo objects typically showing clear evidence of water ice. Water ice has also been found in a few objects with albedo 0. 1 or less. We explore here the identification of the material or materials that color these icy and non-icy surfaces through scattering models that incorporate minerals, meteoritic material, and organic solids (tholins) produced ID the laboratory by energy deposition in ices and gases. These models must match not only the color in the photovisual region, but the spectral reflectance properties throughout the near-infrared. Among some classes of objects, such as Kuiper Belt objects, the coloring agent may be a single material that is present in greater or lesser abundance, thus accounting for the range in color from neutral to very red. This may also apply to the Centaur objects, the Jovian Trojans, and the outer-main belt asteroids, each taken as a separate class. If so, each class may be colored to varying degrees by a different material, or they all might be colored by a common material that is widespread throughout the OSS, from 3 to 50 AU, and beyond. In this paper, we model the reflectances of "Kuiper Belt objects, Centaurs, Trojans, outer ARAB asteroids, and planetary satellites. Our models show that the reddest surfaces cannot be colored by minerals or meteoritic materials, but can be matched throughout the photovisual and near-infrared by organic solids, specifically certain tholins.

  7. Organic Solid Matter as a Coloring Agent in Outer Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; DalleOre, C. M.; Roush, T. L.; Khare, B. N.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Small bodies in the outer Solar System OSS, exhibit a range of color, or slope of the reflectance in the photovisual spectral region, ranging from neutral to very red, sometimes with and sometimes without distinct absorption bands. These objects range in geometric albedo from 0.03 to 1.0, with the higher albedo objects typically showing clear evidence of water ice. Water ice has also been found in a few objects with albedo 0. 1 or less. We explore here the identification of the material or materials that color these icy and non-icy surfaces through scattering models that incorporate minerals, meteoritic material, and organic solids (tholins) produced ID the laboratory by energy deposition in ices and gases. These models must match not only the color in the photovisual region, but the spectral reflectance properties throughout the near-infrared. Among some classes of objects, such as Kuiper Belt objects, the coloring agent may be a single material that is present in greater or lesser abundance, thus accounting for the range in color from neutral to very red. This may also apply to the Centaur objects, the Jovian Trojans, and the outer-main belt asteroids, each taken as a separate class. If so, each class may be colored to varying degrees by a different material, or they all might be colored by a common material that is widespread throughout the OSS, from 3 to 50 AU, and beyond. In this paper, we model the reflectances of "Kuiper Belt objects, Centaurs, Trojans, outer ARAB asteroids, and planetary satellites. Our models show that the reddest surfaces cannot be colored by minerals or meteoritic materials, but can be matched throughout the photovisual and near-infrared by organic solids, specifically certain tholins.

  8. Solid organic matter in the atmosphere and on the surface of outer Solar System bodies.

    PubMed

    Khare, B N; Bakes, E L; Cruikshank, D; McKay, C P

    2001-01-01

    Many bodies in the outer Solar System display the presence of low albedo materials. These materials, evident on the surface of asteroids, comets, Kuiper Belt objects and their intermediate evolutionary step, Centaurs, are related to macromolecular carbon bearing materials such as polycyclic aromatic hydrocarbons and organic materials such as methanol and related light hydrocarbons, embedded in a dark, refractory, photoprocessed matrix. Many planetary rings and satellites around the outer gaseous planets display such component materials. One example, Saturn's largest satellite, Titan, whose atmosphere is comprised of around 90% molecular nitrogen N2 and less than 10% methane CH4, displays this kind of low reflectivity material in its atmospheric haze. These materials were first recorded during the Voyager 1 and 2 flybys of Titan and showed up as an optically thick pinkish orange haze layer. These materials are broadly classified into a chemical group whose laboratory analogs are termed "tholins", after the Greek word for "muddy". Their analogs are produced in the laboratory via the irradiation of gas mixtures and ice mixtures by radiation simulating Solar ultraviolet (UV) photons or keV charged particles simulating particles trapped in Saturn's magnetosphere. Fair analogs of Titan tholin are produced by bombarding a 9:1 mixture of N2:CH4 with charged particles and its match to observations of both the spectrum and scattering properties of the Titan haze is very good over a wide range of wavelengths. In this paper, we describe the historical background of laboratory research on this kind of organic matter and how our laboratory investigations of Titan tholin compare. We comment on the probable existence of polycyclic aromatic hydrocarbons in the Titan Haze and how biological and nonbiological racemic amino acids produced from the acid hydrolysis of Titan tholins make these complex organic compounds prime candidates in the evolution of terrestrial life and

  9. The Organic Matter Molecular Characteristics of Pyrogenic Solids and Their Aqueous Leachable Fractions

    NASA Astrophysics Data System (ADS)

    Wozniak, A. S.; Hatcher, P.; Mitra, S.; Bostick, K. W.; Zimmerman, A. R.

    2016-02-01

    Pyrogenic organic matter (Py-OM), or black carbon (BC), derives from the incomplete combustion of fossil fuels and biomass and is recognized for its impacts on soil chemistry, pollutant transport, climate, and regional and global carbon cycling. In fact, Py-OM is commonly applied to agricultural plots, in the form of "biochars," with the intention of enhancing agricultural production and the expectation of a carbon sequestration side benefit due to Py-OM's refractory and immobile nature. However, several studies of riverine, estuarine, and oceanic waters have detected tracers of dissolved Py-OM in appreciable quantities suggesting that it is more mobile in the environment than previously expected. The quantities and impacts of Py-OM released to aqueous systems are likely dependent on Py-OM molecular characteristics which in turn likely depend on initial combustion conditions and environmental processing. Yet, very little is known about the detailed molecular composition of these materials, let alone their relationships with combustion and environmental processing. Here, pyrophosphate extractable and water leachable components of a range of Py-OM materials (natural charcoals aged in the environment for variable lengths of time, oak and grass combusted over a range of temperatures) are examined by Fourier transform ion cyclotron resonance mass spectrometry. The molecular characteristics of the dissolved and pyrophosphate extractable Py-OM is then compared in the context of production conditions. Results of this study will greatly improve our understanding of Py-OM cycling between watersheds and the oceans.

  10. Solid Phase Peat and Dissolved Organic Matter Composition and Reactivity as a Function of Surface Vegetation in Northern Minnesota Peatlands

    NASA Astrophysics Data System (ADS)

    Tfaily, M. M.; Hamdan, R.; Jaffe, R.; Cawley, K.; Cooper, W. T.; Chanton, J.

    2012-12-01

    Peatlands are unusual in greenhouse scenarios because on the one hand they sequester carbon from the atmosphere as peat, while on the other hand they re-emit it in large quantities as methane. Little is known, however, about the chemical processes that link solid phase peat and dissolved organic matter (DOM) within its porewaters. In this work we have applied FT-IR and 13C NMR spectroscopy to characterize the solid phase peat at varying depths from different sites at the Marcell Experimental Forest (MEF) where the Oak Ridge National Laboratory (ORNL) has begun the Spruce and Peatland Response Under Climatic and Environmental Change (SPRUCE) project. Parallel Factor analyzed Excitation/Emission Matrix fluorescence spectroscopy (PARAFAC-EEMS) and ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) were used to characterize the molecular composition of peat porewaters. Analyses of the solid phase and the porewater suggested the presence of different zones of varying degrees of humification in the peat core. FT-IR and NMR data indicated that the relative abundances of alipahtics and aromatics increased with depth to about 100 cm, then remained relatively constant. This increase was accompanied with a concomitant decrease in the relative abundance of carbohydrates. FT-ICR MS data showed a large abundance of compounds with high O/C ratios at the surface (acrotelm) that tend to disappear with depth (catotelm), with accumulation of refractory aliphatic compounds characterized by low O/C and high H/C ratios.

  11. Solid-state 13C NMR studies of dissolved organic matter in pore waters from different depositional environments

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.

    1987-01-01

    Dissolved organic matter (DOM) in pore waters from sediments of a number of different depositional environments was isolated by ultrafiltration using membranes with a nominal molecular weight cutoff of 500. This > 500 molecular weight DOM represents 70-98% of the total DOM in these pore waters. We determined the gross chemical structure of this material using both solid-state 13C nuclear magnetic resonance spectroscopy and elemental analysis. Our results show that the DOM in these pore waters appears to exist as two major types: one type dominated by carbohydrates and paraffinic structures and the second dominated by paraffinic and aromatic structures. We suggest that the dominance of one or the other structural type of DOM in the pore water depends on the relative oxidizing/reducing nature of the sediments as well as the source of the detrital organic matter. Under dominantly anaerobic conditions carbohydrates in the sediments are degraded by bacteria and accumulate in the pore water as DOM. However, little or no degradation of lignin occurs under these conditions. In contrast, sediments thought to be predominantly aerobic in character have DOM with diminished carbohydrate and enhanced aromatic character. The aromatic structures in the DOM from these sediments are thought to arise from the degradation of lignin. The large amounts of paraffinic structures in both types of DOM may be due to the degradation of unidentified paraffinic materials in algal or bacterial remains. ?? 1987.

  12. [Study on fluorescence characteristic of dissolved organic matter from municipal solid waste landfill leachate].

    PubMed

    Xi, Bei-Dou; Wei, Zi-Min; Zhao, Yue; Li, Ming-Xiao; Liu, Hong-Liang; Jiang, Yong-Hai; He, Xiao-Song; Yang, Tian-Xue

    2008-11-01

    In the present study, the samples of leachate of 0, 5, 10-years-old landfill were respectively taken from landfill plant, the dissolved organic matter (DOM) was extracted from landfill leachate, and the fluorescence spectra of DOM were determined. The fluorescence synchronous scan spectra of DOM in 0-year-old leachate exhibited a primary peak at 335 nm, a secondary peak at 455 nm, and a shoulder peak at 385 nm. While the fluorescence intensities of DOM at different peaks were decreased for 5-year-old leachate, especially those of the peaks at shorter wavelengths (335 and 385 nm) which may be ascribed that the simpler structural components were decreased sharply. Compared with 5-year-old leachate, the fluorescence intensity of DOM in 10-year-old leachate decreased slightly. Three-dimensional excitation emission matrix fluorescence spectra (3DEEM) of DOM in 0-year-old leachate exhibited two peaks at Ex/Em wavelength pairs of 270/355 and 220/350, respectively, which were all associated with protein-derived compounds, while the peaks of protein-like disappeared in 5-year-old leachate, and new peaks of complex structural fulvic acid-like were formed at Ex/Em wavelength pair of 330/412.5 and 250/416.5, respectively. This indicated the component of DOM in the leachate of 5-year-old landfill led to a decrease in low molecular compound, and an increase in high molecular compound compared to that of the 0-year-old. 3DEEM of DOM of 10-year-old leachate was similar to that of DOM in the 5-year-old, but the fluorescence intensity of the peaks of fulvic acid-like in DOM was different, and compared with that of 5-year-old leachate, the peak of DOM in 10-year-old leachate shifted from Ex/Em wavelength pair of 250/416.5 to 250/427.5. This indicated that the DOM formed similar structures, but the structure of fulvic acid-like in DOM of 10-year-old leachate had a greater degree of aromatization and quantity than that of 5-year-old leachate. The results obtained from fluorescence

  13. The Organic Solid State.

    ERIC Educational Resources Information Center

    Cowan, Dwaine O.; Wlygul, Frank M.

    1986-01-01

    Reviews interesting and useful electrical, magnetic, and optical properties of the organic solid state. Offers speculation as to areas of fruitful research. Discusses organic superconductors, conducting organic polymers, organic metals, and traces recent history of creation of organic metals. (JM)

  14. The Organic Solid State.

    ERIC Educational Resources Information Center

    Cowan, Dwaine O.; Wlygul, Frank M.

    1986-01-01

    Reviews interesting and useful electrical, magnetic, and optical properties of the organic solid state. Offers speculation as to areas of fruitful research. Discusses organic superconductors, conducting organic polymers, organic metals, and traces recent history of creation of organic metals. (JM)

  15. Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR

    USDA-ARS?s Scientific Manuscript database

    Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...

  16. Development of solid-phase microextraction to study dissolved organic matter--polycyclic aromatic hydrocarbon interactions in aquatic environment.

    PubMed

    de Perre, Chloé; Le Ménach, Karyn; Ibalot, Fabienne; Parlanti, Edith; Budzinski, Hélène

    2014-01-07

    Solid-phase microextraction coupled with gas chromatography and mass spectrometry (SPME-GC-MS) was developed for the study of interactions between polycyclic aromatic hydrocarbons (PAHs) and dissolved organic matter (DOM). After the determination of the best conditions of extraction, the tool was applied to spiked water to calculate the dissolved organic carbon water distribution coefficient (K(DOC)) in presence of different mixtures of PAHs and Aldrich humic acid. The use of deuterated naphthalene as internal standard for freely dissolved PAH quantification was shown to provide more accuracy than regular external calibration. For the first time, K(DOC) values of 18 PAHs were calculated using data from SPME-GC-MS and fluorescence quenching; they were in agreement with the results of previous studies. Competition between PAHs, deuterated PAHs and DOM was demonstrated, pointing out the non-linearity of PAH-DOM interactions and the stronger interactions of light molecular weight PAHs (higher K(DOC) values) in absence of high molecular weight PAHs.

  17. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils.

    PubMed

    Williams, Paul N; Zhang, Hao; Davison, William; Meharg, Andrew A; Hossain, Mahmud; Norton, Gareth J; Brammer, Hugh; Islam, M Rafiqul

    2011-07-15

    Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution.

  18. Biochemical methane potential of fractions of organic matter extracted from a municipal solid waste leachate: Impact of their hydrophobic character.

    PubMed

    Baccot, Camille; Pallier, Virginie; Feuillade-Cathalifaud, Geneviève

    2016-12-05

    Many data on anaerobic digestion (AD) and co-digestion of municipal solid waste leachate (MSWL) are already available in literature. They mainly deal with its performances to decrease the chemical oxygen demand (COD) of MSWL and no information is given on the impact of the specific characteristics of the dissolved organic matter (DOM) in leachate on these performances. DOM in leachate evolves towards more aromatic and hydrophobic compounds during landfilling with increasing specific ultra-violet absorbance index (SUVA) and hydrophobic character. However, according to the humification stages, this DOM would not present the same aptitude for AD. This research thus focused on (i) optimizing a biochemical methane potential (BMP) test applied to MSWL by using the Taguchi method and (ii) evaluating the impact of the hydrophobic character of the DOM in leachate on the BMP of MSWL to finally define the humification degree more suitable for AD. Hydrophobic-like (HPO(∗)) and transphilic-like (TPH(∗)) compounds extracted from leachate by a fractionation protocol were tested because of their high content in MSWL during acetogenesis and methanogenesis steps. After 275days of AD, the content in hydrophobic compounds and the SUVA indexes increased in the digestates. Moreover, even if the biogas and methane productions were not significantly different during the whole tests (4072±350mLgDOC(-1) and 2370±95mLgDOC(-1) respectively), the volume of biogas produced directly correlated with the TPH(∗) fraction content in the initial digestates. On the contrary, the methane percentage in biogas was anti-correlated with the hydrophilic-like compounds content. The hydrophobic-like molecules seem thus not to be directly involved in the methanogenic step, however they promote the increase of the methane percent in the biogas.

  19. Characterization of pyrogenic organic matter by 2-dimenstional HETeronucleus CORelation solid-state 13C NMR (HETCOR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2016-04-01

    During the last years, increasing evidences are provided that the common view of charcoal as a polyaromatic network is too much simplified. Experiments with model compounds indicated that it represents a heterogeneous mixture of thermally altered biomacromolecules with N, O and likely also S substitutions as common features. If produced from a N-rich feedstock, the so called black nitrogen (BN) has to be considered as an integral part of the aromatic charcoal network. In order to study this network one-dimensional (1D) solid-state nuclear magnetic resonance (NMR) spectroscopy is often applied. However, this technique suffers from broad resonance lines and low resolution. Applying 2D techniques can help but until recently, this was unfeasible for natural organic matter (NOM) due to sensitivity problems and the high complexity of the material. On the other hand, during the last decade, the development of stronger magnetic field instruments and advanced pulse sequences has put them into reach for NOM research. Although 2D NMR spectroscopy has many different applications, all pulse sequences are based on the introduction of a preparation time during which the magnetization of a spin system is adjusted into a state appropriate to whatever properties are to be detected in the indirect dimension. Then, the spins are allowed to evolve with the given conditions and after their additional manipulation during a mixing period the modulated magnetization is detected. Assembling several 1D spectra with incrementing evolution time creates a data set which is two-dimensional in time (t1, t2). Fourier transformation of both dimensions leads to a 2D contour plot correlating the interactions detected in the indirect dimension t1 with the signals detected in the direct dimension t2. The so called solid-state heteronuclear correlation (HETCOR) NMR spectroscopy represents a 2D technique allows the determination which protons are interacting with which carbons. In the present work this

  20. Effects of biochar on organic matter dynamics in unamended soils and soils amended with municipal solid waste compost and sewage sludge

    NASA Astrophysics Data System (ADS)

    Plaza, César; Giannetta, Beatrice; Fernández, José M.; López-de-Sá, Esther G.; Gascó, Gabriel; Méndez, Ana; Zaccone, Claudio

    2015-04-01

    Biochar is a loosely-defined C-rich solid byproduct obtained from biomass pyrolysis, which is intended for use as a soil amendment. A full understanding of the agronomic and environmental potential of biochar, especially its potential as a C sequestration strategy, requires a full understanding of its effects on native soil organic matter, as well as of its interactions with other organic amendments applied to soil. Here we determined the organic C distribution in an arable soil amended with biochar at rates of 0 and 20 t ha-1 in a factorial combination with two types of organic amendment (viz. municipal solid waste compost and sewage sludge) in a field experiment under Mediterranean conditions. The analysis of variance revealed that biochar and organic amendment factors increased significantly total organic C and mineral-associated organic C contents, and had little effect on intra-macroaggregate and intra-microaggregate organic C pools. Free soil organic C content was significantly affected by biochar application, but not by the organic amendments. Especially noteworthy were the interaction effects found between the biochar and organic amendment factors for mineral-associated organic C contents, which suggested a promoting action of biochar on C stabilization in organically-amended soils.

  1. Is old organic matter simple organic matter?

    NASA Astrophysics Data System (ADS)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  2. The Organic Matter of Comet P/Halley as Inferred by Joint Gas and Solid Phase Analysis

    NASA Astrophysics Data System (ADS)

    Krueger, F. R.; Korth, A.; Kissel, J.

    1997-12-01

    During the encounters with comet Halley, PICCA on GIOTTO measured the gas phase organic ion composition of the coma, and PUMA on VEGA 1 measured the dust composition. Joining those results a consistent picture of the parent organic matter from which dust and gas is produced can be obtained. One recognizes a complex unsaturated polycondensate, which splits during coma-formation into the more refractory C=C,C-N-containing dust part, and the more volatile C=C,C-O-containing gas part. The responsible exothermal chemical reactions, triggered by the sun light may play a major role in the dynamics of coma formation. The latent heat and reactivity may cause problems regarding a sample return mission.

  3. Short- and long-term sorption/desorption of polycyclic aromatic hydrocarbons onto artificial solids: effects of particle and pore sizes and organic matters.

    PubMed

    Sun, Hongwen; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2003-07-01

    In order to elucidate the effect of nanopores and organic matters on sequestration of contaminants, short- and long-term sorption and desorption of naphthalene and pyrene in seven artificial solid-water systems were studied. Fast sorption occurred in every case; steady states were reached within 1-5h. Sorption constants varied drastically among the seven absorbents, ranging from 1.19 to 5.29 x 10(3) for naphthalene, and from 24.3 to 6.52 x 10(4) for pyrene. Slow sorption continued to take place in some cases, especially on absorbents containing humic matter. Desorption usually took place in two stages, fast and slow, on both unaged and aged absorbents. Irreversibility of desorption occurred for every absorbent except for silica particles modified with octadecyl silyl. Aging led to a reduction of fast desorption fraction due to entrapment of the chemicals into nanopores and partitioning of the chemicals into condensed areas of humic matters, and showed no effect on slow desorption and irreversibility of desorption. On the whole, entrapment into nanopores and partitioning into humic matters are considered to be important for sequestration of contaminants. Irreversibility of desorption is considered to be a more influencing factor than percentage of desorption for describing the extent of sequestration.

  4. High loaded MBRs for organic matter recovery from sewage: effect of solids retention time on bioflocculation and on the role of extracellular polymers.

    PubMed

    Faust, L; Temmink, H; Zwijnenburg, A; Kemperman, A J B; Rijnaarts, H H M

    2014-06-01

    High loaded MBRs (HL-MBR) can concentrate sewage organic matter by aerobic bioflocculation for subsequent anaerobic conversion to methane or volatile fatty acids. In the range of very short solid retention times (SRT), the effect of SRT on bioflocculation and EPS production in HL-MBR was investigated. This short SRT range was selected to find an optimum SRT maximising recovery of organics by aerobic bioflocculation and minimizing losses of organics by aerobic mineralization. Bioflocculation was studied in five HL-MBRs operated at SRTs of 0.125, 0.25, 0.5, 1 and 5 d. The extent of flocculation, defined as the fraction of suspended COD in the concentrate, increased from 59% at an SRT of 0.125 d to 98% at an SRT of 5 d. The loss of sewage organic matter by biological oxidation was 1, 2, 4, 11 and 32% at SRT of 0.125-5 d. An SRT of 0.5-1 d gave best combination of bioflocculation and organic matter recovery. Bound extracellular polymeric substances (EPS) concentrations, in particular EPS-protein concentrations, increased when the SRT was prolonged from 0.125 to 1 d. This suggests that these EPS-proteins govern the bioflocculation process. A redistribution took place from free (supernatant) EPS to bound (floc associated) EPS when the SRT was prolonged from 0.125 to 1 d, further supporting the fact that the EPS play a dominant role in the flocculation process. Membrane fouling was most severe at the shortest SRTs of 0.125 d. No positive correlation was detected between the concentration of free EPS and membrane fouling, but the concentration of submicron (45-450 nm) particles proved to be a good indicator for this fouling.

  5. Ozone uptake and formation of reactive oxygen intermediates on glassy, semi-solid and liquid organic matter

    NASA Astrophysics Data System (ADS)

    Berkemeier, Thomas; Steimer, Sarah S.; Krieger, Ulrich K.; Peter, Thomas; Pöschl, Ulrich; Ammann, Markus; Shiraiwa, Manabu

    2016-04-01

    Heterogeneous and multiphase reactions of ozone are important pathways for chemical ageing of atmospheric organic aerosols (Abbatt, Lee and Thornton, 2012). The effects of particle phase state on the reaction kinetics are still not fully elucidated and cannot be described by classical models assuming a homogeneous condensed phase (Berkemeier et al., 2013). We apply a kinetic multi-layer model, explicitly resolving gas adsorption, condensed phase diffusion and condensed phase chemistry (Shiraiwa et al., 2010), to systematic measurements of ozone uptake onto proxies for secondary organic aerosols (SOA). Our findings show how moisture-induced phase changes affect the gas uptake and chemical transformation of organic matter through change in the physicochemical properties of the substrate: the diffusion coefficients are found to be low under dry conditions, but increase by several orders of magnitude toward higher relative humidity (RH). The solubility of ozone in the dry organic matrix is found to be one order of magnitude higher than in the dilute aqueous solution. The model simulations reveal that at high RH, ozone uptake is mainly controlled by reaction throughout the particle bulk, whereas at low RH, bulk diffusion is retarded severely and reaction at the surface becomes the dominant pathway, with ozone uptake being limited by replenishment of unreacted organic molecules from the bulk phase. The experimental results can only be reconciled including a pathway for ozone self-reaction, which becomes especially important under dry and polluted conditions. Ozone self-reaction can be interpreted as formation and recombination of long-lived reactive oxygen intermediates at the aerosol surface, which could also explain several kinetic parameters and has implications for the health effects of organic aerosol particles. This study hence outlines how kinetic modelling can be used to gain mechanistic insight into the coupling of mass transport, phase changes, and chemical

  6. Arctic River organic matter transport

    NASA Astrophysics Data System (ADS)

    Raymond, Peter; Gustafsson, Orjan; Vonk, Jorien; Spencer, Robert; McClelland, Jim

    2016-04-01

    Arctic Rivers have unique hydrology and biogeochemistry. They also have a large impact on the Arctic Ocean due to the large amount of riverine inflow and small ocean volume. With respect to organic matter, their influence is magnified by the large stores of soil carbon and distinct soil hydrology. Here we present a recap of what is known of Arctic River organic matter transport. We will present a summary of what is known of the ages and sources of Arctic River dissolved and particulate organic matter. We will also discuss the current status of what is known about changes in riverine organic matter export due to global change.

  7. From solid to liquid: assessing the release of organic matter into soil solution in response to land-use conversion in Brazilian Oxisols

    NASA Astrophysics Data System (ADS)

    James, Jason; Gross, Cole; Dwivedi, Pranjal; Bernardi, Rodolpho; Guerrini, Irae; Harrison, Rob; Butman, David

    2017-04-01

    Recent advances in freshwater research indicate that roughly double the quantity of carbon is exported from soils to streams and rivers than was previously estimated, and that the age of carbon exported from major rivers globally increases with greater human disturbance in the watershed. This implies that human land-use can release old, previously mineral-associated C into solution with subsequent export to groundwater and ultimately freshwater systems where terrestrial organic matter is either mineralized to CO2, stored in aquatic sediments, or exported to the ocean. Consequently, it is important to understand the mechanisms that cause the release of SOM that is mineral-bound into solution in response to human disturbance and land-use change. Research methods have been established to examine both the fast turnover, dissolved pool of soil organic matter (SOM), as well as the slow turnover, mineral-associated pool. However, to better characterize the response of the total SOM pool to disturbance, it is necessary to understand the interactions between these functional pools by examining them both simultaneously. This study seeks to examine the interaction between dissolved organic matter (DOM) and bulk SOM throughout the soil profile in response to conversion of Brazilian Cerrado (savannah forest) to Eucalyptus plantation forest on the same soil type. The water-extractable organic matter was obtained from soil samples down to 150 cm, characterized using fluorescence and NMR spectroscopy, and carbon-dated. Simultaneously, bulk mineral soil samples were analyzed for microbial biomass, carbon content and age, and characterized using Fourier Transform Infrared Spectroscopy. SOM spectra were obtained by washing subsamples with sodium hypochlorite and subtracting the subsequent mineral matrix spectra from bulk soil spectra. Preliminary results show that microbial biomass decreases much more quickly with depth than DOM, suggesting that C released into solution from deeper

  8. What is soil organic matter worth?

    PubMed

    Sparling, G P; Wheeler, D; Vesely, E-T; Schipper, L A

    2006-01-01

    The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.

  9. Characterization of the Natural Organic Matter (NOM) in groundwater contaminated with (60)Co and (137)Cs using ultrafiltration, Solid Phase Extraction and fluorescence analysis.

    PubMed

    Caron, François; Siemann, Stefan; Riopel, Rémi

    2014-12-01

    Spot samples of shallow groundwaters have been taken between the years 2004 and 2010 near a site formerly used for the dispersal of radioactive liquid wastes. Three sampling points, one clean (upstream), and two downstream of the contamination source, were processed by ultrafiltration (5000 Da cut-off) and Solid Phase Extraction (SPE) to determine the association of selected artificial radionuclides ((60)Co, (137)Cs) with Natural Organic Matter (NOM). The last two sampling episodes (2008 and 2010) also benefited from fluorescence analysis to determine the major character of the NOM. The fluorescence signals are reported as humic-like, fulvic-like and protein-like, which are used to characterize the different NOM types. The NOM from the clean site comprised mostly fine material, whereas the colloidal content (retained by ultrafiltration) was higher (e.g., 15-40% of the Total Organic Carbon - TOC). Most of the 137Cs was present in the colloidal fraction, whereas (60)Co was found in the filtered fraction. Fluorescence analysis, on the other hand, indicated a contrasting behavior between the clean and contaminated sites, with a dominance of protein-like material, a feature usually associated with human impacts. Finally, SPE removed almost quantitatively the protein-like material (>90%), whereas it removed a much smaller fraction of the (137)Cs (<28%). This finding indicates that the (137)Cs preferential binding occurs with a fraction other than the protein-like NOM, likely the fulvic-like or humic-like portion.

  10. Sulfate and organic matter concentration in relation to hydrogen sulfide generation at inert solid waste landfill site - Limit value for gypsum.

    PubMed

    Asakura, Hiroshi

    2015-09-01

    In order to suggest a limit value for gypsum (CaSO4) for the suppression of hydrogen sulfide (H2S) generation at an inert solid waste landfill site, the relationship between raw material (SO4 and organic matter) for H2S generation and generated H2S concentration, and the balance of raw material (SO4) and product (H2S) considering generation and outflow were investigated. SO4 concentration should be less than approximately 100mg-SO4/L in order to suppress H2S generation to below 2000ppm. Total organic carbon (TOC) concentration should be less than approximately 200mg-C/L assuming a high SO4 concentration. The limit value for SO4 in the ground is 60mg-SO4/kg with 0.011wt% as gypsum dihydrate, i.e., approximately 1/10 of the limit value in inert waste as defined by the EU Council Decision (560mg-SO4/kg-waste). The limit value for SO4 in inert waste as defined by the EU Council Decision is high and TOC is strictly excluded. The cumulative amount of SO4 outflow through the liquid phase is much larger than that through the gas phase. SO4 concentration in pore water decreases with time, reaching half the initial concentration around day 100. SO4 reduction by rainfall can be expected in the long term.

  11. Estrone degradation: does organic matter (quality), matter?

    PubMed

    Tan, David T; Temme, Hanna R; Arnold, William A; Novak, Paige J

    2015-01-06

    Understanding the parameters that drive E1 degradation is necessary to improve existing wastewater treatment systems and evaluate potential treatment options. Organic matter quality could be an important parameter. Microbial communities grown from activated sludge seeds using different dissolved organic matter sources were tested for E1 degradation rates. Synthetic wastewater was aged, filter-sterilized, and used as a carbon and energy source to determine if recalcitrant organic carbon enhances E1 degradation. Higher E1 degradation was observed by biomass grown on 8 d old synthetic wastewater compared to biomass grown on fresh synthetic wastewater (P = 0.033) despite much lower concentrations of bacteria. Minimal or no E1 degradation was observed in biomass grown on 2 d old synthetic wastewater. Organic carbon analyses suggest that products of cell lysis or microbial products released under starvation stress stimulate E1 degradation. Additional water sources were also tested: lake water, river water, and effluents from a municipal wastewater treatement plant and a treatment wetland. E1 degradation was only observed in biomass grown in treatment effluent. Nitrogen, dissolved organic carbon, and trace element concentrations were not causative factors for E1 degradation. In both experiments, spectrophotometric analyses reveal degradation of E1 is associated with microbially derived organic carbon but not general recalcitrance.

  12. Structural changes of humic acids from sinking organic matter and surface sediments investigated by advanced solid-state NMR: Insights into sources, preservation and molecularly uncharacterized components

    NASA Astrophysics Data System (ADS)

    Mao, Jingdong; Tremblay, Luc; Gagné, Jean-Pierre

    2011-12-01

    Knowledge of the structural changes that particulate organic matter (POM) undergoes in natural systems is essential for determining its reactivity and fate. In the present study, we used advanced solid-state NMR techniques to investigate the chemical structures of sinking particulate matter collected at different depths as well as humic acids (HAs) extracted from these samples and underlying sediments from the Saguenay Fjord and the St. Lawrence Lower Estuary (Canada). Compared to bulk POM, HAs contain more non-polar alkyls, aromatics, and aromatic C-O, but less carbohydrates (or carbohydrate-like structures). In the two locations studied, the C and N contents of the samples (POM and HAs) decreased with depth and after deposition onto sediments, leaving N-poor but O-enriched HAs and suggesting the involvement of partial oxidation reactions during POM microbial degradation. Advanced NMR techniques revealed that, compared to the water-column HAs, sedimentary HAs contained more protonated aromatics, non-protonated aromatics, aromatic C-O, carbohydrates (excluding anomerics), anomerics, OC q, O-C q-O, OCH, and OCH 3 groups, but less non-polar alkyls, NCH, and mobile CH 2 groups. These results are consistent with the relatively high reactivity of lipids and proteins or peptides. In contrast, carbohydrate-like structures were selectively preserved and appeared to be involved in substitution and copolymerization reactions. Some of these trends support the selective degradation (or selective preservation) theory. The results provide insights into mechanisms that likely contribute to the preservation of POM and the formation of molecules that escape characterization by traditional methods. Despite the depletion of non-polar alkyls with depth in HAs, a significant portion of their general structure survived and can be assigned to a model phospholipid. In addition, little changes in the connectivities of different functional groups were observed. Substituted and copolymerized

  13. Humic acids from particulate organic matter in the Saguenay Fjord and the St. Lawrence Estuary investigated by advanced solid-state NMR

    NASA Astrophysics Data System (ADS)

    Mao, J.-D.; Tremblay, L.; Gagné, J.-P.; Kohl, S.; Rice, J.; Schmidt-Rohr, K.

    2007-11-01

    Detailed structural information on two humic acids extracted from two sinking particulate matter samples at a water depth of 20 m in the Saguenay Fjord (F-20-HA) and the St. Lawrence Estuary (E-20-HA) (Canada), was obtained by advanced solid-state NMR. Spectral-editing analyses provided numerous structural details rarely reported in geochemical studies. The NMR data account almost quantitatively for the elemental compositions. The two humic acids were found to be quite similar, consisting of four main structural components: peptides (ca. 39 ± 3% vs. 34 ± 3% of all C for E-20-HA and F-20-HA, respectively); aliphatic chains, 14-20 carbons long (ca. 25 ± 5% vs. 17 ± 5% of all C); aromatic structures (ca. 17 ± 2% vs. 26 ± 2% of all C); and sugar rings (14 ± 2% vs. 15 ± 2% of all C). Peptides were identified by 13C{ 14N} SPIDER NMR, which selects signals of carbons bonded to nitrogen, and by dipolar DEPT, which selects CH-group signals, in particular the NCH band of peptides. The SPIDER spectra also indicate that heterocycles constitute a significant fraction of the aromatic structures. The aliphatic (CH 2) n chains, which are highly mobile, contain at least one double bond per two chains and end in methyl groups. 1H spin diffusion NMR experiments showed that these mobile aliphatic chains are in close (<10 nm) proximity to the other structural components. A major bacterial contribution to these two samples could explain why the samples, which have different dominant organic matter sources (terrestrial vs. marine), are similar to each other as well as to degraded algae and particles from other waters. The NMR data suggest structures containing mobile lipids in close proximity to peptides and carbohydrates (e.g., peptidoglycan) as found in bacterial cell walls. Measured yields of muramic acid and D-amino acids confirmed the presence of bacterial cell wall components in the studied samples.

  14. Structural characterisation of macromolecular organic material in air particulate matter using Py-GC-MS and solid state 13C-NMR.

    PubMed

    Subbalakshmi, Y; Patti, A F; Lee, G S; Hooper, M A

    2000-12-01

    Organic air particulate matter was analysed by applying the techniques of Py-GC-MS (pyrolysis-gas chromatography-mass spectrometry) and solid state 13C-NMR (nuclear magnetic resonance). Particles dislodged from air particulate filters and humic acid extracted from these filters were studied for structural components. The structural components of the air particles and extracted humic acid consisted of compounds originating from biomacromolecules, namely, lignin, carbohydrates, protein and lipids. The main components identified for each class included: (1) methoxyphenols originating from lignin; (2) furans, aldehydes and ketones from carbohydrates; (3) pyrrole, indoles from protein; and (4) many hydrocarbons from lipid structures. Single ion monitoring (SIM) and tetramethyl ammonium hydroxide (TMAH) methylation were utilised for detection of aliphatic hydrocarbons and acidic components, respectively. Hydrocarbons ranging from C9 to C28 were detected by SIM analysis, while aliphatic acids ranged from C9 to C18. The majority of components analysed directly in the air particles were similar to those from the humic acid extracts. Many of the structural components of air particles were typical of humic substances of soil and aqueous systems and these were attributed to both biogenic and anthropogenic sources.

  15. Application of Organic Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    Sekido, S.

    1982-01-01

    If ions are considered to be solid material which transport electric charges, polymer materials can then be considered as organic solid electrolytes. The role of these electrolytes is discussed for (1) ion concentration sensors; (2) batteries using lithium as the cathode and a charge complex of organic material and iodine in the anode; and (3) elements applying electrical double layer capability.

  16. Pyrogenic organic matter accumulation after density and particle size fractionation of burnt Cambisol using solid-state nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    López-Martín, María; Knicker, Heike

    2017-04-01

    Fires lead to formation of the pyrogenic organic matter (PyOM) which is quickly incorporated into the soil. The charring process involves chemical alterations of the litter material, where biologically available structures are transferred into aromatic polymers, such as black carbon (BC) and black nitrogen (BN). In order to reveal the medium term fate of BC and BN in soils, the top 5 cm of A horizons from unburnt, single and double burnt Cambisols of the Sierra de Aznalcóllar (Southern Spain) were collected 7 year after an intense fire and separated according to their density and their size (Golchin et al., 1994; Sohi et al., 2001). The density fractionation yielded in the free (fPOM), occluded particulate organic matter (oPOM) and the mineral-association organic fraction (MAF) and was performed using a sodium polytungstate solution with a density of 1.8 g cm-3. The MAF was further separated into the sand (2 mm to 63 μm) and coarse silt (63 to 20 μm) and fine fraction (< 20 μm) by wet sieving. Organic carbon (Corg) and total nitrogen (Nt) were determined by dry combustion (975°C). The chemical composition was examined by solid-state 13C and 15N NMR spectroscopy. The 13C and 15N NMR spectra of all fPOM and oPOM fractions are dominated by signals assignable to O-alkyl C followed by resonance lines of alkyl C. The spectra indicate that fPOM is mainly composed of undecomposed plant debris whereas oPOM is rich in unsubstituted-aliphatic material. The lack of intensity in the chemical shift region from 160 to140 ppm in the spectra of the small size fractions reveals the absence of lignin residues. This, their low C/N ratios and the clear 13C-signal attributed to carboxylic C allows the conclusion that this fraction mainly composed of microbial residues. Former studies evidenced that aromaticity of the burnt bulk soil decreased with elapsing time after the fire. The present investigation revealed that most of the remaining aromatic C accumulated in the POM fractions

  17. Organic matter in meteorites.

    PubMed

    Llorca, Jordi

    2004-12-01

    Some primitive meteorites are carbon-rich objects containing a variety of organic molecules that constitute a valuable record of organic chemical evolution in the universe prior to the appearance of microorganisms. Families of compounds include hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids, amino acids, amines, amides, heterocycles, phosphonic acids, sulfonic acids, sugar-related compounds and poorly defined high-molecular weight macromolecules. A variety of environments are required in order to explain this organic inventory, including interstellar processes, gas-grain reactions operating in the solar nebula, and hydrothermal alteration of parent bodies. Most likely, substantial amounts of such organic materials were delivered to the Earth via a late accretion, thereby providing organic compounds important for the emergence of life itself, or that served as a feedstock for further chemical evolution. This review discusses the organic content of primitive meteorites and their relevance to the build up of biomolecules.

  18. Towards explaining excess CO2 production in wetlands - the roles of solid and dissolved organic matter as electron acceptors and of substrate quality

    NASA Astrophysics Data System (ADS)

    Knorr, Klaus-Holger; Gao, Chuanyu; Agethen, Svenja; Sander, Michael

    2017-04-01

    To understand carbon storage in water logged, anaerobic peatlands, factors controlling mineralization have been studied for decades. Temperature, substrate quality, water table position and the availability of electron acceptors for oxidation of organic carbon have been identified as major factors. However, many studies reported an excess carbon dioxide (CO2) production over methane (CH4) that cannot be explained by available electron acceptors, and peat soils did not reach strictly methanogenic conditions (i.e., a stoichiometric formation ratio of 1:1 of CO2 to CH4). It has been hypothesized that peat organic matter (OM) provides a previously unrecognized electron acceptor for microbial respiration, elevating CO2 to CH4 ratios. Microbial reduction of dissolved OM has been shown in the mid 90's, but only recently mediated electrochemical techniques opened the possibility to access stocks and changes in electron accepting capacities (EAC) of OM in dissolved and solid form. While it was shown that the EAC of OM follows redox cycles of microbial reduction and O2 reoxidation, changes in the EAC of OM were so far not related quantitatively to CO2 production. We therefore tested if CO2 production in anoxic peat incubations is balanced by the consumption of electron acceptors if EAC of OM is included. We set up anoxic incubations with peat and monitored production of CO2 and CH4, and changes in EAC of OM in the dissolved and solid phase over time. Interestingly, in all incubations, the EAC of dissolved OM was poorly related to CO2 and CH4 production. Instead, dissolved OM was rapidly reduced at the onset of the incubations and thereafter remained in reduced form. In contrast, the decrease in the EAC of particulate (i.e. non-dissolved) OM was closely linked to the observed production of non-methanogenic CO2. Thereby, the total EAC of the solid OM pool by far exceeded the EAC of the dissolved OM pool. Over the course of eight week incubations, measured decreases in the EAC

  19. Organic Matter in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Cruiskshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Many solid bodies in the outer Solar System are covered with ices of various compositions, including water, carbon dioxide, methane, nitrogen, and other molecules that are solid at the low temperatures that prevail there. These ices have all been detected by remote sensing observations made with telescopes on Earth, or more recently, spacecraft in orbit (notably Galileo at Jupiter). The data also reveal other solid materials that could be minerals or complex carbon-bearing organic molecules. A study in progress using large ground-based telescopes to acquire infrared spectroscopic data, and laboratory results on the optical properties of complex organic matter, seeks to identify the non-icy materials on several satellites of Saturn, Uranus, and Neptune. The work on the satellites of Saturn is in part preparatory to the Cassini spacecraft investigation of the Saturn system, which will begin in 2004 and extend for four years.

  20. Similarities in chemical composition of soil organic matter across a millennia-old paddy soil chronosequence as revealed by advanced solid-state NMR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Soil organic matter (SOM) accumulation in paddy soils has aroused considerable attention due to its vital significance in global food, energy, climate, and environmental issues. Considerable progress has been made toward the understanding of changes in the quantity of SOM in paddy soils over a mille...

  1. Potential traceable markers of organic matter in organic and conventional dairy manure using ultraviolet–visible and solid-state 13C nuclear magnetic resonance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Organic dairy (OD) production is drawing increasing attention because of public concerns about food safety, animal welfare and the potential environmental impacts of conventional dairy (CD) systems. However, very limited information is available on how organic farming practices affect the chemical ...

  2. Foreign matter identification from solid dosage forms.

    PubMed

    Pajander, Jari; Haugshøj, Kenneth Brian; Bjørneboe, Kathrine; Wahlberg, Pia; Rantanen, Jukka

    2013-06-01

    Despite the increased request for robust quality systems, the end product may contain unidentified defects or discoloured regions. The foreign matter has to be monitored, identified and its source defined in order to prevent further contamination. However, the identification task can be complicated, since the origin and nature of foreign matter are various. The aim of this study is to provide an efficient foreign matter identification procedure for various substances possibly originating from pharmaceutical manufacturing environment. The surface or cross-section of the uncoated and coated tablets was analysed by utilization of different analytical techniques, such as light microscopy (LM), scanning electron microscopy in combination with energy dispersive X-ray microanalysis (SEM/EDX), Fourier transform infrared spectroscopy (FT-IR) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results indicate that the combination of different analytical techniques proved to be a powerful approach in foreign matter identification. Light microscopy and SEM generate information on the morphology of foreign matter particles. EDX provides elemental analysis, which most often serves as final confirmation of the identification. However, FT-IR can be used to obtain information on the compounds chemical structure and conformation, and ToF-SIMS provides sensitivity in cases, where the entire solid dosage form is contaminated with foreign matter.

  3. Organic Matter in the Contemporary Ocean

    NASA Astrophysics Data System (ADS)

    Eglinton, T. I.; Repeta, D. J.

    2003-12-01

    This chapter summarizes selected aspects of our current understanding of the organic carbon (OC) cycle as it pertains to the modern ocean, including underlying surficial sediments. We briefly review present estimates of the size of OC reservoirs and the fluxes between them. We then proceed to highlight advances in our understanding that have occurred since the late 1980s, especially those which have altered our perspective of the ways organic matter is cycled in the oceans. We have focused on specific areas where substantial progress has been made, although in most cases our understanding remains far from complete. These are the fate of terrigenous OC inputs in the ocean, the composition of oceanic dissolved organic matter (DOM), the mechanisms of OC preservation, and new insights into microbial inputs and processes. In each case, we discuss prevailing hypotheses concerning the composition and fate of organic matter derived from the different inputs, the reactivity and relationships between different organic matter pools, and highlight current gaps in our knowledge.The advances in our understanding of organic matter cycling and composition has stemmed largely from refinements in existing methodologies and the emergence of new analytical capabilities. Molecular-level stable carbon and nitrogen isotopic measurements have shed new light on a range of biogeochemical processes. Natural abundance of radiocarbon data has also been increasingly applied as both a tracer and source indicator in studies of organic matter cycling. As for 13C, bulk 14C measurements are now complemented by measurements at the molecular level, and the combination of these different isotopic approaches has proven highly informative. The application of multinuclear solid- and liquid-state nuclear magnetic resonance (NMR) spectroscopy has provided a more holistic means to examine the complex array of macromolecules that appears to comprise both dissolved and particulate forms of organic matter. New

  4. Extraterrestrial organic matter: a review

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1998-01-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an

  5. Extraterrestrial organic matter: a review

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1998-01-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an

  6. Organic geochemical analysis of sedimentary organic matter associated with uranium

    USGS Publications Warehouse

    Leventhal, J.S.; Daws, T.A.; Frye, J.S.

    1986-01-01

    Samples of sedimentary organic matter from several geologic environments and ages which are enriched in uranium (56 ppm to 12%) have been characterized. The three analytical techniqyes used to study the samples were Rock-Eval pyrolysis, pyrolysis-gas chromatography-mass spectrometry, and solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. In samples with low uranium content, the pyrolysis-gas chromatography products contain oxygenated functional groups (as hydroxyl) and molecules with both aliphatic and aromatic carbon atoms. These samples with low uranium content give measurable Rock-Eval hydrocarbon and organic-CO2 yields, and C-13 NMR values of > 30% aliphatic carbon. In contrast, uranium-rich samples have few hydrocarbon pyrolysis products, increased Rock-Eval organic-CO2 contents and > 70% aromatic carbon contents from C-13 NMR. The increase in aromaticity and decrease in hydrocarbon pyrolysis yield are related to the amount of uranium and the age of the uranium minerals, which correspond to the degree of radiation damage. The three analytical techniques give complementary results. Increase in Rock-Eval organic-CO2 yield correlates with uranium content for samples from the Grants uranium region. Calculations show that the amount of organic-CO2 corresponds to the quantity of uranium chemically reduced by the organic matter for the Grants uranium region samples. ?? 1986.

  7. Photodissolution of soil organic matter

    USGS Publications Warehouse

    Mayer, L.M.; Thornton, K.R.; Schick, L.L.; Jastrow, J.D.; Harden, J.W.

    2012-01-01

    Sunlight has been shown to enhance loss of organic matter from aquatic sediments and terrestrial plant litter, so we tested for similar reactions in mineral soil horizons. Losses of up to a third of particulate organic carbon occurred after continuous exposure to full-strength sunlight for dozens of hours, with similar amounts appearing as photodissolved organic carbon. Nitrogen dissolved similarly, appearing partly as ammonium. Modified experiments with interruption of irradiation to include extended dark incubation periods increased loss of total organic carbon, implying remineralization by some combination of light and microbes. These photodissolution reactions respond strongly to water content, with reaction extent under air-dry to fully wet conditions increasing by a factor of 3-4 fold. Light limitation was explored using lamp intensity and soil depth experiments. Reaction extent varied linearly with lamp intensity. Depth experiments indicate that attenuation of reaction occurs within the top tens to hundreds of micrometers of soil depth. Our data allow only order-of-magnitude extrapolations to field conditions, but suggest that this type of reaction could induce loss of 10-20% of soil organic carbon in the top 10. cm horizon over a century. It may therefore have contributed to historical losses of soil carbon via agriculture, and should be considered in soil management on similar time scales. ?? 2011 Elsevier B.V.

  8. Conversion of organic solids to hydrocarbons

    DOEpatents

    Greenbaum, E.

    1995-05-23

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

  9. Conversion of organic solids to hydrocarbons

    DOEpatents

    Greenbaum, Elias

    1995-01-01

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

  10. Lability of secondary organic particulate matter

    PubMed Central

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Gilles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.

    2016-01-01

    The energy flows in Earth’s natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representative of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations. There were strong differences between films representative of anthropogenic compared with biogenic sources. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH) between 20% and 30%, indicating rapid partitioning above a transition RH but not below. Below the threshold, the characteristic time for equilibration is estimated as up to 1 wk for a typically sized particle. In contrast, for films representing biogenic PM, no RH threshold was observed, suggesting equilibrium partitioning is rapidly obtained for all RHs. The effective diffusion rate Dorg for the biogenic case is at least 103 times greater than that of the anthropogenic case. These differences should be accounted for in the interpretation of laboratory data as well as in modeling of organic PM in Earth’s atmosphere. PMID:27791063

  11. The contentious nature of soil organic matter.

    PubMed

    Lehmann, Johannes; Kleber, Markus

    2015-12-03

    The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management.

  12. An original data treatment for infrared spectra of organic matter, application to extracted soil organic matter

    NASA Astrophysics Data System (ADS)

    Gomes Rossin, Bruna; Redon, Roland; Raynaud, Michel; Nascimento, Nadia Regina; Mounier, Stéphane

    2017-04-01

    Infrared spectra of extracted organic matter are easy and rapid to do, but generally hard to interpreted over the presence or not of certain organic functions. Indeed, the organic matter is a complex mixture of molecules often having absorption overlapping and it is also difficult to have a well calibrated or normalised spectra due to the difficulty to have a well known solid content or homogeneity for a sample (Monakhova et al. 2015, Tadini et al. 2015, Bardy et al. 2008). In this work, the IRTF (InfraRed Fourier Transform) spectra were treated by an original algorithm developed to obtain the principal components of the IRTF spectra and their contributions for each sample. This bilinear decomposition used a PCA initialisation and the principal components were estimated from vectors calculated by PCA and linearly combined to provide non-negative signals minimizing a criterion based on cross-correlation. Hence, using this decomposition, it is possible to define IRTF signal of organic matter fractions like humic acid or fulvic acid depending on their origin like surface of depth of soil profiles. The method was used on a set of sample from Upper Negro River Basin (Amazon, Brazil) (Bueno,2009), where three soils sequences from surface to two meter depth containing 10 slices each. The sequences were sampled on a podzol well drain, a hydromorphic podzol and a cryptopodzol. From the IRTF data five representative component spectra were defined for all the extracted organic matter , and using other chemical composition information, a mechanism of organic matter fate is proposed to explain the observed results. Bardy, M., E. Fritsch, S. Derenne, T. Allard, N. R. do Nascimento, and G. T. Bueno. 2008. "Micromorphology and Spectroscopic Characteristics of Organic Matter in Waterlogged Podzols of the Upper Amazon Basin." Geoderma 145 (3-4): 222-30. Bueno, G.T. Appauvrissement et podzolisation des latérites du baissin du Rio Negro et gênese dês Podzols dans le haut bassin

  13. Method and apparatus for retorting a substance containing organic matter

    SciTech Connect

    Schulman, B.

    1980-07-01

    A description is given of an apparatus for converting a substance containing organic matter into hydrocarbon vapors and solids residue comprising: (A) a fluidized bed housing having an upstream end and a downstream end; (B) a substantially cylindrical retort, extending through and stationary relative to said fluidized bed housing and having an upstream end and a downstream end, each end being outside of said housing, the longitudinal axis of said retort being substantially parallel to a horizontal plane; (C) feeding means for feeding the substance containing organic matter into said retort, said feeding means communicating with the upstream portion of said retort; (D) means located within said retort for moving the substance containing organic matter from the upstream portion of said retort to the downstream portion thereof; (E) solids residue removing means for removing solids residue from said retort, said solids residue removing means communicating with the downstream portion of said retort; (F) solids residue introducing means for introducing said solids residue removed from said retort into said fluidized bed housing to employ said solids residue as particles of a fluidized bed, one end of said introducing means communicating with said solids residue removing means and the other end therof communicating with the upper upstream portion of said fluidized bed housing; (G) solids residue extracting means for extracting solids residue from said fluidized bed housing and communicating with the lower downstream portion fluidized bed housing; (H) fluidizing menas for maintaining within said fluidized bed housing a fluidized bed of heated particles of solids residue with which to heat said retort; (I) heating means for heating the particles; (J) hydrocarbon vapors removing means.

  14. Organic content of particulate matter in turbine engine exhaust

    SciTech Connect

    Robertson, D.J.; Groth, R.H.; Blasko, T.J.

    1980-03-01

    Research report:Solid particulate matter, mainly carbon, emitted during fossil fuels combustion contains a variety of organic species adsorbed onto it. Studies were conducted to identify the organic compounds generated by a gas turbine engine. Total organics were determined by gas chromatography and flame ionization. Polynuclear aromatic hydrocarbons, phenols, and nitrosamines were present in samples collected from exhaust gases. (1 diagram, 4 references, 11 tables)

  15. Land Application of Wastes: An Educational Program. Organic Matter - Module 17, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module sketches out the impact of sewage organic matter on soils. For convenience, that organic matter is separated into the readily decomposable compounds and the more resistant material (volatile suspended solids, refractory organics, and sludges). The fates of those organics are reviewed along with loading rates and recommended soil…

  16. Land Application of Wastes: An Educational Program. Organic Matter - Module 17, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module sketches out the impact of sewage organic matter on soils. For convenience, that organic matter is separated into the readily decomposable compounds and the more resistant material (volatile suspended solids, refractory organics, and sludges). The fates of those organics are reviewed along with loading rates and recommended soil…

  17. Spectral fingerprinting of soil organic matter composition

    NASA Astrophysics Data System (ADS)

    Cecillon, L.; Certini, G.; Lange, H.; Forte, C.; Strand, L. T.

    2009-04-01

    The determination of soil organic matter (SOM) composition relies on a variety of chemical and physical methods, most of them time consuming and expensive. Hitherto, such methodological limitations have hampered the use of detailed SOM composition in process-based models of SOM dynamics, which usually include only three poorly defined carbon pools. Here we show a novel approach merging both near and mid infrared spectroscopy into a single fingerprint for an expeditious prediction of the molecular composition of organic materials in soil, as inferred from a molecular mixing model (MMM) based on 13C nuclear magnetic resonance (NMR), which describes SOM as a mixture of common biologically derived polymers. Infrared and solid-state 13C NMR spectroscopic measurements were performed on a set of mineral and organic soil samples presenting a wide range of organic carbon content (2 to 500 g kg-1), collected in a boreal heathland (Storgama, Norway). The implementation of the MMM using 13C NMR spectra allowed the calculation of five main biochemical components (carbohydrate, protein, lignin, lipids and black carbon) for each sample. Partial least squares regression models were developed for the five biopolymers using outer product analysis of near and mid infrared spectra (Infrared-OPA). All models reached ratios of performance to deviation (RPD) above 2 and specific infrared wavenumbers associated to each biochemical component were identified. Our results demonstrate that Infrared-OPA provides a robust and cost-effective fingerprint of SOM composition that could be useful for the routine assessment of soil carbon pools.

  18. Priming of native soil organic matter by pyrogenic organic matter

    NASA Astrophysics Data System (ADS)

    DeCiucies, Silene; Dharmakeerthi, Saman; Whitman, Thea; Woolf, Dominic; Lehmann, Johannes

    2015-04-01

    Priming, in relation to pyrogenic organic matter (PyOM), describes the change in mineralization rate of non-pyrogenic ("native") soil organic matter (nSOM) due to the addition of PyOM. Priming may be 'positive', in that the addition of pyC increases the mineralization rate of native SOM, or 'negative', in that the mineralization rate of nSOM is decreased. Reasons for increased mineralization may include: (i) co-metabolism: microbial decomposition of labile C-additions increases microbial activity, and facilitates additional decomposition of npSOC by active enzymes; (ii) stimulation: substrate additions result in lifted pH, nutrient, oxygen, or water constraints resulting in increased microbial activity. Decreased mineralization may be a result of: (i) inhibition: the opposite of stimulation whereby constraints are aggravated by substrate addition. Substrate addition may also cause inhibition by interfering with enzymes or signaling compounds; (ii) preferential substrate utilization: labile fraction of PyOM additions are preferentially used up by microbes thus causing a decrease in nSOC decomposition; (iii) sorption: organic compounds are adsorbed onto PyOM surfaces, decreasing their rate of mineralization; (iv) stabilization: formation of organo-mineral associations forms stable SOC pools. We have conducted a suite of experiments to investigate these potential interactions. In a seven year long incubation study, PyOM additions increased total OM mineralization for the first 2.5 years, was equal to control after 6.2 years, and was 3% lower after 7.1 years. Cumulative nSOM mineralization was 23% less with the PyOM additions than without, and over 60% of the added PyOM was present in the labile soil fraction after the 7.1 year incubation. Two additional incubation studies, one with and without plants, showed greater nSOM mineralization in the short term and lower nSOM mineralization over the long term. Increased nSOC mineralization due to the presence of plants was

  19. Cumulative effects of biochar, mineral and organic fertilizers on soil organic matter

    NASA Astrophysics Data System (ADS)

    Plaza, César; López-de-Sá, Esther G.; Gascó, Gabriel; Méndez, Ana; Zaccone, Claudio

    2016-04-01

    We investigated the effect of three consecutive annual applications of biochar at rates of 0 and 20 t ha-1, in a factorial combination with a mineral fertilizer (NPK and nitrosulfate) and two types of organic amendment (municipal solid waste compost and sewage sludge), on soil organic matter in a field experiment under Mediterranean conditions. Biochar increased significantly soil organic C content and C/N ratio. In biochar-amended soils, soil organic C increased significantly with the addition of municipal solid waste compost and sewage sludge. To capture organic matter protection mechanisms related to aggregation and mineral interaction, the soil samples will be fractionated into free (unprotected), intra-macroaggregate, intra-microaggregate, and mineral-associated organic matter pools, and the isolated fractions will be subjected to further chemical and spectroscopic analysis.

  20. Lability of secondary organic particulate matter

    SciTech Connect

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Gilles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    We report the energy flows in Earth’s natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representative of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations. There were strong differences between films representative of anthropogenic compared with biogenic sources. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH) between 20% and 30%, indicating rapid partitioning above a transition RH but not below. Below the threshold, the characteristic time for equilibration is estimated as up to 1 wk for a typically sized particle. In contrast, for films representing biogenic PM, no RH threshold was observed, suggesting equilibrium partitioning is rapidly obtained for all RHs. The effective diffusion rate Dorg for the biogenic case is at least 103 times greater than that of the anthropogenic case. In conclusion, these differences should be accounted for in the interpretation of laboratory data as well as in modeling of organic PM in Earth’s atmosphere.

  1. Lability of secondary organic particulate matter

    DOE PAGES

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; ...

    2016-10-24

    We report the energy flows in Earth’s natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representativemore » of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations. There were strong differences between films representative of anthropogenic compared with biogenic sources. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH) between 20% and 30%, indicating rapid partitioning above a transition RH but not below. Below the threshold, the characteristic time for equilibration is estimated as up to 1 wk for a typically sized particle. In contrast, for films representing biogenic PM, no RH threshold was observed, suggesting equilibrium partitioning is rapidly obtained for all RHs. The effective diffusion rate Dorg for the biogenic case is at least 103 times greater than that of the anthropogenic case. In conclusion, these differences should be accounted for in the interpretation of laboratory data as well as in modeling of organic PM in Earth’s atmosphere.« less

  2. Environmental factors regulating soil organic matter chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, Teresia; Montelius, Malin; Reyier, Henrik; Rietz, Karolina; Karlsson, Susanne; Lindberg, Cecilia; Andersson, Malin; Danielsson, Åsa; Bastviken, David

    2016-04-01

    Natural chlorination of organic matter is common in soils. Despite the widespread abundance of soil chlorinated soil organic matter (SOM), frequently exceeding soil chloride abundance in surface soils, and a common ability of microorganisms to produce chlorinated SOM, we lack fundamental knowledge about dominating processes and organisms responsible for the chlorination. To take one step towards resolving the terrestrial chlorine (Cl) puzzle, this study aims to analyse how environmental factors influence chlorination of SOM. Four factors were chosen for this study: soil moisture (W), nitrogen (N), chloride (Cl) and organic matter quality (C). These factors are all known to be important for soil processes. Laboratory incubations with 36Cl as a Cl tracer were performed in a two soil incubation experiments. It was found that addition of chloride and nitrogen seem to hamper the chlorination. For the C treatment, on the other hand, the results show that chlorination is enhanced by increased availability of labile organic matter (glucose and maltose). Even higher chlorination was observed when nitrogen and water were added in combination with labile organic matter. The effect that more labile organic matter strongly stimulated the chlorination rates was confirmed by the second separate experiment. These results indicate that chlorination was not primarily a way to cut refractory organic matter into digestible molecules, representing one previous hypothesis, but is related with microbial metabolism in other ways that will be further discussed in our presentation.

  3. Chemodestructive fractionation of soil organic matter

    NASA Astrophysics Data System (ADS)

    Popov, A. I.; Rusakov, A. V.

    2016-06-01

    The method of chemodestructive fractionation is suggested to assess the composition of soil organic matter. This method is based on determination of the resilience of soil organic matter components and/or different parts of organic compounds to the impact of oxidizing agents. For this purpose, a series of solutions with similar concentration of the oxidant (K2Cr2O7), but with linearly increasing oxidative capacity was prepared. Chemodestructive fractionation showed that the portion of easily oxidizable (labile) organic matter in humus horizons of different soil types depends on the conditions of soil formation. It was maximal in hydromorphic soils of the taiga zone and minimal in automorphic soils of the dry steppe zone. The portion of easily oxidizable organic matter in arable soils increased with an increase in the rate of organic fertilizers application. The long-lasting agricultural use of soils and burying of the humus horizons within the upper one-meter layer resulted in the decreasing content of easily oxidizable organic matter. It was found that the portion of easily oxidizable organic matter decreases by the mid-summer or fall in comparison with the spring or early summer period.

  4. NMR doesn't lie or how solid-state NMR spectroscopy contributed to a better understanding of the nature and function of soil organic matter (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2016-04-01

    "Nuclear magnetic resonance (NMR) does not lie". More than anything else, this statement of a former colleague and friend has shaped my relation to solid-state NMR spectroscopy. Indeed, if this technique leads to results which contradict the expectations, it is because i) some parts of the instrument are broken, ii) maladjustment of the acquisition parameters or iii) wrong preparation or confusion of samples. However, it may be even simpler, namely that the expectations were wrong. Of course, for researchers, the latter is the most interesting possibility since it forces to reassess accepted views and to search for new explanations. As my major analytical tool, NMR spectroscopy has confronted me with this challenge often enough to turn this issue into the main subject of my talk and to share with the audience how it formed my understanding of function and nature of soil organic matter (SOM). Already shortly after its introduction into soil science in the 1980's, the data obtained with solid-state 13C NMR spectroscopy opened the stage for ongoing discussions, since they showed that in humified SOM aromatic carbon is considerably less important than previously thought. This finding had major implications regarding the understanding of the origin of SOM and the mechanisms by which it is formed. Certainly, the discrepancy between the new results and previous paradigms contributed to mistrust in the reliability of solid-state NMR techniques. The respective discussion has survived up to our days, although already in the 1980's and 1990's fundamental studies could demonstrate that quantitative solid-state NMR data can be obtained if i) correct acquisition parameters are chosen, ii) the impact of paramagnetic compounds is reduced and iii) the presence of soot in soils can be excluded. On the other hand, this mistrust led to a detailed analysis of the impact of paramagnetics on the NMR behavior of C groups which then improved our understanding of the role of carbohydrates

  5. Histoplasmosis after solid organ transplant.

    PubMed

    Assi, Maha; Martin, Stanley; Wheat, L Joseph; Hage, Chadi; Freifeld, Alison; Avery, Robin; Baddley, John W; Vergidis, Paschalis; Miller, Rachel; Andes, David; Young, Jo-Anne H; Hammoud, Kassem; Huprikar, Shirish; McKinsey, David; Myint, Thein; Garcia-Diaz, Julia; Esguerra, Eden; Kwak, E J; Morris, Michele; Mullane, Kathleen M; Prakash, Vidhya; Burdette, Steven D; Sandid, Mohammad; Dickter, Jana; Ostrander, Darin; Antoun, Smyrna Abou; Kaul, Daniel R

    2013-12-01

    To improve our understanding of risk factors, management, diagnosis, and outcomes associated with histoplasmosis after solid organ transplant (SOT), we report a large series of histoplasmosis occurring after SOT. All cases of histoplasmosis in SOT recipients diagnosed between 1 January 2003 and 31 December 2010 at 24 institutions were identified. Demographic, clinical, and laboratory data were collected. One hundred fifty-two cases were identified: kidney (51%), liver (16%), kidney/pancreas (14%), heart (9%), lung (5%), pancreas (2%), and other (2%). The median time from transplant to diagnosis was 27 months, but 34% were diagnosed in the first year after transplant. Twenty-eight percent of patients had severe disease (requiring intensive care unit admission); 81% had disseminated disease. Urine Histoplasma antigen detection was the most sensitive diagnostic method, positive in 132 of 142 patients (93%). An amphotericin formulation was administered initially to 73% of patients for a median duration of 2 weeks; step-down therapy with an azole was continued for a median duration of 12 months. Ten percent of patients died due to histoplasmosis with 72% of deaths occurring in the first month after diagnosis; older age and severe disease were risk factors for death from histoplasmosis. Relapse occurred in 6% of patients. Although late cases occur, the first year after SOT is the period of highest risk for histoplasmosis. In patients who survive the first month after diagnosis, treatment with an amphotericin formulation followed by an azole for 12 months is usually successful, with only rare relapse.

  6. Assessment of anaerobic biodegradability of five different solid organic wastes

    NASA Astrophysics Data System (ADS)

    Kristanto, Gabriel Andari; Asaloei, Huinny

    2017-03-01

    The concept of waste to energy emerges as an alternative solution to increasing waste generation and energy crisis. In the waste to energy concept, waste will be used to produce renewable energy through thermochemical, biochemical, and physiochemical processes. In an anaerobic digester, organic matter brake-down due to anaerobic bacteria produces methane gas as energy source. The organic waste break-down is affected by various characteristics of waste components, such as organic matter content (C, N, O, H, P), solid contents (TS and VS), nutrients ratio (C/N), and pH. This research aims to analyze biodegradability and potential methane production (CH4) from organic waste largely available in Indonesia. Five solid wastes comprised of fecal sludge, cow rumen, goat farm waste, traditional market waste, and tofu dregs were analyzed which showed tofu dregs as waste with the highest rate of biodegradability compared to others since the tofu dregs do not contain any inhibitor which is lignin, have 2.7%VS, 14 C/N ratios and 97.3% organic matter. The highest cumulative methane production known as Biochemical Methane Potential was achieved by tofu dregs with volume of 77 ml during 30-day experiment which then followed by cow rumen, goat farm waste, and traditional market waste. Subsequently, methane productions were calculated through percentage of COD reduction, which showed the efficiency of 99.1% that indicates complete conversion of the high organic matter into methane.

  7. Sediment extracted organic matter fluorescence: an archive of organic matter flux and origins?

    NASA Astrophysics Data System (ADS)

    Stedmon, C. A.; Funkey, C. P.; Conley, D. J.

    2016-02-01

    Organic matter buried in sediments contain a record of the intensity and characteristics of organic matter supply from overlying waters through time. A fraction of the organic matter pool can be extracted and characterised using UV-visible spectroscopy (absorption and fluorescence). In this study we investigate the utility of using the optical characteristics of this organic matter pool as a quantitative and qualitative proxy. We use the optical properties of based extracted organic matter from a well characterised Baltic Sea core from the Northern Gotland Deep to infer changes in the intensity and character of organic matter supply over the past 8000 years. Over this period the modern Baltic Sea was formed from its original state as the Ancylus Lake. There are three clear periods of hypoxia which have influenced the supply and quality of organic matter in sediments. The first two periods, the Ancylus-Littorina transgression (7000-4000 B.P.) and Medieval Climate Anomaly (1400-700 years B.P.) are attributed to enhanced stratification. The third is recognised as driven by anthropogenic eutrophication over the past 100 years. The optical properties of sediment extracted organic matter from these periods not only follow the trends in sediment organic carbon content but also show clear differences organic matter characteristics not apparent in other measurements. The series of hypoxic events within the Ancylus-Littorina transgression differ from each other. While organic matter from 7000-6500 years BP is similar to that from MCA and modern times, subsequent Ancylus-Littorina transgression periods of hypoxia are different suggesting different origins of organic matter. Organic matter optical characteristics here are more similar to material from periods will less/no hypoxia.

  8. Optimized strategy of 1H and 13C solid-state NMR methods to investigate water dynamics in soil organic matter as well as the influence of crystallinity of poly(methylene) segments

    NASA Astrophysics Data System (ADS)

    Bertmer, Marko; Jaeger, Alexander; Schwarz, Jette; Schaumann, Gabriele

    2010-05-01

    Water plays a crucial role in soil organic matter (SOM) having various different functions such as transport of material, elution of ,e. g., pollutants in soil, and also the sequestration of humic substances. Furthermore, the generation and quantification of hydrophilic and hydrophobic regions in soil has several effects on SOM which can also include the storage amount and time of certain material, especially chemical pollutants. The importance of water in soil is also documented by the multitude of scientific approaches to characterize soils including diffusion NMR to study the water channel structure in soil. Our focus is on the study of water dynamics and soil structure to elucidate mechanisms of physicochemical aging. The approach uses the application of various solid-state NMR techniques - including 1H and 13C NMR - to get a multitude of information on SOM. In non-rotating samples, 1H lines are usually very broad and unstructured. Nevertheless, this rather simple technique allows for a differentiation of 1H containing chemicals based on their dynamics in soil. This includes rather solid soil components and solid as well as mobile water molecules. Based on an optimized 1H solid-state NMR strategy to study soil material together with a straightforward lineshape analysis, a series of soils and peats are characterized. Although even 1H NMR with sample spinning (MAS) often gives only limited information on different structures, we present results on the application of 2D 1H-1H phase-modulated Lee-Goldburg sequences (PMLG), that show already at medium spinning speeds the separation of functional groups. Their quantification can be correlated with sample composition, type of sample conditioning, and other parameters such as cation type or concentration and heat treatment. We are especially interested to correlate NMR data with DSC measurements based on a certain heat treatment of the soils. Our proposed model describes the presence of water in soil as a matrix

  9. Histoplasmosis After Solid Organ Transplant

    PubMed Central

    Assi, Maha; Martin, Stanley; Wheat, L. Joseph; Hage, Chadi; Freifeld, Alison; Avery, Robin; Baddley, John W.; Vergidis, Paschalis; Miller, Rachel; Andes, David; Young, Jo-Anne H.; Hammoud, Kassem; Huprikar, Shirish; McKinsey, David; Myint, Thein; Garcia-Diaz, Julia; Esguerra, Eden; Kwak, E. J.; Morris, Michele; Mullane, Kathleen M.; Prakash, Vidhya; Burdette, Steven D.; Sandid, Mohammad; Dickter, Jana; Ostrander, Darin; Antoun, Smyrna Abou; Kaul, Daniel R.

    2013-01-01

    Background. To improve our understanding of risk factors, management, diagnosis, and outcomes associated with histoplasmosis after solid organ transplant (SOT), we report a large series of histoplasmosis occurring after SOT. Methods. All cases of histoplasmosis in SOT recipients diagnosed between 1 January 2003 and 31 December 2010 at 24 institutions were identified. Demographic, clinical, and laboratory data were collected. Results. One hundred fifty-two cases were identified: kidney (51%), liver (16%), kidney/pancreas (14%), heart (9%), lung (5%), pancreas (2%), and other (2%). The median time from transplant to diagnosis was 27 months, but 34% were diagnosed in the first year after transplant. Twenty-eight percent of patients had severe disease (requiring intensive care unit admission); 81% had disseminated disease. Urine Histoplasma antigen detection was the most sensitive diagnostic method, positive in 132 of 142 patients (93%). An amphotericin formulation was administered initially to 73% of patients for a median duration of 2 weeks; step-down therapy with an azole was continued for a median duration of 12 months. Ten percent of patients died due to histoplasmosis with 72% of deaths occurring in the first month after diagnosis; older age and severe disease were risk factors for death from histoplasmosis. Relapse occurred in 6% of patients. Conclusions. Although late cases occur, the first year after SOT is the period of highest risk for histoplasmosis. In patients who survive the first month after diagnosis, treatment with an amphotericin formulation followed by an azole for 12 months is usually successful, with only rare relapse. PMID:24046304

  10. Response of organic matter quality in permafrost soils to warming

    NASA Astrophysics Data System (ADS)

    Plaza, C.; Pegoraro, E.; Schuur, E.

    2016-12-01

    Global warming is predicted to thaw large quantities of the perennially frozen organic matter stored in northern permafrost soils. Upon thaw, this organic matter will be exposed to lateral export to water bodies and to microbial decomposition, which may exacerbate climate change by releasing significant amounts of greenhouse gases. To gain an insight into these processes, we investigated how the quality of permafrost soil organic matter responded to five years of warming. In particular, we sampled control and experimentally warmed soils in 2009 and 2013 from an experiment established in 2008 in a moist acidic tundra ecosystem in Healy, Alaska. We examined surface organic (0 to 15 cm), deep organic (15 to 35 cm), and mineral soil layers (35 to 55 cm) separately by means of stable isotope analysis (δ13C and δ15N) and solid-state 13C nuclear magnetic resonance. Compared to the control, the experimental warming did not affect the isotopic and molecular composition of soil organic matter across the depth profile. However, we did find significant changes with time. In particular, in the surface organic layer, δ13C decreased and alkyl/O-alkyl ratio increased from 2009 to 2013, which indicated variations in soil organic sources (e.g., changes in vegetation) and accelerated decomposition. In the deep organic layer, we found a slight increase in δ15N with time. In the mineral layer, δ13C values decreased slightly, whereas alkyl C/O-alkyl ratio increased, suggesting a preferential loss of relatively more degraded organic matter fractions probably by lateral transport by water flowing through the soil. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  11. Determining energy costs for milling solid matter

    NASA Astrophysics Data System (ADS)

    Guangbin, Yu., Dr.; Kuznetsova, M. M.; Marakhovskii, M. B.; Aleksina, A. A.

    2015-05-01

    The article provides findings of analytical research into the process of milling friable matter in a ball mill. We have received an expression to determine energy cost of milling with the account of the method of milling and the characteristics of the material to be ground.

  12. Biodegradation of organic compounds sequestered in organic solids or in nanopores within silica particles

    SciTech Connect

    Hatzinger, P.B.; Alexander, M.

    1997-11-01

    A study was conducted using model solids to determine whether the time-dependent decline in availability for biodegradation of organic pollutants in soil might result from the entrapment of these compounds in porous or nonporous solids. A strain of Pseudomonas mineralized phenanthrene in solid alkanes containing 18 to 32 carbons, three waxes, and low-molecular-weight polycaprolactone, polyethylene, and polypropylene. The rates were appreciably slower than when the substrate was not initially present within these nonporous solids. From 1.4 to 63.4% of the polycyclic aromatic hydrocarbon added to the solids was mineralized in 90 d. The rates and extents of partitioning of phenanthrene varied markedly among the solids. The rates of partitioning and biodegradation of phenanthrene initially present in the alkanes were positively correlated. The bacterium rapidly and extensively mineralized phenanthrene provided in calcium alginate beads containing varying amounts of soluble soil organic matter. The rates and extents of phenanthrene mineralization declined as the percentage of the substrate in the nanopores within silica particles increased, but the reductions in rate, extent, or both were less pronounced than with nonporous solids. The rate of 4-nitrophenol biodegradation also declined with increasing percentages of the compound in these nanopores. The data are consistent with hypotheses that the sequestration and consequent decrease in bioavailability of organic compounds that persist in soil result from their partitioning into organic matter or their presence within nanopores in soil.

  13. Factors Regulating Soil Organic Matter Chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, T.; Gustavsson, M.; Reyier, H.; Rietz, K.; Karlsson, S.; Göransson, C.; Andersson, M.; Öberg, G.; Bastviken, D.

    2013-12-01

    Natural chlorination of organic matter is a common process in various soils. Despite the widespread abundance of soil organic chlorine, knowledge on the processes and regulation of soil organic matter chlorination are modest. The purpose of this study is to elucidate how environmental factors may influence chlorination of organic matter in soil. Four factors were chosen for this study; water content, and nitrogen, organic carbon, and chloride concentrations. The variables are all known in different ways as important for microbes and transformation of chlorine in soil. The soil was collected from 5-15 cm depth in a coniferous forest southeast of Sweden. To test how the selected factors influenced chlorination of organic matter, we used soil laboratory incubations using 36Cl-chloride as a radioisotopic marker. A multivariate factorial design with two levels of i) soil moisture, ii) chloride amendment, iii) nitrogen amendment, and iv) glucose and maltose addition was used to simultaneously test for possible combination effects for all factors. A known radioactivity of 36chloride was added to the soil samples and incubated with four different factor treatments during an incubation period of 15 and 60 days. This presentation will discuss the results of this study including what combination of factors enhanced or hampered chlorination and thereby discuss previous observed variability of organic chlorine and chloride in soil.

  14. Spectral mapping of soil organic matter

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.; Johannsen, C. J.

    1974-01-01

    Multispectral remote sensing data were examined for use in the mapping of soil organic matter content. Computer-implemented pattern recognition techniques were used to analyze data collected in May 1969 and May 1970 by an airborne multispectral scanner over a 40-km flightline. Two fields within the flightline were selected for intensive study. Approximately 400 surface soil samples from these fields were obtained for organic matter analysis. The analytical data were used as training sets for computer-implemented analysis of the spectral data. It was found that within the geographical limitations included in this study, multispectral data and automatic data processing techniques could be used very effectively to delineate and map surface soils areas containing different levels of soil organic matter.

  15. Priming of Native Soil Organic Matter by Pyrogenic Organic Matter

    NASA Astrophysics Data System (ADS)

    DeCiucies, S.; Lehmann, J.; Woolf, D.; Whitman, T.

    2016-12-01

    Within the global carbon (C) cycle, soil C makes up a critical and active pool. Pyrogenic C, (PyC) or black C, contributes to this pool, and has been shown to change the turnover rate of the non-pyrogenic soil organic carbon (nSOC) associated with it. This change in rate of mineralization is referred to as priming, which can be negative or positive. There are many possible mechanisms that may be causing this priming effect, both biological and chemical. This study employs incubation experiments to identify and parse these potential mechanisms, focusing on negative priming mechanisms which may have importance in global carbon storage and carbon cycling models. Continuous respiration measurements of soil/char and soil/biomass incubations using isotopically labeled biomass (13C and 15N) indicate that priming interactions are more significant in soils with higher carbon contents, and that higher temperature chars induce more negative priming over time. Current incubations are exploring the effects of chars pyrolyzed at different temperatures, chars extracted of DOC versus non-extracted, soils with differing carbon contents, and the effects of pH and nutrient adjusting incubations. We will continue to examine the contribution of the different mechanisms by isolating variables such as nutrient addition, soil texture, char application rate, and mineral availability. We anticipate that sorption on PyOM surfaces are important in nSOM stabilization and will continue to study these effects using highly labeled substrates and nano secondary ion mass spectrometry (nano-SIMS).

  16. Ground-fire effects on the composition of dissolved and total organic matter in forest floor and soil solutions from Scots pine forests in Germany: new insights from solid state 13C NMR analysis

    NASA Astrophysics Data System (ADS)

    Näthe, Kerstin; Michalzik, Beate; Levia, Delphis; Steffens, Markus

    2016-04-01

    Fires represent an ecosystem disturbance and are recognized to seriously pertubate the nutrient budgets of forested ecosystems. While the effects of fires on chemical, biological, and physical soil properties have been intensively studied, especially in Mediterranean areas and North America, few investigations examined the effects of fire-induced alterations in the water-bound fluxes and the chemical composition of dissolved and particulate organic carbon and nitrogen (DOC, POC, DN, PN). The exclusion of the particulate organic matter fraction (0.45 μm < POM < 500 μm) potentially results in misleading inferences and budgeting gaps when studying the effects of fires on nutrient and energy fluxes. To our best knowledge, this is the first known study to present fire-induced changes on the composition of dissolved and total organic matter (DOM, TOM) in forest floor (FF) and soil solutions (A, B horizon) from Scots pine forests in Germany. In relation to control sites, we test the effects of low-severity fires on: (1) the composition of DOM and TOM in forest floor and soil solutions; and (2) the translocated amount of particulate in relation to DOC and DN into the subsoil. The project aims to uncover the mechanisms of water-bound organic matter transport along an ecosystem profile and its compositional changes following a fire disturbance. Forest floor and soil solutions were fortnightly sampled from March to December 2014 on fire-manipulated and control plots in a Scots pine forest in Central Germany. Shortly after the experimental duff fire in April 2014 pooled solutions samples were taken for solid-state 13C NMR spectroscopy to characterize DOM (filtered solution < 0.8μm pore size) and TOM in unfiltered solutions. Independent from fire manipulation, the composition of TOM was generally less aromatic (aromaticity index [%] according to Hatcher et al., 1981) with values between 18 (FF) - 25% (B horizon) than the DOM fraction with 23 (FF) - 27% (B horizon). For DOM

  17. Organic matter and thermochemical sulfate reduction in the Viburnum Trend, southeast Missouri

    USGS Publications Warehouse

    Leventhal, J.S.

    1990-01-01

    The role of organic matter in Mississippi Valley-type Pb-Zn deposits has been studied by systematically sampling and characterizing various types of organic matter in the Upper Cambrian Bonneterre Formation in lead-zinc mines from the Viburnum Trend and from rocks as far as 20 km away from the Trend. Organic matter that is several kilometers from ore consists of insoluble disseminated kerogen in carbonates. Within meters to centimeters of ore in the Milliken mine, at the south end of the Viburnum Trend, organic matter occurs as solid, partly soluble tacky bitumen and insoluble hard blebs of millimeter to centimeter size. The solid insoluble organic matter in intimate contact (intergrown) with ore (galena and chalcopyrite) is friable and brittle. The sulfur content of solid organic matter from the Milliken mine varies and is lowest for tacky material away from ore, intermediate for blebs near ore, and highest for friable material in intimate contact with ore. Pyrolysis-gas chromatography of this sample suite documents the progression of kerogen (far from ore) through solid petroleumlike material (near ore) to degraded organic matter (in contact with ore). -from Author

  18. [Solid organ transplantation in the Czech Republic].

    PubMed

    Kuman, Milan

    2015-01-01

    Solid organ transplantation (heart, lung, liver, kidney, pancreas, small interesting and their combinations) are standard therapy of terminal organ failure. Czech Republic belongs to the states with developed transplantation program. The results correspond with current knowledge and results of leading centers in the world, as demostrated in this article. Organ donor shortage is major factor limiting development of organ transplantations as elsewhere in the Europe or in the world.

  19. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  20. Organic matter loading affects lodgepole pine seedling growth.

    PubMed

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M J; Armleder, H M

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  1. [Infrared spectroscopy application in soil organic matter].

    PubMed

    Wu, J; Xi, S; Jiang, Y

    1998-02-01

    As an important method to study the constitution and properties of macromolecular organic compounds, the infrared spectroscopy has been more and more widely taken in the researches of soil organic matters (SOM). Especially,the application of FTIR and the combined uses of FTIR with chromatogram etc. have made the researches of SOM get a great progress in many aspects. In this paper, the infrared spectroscopy applications were reviewed in SOM. It includes the following contents: the methods to study SOM by IR, studies on the constitution of soil humic substances (SHS), extraction of SOM and classification of SHS, decomposition, transformation and humification of organic matters, the differences of SOM in different situations, the interactions of SHS with metais, clay minerals and other organics in soil.

  2. High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Fray, Nicolas; Bardyn, Anaïs; Cottin, Hervé; Altwegg, Kathrin; Baklouti, Donia; Briois, Christelle; Colangeli, Luigi; Engrand, Cécile; Fischer, Henning; Glasmachers, Albrecht; Grün, Eberhard; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Jessberger, Elmar K; Koch, Andreas; Krüger, Harald; Langevin, Yves; Lehto, Harry; Lehto, Kirsi; Le Roy, Léna; Merouane, Sihane; Modica, Paola; Orthous-Daunay, François-Régis; Paquette, John; Raulin, François; Rynö, Jouni; Schulz, Rita; Silén, Johan; Siljeström, Sandra; Steiger, Wolfgang; Stenzel, Oliver; Stephan, Thomas; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Wanczek, Karl-Peter; Zaprudin, Boris; Kissel, Jochen; Hilchenbach, Martin

    2016-10-06

    The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov-Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites' parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.

  3. High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Fray, Nicolas; Bardyn, Anaïs; Cottin, Hervé; Altwegg, Kathrin; Baklouti, Donia; Briois, Christelle; Colangeli, Luigi; Engrand, Cécile; Fischer, Henning; Glasmachers, Albrecht; Grün, Eberhard; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Jessberger, Elmar K.; Koch, Andreas; Krüger, Harald; Langevin, Yves; Lehto, Harry; Lehto, Kirsi; Le Roy, Léna; Merouane, Sihane; Modica, Paola; Orthous-Daunay, François-Régis; Paquette, John; Raulin, François; Rynö, Jouni; Schulz, Rita; Silén, Johan; Siljeström, Sandra; Steiger, Wolfgang; Stenzel, Oliver; Stephan, Thomas; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Wanczek, Karl-Peter; Zaprudin, Boris; Kissel, Jochen; Hilchenbach, Martin

    2016-10-01

    The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula—the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov-Gerasimenko the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites’ parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.

  4. Frustrated Organic Solids Display Unexpected Gas Sorption

    SciTech Connect

    Thallapally, Praveen K.; Dalgarno, Scott J.; Atwood, Jerry L.

    2006-11-27

    Calixarene based organic solid can hold guests such as toluene and other organic molecules we have discovered a new type of material which believe involves a frustration of the solvate lattice as it moves toward the thermodynamically stable desolvated state. The intermediated phase with partial solvent content unexpectedly sorbs gases such as carbon dioxide and highly explosive acetylene deep inside the crystal lattice.

  5. Amorphous Molecular Organic Solids for Gas Adsorption

    SciTech Connect

    Tian, Jian; Thallapally, Praveen K.; Dalgarno, Scott J.; McGrail, B. Peter; Atwood, Jerry L.

    2009-07-06

    We show that molecular organic compounds with large accessible internal cavities, as part of their rigid molecular structure, display exceptional ability for gas storage and separation in the amorphous solid state. This finding suggests for the first time that long-range molecular order is not a prerequisite for organic molecules to be engineered as porous materials

  6. Approaches to Establishing the Chemical Structure of Extraterrestrial Organic Solids

    NASA Technical Reports Server (NTRS)

    Cody, G. D.; Alexander, C. M. OD.; Wirick, Susan

    2003-01-01

    The majority of extraterrestrial organic matter in carbonaceous chondrites resides in a chemically complex, insoluble and perhaps macromolecular phase. We have been applying a series of independent solid state NMR experiments that are designed to provide a self consistent chemical characterization of this complex material. To date we have thoroughly analyzed 8 organic residues from different meteorites, including a CR2 (EET92042), CIl(Orgueil), CM2 (Murchison), Tagish Lake, CM2 (AlH83100), CM2 (Cold Bokkefeld), CM2 (Mighei), CM3 (Y86720). In fig 1. (1)H to (13)C cross polarization NMR spectra of four of these are shown. Note that there exists an enormous range in chemistry exhibited in organic solid [evident by the breadth of the spectral features both in the aliphatic region (sp(sup 3)) and the aromatic region (sp(sup 2))]. There is also considerable differences in the carbon chemistry across the meteorite groups.

  7. Soil Organic Matter Content Effects on Dermal Pesticide ...

    EPA Pesticide Factsheets

    Agricultural landscapes serve as active amphibian breeding grounds despite their seemingly poor habitat value. Activity of adults and dispersal of metamorphs to and from agricultural ponds occurs in most species from spring through late summer or early fall, a time that coincides with pesticide applications on farm fields and crops. In terrestrial landscapes, dermal contact with contaminated soil and plant matter may lead to bioconcentration as well as lethal and sublethal effects in amphibians.Although the physiological structure of the amphibian dermis may facilitate pesticide uptake, soil properties may ultimately dictate bioavailability of pesticides in terrestrial habitats. The organic matter fraction of soil readily binds to pesticides, potentially decreasing the availability of pesticides adhering to biological matter. Soil partition coefficient solid, carbon fraction of soils. A basic understanding of soil organic carbon content and soil-specific Koc values may be important to indicating pesticide bioavailability and potential bioconcentration in amphibians. Our study was designed to evaluate dermal uptake of five pesticide active ingredients on either high or low organic matter soils. We predicted that amphibian body burdens would be a function of soil carbon content or Koc. with greater bioconcentration in individuals exposed to pesticides on sa

  8. Lability of Secondary Organic Particulate Matter

    SciTech Connect

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Giles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM, no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.

  9. Molecular characterization of soil organic matter: a historic overview

    NASA Astrophysics Data System (ADS)

    Kögel-Knabner, Ingrid; Rumpel, Cornelia

    2014-05-01

    The characterization of individual molecular components of soil organic matter started in the early 19th century, but proceeded slowly. The major focus at this time was on the isolation and differentiation of different humic and fulvic acid fractions, which were considered to have a defined chemical composition and structure. The isolation and structural anlysis of specific individual soil organic matter components became more popular in the early 20th century. In 1936 40 different individual compounds had been isolated and a specific chemical strucutre had been attributed. These structural attributions were confirmed later for some, but not all of these individual compounds. In the 1950 much more individual compounds could be isolated and characterized, using complicated and time consuming chromatography. It became obvious that soil also contains a number of compounds of microbial origin, such as e.g., amino sugars and lipids. With the improvement of chrmoatographic separation techniques and the use of gas chromatography in combination with thin layerchromatography in the 1960 hundreds of individual compounds have been isolated and identified, most of them after chemical degradation of humic or fulvic acids. The chemical degradative techniques were amended with analytical pyrolysis in the 1970s. More and more, bulk soil organic matter was analyzed with these techniques and the advent of solid-stae 13C NMR spectroscopy around the 1980s allowed for the characterization of the composition of bulk soil organic matter. The gas chromatographic separation of organic matter can nowadays be combined with specific detectors, such that specific attributes ofindividual molecules can be analyzed, e.g. the radiocarbon content or the stable isotope composition.

  10. Method for analysis of psychopharmaceuticals in real industrial wastewater and groundwater with suspended organic particulate matter using solid phase extraction disks extraction and ultra-high performance liquid chromatography/time-of-flight mass spectrometry.

    PubMed

    Křesinová, Zdena; Linhartová, Lucie; Petrů, Klára; Krejčová, Lucie; Šrédlová, Kamila; Lhotský, Ondřej; Kameník, Zdeněk; Cajthaml, Tomáš

    2016-04-01

    A rapid and reliable analytical method was developed for the quantitative determination of psychopharmaceuticals, their precursors and by-products in real contaminated samples from a pharmaceutical company in Olomouc (Czech Republic), based on SPE disk extraction and detection by ultra performance liquid chromatography, combined with time-of-flight mass spectrometry. The target compounds were quantified in the real whole-water samples (water including suspended particles), both in the presence of suspended particulate matter (SPM) and high concentrations of other organic pollutants. A total of nine compounds were analyzed which consisted of three commonly used antidepressants (tricyclic antidepressants and antipsychotics), one antitussive agent and five by-products or precursors. At first, the SPE disk method was developed for the extraction of water samples (dissolved analytes, recovery 84-104%) and pressurised liquid extraction technique was verified for solid matrices (sludge samples, recovery 81-95%). In order to evaluate the SPE disk technique for whole water samples containing SPM, non contaminated groundwater samples were also loaded with different amounts (100 and 300mgL(-1)) of real contaminated sludge originating from the same locality. The recoveries from the whole-water samples obtained by SPE disk method ranged between 67 and 119% after the addition of the most contaminated sludge. The final method was applied to several real groundwater (whole-water) samples from the industrial area and high concentrations (up to 10(3)μgL(-1)) of the target compounds were detected. The results of this study document and indicate the feasibility of the SPE disk method for analysis of groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Organic matters: investigating the sources, transport, and fate of organic matter in Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven; Keith, Mackenzie K.; Goldman, Jami H.; Rounds, Stewart A.

    2015-01-01

    The U.S. Geological Survey (USGS), in cooperation with Clean Water Services, recently completed an investigation into the sources, transport, and fate of organic matter in the Fanno Creek watershed. The information provided by this investigation will help resource managers to implement strategies aimed at decreasing the excess supply of organic matter that contributes to low dissolved-oxygen levels in Fanno Creek and downstream in the Tualatin River during summer. This fact sheet summarizes the findings of the investigation.

  12. Fungal infections in solid organ transplantation.

    PubMed

    Silveira, Fernanda P; Husain, Shahid

    2007-06-01

    Fungal infections in solid organ transplant recipients continue to be a significant cause of morbidity and mortality. Candida spp. and Aspergillus spp. account for most invasive fungal infections. The incidence of fungal infection varies with type of solid organ transplant. Liver transplant recipients have highest reported incidence of candida infections while lung transplant recipients have highest rate of Aspergillus infections. Recent epidemiological studies suggest the emergence of resistant strains of candida as well as mycelial fungi other than Aspergillus in these patients. The current review incorporates the recent changes in the epidemiology of fungal infections in solid organ transplant recipients and highlights the newer data on the diagnosis, prophylaxis and treatment of fungal infections in these patients.

  13. Establishing a molecular relationship between chondritic and cometary organic solids

    PubMed Central

    Cody, George D.; Heying, Emily; Alexander, Conel M. O.; Nittler, Larry R.; Kilcoyne, A. L. David; Sandford, Scott A.

    2011-01-01

    Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state 13C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites. PMID:21464292

  14. Sarcopenia in solid organ transplantation.

    PubMed

    Carey, Elizabeth J

    2014-04-01

    Sarcopenia is a relatively new concept in the medical literature, initially intended to describe the loss of lean body mass that occurs with aging. More recently, sarcopenia has been described in various forms of chronic disease, including patients with end-stage organ disease awaiting transplantation. The presence of sarcopenia is an important marker in transplant patients, since it has been linked to poorer pre- and posttransplant outcomes compared with patients with preserved muscle mass. The mechanisms and natural history of sarcopenia in transplant patients are incompletely understood, and there are currently no therapies proven to mitigate or reverse the process. This article reviews the current understanding of the prevalence and clinical significance of sarcopenia in transplant patients and highlights important areas of future research.

  15. Preservation of organic matter in sediments promoted by iron.

    PubMed

    Lalonde, Karine; Mucci, Alfonso; Ouellet, Alexandre; Gélinas, Yves

    2012-03-07

    The biogeochemical cycles of iron and organic carbon are strongly interlinked. In oceanic waters, organic ligands have been shown to control the concentration of dissolved iron. In soils, solid iron phases shelter and preserve organic carbon, but the role of iron in the preservation of organic matter in sediments has not been clearly established. Here we use an iron reduction method previously applied to soils to determine the amount of organic carbon associated with reactive iron phases in sediments of various mineralogies collected from a wide range of depositional environments. Our findings suggest that 21.5 ± 8.6 per cent of the organic carbon in sediments is directly bound to reactive iron phases. We further estimate that a global mass of (19-45) × 10(15) grams of organic carbon is preserved in surface marine sediments as a result of its association with iron. We propose that these associations between organic carbon and iron, which are formed primarily through co-precipitation and/or direct chelation, promote the preservation of organic carbon in sediments. Because reactive iron phases are metastable over geological timescales, we suggest that they serve as an efficient 'rusty sink' for organic carbon, acting as a key factor in the long-term storage of organic carbon and thus contributing to the global cycles of carbon, oxygen and sulphur.

  16. Subaerial weathering of sedimentary organic matter

    USGS Publications Warehouse

    Clayton, J.L.; Swetland, P.J.

    1978-01-01

    Small diameter core samples were taken from outcrops of the Permian Phosphoria Formation and the Cretaceous Pierre Shale of the Western United States to determine the effects of weathering on organic matter in shale outcrops. While the Pierre Shale core showed no evidence of weathering, the Phosphoria Formation showed significant reduction of overall organic content and pronounced changes in organic composition over the near-surface interval of the core. Total organic carbon is lower by as much as 60% over the upper 2 ft of the core. Chloroform-soluble organic matter and total hydrocarbon (C15+) concentrations are 50% lower over this same interval. The ratio of saturated to aromatic hydrocarbons decreases steadily with core depth over the upper 2.6 ft of the core. Aromatic hydrocarbons are enriched in the stable carbon-13 isotope by an average of 1.7%. over this same interval. Shallow core samples also show a loss of n-paraffins relative to branched/cyclic compounds in the saturated C15+ fraction. Although the extent of weathering is variable, certain characteristic effects are recognizable and can be applied to the interpretation of outcrop data in organic geochemical studies. ?? 1978.

  17. Isotopic analysis of cometary organic matter

    NASA Astrophysics Data System (ADS)

    Kerridge, J. F.

    1991-04-01

    Carbon isotope ratios have been measured for CN in the coma of Comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of (C-13)/(C-12) values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus.

  18. Peer reviewed: Characterizing aquatic dissolved organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.; Croué, Jean-Philippe

    2003-01-01

    Whether it causes aesthetic concerns such as color, taste, and odor; leads to the binding and transport of organic and inorganic contaminants; produces undesirable disinfection byproducts; provides sources and sinks for carbon; or mediates photochemical processes, the nature and properties of dissolved organic matter (DOM) in water are topics of significant environmental interest. DOM is also a major reactant in and product of biogeochemical processes in which the material serves as a carbon and energy source for biota and controls levels of dissolved oxygen, nitrogen, phosphorus, sulfur, numerous trace metals, and acidity.

  19. Isolation and chemical characterization of dissolved and colloidal organic matter

    USGS Publications Warehouse

    Aiken, G.; Leenheer, J.

    1993-01-01

    Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. The development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed. -from Authors

  20. Transitional care in solid organ transplantation.

    PubMed

    Kerkar, Nanda; Annunziato, Rachel

    2015-04-01

    Pediatric solid organ transplantation has become an accepted modality of treatment in the last few decades. The number of childhood recipients of solid organ transplantation surviving to adulthood is correspondingly rising. This review examines the epidemiology of pediatric solid organ transplant recipients, and the challenges faced during transition to adult services, with suggestions for improvement in collaborative and coordinated care. Transition to adulthood has been established as a vulnerable period for recipients of a solid organ transplant. Assessment of readiness for transfer, allowing sufficient time for preparation before the actual transfer, involvement of all stakeholders, and inclusion of a transition coordinator are some of the components that can facilitate successful transition to the adult transplant program. This programmatic approach improves both quality of life and long-term graft and patient survival. Moreover, the economic benefits associated with avoiding frequent hospitalizations for graft dysfunction and preventing re-transplantation more than compensate for the costs related to establishing and maintaining a robust transition program.

  1. Soil organic matter composition affected by potato cropping managements

    USDA-ARS?s Scientific Manuscript database

    Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...

  2. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  3. Abiotic Bromination of Soil Organic Matter

    SciTech Connect

    Leri, Alessandra C.; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  4. [Modern immunosuppression after solid organ transplantation].

    PubMed

    Beimler, J; Morath, C; Zeier, M

    2014-02-01

    The one common factor in solid organ transplantation is the need for lifelong maintenance immunosuppression. Drug regimens after organ transplantation typically comprise a combination of different immunosuppressive drugs. In most cases a triple drug regimen with different mechanisms of action is used. The aim is to improve both patient and graft survival while minimizing potential side effects of immunosuppressive medication. The basis of most immunosuppressive regimens is calcineurin inhibitors in combination with mycophenolic acid. There are various stages of immunosuppression after solid organ transplantation involving induction therapy, initial and long-term maintenance therapy. In each phase an individual combination of immunosuppressants is set up depending on the risk profile of the individual patient to prevent transplant rejection and organ loss. Based on these considerations, concepts of calcineurin inhibitor or steroid reduction have been established in transplant medicine in recent years. The key role in terms of development of new immunosuppressive strategies is taken by kidney transplantation, the most common solid organ transplantation performed.

  5. The surface area of soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Lee, J.-F.; Boyd, S.A.

    1990-01-01

    The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.

  6. Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation.

    PubMed

    Champion, Wyatt M; Connors, Lea; Montoya, Lupita D

    2017-09-01

    Most homes in the Navajo Nation use wood as their primary heating fuel, often in combination with locally mined coal. Previous studies observed health effects linked to this solid-fuel use in several Navajo communities. Emission factors (EFs) for common fuels used by the Navajo have not been reported using a relevant stove type. In this study, two softwoods (ponderosa pine and Utah juniper) and two high-volatile bituminous coals (Black Mesa and Fruitland) were tested with an in-use residential conventional wood stove (homestove) using a modified American Society for Testing and Materials/U.S. Environmental Protection Agency (ASTM/EPA) protocol. Filter sampling quantified PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and organic (OC) and elemental (EC) carbon in the emissions. Real-time monitoring quantified carbon monoxide (CO), carbon dioxide (CO2), and total suspended particles (TSP). EFs for these air pollutants were developed and normalized to both fuel mass and energy consumed. In general, coal had significantly higher mass EFs than wood for all pollutants studied. In particular, coal emitted, on average, 10 times more PM2.5 than wood on a mass basis, and 2.4 times more on an energy basis. The EFs developed here were based on fuel types, stove design, and operating protocols relevant to the Navajo Nation, but they could be useful to other Native Nations with similar practices, such as the nearby Hopi Nation. Indoor wood and coal combustion is an important contributor to public health burdens in the Navajo Nation. Currently, there exist no emission factors representative of Navajo homestoves, fuels, and practices. This study developed emission factors for PM2.5, OC, EC, CO, and CO2 using a representative Navajo homestove. These emission factors may be utilized in regional-, national-, and global-scale health and environmental models. Additionally, the protocols developed and results presented here may inform on-going stove design of the

  7. Growth following solid organ transplantation in childhood.

    PubMed

    Laster, M L; Fine, R N

    2014-03-01

    One of the ultimate goals of successful transplantation in pediatric solid organ transplant recipients is the attainment of optimal final adult height. This manuscript will discuss the attainment of height following solid organ transplantation in pediatric recipients of kidney, liver, heart, lung, and small bowel transplantation. Age is a primary factor with younger recipients exhibiting the greatest immediate catch up growth. Graft function is a significant contributory factor with a reduction in glomerular filtration rate correlating with poor growth in kidney recipients and the need for re-transplantation with impaired growth in liver recipients. The known adverse impact of steroids on growth has led to modification of steroid dosage and even to steroid withdrawal and steroid avoidance. In kidney and liver recipients, this has been associated with the development on occasion of acute rejection episodes. In infant heart transplantation, avoidance of maintenance corticosteroid immunosuppression is associated with normal growth velocity in the majority of patients. With marked improvement in patient and graft survival rates in pediatric organ graft recipients, it is timely that the quality of life issues, such as normal adult height, receive paramount attention. In general, normal growth post-transplantation should be an achievable goal that results in normal adult height for many solid organ transplantation recipients.

  8. Mapping Soil Organic Matter with Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  9. The fate of airborne polycyclic organic matter.

    PubMed Central

    Nielsen, T; Ramdahl, T; Bjørseth, A

    1983-01-01

    Biological tests have shown that a significant part of the mutagenicity of organic extracts of collected airborne particulate matter is not due to polycyclic aromatic hydrocarbons (PAH). It is possible that part of these unknown compounds are transformation products of PAH. This survey focuses on the reaction of PAH in the atmosphere with other copollutants, such as nitrogen oxides, sulfur oxides, ozone and free radicals and their reaction products. Photochemically induced reactions of PAH are also included. The reactivity of particle-associated PAH is discussed in relation to the chemical composition and the physical properties of the carrier. Recommendations for future work are given. PMID:6825615

  10. Organic matter oxidation and aragonite diagenesis in a coral reef

    SciTech Connect

    Tribble, G.W. Univ. of Hawaii, Honolulu )

    1993-05-01

    A combination of field and theoretical work is used to study controls on the saturation state of aragonite inside a coral-reef framework. A closed-system ion-speciation model is used to evaluate the effect of organic-matter oxidation on the saturation state of aragonite. The aragonite saturation state initially drops below 1 but becomes oversaturated during sulfate reduction. The C:N ratio of the organic matter affects the degree of oversaturation with N-poor organic material resulting in a system more corrosive to aragonite. Precipitation of sulfide as FeS strongly affects the aragonite saturation state, and systems with much FeS formation will have a stronger tendency to become oversaturated with respect to aragonite. Both precipitation and dissolution of aragonite are predicted at different stages of the organic reaction pathway if the model system is maintained at aragonite saturation. Field data from a coral-reef framework indicate that the system maintains itself at aragonite saturation, and model-predicted changes in dissolved calcium follow those observed in the interstitial waters of the reef. Aragonite probably acts as a solid-phase buffer in regulating the pH of interstitial waters. Because interstitial water in the reef has a short residence time, the observed equilibration suggests rapid kinetics.

  11. Partition of nonpolar organic pollutants from water to soil and sediment organic matters

    USGS Publications Warehouse

    Chiou, C.T.

    1995-01-01

    The partition coefficients (Koc) of carbon tetrachloride and 1,2-dichlorobenzene between normal soil/sediment organic matter and water have been determined for a large set of soils, bed sediments, and suspended solids from the United States and the People's Republic of China. The Koc values for both solutes are quite invariant either for the soils or for the bed sediments; the values on bed sediments are about twice those on soils. The similarity of Koc values between normal soils and between normal bed sediments suggests that natural organic matters in soils (or sediments) of different geographic origins exhibit comparable polarities and possibly comparable compositions. The results also suggest that the process that converts eroded soils into bed sediments brings about a change in the organic matter property. The difference between soil and sediment Koc values provides a basis for identifying the source of suspended solids in river waters. The very high Koc values observed for some special soils and sediments are diagnostic of severe anthropogenic contamination.

  12. The composition and degradability of upland dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth

    2016-04-01

    In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.

  13. Food allergies developing after solid organ transplant.

    PubMed

    Needham, J M; Nicholas, S K; Davis, C M

    2015-12-01

    The development of food allergy is an increasingly recognized form of morbidity after solid organ transplant. It occurs more commonly in liver transplant recipients, although it has also been reported in heart, lung, kidney, and intestinal transplants. Pediatric transplant recipients are more likely to develop symptoms compared to adults, and reports of frequency vary widely from 5% to 38% in pediatric liver transplant recipients. Multiple mechanisms have been proposed in the literature, although no single mechanism can yet account for all reported observations. As food allergy can have at worst potentially fatal consequences, and at best require lifestyle adjustment through food avoidance, it is important for recipients to be aware of the donor's food allergies and particularly in pediatrics, the possibility of completely de novo allergies. This review explores the recent reports surrounding food allergy after solid organ transplant, including epidemiology, proposed mechanisms, and implications for practice.

  14. Hematopoietic Cell Transplantation after Solid Organ Transplantation.

    PubMed

    Doney, Kristine C; Mielcarek, Marco; Stewart, F Marc; Appelbaum, Frederick R

    2015-12-01

    Solid organ transplantation (SOT) followed by hematopoietic cell transplantation (HCT) has been used to treat a single disease with multiorgan involvement or 2 separate diseases, the first requiring SOT and the second often a possible complication of SOT. Results of such serial transplants have been reported sporadically in the literature, usually as single case studies. Thirteen autologous and 27 allogeneic HCTs after SOT published previously are summarized. A more detailed review is provided for an additional 16 patients transplanted at a single institution, 8 of whom had autologous and 8 of whom had allogeneic HCT after SOT. Five of 8 autologous transplant recipients are alive a median of 4.6 years after HCT. Four of 8 allogeneic HCT recipients are alive a median of 8.7 years after HCT. In carefully selected patients, HCT after SOT is feasible and associated with a low incidence of either solid organ or hematopoietic cell rejection.

  15. Thermodynamic modeling for organic solid precipitation

    SciTech Connect

    Chung, T.H.

    1992-12-01

    A generalized predictive model which is based on thermodynamic principle for solid-liquid phase equilibrium has been developed for organic solid precipitation. The model takes into account the effects of temperature, composition, and activity coefficient on the solubility of wax and asphaltenes in organic solutions. The solid-liquid equilibrium K-value is expressed as a function of the heat of melting, melting point temperature, solubility parameter, and the molar volume of each component in the solution. All these parameters have been correlated with molecular weight. Thus, the model can be applied to crude oil systems. The model has been tested with experimental data for wax formation and asphaltene precipitation. The predicted wax appearance temperature is very close to the measured temperature. The model not only can match the measured asphaltene solubility data but also can be used to predict the solubility of asphaltene in organic solvents or crude oils. The model assumes that asphaltenes are dissolved in oil in a true liquid state, not in colloidal suspension, and the precipitation-dissolution process is reversible by changing thermodynamic conditions. The model is thermodynamically consistent and has no ambiguous assumptions.

  16. Thermodynamic modeling for organic solid precipitation

    SciTech Connect

    Chung, T.H.

    1992-12-01

    A generalized predictive model which is based on thermodynamic principle for solid-liquid phase equilibrium has been developed for organic solid precipitation. The model takes into account the effects of temperature, composition, and activity coefficient on the solubility of wax and asphaltenes in organic solutions. The solid-liquid equilibrium K-value is expressed as a function of the heat of melting, melting point temperature, solubility parameter, and the molar volume of each component in the solution. All these parameters have been correlated with molecular weight. Thus, the model can be applied to crude oil systems. The model has been tested with experimental data for wax formation and asphaltene precipitation. The predicted wax appearance temperature is very close to the measured temperature. The model not only can match the measured asphaltene solubility data but also can be used to predict the solubility of asphaltene in organic solvents or crude oils. The model assumes that asphaltenes are dissolved in oil in a true liquid state, not in colloidal suspension, and the precipitation-dissolution process is reversible by changing thermodynamic conditions. The model is thermodynamically consistent and has no ambiguous assumptions.

  17. Neurological Complications of Solid Organ Transplantation

    PubMed Central

    Pruitt, Amy A.; Graus, Francesc; Rosenfeld, Myrna R.

    2013-01-01

    Solid organ transplantation (SOT) is the preferred treatment for an expanding range of conditions whose successful therapy has produced a growing population of chronically immunosuppressed patients with potential neurological problems. While the spectrum of neurological complications varies with the type of organ transplanted, the indication for the procedure, and the intensity of long-term required immunosuppression, major neurological complications occur with all SOT types. The second part of this 2-part article on transplantation neurology reviews central and peripheral nervous system problems associated with SOT with clinical and neuroimaging examples from the authors’ institutional experience. Particular emphasis is given to conditions acquired from the donated organ or tissue, problems specific to types of organs transplanted and drug therapy-related complications likely to be encountered by hospitalists. Neurologically important syndromes such as immune reconstitution inflammatory syndrome (IRIS), posterior reversible encephalopathy syndrome (PRES), and posttransplantation lymphoproliferative disorder (PTLD) are readdressed in the context of SOT. PMID:24167649

  18. Dispersed and accumulated organic matter in fractures: Primary migration evidences

    SciTech Connect

    Lopez, L.; Pasquali, J. )

    1993-02-01

    Concentrated organic matter accumulated in fractures (organic rich fraction) and dispersed organic matter (total rock) of the source rocks of the Querecual and San Antonio formations of the Eastern Venezuelan basin were studied. The distribution of organic matter was studied in polished sections. Sample were analyzed for total organic carbon (Ct), total bitumen and the n-alkane fraction within the bitumen. Dispersed and concentrated organic matter were analyzed separately, and the pertinent differences were established. Concentrated organic matter, probably accumulated to due migration of dispersed organic matter into fractures, or low pressure zones is deficient in n-alkanes of low molecular weight. This fact is interpreted as the result of the migration process that allows the preferential movement of light components of low polarity. It seems that the products of kerogen maturation start their transformation to materials more like crude oils from their primary migration, stage that is to say, within the source rock.

  19. Soil organic matter mineralization in frozen soils

    NASA Astrophysics Data System (ADS)

    Harrysson Drotz, S.; Sparrman, T.; Schleucher, J.; Nilsson, M.; Öquist, M. G.

    2009-12-01

    Boreal forest soils are frozen for a large part of the year and soil organic matter mineralization during this period has been shown to significantly influence the C balance of boreal forest ecosystems. Mineralization proceeds through heterotrophic microbial activity, but the understanding of the environmental controls regulating soil organic matter mineralization under frozen conditions is poor. Through a series of investigations we have addressed this issue in order to elucidate to what extent a range of environmental factors control mineralization processes in frozen soils and also the microbial communities potential to oxidize organic substrates and grow under such conditions. The unfrozen water content in the frozen soils was shown to be an integral control on the temperature response of biogenic CO2 production across the freezing point of bulk soil water. We found that osmotic potential was an important contributor to the total water potential and, hence, the unfrozen water content of frozen soil. From being low and negligible in an unfrozen soil, the osmotic potential was found to contribute up to 70% of the total water potential in frozen soil, greatly influencing the volume of liquid water. The specific factors of how soil organic matter composition affected the unfrozen water content and CO2 production of frozen soil were studied by CP-MAS NMR. We concluded that abundance of aromatics and recalcitrant compounds showed a significant positive correlation with unfrozen water content and these were also the major soil organic fractions that similarly correlated with the microbial CO2 production of the frozen soils. Thus, the hierarchy of environmental factors controlling SOM mineralization changes as soils freeze and environmental controls elucidated from studies of unfrozen systems can not be added on frozen conditions. We have also investigated the potential activity of soil microbial communities under frozen conditions in order to elucidate temperature

  20. Stability of Ferrihydrite and Organic Matter in Ferrihydrite-Organic Matter Associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Totsche, K. U.

    2015-12-01

    Iron oxides can bind particularly large amounts of organic matter (OM) and seem to be an important control on OM storage in many soils. To better understand the interactions between Fe oxides and OM, we produced ferrihydrite-OM associations by adsorption and coprecipitation in laboratory experiments. Because ferrihydrites are often formed in OM-rich solutions, we assume that coprecipitation is a common process in nature. In contrast to adsorption on pre-existing ferrihydrite surfaces, coprecipitation involves adsorption, occlusion (physical entrapment of OM), formation of Fe-OM complexes, and poisoning of ferrihydrite growth. The reactivity of coprecipitates may therefore differ from ferriydrites with adsorbed OM. Incubation experiments with an inoculum extracted from a Podzol forest-floor were carried out to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of associated OM led to decreasing initial reaction rates and a decreasing degree of dissolution. Reduction of coprecipitated ferrihydrites was faster than reduction of ferrihydrites with adsorbed OM. Our data demonstrate that the association with ferrihydrite can effectively stabilize labile polysaccharides. Vice versa, these polysaccharides may protect ferrihydrite from reduction by Geobacter-like bacteria. However, a challenge for future studies will be to link formation and degradation of mineral-organic associations to natural porous systems, that is, to the complex interplay of mass transport and microbial distribution in the

  1. Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.

    1986-01-01

    Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin). ?? 1986.

  2. Different indices to express biodegradability in organic solid wastes.

    PubMed

    Ponsá, Sergio; Gea, Teresa; Sánchez, Antoni

    2010-01-01

    Respiration indices are suggested in literature as the most suitable stability determination and are proposed as a biodegradability measure in this work. An improved dynamic respiration index methodology is described in this work. This methodology was applied to 58 samples of different types of waste including municipal solid wastes and wastewater sludge, both raw materials and samples collected in a mechanical-biological treatment plant at different stages of biodegradation. The information obtained allowed to establish a qualitative classification of wastes in three categories: highly biodegradable, moderately biodegradable, and wastes of low biodegradability. Results were analyzed in terms of long and short-term indices and index expression: dynamic respiration indices expressed as average oxygen uptake rate (mg O(2) g(-1) dry matter [DM] h(-1)) at 1 and 24 h of maximum activity (DRI(1h), DRI(24h)); and cumulative oxygen consumption in 24 h of maximum activity and 4 d (AT(24h), AT(4)). The statistical comparison of indices and wastes is also presented. Raw sludge presented the highest biodegradability followed by the organic fraction of municipal solid waste and anaerobically digested sludge. All indices correlated well but different correlations were found for the different wastes analyzed. The information in the dynamic respiration profile allows for the calculation of different indices that provide complementary information. The combined analysis of DRI(24h) and AT(4) is presented here as the best tool for biodegradable organic matter content characterization and process requirements estimation.

  3. Production of Dissolved Organic Matter During Fungal Wood Rot Decay

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Jellison, J.; Goodell, B.; Kelley, S.; Davis, M.

    2002-12-01

    Dissolved organic matter mediates numerous biogeochemical processes in soil systems impacting subsurface microbial activity, redox chemistry, soil structure, and carbon and nitrogen sequestration. The structure and chemistry of DOM is a function of the inherited chemistry of the source material, the type of microbial action that has occurred, and selective interaction with mineral substrates. The type of fungal decomposition imparted to woody tissue is a major factor in determining the nature of DOM in forest soils. In order to investigate the relationship between fungal decomposition and the nature of DOM in coniferous forest soils we conducted 32-week inoculation studies on spruce sapwood with basidiomycete brown-rot wood decay fungi where leachable dissolved and colloidal organic matter was separated from decayed residue. A detailed examination of the organic fractions was conducted using 13C-labeled tetramethylammonium hydroxide thermochemolysis, solid-state 13C-NMR, and electrospray mass spectrometry. The progressive stages of microbial decay (cellulolytic and ligninolytic) were manifested in the chemical composition of the DOM which showed an evolution from a composition initially polysaccharide rich to one dominated by mildly oxidized and demethylated lignin. Upon removal of all polysaccharides at 16 weeks the DOM (up to 10% by weight of the original tissue) looked chemically distinct from the degraded residue

  4. Organic speciation of size-segregated atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  5. Relating dissolved organic matter fluorescence to functional properties

    NASA Astrophysics Data System (ADS)

    Tipping, E.; Baker, A.; Thacker, S.; Gondar, D.

    2007-12-01

    The fluorescence excitation emission matrix properties of dissolved organic matter from three rivers and one lake in NW England are analysed. Sites are sampled in duplicate and for some sites seasonally to cover variations in dissolved organic matter composition, river flow, and carbon isotopic (13C, 14C) variability. Results are compared to the functional properties of the dissolved organic matter, the functional assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Fluorescence characterization of the dissolved organic matter samples demonstrates that peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio best differentiate different dissolved organic matter samples. These parameters correspond to dissolved organic matter aromaticity, the ratio of labile to recalcitrant organic matter, and dissolved organic matter molecular weight. Peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio fluorescence parameters also have strong correlations with several of the functional assays, in particular the extinction coefficients, benzo(a)pyrene binding and alumina adsorption, and buffering capacity. In many cases, regression equations with a correlation coefficient >0.9 are obtained, suggesting that dissolved organic matter functional character can be predicted from DOM fluorescence properties. For one site, the relationship between dissolved organic matter source, fluorescence, function and carbon isotopic composition is discussed.

  6. The anaerobic digestion of organic solid wastes

    SciTech Connect

    Hartung, H.A.

    1996-09-01

    Anaerobic digestion offers many advantages in the processing of organic solid wastes, using a closed system to convert the waste to combustible gas and a stabilized organic residue.Odors are contained while digestion removes their source and gas is collected for energy recovery as heat or electricity. The stabilized residue is less than the starting waste by the mass of gas produced, and it can be disposed of by land application, land filling, incineration or composting. The stimulation of digesters and the phenomenon of co-digestion are two ways the performance of anaerobic digesters can be enhanced. Data from farm digesters and municipal wastewater treatment plants illustrate the present venue of the process; laboratory studies of the anaerobic digestion of a variety of solid wastes show that the process can be applied to these materials as well. About two thirds of municipal solid waste is shown to be amenable to anaerobic digestion in a substrate from an active municipal sewage plant digester.

  7. Starting life requires more than organic matter

    NASA Astrophysics Data System (ADS)

    Pascal, R.

    2015-10-01

    A physicochemical approach is proposed to study requirements for the origin of life in agreement with developments made in Systems Chemistry for several decades. Emphasis is made on the occurrence of environments generating abiotic chemical systems making more of themselves under far from equilibrium conditions. It follows that the presence of organic matter is only one of the components needed for the process of chemical evolution leading to life. The presence of an energy source with a potential equivalent to that of visible light is needed to render the activation step kinetically irreversible and the reproduction loop a unidirectional flux of reactants. This condition is required in order that reproduction follows an exponential law and dynamic kinetic stability governs the evolution toward the selection of improved variants. According to these views, no fundamental difference can be found between the chemical and biological stages of evolution.

  8. Growth following solid organ transplantation in childhood.

    PubMed

    Fine, Richard N

    2014-01-01

    One of the ultimate goals of successful solid organ transplantation in pediatric recipients is attaining an optimal final adult height. This manuscript will discuss growth following transplantation in pediatric recipients of kidney, liver, heart, lung or small bowel transplants. Remarkably similar factors impact growth in all of these recipients. Age is a primary factor, with younger recipients exhibiting the greatest immediate catch-up growth. Graft function is a significant contributing factor, with a reduced glomerular filtration rate correlating with poor growth in kidney recipients and the need for re-transplantation with impaired growth in liver recipients. The known adverse impact of steroids on growth has led to modification of the steroid dose and even steroid withdrawal and avoidance. In kidney and liver recipients, this strategy has been associated with the development of acute rejection. In infant heart transplantation, avoiding maintenance corticosteroid immunosuppression is associated with normal growth velocity in the majority of patients. With marked improvements in patient and graft survival rates in pediatric organ recipients, quality of life issues, such as normal adult height, should now receive paramount attention. In general, normal growth following solid organ transplantation should be an achievable goal that results in normal adult height.

  9. Factors Affecting Morbidity in Solid Organ Injuries.

    PubMed

    Baygeldi, Serdar; Karakose, Oktay; Özcelik, Kazım Caglar; Pülat, Hüseyin; Damar, Sedat; Eken, Hüseyin; Zihni, İsmail; Çalta, Alpaslan Fedai; Baç, Bilsel

    2016-01-01

    Background and Aim. The aim of this study was to investigate the effects of demographic characteristics, biochemical parameters, amount of blood transfusion, and trauma scores on morbidity in patients with solid organ injury following trauma. Material and Method. One hundred nine patients with solid organ injury due to abdominal trauma during January 2005 and October 2015 were examined retrospectively in the General Surgery Department of Dicle University Medical Faculty. Patients' age, gender, trauma interval time, vital status (heart rate, arterial tension, and respiratory rate), hematocrit (HCT) value, serum area aminotransferase (ALT) and aspartate aminotransferase (AST) values, presence of free abdominal fluid in USG, trauma mechanism, extra-abdominal system injuries, injured solid organs and their number, degree of injury in abdominal CT, number of blood transfusions, duration of hospital stay, time of operation (for those undergoing operation), trauma scores (ISS, RTS, Glasgow coma scale, and TRISS), and causes of morbidity and mortality were examined. In posttraumatic follow-up period, intra-abdominal hematoma infection, emboli, catheter infection, and deep vein thrombosis were monitored as factors of morbidity. Results. One hundred nine patients were followed up and treated due to isolated solid organ injury following abdominal trauma. There were 81 males (74.3%) and 28 females (25.7%), and the mean age was 37.6 ± 18.28 (15-78) years. When examining the mechanism of abdominal trauma in patients, the following results were obtained: 58 (53.3%) traffic accidents (22 out-vehicle and 36 in-vehicle), 27 (24.7%) falling from a height, 14 (12.9%) assaults, 5 (4.5%) sharp object injuries, and 5 (4.5%) gunshot injuries. When evaluating 69 liver injuries scaled by CT the following was detected: 14 (20.3%) of grade I, 32 (46.4%) of grade II, 22 (31.8%) of grade III, and 1 (1.5%) of grade IV. In 63 spleen injuries scaled by CT the following was present: grade I in 21

  10. Factors Affecting Morbidity in Solid Organ Injuries

    PubMed Central

    Baygeldi, Serdar; Karakose, Oktay; Özcelik, Kazım Caglar; Pülat, Hüseyin; Damar, Sedat; Eken, Hüseyin; Zihni, İsmail; Çalta, Alpaslan Fedai; Baç, Bilsel

    2016-01-01

    Background and Aim. The aim of this study was to investigate the effects of demographic characteristics, biochemical parameters, amount of blood transfusion, and trauma scores on morbidity in patients with solid organ injury following trauma. Material and Method. One hundred nine patients with solid organ injury due to abdominal trauma during January 2005 and October 2015 were examined retrospectively in the General Surgery Department of Dicle University Medical Faculty. Patients' age, gender, trauma interval time, vital status (heart rate, arterial tension, and respiratory rate), hematocrit (HCT) value, serum area aminotransferase (ALT) and aspartate aminotransferase (AST) values, presence of free abdominal fluid in USG, trauma mechanism, extra-abdominal system injuries, injured solid organs and their number, degree of injury in abdominal CT, number of blood transfusions, duration of hospital stay, time of operation (for those undergoing operation), trauma scores (ISS, RTS, Glasgow coma scale, and TRISS), and causes of morbidity and mortality were examined. In posttraumatic follow-up period, intra-abdominal hematoma infection, emboli, catheter infection, and deep vein thrombosis were monitored as factors of morbidity. Results. One hundred nine patients were followed up and treated due to isolated solid organ injury following abdominal trauma. There were 81 males (74.3%) and 28 females (25.7%), and the mean age was 37.6 ± 18.28 (15–78) years. When examining the mechanism of abdominal trauma in patients, the following results were obtained: 58 (53.3%) traffic accidents (22 out-vehicle and 36 in-vehicle), 27 (24.7%) falling from a height, 14 (12.9%) assaults, 5 (4.5%) sharp object injuries, and 5 (4.5%) gunshot injuries. When evaluating 69 liver injuries scaled by CT the following was detected: 14 (20.3%) of grade I, 32 (46.4%) of grade II, 22 (31.8%) of grade III, and 1 (1.5%) of grade IV. In 63 spleen injuries scaled by CT the following was present: grade I in

  11. Pyrogallol[4]arenes as frustrated organic solids.

    PubMed

    Kumari, Harshita; Erra, Loredana; Webb, Alicia C; Bhatt, Prashant; Barnes, Charles L; Deakyne, Carol A; Adams, John E; Barbour, Leonard J; Atwood, Jerry L

    2013-11-13

    Two forms of interdigitated layered arrangements of C-pentylpyrogallol[4]arene (PgC5) have been structurally elucidated and show variations in packing arrangements and host-guest interactions. Molecular dynamics simulations reveal a propensity for formation of self-included dimers, with or without incorporated solvent. Combined gas sorption and PXRD results show the presence of seven forms of PgC5, with and without CO2 (and their interconversions). This is the first CO2 gas sorption study of pyrogallol[4]arenes, and it provides evidence that pyrogallol[4]arenes may act as frustrated organic solids.

  12. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.

    PubMed

    Smernik, Ronald J; Kookana, Rai S

    2015-01-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content.

  13. Organic Matter in Extraterrestrial Water-Bearing Salt Crystals

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Kebukwa, Y.; Fries, M.; Steele, A.

    2017-01-01

    Introduction: Direct samples of early Solar System fluids are present in two thermally-metamorphosed ordinary chondrite regolith breccias (Monahans (1998) [H5] and Zag [H3-6]), which were found to contain brine-bearing halite (NaCl) crystals that have been added to the regolith of an S-type asteroid following asteroidal metamorphism [1, 2]. The brine-bearing halite grains were proposed to be formed on an icy C-type asteroids (possibly Ceres), and transferred to an S-type asteroid via cryovolcanic event(s) [3]. A unique aspect of these halites is that they contain abundant organic rich solid inclusions hosted within the halites alongside the water inclusions. Methods: We analyzed in detail the compositions of the organic solids and the amino acid content of the halite crystals with two-step laser desorption/laser ionization mass spectrometry (L(sup 2) MS), Raman spectroscopy, X-ray absorption near edge structure (XANES), nanoscale secondary ion mass spectrometry (NanoSIMS), and ultra-performance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry (UPLC-FD/QToF-MS). Results and Discussion: The L(sup 2) MS results show signatures of low-mass polyaromatic hydro-carbons (PAHs) indicated by sequences of peaks separated by 14 atomic mass units (amu) due to successive addition of methylene (CH2) groups to the PAH skeletons [4]. Raman spectra of the micron-sized solid inclusions of the halites indicate the presence of abundant and highly variable organic matter that include a mixture of short-chain aliphatic compounds and macromolecular carbon. C-XANES analysis identified C-rich areas with peaks at 285.0 eV (aromatic C=C) and 286.6 eV (vinyl-keto C=O). However, there is no 1s-sigma* exciton peak (291.7 eV) that is indicative of the development of graphene structure [5], which suggests the organics were synthesized cold. Na-noSIMS analyses show C-rich and N-rich areas that exhibit similar isotopic values with that of the IOM in

  14. A kinetic study of the formation of organic solids from formaldehyde: Implications for the origin of extraterrestrial organic solids in primitive Solar System objects

    NASA Astrophysics Data System (ADS)

    Kebukawa, Yoko; Cody, George D.

    2015-03-01

    Aqueous organic solid formation from formaldehyde via the formose reaction and subsequent reactions is a possible candidate for the origin of complex primitive chondritic insoluble organic matter (IOM) and refractory carbon in comets. The rate of formation of organic solids from formaldehyde was studied as a function of temperature and time, with and without ammonia, in order to derive kinetic expressions for polymer yield. The evolution in molecular structure as a function of time and temperature was studied using infrared spectroscopy. Using these kinetic expressions, the yield of organic solids is estimated for extended time and temperature ranges. For example, the half-life for organic solid formation is ∼5 days at 373 K, ∼200 days at 323 K, and ∼70 years at 273 K with ammonia, and ∼25 days at 373 K, ∼13 years at 323 K, and ∼2 × 104 years at 273 K without ammonia. These results indicate that organic solids could form during the aqueous alteration in meteorite parent bodies. If liquid water existed early in the interiors of Kuiper belt objects (KBOs), formaldehyde could convert into organic solids at temperatures close to 273 K, and possibly even below 273 K in the ammonia-water system.

  15. Influence of Dissolved Organic Matter and Fe (II) on the Abiotic Reduction of Pentachloronitrobenzene

    EPA Science Inventory

    Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...

  16. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

    USGS Publications Warehouse

    Nagy, B.; Gauthier-Lafaye, F.; Holliger, P.; Davis, D.W.; Mossman, D.J.; Leventhal, J.S.; Rigali, M.J.; Parnell, J.

    1991-01-01

    SOME of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter1,2, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid3,4. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite5. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the resolidified, graphitic bitumen. Unlike water-soluble (humic) organic matter, the graphitic bituminous organics at Oklo thus enhanced radionu-clide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lan-thanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pretreated nuclear waste warrants further investigation. ?? 1991 Nature Publishing Group.

  17. Infections in solid-organ transplant recipients.

    PubMed Central

    Patel, R; Paya, C V

    1997-01-01

    Solid-organ transplantation is a therapeutic option for many human diseases. Infections are a major complication of solid-organ transplantation. All candidates should undergo a thorough infectious-disease screening prior to transplantation. There are three time frames, influenced by surgical factors, the level of immunosuppression, and environmental exposures, during which infections of specific types most frequently occur posttransplantation. Most infections during the first month are related to surgical complications. Opportunistic infections typically occur from the second to the sixth month. During the late posttransplant period (beyond 6 months), transplantation recipients suffer from the same infections seen in the general community. Opportunistic bacterial infections seen in transplant recipients include those caused by Legionella spp., Nocardia spp., Salmonella spp., and Listeria monocytogenes. Cytomegalovirus is the most common cause of viral infections. Herpes simplex virus, varicella-zoster virus, Epstein-Barr virus and others are also significant pathogens. Fungal infections, caused by both yeasts and mycelial fungi, are associated with the highest mortality rates. Mycobacterial, pneumocystis, and parasitic diseases may also occur. PMID:8993860

  18. Measuring Organic Matter with COSIMA on Board Rosetta

    NASA Astrophysics Data System (ADS)

    Briois, C.; Baklouti, D.; Bardyn, A.; Cottin, H.; Engrand, C.; Fischer, H.; Fray, N.; Godard, M.; Hilchenbach, M.; von Hoerner, H.; Höfner, H.; Hornung, K.; Kissel, J.; Langevin, Y.; Le Roy, L.; Lehto, H.; Lehto, K.; Orthous-Daunay, F. R.; Revillet, C.; Rynö, J.; Schulz, R.; Silen, J. V.; Siljeström, S.; Thirkell, L.

    2014-12-01

    Comets are believed to contain the most pristine material of our Solar System materials and therefore to be a key to understand the origin of the Solar System, and the origin of life. Remote sensing observations have led to the detection of more than twenty simple organic molecules (Bockelée-Morvan et al., 2004; Mumma and Charnley, 2011). Experiments on-board in-situ exploration missions Giotto and Vega and the recent Stardust sample return missions have shown that a significant fraction of the cometary grains consists of organic matter. Spectra showed that both the gaseous (Mitchell et al., 1992) and the solid phase (grains) (Kissel and Krueger, 1987) contained organic molecules with higher masses than those of the molecules detected by remote sensing techniques in the gaseous phase. Some of the grains analyzed in the atmosphere of comet 1P/Halley seem to be essentially made of a mixture of carbon, hydrogen, oxygen and nitrogen (CHON grains, Fomenkova, 1999). Rosetta is an unparalleled opportunity to make a real breakthrough into the nature of cometary matter, both in the gas and in the solid phase. The dust mass spectrometer COSIMA on Rosetta will analyze organic and inorganic phases in the dust. The organic phases may be refractory, but some organics may evaporate with time from the dust and lead to an extended source in the coma. Over the last years, we have prepared the cometary rendezvous by the analysis of various samples with the reference model of COSIMA. We will report on this calibration data set and on the first results of the in-situ analysis of cometary grains as captured, imaged and analyzed by COSIMA. References : Bockelée-Morvan, D., et al. 2004. (Eds.), Comets II. the University of Arizona Press, Tucson, USA, pp. 391-423 ; Fomenkova, M.N., 1999. Space Science Reviews 90, 109-114 ; Kissel, J., Krueger, F.R., 1987. Nature 326, 755-760 ; Mitchell, et al. 1992. Icarus 98, 125-133 ; Mumma, M.J., Charnley, S.B., 2011. Annual Review of Astronomy and

  19. Active viscoelastic matter: from bacterial drag reduction to turbulent solids.

    PubMed

    Hemingway, E J; Maitra, A; Banerjee, S; Marchetti, M C; Ramaswamy, S; Fielding, S M; Cates, M E

    2015-03-06

    A paradigm for internally driven matter is the active nematic liquid crystal, whereby the equations of a conventional nematic are supplemented by a minimal active stress that violates time-reversal symmetry. In practice, active fluids may have not only liquid-crystalline but also viscoelastic polymer degrees of freedom. Here we explore the resulting interplay by coupling an active nematic to a minimal model of polymer rheology. We find that adding a polymer can greatly increase the complexity of spontaneous flow, but can also have calming effects, thereby increasing the net throughput of spontaneous flow along a pipe (a "drag-reduction" effect). Remarkably, active turbulence can also arise after switching on activity in a sufficiently soft elastomeric solid.

  20. Innate immune receptors in solid organ transplantation.

    PubMed

    Georgel, Philippe

    2016-11-01

    The discovery of Pattern Recognition Receptors (PRRs) followed by that of their role in the early detection of pathogens and the ignition of the innate immune response has been a formidable progress for immunological research in the past 15years. This has massively fueled investigations aiming at developing better strategies to fight off infectious diseases and/or to prevent their occurrence. However, infected individuals are for most part outliers in a given population and therefore, the primary function of these receptors should be considered in pathogen-free conditions. Our current understanding indicates that an important physiological function of PRRs resides in their capacity to maintain epithelial homeostasis in response to colonizing commensals. In addition, endogenous host-derived ligands, expressed under stressed, albeit sterile, conditions (called DAMPs for Danger-Associated Molecular Patterns) are also able to trigger PRR signaling. Solid organ transplantation represents a unique situation where both contributions of PRRs signaling can be studied. Indeed, dysbiosis (either caused by antibiotherapy preceding organ transplantation or simply due to the microbiota differences between the transplanted organ and the recipient host) is a characteristic feature of this situation, which is also marked by a massive synthesis and liberation of DAMPs as a result of hypoxia/reperfusion injury. Therefore, in the transplanted organ, at least two compartments (epithelial and that composed of immune cells) participate in graft rejection/acceptance depending on the activation status of expressed PRRs.

  1. Soil Organic Matter and Management of Plant-Parasitic Nematodes

    PubMed Central

    Widmer, T. L.; Mitkowski, N. A.; Abawi, G. S.

    2002-01-01

    Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil's physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops. PMID:19265946

  2. Natural Organic Matter-Promoted Metal Inhibition of Hematite Bioreduction

    NASA Astrophysics Data System (ADS)

    Stone, J. J.; Burgos, W. D.

    2003-12-01

    A developing technology for the in situ treatment of metal and radionuclide contaminants is the stimulation of dissimilatory metal-reducing bacteria (DMRB) to reduce solid phase iron oxides which promote Fe(II) induced chemical reduction of contaminants. Natural organic matter (NOM) can stimulate the biological reduction of solid-phase iron oxides by serving as an electron shuttle and by complexing biogenic Fe(II). The addition of NOM to contaminated zones has been proposed to further stimulate iron reduction and the fortuitous reduction and immobilization of contaminants. However, little research has been conducted on quarternary systems that contain DMRB, ferric oxides, NOM, and metals or radionuclides. The effect of zinc on the biological reduction of hematite and nitrate by the DMRB Shewanella putrefaciens strain CN32 was studied in the absence and presence of NOM. Nitrate was used to compare results between solid-phase and soluble electron acceptors. Previous work has demonstrated that, in the absence of zinc, NOM significantly enhanced hematite bioreduction but slightly inhibited nitrate reduction. In the absence of NOM, zinc was shown to significantly inhibit both hematite and nitrate bioreduction. In the presence of NOM, zinc inhibition of nitrate bioreduction was completely eliminated, presumably due to the NOMs' ability to complex Zn(II) and decrease Zn2+ activity. It was assumed that the presence of NOM would also decrease zinc inhibition of hematite reduction. Contrary to this hypothesis, NOM significantly increased the inhibitory effect of zinc during hematite bioreduction. In addition, non-toxic Mn(II) became inhibitory in the presence of NOM during hematite bioreduction. These results suggest that ternary Me(II)-NOM-oxide surface complexes may specifically inhibit solid-phase bioreduction. Thus, interactions between NOM and metal/radionuclide contaminants may effect the overall efficacy of the biostimulation remediation strategy.

  3. Sensitivity of soil organic matter in anthropogenically disturbed organic soils

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Bechtold, Michel; Don, Axel; Freibauer, Annette

    2016-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. However, the variability of CO2 emissions increases with disturbance, and little is known on the soil properties causing differences between seemingly similar sites. Furthermore the driving factors for carbon cycling are well studied for both genuine peat and mineral soil, but there is a lack of information concerning soils at the boundary between organic and mineral soils. Examples for such soils are both soils naturally relatively high in soil organic matter (SOM) such as Humic Gleysols and former peat soils with a relative low SOM content due to intensive mineralization or mixing with underlying or applied mineral soil. The study aims to identify drivers for the sensitivity of soil organic matter and therefore for respiration rates of anthropogenically disturbed organic soils, especially those near the boundary to mineral soils. Furthermore, we would like to answer the question whether there are any critical thresholds of soil organic carbon (SOC) concentrations beyond which the carbon-specific respiration rates change. The German agricultural soil inventory samples all agricultural soils in Germany in an 8x8 km² grid following standardized protocols. From this data and sample base, we selected 120 different soil samples from more than 80 sites. As reference sites, three anthropogenically undisturbed peatlands were sampled as well. We chose samples from the soil inventory a) 72 g kg-1 SOC and b) representing the whole range of basic soil properties: SOC (72 to 568 g kg-1), total nitrogen (2 to 29 g kg-1), C-N-ratio (10 to 80) bulk density (0.06 to 1.41 g/cm³), pH (2.5 to 7.4), sand (0 to 95 %) and clay (2 to 70 %) content (only determined for samples with less than 190 g kg-1 SOC) as well as the botanical origin of the peat (if determinable). Additionally, iron oxides were determined for all samples. All samples were sieved (2 mm) and incubated at standardized water content and

  4. Deformation of Lattice in a Solid Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Takahashi, K.

    1994-02-01

    The effect of the deformation of lattice in the three dimensional (3D) ALS (i.e., alternating layer spin) solid of neutron matter is investigated, taking the elastic-, spin- and isospin-wave excitations into account in the model with Pandharipande-Smith (PS)'s potential and non-vanishing classical pion field. The q-number part of pion-field is replaced by the effective one-pion-exchange potential (OPEP). The tetragonal structure of lattice is presumed. Solutions of the equation of motion (EOM) for the ground state are sought by the variational method for two cases in which c-number part of π--field is non-vanishing and is supposed to be propagating either (i) perpendicularly to or (ii) within layers of 3D ALS solid. The phonon and magnon sectors of Hamiltonian are diagonalized for case (i) and the phonon sector for case (ii). The criterion of the stability is the absence of imaginary part in the dispersion relations of phonon and of magnon. In both cases, tetragonal lattices have energies about 40 MeV/nucleon lower than the simple cubic (sc) lattices in the density region of [0.35 fm-3, 0.75 fm-3]. In (i), the zero-point energy of magnon is a few percent of phonon. Both in (i) and (ii), the charged pion condensations are negligible.

  5. Aerobic methane production from organic matter

    NASA Astrophysics Data System (ADS)

    Vigano, I.

    2010-01-01

    Methane, together with H2O, CO2 and N2O, is an important greenhouse gas in th e Earth’s atmosphere playing a key role in the radiative budget. It has be en known for decades that the production of the reduced compound CH4 is possible almost exclusively in anoxic environments per opera of one of the most importan t class of microorganisms which form the Archaea reign. Methane can be produced also from incomplete combustion of organic material. The generation of CH4 in an oxygenated environment under near-ambient conditions is a new discovery made in 2006 by Keppler et. al where surprisingly they measured emissions of this green house gas from plants incubated in chambers with air containing 20% of oxygen. A lthough the estimates on a global scale are still object of an intensive debate, the results presented in this thesis clearly show the existence of methane prod uction under oxic conditions for non living plant material. Temperature and UV l ight are key factors that drive the generation of CH4 from plant matter in a wel l oxygenated environment.

  6. The evolution of organic matter in space.

    PubMed

    Ehrenfreund, Pascale; Spaans, Marco; Holm, Nils G

    2011-02-13

    Carbon, and molecules made from it, have already been observed in the early Universe. During cosmic time, many galaxies undergo intense periods of star formation, during which heavy elements like carbon, oxygen, nitrogen, silicon and iron are produced. Also, many complex molecules, from carbon monoxide to polycyclic aromatic hydrocarbons, are detected in these systems, like they are for our own Galaxy. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly high number of molecules that are used in contemporary biochemistry on the Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites and interplanetary dust particles. Large quantities of extra-terrestrial material were delivered via comets and asteroids to young planetary surfaces during the heavy bombardment phase. Monitoring the formation and evolution of organic matter in space is crucial in order to determine the prebiotic reservoirs available to the early Earth. It is equally important to reveal abiotic routes to prebiotic molecules in the Earth environments. Materials from both carbon sources (extra-terrestrial and endogenous) may have contributed to biochemical pathways on the Earth leading to life's origin. The research avenues discussed also guide us to extend our knowledge to other habitable worlds.

  7. Mapping forest soil organic matter on New Jersey's coastal plain

    Treesearch

    Brian J. Clough; Edwin J. Green; Richard B. Lathrop

    2012-01-01

    Managing forest soil organic matter (SOM) stocks is a vital strategy for reducing the impact of anthropogenic carbon dioxide emissions. However, the SOM pool is highly variable, and developing accurate estimates to guide management decisions has remained a difficult task. We present the results of a spatial model designed to map soil organic matter for all forested...

  8. Comparison of solid-phase and eluate assays to gauge the ecotoxicological risk of organic wastes on soil organisms.

    PubMed

    Domene, Xavier; Alcañiz, Josep M; Andrés, Pilar

    2008-02-01

    Development of methodologies to assess the safety of reusing polluted organic wastes in soil is a priority in Europe. In this study, and coupled with chemical analysis, seven organic wastes were subjected to different aquatic and soil bioassays. Tests were carried out with solid-phase waste and three different waste eluates (water, methanol, and dichloromethane). Solid-phase assays were indicated as the most suitable for waste testing not only in terms of relevance for real situations, but also because toxicity in eluates was generally not representative of the chronic effects in solid-phase. No general correlations were found between toxicity and waste pollutant burden, neither in solid-phase nor in eluate assays, showing the inability of chemical methods to predict the ecotoxicological risks of wastes. On the contrary, several physicochemical parameters reflecting the degree of low organic matter stability in wastes were the main contributors to the acute toxicity seen in collembolans and daphnids.

  9. Cryptosporidium infection in solid organ transplantation

    PubMed Central

    Florescu, Diana F; Sandkovsky, Uriel

    2016-01-01

    Diarrhea is a common complication in solid organ transplant (SOT) recipients and may be attributed to immunosuppressive drugs or infectious organisms such as bacteria, viruses or parasites. Cryptosporidium usually causes self-limited diarrhea in immunocompetent hosts. Although it is estimated that cryptosporidium is involved in about 12% of cases of infectious diarrhea in developing countries and causes approximately 748000 cases each year in the United States, it is still an under recognized and important cause of infectious diarrhea in SOT recipients. It may run a protracted course with severe diarrhea, fluid and electrolyte depletion and potential for organ failure. Although diagnostic methodologies have improved significantly, allowing for fast and accurate identification of the parasite, treatment of the disease is difficult because antiparasitic drugs have modest activity at best. Current management includes fluid and electrolyte replacement, reduction of immunosuppression and single therapy with Nitazoxanide or combination therapy with Nitazoxanide and other drugs. Future drug and vaccine development may add to the currently poor armamentarium to manage the disease. The current review highlights key epidemiological, diagnostic and management issues in the SOT population. PMID:27683627

  10. Global Evolution of Solid Matter in Turbulent Protoplanetry Disks. Part 1; Aerodynamics of Solid Particles

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Valageas, P.

    1996-01-01

    The problem of planetary system formation and its subsequent character can only be addressed by studying the global evolution of solid material entrained in gaseous protoplanetary disks. We start to investigate this problem by considering the space-time development of aerodynamic forces that cause solid particles to decouple from the gas. The aim of this work is to demonstrate that only the smallest particles are attached to the gas, or that the radial distribution of the solid matter has no momentary relation to the radial distribution of the gas. We present the illustrative example wherein a gaseous disk of 0.245 solar mass and angular momentum of 5.6 x 10(exp 52) g/sq cm/s is allowed to evolve due to turbulent viscosity characterized by either alpha = 10(exp -2) or alpha = 10(exp -3). The motion of solid particles suspended in a viscously evolving gaseous disk is calculated numerically for particles of different sizes. In addition we calculate the global evolution of single-sized, noncoagulating particles. We find that particles smaller than 0.1 cm move with the gas; larger particles have significant radial velocities relative to the gas. Particles larger than 0.1 cm but smaller than 10(exp 3) cm have inward radial velocities much larger than the gas, whereas particles larger than 10(exp 4) cm have inward velocities much smaller than the gas. A significant difference in the form of the radial distribution of solids and the gas develops with time. It is the radial distribution of solids, rather than the gas, that determines the character of an emerging planetary system.

  11. Generic tacrolimus in solid organ transplantation.

    PubMed

    Taube, D; Jones, G; O'Beirne, J; Wennberg, L; Connor, A; Rasmussen, A; Backman, L

    2014-05-01

    The availability of a wide range of immunosuppressive therapies has revolutionized the management of patients who have undergone solid organ transplantation (SOT). However, the cost of immunosuppressive drugs remains high. This situation has led to the development of generic equivalents, which are similar in quality, safety, and efficacy to their approved innovator drugs. There are data available for three generic brands, tacrolimus (Intas), tacrolimus (PharOS), and tacrolimus (Sandoz). Bioequivalence has been demonstrated for generic tacrolimus (Sandoz) within a narrow therapeutic range to its innovator tacrolimus drug (Prograf) in both healthy volunteers and kidney transplant patients. Clinical experience with this generic tacrolimus formulation has also been established in both de novo and conversion patients who have undergone kidney and liver transplantation, as well as in conversion of other SOT patients, including lung and heart recipients.

  12. HLA Population Genetics in Solid Organ Transplantation.

    PubMed

    Kransdorf, Evan P; Pando, Marcelo J; Gragert, Loren; Kaplan, Bruce

    2017-09-01

    HLAs are fundamental to the adaptive immune response and play critical roles in the cellular and humoral response in solid organ transplantation. The genes encoding HLA proteins are the most polymorphic within the human genome, with thousands of different allelic variants known within the population. Application of the principles of population genetics to the HLA genes has resulted in the development of a numeric metric, the calculated panel-reactive antibody (CPRA) that predicts the likelihood of a positive crossmatch as a function of a transplant candidate's unacceptable HLA antigens. The CPRA is an indispensible measure of access to transplantation for sensitized candidates and is used as the official measure of sensitization for allocation of points in the US Kidney Allocation System and Eurotransplant. Here, we review HLA population genetics and detail the mathematical basis of the CPRA. An understanding of these principles by transplant clinicians will lay the foundation for continued innovation in the care of sensitized patients.

  13. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  14. Particulate matter chemical component concentrations and sources in settings of household solid fuel use.

    PubMed

    Secrest, Matthew H; Schauer, James J; Carter, Ellison; Baumgartner, Jill

    2017-04-12

    Particulate matter (PM) air pollution derives from combustion and non-combustion sources and consists of various chemical species that may differentially impact human health and climate. Previous reviews of PM chemical component concentrations and sources focus on high-income urban settings, which likely differ from the low- and middle-income settings where solid fuel (i.e., coal, biomass) is commonly burned for cooking and heating. We aimed to summarize the concentrations of PM chemical components and their contributing sources in settings where solid fuel is burned. We searched the literature for studies that reported PM component concentrations from homes, personal exposures, and direct stove emissions under uncontrolled, real-world conditions. We calculated weighted mean daily concentrations for select PM components and compared sources of PM determined by source apportionment. Our search criteria yielded 48 studies conducted in 12 countries. Weighted mean daily cooking area concentrations of elemental carbon, organic carbon, and benzo(a)pyrene were 18.8 μg m(-3) , 74.0 μg m(-3) , and 155 ng m(-3) , respectively. Solid fuel combustion explained 29% to 48% of principal component / factor analysis variance and 41% to 87% of PM mass determined by positive matrix factorization. Several indoor and outdoor sources impact PM concentrations and composition in these settings, including solid fuel burning, mobile emissions, dust, and solid waste burning. This article is protected by copyright. All rights reserved.

  15. Tobacco smoking and solid organ transplantation.

    PubMed

    Corbett, Chris; Armstrong, Matthew J; Neuberger, James

    2012-11-27

    Smoking, both by donors and by recipients, has a major impact on outcomes after organ transplantation. Recipients of smokers' organs are at greater risk of death (lungs hazard ratio [HR], 1.36; heart HR, 1.8; and liver HR, 1.25), extended intensive care stays, and greater need for ventilation. Kidney function is significantly worse at 1 year after transplantation in recipients of grafts from smokers compared with nonsmokers. Clinicians must balance the use of such higher-risk organs with the consequences on waiting list mortality if the donor pool is reduced further by exclusion of such donors. Smoking by kidney transplant recipients significantly increases the risk of cardiovascular events (29.2% vs. 15.4%), renal fibrosis, rejection, and malignancy (HR, 2.56). Furthermore, liver recipients who smoke have higher rates of hepatic artery thrombosis, biliary complications, and malignancy (13% vs. 2%). Heart recipients with a smoking history have increased risk of developing coronary atherosclerosis (21.2% vs. 12.3%), graft dysfunction, and loss after transplantation. Self-reporting of smoking is commonplace but unreliable, which limits its use as a tool for selection of transplant candidates. Despite effective counseling and pharmacotherapy, recidivism rates after transplantation remain high (10-40%). Transplant services need to be more proactive in educating and implementing effective smoking cessation strategies to reduce rates of recidivism and the posttransplantation complications associated with smoking. The adverse impact of smoking by the recipient supports the requirement for a 6-month period of abstinence in lung recipients and cessation before other solid organs.

  16. Detection of organic matter in interstellar grains.

    PubMed

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  17. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable

  18. Dissolved Organic Matter and Emerging Contaminants in Urban Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Findlay, S.; Groffman, P.; Belt, K.; Delaney, K.; Sides, A.; Walbridge, M.; Mayer, P.

    2009-05-01

    We investigated the effects of urbanization on the sources, bioavailability and forms of natural and anthropogenic organic matter found in streams located in Maryland, U.S.A. We found that the abundance, biaoavailability, and enzymatic breakdown of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) increased in streams with increasing watershed urbanization suggesting that organic nutrients may represent a growing form of nutrient loading to coastal waters associated with land use change. Organic carbon, nitrogen, and phosphorus in urban streams were elevated several-fold compared to forest and agricultural streams. Enzymatic activities of stream microbes in organic matter decomposition were also significantly altered across watershed land use. Chemical characterization suggested that organic matter in urban streams originated from a variety of sources including terrestrial, sewage, and in-stream transformation. In addition, a characterization of emerging organic contaminants (polyaromatic cyclic hydrocarbons, organochlorine pesticides, and polybrominated diphenyl ether flame retardents), showed that organic contaminants and dissolved organic matter increase with watershed urbanization and fluctuate substantially with changing climatic conditions. Elucidating the emerging influence of urbanization on sources, transport, and in-stream transformation of organic nutrients and contaminants will be critical in unraveling the changing role of organic matter in urban degraded and restored stream ecosystems.

  19. CHARACTERIZING THE ORGANIC MATTER IN SURFACE ...

    EPA Pesticide Factsheets

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest density of inhabitants and major industrial activities in Puerto Rico. As a result, the SJBE is impacted by wastewater from combined-sewer overflows, faulty sewer lines, and storm water runoff; these factors combined with trash accumulation and infilling of the Martín Peña canal, contribute to decreased tidal exchange and reduced flushing in the estuary. To quantify the impact of the obstruction of the Martín Peña canal on anthropogenic nutrient distribution in the SJBE, over 200 sediment grab samples were collected throughout the estuary in 2015. The samples were analyzed for carbonate content, organic matter, grain size, bulk density, percent phosphorus, percent nitrogen (%N), and stable isotopes (δ15N and δ13C). The %N values were highest in the surface sediments from the western portion of the Martín Peña canal, where %N was >0.86%. In contrast, %N from the adjacent San José lagoon averaged <0.2%. Grain size distributions across the SJBE were consistent with low flushing in the inner portions of the SJBE. While the Martín Peña canal remains phosphorus limited, N:P ratios suggest the San Juna Bay and San José Lagoon have undergone major ecological shifts in the past two decades. Our

  20. CHARACTERIZING THE ORGANIC MATTER IN SURFACE ...

    EPA Pesticide Factsheets

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest density of inhabitants and major industrial activities in Puerto Rico. As a result, the SJBE is impacted by wastewater from combined-sewer overflows, faulty sewer lines, and storm water runoff; these factors combined with trash accumulation and infilling of the Martín Peña canal, contribute to decreased tidal exchange and reduced flushing in the estuary. To quantify the impact of the obstruction of the Martín Peña canal on anthropogenic nutrient distribution in the SJBE, over 200 sediment grab samples were collected throughout the estuary in 2015. The samples were analyzed for carbonate content, organic matter, grain size, bulk density, percent phosphorus, percent nitrogen (%N), and stable isotopes (δ15N and δ13C). The %N values were highest in the surface sediments from the western portion of the Martín Peña canal, where %N was >0.86%. In contrast, %N from the adjacent San José lagoon averaged <0.2%. Grain size distributions across the SJBE were consistent with low flushing in the inner portions of the SJBE. While the Martín Peña canal remains phosphorus limited, N:P ratios suggest the San Juna Bay and San José Lagoon have undergone major ecological shifts in the past two decades. Our

  1. Solid organ transplant training objectives for residents.

    PubMed

    Masclans, J R; Vicente, R; Ballesteros, M A; Sabater, J; Roca, O; Rello, J

    2012-11-01

    With the aim of analyzing the current state of the educational objectives in the training of medical residents in solid organ transplantation (SOT), we conducted a review of the status of the official programs of the specialities involved in SOT, focusing particularly on lung transplantation. A survey of medical residents was also conducted to allow reflexion about the topic. We obtained 44 surveys from 4 University Hospitals with active programs in SOT, mainly from intensive care medicine and anesthesiology residents. We detected an important number of courses oriented to organ donation but very limited in terms of basic training in the management of the immediate postoperative period, principles of immunosuppression and updates on immunosuppressive therapy and complications (particularly rejection and infection). We also identified that these educational aspects should be directed not only to medical residents from specialities with a close retation to SOT, but also to all who may at some time have a relation to such patients. The use of information and communication techniques (ICTs), on-line courses and also simulations should be instruments to take into account in the biomedical training of medical residents. We conclude that we need a specific training program in complications of SOT, as well as fundamental principles in immunology and immunosuppressor pharmacology. Copyright © 2012 Elsevier España, S.L. y SEMICYUC. All rights reserved.

  2. Outcomes in pediatric solid-organ transplantation.

    PubMed

    LaRosa, Christopher; Baluarte, H Jorge; Meyers, Kevin E C

    2011-03-01

    LaR Pediatric solid-organ transplantation is an increasingly successful treatment for organ failure. Five- and 10-yr patient survival rates have dramatically improved over the last couple of decades, and currently, over 80% of pediatric patients survive into adolescence and young adulthood. Waiting list mortality has been a concern for liver, heart, and intestinal transplantation, illustrating the importance of transplant as a life-saving therapy. Unfortunately, the success of pediatric transplantation comes at the cost of long-term or late complications that arise as a result of allograft rejection or injury, immunosuppression-related morbidity, or both. As transplant recipients enter adolescence treatment, non-adherence becomes a significant issue, and the medical and psychosocial impacts transition to adulthood not only with regard to healthcare but also in terms of functional outcomes, economic potential, and overall QoL. This review addresses the clinical and psychosocial challenges encountered by pediatric transplant recipients in the current era. A better understanding of pediatric transplant outcomes and adult morbidity and mortality requires further ongoing assessment.

  3. Site-energy distribution analysis of organic chemical sorption by soil organic matter

    SciTech Connect

    Yuan, G.; Xing, B.

    1999-07-01

    Sorption of several hydrophobic organic compounds by selected soils, and their humic substance fractions as well, was examined using batch equilibration methods. The results could not be explained by the well known partitioning mechanism alone, but were consistent with the dual-mode sorption model for soil organic matter (SOM) in which both solid-phase dissolution and hole-filling mechanisms take place. The heterogeneous nature of the natural sorbents was demonstrated by site-energy distributions derived from the common Freundlich model. The site-energy distribution analysis is useful for examining and understanding the energetic characteristics of a sorbent. This analysis lends further support for the dual-mode model of sorption to SOM.

  4. Changes in River Organic Matter Through Time.

    NASA Astrophysics Data System (ADS)

    Hudson, N.; Baker, A.; Ward, D.

    2006-12-01

    fluorescence, as an increase in pH was also observed in these samples. This work illustrates the dynamic character of river organic matter within a timescale and under conditions that are representative of the natural system.

  5. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition.

    PubMed

    Zak, Donald R; Freedman, Zachary B; Upchurch, Rima A; Steffens, Markus; Kögel-Knabner, Ingrid

    2017-02-01

    Accumulating evidence indicates that future rates of atmospheric N deposition have the potential to increase soil C storage by reducing the decay of plant litter and soil organic matter (SOM). Although the microbial mechanism underlying this response is not well understood, a decline in decay could alter the amount, as well as biochemical composition of SOM. Here, we used size-density fractionation and solid-state (13) C-NMR spectroscopy to explore the extent to which declines in microbial decay in a long-term (ca. 20 yrs.) N deposition experiment have altered the biochemical composition of forest floor, bulk mineral soil, as well as free and occluded particulate organic matter. Significant amounts of organic matter have accumulated in occluded particulate organic matter (~20%; oPOM); however, experimental N deposition had not altered the abundance of carboxyl, aryl, alkyl, or O/N-alkyl C in forest floor, bulk mineral soil, or any soil fraction. These observations suggest that biochemically equivalent organic matter has accumulated in oPOM at a greater rate under experimental N deposition, relative to the ambient treatment. Although we do not understand the process by which experimental N deposition has fostered the occlusion of organic matter by mineral soil particles, our results highlight the importance of interactions among the products of microbial decay and the chemical and physical properties of silt and clay particles that occlude organic matter from microbial attack. Because oPOM can reside in soils for decades to centuries, organic matter accumulating under future rates of anthropogenic N deposition could remain in soil for long periods of time. If temperate forest soils in the Northern Hemisphere respond like those in our experiment, then unabated deposition of anthropogenic N from the atmosphere has the potential to foster greater soil C storage, especially in fine-texture forest soils.

  6. Deformation behaviors of peat with influence of organic matter.

    PubMed

    Yang, Min; Liu, Kan

    2016-01-01

    Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed.

  7. Spatial Complexity of Soil Organic Matter Forms at Nanometre Scales

    SciTech Connect

    Lehmann,J.; Solomon, D.; Kinyangi, J.; Dathe, L.; Wirick, S.; Jacobsen, C.

    2008-01-01

    Organic matter in soil has been suggested to be composed of a complex mixture of identifiable biopolymers1 rather than a chemically complex humic material2. Despite the importance of the spatial arrangement of organic matter forms in soil3, its characterization has been hampered by the lack of a method for analysis at fine scales. X-ray spectromicroscopy has enabled the identification of spatial variability of organic matter forms, but was limited to extracted soil particles4 and individual micropores within aggregates5, 6. Here, we use synchrotron-based near-edge X-ray spectromicroscopy7 of thin sections of entire and intact free microaggregates6 to demonstrate that on spatial scales below 50 nm resolution, highly variable yet identifiable organic matter forms, such as plant or microbial biopolymers, can be found in soils at distinct locations of the mineral assemblage. Organic carbon forms detected at this spatial scale had no similarity to organic carbon forms of total soil. In contrast, we find that organic carbon forms of total soil were remarkably similar between soils from several temperate and tropical forests with very distinct vegetation composition and soil mineralogy. Spatial information on soil organic matter forms at the scale provided here could help to identify processes of organic matter cycling in soil, such as carbon stability or sequestration and responses to a changing climate.

  8. [Effects of dissolved organic matter on phenanthrene adsorption by soil].

    PubMed

    Xiong, Wei; Ling, Wan-ting; Gao, Yan-zheng; Li, Qiu-ling; Dai, Jing-yu

    2007-02-01

    This paper studied the effects of exotic and native dissolved organic matter (DOM) on the phenanthrene adsorption by three soils differed in soil organic carbon content (foc). The exotic DOM came from decayed rice straw, while the native DOM was extracted from the test soils. In all cases, the adsorption of phenanthrene by treated soils could be well described with linear-type model, and there was a positive correlation between adsorption coefficient (Kd) and foc Compared with the control, the Kd value of test soils after native DOM removed was increased by 7. 08% -21. 4% , and the increment (deltaKd) was positively correlated with fo,, indicating that the presence of soil native DOM impeded the phenanthrene adsorption by soil. The effects of exotic DOM on phenanthrene adsorption had a close relation with its added concentration in soil-water system. Within the range of 0-106 mg DOC x L(-1) , the K, value increased first, and then decreased with the increase of added exotic DOM concentration. Lower concentrations of added exotic DOM promoted the phenanthrene adsorption by soil, while higher concentrations ( I> or =52 mg DOC x L(-1)) of it obviously impeded this adsorption. These effects of exotic and native DOM on soil phenanthrene adsorption were considered to be related to the association of phenanthrene with DOM in solution, and the ' cumulative adsorption effect' between soil solid and aqueous phases.

  9. Role of dissolved organic matter in ice photochemistry.

    PubMed

    Grannas, Amanda M; Pagano, Lisa P; Pierce, Brittany C; Bobby, Rachel; Fede, Alexis

    2014-09-16

    In this study, we provide evidence that dissolved organic matter (DOM) plays an important role in indirect photolysis processes in ice, producing reactive oxygen species (ROS) and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin. Rates of DOM-mediated aldrin loss are between 2 and 56 times faster in ice than in liquid water (depending on DOM source and concentration), likely due to a freeze-concentration effect that occurs when the water freezes, providing a mechanism to concentrate reactive components into smaller, liquid-like regions within or on the ice. Rates of DOM-mediated aldrin loss are also temperature dependent, with higher rates of loss as temperature decreases. This also illustrates the importance of the freeze-concentration effect in altering reaction kinetics for processes occurring in environmental ices. All DOM source types studied were able to mediate aldrin loss, including commercially available fulvic and humic acids and an authentic Arctic snow DOM sample isolated by solid phase extraction, indicating the ubiquity of DOM in indirect photochemistry in environmental ices.

  10. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  11. Interstellar chemistry recorded in organic matter from primitive meteorites.

    PubMed

    Busemann, Henner; Young, Andrea F; Alexander, Conel M O'd; Hoppe, Peter; Mukhopadhyay, Sujoy; Nittler, Larry R

    2006-05-05

    Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system.

  12. The erosion of organic solids in combined sewers.

    PubMed

    Ahyerre, M; Oms, C; Chebbo, G

    2001-01-01

    Many studies undertaken on urban catchments show, thanks to indirect approaches, that the contribution of eroded sewer sediments to pollution of combined sewer overflows is significant and highly organic. An in situ study of the erosion of sewer sediments has been implemented to validate those results with a direct approach and to observe the processes of erosion. Two experiments have been carried out on a 150 m length of combined sewer in "Le Marais" catchment in Paris, in order to determine the rate of erosion and the nature of the particles eroded by an injection of drinking water in the sewer system. Hydraulic and quality parameters have been measured in situ. Those injections have shown that the rate of erosion is important (maximum rate of 146 g/s) at each stage of the injection, which has been conducted in three stages with a maximum flow of 370 m3/h. The erosion does not only occur locally but happens along the entire length of the section even at low shear stresses (0.5 N/m2). The eroded particles are highly organic (VS = 54-86%) and their loads in volatile solids, COD, BOD5 decrease as the flow increases. So, this work confirms, by direct measurements, that eroded sewer sediments are a significant source of organic matter that contribute to combined sewer overflow.

  13. Pyrogenic organic matter can alter microbial communication

    NASA Astrophysics Data System (ADS)

    Masiello, Caroline; Gao, Xiaodong; Cheng, Hsiao-Ying; Silberg, Jonathan

    2016-04-01

    Soil microbes communicate with each other to manage a large range of processes that occur more efficiently when microbes are able to act simultaneously. This coordination occurs through the continuous production of signaling compounds that are easily diffused into and out of cells. As the number of microbes in a localized environment increases, the internal cellular concentration of these signaling compounds increases, and when a threshold concentration is reached, gene expression shifts, leading to altered (and coordinated) microbial behaviors. Many of these coordinated behaviors have biogeochemically important outcomes. For example, methanogenesis, denitrification, biofilm formation, and the development of plant-rhizobial symbioses are all regulated by a simple class of cell-cell signaling molecules known as acyl homoserine lactones (AHLs). Pyrogenic organic matter in soils can act to disrupt microbial communication through multiple pathways. In the case of AHLs, charcoal's very high surface area can sorb these signaling compounds, preventing microbes from detecting each others' presence (Masiello et al., 2014). In addition, the lactone ring in AHLs is vulnerable to pH increases accompanying PyOM inputs, with soil pH values higher than 7-8 leading to ring opening and compound destabilization. Different microbes use different classes of signaling compounds, and not all microbial signaling compounds are pH-vulnerable. This implies that PyOM-driven pH increases may trigger differential outcomes for Gram negative bacteria vs fungi, for example. A charcoal-driven reduction in microbes' ability to detect cell-cell communication compounds may lead to a shift in the ability of microbes to participate in key steps of C and N cycling. For example, an increase in an archaeon-specific AHL has been shown to lead to a cascade of metabolic processes that eventually results in the upregulation of CH4 production (Zhang et al., 2012). Alterations in similar AHL compounds leads to

  14. Nanoscale Structure Of Organic Matter Explain Its Recalcitrance To Degradation

    NASA Astrophysics Data System (ADS)

    Spagnol, M.; Salati, S.; Papa, G.; Tambone, F.; Adani, F.

    2009-04-01

    Recalcitrance can be defined as the natural resistance of organic matter (OM) to microbial and enzymatic deconstruction (Himmel et al., 2007). The nature of OM recalcitrance remained not completely understood and more studies need above all to elucidate the role of the chemical topography of the OM at nanometer scale. Hydrolytic enzymes responsible of OM degradation have a molecular weight of 20-25 kD, corresponding to a size of about 4 nm, hardly penetrate into micropores (i.e. the pore having a diameter < 2 nm) and small mesopores (i.e. pores having a diameter 2 < 50 nm) of OM structures, so that their activities are confined only to a portion of the total surface (Zimmerman et al., 2004; Chesson, 1997; Adani et al., 2006). As consequence of that the characterization of the organic matter at nano-scale became interesting in view to explain OM recalcitrance. The aim of this work was to asses the effect of the nano-scale structure of OM versus its recalcitrance. The evolution of organic matter of organic matrices was studied in two systems: plant residue-soil system and simulated landfill system. Plant residues were incubated in soil for one year and recalcitrant fraction, i.e. humic acid, was isolated and studied. Laboratory simulated landfill considered organic fraction of municipal solid waste sampled at different stages of evolution from a full scale plant and incubated under anaerobic condition for one year. In addition the nano-scale structure of fossilized OM (leonardite, chair coal and graphite) was detected as used as model of recalcitrant OM. Nano-scale structures were detected by using meso and microporosity detection. In particular microporosity was determined by adsorption method using CO2 at 273 K and Non Local Density Functional Theory (NLDFT) method was applied to measure the CO2 adsorption isotherms. On the other hand mesoporosity was detected by using N2 adsorption method at 77 K. The BET (Brunauer-Emmett-Teller) equation and the BJH (Barret

  15. Organic matter diagenesis in shallow water carbonate sediments

    NASA Astrophysics Data System (ADS)

    Ingalls, Anitra E.; Aller, Robert C.; Lee, Cindy; Wakeham, Stuart G.

    2004-11-01

    Muddy carbonate deposits near the Dry Tortugas, Florida, are characterized by high organic carbon remineralization rates. However, approximately half of the total sedimentary organic matter potentially supporting remineralization is occluded in CaCO 3 minerals (intracrystalline). While a portion of nonintracrystalline organic matter appears to cycle rapidly, intracrystalline organic matter has an approximately constant concentration with depth, suggesting that as long as its protective mineral matrix is intact, it is not readily remineralized. Organic matter in excess of intracrystalline organic matter that is preserved may have a variety of mineral associations (e.g., intercrystalline, adsorbed or detrital). In surface sediment, aspartic acid contributed ˜22 mole % and ˜50 mole % to nonintracrystalline and intracrystalline pools, respectively. In deeper sediment (1.6-1.7m), the composition of hydrolyzable amino acids in both pools was similar (aspartic acid ˜40 mole %). Like amino acids, intracrystalline and nonintracrystalline fatty acids have different compositions in surface sediments, but are indistinguishable at depth. These data suggest that preserved organic matter in the nonintracrystalline pool is stabilized by its interactions with CaCO 3. Neutral lipids are present in very low abundances in the intracrystalline pool and are extensively degraded in both the intracrystalline and nonintracrystalline pools, suggesting that mineral interactions do not protect these compounds from degradation. The presence of chlorophyll- a, but absence of phytol, in the intracrystalline lipid pool demonstrates that chloropigments are present only in the nonintracrystalline pool. Sedimentary chloropigments decrease with depth at similar rates in Dry Tortugas sediments as found in alumino-silicate sediments from the Long Island Sound, suggesting that chloropigment degradation is largely unaffected by mineral interactions. Overall, however, inclusion and protection of

  16. Assessment of soil organic matter fluxes at the EU level

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Campling, Paul

    2010-05-01

    Soil has a complex relationship with climate change. Soil helps take carbon dioxide out of the air and as such it absorbs millions of tons each year, but with the Earth still warming micro-organisms grow faster, consume more soil organic matter and release carbon dioxide. The net result is a relative decline in soil organic carbon. With a growing population and higher bio-energy demands, more land is likely to be required for settlement, for commercial activity and for bio-energy production. Conversions from terrestrial ecosystems to urban and commercial activity will alter both the production and losses of organic matter, and have an indirect impact on potential SOM levels. Conversions between different terrestrial ecosystems have a direct impact on SOM levels. Net SOM losses are reported for several land conversions, e.g. from grassland to arable land, from wetlands to drained agricultural land, from crop rotations to monoculture, reforestation of agricultural land. In the context of looking for measures to support best practices to manage soil organic matter in Europe we propose a method to assess soil organic matter fluxes at the EU level. We adopt a parsimonious approach that is comparable to the nutrient balance approaches developed by the OECD and Eurostat. We describe the methodology and present the initial results of a European carbon balance indicator that uses existing European statistical and land use change databases. The carbon balance consists of the following components: organic matter production (I), organic matter losses (O), land use changes that effect both production and losses (E). These components are set against the (mostly legislative) boundary conditions that determine the maximum input potential (MIP) for soil organic matter. In order to budget SOM losses due to mineralisation, runs will be made with a multi-compartment SOM model that takes into account management practices, climate and different sources of organic matter.

  17. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  18. Cancer Risk After Pediatric Solid Organ Transplantation.

    PubMed

    Yanik, Elizabeth L; Smith, Jodi M; Shiels, Meredith S; Clarke, Christina A; Lynch, Charles F; Kahn, Amy R; Koch, Lori; Pawlish, Karen S; Engels, Eric A

    2017-05-01

    The effects of pediatric solid organ transplantation on cancer risk may differ from those observed in adult recipients. We described cancers in pediatric recipients and compared incidence to the general population. The US transplant registry was linked to 16 cancer registries to identify cancer diagnoses among recipients <18 years old at transplant. Standardized incidence ratios (SIRs) were estimated by dividing observed cancer counts among recipients by expected counts based on the general population rates. Cox regression was used to estimate the associations between recipient characteristics and non-Hodgkin's lymphoma (NHL) risk. Among 17 958 pediatric recipients, 392 cancers were diagnosed, of which 279 (71%) were NHL. Compared with the general population, incidence was significantly increased for NHL (SIR = 212, 95% confidence interval [CI] = 188-238), Hodgkin's lymphoma (SIR = 19, 95% CI = 13-26), leukemia (SIR = 4, 95% CI = 2-7), myeloma (SIR = 229, 95% CI = 47-671), and cancers of the liver, soft tissue, ovary, vulva, testis, bladder, kidney, and thyroid. NHL risk was highest during the first year after transplantation among recipients <5 years old at transplant (SIR = 313), among recipients seronegative for Epstein-Barr virus (EBV) at transplant (SIR = 446), and among intestine transplant recipients (SIR = 1280). In multivariable analyses, seronegative EBV status, the first year after transplantation, intestine transplantation, and induction immunosuppression were independently associated with higher NHL incidence. Pediatric recipients have a markedly increased risk for many cancers. NHL constitutes the majority of diagnosed cancers, with the highest risk occurring in the first year after transplantation. NHL risk was high in recipients susceptible to primary EBV infection after transplant and in intestine transplant recipients, perhaps due to EBV transmission in the donor organ. Copyright © 2017 by the American Academy of Pediatrics.

  19. Cryptococcosis in solid organ transplant recipients.

    PubMed

    Henao-Martínez, Andrés F; Beckham, John David

    2015-08-01

    Cryptococcosis among solid organ transplant (SOT) recipients is a source of significant morbidity. Its pathogenesis, the etiology of immune reconstitution syndrome, and the optimal therapy in this setting are still not well defined. Herein, we review the epidemiology, the latest findings on pathogenesis, unique clinical manifestations, and the treatment of Cryptococcosis in this specific vulnerable population. Cryptococcosis is a common fungal complication among SOT recipients. It follows in frequency only to aspergillosis and candidiasis. Cryptococcal infection carries a high mortality, up to 27% during the first year posttransplantation. Host factors, environmental factors, medications, and the type of transplant all play a role in the clinical presentation and severity of infection. Clinical manifestations can be atypical among SOT recipients, and therefore, clinical suspicion and diagnostic evaluation must consider cryptococcal central nervous system disease. During meningitis treatment, measurement of Flucytosine levels is recommended to increase safety and optimize the therapeutic effect. Cryptococcosis among SOT recipients is an evolving field. Increased recognition and understanding of the disease pathogenesis, its uncommon clinical manifestations, complications and particular therapeutic strategies are the cornerstone for the optimal outcome of this often fatal condition.

  20. Extraction of organic compounds from solid samples

    SciTech Connect

    Junk, G.A.; Richard, J.J.

    1986-04-01

    Pyridine, benzene, cyclohexane, methylene chloride, dimethyl sulfoxide, dimethylformamide, and n-methylpyrrolidone have been compared for the extraction of polycyclic organic materials (POMs) from urban air, diesel, and stack particulate samples. Both sonic and Soxhlet techniques have been examined for both natural environmental particulates and particulates spiked with selected POMs. The extraction results vary for different polycyclic compounds adsorbed on different solid matrices, so no single solvent or extraction technique could be unambiguously recommended. However, comparative average results for 14 compounds spiked onto fly ash at 0.1, 0.25, and 1.0 ..mu..g/g showed pyridine to have 1.5 times more extraction efficiency than benzene. These and other reported results suggest that pyridine deserves more attention as an extractant for particulate samples. In separate tests, recoveries of POMs from fly ash were not improved by deactivation with aqueous solutions of ammonium hydroxide, thiocyanate and carbonate, and sodium nitrite prior to the extraction. 39 references, 5 tables.

  1. Organic matter chlorination rates in different boreal soils: the role of soil organic matter content.

    PubMed

    Gustavsson, Malin; Karlsson, Susanne; Oberg, Gunilla; Sandén, Per; Svensson, Teresia; Valinia, Salar; Thiry, Yves; Bastviken, David

    2012-02-07

    Transformation of chloride (Cl(-)) to organic chlorine (Cl(org)) occurs naturally in soil but it is poorly understood how and why transformation rates vary among environments. There are still few measurements of chlorination rates in soils, even though formation of Cl(org) has been known for two decades. In the present study, we compare organic matter (OM) chlorination rates, measured by (36)Cl tracer experiments, in soils from eleven different locations (coniferous forest soils, pasture soils and agricultural soils) and discuss how various environmental factors effect chlorination. Chlorination rates were highest in the forest soils and strong correlations were seen with environmental variables such as soil OM content and Cl(-) concentration. Data presented support the hypothesis that OM levels give the framework for the soil chlorine cycling and that chlorination in more organic soils over time leads to a larger Cl(org) pool and in turn to a high internal supply of Cl(-) upon dechlorination. This provides unexpected indications that pore water Cl(-) levels may be controlled by supply from dechlorination processes and can explain why soil Cl(-) locally can be more closely related to soil OM content and the amount organically bound chlorine than to Cl(-) deposition.

  2. Pyrolysis-GCMS Analysis of Solid Organic Products from Catalytic Fischer-Tropsch Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2015-01-01

    Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.

  3. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    SciTech Connect

    Ravichandran, M.; Ryan, J.N.; Aiken, G.R.; Reddy, M.M.

    1998-11-01

    Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca{sup 2+}. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in Dl water had no detectable dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates correlated positively with enhanced cinnabar dissolution. {zeta}-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.

  4. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    USGS Publications Warehouse

    Ravichandran, Mahalingam; Aiken, George R.; Reddy, Michael M.; Ryan, Joseph N.

    1998-01-01

    Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release (up to 35 μM total dissolved mercury) from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca2+. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in DI water (pH = 6.0) had no detectable (<2.5 nM) dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates (determined by 13C NMR) correlated positively with enhanced cinnabar dissolution. ζ-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar (pHpzc = 4.0) at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.

  5. Investigation of the organic matter in inactive nuclear tank liquids

    SciTech Connect

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

  6. Prevention of infection in adult travelers after solid organ transplantation.

    PubMed

    Kotton, Camille Nelson; Ryan, Edward T; Fishman, Jay A

    2005-01-01

    Increasing numbers of solid organ transplant recipients are traveling to the developing world. Many of these individuals either do not seek or do not receive optimal medical care prior to travel. This review considers risks of international travel to adult solid organ transplant recipients and the use of vaccines and prophylactic agents in this population.

  7. Characterizing Variability In Ohio River Natural Organic Matter

    EPA Science Inventory

    Surface water contains natural organic matter (NOM) which reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide important insight on DBP formation and water treatment process adaptation t...

  8. Characterizing Variability In Ohio River Natural Organic Matter

    EPA Science Inventory

    Surface water contains natural organic matter (NOM) which reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide important insight on DBP formation and water treatment process adaptation t...

  9. Sorption of organic chemicals to soil organic matter: influence of soil variability and pH dependence.

    PubMed

    Bronner, Guido; Goss, Kai-Uwe

    2011-02-15

    For modeling the sorption of organic compounds in soils it is typically assumed that the organic carbon/water partitioning coefficient (Koc) of neutral organic chemicals can be treated as a constant property that remains unaffected by the type of soil organic matter as well as pH in the soil solution. Here the validity of these assumptions is evaluated with a large and diverse experimental data set of our own and literature data. To this end sorption experiments with 3 different soils and one peat were carried out using a column method. Differences in log Koc at pH values of 4.5 and 7.2 were on average <0.06 log units for 60 chemicals on Pahokee Peat. This result indicates that protonation/deprotonation of carboxylic groups in humic matter has no significant influence on sorption. The soil-to-soil variability of Koc was within factor of 3 regardless of the type of chemicals. The Pahokee Peat standard from the International Humic Substances Society appears to represent Koc in solid soil organic matter from different origins with an accuracy of ±0.23 log units (root-mean-square error). The comparison of the sorption data in Pahokee Peat with literature sorption data from the air in hydrated humic and fulvic acids suggested that the thermodynamic cycle for converting sorption data between air and water is applicable provided that for small, highly polar chemicals an additional water phase in the hydrated organic matter is considered.

  10. Impact of organic-mineral matter interactions on thermal reaction pathways for coal model compounds

    SciTech Connect

    Buchanan, A.C. III; Britt, P.F.; Struss, J.A.

    1995-07-01

    Coal is a complex, heterogeneous solid that includes interdispersed mineral matter. However, knowledge of organic-mineral matter interactions is embryonic, and the impact of these interactions on coal pyrolysis and liquefaction is incomplete. Clay minerals, for example, are known to be effective catalysts for organic reactions. Furthermore, clays such as montmorillonite have been proposed to be key catalysts in the thermal alteration of lignin into vitrinite during the coalification process. Recent studies by Hatcher and coworkers on the evolution of coalified woods using microscopy and NMR have led them to propose selective, acid-catalyzed, solid state reaction chemistry to account for retained structural integrity in the wood. However, the chemical feasibility of such reactions in relevant solids is difficult to demonstrate. The authors have begun a model compound study to gain a better molecular level understanding of the effects in the solid state of organic-mineral matter interactions relevant to both coal formation and processing. To satisfy the need for model compounds that remain nonvolatile solids at temperatures ranging to 450 C, model compounds are employed that are chemically bound to the surface of a fumed silica (Si-O-C{sub aryl}linkage). The organic structures currently under investigation are phenethyl phenyl ether (C{sub 6}H{sub 5}CH{sub 2}CH{sub 2}OC{sub 6}H{sub 5}) derivatives, which serve as models for {beta}-alkyl aryl ether units that are present in lignin and lignitic coals. The solid-state chemistry of these materials at 200--450 C in the presence of interdispersed acid catalysts such as small particle size silica-aluminas and montmorillonite clay will be reported. Initial focus will be on defining the potential impact of these interactions on coal pyrolysis and liquefaction.

  11. The Biogeochemistry of Chromophoric Dissolved Organic Matter in Coastal Waters

    DTIC Science & Technology

    2016-06-07

    processes controlling the fate and distribution of DOM in coastal waters will allow detailed modeling of the fate of contaminants such as hydrophobic...The Biogeochemistry of Chromophoric Dissolved Organic Matter in Coastal Waters Robert F. Chen Environmental, Coastal and Ocean Sciences University of...coastal waters . Of particular interest is the fate of terrigenous and anthropogenic dissolved organic matter in marine systems. OBJECTIVES 1

  12. Invasive Mold Infections in Solid Organ Transplant Recipients

    PubMed Central

    Crabol, Yoann; Lortholary, Olivier

    2014-01-01

    Invasive mold infections represent an increasing source of morbidity and mortality in solid organ transplant recipients. Whereas there is a large literature regarding invasive molds infections in hematopoietic stem cell transplants, data in solid organ transplants are scarcer. In this comprehensive review, we focused on invasive mold infection in the specific population of solid organ transplant. We highlighted epidemiology and specific risk factors for these infections and we assessed the main clinical and imaging findings by fungi and by type of solid organ transplant. Finally, we attempted to summarize the diagnostic strategy for detection of these fungi and tried to give an overview of the current prophylaxis treatments and outcomes of these infections in solid organ transplant recipients. PMID:25525551

  13. Copper binding by dissolved organic matter. II. Variation in type and source of organic matter

    SciTech Connect

    Cabaniss, S.E.; Shuman, M.S.

    1988-01-01

    Copper binding properties of several fulvic acid (FA) and whole water samples are compared by means of an empirical model that was calibrated using Suwannee River FA. Within the calibration limits of the model (pH 5.0-8.5, total Cu concentration 0.1-100 ..mu..M, ionic strength 0.1, and dissolved organic carbon, DOC, 1-10 mg C/1), pCu in solutions of a variety of FA samples are predicted with < 0.2 pCu units root mean square error (RMSE). Within the calibration limits, many whole water sample pCu's are predicted with < 0.3 pCu units RMSE if only one-half of the dissolved organic carbon is assumed to bind Cu. Agreement between prediction and experiment at lower ionic strength is not as good. Variations in Cu binding among different sources of dissolved organic matter appear to be much smaller than those due to chemical factors such as pH and ionic strength.

  14. Carbon cycle: Ocean dissolved organics matter

    NASA Astrophysics Data System (ADS)

    Amon, Rainer M. W.

    2016-12-01

    Large quantities of organic carbon are stored in the ocean, but its biogeochemical behaviour is elusive. Size-age-composition relations now quantify the production of tiny organic molecules as a major pathway for carbon sequestration.

  15. Dissolved Organic Matter, Organic Matter Optical Properties and Mercury in Rivers and Streams

    NASA Astrophysics Data System (ADS)

    Aiken, G. R.; Brigham, M. E.; Shanley, J. B.; Krabbenhoft, D. P.

    2008-12-01

    Interactions of mercury (Hg) with dissolved organic matter (DOM) play important roles in controlling concentrations, reactivity, bioavailability and transport of Hg in aquatic systems. Recent studies have shown that DOM influences Hg solubility through strong binding interactions and the stabilization of nanocolloidal mercuric sulfide. In this paper we present the results of watershed based studies associated with US Geological Survey NAWQA and WEBB Programs designed to better define the factors controlling the export of Hg in stream systems. We investigated the seasonal and spatial variability of dissolved organic matter quantity and quality, and the concentrations of dissolved Hg and methylmercury (MeHg) in 12 rivers and streams representing a range of watershed types that varied in climate, landscape, Hg deposition and water chemistry. DOM concentrations and composition, based on DOM fractionation and ultraviolet/visible absorption spectroscopic analyses, varied greatly both between sites, and seasonally within sites. Strong relationships were found between DOM and total dissolved Hg concentrations in almost all of the systems. The relationships between total dissolved Hg concentration and hydrophobic organic acid (HPOA) content (aquatic humic substances) were stronger than those observed between Hg and DOM, supporting the hypothesis that interactions between Hg and the HPOA fraction are important drivers for the transport of dissolved Hg in aquatic systems. The relationships between MeHg and DOM and HPOA content were not as strong as those observed with Hg. In all systems, UV absorbance measured at 254 nm correlated strongly with DOM, HPOA content and Hg concentrations. The relationships between DOM concentration and absorbance for the range of systems were quite variable because not all of the dissolved organic carbon in a given sample absorbs UV light to the same degree and each system exhibited a different relationship. However, the relationship between HPOA

  16. Composition of structural fragments and the mineralization rate of organic matter in zonal soils

    NASA Astrophysics Data System (ADS)

    Larionova, A. A.; Zolotareva, B. N.; Kolyagin, Yu. G.; Kvitkina, A. K.; Kaganov, V. V.; Kudeyarov, V. N.

    2015-10-01

    Comparative analysis of the climatic characteristics and the recalcitrance against decomposition of organic matter in the zonal soil series of European Russia, from peat surface-gley tundra soil to brown semidesert soil, has assessed the relationships between the period of biological activity, the content of chemically stable functional groups, and the mineralization of humus. The stability of organic matter has been determined from the ratio of functional groups using the solid-state 13C NMR spectroscopy of soil samples and the direct measurements of organic matter mineralization from CO2 emission. A statistically significant correlation has been found between the period of biological activity and the humification indices: the CHA/CFA ratio, the aromaticity, and the alkyl/ O-alkyl ratio in organic matter. The closest correlation has been observed between the period of biological activity and the alkyl/ O-alkyl ratio; therefore, this parameter can be an important indicator of the soil humus status. A poor correlation between the mineralization rate and the content of chemically stable functional groups in soil organic matter has been revealed for the studied soil series. At the same time, the lowest rate of carbon mineralization has been observed in southern chernozem characterized by the maximum content of aromatic groups (21% Corg) and surface-gley peat tundra soil, where an extremely high content of unsubstituted CH2 and CH3 alkyl groups (41% Corg) has been noted.

  17. Composition and reactivity of ferrihydrite-organic matter associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, Karin; Hädrich, Anke; Neidhardt, Julia; Küsel, Kirsten; Totsche, Kai

    2014-05-01

    The formation of organo-mineral associations affects many soil forming processes. On the one hand, it will influence soil organic matter composition and development, because the complex organic matter mixtures usually fractionate during their association with mineral surfaces. Whereas the associated fraction is supposed to be stabilized, the non-associated fraction remains mobile and available to degradation by microorganisms. On the other hand, the organic coating will completely change the interface properties of Fe oxides such as solubility, charge and hydrophobicity. This in turn will strongly influence their reactivity towards nutrients and pollutants, the adsorption of new organic matter, and the availability of ferric Fe towards microorganisms. To better understand such processes we produced ferrihydrite-organic matter associations by adsorption and coprecipitation in laboratory experiments. As a surrogate for dissolved soil organic matter we used the water-extractable fraction of a Podzol forest-floor layer under spruce. Sorptive fractionation of the organic matter was investigated by 13C NMR and FTIR. Relative to the original forest-floor extract, the ferrihydrite-associated OM was enriched in polysaccharides but depleted in aliphatic C and carbonyl C, especially when adsorption took place. Liquid phase incubation experiments were carried out with an inoculum extracted from the podzol forest-floor under oxic conditions at pH 4.8 to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of

  18. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    NASA Astrophysics Data System (ADS)

    Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-05-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of

  19. Soil microstructure and organic matter: keys for chlordecone sequestration.

    PubMed

    Woignier, T; Fernandes, P; Soler, A; Clostre, F; Carles, C; Rangon, L; Lesueur-Jannoyer, M

    2013-11-15

    Past applications of chlordecone, a persistent organochlorine pesticide, have resulted in diffuse pollution of agricultural soils, and these have become sources of contamination of cultivated crops as well as terrestrial and marine ecosystems. Chlordecone is a very stable and recalcitrant molecule, mainly present in the solid phase, and has a strong affinity for organic matter. To prevent consumer and ecosystem exposure, factors that influence chlordecone migration in the environment need to be evaluated. In this study, we measured the impact of incorporating compost on chlordecone sequestration in andosols as a possible way to reduce plant contamination. We first characterized the transfer of chlordecone from soil to plants (radish, cucumber, and lettuce). Two months after incorporation of the compost, soil-plant transfers were reduced by a factor of 1.9-15 depending on the crop. Our results showed that adding compost modified the fractal microstructure of allophane clays thus favoring chlordecone retention in andosols. The complex structure of allophane and the associated low accessibility are important characteristics governing the fate of chlordecone. These results support our proposal for an alternative strategy that is quite the opposite of total soil decontamination: chlordecone sequestration. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Solid organ fabrication: comparison of decellularization to 3D bioprinting.

    PubMed

    Jung, Jangwook P; Bhuiyan, Didarul B; Ogle, Brenda M

    2016-01-01

    Solid organ fabrication is an ultimate goal of Regenerative Medicine. Since the introduction of Tissue Engineering in 1993, functional biomaterials, stem cells, tunable microenvironments, and high-resolution imaging technologies have significantly advanced efforts to regenerate in vitro culture or tissue platforms. Relatively simple flat or tubular organs are already in (pre)clinical trials and a few commercial products are in market. The road to more complex, high demand, solid organs including heart, kidney and lung will require substantive technical advancement. Here, we consider two emerging technologies for solid organ fabrication. One is decellularization of cadaveric organs followed by repopulation with terminally differentiated or progenitor cells. The other is 3D bioprinting to deposit cell-laden bio-inks to attain complex tissue architecture. We reviewed the development and evolution of the two technologies and evaluated relative strengths needed to produce solid organs, with special emphasis on the heart and other tissues of the cardiovascular system.

  1. High dimensional reflectance analysis of soil organic matter

    NASA Technical Reports Server (NTRS)

    Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.

    1992-01-01

    Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.

  2. High dimensional reflectance analysis of soil organic matter

    NASA Technical Reports Server (NTRS)

    Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.

    1992-01-01

    Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.

  3. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2016-04-01

    We have analysed natural organic matter (NOM) properties in 18 agricultural streams in Sweden covering a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients to signals observed in receiving waters.

  4. Modeling organic matter stabilization during windrow composting of livestock effluents.

    PubMed

    Oudart, D; Paul, E; Robin, P; Paillat, J M

    2012-01-01

    Composting is a complex bioprocess, requiring a lot of empirical experiments to optimize the process. A dynamical mathematical model for the biodegradation of the organic matter during the composting process has been developed. The initial organic matter expressed by chemical oxygen demand (COD) is decomposed into rapidly and slowly degraded compartments and an inert one. The biodegradable COD is hydrolysed and consumed by microorganisms and produces metabolic water and carbon dioxide. This model links a biochemical characterization of the organic matter by Van Soest fractionating with COD. The comparison of experimental and simulation results for carbon dioxide emission, dry matter and carbon content balance showed good correlation. The initial sizes of the biodegradable COD compartments are explained by the soluble, hemicellulose-like and lignin fraction. Their sizes influence the amplitude of the carbon dioxide emission peak. The initial biomass is a sensitive variable too, influencing the time at which the emission peak occurs.

  5. Preferential sequestration of terrestrial organic matter in boreal lake sediments

    NASA Astrophysics Data System (ADS)

    Guillemette, François; von Wachenfeldt, Eddie; Kothawala, Dolly N.; Bastviken, David; Tranvik, Lars J.

    2017-04-01

    The molecular composition and origin has recently been demonstrated to play a critical role in the persistence of organic matter in lake water, but it is unclear to what degree chemical attributes and sources may also control settling and burial of organic matter in lake sediments. Here we compared the annual contribution of allochthonous and autochthonous sources to the organic matter settling in the water column and present in the sediments of 12 boreal lakes. We used the fluorescence properties and elemental composition of the organic matter to trace its origin and found a consistent pattern of increasing contribution of terrestrial compounds in the sediments as compared to the settling matter, with an annual average allochthony of 87% and 57%, respectively. Seasonal data revealed a predominance of in-lake-produced compounds sinking in the water column in summer. Yet only a slight concurrent decrease in the contribution of terrestrial C to lake sediments was observed during the same period, and sediment allochthony increased again to high levels in autumn. Our results reveal a preferential preservation of allochthonous matter in the sediments and highlight the role of lakes as sequesters of organic carbon primarily originating from the surrounding landscape.

  6. The search for indigenous lunar organic matter.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    It is argued that the absence of organic compounds from returned lunar samples is to be expected even for a lunar history rich in primordial organics. The sites most likely to yield lunar organic compounds have not been investigated, and there may be an area of investigation conceivably critical to problems in prebiological chemistry and the early history of the solar system awaiting continued lunar exploration, manned or unmanned.

  7. The search for indigenous lunar organic matter.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    It is argued that the absence of organic compounds from returned lunar samples is to be expected even for a lunar history rich in primordial organics. The sites most likely to yield lunar organic compounds have not been investigated, and there may be an area of investigation conceivably critical to problems in prebiological chemistry and the early history of the solar system awaiting continued lunar exploration, manned or unmanned.

  8. Organic Matter in Space (IAU S251)

    NASA Astrophysics Data System (ADS)

    Kwok, Sun; Sanford, Scott

    2008-10-01

    Preface; From the local organising committee; Organising committee; Conference participants; Opening address of Symposium 251 C. Cesarsky; Session I. Observations of organic compounds beyond the Solar System William Irvine, Ewine van Dishoeck, Yvonne Pendleton and Hans Olofsson; Session II. Organic compounds within the Solar System Scott Sandford, Ernst Zinner and Dale Cruikshank; Session III. Laboratory analogues of organic compounds in space Max Bernstein and Thomas Henning; Banquet speech; Author index; Object index.

  9. Organic Matter in Space (IAU S251)

    NASA Astrophysics Data System (ADS)

    Kwok, Sun; Sanford, Scott

    2009-01-01

    Preface; From the local organising committee; Organising committee; Conference participants; Opening address of Symposium 251 C. Cesarsky; Session I. Observations of organic compounds beyond the Solar System William Irvine, Ewine van Dishoeck, Yvonne Pendleton and Hans Olofsson; Session II. Organic compounds within the Solar System Scott Sandford, Ernst Zinner and Dale Cruikshank; Session III. Laboratory analogues of organic compounds in space Max Bernstein and Thomas Henning; Banquet speech; Author index; Object index.

  10. Defining the quality of soil organic matter

    EPA Science Inventory

    Soils represent the largest terrestrial pool of carbon (C) and hold approximately two-thirds of all C held in these ecosystems. However, not all C in soils is of equal quality. Some fractions of the organic forms, i.e., soil organic carbon (SOC) have long residence times while ...

  11. Defining the quality of soil organic matter

    EPA Science Inventory

    Soils represent the largest terrestrial pool of carbon (C) and hold approximately two-thirds of all C held in these ecosystems. However, not all C in soils is of equal quality. Some fractions of the organic forms, i.e., soil organic carbon (SOC) have long residence times while ...

  12. Use of native aquatic macrophytes in the reduction of organic matter from dairy effluents.

    PubMed

    Queiroz, Rita de Cássia Souza de; Andrade, Rodrigo Santos; Dantas, Isadora Rosário; Ribeiro, Vinícius de Souza; Neto, Luciano Brito Rodrigues; Almeida Neto, José Adolfo de

    2017-08-03

    Considering the diversity and the unexplored potential of regional aquatic flora, this study aimed to identify and analyze the potential of native aquatic macrophytes to reduce the organic matter of dairy wastewater (DW) using experimental constructed wetlands. The dairy wastewater (DW) had an average chemical oxygen demand (COD) of 7414.63 mg/L and then was diluted to 3133.16 mg/L (D1) and to 2506.53 mg/L (D2). Total solids, COD, temperature, and pH analyses were performed, and the biochemical oxygen demand (BOD) was estimated from the COD values. The best performance in the reduction of the organic matter was observed for Polygonum sp. (87.5% COD and 79.6% BOD) and Eichhornia paniculata (90% COD and 83.7% BOD) at dilution D1, on the 8th day of the experiment. However, the highest total solids removal was observed for Polygonum sp. (32.2%), on the 4th day, at dilution D2. The total solid (TS) concentration has also increased starting from the 8th day of the experiment was observed which may have been due to the development of mosquito larvae and their mechanical removal by sieving, thus changing the steady state of the experimental systems. The macrophytes Polygonum sp. and E. paniculata were considered suitable for the reduction of organic matter of DW using constructed wetlands.

  13. Co-pyrolysis of coal with organic solids

    SciTech Connect

    Straka, P.; Buchtele, J.

    1995-12-01

    The co-pyrolysis of high volatile A bituminous coal with solid organic materials (proteins, cellulose, polyisoprene, polystyrene, polyethylene-glycolterephtalate-PEGT) at a high temperature conditions was investigated. Aim of the work was to evaluate, firstly, the changes of the texture and of the porous system of solid phase after high temperature treatment in presence of different types of macromolecular solids, secondly, properties and composition of the tar and gas. Considered organic solids are important waste components. During their co-pyrolysis the high volatile bituminous coal acts as a hydrogen donor in the temperature rank 220-480{degrees}C. In the rank 500- 1000{degrees}C the solid phase is formed. The co-pyrolysis was carried out at heating rate 3 K/min. It was found that an amount of organic solid (5-10%) affects important changes in the optical texture forms of solid phase, in the pore distribution and in the internal surface area. Transport large pores volume decreases in presence of PEGT, polystyrene and cellulose and increases in presence of proteins and polyisoprene. (image analysis measurements show that the tendency of coal to create coarse pores during co-pyrolysis is very strong and increases with increasing amount of organic solid in blend). An addition of considered materials changes the sorption ability (methylene blue test, iodine adsorption test), moreover, the reactivity of the solid phase.

  14. Soil organic matter contribution to the NW Mediterranean (Invited)

    NASA Astrophysics Data System (ADS)

    Kim, J.; Buscail, R.; Blokker, J.; Kerhervé, P.; Schouten, S.; Ludwig, W.; Sinninghe Damsté, J. S.

    2009-12-01

    The BIT (Branched and Isoprenoid Tetraether) index has recently been introduced as a proxy for soil organic matter input and is based on the relative abundance of non-isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs) derived from organisms living in terrestrial environments versus a structurally related isoprenoid GDGT “crenarchaeol” produced by marine Crenarchaeota (Hopmans et al., 2004). In this study, detailed spatial distribution patterns of BIT index were investigated in combination with other organic parameters in the continental margin of the north western Mediterranean. Based on a transect sampling strategy from source (land) to sink (sea) via river, we analysed a variety of soils from the Têt and Rhône basins, suspended particulate matter in waters of the Têt and Rhône rivers flowing into the Gulf of Lions, and marine surface sediments from the Gulf of Lions collected before and after a flood occurred in June 2008. Our study allows us to track BIT values along the transport pathway of soil organic matter and thus to estimate soil organic matter contribution in marine sediments in the Gulf of Lions (NW Mediterranean), a river-dominated continental margin. Hopmans, E.C., Weijers, J.W.H., Schefuss, E., Herfort, L., Sinninghe Damsté, J.S., Schouten, S., 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoidtetraether lipids. Earth and Planetary Science Letters 224, 107-116.

  15. Effects of Crayfish on Quality of Fine Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Montemarano, J. J.; Kershner, M. W.; Leff, L. G.

    2005-05-01

    The origin and ontogeny of detritus often determines its bioavailability. Crayfish shred and consume detrital organic matter, influencing fine particulate organic matter (FPOM) availability, composition and quality. Given consumption of FPOM by many invertebrates, crayfish can indirectly affect these organisms by altering FPOM bioavailability through organic matter fragmentation, biofilm disturbance, and defecation. These effects may or may not vary among coarse particulate organic matter (CPOM) from different leaf species. To assess crayfish effects on FPOM quality, crayfish were fed stream-conditioned maple or oak leaves in hanging 1-mm mesh-bottom baskets in aquaria. After 12 h, crayfish and remaining leaves were removed. FPOM fragments that fell through the mesh were vacuum filtered and analyzed for percent organic matter, C:N ratio, and bacterial abundance. The same analyses were conducted on crayfish feces collected using finger cots encasing crayfish abdomens. C:N ratios did not differ between feces and maple leaf CPOM, but were lower in FPOM produced through fragmentation and disturbance (P = 0.023). Overall, crayfish alter the ontogeny of detritus, which may, in turn, affect stream FPOM dynamics.

  16. Pedogenesis evolution of mine technosols: focus onto organic matter implication

    NASA Astrophysics Data System (ADS)

    Grégoire, Pascaud; Marilyne, Soubrand; Laurent, Lemee; Husseini Amelène, El-Mufleh Al; Marion, Rabiet; Emmanuel, Joussein

    2014-05-01

    Keywords: Mine technosols, pedogenesis, organic matter, environmental impact, pyr-GC-MS Technosols include soils subject to strong anthropogenic pressure and particularly to soil influenced by human transformed materials. In this context, abandoned mine sites contain a large amount of transformed waste materials often enriched with metals and/or metalloids. The natural evolution of technosols (pedogenesis) may induces the change in contaminants behaviour in term of stability of bearing phases, modification of pH oxydo-reduction conditions, organic matter turnover, change in permeability, or influence of vegetation cover. The fate of these elements in the soil can induce major environmental problems (contamination of biosphere and water resource). This will contribute to a limited potential use of these soils, which represent yet a large area around the world. The initial contamination of the parental material suggests that the pedological cover would stabilize the soil; however, the chemical reactivity must be taken in consideration particularly with respect to potential metal leachings. In this case, it is quite important to understand the development of soil in this specific context. Consequently, the global aims of this study are to understand the functioning of mine Technosols focusing onto the organic matter implication in their pedogenesis. Indeed, soil organic matter constitutes an heterogeneous fraction of organic compounds that plays an important role in the fate and the transport of metals and metalloids in soils. Three different soil profiles were collected representative to various mining context (contamination, time, climat), respectively to Pb-Ag, Sn and Au exploitations. Several pedological parameters were determined like CEC, pH, %Corg, %Ntot, C/N ratio, grain size distribution and chemical composition. The evolution of the nature of organic matter in Technosol was studied by elemental analyses and thermochemolysis was realized on the total and

  17. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    ERIC Educational Resources Information Center

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  18. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  19. PHOTOCHEMICAL TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN A BLACKWATER RIVER

    EPA Science Inventory

    We examined photochemical alterations of dissolved organic matter (DOM) from the Satilla River, a high DOC (10-40 mg/liter) blackwater river of southeast Georgia. Water samples were filtered to remove most organisms, placed in quartz tubes, and incubated under natural sunlight a...

  20. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    ERIC Educational Resources Information Center

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  1. PHOTOCHEMICAL TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN A BLACKWATER RIVER

    EPA Science Inventory

    We examined photochemical alterations of dissolved organic matter (DOM) from the Satilla River, a high DOC (10-40 mg/liter) blackwater river of southeast Georgia. Water samples were filtered to remove most organisms, placed in quartz tubes, and incubated under natural sunlight a...

  2. Organic matter and salinity modify cadmium soil (phyto)availability.

    PubMed

    Filipović, Lana; Romić, Marija; Romić, Davor; Filipović, Vilim; Ondrašek, Gabrijel

    2017-09-26

    Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg(-1)). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd(2+) pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCln(2-n) complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Characterization of transformations of maize residues into soil organic matter.

    PubMed

    Song, Guixue; Novotny, Etelvino H; Mao, Jing-Dong; Hayes, Michael H B

    2017-02-01

    An awareness of the transformation of plant residues returned to cultivated soils is vital for a better understanding of carbon cycles, the maintenance of soil fertility and the practice of a sustainable agriculture. The transformation of maize (Zea mays L) straw residues into soil organic matter (SOM) in a one year incubation experiment was studied in a soil that had been under long term cultivation with wheat (Triticum aestivum L) for >30years. A novel sequential exhaustive extraction and fractionation procedure isolated a series of fractions of SOM. The samples were characterized by elemental and δ(13)C analyses, by amino acids and neutral sugars analyses, by Fourier transformed infrared (FTIR) spectrometry, and by solid state (13)C nuclear magnetic resonance (NMR) spectroscopy and with chemical shift anisotropy (CSA) -filter and dipolar dephasing (DD) spectral editing NMR techniques. The δ(13)C data indicated that 59% and 38% of the newly transformed organic carbon was in the humic and fulvic acid fractions, respectively, and in general a greater proportion of the transformed carbon was in the fractions isolated at the higher pH values. Results for SOM fractions from the amended soil indicate dominant contributions from carbohydrate and lignin-like material, and that can be clearly identified by FTIR, CP/TOSS, and spectral editing of CSA-filter and DD. The compositions of the fractions from the amended and non-amended soils fractions can be clearly differentiated using principal component analysis (PCA) for the data collected. The sequential extraction procedure showed that the hydrophilicity of humic fractions increased as the result of the maize amendment, and the aromaticity of the fraction decreased. The data may give some indications of transformations that take place during humification processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Chemical composition of dissolved organic matter draining permafrost soils

    NASA Astrophysics Data System (ADS)

    Ward, Collin P.; Cory, Rose M.

    2015-10-01

    Northern circumpolar permafrost soils contain roughly twice the amount of carbon stored in the atmosphere today, but the majority of this soil organic carbon is perennially frozen. Climate warming in the arctic is thawing permafrost soils and mobilizing previously frozen dissolved organic matter (DOM) from deeper soil layers to nearby surface waters. Previous studies have reported that ancient DOM draining deeper layers of permafrost soils was more susceptible to degradation by aquatic bacteria compared to modern DOM draining the shallow active layer of permafrost soils, and have suggested that DOM chemical composition may be an important control for the lability of DOM to bacterial degradation. However, the compositional features that distinguish DOM drained from different depths in permafrost soils are poorly characterized. Thus, the objective of this study was to characterize the chemical composition of DOM drained from different depths in permafrost soils, and relate these compositional differences to its susceptibility to biological degradation. DOM was leached from the shallow organic mat and the deeper permafrost layer of soils within the Imnavait Creek watershed on the North Slope of Alaska. DOM draining both soil layers was characterized in triplicate by coupling ultra-high resolution mass spectrometry, 13C solid-state NMR, and optical spectroscopy methods with multi-variate statistical analyses. Reproducibility of replicate mass spectra was high, and compositional differences resulting from interfering species or isolation effects were significantly smaller than differences between DOM drained from each soil layer. All analyses indicated that DOM leached from the shallower organic mat contained higher molecular weight, more oxidized, and more unsaturated aromatic species compared to DOM leached from the deeper permafrost layer. Bacterial production rates and bacterial efficiencies were significantly higher for permafrost compared to organic mat DOM

  5. Antiphospholipid syndrome, antiphospholipid antibodies and solid organ transplantation.

    PubMed

    González-Moreno, J; Callejas-Rubio, J L; Ríos-Fernández, R; Ortego-Centeno, N

    2015-11-01

    Antiphospholipid syndrome is considered a high risk factor for any kind of surgery. Considering that all solid organ transplants are critically dependent on the patency of vascular anastomosis, there is much concern about the consequences this pro-thrombotic condition may have on transplantation. Relatively little information is available in the literature assessing the real risk that antiphospholipid syndrome or the presence of antiphospholipid antibodies represent in solid organ transplantation. The aim of this article is to review the literature related to transplantation of solid organs in patients diagnosed with antiphospholipid syndrome or patients with positive antiphospholipid antibodies.

  6. Organic Matter Characteristics and Nutrient Content in Eroded Soils

    NASA Astrophysics Data System (ADS)

    Garcia, Carlos; Hernandez, Teresa; Barahona, Ascension; Costa, Francisco

    1996-01-01

    Twenty-one severely eroded soils of SE Spain (Torriorthent xeric soils) were studied. These soils form a fragile system characterized by soils with a low density of plant cover (<5%), are loamy and occur in a semiarid climate. The soils formerly were used for agricultural purposes but were abandoned at least 15 years ago. These eroded soils had a low total organic carbon content, and their humic substances, humic acid carbon, and carbohydrates were lower compared with soils that had never been cultivated (natural soils). The variables in which the effects of erosion were particularly noted were those related with the active organic matter (respiration and water-soluble organic matter). Those eroded soils with higher salt content showed lower organic matter and carbohydrate contents. Only total nitrogen was correlated with the carbon fractions in the eroded soils.

  7. Interstellar and Solar System organic matter preserved in interplanetary dust

    NASA Astrophysics Data System (ADS)

    Messenger, Scott; Nakamura-Messenger, K.

    Interplanetary dust particles (IDPs) collected in the Earths stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (< um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01-1% of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission. We will present an

  8. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Messenger, Scott R.; Nakamura-Messenger, Keiko

    2015-08-01

    Interplanetary dust particles (IDPs) collected in the Earth’s stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (< um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission. We will present

  9. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  10. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  11. Organic matter diagenesis in the northeast Pacific: transition from aerobic red clay to suboxic hemipelagic sediments

    NASA Astrophysics Data System (ADS)

    Murray, James W.; Kuivila, Kathryn M.

    1990-01-01

    Analyses for dissolved oxygen, nitrate, silicate and manganese in the interstitial water from an in situ sampler and from boxcore sediment samples have been combined with solid phase sediment analyses of carbon and nitrogen to study the transition from aerobic to suboxic diagenesis in the northeast Pacific. The station locations coincide with the VERTEX sediment trap stations. This has enabled us to study diagenesis as a function of the flux of organic carbon to the sediment-water interface. Organic carbon in the sediments decreases with distance from the continental margin. At all stations, except 183-2 on the Monterey deep sea fan, organic carbon decreases rapidly below the sediment-water interface. The organic matter at Stas 183-3, 4, 5 and 6 has a C/N molar ratio of 10. At Sta. 183-2 the organic matter has a relatively nitrogen-poor C/N ratio of 15.8, suggesting terrestrial input. The stoichiometry of the decomposing organic matter at Stas 183-3, 4, 5 and 6 was determined from the porewater oxygen and nitrate, and the resulting C/N ratio was 14. The flux of oxygen into the sediments decreases with increasing water depth. Comparison of the oxygen consumption by the sediments with the rain rate of organic carbon indicates that most of the rain of organic carbon is oxidized within the sediments using oxygen as the electron acceptor. The first order degradation rate constant for organic carbon oxidation calculated from the porewater oxygen profiles was found to correlate strongly with the rain rate of organic carbon. The rate constant increases with the rain rate, suggesting that at higher rain rates the organic matter is more "reactive". The mean life for sedimentary organic carbon is 12,000 years in the central North Pacific and decreases to 200 years near the continental boundary.

  12. Dry-thermophilic anaerobic digestion of simulated organic fraction of municipal solid waste: process modeling.

    PubMed

    Fdez-Güelfo, L A; Álvarez-Gallego, C; Sales Márquez, D; Romero García, L I

    2011-01-01

    Solid retention time (SRT) is a very important operational variable in continuous and semicontinuous waste treatment processes since the organic matter removal efficiency--expressed in terms of percentage of Dissolved Organic Carbon (% DOC) or Volatile Solids (% VS) removed--and the biogas or methane production are closely related with the SRT imposed. Optimum SRT is depending on the waste characteristics and the microorganisms involved in the process and, hence, it should be determined specifically in each case. In this work a series of experiments were carried out to determine the effect of SRT, from 40 to 8 days, on the performance of the dry (30% Total Solids) thermophilic (55°C) anaerobic digestion of organic fraction of Municipal Solid Wastes (OFMSW) operating at semicontinuous regime of feeding. The experimental results show than 15days is the optimum SRT (the best between all proved) for this process. Besides, data of organic matter concentration and methane production versus SRT have been used to obtain the kinetic parameters of the kinetic model of Romero García (1991): the maximum specific growth rate of the microorganisms (μmax=0.580 days(-1)) and the fraction of substrate non-biodegradable (α=0.268).

  13. D-depleted organic matter and graphite in the Abee enstatite chondrite

    NASA Astrophysics Data System (ADS)

    Remusat, L.; Rouzaud, J.-N.; Charon, E.; Le Guillou, C.; Guan, Y.; Eiler, J. M.

    2012-11-01

    A combination of NanoSIMS and High resolution transmission electron microscopy (HRTEM) imaging along with Raman spectroscopy was used to characterize the carbonaceous phases in HF/HCl residue of the Abee enstatite chondrite. This acid residue hosts a very D-depleted component (δD = -480‰). This residue is a mixture of graphite and highly disordered insoluble organic matter. The latter exhibits a significant mesoporosity (i.e., 200-500 nm scale), and also shows concentric and elongated stacks of polyaromatic layers. Insoluble organic matter is shown to be the most D-depleted component in Abee. We also determined, by using NanoSIMS, carbon isotopic composition of graphite and insoluble organic matter in the acid residue (δ13C = -11.3 ± 2.9‰ and -28.4 ± 2.2‰, respectively). We identified graphite in metal-rich clasts and in the matrix of Abee, associated with enstatite, sulfide and metal, but we could not localize highly disordered organic matter in our section. Regardless, given the vulnerability of organic matter to thermal degradation, we suggest that it was added to Abee parent body during the latest stage of its formation, after any thermal metamorphism or partial melting of Abee parent body. A genetic link between organic matter and graphite in Abee is excluded based on our HRTEM and carbon isotopic data. The differences in carbon isotopic compositions between these phases are consistent with previous data obtained by stepwise heating experiments and indicate that graphite is not derived from a pure thermal solid-state graphitization of the organic matter. Rather, we suggest that graphite precipitated from a melt rich in C during the partial melting of the Abee parent body. Insoluble organic matter in Abee has the lowest D/H ratio among the extraterrestrial organics. Organics in most carbonaceous and ordinary chondrites are believed to have been subjected to irradiations in low temperature environments, resulting in a dramatic isotopic fractionation

  14. Effects of Organic Matter on the Growth of Thiobacillus intermedius

    PubMed Central

    London, Jack; Rittenberg, Sydney C.

    1966-01-01

    London, Jack (University of California, Los Angeles), and Sydney C. Rittenberg. Effects of organic matter on the growth of Thiobacillus intermedius. J. Bacteriol. 91:1062–1069. 1966.—Yeast extract, glucose, glutamate, and other organic materials stimulate the rate and extent of growth of Thiobacillus intermedius in thiosulfate broth. Growth did not occur in glucose or glutamate mineral salts medium in the absence of thiosulfate, although a stable variant was obtained which grows on yeast extract alone. Cells harvested from media supplemented with organic matter have a reduced rate of thiosulfate oxidation (20 to 30% of autotrophic), oxidize the organic supplement, and have an additive rate of oxidation in the presence of both the organic substrate and thiosulfate. Carboxydismutase synthesis is repressed, and the incorporation of bicarbonate carbon into cell material is almost completely eliminated by the presence of organic matter in the growth medium. It is concluded that the availability of organic matter eliminates the autotrophic assimilatory mechanisms of T. intermedius but not its autotrophic energy-generating system. The data are discussed in relation to the existence of “obligate” chemoautotrophic bacteria. PMID:5929743

  15. Organic Binder Developments for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Mobasher, Amir A.

    2003-01-01

    A number of rapid prototyping techniques are under development at Marshall Space Flight Center's (MSFC) National Center for Advanced Manufacturing Rapid Prototyping Laboratory. Commercial binder developments in creating solid models for rapid prototyping include: 1) Fused Deposition Modeling; 2) Three Dimensional Printing; 3) Selective Laser Sintering (SLS). This document describes these techniques developed by the private sector, as well as SLS undertaken by MSFC.

  16. Condensed matter physics at surfaces and interfaces of solids

    SciTech Connect

    Mele, E.J.

    1992-01-01

    This research program is focused on structural and elastic properties of crystalline solids and interfaces between solids. We are particularly interested in novel forms of structural ordering and the effects of this ordering on the lattice dynamical properties. We are currently studying structural and vibrational properties of the surfaces of the elemental alkaline earths (particularly Be), and structural phenomena in the doped fullerites.

  17. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  18. [Using compost of agricultural solid waste to produce organic-inorganic compound fertilizer].

    PubMed

    Yang, Bo-jing; Wang, Hong-tao

    2006-07-01

    Techniques of compound fertilizer production from solid waste compost were studied. Different ratio of water moisture, proportion between organic and inorganic and infection of different granularity to the effect of granulation is separately determined through experiments at the pilot scale in the field. The optimal parameters of the techniques are determined. The moisture content is 35%-40%; the rate of organic matter is 80%-90%; granularity is 20 mu. According the data of the organism's concentration, height and weight in crop, the crop was fertilized compound fertilizer is batter than chemical fertilizer. And the ability of increasing the production of the compound fertilizer was testified.

  19. Opportunistic infections complicating solid organ transplantation with alemtuzumab induction.

    PubMed

    Helfrich, M; Ison, M G

    2015-10-01

    Opportunistic infections remain a common complication of solid organ transplantation. Despite significant changes in immunosuppression and infectious diseases prophylaxis, data are limited on the contemporary epidemiology and outcomes of opportunistic infections. Alemtuzumab, a potent lymphocyte-depleting antibody, has been used with increased frequency in solid organ transplant recipients in the last decade. A literature review was performed to summarize the current understanding of the epidemiology, risk factors, and outcomes of opportunistic infections complicating solid organ transplantation with and without alemtuzumab induction therapy. Areas where data are limited regarding opportunistic infections in solid organ transplantation with alemtuzumab induction are indicated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Gilmour, I.

    2003-12-01

    The most ancient organic molecules available for study in the laboratory are those carried to Earth by infalling carbonaceous chondrite meteorites. All the classes of compounds normally considered to be of biological origin are represented in carbonaceous meteorites and, aside from some terrestrial contamination; it is safe to assume that these organic species were produced by nonbiological methods of synthesis. In effect, carbonaceous chondrites are a natural laboratory containing organic molecules that are the product of ancient chemical evolution. Understanding the sources of organic molecules in meteorites and the chemical processes that led to their formation has been the primary research goal. Circumstellar space, the solar nebulae, and asteroidal meteorite parent bodies have all been suggested as environments where organic matter may have been formed. Determination of the provenance of meteoritic organic matter requires detailed structural and isotopic information, and the fall of the Murchison CM2 chondrite in 1969 enabled the first systematic organic analyses to be performed on comparatively pristine samples of extraterrestrial organic material. Prior to that, extensive work had been undertaken on the organic matter in a range of meteorite samples galvanized, in part, by the controversial debate in the early 1960s on possible evidence for former life in the Orgueil carbonaceous chondrite (Fitch et al., 1962; Meinschein et al., 1963). It was eventually demonstrated that the suggested biogenic material was terrestrial contamination ( Fitch and Anders, 1963; Anders et al., 1964); however, the difficulties created by contamination have posed a continuing problem in the analysis and interpretation of organic material in meteorites (e.g., Watson et al., 2003); this has significant implications for the return of extraterrestrial samples by space missions. Hayes (1967) extensively reviewed data acquired prior to the availability of Murchison samples

  1. Molecular-level analysis of organic matter structure and composition from different soil mineral fractions

    NASA Astrophysics Data System (ADS)

    Clemente, J. S.; Gregorich, E. G.; Simpson, A. J.; Simpson, M. J.

    2009-04-01

    The formation and turnover of soil organic matter (SOM) depends on the inherent chemical characteristics of biomolecular inputs (lignin, proteins, carbohydrates, macromolecular lipids, etc.) as well as the interactions between biomolecules and soil mineral fractions. The objective of this study is to characterize organic matter associated with the light, sand, silt and clay fractions of a Canadian agricultural soil. And, because lignin is believed to be a major contributor in SOM formation and preservation, the oxidation state of lignin in the different mineral fractions was measured using mild alkaline copper oxidation and gas chromatography - mass spectrometery which releases lignin phenols that are indicative of lignin sources and stage of degradation. For example, an increase in the acid/aldehyde (Ad/Al) ratio of lignin phenols has been observed with increased lignin degradation (and oxidation). In this study, lignin phenols from organic matter associated with the clay fraction had higher Ad/Al ratios for both syringyl and vanillyl lignin monomers when compared to that associated with silt, sand and the whole soil. These results suggest that either lignin degradation is enhanced by SOM association with clay surfaces or that oxidized lignin is preserved on clay mineral surfaces via sorption after partial degradation has occurred. The structural characteristics of organic matter from the soil fractions will also be examined by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Organic matter associated with each mineral fraction will be extracted with NaOH for high resolution solution-state NMR spectroscopy. Results from NMR analysis will determine the relative abundance of functional groups (alkane, aromatic, carbonyl, alkoxy) in each of the soil fractions. Relative intensities of the functional groups are indicative of relative contributions of biomolecular classes such as lipids, lignin, fatty acids, and sugars to the organic matter associated with

  2. Molecular-Level Analysis of Organic Matter Structure and Composition from Different Soil Mineral Fractions

    NASA Astrophysics Data System (ADS)

    Clemente, J. S.; Gregorich, E. G.; Simpson, A. J.; Simpson, M. J.

    2009-05-01

    The formation and turnover of soil organic matter (SOM) depends on the inherent chemical characteristics of biomolecular inputs (lignin, proteins, carbohydrates, macromolecular lipids, etc.) as well as the interactions between biomolecules and soil mineral fractions. The objective of this study is to characterize organic matter associated with the light, sand, silt and clay fractions of a Canadian agricultural soil. And, because lignin is believed to be a major contributor in SOM formation and preservation, the oxidation state of lignin in the different mineral fractions was measured using mild alkaline copper oxidation and gas chromatography - mass spectrometery which releases lignin phenols that are indicative of lignin sources and stage of degradation. For example, an increase in the acid/aldehyde (Ad/Al) ratio of lignin phenols has been observed with increased lignin degradation (and oxidation). In this study, lignin phenols from organic matter associated with the clay fraction had higher Ad/Al ratios for both syringyl and vanillyl lignin monomers when compared to that associated with silt, sand and the whole soil. These results suggest that either lignin degradation is enhanced by SOM association with clay surfaces or that oxidized lignin is preserved on clay mineral surfaces via sorption after partial degradation has occurred. The structural characteristics of organic matter from the soil fractions will also be examined by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Organic matter associated with each mineral fraction will be extracted with NaOH for high resolution solution-state NMR spectroscopy. Results from NMR analysis will determine the relative abundance of functional groups (alkane, aromatic, carbonyl, alkoxy) in each of the soil fractions. Relative intensities of the functional groups are indicative of relative contributions of biomolecular classes such as lipids, lignin, fatty acids, and sugars to the organic matter associated with

  3. The temperature sensitivity of organic matter decay in tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Guntenspergen, G. R.; Langley, J. A.

    2014-04-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where ecosystems accumulate organic matter to build soil elevation and survive sea level rise. The long-term viability of marshes, and their carbon pools, depends in part on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of soil organic matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3 year period. We find a moderate increase in decay rate at warmer temperatures (3-6% °C-1, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and enhance their ability to survive sea level rise.

  4. Improvement of dry matter digestibility of water hyacinth by solid state fermentation using white rot fungi.

    PubMed

    Mukherjee, R; Ghosh, M; Nandi, B

    2004-08-01

    Feeding value of water hyacinth biomass colonized by three species of white rot fungi during solid-state fermentation was investigated. All three organisms proved to be efficient degraders and enhanced dry matter digestibility. Loss of organic matter was maximum (23.6+/-0.1% dry wt) after 48 days by P. ostreatus. C. indica showed maximum cellulose degradation (18.5+/-0.1% dry wt) than other two fungi after 48 days of incubation. In all cases, an extensive removal of hemicellulose at the initial growth period and a delayed degradation of lignin were observed. Hemicellulolysis was maximum (46.3+/-0.1% dry wt) by C. indica, but delignification (14.2+/-0.2% dry wt) by P. sajor-caju after 48 days. The amount of reducing sugar in the degraded biomass decreased at early stages, but increased as degradation progressed in all three cases (maximum 1.1+/-0.05% dry wt after 48 days by C. indica). Soluble nitrogen content increased only during 16-32 days of incubation (highest 1.1+/-0.1% dry wt after 32 days by P. sajor-caju). Crude protein of the bioconverted biomass increased gradually up to 32 days but decreased thereafter (maximum 10.3+/-0.1% dry wt after 32 days by P. sajor - caju). Per cent change in in vitro dry matter digestibility of degraded substrates enhanced gradually after 8 days and reached maximum after 32 days but thereafter decreased (highest + 20.4+/-0.3% dry wt by P. sajor-caju). The results demonstrated the efficient degrading capacity of the test fungi and their potential use in conversion of water hyacinth biomass into mycoprotein-rich ruminant feed, more so by P. sajor-caju.

  5. Stabilization of ancient organic matter in deep buried paleosols

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Chaopricha, N. T.; Mueller, C.; Diefendorf, A. F.; Plante, A. F.; Grandy, S.; Mason, J. A.

    2012-12-01

    Buried soils representing ancient surface horizons can contain large organic carbon reservoirs that may interact with the atmosphere if exposed by erosion, road construction, or strip mining. Paleosols in long-term depositional sites provide a unique opportunity for studying the importance of different mechanisms on the persistence of organic matter (OM) over millennial time-scales. We report on the chemistry and bioavailability of OM stored in the Brady soil, a deeply buried (7 m) paleosol in loess deposits of southwestern Nebraska, USA. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying. The Brady soil represents a dark brown horizon enriched in C relative to loess immediately above and below. Spanning much of the central Great Plains, this buried soil contains large C stocks due to the thickness of its A horizon (0.5 to 1 m) and wide geographic extent. Our research provides a unique perspective on long-term OM stabilization in deep soils using multiple analytical approaches. Soils were collected from the Brady soil A horizon (at 7 m depth) and modern surface A horizons (0-15 cm) at two sites for comparison. Soils were separated by density fractionation using 1.85 g ml-1 sodium polytungstate into: free particulate organic matter (fPOM) and aggregate-occluded (oPOM) of two size classes (large: >20 μm, and small: < 20 μm). The remaining dense fraction was separated into sand, silt, and clay size fractions. The distribution and age of C among density and particle-size fractions differed between surface and Brady soils. We isolated the source of the characteristic dark coloring of the Brady soil to the oPOM-small fraction, which also contained 20% of the total organic C pool in the Brady soil. The oPOM-small fraction and the bulk soil in the middle of the Brady A horizon had 14C ages of 10,500-12,400 cal yr BP, within the time that the soil was actively forming at the land surface. Surface soils showed modern ages. Lipid analyses of

  6. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds

    USGS Publications Warehouse

    Kile, D.E.; Wershaw, R. L.; Chiou, C.T.

    1999-01-01

    Polarities of the soiL/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment sam pies were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (K(oc)) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxylamide-ester carbons. A plot of the measured partition coefficients (K(oc)) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K(oc) values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K(oc) between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K(oc) illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct

  7. Organic matter in the Saturn system

    NASA Astrophysics Data System (ADS)

    Sagan, C.; Khare, B. N.; Lewis, J. S.

    Theoretical and experimental predictions of the formation (and outgassing) of organic molecules in the outer solar system are compared with Voyager IRIS spectral data for the Titan atmosphere. The organic molecules of Titan are of interest because the species and processes within the atmosphere of that moon may have had analogs in the early earth atmosphere 4 Gyr ago. The spacecraft data confirmed the presence of alkanes, ethane, propane, ethylene, alkynes, acetylene, butadiene, methylacetylene, nitriles, hydrogen cyanide, cyanoacetylene, and cyanogen, all heavier than the dominant CH4. Experimental simulation of the effects of UV photolysis, alpha and gamma ray irradiation, electrical discharges and proton and electron bombardment of similar gas mixtures has shown the best promise for modeling the reactions producing the Titan atmosphere chemicals.

  8. Organic matter in the Saturn system

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Khare, B. N.; Lewis, J. S.

    1984-01-01

    Theoretical and experimental predictions of the formation (and outgassing) of organic molecules in the outer solar system are compared with Voyager IRIS spectral data for the Titan atmosphere. The organic molecules of Titan are of interest because the species and processes within the atmosphere of that moon may have had analogs in the early earth atmosphere 4 Gyr ago. The spacecraft data confirmed the presence of alkanes, ethane, propane, ethylene, alkynes, acetylene, butadiene, methylacetylene, nitriles, hydrogen cyanide, cyanoacetylene, and cyanogen, all heavier than the dominant CH4. Experimental simulation of the effects of UV photolysis, alpha and gamma ray irradiation, electrical discharges and proton and electron bombardment of similar gas mixtures has shown the best promise for modeling the reactions producing the Titan atmosphere chemicals.

  9. Loss of nitrogenous dissolved organic matter from small lakes

    USGS Publications Warehouse

    Manny, Bruce A.; Otsuki, Akira

    1981-01-01

    To determine how much organic nitrogen is lost from lakes during winter by natural processes, we collected water in fall and winter from six small lakes (area, 5-822 hectares) and separated organic matter dissolved in the water with n-butanol into three fractions--yellow organic acids, a white precipitate, and aqueous (nonextractable) organic matter. The nitrogen content of each fraction was measured by ultraviolet photolysis. About 25-30% of the yellow acid and white precipitate fractions were lost from the water column in each of the lakes during winter. More than 80% of the organic nitrogen dissolved in the lake water samples was found in the aqueous fraction. We believe the white precipitate is part of the humin material in lake waters because it was relatively insoluble in acidic and alkaline solutions.

  10. Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste.

    PubMed

    Forster-Carneiro, T; Pérez, M; Romero, L I

    2008-10-01

    The influence of different organic fraction of municipal solid wastes during anaerobic thermophilic (55 degrees C) treatment of organic matter was studied in this work: food waste (FW), organic fraction of municipal solid waste (OFMSW) and shredded OFMSW (SH_OFMSW). All digester operated at dry conditions (20% total solids content) and were inoculated with 30% (in volume) of mesophilic digested sludge. Experimental results showed important different behaviours patterns in these wastes related with the organic matter biodegradation and biogas and methane production. The FW reactor showed the smallest waste biodegradation (32.4% VS removal) with high methane production (0.18 LCH4/gVS); in contrast the SH_OFMSW showed higher waste biodegradation (73.7% VS removal) with small methane production (0.05 LCH4/g VS). Finally, OFMSW showed the highest VS removal (79.5%) and the methane yield reached 0.08 LCH4/g VS. Therefore, the nature of organic substrate has an important influence on the biodegradation process and methane yield. Pre-treatment of waste is not necessary for OFMSW.

  11. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  12. Rapid determination of organic matter in spent sulfuric acid

    SciTech Connect

    Petrenko, V.G.; Takhtaeva, A.Ya.; Frolova, R.P.

    1981-01-01

    Ammonium sulfate is produced with the aid of spent sulfuric acid which averages 0.3 to 0.7% (and sometimes up to 2.5%) of carbon in the form of organic impurities. In the saturator, the latter upset the processing conditions and lower the quality (size analysis, etc.) of the ammonium sulfate. A rapid quality control procedure is essential to obtain timely warning of increased organic matter contents in the acid. On the other hand, the standard procedure in current use (TU38-2-3-1-68), based on the oxidation of organic substances with potassium bichromate in an acid medium, takes 3 hr to complete. Observations have revealed a correlation between the color of the acid and its organic impurity contents. On this basis, we have developed a rapid photocolorimetric procedure for determining the organic impurity contents of sulfuric acid, based on the known proportionality between optical density (light absorption) and solute (dye) content. A calibration curve is used to convert optical density readings to organic impurity contents. It should be pointed out that in contrast to the standard procedure, our procedure only determines the concentration of organic matter in solution in the acid. However, the amounts of insoluble organic matter are negligible compared with the amounts in solution and therefore do not affect the final results.

  13. Characterisation of the biodegradability of post-treated digestates via the chemical accessibility and complexity of organic matter.

    PubMed

    Maynaud, Géraldine; Druilhe, Céline; Daumoin, Mylène; Jimenez, Julie; Patureau, Dominique; Torrijos, Michel; Pourcher, Anne-Marie; Wéry, Nathalie

    2017-05-01

    The stability of digestate organic matter is a key parameter for its use in agriculture. Here, the organic matter stability was compared between 14 post-treated digestates and the relationship between organic matter complexity and biodegradability was highlighted. Respirometric activity and CH4 yields in batch tests showed a positive linear correlation between both types of biodegradability (R(2)=0.8). The accessibility and complexity of organic matter were assessed using chemical extractions combined with fluorescence spectroscopy, and biodegradability was mostly anti-correlated with complexity of organic matter. Post-treatments presented a significant effect on the biodegradability and complexity of organic matter. Biodegradability was low for composted digestates which comprised slowly accessible complex molecules. Inversely, solid fractions obtained after phase separation contained a substantial part of remaining biodegradable organic matter with a significant easily accessible fraction comprising simpler molecules. Understanding the effect of post-treatment on the biodegradability of digestates should help to optimize their valorization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds

    SciTech Connect

    Kile, D.E. ); Wershaw, R.L.; Chiou, C.T. )

    1999-06-15

    Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state [sup 13]C-CP/MAS NMR spectra and compared with published partition coefficients (K[sub oc]) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxyl-amide-ester carbons. A plot of the measured partition coefficients (K[sub oc]) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K[sub oc] values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K[sub oc] between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K[sub oc] illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.

  15. Andic soils : mineralogical effect onto organic matter dynamics, organic matter effect onto mineral dynamics, or both?

    NASA Astrophysics Data System (ADS)

    Basile-Doelsch, Isabelle; Amundson, Ronald; Balesdent, Jérome; Borschneck, Daniel; Bottero, Jean-Yves; Colin, Fabrice; de Junet, Alexis; Doelsch, Emmanuel; Legros, Samuel; Levard, Clément; Masion, Armand; Meunier, Jean-Dominique; Rose, Jérôme

    2014-05-01

    From a strictly mineralogical point of view, weathering of volcanic glass produces secondary phases that are short range ordered alumino-silicates (SRO-AlSi). These are imogolite tubes (2 to 3 nm of diameter) and allophane supposedly spheres (3.5 to 5 nm). Their local structure is composed of a curved gibbsite Al layer and Si tetrahedra in the vacancies (Q0). Proto-imogolites have the same local structure but are roof-shape nanoparticles likely representing the precursors of imogolite and allophanes (Levard et al. 2010). These structures and sizes give to the SRO-AlSi large specific surfaces and high reactivities. In some natural sites, imogolites and allophanes are formed in large quantities. Aging of these phases may lead to the formation of more stable minerals (halloysite, kaolinite and gibbsite) (Torn et al 1997). In natural environments, when the weathering of volcanic glass is associated with the establishment of vegetation, the soils formed are generally andosols. These soils are particularly rich in organic matter (OM), which is explained by the high ability of SRO-AlSi mineral phases to form bonds with organic compounds. In a first order "bulk" approach, it is considered that these bonds strongly stabilize the organic compounds as their mean age can reach more than 10 kyrs in some studied sites (Basile-Doelsch et al. 2005; Torn et al. 1997). However, the structure of the mineral phases present in andosols deserves more attention. Traditionally, the presence in the SRO-AlSi andosols was shown by selective dissolution approaches by oxalate and pyrophosphate. Using spectroscopic methods, mineralogical analysis of SRO-AlSi in andosols samples showed that these mineral phases were neither imogolites nor allophanes as originally supposed, but only less organized structures remained in a state of proto-imogolites (Basile-Doelsch al. 2005 ; Levard et al., 2012). The presence of OM would have an inhibitory effect on the formation of secondary mineral phases, by

  16. Anesthetic Considerations for the Parturient After Solid Organ Transplantation.

    PubMed

    Moaveni, Daria M; Cohn, Jennifer H; Hoctor, Katherine G; Longman, Ryan E; Ranasinghe, J Sudharma

    2016-08-01

    Over the past 40 years, the success of organ transplantation has increased such that female solid organ transplant recipients are able to conceive and carry pregnancies successfully to term. Anesthesiologists are faced with the challenge of providing anesthesia care to these high-risk obstetric patients in the peripartum period. Anesthetic considerations include the effects of the physiologic changes of pregnancy on the transplanted organ, graft function in the peripartum period, and the maternal side effects and drug interactions of immunosuppressive agents. These women are at an increased risk of comorbidities and obstetric complications. Anesthetic management should consider the important task of protecting graft function. Optimal care of a woman with a transplanted solid organ involves management by a multidisciplinary team. In this focused review article, we review the anesthetic management of pregnant patients with solid organ transplants of the kidney, liver, heart, or lung.

  17. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity

    PubMed Central

    Kebukawa, Yoko; Chan, Queenie H. S.; Tachibana, Shogo; Kobayashi, Kensei; Zolensky, Michael E.

    2017-01-01

    The exogenous delivery of organic molecules could have played an important role in the emergence of life on the early Earth. Carbonaceous chondrites are known to contain indigenous amino acids as well as various organic compounds and complex macromolecular materials, such as the so-called insoluble organic matter (IOM), but the origins of the organic matter are still subject to debate. We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, β-, and γ-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies. PMID:28345041

  18. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity.

    PubMed

    Kebukawa, Yoko; Chan, Queenie H S; Tachibana, Shogo; Kobayashi, Kensei; Zolensky, Michael E

    2017-03-01

    The exogenous delivery of organic molecules could have played an important role in the emergence of life on the early Earth. Carbonaceous chondrites are known to contain indigenous amino acids as well as various organic compounds and complex macromolecular materials, such as the so-called insoluble organic matter (IOM), but the origins of the organic matter are still subject to debate. We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, β-, and γ-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies.

  19. Where is DNA preserved in soil organic matter?

    NASA Astrophysics Data System (ADS)

    Zaccone, Claudio; Beneduce, Luciano; Plaza, César

    2015-04-01

    Deoxyribonucleic acid (DNA) consists of long chains of alternating sugar and phosphate residues twisted in the form of a helix. Upon decomposition of plant and animal debris, this nucleic acid is released into the soil, where its fate is still not completely understood. In fact, although DNA is one of the organic compounds from living cells that is apparently broken down rapidly in soils, it is also potentially capable of being incorporated in (or interact with) the precursors of humic molecules. In order to track DNA occurrence in soil organic matter (SOM) fractions, an experiment was set up as a randomized complete block design with two factors, namely biochar addition and organic amendment. In particular, biochar (BC), applied at a rate of 20 t/ha, was combined with municipal solid waste compost (BC+MC) at a rate equivalent to 75 kg/ha of potentially available N, and with sewage sludge (BC+SS) at a rate equivalent to 75 kg/ha of potentially available N. Using a physical fractionation method, free SOM located between aggregates (unprotected C pool; FR), SOM occluded within macroaggregates (C pool weakly protected by physical mechanisms; MA), SOM occluded within microaggregates (C pool strongly protected by physical mechanisms; MI), and SOM associated with the mineral fractions (chemically-protected C pool; MIN) were separated from soil samples. DNA was then isolated from each fraction of the two series, as well as from the unamended soil (C) and from the bulk soils (WS), using Powersoil DNA isolation kit (MoBio, CA, USA) with a modified protocol. Data clearly show that the DNA survived the SOM fractionation, thus suggesting that physical fractionation methods create less artifacts compared to the chemical ones. Moreover, in both BC+MC and BC+SS series, most of the isolated DNA was present in the FR fraction, followed by the MA and the MI fractions. No DNA was recovered from the MIN fraction. This finding supports the idea that most of the DNA occurring in the SOM

  20. Composition of dissolved organic matter in groundwater

    NASA Astrophysics Data System (ADS)

    Longnecker, Krista; Kujawinski, Elizabeth B.

    2011-05-01

    Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge ( m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health.

  1. Pregnancy in Women With Solid-Organ Transplants: A Review.

    PubMed

    Durst, Jennifer K; Rampersad, Roxane M

    2015-06-01

    Advances in solid-organ transplantation have allowed many women to reach reproductive potential, and pregnancy is no longer a rarity for these women. To identify (1) potential complications to allograft function posed by pregnancy, (2) expected perinatal outcomes in women with solid-organ transplants, (3) risks of potential immunosuppressant regimens, (4) safety of lactation, and (5) contraceptive options for women with solid-organ transplants. Single-center, registry data, and previous systematic reviews were evaluated in women with solid-organ transplants to identify the objectives of this review. In addition, recommendations from public health organizations were examined in regard to safety of medications and contraceptive methods. Women with solid-organ transplants are at risk for premature birth, low birth weight, cesarean delivery, and hypertensive disorders of pregnancy. Most immunosuppressant regimens are safe; however, mycophenolate mofetil should be avoided. Lactation with tacrolimus, cyclosporine, azathioprine, and prednisone appears safe. Long-acting reversible contraceptive methods are safe and effective for transplant recipients. Many successful pregnancies have been achieved in women following transplantation; however, optimal perinatal outcomes require stable allograft function. As more women are becoming pregnant after organ transplantation, a review of obstetric recommendations and perinatal outcome is warranted.

  2. A marine sink for chlorine in natural organic matter

    NASA Astrophysics Data System (ADS)

    Leri, Alessandra C.; Mayer, Lawrence M.; Thornton, Kathleen R.; Northrup, Paul A.; Dunigan, Marisa R.; Ness, Katherine J.; Gellis, Austin B.

    2015-08-01

    Chloride--the most abundant ion in sea water--affects ocean salinity, and thereby seawater density and ocean circulation. Its lack of reactivity gives it an extremely long residence time. Other halogens are known to be incorporated into marine organic matter. However, evidence of similar transformations of seawater chloride is lacking, aside from emissions of volatile organochlorine by marine algae. Here we report high organochlorine concentrations from 180 to 700 mg kg-1 in natural particulate organic matter that settled into sediment traps at depths between 800 and 3,200 m in the Arabian Sea, taken between 1994 and 1995. X-ray spectromicroscopic imaging of chlorine bonding reveals that this organochlorine exists primarily in concentrated aliphatic forms consistent with lipid chlorination, along with a more diffuse aromatic fraction. High aliphatic organochlorine in particulate material from cultured phytoplankton suggests that primary production is a source of chlorinated organic matter. We also found that particulate algal detritus can act as an organic substrate for abiotic reactions involving Fe2+, H2O2 or light that incorporate chlorine into organic matter at levels up to several grams per kilogram. We conclude that transformations of marine chloride to non-volatile organochlorine through biological and abiotic pathways represent an oceanic sink for this relatively unreactive element.

  3. Pre-biotic organic matter from comets and asteroids.

    PubMed

    Anders, E

    1989-11-16

    Several authors have suggested that comets or carbonaceous asteroids contributed large amounts of organic matter to the primitive Earth, and thus possibly played a vital role in the origin of life. But organic matter cannot survive the extremely high temperatures (>10(4) K) reached on impact, which atomize the projectile and break all chemical bonds. Only fragments small enough to be gently decelerated by the atmosphere--principally meteors of 10(-12)-10(-6) g--can deliver their organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only approximately 0.006 g cm-2 intact organic carbon would accumulate in 10(8) yr, but at the higher rates of approximately 4 x 10(9) yr ago, about 20 g cm-2 may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on Earth.

  4. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamura-Messenger, Keiko

    2015-01-01

    Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.

  5. Caracterisation of anthropogenic contribution to the coastal fluorescent organic matter

    NASA Astrophysics Data System (ADS)

    El Nahhal, Ibrahim; Nouhi, Ayoub; Mounier, Stéphane

    2015-04-01

    It is known that most of the coastal fluorescent organic matter is of a terrestrial origin (Parlanti, 2000; Tedetti, Guigue, & Goutx, 2010). However, the contribution of the anthropogenic organic matter to this pool is not well defined and evaluated. In this work the monitoring of little bay (Toulon Bay, France) was done in the way to determine the organic fluorescent response during a winter period. The sampling campaign consisted of different days during the month of December, 2014 ( 12th, 15th, 17th, 19th) on 21 different sampling sites for the fluorescence measurements (without any filtering of the samples) and the whole month of December for the bacterial and the turbidity measurements. Excitation Emission Matrices (EEMs) of fluorescence (from 200 to 400 nm and 220 to 420 nm excitation and emission range) were treated by parallel factor analysis (PARAFAC).The parafac analysis of the EEM datasets was conducted using PROGMEEF software in Matlab langage. On the same time that the turbidity and bacterial measurement (particularly the E.Coli concentration) were determined. The results gives in a short time range, information on the the contribution of the anthropogenic inputs to the coastal fluorescent organic matter. In addition, the effect of salinity on the photochemical degradation of the anthropogenic organic matter (especially those from wastewater treatment plants) will be studied to investigate their fate in the water end member by the way of laboratory experiments. Parlanti, E. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31(12), 1765-1781. doi:10.1016/S0146-6380(00)00124-8 Tedetti, M., Guigue, C., & Goutx, M. (2010). Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal waters. Marine Pollution Bulletin, 60(3), 350-62. doi:10.1016/j.marpolbul.2009.10.018

  6. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.

    PubMed

    Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

    2013-10-15

    The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds.

  7. Processing of Atmospheric Organic Matter by California Radiation Fogs

    NASA Astrophysics Data System (ADS)

    Collett, J. L.; Youngster, S. B.; Lee, T.; Chang, H.; Herckes, P.

    2005-12-01

    In many environments, organic compounds account for a significant fraction of fine particle mass. Because the lifetimes of accumulation mode aerosol particles are governed largely by interactions with clouds, it is important to understand how organic aerosol particles are processed by clouds and fogs. Recently we have examined the organic composition of radiation fogs in central California as well as how these fogs process organic aerosol particles and soluble organic trace gases. Observations indicate that organic matter is a significant component of the fog droplets, comprising approximately one-third of the total solute mass concentration. Concentrations of total organic carbon (TOC) range from approximately 2 to 41 ppmC. Approximately three-fourths of organic matter is typically found in solution as dissolved organic carbon (DOC). A variety of efforts have been made to characterize the composition of the fog organic matter, including analyses by GC/MS, HPLC, IC, NMR and IR. The most abundant species are typically low molecular weight carboxylic acids, small carbonyls and dicarbonyls, and sugar anhydrides. These species have been observed collectively to account for roughly 20-30 percent of the fog DOC. Dicarboxylic acids, frequently used as model compounds for organic CCN, typically account for only a few percent of the organic carbon, with oxalic acid the most important contributor. A significant portion of the fog DOC appears to be comprised of high molecular weight compounds (> 500 Da). Analyses also reveal the presence of organic molecular markers associated with particles produced by various combustion processes. Comparisons of pre-fog and interstitial aerosol samples reveal differences in the relative particle scavenging efficiencies of the fog drops between organic and elemental carbon and between different types of organic carbon. Measurements using a two-stage fog water collector reveal that organic matter tends to be enriched in smaller fog droplets

  8. Aggregation of organic matter by pelagic tunicates

    SciTech Connect

    Pomeroy, L.R.; Deibel, D.

    1980-07-01

    Three genera of pelagic tunicates were fed concentrates of natural seston and an axenic diatom culture. Fresh and up to 4-day-old feces resemble flocculent organic aggregates containing populations of microorganisms, as described from highly productive parts of the ocean, and older feces resemble the nearly sterile flocculent aggregates which are ubiquitous in surface waters. Fresh feces consist of partially digested phytoplankton and other inclusions in an amorphous gelatinous matrix. After 18 to 36 h, a population of large bacteria develops in the matrix and in some of the remains of phytoplankton contained in the feces. From 48 to 96 h, protozoan populations arise which consume the bacteria and sometimes the remains of the phytoplankton in the feces. Thereafter only a sparse population of microorganisms remains, and the particles begin to fragment. Water samples taken in or below dense populations of salps and doliolids contained greater numbers of flocculent aggregates than did samples from adjacent stations.

  9. Search for Organic Matter in Leonid Meteoroids

    NASA Astrophysics Data System (ADS)

    Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.

    Near-ultraviolet 300-410 nm spectra of Leonid meteoroids were obtained in an effort to measure the strong B --> X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slit-less spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per 3 Fe atoms at the observed altitude of about 100 km.

  10. Search for Organic Matter in Leonid Meteoroids

    NASA Technical Reports Server (NTRS)

    Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Near-ultraviolet 300-410 nm spectra of Leonid meteors were obtained in an effort to measure the strong B to X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slitless spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per three Fe atoms at the observed altitude of about 100 km.

  11. The Rusty Sink: Iron Promotes the Preservation of Organic Matter in Sediments

    NASA Astrophysics Data System (ADS)

    Lalonde, K. M.; Mucci, A.; Moritz, A.; Ouellet, A.; Gelinas, Y.

    2011-12-01

    The biogeochemical cycles of iron (Fe) and organic carbon (OC) are strongly interlinked. In oceanic waters, organic ligands have been shown to control the concentration of dissolved Fe [1], whereas in soils, solid Fe phases provide a sheltering and preservative effect for organic matter [2]. Until now however, the role of iron in the preservation of OC in sediments has not been clearly established. Here we show that 21.5 ± 8.6% of the OC in sediments is directly bound to reactive iron phases, which promote the preservation of OC in sediments. Iron-bound OC represents a global mass of 19 to 45 × 10^15 g of OC in surface marine sediments. This pool of OC is different from the rest of sedimentary OC, with 13C and nitrogen-enriched organic matter preferentially bound to Fe which suggests that biochemical fractionation occurs with OC-Fe binding. Preferential binding also affects the recovery of high molecular weight lipid biomarkers and acidic lignin oxidation products, changing the environmental message of proxies derived from these biomarkers. [1] Johnson, K. S., Gordon, R. M. & Coale, K. H. What controls dissolved iron in the world ocean? Marine Chemistry 57, 137-161 (1997). [2] Kaiser, K. & Guggenberger, G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry 31, 711-725 (2000).

  12. Bioreactor treatment of municipal solid waste landfill leachates: characterization of organic fractions.

    PubMed

    Pelaez, Ana Isabel; Sanchez, Jesus; Almendros, Gonzalo

    2009-01-01

    Quantitative and qualitative changes in organic matter were studied at different stages of treatment in a bioreactor designed to process leachates from a municipal solid waste landfill. The particulate matter (PM) and macromolecular fractions of the dissolved organic matter with solubility properties comparable to humic (acid-insoluble) and fulvic (acid-soluble) acid fractions (AI, AS, respectively) from the incoming black liquid, the bioreactor content, and the final processed effluent were isolated, quantified, and characterized by visible and infrared (IR) spectroscopies. The macromolecular signature either aliphatic (glycopeptides, carbohydrates) or aromatic (coinciding with infrared patterns of lignin, tannins etc.) enabled us to characterize the different organic fractions during the course of microbial transformation. The results reveal significant changes in the nitrogen speciation patterns within the different organic fractions isolated from the wastewater. The final increase in the relative proportions of nitrogen in the least aromatic AS fraction during microbial transformation could be related to protein formation inside the bioreactor. After biological treatment and ultrafiltration, the amount of organic matter was reduced by approximately 70%, whereas aromaticity increased in all fractions, indicating preferential elimination of aliphatic wastewater compounds. Most of the remaining fractions at the end of the process consisted of a yellow residue rich in low molecular weight AS fractions.

  13. X-ray characterization of solid small molecule organic materials

    SciTech Connect

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  14. Lyophilization and Reconstitution of Reverse Osmosis Concentrated Natural Organic Matter

    EPA Science Inventory

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating and preservin...

  15. Quenching and Sensitizing Fullerene Photoreactions by Natural Organic Matter

    EPA Science Inventory

    Effects of natural organic matter (NOM) on the photoreaction kinetics of fullerenes (i.e., C60 and fullerenol) were investigated using simulated sunlight and monochromatic radiation (365 nm). NOM from several sources quenched (slowed) the photoreaction of C60 aggregates in water ...

  16. Lyophilization and Reconstitution of Reverse Osmosis Concentrated Natural Organic Matter

    EPA Science Inventory

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating and preservin...

  17. Photoproduction of Carbon Monoxide from Natural Organic Matter

    EPA Science Inventory

    Pioneering studies by Valentine provided early kinetic results that used carbon monoxide (CO) production to evaluate the photodecomposition of aquatic natural organic matter (NOM) . (ES&T 1993 27 409-412). Comparatively few kinetic studies have been conducted of the photodegradat...

  18. Soil organic matter as sole indicator of soil degradation

    Treesearch

    S.E. Obalum; G.U. Chibuike; S. Peth; Ying Ouyang

    2017-01-01

    Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a...

  19. Photoproduction of Carbon Monoxide from Natural Organic Matter

    EPA Science Inventory

    Pioneering studies by Valentine provided early kinetic results that used carbon monoxide (CO) production to evaluate the photodecomposition of aquatic natural organic matter (NOM) . (ES&T 1993 27 409-412). Comparatively few kinetic studies have been conducted of the photodegradat...

  20. Quenching and Sensitizing Fullerene Photoreactions by Natural Organic Matter

    EPA Science Inventory

    Effects of natural organic matter (NOM) on the photoreaction kinetics of fullerenes (i.e., C60 and fullerenol) were investigated using simulated sunlight and monochromatic radiation (365 nm). NOM from several sources quenched (slowed) the photoreaction of C60 aggregates in water ...

  1. Calculation of the enthalpy of formation of coal organic matter

    SciTech Connect

    A.M. Gyul'maliev; M.Ya. Shpirt

    2008-10-15

    The enthalpy of formation for the organic matter of coals in the coal rank series was calculated from the heat of the complete combustion reaction. Three variants were considered in which the experimental heating values and the values found from the correlation equation or calculated using the Mendeleev formula were taken as the heat of the complete combustion of coals.

  2. Organic matter in a coal ball: Peat or coal?

    USGS Publications Warehouse

    Hatcher, P.G.; Lyons, P.C.; Thompson, C.L.; Brown, F.W.; Maciel, G.E.

    1982-01-01

    Chemical analyses of morphologically preserved organic matter in a Carboniferous coal ball reveal that the material is coalified to a rank approximately equal to that of the surrounding coal. Hence, the plant tissues in the coal ball were chemically altered by coalification processes and were not preserved as peat. Copyright ?? 1982 AAAS.

  3. The Relationship Between Dissolved Organic Matter Composition and Organic Matter Optical Properties in Freshwaters

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Spencer, R. G.; Butler, K.

    2010-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful, albeit, underutilized, indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with resource management. Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals (e.g. Hg). In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of multi-year studies designed to assess the seasonal and spatial variability of DOM quantity and quality for 57 North American Rivers. DOM concentrations and composition, based on DOM fractionation on XAD resins, ultraviolet (UV)/visible absorption and fluorescence spectroscopic analyses, and specific compound analyses, varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration (<80 to >4000 µM C* L-1) and specific ultra-violet absorbance at 254 nm (SUVA254) (0.6 to 5 L *mg C-1 *m-1), an optical measurement that is an indicator of aromatic carbon content. In almost all systems, UV absorbance measured at specific wavelengths (e.g. 254 nm) correlated strongly with DOM and hydrophobic organic acid (HPOA) content (aquatic humic substances). The relationships between dissolved organic carbon (DOC) concentration and absorbance for the range of systems were quite variable due to

  4. B Cell Immunity in Solid Organ Transplantation

    PubMed Central

    Karahan, Gonca E.; Claas, Frans H. J.; Heidt, Sebastiaan

    2017-01-01

    The contribution of B cells to alloimmune responses is gradually being understood in more detail. We now know that B cells can perpetuate alloimmune responses in multiple ways: (i) differentiation into antibody-producing plasma cells; (ii) sustaining long-term humoral immune memory; (iii) serving as antigen-presenting cells; (iv) organizing the formation of tertiary lymphoid organs; and (v) secreting pro- as well as anti-inflammatory cytokines. The cross-talk between B cells and T cells in the course of immune responses forms the basis of these diverse functions. In the setting of organ transplantation, focus has gradually shifted from T cells to B cells, with an increased notion that B cells are more than mere precursors of antibody-producing plasma cells. In this review, we discuss the various roles of B cells in the generation of alloimmune responses beyond antibody production, as well as possibilities to specifically interfere with B cell activation. PMID:28119695

  5. Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effuent organic matter.

    PubMed

    Krasner, Stuart W; Westerhoff, Paul; Chen, Baiyang; Rittmann, Bruce E; Nam, Seong-Nam; Amy, Gary

    2009-04-15

    Unintentional, indirect wastewater reuse often occurs as wastewater treatment plant (WWTP) discharges contaminate receiving waters serving as drinking-water supplies. A survey was conducted at 23 WWTPs that utilized a range of treatment technologies. Samples were analyzed for typical wastewater and drinking-water constituents, chemical characteristics of the dissolved organic matter (DOM), and disinfection byproduct (DBP) precursors present in the effluent organic matter (EfOM). This was the first large-scale assessment of the critical water quality parameters that affect the formation of potential carcinogens during drinking water treatment relative to the discharge of upstream WWTPs. This study considered a large and wide range of variables, including emerging contaminants rarely studied at WWTPs and never before in one study. This paper emphasizesthe profound impact of nitrification on many measures of effluent water quality, from the obvious wastewater parameters (e.g., ammonia, biochemical oxygen demand) to the ones specific to downstream drinking water treatment plants (e.g., formation potentialsfor a diverse group of DBPs of health concern). Complete nitrification reduced the concentration of biodegradable dissolved organic carbon (BDOC) and changed the ratio of BDOC/DOC. Although nitrification reduced ultraviolet absorbance (UVA) at 254 nm, it resulted in an increase in specific UVA (UVA/DOC). This is attributed to preferential removal of the less UV-absorbing (nonhumic) fraction of the DOC during biological treatment. EfOM is composed of hydrophilic and biodegradable DOM, as well as hydrophobic and recalcitrant DOM, whose proportions change with advanced biological treatment. The onset of nitrification yielded lower precursor levels for haloacetic acids and nitrogenous DBPs (haloacetonitriles, N-nitrosodimethylamine). However, trihalomethane precursors were relatively unaffected by the level of wastewater treatment Thus, one design/operations parameter in

  6. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  7. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  8. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  9. Colored dissolved organic matter in Tampa Bay, Florida

    USGS Publications Warehouse

    Chen, Z.; Hu, C.; Conmy, R.N.; Muller-Karger, F.; Swarzenski, P.

    2007-01-01

    Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400) = − 0.19 × salinity + 6.78, R2 = 0.98, n = 17, salinity range = 1.1–32.5) with little variations in absorption spectral slope and fluorescence efficiency. This indicates that CDOM distribution was dominated by mixing. In October, 2004, CDOM distribution was nonconservative with an average absorption coefficient (aCDOM(400), ∼ 7.76 m-1) about seven times higher than that in June (∼ 1.11 m-1). The nonconservative behavior was caused largely by CDOM removal at intermediate salinities (e.g., aCDOM(400) removal > 15% at salinity ∼ 13.0), which likely resulted from photobleaching due to stronger stratification. The spatial and seasonal distributions of CDOM in Tampa Bay showed that the two largest rivers, the Alafia River (AR) and Hillsborough River (HR) were dominant CDOM sources to most of the bay. In OTB, however, CDOM showed distinctive differences: lower absorption coefficient, higher absorption spectral slopes, and lower ratios of CDOM absorption to DOC and higher fluorescence efficiency. These differences may have stemmed from (1) changes in CDOM composition by more intensive photobleaching due to the longer residence time of water mass in OTB; (2) other sources of CDOM than the HR/AR inputs, such as local creeks, streams, groundwater, and/or bottom re-suspension. Average CDOM absorption in Tampa Bay at 443 nm, aCDOM(443), was about five times higher in June and about ten times higher in October than phytoplankton pigment absorption, aph(443), indicating that blue light attenuation in the water column was dominated by CDOM rather than by phytoplankton absorption throughout the

  10. Contraception and Fertility Awareness Among Women With Solid Organ Transplants

    PubMed Central

    French, Valerie A.; Davis, John S.; Sayles, Harlan S.; Wu, Serena S.

    2017-01-01

    OBJECTIVE To assess the contraception and fertility counseling provided to women with solid organ transplants. METHODS A telephone survey of 309 women aged 19–49 years who had received a solid organ transplant at the University of Nebraska Medical Center was performed. Of the 309 eligible women, 183 responded. Patients were asked 19 questions regarding pretransplant and posttransplant fertility awareness and contraception counseling. Data were summarized using descriptive statistics. RESULTS Patients had undergone a variety of solid organ transplantations: 40% kidney (n=73); 32% liver (n=59); 6% pancreas (n=11); 5% heart (n=9); 3% intestine (n=5); and 14% multiple organs (n=26). Before their transplantations, 79 women (44%) reported they were not aware that a woman could become pregnant after transplantation. Only 66 women aged 13 and older at the time of transplantation reported that a health care provider discussed contraception before transplantation. Approximately half of women surveyed were using a method of contraception. Oral contraceptive pills were the most commonly recommended method. Twenty-two of the 31 pregnancies after organ transplantation were planned, which is higher than that of the general population. CONCLUSION Few women with transplants are educated regarding the effect of organ transplantation on fertility and are not routinely counseled about contraception or the potential for posttransplant pregnancy. Health care providers should incorporate contraceptive and fertility counseling as part of routine care for women with solid organ transplants. PMID:24084538

  11. Contraception and fertility awareness among women with solid organ transplants.

    PubMed

    French, Valerie A; Davis, John S; Sayles, Harlan S; Wu, Serena S

    2013-10-01

    To assess the contraception and fertility counseling provided to women with solid organ transplants. A telephone survey of 309 women aged 19-49 years who had received a solid organ transplant at the University of Nebraska Medical Center was performed. Of the 309 eligible women, 183 responded. Patients were asked 19 questions regarding pretransplant and posttransplant fertility awareness and contraception counseling. Data were summarized using descriptive statistics. Patients had undergone a variety of solid organ transplantations: 40% kidney (n=73); 32% liver (n=59); 6% pancreas (n=11); 5% heart (n=9); 3% intestine (n=5); and 14% multiple organs (n=26). Before their transplantations, 79 women (44%) reported they were not aware that a woman could become pregnant after transplantation. Only 66 women aged 13 and older at the time of transplantation reported that a health care provider discussed contraception before transplantation. Approximately half of women surveyed were using a method of contraception. Oral contraceptive pills were the most commonly recommended method. Twenty-two of the 31 pregnancies after organ transplantation were planned, which is higher than that of the general population. Few women with transplants are educated regarding the effect of organ transplantation on fertility and are not routinely counseled about contraception or the potential for posttransplant pregnancy. Health care providers should incorporate contraceptive and fertility counseling as part of routine care for women with solid organ transplants. : II.

  12. Organic compounds in the particulate matter from burning organic soils

    Treesearch

    Charles K. McMahon; Jerry D. White; Skevos N. Tsoukalas

    1985-01-01

    This paper is directed to people interested in the environmental impact of natural emissions. Natural emissions are common and contribute significantly to tropospheric background levels. Several million hectares of the United States are covered by organic soils. During droughts, these soils can ignite and support slow combustion which often persists for weeks causing...

  13. Organic matter variations in transgressive and regressive shales

    USGS Publications Warehouse

    Pasley, M.A.; Gregory, W.A.; Hart, G.F.

    1991-01-01

    Organic matter in the Upper Cretaceous Mancos Shale adjacent to the Tocito Sandstone in the San Juan Basin of New Mexico was characterized using organic petrology and organic geochemistry. Differences in the organic matter found in these regressive and transgressive offshore marine sediments have been documented and assessed within a sequence stratigraphic framework. The regressive Lower Mancos Shale below the Tocito Sandstone contains abundant well preserved phytoclasts and correspondingly low hydrogen indices. Total organic carbon values for the regressive shale are low. Sediments from the transgressive systems tract (Tocito Sandstone and overlying Upper Mancos Shale) contain less terrestrially derived organic matter, more amorphous non-structured protistoclasts, higher hydrogen indices and more total organic carbon. Advanced stages of degradation are characteristic of the phytoclasts found in the transgressive shale. Amorphous material in the transgressive shale fluoresces strongly while that found in the regressive shale is typically non-fluorescent. Data from pyrolysis-gas chromatography confirm these observations. These differences are apparently related to the contrasting depositional styles that were active on the shelf during regression and subsequent transgression. It is suggested that data from organic petrology and organic geochemistry provide greater resolution in sedimentologic and stratigraphic interpretations, particularly when working with basinward, fine-grained sediments. Petroleum source potential for the regressive Lower Mancos Shale below the Tocito Sandstone is poor. Based on abundant fluorescent amorphous material, high hydrogen indices, and high total organic carbon, the transgressive Upper Mancos Shale above the Tocito Sandstone possesses excellent source potential. This suggests that appreciable source potential can be found in offshore, fine-grained sediments of the transgressive systems tract below the condensed section and associated

  14. Organic and inorganic speciation of particulate matter formed during different combustion phases in an improved cookstove.

    PubMed

    Leavey, Anna; Patel, Sameer; Martinez, Raul; Mitroo, Dhruv; Fortenberry, Claire; Walker, Michael; Williams, Brent; Biswas, Pratim

    2017-10-01

    Residential solid fuel combustion in cookstoves has established health impacts including bladder and lung cancers, cataracts, low birth weight, and pneumonia. The chemical composition of particulate matter (PM) from 4 commonly-used solid fuels (coal, dung, ambient/dry applewood, and oakwood pellets), emitted from a gasifier cookstove, as well as propane, were examined. Temporal changes between the different cookstove burn-phases were also explored. Normalized concentrations of non-refractory PM1, total organics, chloride, ammonium, nitrate, sulfate, and 41 particle-phase polycyclic aromatic hydrocarbons (PAHs) were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a Thermal desorption Aerosol Gas chromatograph (TAG), respectively. Coal demonstrated the highest fraction of organic matter in its particulate emission composition (98%), followed by dung (94%). Coal and dung also demonstrated the highest numbers and concentrations of PAHs. While dry applewood emitted ten times lower organic matter compared to ambient applewood, a higher fraction of these organics was composed of PAHs, especially the more toxic ones such as benzo(a)pyrene (9.63ng/L versus 0.04ng/L), and benzo(b)fluoranthene (31.32ng/L versus 0.19ng/L). Data from the AMS demonstrated no clear trends for any of the combustion fuels over the different combustion phases unlike the previously reported trends observed for the physical characteristics. Of the solid fuels, pellets demonstrated the lowest emissions. Emissions from propane were below the quantification limit of the instruments. This work highlights the benefits of incorporating additional metrics into the cookstove evaluation process, thus enriching the existing PM data inventory. Copyright © 2017. Published by Elsevier Inc.

  15. Preservation of organic matter on Mars by sulfur

    NASA Astrophysics Data System (ADS)

    Eigenbrode, J. L.; Steele, A.; Summons, R. E.; McAdam, A.; Sutter, B.; Franz, H. B.; Freissinet, C.; Millan, M.; Glavin, D. P.; Szopa, C.; Conrad, P. G.; Mahaffy, P. R.

    2016-12-01

    Deltaic-lacustrine mudstones at Pahrump Hills, Gale Crater, Mars yielded a variety of sulfur-containing volatiles upon heating to 500-860°C, as detected by the Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover. The detection of organosulfur compounds comprising thiophenes, dimethylsulfide and thiols by gas chromatography-mass spectrometry and evolved gas analyses, together with aromatic and other hydrocarbon molecules with distributions specific to the sample (i.e., not from the SAM background) indicate that some or all of these organic fragments released at high temperatures are indigenous to the mudstones. The organosulfur compounds are most likely derived from sulfur organics in the sediments. However, there is a possibility that sulfurization of some organic fragments occurred in the oven. On Earth, sulfurization of organic matter is a key process that aids preservation over geological time-scales. This is because it reduces reactive functional groups and adds cross links between small unstable molecules thereby converting them into recalcitrant macromolecules. Sulfurization of organic materials prior to deposition and during early diagenesis may have been a key mechanism responsible for organic matter preservation in the Murray formation mudstones. Sulfur-bearing organics have also been observed in carbonaceous meteorites and there is indication of their presence in the Tissint martian meteorite. A quantitative assessment of organosulfur compounds relative to their non-organic counterparts will be presented for the Murray formation mudstones analyzed by SAM and meteorites analyzed in the laboratory under similar analytical conditions.

  16. Production of fluorescent dissolved organic matter in Arctic Ocean sediments

    PubMed Central

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-01-01

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R2 > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans. PMID:27982085

  17. Production of fluorescent dissolved organic matter in Arctic Ocean sediments.

    PubMed

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-12-16

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R(2) > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R(2) > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.

  18. Production of fluorescent dissolved organic matter in Arctic Ocean sediments

    NASA Astrophysics Data System (ADS)

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-12-01

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R2 > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.

  19. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2017-04-01

    The following paper shows natural organic matter (NOM) properties of stream water samples collected from 8 agricultural streams and 12 agricultural observational fields in Sweden. The catchments and observational fields cover a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients. The insights from the grab sampling are supported by high-frequency turbidity, fulvic-like and tryptophan-like fluorescence measurements with in situ optical sensor.

  20. Semiconducting Lead-Sulfur-Organic Network Solids

    SciTech Connect

    Turner,D.; Vaid, T.; Stephens, P.; Stone, K.; DiPasquale, A.; Rheingold, A.

    2008-01-01

    The reactions of Pb(OAc)2 with 1, 2,4, 5-benzenetetrathiol, 1, 4-benzenedithiol, and benzenehexathiol in ethylenediamine yield bright yellow [Pb2(S2C6H2S2)(en)]n, orange-red [Pb3(SC6H4S)3(en)2]n, and brown [Pb3C6S6]n, respectively. The structures of [Pb2(S2C6H2S2)(en)]n and [Pb3C6S6]n were solved by synchrotron X-ray powder diffraction, while the structure of [Pb3(SC6H4S)3(en)2]n was solved by single-crystal X-ray diffraction. The bonding in [Pb2(S2C6H2S2)(en)]n indicates the presence of 'molecular' units, while in [Pb3C6S6]n, the bonding most resembles that in an inorganic solid such as PbS. The differences in bonding are reflected in the optical and electrical properties of the materials; [Pb3C6S6]n is a semiconductor.

  1. Semiconducting lead-sulfur-organic network solids.

    PubMed

    Turner, Dayna L; Vaid, Thomas P; Stephens, Peter W; Stone, Kevin H; DiPasquale, Antonio G; Rheingold, Arnold L

    2008-01-09

    The reactions of Pb(OAc)2 with 1,2,4,5-benzenetetrathiol, 1,4-benzenedithiol, and benzenehexathiol in ethylenediamine yield bright yellow [Pb2(S2C6H2S2)(en)]n, orange-red [Pb3(SC6H4S)3(en)2]n, and brown [Pb3C6S6]n, respectively. The structures of [Pb2(S2C6H2S2)(en)]n and [Pb3C6S6]n were solved by synchrotron X-ray powder diffraction, while the structure of [Pb3(SC6H4S)3(en)2]n was solved by single-crystal X-ray diffraction. The bonding in [Pb2(S2C6H2S2)(en)]n indicates the presence of "molecular" units, while in [Pb3C6S6]n, the bonding most resembles that in an inorganic solid such as PbS. The differences in bonding are reflected in the optical and electrical properties of the materials; [Pb3C6S6]n is a semiconductor.

  2. Pre-biotic organic matter from comets and asteroids

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1989-01-01

    Only meteoritic fragments small enough to be gently decelerated by the atmosphere (10 to the -12th g to 10 to the -6th g) can deliver organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only about 0.0006 g/sq cm intact organic carbon would accumulate in 100 million years, but at the higher rates of about four billion yr ago, about 20 g/sq cm may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on earth.

  3. Bacterial biomarkers thermally released from dissolved organic matter

    USGS Publications Warehouse

    Greenwood, P.F.; Leenheer, J.A.; McIntyre, C.; Berwick, L.; Franzmann, P.D.

    2006-01-01

    Hopane biomarker products were detected using microscale sealed vessel (MSSV) pyrolysis gas chromatography-mass spectrometry (GC-MS) analysis of dissolved organic matter from natural aquatic systems colonised by bacterial populations. MSSV pyrolysis can reduce the polyhydroxylated alkyl side chain of bacteriohopanepolyols, yielding saturated hopane products which are more amenable to GC-MS detection than their functionalised precursors. This example demonstrates how the thermal conditions of MSSV pyrolysis can reduce the biologically-inherited structural functionality of naturally occurring organic matter such that additional structural fragments can be detected using GC methods. This approach complements traditional analytical pyrolysis methods by providing additional speciation information useful for establishing the structures and source inputs of recent or extant organic material. ?? 2006.

  4. Pre-biotic organic matter from comets and asteroids

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1989-01-01

    Only meteoritic fragments small enough to be gently decelerated by the atmosphere (10 to the -12th g to 10 to the -6th g) can deliver organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only about 0.0006 g/sq cm intact organic carbon would accumulate in 100 million years, but at the higher rates of about four billion yr ago, about 20 g/sq cm may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on earth.

  5. Nature of particulate organic matter in the River Indus, Pakistan

    NASA Astrophysics Data System (ADS)

    Ittekkot, Venugopalan; Arain, Rafee

    1986-08-01

    Suspended sediments from the Indus River collected during 1981 through 1983 were analyzed for POC and its constituent fractions including amino acids, amino sugars and sugars. Percentage of POC decreased with increasing suspended matter concentrations, which suggested dilution of organic matter by mineral matter. The concentrations of amino acids, amino sugars and sugars varied, respectively, between 180 and 2000 μg/l, 5 and 125 μg/l, and 60 and 1100 μg/l. Their contributions to POC varied between 2 and 60% for amino acids and amino sugars, and between 2 and 15% for sugars. They were high during low sediment discharge (February to June), and low during high sediment discharge (August and September). Suspended sediments associated with high sediment discharge periods were characterized by low ratios of: (i) aspartic acid:β-alanine (ii) glutamic acid:γ-aminobutyric acid (iii) amino acids:amino sugars (iv) hexoses:pentoses. These and the relative distribution pattern of the monosaccharides such as galactose, arabinose, mannose and xylose indicated that, not only dilution, but also differences in the sources and processes affect the POC transport in the Indus River. These result in transport of biodegraded organic matter during high sediment discharge periods: this appears to be common to other major rivers of the region, with depositional centers in deep sea areas. These rivers, with their high sediment loads, could contribute up to 8 to 11% of the global annual organic carbon burial in marine sediments.

  6. Toxicity of pulp and paper solid organic waste constituents to soil organisms.

    PubMed

    Fraser, D Scott; O'Halloran, Kathryn; van den Heuvel, Michael R

    2009-02-01

    This study examined the potential biological hazard of pulp and paper waste solids. The solids examined were chosen on the basis of the range of wood-related organic extractives and were either primary solids screened from the effluent stream before secondary treatment, or biosolids from aerated stabilisation lagoons. Acute effects were tested at the level of plants, invertebrates and soil microbes using an oat germination and growth test, earthworm survival and reproduction test, an enchytraeid worm survival and reproduction test, and standard measures of microbial respiration. This was further benchmarked against a marine bacteria toxicity test using extract of the waste solids. Resin acids and resin acid neutrals made up the greatest proportion of organic extractives measured in biosolids whereas resin acids and fatty acids were the main constituents detected in primary solids. Examination of the tissue of earthworms from the tests revealed no net bioconcentration of the organic extractives. The waste solids were not acutely toxic to any of the soil organisms as tested without any dilution. Conversely, extracts of the waste solids demonstrated toxicity in the marine bacteria. In some cases, the solid waste material enhanced the growth of plants, earthworm reproduction and microbial respiration. The only adverse affect was that reproduction of enchytraeids was reduced by some of the waste solid treatments. However these effects did not appear to be associated with concentrations of resin acid neutrals and resin acids in these materials. Overall pulp and paper wastes were relatively benign in terms of toxicity to the soil organisms tested.

  7. A comparison of soil organic matter physical fractionation methods

    NASA Astrophysics Data System (ADS)

    Duddigan, Sarah; Alexander, Paul; Shaw, Liz; Collins, Chris

    2017-04-01

    Selecting a suitable physical fractionation to investigate soil organic matter dynamics from the plethora that are available is a difficult task. An initial investigation of four different physical fractionation methods was conducted (i) Six et al. (2002); (ii) Zimmermann et al. (2007); (iii) Sohi et al. (2001); and (iv) Plaza et al. (2013). Soils used for this were from a long-term organic matter field plot study where a sandy loam soil was subjected to the following treatments: Peat (Pt), Horse Manure (H), Garden Compost (GCf), Garden Compost at half rate (GCh), and a bare plot control (BP). Although each of these methods involved the isolation of unique fractions, in the interest of comparison, each fraction was categorised as either being (i) physically protected (i.e. in aggregates); (ii) chemically protected (such as in organo-mineral complexes); or (iii) unprotected by either of these mechanisms (so-called 'free' organic matter). Regardless of the fractionation method used, a large amount of the variation in total C contents of the different treated soils is accounted for by the differences in unprotected particulate organic matter. When comparing the methods to one another there were no consistent differences in carbon content in the physically protected, chemically protected, or unprotected fractions as operationally defined across all the five organic matter treatments. Therefore fractionation method selection, for this research, was primarily driven by the practicalities of conducting each method in the lab. All of the methods tested had their limitations, for use in this research. This is not a criticism of the methods themselves but largely a result of the lack of suitability for these particular samples. For example, samples that contain a lot of gravel can lead to problems for methods that use size distribution for fractionation. Problems can also be encountered when free particulate organic matter contributes a large proportion of the sample

  8. Solid organ transplants in HIV-infected patients.

    PubMed

    Harbell, Jack; Terrault, Norah A; Stock, Peter

    2013-09-01

    There is a growing need for kidney and liver transplants in persons living with HIV. Fortunately, with the significant advances in antiretroviral therapy and management of opportunistic infections, HIV infection is no longer an absolute contraindication for solid organ transplantation. Data from several large prospective multi-center cohort studies have shown that solid organ transplantation in carefully selected HIV-infected individuals is safe. However, significant challenges have been identified including prevention of acute rejection, management of drug-drug interactions and treatment of recurrent viral hepatitis. This article reviews the selection criteria, outcomes, and special management considerations for HIV-infected patients undergoing liver or kidney transplantation.

  9. Travel medicine and the solid-organ transplant recipient.

    PubMed

    Rosen, Jessica

    2013-06-01

    More than a quarter of solid-organ transplant recipients are traveling to foreign regions where there are greater health risks than their home country. There may be higher risk of complications from typical travel-related illnesses and risk of opportunistic infections not faced by healthy travelers. Some vaccinations may be contraindicated after solid-organ transplant, and those that are safe may have decreased efficacy. Drug interactions between antirejection regimens and medications for malaria prophylaxis and traveler's diarrhea must be considered. This article discusses how providers can best advise and help protect these high-risk travelers.

  10. Emerging fungal infections in solid organ transplant recipients.

    PubMed

    Shoham, Shmuel

    2013-06-01

    The most important emerging and rare fungal pathogens in solid organ transplant recipients are the Zygomycetes, Scedosporium, Fusarium, and the dark molds. Factors affecting the emergence of these fungi include the combination of intensive immunosuppressive regimens with increasingly widespread use of long-term azole antifungal therapy; employment of aggressive diagnostic approaches (eg, sampling of bronchoalveolar lavage fluid); and changes in patients' interactions with the environment. This article reviews the epidemiology, microbiology, and clinical impact of emerging fungal infections in solid organ transplant recipients, and provides up-to-date recommendations on their treatment.

  11. Loss of organic matter from riverine particles in deltas

    SciTech Connect

    Keil, R.G.; Quay, P.D.; Richey, J.E.

    1997-04-01

    In order to examine the transport and burial of terrigenous organic matter along the coastal zones of large river systems, we assessed organic matter dynamics in coupled river/delta systems using mineral surface area as a conservative tracer for discharged riverine particulate organic matter (POM). Most POM in the rivers studied (n = 6) is tightly associated with suspended mineral materiaL e.g., it is sorbed to mineral surfaces. Average organic loadings in the Amazon River (0.67 - 0.14 Mg C m{sup -2}), the river for which we have the largest dataset, are approximately twice that of sedimentary minerals from the Amazon Delta (-0.35 mg C m{sup -2}). Stable carbon isotope analysis indicate that approximately two-thirds of the total carbon on the deltaic particles is terrestrial. The combined surface-normalized, isotope-distinguished estimate is that >70% of the Amazon fluvial POM is not buried in the delta consistent with other independent evidence. Losses of terrestrial POM have also been quantified for the river/delta systems of Columbia in the USA, Fly in New Guinea. and Huange-He in China. If the losses of riverine POM observed in these river/delta systems are representative of rivers worldwide, then the surface-constrained analyses point toward a global loss of fluvial POM in delta regions of {approximately}0.1 x 10{sup 15} g C y{sup -1}. 28 refs., 2 figs., 1 tab.

  12. Polycyclic aromatic hydrocarbon adsorption on selected solid particulate matter fractions

    NASA Astrophysics Data System (ADS)

    Bozek, Frantisek; Huzlik, Jiri; Pawelczyk, Adam; Hoza, Ignac; Naplavova, Magdalena; Jedlicka, Jiri

    2016-02-01

    This article is directed to evaluating the proportion of polycyclic aromatic hydrocarbons (PAHs) captured on particulate matter (PM) classified as PM2.5-10 and PM2.5, i.e. particulate matter of aerodynamic diameter 2.5-10 μm and 2.5 μm. During three week-long and one 2-day campaigns, 22 paired air samples were taken in parallel of PM10 and PM2.5 fractions inside the Mrázovka tunnel in Prague, Czech Republic. Following sample preparation, concentrations of individual PAHs were determined using gas chromatography combined with mass spectrometry. Concentrations of individual pairs of each PAH were tested by the nonparametric method using Spearman's rank correlation coefficient. At significance level p < 0.01, it was demonstrated that all individual PAHs, including their totals, were bound to the PM2.5 fraction. Exceptions were seen in the cases of acenaphthylene, acenaphthene, and indeno[1,2,3-cd]pyrene, the concentrations of which fluctuated around the detection limit, where increased measurement error can be expected.

  13. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter

  14. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2014-09-01

    Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (<0.4 μm) obtained by Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased

  15. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula

    PubMed Central

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-01-01

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)−CO−N2−noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system. PMID:26039983

  16. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    PubMed

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-09

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

  17. Catchment scale molecular composition of hydrologically mobilized dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Raeke, Julia; Lechtenfeld, Oliver J.; Oosterwoud, Marieke R.; Bornmann, Katrin; Tittel, Jörg; Reemtsma, Thorsten

    2016-04-01

    Increasing concentrations of dissolved organic matter (DOM) in rivers of temperate catchments in Europe and North Amerika impose new technical challenges for drinking water production. The driving factors for this decadal increase in DOM concentration are not conclusive and changes in annual temperatures, precipitation and atmospheric deposition are intensely discussed. It is known that the majority of DOM is released by few but large hydrologic events, mobilizing DOM from riparian wetlands for export by rivers and streams. The mechanisms of this mobilization and the resulting molecular composition of the released DOM may be used to infer long-term changes in the biogeochemistry of the respective catchment. Event-based samples collected over two years from streams in three temperate catchments in the German mid-range mountains were analyzed after solid-phase extraction of DOM for their molecular composition by ultra-high resolution mass spectrometry (FT-ICR MS). Hydrologic conditions, land use and water chemistry parameters were used to complement the molecular analysis. The molecular composition of the riverine DOM was strongly dependent on the magnitude of the hydrologic events, with unsaturated, oxygen-enriched compounds being preferentially mobilized by large events. This pattern is consistent with an increase in dissolved iron and aluminum concentrations. In contrast, the relative proportions of nitrogen and sulfur bearing compounds increased with an increased agricultural land use but were less affected by the mobilization events. Co-precipitation experiments with colloidal aluminum showed that unsaturated and oxygen-rich compounds are preferentially removed from the dissolved phase. The precipitated compounds thus had similar chemical characteristics as compared to the mobilized DOM from heavy rain events. Radiocarbon analyses also indicated that this precipitated fraction of DOM was of comparably young radiocarbon age. DOM radiocarbon from field samples

  18. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    NASA Astrophysics Data System (ADS)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by

  19. Thermochemical Pretreatments of Organic Fraction of Municipal Solid Waste from a Mechanical-Biological Treatment Plant

    PubMed Central

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; Romero Aguilar, María de los Ángeles; Romero García, Luis Isidoro

    2015-01-01

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160–180–200 °C, 3.5–5.0–6.5 bar and 2–3–4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process. PMID:25671816

  20. Thermochemical pretreatments of organic fraction of municipal solid waste from a mechanical-biological treatment plant.

    PubMed

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; de los Ángeles Romero Aguilar, María; Romero García, Luis Isidoro

    2015-02-09

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160-180-200 °C, 3.5-5.0-6.5 bar and 2-3-4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

  1. Condition of copper and organic matter in the soil contaminated with metal remediation of humic substances.

    NASA Astrophysics Data System (ADS)

    Kolchanova, Kseniia; Barsova, Natalia; Motuzova, Galina; Stepanov, Andrey; Karpukhin, Mikhail

    2017-04-01

    The aim of this study was to investigate the forms of copper and transformation of organic matter in the soil under the influence of humic substances (potassium humate, which was obtained from coal). The object of research was the top layer of soil model field experience. Field experiments were carried out in 10-liter plastic containers.The upper layers were constructed artificially as mixture of loam, sand and peat. Below it was a layer of loam, then gravel and under it we installed lysimeters. The experiment was conducted in 3 settings: 1) control, 2) control + Cu, and 3) control + Cu + potassium humate . Copper was deposited into upper layer at soil column construction as dry powder (CuSO4*5H2O), which is 1000mg per kg. Humic substance was introduced on surface as liquid form. The focus was the state of the copper and organic matter of solid and liquid phase. In the solid phase pH, carbon content, the molecular-mass distributions for the organic matter, total (HNO3 conc.+ H2O2; decomposition in a microwave oven) and acid-soluble (1H HNO3) copper content, sequential extraction of copper (1 M MgCl2, acetate buffer pH 4,8 (AAB), 1% EDTA) were determined. For liquid phase characteristics aqueous extract was obtained and identified therein: pH, total activity and copper content and water-soluble organic matter(WOM) amphiphilic properties. The introduction of copper is accompanied by a decrease in pH in soils from 7 to 6,3. The introduction of the humic substance softens this effect. Introducing humic preparation gives an increase in carbon at 0.5%. HS and copper has no significant effect on the molecular-mass distribution of solid organic matter. Only about 4% introduced copper accounted for the exchangeable form (MgCl2) for the variant only copper contaminated. Copper, mainly precipitated as hydroxides, moved in an AAB extract. And compared with the exchangeable forms its quantity increases by 10 times. Still more copper goes into an extract of EDTA, about half of

  2. Organic matter determination for street dust in Delhi.

    PubMed

    Shandilya, Kaushik K; Khare, Mukesh; Gupta, A B

    2013-06-01

    The organic matter of street dust is considered as one of the causes for high human mortality rate. To understand the association, the street dust samples were collected from four different localities (industrial, residential, residential-commercial, and commercial) situated in the greater Delhi area of India. The loss-on-ignition method was used to determine the organic matter (OM) content in street dust. The OM content, potassium, calcium, sulfate, and nitrate concentrations of street dust in Delhi, India is measured to understand the spatial variation. Correlation analysis, analysis of variance, and factor analysis were performed to define the sources. The dust OM level ranges from 2.63 to 10.22 %. It is found through correlation and factor analysis that OM is primarily contributed from secondary aerosol and vehicular exhaust. The OM levels suggest that the use of a residential-commercial site for commercial purposes is polluting the street dust and creating the environmental and human health problems.

  3. Selective extraction of PAHs from a sediment with structural preservation of Natural Organic Matter.

    PubMed

    Merdy, Patricia; Achard, Romain; Samaali, Ismahen; Lucas, Yves

    2014-07-01

    Selective extraction of Polycyclic Aromatic Hydrocarbons (PAH) without structural modification of the Natural Organic Matter (NOM) from a heavily contaminated sediment was investigated using various solvents mixtures. Structural modification of the NOM was monitored after extraction using 3D-fluorescence spectroscopy. Better results were obtained with a 15-h PAH extraction under reflux with a dichloromethane/cyclohexane 20/80 mixture. The experimental procedure was validated with NOM standard materials before to be applied on natural sediments. It could be applied to any environmental solid sample such as sediments and soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Chemical fractionation-enhanced structural characterization of marine dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Arakawa, N.; Aluwihare, L.

    2016-02-01

    Describing the molecular fingerprint of dissolved organic matter (DOM) requires sample processing methods and separation techniques that can adequately minimize its complexity. We have employed acid hydrolysis as a way to make the subcomponents of marine solid phase-extracted (PPL) DOM more accessible to analytical techniques. Using a combination of NMR and chemical derivatization or reduction analyzed by comprehensive (GCxGC) gas chromatography, we observed chemical features strikingly similar to terrestrial DOM. In particular, we observed reduced alicylic hydrocarbons believed to be the backbone of previously identified carboxylic rich alicyclic material (CRAM). Additionally, we found carbohydrates, amino acids and small lipids and acids.

  5. Photochemical Degradation of Persistent Organic Pollutants: A Study of Ice Photochemistry Mediated by Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Bobby, R.; Pagano, L.; Grannas, A. M.

    2012-12-01

    It is well established that ice is a reactive medium in the environment and that active photochemistry occurs in frozen systems. Snow and ice contain a number of absorbing species including nitrate, peroxide and organic matter. Upon irradiation, they can generate a variety of reactive intermediates such as hydroxyl radical and singlet oxygen. It has been shown that dissolved organic matter is a ubiquitous component of snow and ice and plays an important role in overall light absorption properties of the sample. Additionally, the reactive intermediates produced can further react with contaminants present and alter their fate in the environment. Unfortunately, the role of dissolved organic matter in ice photochemistry has received little attention. Here we present results from laboratory-based studies aimed at elucidating the role of dissolved organic matter photochemistry on contaminant degradation in ice. Aqueous samples of our target pollutant, aldrin (20 μg/L), in liquid and frozen phases, were irradiated under Q-Panel 340 lamps to simulate the UV radiation profile of natural sunlight. Results indicated that frozen samples degraded more quickly than liquid samples and that the addition of dissolved organic matter increases the aldrin degradation rate significantly. Both terrestrial (Suwannee River, U.S.) and microbial sources (Pony Lake, Antarctica) of DOM were able to sensitize aldrin loss in ice. Scavengers of singlet oxygen, such as furfuryl alcohol and β-carotene, were also added to DOM solutions. Based on the type of organic matter present, the scavengers had different effects on the photochemical degradation of aldrin. Our results indicate that natural organic matter present in ice is an important component of ice photochemical processes.

  6. Organic matter and benthic metabolism in Lake Illawarra, Australia

    NASA Astrophysics Data System (ADS)

    Qu, Wenchuan; Morrison, R. J.; West, R. J.; Su, Chenwei

    2006-10-01

    Carbon and nitrogen contents (total organic carbon and total nitrogen), chlorophyll-a concentrations in surface sediments and benthic sediment-water fluxes of oxygen and carbon dioxide were investigated at five stations in Lake Illawarra (Australia) to compare the sources/quality of sedimentary organic matter and the characteristics of diagenesis and benthic biogeochemical processes for different primary producers (e.g., seagrass, microphytobenthos and macroalgae) and/or sediment types (sand or mud). The unvegetated sediments showed lower C/N ratios (with the lowest value occurring in the deep organic-rich muddy site) than the seagrass ( Ruppia or Zostera) beds, which may be due to the contribution of microalgae (mainly diatoms) to the sedimentary organic matter pool. This was also supported by the detection of microalgal pigments in the bare sediments. On an annual basis, seagrass beds exhibited the highest gross primary productivity (O 2 or TCO 2 fluxes), while the lowest rates occurred in the deep central basin of the Lake. Seasonally, there was a general trend of highest production in spring or summer, and lowest production in winter or autumn. Organic carbon oxidation scenarios, evaluated by either calcium carbonate dissolution or sulfate reduction models, indicated that both models can explain organic matter mineralization. Trophic status was evaluated using different indices including benthic trophic state index, net O 2 fluxes and P/ R ratios for Lake Illawarra, which led to similar trophic classifications in general, and also the same trends in spatial and seasonal variations. Overall, these data indicated that the Lake was heterotrophic on an annual basis, as the total community carbon respiration exceeded production, and this supported an earlier LOICZ mass balance/stoichiometric modelling conclusion.

  7. Production of Dissolved Organic Matter During Doliolid Feeding

    NASA Astrophysics Data System (ADS)

    Castellane, N. J.; Paffenhofer, G. A.; Stubbins, A.

    2016-02-01

    The biological carbon pump (BCP) draws carbon dioxide out of the atmosphere and buries it at the seafloor. The efficiency of the BCP is determined in part by the sinking rates of particulate organic carbon (POC) from ocean surface waters. Zooplankton can package POC into fecal pellets with higher sinking rates than their food source (e.g. phytoplankton), increasing the efficiency of the BCP. However, dissolved organic carbon (DOC) is also produced as zooplankton ingest and egest food, reducing the efficiency of BCP. The pelagic tunicate Dolioletta gegenbauri (doliolid) is a gelatinous zooplankton found at high concentrations in shelf waters, including our study site: the South Atlantic Bight. Doliolids are efficient grazers capable of stripping large quantities of phytoplankton from the water column. To determine the balance between pellet formation and DOC production during feeding, doliolids (6-7 mm gonozooids) were placed in natural seawater amended with a live phytoplankton food source and incubated on a plankton wheel. Dissolved organic matter (DOM) released directly to the water as well as the water soluble fraction of pellet organic matter were quantified and optically characterized. Colored dissolved organic matter (CDOM) absorbance and fluorescence spectra revealed that doliolid feeding produces DOM with optical properties that are commonly indicative of newly produced, highly biolabile DOM of microbial origin. Based upon these optical characteristics, doliolid-produced DOM is expected to be highly bio-labile in the environment and therefore rapidly degraded by surface ocean microbes shunting phytoplankton-derived organic carbon out of the BCP and back to dissolved inorganic carbon.

  8. Porous organic molecular solids by dynamic covalent scrambling.

    PubMed

    Jiang, Shan; Jones, James T A; Hasell, Tom; Blythe, Charlotte E; Adams, Dave J; Trewin, Abbie; Cooper, Andrew I

    2011-02-22

    The main strategy for constructing porous solids from discrete organic molecules is crystal engineering, which involves forming regular crystalline arrays. Here, we present a chemical approach for desymmetrizing organic cages by dynamic covalent scrambling reactions. This leads to molecules with a distribution of shapes which cannot pack effectively and, hence, do not crystallize, creating porosity in the amorphous solid. The porous properties can be fine tuned by varying the ratio of reagents in the scrambling reaction, and this allows the preparation of materials with high gas selectivities. The molecular engineering of porous amorphous solids complements crystal engineering strategies and may have advantages in some applications, for example, in the compatibilization of functionalities that do not readily cocrystallize.

  9. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  10. Temperature sensitivity of organic-matter decay in tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Guntenspergen, G. R.; Langley, J. A.

    2014-09-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  11. Methylmercury production in estuarine sediments: role of organic matter

    PubMed Central

    Schartup, Amina T.; Mason, Robert P.; Balcom, Prentiss H.; Hollweg, Terill A.; Chen, Celia Y.

    2013-01-01

    Methylmercury (MeHg) affects wildlife and human health mainly through marine fish consumption. In marine systems, MeHg is formed from inorganic mercury (HgII) species primarily in sediments then accumulates and biomagnifies in the food web. Most of the fish consumed in the US are from estuarine and marine systems highlighting the importance of understanding MeHg formation in these productive regions. Sediment organic matter has been shown to limit mercury methylation in estuarine ecosystems, as a result it is often described as the primary control over MeHg production. In this paper, we explore the role of organic matter by looking at the effects of its changing sediment concentrations on the methylation rates across multiple estuaries. We measured sedimentary MeHg production at eleven estuarine sites that were selected for their contrasting biogeochemical characteristics, mercury (Hg) content, and location in the Northeastern US (ME, NH, CT, NY, and NJ). Sedimentary total Hg concentrations ranged across five orders of magnitude, increasing in concentration from the pristine, sandy sediments of Wells (ME), to industrially contaminated areas like Portsmouth (NH) and Hackensack (NJ). We find that methylation rates are the highest at locations with high Hg content (relative to carbon), and that organic matter does not hinder mercury methylation in estuaries. PMID:23194318

  12. Terrestrial dominance of organic matter in north temperate lakes

    NASA Astrophysics Data System (ADS)

    Wilkinson, G.; Pace, M. L.; Cole, J. J.

    2012-12-01

    Aquatic ecosystems are hotspots of decomposition and a source of carbon dioxide to the atmosphere that is globally significant. Carbon exported from land (allochthonous) also supplements the carbon fixed by photosynthesis in aquatic ecosystems (autochthonous), contributing to the organic matter (OM) that supports aquatic consumers. Although the presence of terrestrial compounds in aquatic OM is well known, the contribution of terrestrial versus aquatic sources to the composition of OM has been quantified for only a handful of systems. Here we use stable isotopes of hydrogen and carbon to demonstrate that the terrestrial contribution to particulate organic matter (POM) is as large or larger (mean=54.6% terrestrial) than the algal contribution in 39 lakes of the northern highlands region of Wisconsin and Michigan. Further, the largest carbon pool, dissolved organic matter (DOM), is strongly dominated by allochthonous material (mean for the same set of lakes approximately 100% terrestrial). Among lakes, increases in terrestrial contribution to POM are significantly correlated with more acidic pH. Extrapolating this relationship using a survey of pH in 1692 lakes in the region reveals that, with the exception of eutrophic lakes, most of the OM in lakes is of terrestrial origin. These results are consistent with the growing evidence that terrestrial OM may support many lake food webs, and that lakes are significant conduits for returning degraded terrestrial carbon to the atmosphere.

  13. Terrestrial dominance of organic matter in north temperate lakes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Grace M.; Pace, Michael L.; Cole, Jonathan J.

    2013-01-01

    Aquatic ecosystems are hotspots of decomposition and sources of carbon dioxide to the atmosphere that are globally significant. Carbon exported from land (allochthonous) also supplements the carbon fixed by photosynthesis in aquatic ecosystems (autochthonous), contributing to the organic matter (OM) that supports aquatic consumers. Although the presence of terrestrial compounds in aquatic OM is well known, the contribution of terrestrial versus aquatic sources to the composition of OM has been quantified for only a handful of systems. Here we use stable isotopes of hydrogen and carbon to demonstrate that the terrestrial contribution (ΦTerr) to particulate organic matter (POM) is as large or larger (mean = 54.6% terrestrial) than the algal contribution in 39 lakes of the northern highlands region of Wisconsin and Michigan. Further, the largest carbon pool, dissolved organic matter (DOM), is strongly dominated by allochthonous material (mean for the same set of lakes approximately 100% terrestrial). Among lakes, increases in terrestrial contribution to POM are significantly correlated with more acidic pH. Extrapolating this relationship using a survey of pH in 1692 lakes in the region reveals that, with the exception of eutrophic lakes, most of the OM in lakes is of terrestrial origin. These results are consistent with the growing evidence that lakes are significant conduits for returning degraded terrestrial carbon to the atmosphere.

  14. Matrix protected organic matter in a river dominated margin: A possible mechanism to sequester terrestrial organic matter?

    NASA Astrophysics Data System (ADS)

    Mead, Ralph N.; Goñi, Miguel A.

    2008-06-01

    The provenance of organic matter in surface sediments from the northern Gulf of Mexico was investigated by analyzing the compositions of lipid biomarkers ( n-alkanes, fatty acids, sterols) liberated after a series of chemical treatments designed to remove different organo-mineral matrix associations (i.e. freely extractable, base-hydrolyzable, unhydrolyzable). Bulk analyses of the organic matter (carbon content, carbon:nitrogen ratios, stable and radiocarbon isotopic analyses) were also performed on the intact sediments and their non-hydrolyzable, demineralized residue. We found recognizable lipids from distinct sources, including terrestrial vascular plants, bacteria and marine algae and zooplankton, within each of the isolated fractions. Based on the lipid signatures and bulk compositions, the organic matter within the unhydrolyzable fractions appeared to be the most diagenetically altered, was the oldest in age, and had the highest abundance of terrigenous lipids. In contrast, the base-hydrolyzable fraction was the most diagentically unaltered, had the youngest ages and was most enriched in N and marine lipids. Our results indicate that fresh, autochthonous organic matter is the most important contributor to base-hydrolyzable lipids, whereas highly altered allochthonous sources appear to be predominant source of unhydrolyzable lipids in the surface sediments from the Atchafalaya River shelf. Overall, the lipid biomarker signatures of intact sediments were biased towards the autochthonous source because many of the organic compounds indicative of degraded, terrigenous sources were protected from extraction and saponification by organo-mineral matrices. It is only after these protective matrices were removed by treatment with HCl and HF that these compounds became evident.

  15. The Impact of Microbial Metabolism on Marine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Kujawinski, Elizabeth B.

    2011-01-01

    Microbes mediate global biogeochemical cycles through their metabolism, and all metabolic processes begin with the interaction between the microbial cell wall or membrane and the external environment. For all heterotrophs and many autotrophs, critical growth substrates and factors are present within the dilute and heterogeneous mixture of compounds that constitutes dissolved organic matter (DOM). In short, the microbe-molecule interaction is one of the fundamental reactions within the global carbon cycle. Here, I summarize recent findings from studies that examine DOM-microbe interactions from either the DOM perspective (organic geochemistry) or the microbe perspective (microbial ecology). Gaps in our knowledge are highlighted and future integrative research directions are proposed.

  16. Comments on D/H ratios in chondritic organic matter

    NASA Astrophysics Data System (ADS)

    Smith, J. W.; Rigby, D.

    1981-06-01

    D/H ratios in chondritic organic matter are investigated. Demineralized organic residues obtained from previous experiments were dried in a quartz reaction vessel under vacuum for 60 minutes at 250-300 C and then combusted in oxygen for 20 minutes at 850 C. The apparatus is described and the results of the experiments such as D/H ratios in water and measurements on total carbon dioxide are given. Atomic H/C ratios calculated directly from the quantities of carbon dioxide and water recovered, are reported according to Standard Mean Ocean Water and Pee Dee Belemnite, using the customary notation.

  17. Microorganisms and typical organic matter responsible for lacustrine "black bloom".

    PubMed

    Feng, Ziyan; Fan, Chengxin; Huang, Weiyi; Ding, Shiming

    2014-02-01

    Identifying the causation of the black substance in lacustrine "black bloom" is of great significance for forecasting and preventing black bloom in many waters of the world. In this research, an array of black bloom was simulated in a laboratory to investigate how microorganisms and organic matter affect black bloom. Sulphate-reducing bacteria (SRB) are the main biological factor, and protein is the key organic factor contributing to lacustrine black bloom. The black colour of black bloom is strongly associated with a relatively high SRB population density. Hydrogen sulphide concentration can serve as a predictor of black bloom. © 2013.

  18. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  19. Organic matter in meteorites and comets - Possible origins

    NASA Astrophysics Data System (ADS)

    Anders, E.

    1991-04-01

    At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.

  20. Plutonium Immobilization and Mobilization by Soil Organic Matter

    SciTech Connect

    Santschi, Peter H.; Schwehr, Kathleen A.; Xu, Chen; Athon, Matthew; Ho, Yi-Fang; Hatcher, Patrick G.; Didonato, Nicole; Kaplan, Daniel I.

    2016-03-08

    The human and environmental risks associated with Pu disposal, remediation, and nuclear accidents scenarios stems mainly from the very long half-lives of several of its isotopes. The SRS, holding one-third of the nation’s Pu inventory, has a long-term stewardship commitment to investigation of Pu behavior in the groundwater and downgradient vast wetlands. Pu is believed to be essentially immobile due to its low solubility and high particle reactivity to mineral phase or natural organic matter (NOM). For example, in sediments collected from a region of SRS, close to a wetland and a groundwater plume, 239,240Pu concentrations suggest immobilization by NOM compounds, as Pu correlate with NOM contents. Micro-SXRF data indicate, however, that Pu does not correlate with Fe. However, previous studies reported Pu can be transported several kilometers in surface water systems, in the form of a colloidal organic matter carrier, through wind/water interactions. The role of NOM in both immobilizing or re-mobilizing Pu thus has been demonstrated. Our results indicate that more Pu (IV) than (V) was bound to soil colloidal organic matter (COM), amended at far-field concentrations. Contrary to expectations, the presence of NOM in the F-Area soil did not enhance Pu fixation to the organic-rich soil, when compared to the organic-poor soil or the mineral phase from the same soil source, due to the formation of COM-bound Pu. Most importantly, Pu uptake by organic-rich soil decreased with increasing pH because more NOM in the colloidal size desorbed from the particulate fraction at elevated pH, resulting in greater amounts of Pu associated with the COM fraction. This is in contrast to previous observations with low-NOM sediments or minerals, which showed increased Pu uptake with increasing pH levels. This demonstrates that despite Pu immobilization by NOM, COM can convert Pu into a more mobile form. Sediment Pu concentrations in the SRS F-Area wetland were correlated to total organic

  1. Organic matter in meteorites and comets - Possible origins

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1991-01-01

    At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.

  2. Experiences Spreading Organic Solid Wastes on Forest Land

    Treesearch

    J.H. Wilhoit; L.J. Samuelson

    1998-01-01

    This paper reviews experiences spreading organic solid wastes on forest land over the past six years. Presented are some of the first-ever reported results on tree growth responses from fertilizing pine trees with poultry litter, spreader distribution pattern results for spreading in a pine plantation stand, and a discussion of equipment-related experiences spreading...

  3. Source Separation and Composting of Organic Municipal Solid Waste.

    ERIC Educational Resources Information Center

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  4. SORPTION OF ORGANICS ON WASTEWATER SOLIDS: CORRELATION WITH FUNDAMENTAL PROPERTIES.

    EPA Science Inventory

    Sorption of toxic organic compounds on primary, mixed-liquor, and digested solids from municipal wastewater treatment plants has been correlated with octanol/water partition coefficients arid with modified Randic indexes. he correlations developed are useful for assessing the rol...

  5. Hepatitis E Virus Infection in Solid Organ Transplant Recipients, France

    PubMed Central

    Lhomme, Sebastien; Bardiaux, Laurent; Abravanel, Florence; Gallian, Pierre; Kamar, Nassim

    2017-01-01

    The rate of transfusion-transmitted hepatitis E virus (HEV) in transplant recipients is unknown. We identified 60 HEV-positive solid organ transplant patients and retrospectively assessed their blood transfusions for HEV. Seven of 60 patients received transfusions; 3 received HEV-positive blood products. Transfusion is not the major route of infection in this population. PMID:28098552

  6. SORPTION OF ORGANICS ON WASTEWATER SOLIDS: CORRELATION WITH FUNDAMENTAL PROPERTIES.

    EPA Science Inventory

    Sorption of toxic organic compounds on primary, mixed-liquor, and digested solids from municipal wastewater treatment plants has been correlated with octanol/water partition coefficients arid with modified Randic indexes. he correlations developed are useful for assessing the rol...

  7. Source Separation and Composting of Organic Municipal Solid Waste.

    ERIC Educational Resources Information Center

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  8. Interfacial Effects and Organization of Inorganic-Organic Composite Solids.

    DTIC Science & Technology

    1998-05-20

    almost an amorphous calcium phosphate which transforms into a mixture of onented hydroxyapatite (HAP) and octacalcium phosphate (OCP). Subsequent growth...LIQUID- PRECURSOR PHASE IN CALCIUM CARBONATES: A NEW STRATEGY FOR BIOMIMETICS?, Laurie A. Gower, Univ of Massachusetts, .Polymer Science...Exquisite control over these organic precursors —in terms of their shape, size, uniformity, function, and chemical attributes — is based on the ability

  9. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    EPA Science Inventory

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  10. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    EPA Science Inventory

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  11. Iron traps terrestrially derived dissolved organic matter at redox interfaces.

    PubMed

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-06-18

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters.

  12. Soil Quality of Restinga Forest: Organic Matter and Aluminum Saturation

    NASA Astrophysics Data System (ADS)

    Rodrigues Almeida Filho, Jasse; Casagrande, José Carlos; Martins Bonilha, Rodolfo; Soares, Marcio Roberto; Silva, Luiz Gabriel; Colato, Alexandre

    2013-04-01

    The restinga vegetation (sand coastal plain vegetation) consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga) and medium regeneration stages (low restinga), each with particular differentiating vegetation characteristics. Of all ecosystems of the Atlantic Forest, restinga is the most fragile and susceptible to anthropic disturbances. The purpose of this study was evaluating the organic matter and aluminum saturation effects on soil quality index (SQI). Two locations were studied: State Park of the Serra do Mar, Picinguaba, in the city of Ubatuba (23°20' e 23°22' S / 44°48' e 44°52' W), and State Park of Cardoso Island in the city of Cananéia (25°03'05" e 25°18'18" S / 47°53'48" e 48° 05'42" W). The soil samples were collect at a depth of 0-10 cm, where concentrate 70% of vegetation root system. Was studied an additive model to evaluate soil quality index. The shallow root system development occurs due to low calcium levels, whose disability limits their development, but also can reflect on delay, restriction or even in the failure of the development vegetation. The organic matter is kept in the soil restinga ecosystem by high acidity, which reduces the decomposition of soil organic matter, which is very poor in nutrients. The base saturation, less than 10, was low due to low amounts of Na, K, Ca and Mg, indicating low nutritional reserve into the soil, due to very high rainfall and sandy texture, resulting in high saturation values for aluminum. Considering the critical threshold to 3% organic matter and for aluminum saturation to 40%, the IQS ranged from 0.95 to 0.1 as increased aluminum saturation and decreased the soil organic matter, indicating the main limitation to the growth of plants in this type of soil, when deforested.

  13. Using Riverine Natural Organic Matter to Test the Hypothesis that Soil Organic Matter is Modified by Contact with Sodium Hydroxide

    NASA Astrophysics Data System (ADS)

    Perdue, E. Michael; Driver, Shamus; Hertkorn, Norbert; Harir, Mourad; Schmitt-Kopplin, Philippe

    2016-04-01

    It has been postulated by some scientists that soil humic acids and fulvic acids are an artifact of alkaline extractions of soil. Riverine natural organic matter (NOM) is obtained in part by dissolution and transport of organic matter from soils by meteoric waters at acidic to circumneutral pH. The NOM may be fractionated into humic acid (HA), fulvic acid (FA), and hydrophilic NOM by adsorption of HA and FA onto XAD-8 resin at pH < 2, followed by their desorption with NaOH at pH 13. Alternatively, riverine NOM may be concentrated using reverse osmosis (RO) and desalted by cation exchange. Several properties of Suwannee River NOM prior to its isolation, after concentration by RO, and after the XAD-8 process are compared to detect modifications that might have resulted from exposure of the sample to low and high pH.

  14. Soil organic matter regulates molybdenum storage and mobility in forests

    USGS Publications Warehouse

    Marks, Jade A; Perakis, Steven; King, Elizabeth K; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  15. Isotopic constraints on the origin of meteoritic organic matter

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.

    1991-01-01

    Salient features of the isotopic distribution of H, C and N in the organic material found in carbonaceous meteorites are noted. Most organic fractions are strongly enriched in D with respect to the D/H ratio characteristic of H2 in the protosolar system; substantial variations in C-13/C-12 ratio are found among different molecular species, with oxidised species tending to be C-13 enriched relative to reduced species; some homologous series reveal systematic decrease in C-13/C-12 with increasing C number; considerable variation in N-15/N-14 ratio is observed within organic matter, though no systematic pattern to its distribution has yet emerged; no interelement correlations have been observed between isotope enrichments for the different biogenic elements. The isotopic complexity echoes the molecular diversity observed in meteoritic organic matter and suggests that the organic matter was formed by multiple processes and/or from multiple sources. However, existence of a few systematic patterns points towards survival of isotopic signatures characteristic of one or more specific processes. The widespread D enrichment implies either survival of many species of interstellar molecule or synthesis from a reservoir containing a significant interstellar component. Several of the questions raised above can be addressed by more detailed determination of the distribution of the H, C and N isotopes among different well-characterized molecular fractions. Thus, the present study is aimed at discovering whether the different amino acids have comparable D enrichments, which would imply local synthesis from a D-enriched reservoir, or very viable D enrichments, which would imply survival of some interstellar amino acids. The same approach is also being applied to polycyclic aromatic hydrocarbons. Because the analytical technique employed (secondary ion mass spectrometry) can acquire data for all three isotopic systems from each molecular fraction, any presently obscured interelement

  16. Exploring the Solid Rocket Boosters and Properties of Matter

    NASA Technical Reports Server (NTRS)

    Moffett, Amy

    2007-01-01

    I worked for the United Space Alliance, LLC (USA) with the Solid Rocket Booster (SRB) Materials and Process engineers (M&P). I was assigned a project in which I needed to research and collect chemical and physical properties information, material safety data sheets (MSDS), and other product information from the vendor's websites and existing "inhouse" files for a select group of materials used in building and refurbishing the SRBs. This information was then compiled in a report that summarized the information collected. My work site was at the Kennedy Space Center (KSC). This allowed for many opportunities to visit and tour sites operated by NASA, by USA, and by the Air Force. This included the vehicle assembly building (VAB), orbital processing facilities (OPF), the crawler with the mobile launch pad (MLP), and the SRB assembly and refurbishment facility (ARF), to name a few. In addition, the launch, of STS- 117 took place within the first week of employment allowing a day by day following of that mission including post flight operations for the SRBs. Two Delta II rockets were also launched during these 7 weeks. The sights were incredible and the operations witnessed were amazing. I learned so many things I never knew about the entire program and the shuttle itself. The entire experience, especially my work with the SRB materials, inspired my plan for implementation into the classroom.

  17. Comparison of carbonaceous particulate matter emission factors among different solid fuels burned in residential stoves

    NASA Astrophysics Data System (ADS)

    Shen, Guofeng; Xue, Miao; Chen, Yuanchen; Yang, Chunli; Li, Wei; Shen, Huizhong; Huang, Ye; Zhang, Yanyan; Chen, Han; Zhu, Ying; Wu, Haisuo; Ding, Aijun; Tao, Shu

    2014-06-01

    Uncertainty in the emission factor (EF) usually contributes largely to the overall uncertainty in the emission inventory. In the present study, the locally measured EFs of particulate matter (PM), organic carbon (OC), and elemental carbon (EC) for solid fuels burned in the residential sector are compiled and compared. These fuels are classified into seven sub-groups of anthracite briquette, anthracite chunk, bituminous briquette, bituminous chunk, crop residue, fuel wood log, and brushwood/branches. The EFs of carbonaceous particles for these fuels vary significantly, generally in the order of anthracite (briquette and chunk) < wood log < brushwood/branches < crop residue < bituminous (briquette and chunk), with an exception that the brushwood/branches have a relatively high EF of EC. The ratio of EC/OC varies significantly among different fuels, and is generally higher for biomass fuel than that for coal because of the intense flaming conditions formed during the biomass burning process in improved stoves. Distinct ratios calls for a future study on the potential health and climate impacts of carbonaceous PM from the residential combustions of different fuels. A narrow classification of these fuels significantly reduces the variations in the EFs of PM, OC, and EC, and the temporal and geographical distributions of the emissions could be better characterized.

  18. Outcomes of Solid Organ Transplants After Simultaneous Solid Organ and Vascularized Composite Allograft Procurements: A Nationwide Analysis.

    PubMed

    Aycart, Mario A; Alhefzi, Muayyad; Sharma, Gaurav; Krezdorn, Nicco; Bueno, Ericka M; Talbot, Simon G; Carty, Matthew J; Tullius, Stefan G; Pomahac, Bohdan

    2017-06-01

    Current knowledge of the impact of facial vascularized composite allograft (VCA) procurement on the transplantation outcomes of the concomitantly recovered solid organs is limited to isolated case reports and short-term results. Here we report on a nationwide analysis of facial allograft donor surgery experience and long-term outcomes of the concomitantly recovered solid organs and their recipients. There were 10 facial VCA procurements in organ donors between December 2008 and October 2014. We identified the population of subjects who received solid organs from these 10 donors using the Scientific Registry of Transplant Recipients. We retrospectively reviewed operative characteristics, intraoperative parameters, and postoperative outcomes. Six of 10 donor surgeries were performed at outside institutions, all on brain-dead donors. Mean operative duration for facial VCA recovery was 6.9 hours (range, 4-13.25 hours). A total of 36 solid organs were recovered and transplanted into 35 recipients. Survival rates for kidney and liver recipients were 100% and 90% at a median follow-up of 33 and 27.5 months, respectively (range, 6-72 months). Graft survival rates for kidneys and livers were 15 of 16 (94%) and 9 of 10 (90%), respectively. Recipient and graft survival rates for hearts and lungs were 75% (n = 4) and 100% (n = 3) at mean follow-up time of 14.75 and 16 months, respectively. A liver recipient died at 22 months from unknown causes and a heart recipient died of leukemia at 10 months. Facial VCA procurement does not appear to adversely affect the outcomes of transplant recipients of concomitantly recovered solid organ allografts.

  19. Transmission of Babesia microti Parasites by Solid Organ Transplantation

    PubMed Central

    Herwaldt, Barbara L.; Kazmierczak, James J.; Weiss, John W.; Klein, Christina L.; Leith, Catherine P.; He, Rong; Oberley, Matthew J.; Tonnetti, Laura; Wilkins, Patricia P.; Gauthier, Gregory M.

    2016-01-01

    Babesia microti, an intraerythrocytic parasite, is tickborne in nature. In contrast to transmission by blood transfusion, which has been well documented, transmission associated with solid organ transplantation has not been reported. We describe parasitologically confirmed cases of babesiosis diagnosed ≈8 weeks posttransplantation in 2 recipients of renal allografts from an organ donor who was multiply transfused on the day he died from traumatic injuries. The organ donor and recipients had no identified risk factors for tickborne infection. Antibodies against B. microti parasites were not detected by serologic testing of archived pretransplant specimens. However, 1 of the organ donor’s blood donors was seropositive when tested postdonation and had risk factors for tick exposure. The organ donor probably served as a conduit of Babesia parasites from the seropositive blood donor to both kidney recipients. Babesiosis should be included in the differential diagnosis of unexplained fever and hemolytic anemia after blood transfusion or organ transplantation. PMID:27767010

  20. Transmission of Babesia microti Parasites by Solid Organ Transplantation.

    PubMed

    Brennan, Meghan B; Herwaldt, Barbara L; Kazmierczak, James J; Weiss, John W; Klein, Christina L; Leith, Catherine P; He, Rong; Oberley, Matthew J; Tonnetti, Laura; Wilkins, Patricia P; Gauthier, Gregory M

    2016-11-01

    Babesia microti, an intraerythrocytic parasite, is tickborne in nature. In contrast to transmission by blood transfusion, which has been well documented, transmission associated with solid organ transplantation has not been reported. We describe parasitologically confirmed cases of babesiosis diagnosed ≈8 weeks posttransplantation in 2 recipients of renal allografts from an organ donor who was multiply transfused on the day he died from traumatic injuries. The organ donor and recipients had no identified risk factors for tickborne infection. Antibodies against B. microti parasites were not detected by serologic testing of archived pretransplant specimens. However, 1 of the organ donor's blood donors was seropositive when tested postdonation and had risk factors for tick exposure. The organ donor probably served as a conduit of Babesia parasites from the seropositive blood donor to both kidney recipients. Babesiosis should be included in the differential diagnosis of unexplained fever and hemolytic anemia after blood transfusion or organ transplantation.

  1. Management of febrile neutropenia in solid organ malignancies following chemotherapy.

    PubMed

    Lakshmaiah, Kuntegowdanahalli C; Abhayakumar, S M; Shetty, Rachan; Loknath, D; Jayashree, R S; Govindbabu, K

    2014-01-01

    Febrile neutropenia is a medical emergency and it requires immediate hospitalization for evaluation and administration of empiric broad-spectrum antibiotics. The present study was undertaken to analyze the infectious agents, choice of empiric antibiotics, and outcome in high-risk febrile neutropenia in the solid organ malignancies. In this study, 92 high risk febrile neutropenic episodes were analyzed in 72 patients with solid organ malignancies. We used cefoperazone-sulbactum as an initial empiric antibiotic. Piperacillin/tazobactum or carbapenems were added to the patients who did not respond to initial antibiotic. Among the 92 episodes treated, most patients received first-line chemotherapy for locally advanced disease. Microbes were isolated in 25% of febrile neutropenic episodes. Gram-negative organism (61.70%) constituted the most common isolates. The most common microbes identified were E. coli and Staphylococcus aureus in blood, Klebsiella pneumonia in sputum and E. coli in urine culture. Patients who had been treated with cefoperazone-sulbactum improved clinically in 70.6% of febrile neutropenic episodes. Second- line antibiotics (piperacillin-tazobactum with amikacin) were required in 24% episodes, while another 5.4% episodes required third-line antibiotics (carbapenems). In this study, mortality was seen in 12% of febrile neutropenic episodes. Staphylococcus aureus was 100% sensitive to linezolid, teicoplanin, and vancomycin, whereas Gram-negative organisms were 100% sensitive to imepenem and meropenem. Cephaperazone-sulbactum is a reasonable initial choice for empirical therapy in high risk febrile neutropenic patients in solid organ malignancies.

  2. Long-term outcomes of children after solid organ transplantation

    PubMed Central

    Kim, Jon Jin; Marks, Stephen D.

    2014-01-01

    Solid organ transplantation has transformed the lives of many children and adults by providing treatment for patients with organ failure who would have otherwise succumbed to their disease. The first successful transplant in 1954 was a kidney transplant between identical twins, which circumvented the problem of rejection from MHC incompatibility. Further progress in solid organ transplantation was enabled by the discovery of immunosuppressive agents such as corticosteroids and azathioprine in the 1950s and ciclosporin in 1970. Today, solid organ transplantation is a conventional treatment with improved patient and allograft survival rates. However, the challenge that lies ahead is to extend allograft survival time while simultaneously reducing the side effects of immunosuppression. This is particularly important for children who have irreversible organ failure and may require multiple transplants. Pediatric transplant teams also need to improve patient quality of life at a time of physical, emotional and psychosocial development. This review will elaborate on the long-term outcomes of children after kidney, liver, heart, lung and intestinal transplantation. As mortality rates after transplantation have declined, there has emerged an increased focus on reducing longer-term morbidity with improved outcomes in optimizing cardiovascular risk, renal impairment, growth and quality of life. Data were obtained from a review of the literature and particularly from national registries and databases such as the North American Pediatric Renal Trials and Collaborative Studies for the kidney, SPLIT for liver, International Society for Heart and Lung Transplantation and UNOS for intestinal transplantation. PMID:24860856

  3. Long-term outcomes of children after solid organ transplantation.

    PubMed

    Kim, Jon Jin; Marks, Stephen D

    2014-01-01

    Solid organ transplantation has transformed the lives of many children and adults by providing treatment for patients with organ failure who would have otherwise succumbed to their disease. The first successful transplant in 1954 was a kidney transplant between identical twins, which circumvented the problem of rejection from MHC incompatibility. Further progress in solid organ transplantation was enabled by the discovery of immunosuppressive agents such as corticosteroids and azathioprine in the 1950s and ciclosporin in 1970. Today, solid organ transplantation is a conventional treatment with improved patient and allograft survival rates. However, the challenge that lies ahead is to extend allograft survival time while simultaneously reducing the side effects of immunosuppression. This is particularly important for children who have irreversible organ failure and may require multiple transplants. Pediatric transplant teams also need to improve patient quality of life at a time of physical, emotional and psychosocial development. This review will elaborate on the long-term outcomes of children after kidney, liver, heart, lung and intestinal transplantation. As mortality rates after transplantation have declined, there has emerged an increased focus on reducing longer-term morbidity with improved outcomes in optimizing cardiovascular risk, renal impairment, growth and quality of life. Data were obtained from a review of the literature and particularly from national registries and databases such as the North American Pediatric Renal Trials and Collaborative Studies for the kidney, SPLIT for liver, International Society for Heart and Lung Transplantation and UNOS for intestinal transplantation.

  4. Organic matter and soil structure in the Everglades Agricultural Area

    SciTech Connect

    Wright, Alan L.; Hanlon, Edward A.

    2013-01-01

    This publication pertains to management of organic soils (Histosols) in the Everglades Agricultural Area (EAA). These former wetland soils are a major resource for efficient agricultural production and are important globally for their high organic matter content. Recognition of global warming has led to considerable interest in soils as a repository for carbon. Soils rich in organic matter essentially sequester or retain carbon in the profile and can contribute directly to keeping that sequestered carbon from entering the atmosphere. Identification and utilization of management practices that minimize the loss of carbon from organic soils to the atmosphere can minimize effects on global warming and increase the longevity of subsiding Histosols for agricultural use. Understanding and predicting how these muck soils will respond to current and changing land uses will help to manage soil carbon. The objectives of this document are to: a. Discuss organic soil oxidation relative to storing or releasing carbon and nitrogen b. Evaluate effects of cultivation (compare structure for sugarcane vs. uncultivated soil) Based upon the findings from the land-use comparison (sugarcane or uncultivated), organic carbon was higher with cultivation in the lower depths. There is considerable potential for minimum tillage and residue management to further enhance carbon sequestration in the sugarcane system. Carbon sequestration is improved and soil subsidence is slowed with sugarcane production, and both of these are positive outcomes. Taking action to increase or maintain carbon sequestration appears to be appropriate but may introduce some risk to farming operations. Additional management methods are needed to reduce this risk. For both the longevity of these organic soils and from a global perspective, slowing subsidence through BMP implementation makes sense. Since these BMPs also have considerable societal benefit, it remains to be seen if society will help to offset a part or all

  5. Formation of soil organic matter via biochemical and physical pathways of litter mass loss

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. Francesca; Soong, Jennifer L.; Horton, Andrew J.; Campbell, Eleanor E.; Haddix, Michelle L.; Wall, Diana H.; Parton, William J.

    2015-10-01

    Soil organic matter is the largest terrestrial carbon pool. The pool size depends on the balance between formation of soil organic matter from decomposition of plant litter and its mineralization to inorganic carbon. Knowledge of soil organic matter formation remains limited and current C numerical models assume that stable soil organic matter is formed primarily from recalcitrant plant litter. However, labile components of plant litter could also form mineral-stabilized soil organic matter. Here we followed the decomposition of isotopically labelled above-ground litter and its incorporation into soil organic matter over three years in a grassland in Kansas, USA, and used laboratory incubations to determine the decay rates and pool structure of litter-derived organic matter. Early in decomposition, soil organic matter formed when non-structural compounds were lost from litter. Soil organic matter also formed at the end of decomposition, when both non-structural and structural compounds were lost at similar rates. We conclude that two pathways yield soil organic matter efficiently. A dissolved organic matter-microbial path occurs early in decomposition when litter loses mostly non-structural compounds, which are incorporated into microbial biomass at high rates, resulting in efficient soil organic matter formation. An equally efficient physical-transfer path occurs when litter fragments move into soil.

  6. Organic matter content of soil after logging of fir and redwood forests

    Treesearch

    Philip B. Durgin

    1980-01-01

    Organic matter in soil controls a variety of soil properties. A study in Humboldt County, California, evaluated changes in percentages of organic matter in soil as a function of time after timber harvest and soil depth in fir and redwood forests. To assess organic matter content, samples were taken from cutblocks of various ages in soil to depths of 1.33 m. Results...

  7. Research Highlight: Water-extractable organic matter from sandy loam soils

    USDA-ARS?s Scientific Manuscript database

    Labile organic matter plays important roles in soil health and nutrient cycling because of its dynamic nature. Water-extractable organic matter is part of the soil labile organic matter. In an article recently published in Agricultural & Environmental Letters, researchers report on the level and na...

  8. Covalent binding of aniline to humic substances and whole soil organic matter

    SciTech Connect

    Thorn, K.A.; Goldenberg, W.S.; Younger, S.J.

    1995-12-31

    Aromatic amines enter the environment from the chemical or microbial degradation of dyes, explosives, and the acylanilide, phenylcarbamate, and phenylurea classes of herbicides. One possible fate of aromatic amines in soils is covalent binding to naturally occurring organic matter. The binding of {sup 15}N-labelled aniline to the fulvic and humic acids extracted from an Elliot silt loam soil with and without catalysis by peroxidase or birnessite has been examined by a combination of liquid and solid state {sup 15}N NMR. In the absence of catalysts, aniline undergoes a complex series of nucleophilic addition reactions with the carbonyl functionality of the humic substances to form both heterocyclic and nonheterocyclic condensation products. In the presence of the catalysts, aniline undergoes free radical coupling reactions together with nucleophilic addition reactions with the humic substances. Reaction of aniline with the whole soil most closely resembled the noncatalyzed reactions with the humic substances, as determined by solid state {sup 15}N NMR.

  9. Rib fractures and their association With solid organ injury: higher rib fractures have greater significance for solid organ injury screening.

    PubMed

    Rostas, Jack W; Lively, Timothy B; Brevard, Sidney B; Simmons, Jon D; Frotan, Mohammad A; Gonzalez, Richard P

    2017-04-01

    The purpose of this study was to identify patients with rib injuries who were at risk for solid organ injury. A retrospective chart review was performed of all blunt trauma patients with rib fractures during the period from July 2007 to July 2012. Data were analyzed for association of rib fractures and solid organ injury. In all, 1,103 rib fracture patients were identified; 142 patients had liver injuries with 109 (77%) associated right rib fractures. Right-sided rib fractures with highest sensitivity for liver injury were middle rib segment (5 to 8) and lower segment (9 to 12) with liver injury sensitivities of 68% and 43%, respectively (P < .001); 151 patients had spleen injuries with 119 (79%) associated left rib fractures. Left middle segment rib fractures and lower segment rib fractures had sensitivities of 80% and 63% for splenic injury, respectively (P < .003). Rib fractures higher in the thoracic cage have significant association with solid organ injury. Using rib fractures from middle plus lower segments as indication for abdominal screening will significantly improve rib fracture sensitivity for identification of solid organ injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Release and transport of mobile organic matter and biocolloids: A combined physicochemical and microbiological study

    NASA Astrophysics Data System (ADS)

    Reichel, Katharina; Schaefer, Sabine; Babin, Doreen; Smalla, Konny; Totsche, Kai Uwe

    2016-04-01

    Biogeochemical interfaces within the aggregate system of soils are "hot spots" of microbial activity and turnover of organic matter. We explore turnover, release and transport of mobile organic matter (MOM), micro-organisms (bio-colloids) and organo-mineral associations using a novel experimental approach employing two-layer columns experiment with matured soil under unsaturated flow conditions. The top layer was spiked with phenanthrene as a tracer for studying the decomposer communities involved in the decomposition of aromatic compounds that derive from lignin in natural systems. Columns were irrigated with artificial rain water with several flow interrupts of different durations. Physicochemical and chemical parameters as well as the microbial community composition were analysed in effluent samples and in soil slices. Release of MOM from the columns was in general controlled by non-equilibrium. Export of total and dissolved organic matter differed significantly in response to the flow interrupts. Effluent comprised organic and organo-mineral components as well as vital competent cells. By molecular biological methods we were even able to show that bacterial consortia exported are rather divers. Depth distribution of the bacterial communities associated with the immobile solid phase indicated high similarities in bacterial communities of the different depth layers and treatments. According to phenanthrene high affinity to the immobile phases, only a small fraction was subject to downstream transport with a strong decrease of the amount residing at the solid phase Our experiments directly prove that intact and competent microorganisms and even communities can be transported under unsaturated flow conditions. Moreover, we found that the dominant carbon source will impact not only the activity of specific microbial taxa but also their mobilization and transport. While total contribution of microbial organism to the mobile organic matter pool seems to be small, the

  11. Organic matter and nutrient inputs to the Humber Estuary, England.

    PubMed

    Boyes, Suzanne; Elliott, Michael

    2006-01-01

    Estuaries are sinks for organic matter and nutrients entering both from their catchments and also from the adjacent lands and urban areas and in turn they are sources of such materials to the adjacent coast. The present paper quantifies the relative amounts of natural and anthropogenic organic matter and nutrients entering the Humber Estuary, Eastern England, including the allochthonous and autochthonous materials, those from urban and industrial sewage and from the catchment drainage of arable land. These data thus give a budget for the estuary which in turn answers questions fundamental to the management of the estuary. The estimations within the study have been carried out against a background of designating estuaries under the European Union Urban Waste-water Treatment Directive and the EU Nitrates Directive. The assessment has particularly addressed the question, related to the former Directive, of whether the Humber Estuary is eutrophic or likely to become eutrophic unless management measures are taken. Thus the paper indicates the nature and value of control measures such as treatment plant upgrading and the designation of Nitrate Vulnerable Zones. The paper includes the recent national and European discussions on the designation of areas under these Directives. Finally, the study has allowed a quantification of the present organic inputs to the estuary in comparison to those entering prior to large scale land-claim which had removed natural organic-producing wetlands.

  12. Co-composting of sugarbeet vinasse: influence of the organic matter nature of the bulking agents used.

    PubMed

    Madejón, E; Díaz, M J; López, R; Cabrera, F

    2001-02-01

    Two composts were obtained by co-composting of a concentrated depotassified beet vinasse and two agricultural solid residues with different organic matter nature: grape marc (GM; lignin waste) and cotton gin trash (C; cellulosic waste). Composting was carried out in aerated piles with mechanical turning, in controlled conditions during 4 months. After 71 days of composting, a new addition of vinasse similar to the initial addition was made. Changes in temperature, pH and inorganic nitrogen followed a similar path for both mixtures. However, organic matter fractions showed different behaviour depending on the material co-composted with vinasse. Lower organic matter degradation was observed when GM was used as bulking agent due to its high lignin content. No phytotoxicity was detected in the end products. The chemical and physical properties of both vinasse composts suggest their possible use as fertiliser.

  13. Biotoxicity of nanoparticles: effect of natural organic matter

    NASA Astrophysics Data System (ADS)

    Lee, Sungyun; Kim, Kitae; Shon, H. K.; Kim, Sang Don; Cho, Jaeweon

    2011-07-01

    Various natural organic matters (NOM) with different characteristics in aquatic environment may affect toxicity of leased nanoparticles, owing to interactions between NOM and nanoparticles. This study investigated the effect of NOM and physical characteristics of the effluent organic matter (EfOM) on the ecotoxicity of quantum dots (QD) using Daphnia magna. Organic matter samples were obtained from: Yeongsan River (YR-NOM), Dongbuk Lake (DL-NOM), Damyang wastewater treatment plant (EfOM), and Suwannee River NOM (SR-NOM). The QD was composed of a CdSe core, ZnS shell, and polyethylene glycol coating. The average size of the investigated QD was 4.8, 56.5, and 25.0 nm determined by transmission electron microscopy, dynamic light scattering, and asymmetric flow field-flow fractionation, respectively. The relative hydrophobicity of NOM was investigated using both specific UV absorbance at 254 nm and XAD-8/4 resins. The sorption of NOM on the QD was measured using a fluorescence quenching method. The highest hydrophobicity was exhibited by the SR-NOM, while the lowest was recorded for the DL-NOM. All tested NOMs significantly reduced the acute toxicity of D. magna when adsorbed to QD, and the order of effectiveness for each NOM was as follows: SR-NOM > EfOM > YS-NOM > DL-NOM. The sorption of NOM on the QD surface caused a decrease in the fluorescence intensity of QD at increasing NOM concentration. This suggests that the NOM coating influenced the physicochemical characteristics of QD in the internal organs of D. magna by inducing a reduced bioavailability . Results from this study revealed that NOM with relatively high hydrophobicity had a greater capability of inducing toxicity mitigation.

  14. Competitive Sorption and Desorption of Chlorinated Organic Solvents (DNAPLs) in Engineered Natural Organic Matter

    SciTech Connect

    Tang, Jixin; Weber, Walter J., Jr.

    2004-03-31

    The effects of artificially accelerated geochemical condensation and maturation of natural organic matter on the sorption and desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) were studied. The sorption and desorption of TCE in the presence and absence of the competing PCE and 1,2-dichlorobenzene (DCB) were also examined. A sphagnum peat comprising geologically young organic matter was artificially ''aged'' using superheated water, thus increasing the aromaticity and the degree of condensation of its associated organic matter. The sorption of all solutes tested were increased remarkably and their respective desorptions reduced, by the aged peat. The sorption capacities and isotherm nonlinearities of the peat for both TCE and PCE were found to increase as treatment temperature increased. In the competitive sorption studies, both PCE and DCB were found to depress TCE sorption, with PCE having greater effects than DCB, presumably because the molecular structure o f the former is more similar to that of TCE.

  15. Effluent organic matter (EfOM) characterization by simultaneous measurement of proteins and humic matter.

    PubMed

    Vakondios, Nikos; Koukouraki, Elisavet E; Diamadopoulos, Evan

    2014-10-15

    This work developed a method, based on the Lowry method and Frølund modification, for the simultaneous determination of proteins and humic matter in wastewater effluent samples at low concentrations. The method was based on simultaneous spectrophotometric measurements of proteins and humic matter at 750 nm in the absence and presence of CuSO4, which is responsible for increasing the absorbance only in the presence of to proteins. Statistical analysis through ANOVA showed that the response surface of the method fit the experimental measurements at significance level lower than 0.05, indicating satisfactory fit. The quantification limits of the proposed method were 0.5-30 mg/l for proteins and 2-30 mg/l for humic matter. The presence of carbohydrates did not interfere with the analysis of proteins and humic matter at carbohydrate concentrations below 35-40 mg/l. The Lowry method overestimated the concentration of the proteins because of the presence of humic substances. A carbon balance indicated that the analytical method developed could provide a satisfactory distribution of the main organic constituents in wastewater and effluents.

  16. Modelling of organic matter dynamics during the composting process.

    PubMed

    Zhang, Y; Lashermes, G; Houot, S; Doublet, J; Steyer, J P; Zhu, Y G; Barriuso, E; Garnier, P

    2012-01-01

    Composting urban organic wastes enables the recycling of their organic fraction in agriculture. The objective of this new composting model was to gain a clearer understanding of the dynamics of organic fractions during composting and to predict the final quality of composts. Organic matter was split into different compartments according to its degradability. The nature and size of these compartments were studied using a biochemical fractionation method. The evolution of each compartment and the microbial biomass were simulated, as was the total organic carbon loss corresponding to organic carbon mineralisation into CO(2). Twelve composting experiments from different feedstocks were used to calibrate and validate our model. We obtained a unique set of estimated parameters. Good agreement was achieved between the simulated and experimental results that described the evolution of different organic fractions, with the exception of some compost because of a poor simulation of the cellulosic and soluble pools. The degradation rate of the cellulosic fraction appeared to be highly variable and dependent on the origin of the feedstocks. The initial soluble fraction could contain some degradable and recalcitrant elements that are not easily accessible experimentally.

  17. Pyrolysis and mass spectrometry studies of meteoritic organic matter.

    PubMed

    Sephton, M A

    2012-01-01

    Meteorites are fragments of extraterrestrial materials that fall to the Earth's surface. The carbon-rich meteorites are derived from ancient asteroids that have remained relatively unprocessed since the formation of the Solar System 4.56 billion years ago. They contain a variety of extraterrestrial organic molecules that are a record of chemical evolution in the early Solar System and subsequent aqueous and thermal processes on their parent bodies. The major organic component (>70%) is a macromolecular material that resists straightforward solvent extraction. In response to its intractable nature, the most common means of investigating this exotic material involves a combination of thermal decomposition (pyrolysis) and mass spectrometry. Recently the approach has also been used to explore controversial claims of organic matter in meteorites from Mars. This review summarizes the pyrolysis data obtained from meteorites and outlines key interpretations.

  18. Characterizing Groundwater Sources of Organic Matter to Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Connolly, C. T.; Spencer, R. G.; Cardenas, M. B.; Bennett, P. C.; McNichol, A. P.; McClelland, J. W.

    2016-12-01

    The Arctic is projected to transition from a runoff-dominated system to a groundwater-dominated system as permafrost thaws due to climate change. This fundamental shift in hydrology is expected to increase groundwater flow to Arctic coastal waters, which may be a significant source of dissolved organic matter (DOM) to these waters—even under present conditions—that has been largely overlooked. Here we quantify and elucidate sources of groundwater DOM inputs to lagoons along the eastern Alaskan Beaufort Sea coast using an approach that combines concentration measurements and radiocarbon dating of groundwater, soil profiles, and soil leachable dissolved organic carbon (DOC). Samples were collected in late summer, when soil thaw depths (active layer) were near their maximum extent. As anticipated, the radiocarbon age of bulk soil organic matter increased with depth (modern - 6,100 yBP), while the amount of extractable DOC decreased with depth within the active layer. However, amounts of extractable DOC increased dramatically in thawed permafrost samples collected directly below the actively layer. Concentrations of DOM in groundwater (ranging from 902 to 5,118 μmolL-1 DOC) are one to two orders of magnitude higher than those measured in lagoons and nearby river water. In contrast, the 14C-DOC ages of groundwater (1,400 ± 718 s.d. yBP), lagoon water (1,750 yBP), and river water (1,610 yBP) are comparable. Together these results suggest that: (1) groundwater provides a highly concentrated input of old DOC to Arctic coastal waters; (2) groundwater DOM is likely sourced from organic matter spanning the entire soil profile; and (3) the DOM in rivers along the eastern Alaskan Beaufort Sea coast during late summer is strongly influenced by groundwater sources, but is much lower in concentration due to photo-mineralization and/or biological consumption. These results are key for assessing how changes in land-ocean export of organic matter as permafrost thaws will change

  19. Soft X-Ray Photoionizing Organic Matter from Comet Wild 2: Evidence for the Production of Organic Matter by Impact Processes

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Wirick, S.; Flynn, G. J.; Jacobsen, C.; Na

    2011-01-01

    The Stardust mission collected both mineral and organic matter from Comet Wild 2 [1,2,3,4]. The organic matter discovered in Comet Wild 2 ranges from aromatic hydrocarbons to simple aliphatic chains and is as diverse and complex as organic matter found in carbonaceous chondrites and interplanetary dust particles.[3,5,6,7,8,9]. Compared to insoluble organic matter from carbonaceous chondrites the organic matter in Comet Wild 2 more closely resembles organic matter found in the IDPS both hydrous and anhydrous. Common processes for the formation of organic matter in space include: Fischer-Tropsch, included with this aqueous large body and moderate heating alterations; UV irradiation of ices; and; plasma formation and collisions. The Fischer-Tropsch could only occur on large bodies processes, and the production of organic matter by UV radiation is limited by the penetration depth of UV photons, on the order of a few microns or less for most organic matter, so once organic matter coats the ices it is formed from, the organic production process would stop. Also, the organic matter formed by UV irradiation would, by the nature of the process, be in-sensitive to photodissocation from UV light. The energy of soft X-rays, 280-300 eV occur within the range of extreme ultraviolet photons. During the preliminary examination period we found a particle that nearly completely photoionized when exposed to photons in the energy range 280-310eV. This particle experienced a long exposure time to the soft x-ray beam which caused almost complete mass loss so little chemical information was obtain. During the analysis of our second allocation we have discovered another particle that photoionized at these energies but the exposure time was limited and more chemical information was obtained.

  20. Immunosuppression in Solid-Organ Transplantation: Essentials and Practical Tips.

    PubMed

    Jasiak, Natalia M; Park, Jeong M

    2016-01-01

    A multidisciplinary team approach is essential for successful management of patients with solid-organ transplant. Transplant nursing encompasses care and support of transplant recipients as well as caregivers and organ donors through all phases of transplantation, from pretransplant evaluation to posttransplant recovery and maintenance. The field of solid-organ transplantation has advanced rapidly, and new treatments continue to emerge. Nurses who are responsible for the care of transplant recipients should have a knowledge base in transplant immunology and pharmacology. This review discusses mechanism of action, indication, side effects, and drug interactions of commonly used immunosuppressive medications in solid-organ transplantation. Nonoral routes of drug administration, therapeutic drug monitoring, and patient monitoring strategies are also included as practical tips for bedside nurses who are responsible for delivery of direct patient care and education of patients and their caregivers. This review focuses on the following medications: antithymocyte globulins, basiliximab, alemtuzumab, corticosteroids, tacrolimus, cyclosporine, azathioprine, mycophenolate mofetil/mycophenolate sodium, sirolimus, everolimus, belatacept, intravenous immunoglobulin, and rituximab.

  1. Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.

    PubMed

    Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson

    2016-06-01

    A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution.

  2. Risk of myeloid neoplasms after solid organ transplantation

    PubMed Central

    Morton, Lindsay M.; Gibson, Todd M.; Clarke, Christina A.; Lynch, Charles F.; Anderson, Lesley A.; Pfeiffer, Ruth; Landgren, Ola; Weisenburger, Dennis D.; Engels, Eric A.

    2014-01-01

    Solid organ transplant recipients have elevated cancer risks, due in part to pharmacologic immunosuppression. However, little is known about risks for hematologic malignancies of myeloid origin. We linked the US Scientific Registry of Transplant Recipients with 15 population-based cancer registries to ascertain cancer occurrence among 207,859 solid organ transplants (1987–2009). Solid organ transplant recipients had significantly elevated risk for myeloid neoplasms, with standardized incidence ratios (SIRs) of 4.6 (95% confidence interval 3.8–5.6; N=101) for myelodysplastic syndromes (MDS), 2.7 (2.2–3.2; N=125) for acute myeloid leukemia (AML), 2.3 (1.6–3.2; N=36) for chronic myeloid leukemia, and 7.2 (5.4–9.3; N=57) for polycythemia vera. SIRs were highest among younger individuals and varied by time since transplantation and organ type (Poisson regression P<0.05 for all comparisons). Azathioprine for initial maintenance immunosuppression increased risk for MDS (P=0.0002) and AML (2–5 years after transplantation, P=0.0163). Overall survival following AML/MDS among transplant recipients was inferior to that of similar patients reported to US cancer registries (log-rank P<0.0001). Our novel finding of increased risks for specific myeloid neoplasms after solid organ transplantation supports a role for immune dysfunction in myeloid neoplasm etiology. The increased risks and inferior survival should heighten clinician awareness of myeloid neoplasms during follow-up of transplant recipients. PMID:24727673

  3. The mechanisms of rejection in solid organ transplantation.

    PubMed

    Cozzi, Emanuele; Colpo, Anna; De Silvestro, Giustina

    2017-08-01

    Organ transplantation represents the preferred treatment option for many patients in terminal organ failure. The half-life of transplanted organs, however, is still far from being satisfactory with the vast majority of the organs failing within the first two decades following transplantation. At this stage, it has become apparent that rejection (prevalently mediated by humoral events) remains the primary cause of graft loss after the first year. In this light, studies are underway to better comprehend the immune events underlying graft rejection and novel immunosuppressive strategies are being explored. In this context, therapeutic apheresis techniques, that include therapeutic plasma exchange (TPE), immunoadsorption (IA) and extracorporeal photochemotherapy (ECP), represent an important adjunct in the current immunosuppressive armamentarium. This article briefly reviews our current understanding of the immune process underlying rejection of a solid organ transplant and describes the principal areas of application of therapeutic apheresis techniques in transplantation. Copyright © 2017. Published by Elsevier Ltd.

  4. Organic Matter as an Indicator of Soil Degradation

    NASA Astrophysics Data System (ADS)

    Romero Diaz, Asuncion; Damian Ruiz Sinoga, Jose

    2010-05-01

    Numerous and expensive physical-chemical tests are often carried out to determine the level of soil degration. This study was to find one property, as Organic Matter, which is usually analyzed for determine the soil degradation status. To do this 19 areas in the south and southeast of the Iberian Peninsula (provinces of Málaga, Granada, Almería y Murcia) were selected and a wide sampling process was carried out. Sampling points were spread over a wide pluviometric gradient (from 1100 mm/yr to 232 mm/yr) covering the range from Mediterranean wet to dry. 554 soil surface samples were taken from soil (0-10 cm) and the following properties were analyzed: Texture, Organic Matter (OM), Electric Conductivity (EC), Aggregate Stability (AE) y Cation Exchange Capacity (CEC). These properties were intercorrelated and also with rainfall and the K factor of soil erosion, calculated for each sampling point. Los results obtained by applying the Pearson correlation coefficient to the database shows how as rainfall increases so does OM content (0,97) and la CEC (0,89), but K factor (-0,80) reacts inversely. The content of OM in the soil is related to its biological activity and this in turn is the result of available wáter within the system and, consequently, rainfall. This is specially important in fragile and complex ecogeomorphological systems as is the case of the Mediterranean, where greater or lesser rainfall is similarly reflected in the levels of increase or decrease of soil organic matter. This affirmation is reinforced by linking the organic matter of the soil with other indicative properties such as CEC and erosion, as has been shown by various authors (Imeson y Vis, 1984; De Ploey & Poesen, 1985; Le Bissonnais, 1996; Boix-Fayos et al., 2001; Cammeraat y Imeson, 1998; Cerdá, 1998). As has been stated, there is a direct relationship between rainfall, organic matter content, cation exchange capacity, structural stability, and the resistence to soil erosion factor

  5. Organic matter interactions with natural manganese oxide and synthetic birnessite.

    PubMed

    Allard, Sébastien; Gutierrez, Leonardo; Fontaine, Claude; Croué, Jean-Philippe; Gallard, Hervé

    2017-04-01

    Redox reactions of inorganic and organic contaminants on manganese oxides have been widely studied. However, these reactions are strongly affected by the presence of natural organic matter (NOM) at the surface of the manganese oxide. Interestingly, the mechanism behind NOM adsorption onto manganese oxides remains unclear. Therefore, in this study, the adsorption kinetics and equilibrium of different NOM isolates to synthetic manganese oxide (birnessite) and natural manganese oxide (Mn sand) were investigated. Natural manganese oxide is composed of both amorphous and well-crystallised Mn phases (i.e., lithiophorite, birnessite, and cryptomelane). NOM adsorption on both manganese oxides increased with decreasing pH (from pH7 to 5), in agreement with surface complexation and ligand exchange mechanisms. The presence of calcium enhanced the rate of NOM adsorption by decreasing the electrostatic repulsion between NOM and Mn sand. Also, the adsorption was limited by the diffusion of NOM macromolecules through the Mn sand pores. At equilibrium, a preferential adsorption of high molecular weight molecules enriched in aromatic moieties was observed for both the synthetic and natural manganese oxide. Hydrophobic interactions may explain the adsorption of organic matter on manganese oxides. The formation of low molecular weight UV absorbing molecules was detected with the synthetic birnessite, suggesting oxidation and reduction processes occurring during NOM adsorption. This study provides a deep insight for both environmental and engineered systems to better understand the impact of NOM adsorption on the biogeochemical cycle of manganese.

  6. Effects of Dissolved Organic Matter Source on Wetland Bacterial Metabolism

    NASA Astrophysics Data System (ADS)

    Ward, A. K.

    2005-05-01

    Wetlands are rich environments for organic matter production from a variety of wetland plant types. Investigations of the Talladega Wetland Ecosystem (TWE) in the southeastern U.S. show that bacterioplankton productivity is driven by dissolved organic carbon derived from wetland plants. The TWE is formed from a small coastal plain stream that has been dammed by beaver activity and resides in a forested catchment. In this study, bacterioplankton communities sampled from the wetland were amended with leachate from two different plants common in the TWE, the soft rush, Juncus effusus, and hazel alder, Alnus serrulata, and compared to unamended controls. The bacterioplankton response was examined by measuring bacterial carbon productivity and by an array of fluorescent microscope techniques used to distinguish metabolically active and non-active cells. Both plant leachates elicited rapid and significant increases in productivity and numbers of metabolically active bacterial cells. However, the timeframe of response, the magnitude of response, and the bacterial morphotypes varied depending on the leachate source. This study suggests that wetland bacterial communities contain different sub-component populations that may generally occur in low numbers, but that can adapt and respond rapidly to different sources of organic matter native to the wetland.

  7. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  8. Complexation of lead by organic matter in Luanda Bay, Angola.

    PubMed

    Leitão, Anabela; Santos, Ana Maria; Boaventura, Rui A R

    2015-10-01

    Speciation is defined as the distribution of an element among different chemical species. Although the relation between speciation and bioavailability is complex, the metal present as free hydrated ion, or as weak complexes able to dissociate, is usually more bioavailable than the metal incorporated in strong complexes or adsorbed on colloidal or particulate matter. Among the analytical techniques currently available, anodic stripping voltammetry (ASV) has been one of the most used in the identification and quantification of several heavy metal species in aquatic systems. This work concerns the speciation study of lead, in original (natural, non-filtered) and filtered water samples and in suspensions of particulate matter and sediments from Luanda Bay (Angola). Complexes of lead with organics were identified and quantified by differential pulse anodic stripping voltammetry technique. Each sample was progressively titrated with a Pb(II) standard solution until complete saturation of the organic ligands. After each addition of Pb(II), the intensity, potential and peak width of the voltammetric signal were measured. The results obtained in this work show that more than 95 % of the lead in the aquatic environment is bound in inert organic complexes, considering all samples from different sampling sites. In sediment samples, the lead is totally (100 %) complexed with ligands adsorbed on the particles surface. Two kinds of dominant lead complexes, very strong (logK >11) and strong to moderately strong (8< logK <11), were found, revealing the lead affinity for the stronger ligands.

  9. Lead Sequestration And Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2009-05-27

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-rayfluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest O{sub i} samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20--35%) and SOM ({approx}65--80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  10. Lead Sequestration and Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth,A.; Bostick, B.; Kaste, J.; Friedland, A.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20-35%) and SOM ({approx}65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  11. Unraveling the chemical space of terrestrial and meteoritic organic matter

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, Philippe; Harir, Mourad; Hertkorn, Norbert; Kanawati, Basem; Ruf, Alexander; Quirico, Eric; Bonal, Lydie; Beck, Pierre; Gabelica, Zelimir

    2015-04-01

    In terrestrial environments natural organic matter (NOM) occurs in soils, freshwater and marine environments, in the atmosphere and represents an exceedingly complex mixture of organic compounds that collectively exhibits a nearly continuous range of properties (size-reactivity continuum). In these materials, the "classical" biogeosignatures of the (biogenic and geogenic) precursor molecules, like lipids, lignins, proteins and natural products have been attenuated, often beyond recognition, during a succession of biotic and abiotic (e.g. photo- and redox chemistry) reactions. Because of this loss of biochemical signature, these materials can be designated non-repetitive complex systems. The access to extra-terrestrial organic matter is given i.e. in the analysis of meteoritic materials. Numerous descriptions of organic molecules present in organic chondrites have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, many molecular analyses are so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a non-targeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of meteorite extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. The description of the molecular complexity provides hints on heteroatoms chronological assembly, shock and thermal events and revealed recently new classes of thousands of novel organic, organometallic compounds uniquely found in extra-terrestrial materials and never described in terrestrial systems. This high polymolecularity suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological and biogeochemical-driven chemical space. (ultra

  12. Missing links in the root-soil organic matter continuum

    SciTech Connect

    O'Brien, Sarah L.; Iversen, Colleen M

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a wide

  13. Priming of soil organic matter decomposition in cryoturbated Arctic soils

    NASA Astrophysics Data System (ADS)

    Richter, A.; Wild, B.; Schnecker, J.; Rusalimova, O.

    2012-12-01

    The Arctic is subjected to particularly high rates of warming, with profound consequences for the carbon cycle: on the one hand plant productivity and C storage in plant biomass have been shown to increase strongly in many parts of the Arctic, on the other hand, increasing rates of soil organic matter (SOM) decomposition have been reported. One of the possibilities that could reconcile these observations is, that increased plant growth may lead to increased root exudation rates, which are known to stimulate microbial turnover of organic matter under certain circumstances, in a process termed "priming" of SOM. Two mechanisms have been brought forward that may be responsible for priming: first, easily assimilable material exuded by plant roots may help microbes to overcome their energy limitation and second, this input of labile carbon could lead to a nitrogen limitation of the microbial community and lead to nitrogen mining, i.e. decomposition of N-rich SOM. We here report on an incubation study with arctic soil investigating potential priming of SOM decomposition in organic topsoil horizons, cryoturbated organic matter and subsoil mineral horizons of tundra soil from the Taymyr peninsula in Siberia. We used arctic soils, that are characterized by cryoturbation (mixing of soil layers due to freezing and thawing), for this study. Turbated cryosols store more than 580 Gt C globally, a significant proportion of which is stored in the cryoturbated organic matter. We hypothesized that an increased availability of labile compounds would increase SOM decomposition rates, and that this effect would be strongest in horizons with a low natural availability of labile C, i.e. in the mineral subsoil. We amended soils with 13C labelled glucose, cellulose, amino acids or proteins, and measured the mineralization of SOM C as well as microbial community composition and potential activities of extracellular enzymes. Our results demonstrate that topsoil organic, cryoturbated and

  14. Clear effects of soil organic matter chemistry, as determined by NMR spectroscopy, on the sorption of diuron.

    PubMed

    Ahangar, Ahmad Gholamalizadeh; Smernik, Ronald J; Kookana, Rai S; Chittleborough, David J

    2008-01-01

    Organic matter has long been recognized as the main sorbent phase in soils for hydrophobic organic compounds (HOCs). In recent times, there has been an increasing realization that not only the amount, but also the chemical composition, of organic matter can influence the sorption properties of a soil. Here, we show that the organic carbon-normalized sorption coefficient (K(OC)) for diuron is 27-81% higher in 10 A11 horizons than in 10 matching A12 horizons for soils collected from a small (2ha) field. K(OC) was generally greater for the deeper (B) horizons, although these values may be inflated by sorption of diuron to clays. Organic matter chemistry of the A11 and A12 horizons was determined using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. K(OC) was positively correlated with aryl C (r2=0.59, significance level 0.001) and negatively correlated with O-alkyl C (r2=0.84, significance level <0.001). This is only the second report of correlations between whole soil K(OC) and NMR-derived measures of organic matter chemistry. We suggest that this success may be a consequence of limiting this study to a very small area (a single field). There is growing evidence that interactions between organic matter and clay minerals strongly affect K(OC). However, because the soil mineralogy varies little across the field, the influence of these interactions is greatly diminished, allowing the effect of organic matter chemistry on K(OC) to be seen clearly. This study in some way reconciles studies that show strong correlations between K(OC) and the chemistry of purified organic materials and the general lack of such correlations for whole soils.

  15. Persistence of soil organic matter as an ecosystem property

    SciTech Connect

    Schmidt, M.W.; Torn, M. S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; Nannipieri, P.; Rasse, D.P.; Weiner, S.; Trumbore, S.E.

    2011-08-15

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

  16. Characterization of Biologically Produced Colored Dissolved Organic Matter in Seawater

    DTIC Science & Technology

    2005-11-29

    Seritti, A. Environ. Tech. 1993, 14, 94.1-948. (19) Lombardi, A.T.; Jardim, W.F. Water Research. 1999, 33, 512-520. (20) Parlanti, E .; Morin , B.; Vacher...REPORT DOCUMENTATION PAGE Form Approved Public reporting burden for this collection of I•mo,,ation , e dlat ed to average hour per response. ind•uding... e -mail: drepeta(atwhoi.edu Grant# N00014-98-1-0579 & N00014-03-1-0387 Chromophoric, or colored dissolved organic matter (CDOM), influences the

  17. Aquatic Organic Matter Fluorescence - from phenomenon to application

    NASA Astrophysics Data System (ADS)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  18. Persistence of soil organic matter as an ecosystem property.

    PubMed

    Schmidt, Michael W I; Torn, Margaret S; Abiven, Samuel; Dittmar, Thorsten; Guggenberger, Georg; Janssens, Ivan A; Kleber, Markus; Kögel-Knabner, Ingrid; Lehmann, Johannes; Manning, David A C; Nannipieri, Paolo; Rasse, Daniel P; Weiner, Steve; Trumbore, Susan E

    2011-10-05

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

  19. Reading the molecular signature of ecosystems in dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Simon, Carsten; Roth, Vanessa-Nina; Dittmar, Thorsten; Gleixner, Gerd

    2017-04-01

    To make forecasts about the behavior, origin and fate of dissolved organic matter (DOM) in the environment, we need further insights into the molecular composition of this complex mixture. The development of soft ionization procedures and mass spectrometers capable of ultrahigh resolution (Fourier-Transform Mass Spectrometry, FTMS) have opened important new horizons in this regard. However, the application of such systems is restricted due to high purchase and maintenance costs. The introduction of the improved version of the Orbitrap FTMS analyzer ("Elite") in 2011 could open new perspectives for the molecular-level investigation of DOM, as it combines high performance with lower overall costs. We compared the Orbitrap with an established FT-ICR-MS (ion cyclotron resonance, 15 Tesla) to assess the potential of this analyzer on a broad set of 17 terrestrial and aquatic DOM samples prepared by solid phase extraction (SPE-DOM, Dittmar et al. 2008). The dataset included groundwater, soil water from different depths and vegetation covers (forests, grassland), as well as bog, river, lake and marine waters. We here show that the Orbitrap analyzer is able to detect hard-to-resolve nitrogen and sulfur containing compounds (triplet signal [CHO]N2O2, [CHO]C5, [CHO]C2H4S) up to a mass-to-charge ratio of 430 and well retrieves the intensity information of the FT-ICR-MS. Both points have been recently reported as major obstacles in the detailed molecular-level analyses of DOM by Orbitrap systems (Hawkes et al. 2016). In our data, slight deviations in intensity representation were only found in samples characterized by stronger aromaticity, and especially in the lower mass range (below m/z 250). A subset of > 6000 formulae detected in both sets was used to further characterize the sample set on a molecular level. The derived ecological information, as assessed by ordination and post-ordination gradient fitting, was highly consistent among both datasets. A dominating first

  20. Ethanol production from the organic fraction obtained after thermal pretreatment of municipal solid waste.

    PubMed

    Ballesteros, Mercedes; Sáez, Felicia; Ballesteros, Ignacio; Manzanares, Paloma; Negro, Maria Jose; Martínez, Jose Maria; Castañeda, Rafael; Oliva Dominguez, Jose Miguel

    2010-05-01

    In this work, the use of organic fraction from municipal solid waste (MSW) as substrate for ethanol production based on enzymatic hydrolysis was evaluated. MSW was subjected to a thermal pretreatment (active hygienization) at 160 degrees C from 5 to 50 min. The organic fiber obtained after 30 min was used as substrate in a simultaneous saccharification and fermentation (SSF) and fed-batch SSF process using cellulases and amylases. In a fed-batch mode with 25% (w/w) substrate loading, final ethanol concentration of 30 g/L was achieved (60% of theoretical). In these conditions, more than 160 L of ethanol per ton of dry matter could be produced from the organic fraction of MSW.

  1. Central nervous system syndromes in solid organ transplant recipients.

    PubMed

    Wright, Alissa J; Fishman, Jay A

    2014-10-01

    Solid organ transplant recipients have a high incidence of central nervous system (CNS) complications, including both focal and diffuse neurologic deficits. In the immunocompromised host, the initial clinical evaluation must focus on both life-threatening CNS infections and vascular or anatomic lesions. The clinical signs and symptoms of CNS processes are modified by the immunosuppression required to prevent graft rejection. In this population, these etiologies often coexist with drug toxicities and metabolic abnormalities that complicate the development of a specific approach to clinical management. This review assesses the multiple risk factors for CNS processes in solid organ transplant recipients and establishes a timeline to assist in the evaluation and management of these complex patients.

  2. Association of organic matter and ferrihydrite: adsorption versus coprecipitation

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Rennert, T.; Knicker, H.; Totsche, K. U.

    2009-04-01

    Ferrihydrite (Fh) - even if present at low concentrations - may control the available surface area and therefore, the behaviour of nutrients and pollutants in soils. Its precipitation often takes place in the presence of dissolved organic matter (OM). This involves processes such as adsorption, but also coprecipitation, flocculation/coagulation and poisoning of crystal growth. In this study, we compare coprecipitation of organic matter and ferrihydrite with pure adsorption of OM on ferrihydrite. We therefore prepared an adsorption series and a coprecipitation series using (i) water extractable organic matter from a forest topsoil and (ii) sulfite extractable lignin from paper. Products were investigated by N2-adsorption, XRD and FTIR. In coprecipitation experiments with both types of OM we observed a strong interference of the organic molecules with crystal growth leading to smaller Fh crystals, increased lattice spacings and a lower crystallinity. The highest achieved C loadings were found at approximately 200 mg C per g Fh for the adsorption and coprecipitation of the soil extract as well as for the adsorption of lignin. Coprecipitation of lignin, in contrast, resulted in a much higher maximum loading of 360 mg C per g Fh. The FTIR spectrum of the unreacted soil extract is mainly characterized by carboxyl C and polysaccharide C, with a smaller contribution of phenolic C. Spectra of the adsorbed or coprecipitated soil extract reveal weaker bands and lowered wave numbers indicating removal from solution followed by the formation of chemical bonds between the organic species and Fh by inner-sphere surface complexes. The FTIR spectrum of the lignin material shows a strong contribution of carboxyl C, polysaccharide C, and several aromatic C species. Again, all of these C species seem to form surface complexes after reaction with Fh in adsorption and coprecipitation experiments. Interestingly, at low initial C concentrations in all experiments the sorption of carboxyl

  3. Conservative or reactive? Mechanistic chemical perspectives on organic matter stability

    NASA Astrophysics Data System (ADS)

    Koch, Boris

    2016-04-01

    Carbon fixation by terrestrial and marine primary production has a fundamental seasonal effect on the atmospheric carbon content and it profoundly contributes to long-term carbon storage in form of organic matter (OM) in soils, water, and sediments. The efficacy of this sequestration process strongly depends on the degree of OM persistence. Therefore, one of the key issues in dissolved and particulate OM research is to assess the stability of reservoirs and to quantify their contribution to global carbon fluxes. Incubation experiments are helpful to assess OM stability during the first, early diagenetic turnover induced by sunlight or microbes. However, net carbon fluxes within the global carbon cycle also act on much longer time scales, which are not amenable in experiments. It is therefore critical to improve our mechanistic understanding to be able to assess potential future changes in the organic matter cycle. This session contribution highlights some achievements and open questions in the field. An improved mechanistic understanding of OM turnover particularly depends on the molecular characterization of biogeochemical processes and their kinetics: (i) in soils and sediments, aggregation/disaggregation of OM is primarily controlled by its molecular composition. Hence, the chemical composition determines the transfer of organic carbon from the large particulate to the small dissolved organic matter reservoir - an important substrate for microbial metabolism. (ii) In estuaries, dissolved organic carbon gradients usually suggest conservative behavior, whereas molecular-level studies reveal a substantial chemical modification of terrestrial DOM along the land-ocean interface. (iii) In the ocean, previous studies have shown that the recalcitrance of OM depends on bulk concentration and energy yield. However, ultrahigh resolution mass spectrometry in combination with radiocarbon analyses also emphasized that stability is tightly connected to molecular composition

  4. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching.

    PubMed

    Li, Kun; Xing, Baoshan; Torello, William A

    2005-03-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils.

  5. Do organic matter matter? Contribution of organic matter on scavenging and fractionation of natural radionuclides in the Oceanic Flux Program (OFP) site of Bermuda

    NASA Astrophysics Data System (ADS)

    Chuang, C.; Santschi, P. H.; Conte, M. H.; Schumann, D.; Ayranov, M.

    2012-12-01

    Natural particle-reactive radionuclides, 234Th, 233Pa, 210Po, 210Pb and 7Be, have been used for estimating particulate organic carbon (POC) export flux in the ocean for decades. However, by simply relying on empirically determined isotope ratios to POC and other parameters, sometimes results from field studies are puzzling and become controversial (e.g., one is summarized in Li, 2005). The picture becomes clearer when it was noticed that a missing fraction, e.g., natural organic matter, could be the cause. For example, a series of field and lab studies demonstrated that biopolymers excreted by marine micro-organisms are likely carrier molecules for a number of these isotopes (e.g., Guo et al., 2002; Quigley et al., 2002; Santschi et al., 2003; Roberts et al., 2009; Hung et al., 2010; Xu et al., 2011; Hung et al., 2012; Yang et al., 2012). To examine the effect of organic composition of the particle on the scavenging and fractionation of selected natural radionuclides (e.g., Th, Pa, Pb, Po, Be), organic composition (e.g., protein, polysaccharides, uronic acid, siderophore and amino acid contents, and etc.) and particle-water partition coefficients (Kd) were determined for sediment trap material collected in the Oceanic Flux Program (OFP) site of Bermuda (500, 1500 and 3200 m). Results showed that different organic components contribute differently to the fractionation of different radionuclides from the three depths. We conclude that natural organic matter control on the particle-water partition coefficients cannot be ignored.

  6. Primary Care of the Solid Organ Transplant Recipient.

    PubMed

    Wong, Christopher J; Pagalilauan, Genevieve

    2015-09-01

    Solid organ transplantation (SOT) is one of the major advances in medicine. Care of the SOT recipient is complex and continued partnership with the transplant specialist is essential to manage and treat complications and maintain health. The increased longevity of SOT recipients will lead to their being an evolving part of primary care practice, with ever more opportunities for care, education, and research of this rewarding patient population. This review discusses the overall primary care management of adult SOT recipients.

  7. On the Applicability of the Green Chemistry Principles to Sustainability of Organic Matter on Asteroids

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2010-06-01

    The connection between astrobiology and green chemistry represents a new approach to sustainability of organic matter on asteroids or similar bodies. Green chemistry is chemistry which is environmentally friendly. One obvious way for chemistry to be green is to use water as a solvent, instead of more toxic organic solvents. Many astrobiological reactions occur in the aqueous medium, for example in the prebiotic soup or during the aqueous alteration period on asteroids. Thus any advances in the green organic reactions in water are directly applicable to astrobiology. Another green chemistry approach is to abolish use of toxic solvents. This can be accomplished by carrying out the reactions without a solvent in the solventless or solid-state reactions. The advances in these green reactions are directly applicable to the chemistry on asteroids during the periods when water was not available. Many reactions on asteroids may have been done in the solid mixtures. These reactions may be responsible for a myriad of organic compounds that have been isolated from the meteorites.

  8. [Invasive yeast diseases in solid organ transplant recipients].

    PubMed

    Muñoz, Patricia; Aguado, José María

    2016-01-01

    Invasive yeast diseases are uncommon nowadays in solid organ transplant recipients. Invasive candidiasis (2%) usually presents during the first month after transplantation in patients with risk factors. Both common and transplant-specific risk factors have been identified, allowing very efficacious targeted prophylaxis strategies. The most common clinical presentations are fungaemia and local infections near the transplantation area. Cryptococcosis is usually a late infection. Its incidence remains stable and the specific risk factors have not been identified. When cryptococcosis is detected very early, transmission with the allograft should be considered. The most common clinical presentations include meningitis, pneumonia, and disseminated infection. Intracranial hypertension and immune reconstitution syndrome have to be considered. No therapeutic clinical trials have been conducted in solid organ transplant recipients, thus treatment recommendations are derived from data obtained from the general population. It is particularly important to consider the possibility of drug-drug interactions, mainly between azoles and calcineurin inhibitors. Both invasive candidiasis and cryptococcosis increase the mortality significantly in solid organ transplant recipients.

  9. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  10. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    PubMed

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  11. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  12. The PROCESS experiment: an astrochemistry laboratory for solid and gaseous organic samples in low-earth orbit.

    PubMed

    Cottin, Hervé; Guan, Yuan Yong; Noblet, Audrey; Poch, Olivier; Saiagh, Kafila; Cloix, Mégane; Macari, Frédérique; Jérome, Murielle; Coll, Patrice; Raulin, François; Stalport, Fabien; Szopa, Cyril; Bertrand, Marylène; Chabin, Annie; Westall, Frances; Chaput, Didier; Demets, René; Brack, André

    2012-05-01

    The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.

  13. Nature and transformation of dissolved organic matter in treatment wetlands.

    PubMed

    Barber, L B; Leenheer, J A; Noyes, T I; Stiles, E A

    2001-12-15

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewater-derived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  14. Morphological Study of Insoluble Organic Matter Residues from Primitive

    NASA Technical Reports Server (NTRS)

    Changela, H. G.; Stroud, R. M.; Peeters, Z.; Nittler, L. R.; Alexander, C. M. O'D.; DeGregorio, B. T.; Cody, G. D.

    2012-01-01

    Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms.

  15. Nature and transformation of dissolved organic matter in treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.

    2001-01-01

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  16. Carbon isotope fractionation of sapropelic organic matter during early diagenesis

    USGS Publications Warehouse

    Spiker, E. C.; Hatcher, P.G.

    1984-01-01

    Study of an algal, sapropelic sediment from Mangrove Lake, Bermuda shows that the mass balance of carbon and stable carbon isotopes in the major organic constituents is accounted for by a relatively straightforward model of selective preservation during diagenesis. The loss of 13C-enriched carbohydrates is the principal factor controlling the intermolecular mass balance of 13C in the sapropel. Results indicate that labile components are decomposed leaving as a residual concentrate in the sediment an insoluble humic substance that may be an original biochemical component of algae and associated bacteria. An overall decrease of up to about 4??? in the ?? 13C values of the organic matter is observed as a result of early diagenesis. ?? 1984.

  17. Literature review of organic matter transport from marshes

    NASA Technical Reports Server (NTRS)

    Dow, D. D.

    1982-01-01

    A conceptual model for estimating a transport coefficient for the movement of nonliving organic matter from wetlands to the adjacent embayments was developed in a manner that makes it compatible with the Earth Resources Laboratory's Productive Capacity Model. The model, which envisages detritus movement from wetland pixels to the nearest land-water boundary followed by movement within the water column from tidal creeks to the adjacent embayment, can be transposed to deal with only the interaction between tidal water and the marsh or to estimate the transport from embayments to the adjacent coastal waters. The outwelling hypothesis postulated wetlands as supporting coastal fisheries either by exporting nutrients, such as inorganic nitrogen, which stimulated the plankton-based grazing food chain in the water column, or through the export of dissolved and particulate organic carbon which provided a benthic, detritus-based food web which provides the food source for the grazing food chain in a more indirect fashion.

  18. Dissolved Organic Matter in the Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Striegl, R.; Schuster, P.

    2004-12-01

    Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of dissolved organic matter (DOM) in aquatic systems. At present, a critical question in carbon cycling is how climate change could alter the fate and chemical nature of dissolved organic carbon (DOC) released from watersheds, particularly those underlain by permafrost, and transported to rivers, lakes, estuaries and coastal waters. The spatial and temporal variability of DOM in surface waters associated with the Yukon River are being studied to better define processes controlling DOM in this system. Like many northern ecosystems, the Yukon River Basin is experiencing melting permafrost, drying of upland soils and changing wetland environments. Study results indicate that the transport of DOM in the river and its major tributaries is strongly seasonally dependent. Specific ultraviolet absorbance (SUVA) data, an excellent indicator of aromatic carbon content of DOM, also indicate a large variation in the chemical nature of the organic matter transported by the river. Lowest DOC concentrations and SUVA values were observed for samples collected in the winter under low flow conditions and for tributaries dominated by ground water inputs. Greatest DOC concentrations and SUVA values were measured on samples collected during the spring on the leading part of the hydrograph. High SUVA values are indicative of greater amounts of organic material originating from higher plants that are present in upper soil horizons and wetlands of the watershed. Aquatic humic substances collected from the Yukon River during the snowmelt period were found to have low nitrogen contents and greater amounts of aromatic C relative to samples from other aquatic environments. Low N content and high aromaticity are indicative of humic substances evolved from higher plant sources with little alteration resulting from microbial degradation or soil interactions. In addition

  19. Spectroscopic characteristics of soil organic matter as a tool to assess soil physical quality in Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Recio Vázquez, Lorena; Almendros, Gonzalo; Knicker, Heike; López-Martín, María; Carral, Pilar; Álvarez, Ana

    2014-05-01

    In Mediterranean areas, the loss of soil physical quality is of particular concern due to the vulnerability of these ecosystems in relation to unfavourable climatic conditions, which usually lead to soil degradation processes and severe decline of its functionality. As a result, increasing scientific attention is being paid on the exploration of soil properties which could be readily used as quality indicators, including organic matter which, in fact, represents a key factor in the maintenance of soil physical status. In this line, the present research tackles the assessment of the quality of several soils from central Spain with the purpose of identifying the physical properties most closely correlated with the organic matter, considering not only the quantity but also the quality of the different C-forms. The studied attributes consist of a series of physical properties determined in field and laboratory conditions-total porosity, aggregate stability, available water capacity, air provision, water infiltration rate and soil hydric saturation-.The bulk organic matter was characterised by solid-state 13C NMR spectroscopy and the major organic fractions (lipids, free particulate organic matter, fulvic acids, humic acids and humin) were quantified using standard procedures. The humic acids were also analysed by visible and infrared spectroscopies. The use of multidimensional scaling to classify physical properties in conjunction with molecular descriptors of soil organic matter, suggested significant correlations between the two set of variables, which were confirmed with simple and canonical regression models. The results pointed to two well-defined groups of physical attributes in the studied soils: (i) those associated with organic matter of predominantly aromatic character (water infiltration descriptors), and (ii) soil physical variables related to organic matter with marked aliphatic character, high preservation of the lignin signature and comparatively low

  20. Dissolved organic matter photolysis in Canadian arctic thaw ponds

    NASA Astrophysics Data System (ADS)

    Laurion, Isabelle; Mladenov, Natalie

    2013-09-01

    The abundant thaw lakes and ponds in the circumarctic receive a new pool of organic carbon as permafrost peat soils degrade, which can be exposed to significant irradiance that potentially increases as climate warms and ice cover shortens. Exposure to sunlight is known to accelerate the transformation of dissolved organic matter (DOM) into molecules that can be more readily used by microbes. We sampled the water from two common classes of ponds found in the ice-wedge system of continuous permafrost regions of Canada, polygonal and runnel ponds, and followed the transformation of DOM over 12 days by looking at dissolved organic carbon (DOC) concentration and DOM absorption and fluorescence properties. The results indicate a relatively fast decay of color (3.4 and 1.6% loss d-1 of absorption at 320 nm for the polygonal and runnel pond, respectively) and fluorescence (6.1 and 8.3% loss d-1 of total fluorescent components, respectively) at the pond surface, faster in the case of humic-like components, but insignificant losses of DOC over the observed period. This result indicates that direct DOM mineralization (photochemical production of CO2) is apparently minor in thaw ponds compared to the photochemical transformation of DOM into less chromophoric and likely more labile molecules with a greater potential for microbial mineralization. Therefore, DOM photolysis in arctic thaw ponds can be considered as a catalytic mechanism, accelerating the microbial turnover of mobilized organic matter from thawing permafrost and the production of greenhouse gases, especially in the most shallow ponds. Under a warming climate, this mechanism will intensify as summers lengthen.

  1. Quantitative 13C NMR of whole and fractionated Iowa Mollisols for assessment of organic matter composition

    NASA Astrophysics Data System (ADS)

    Fang, Xiaowen; Chua, Teresita; Schmidt-Rohr, Klaus; Thompson, Michael L.

    2010-01-01

    Both the concentrations and the stocks of soil organic carbon vary across the landscape. Do the amounts of recalcitrant components of soil organic matter (SOM) vary with landscape position? To address this question, we studied four Mollisols in central Iowa, two developed in till and two developed in loess. Two of the soils were well drained and two were poorly drained. We collected surface-horizon samples and studied organic matter in the particulate organic matter (POM) fraction, the clay fractions, and the whole, unfractionated samples. We treated the soil samples with 5 M HF at ambient temperature or at 60 °C for 30 min to concentrate the SOM. To assess the composition of the SOM, we used solid-state nuclear magnetic resonance (NMR) spectroscopy, in particular, quantitative 13C DP/MAS (direct-polarization/magic-angle spinning), with and without recoupled dipolar dephasing. Spin counting by correlation of the integral NMR intensity with the C concentration by elemental analysis showed that NMR was ⩾85% quantitative for the majority of the samples studied. For untreated whole-soil samples with <2.5 wt.% C, which is considerably less than in most previous quantitative NMR analyses of SOM, useful spectra that reflected ⩾65% of all C were obtained. The NMR analyses allowed us to conclude (1) that the HF treatment (with or without heat) had low impact on the organic C composition in the samples, except for protonating carboxylate anions to carboxylic acids, (2) that most organic C was observable by NMR even in untreated soil materials, (3) that esters were likely to compose only a minor fraction of SOM in these Mollisols, and (4) that the aromatic components of SOM were enriched to ˜53% in the poorly drained soils, compared with ˜48% in the well drained soils; in plant tissue and particulate organic matter (POM) the aromaticities were ˜18% and ˜32%, respectively. Nonpolar, nonprotonated aromatic C, interpreted as a proxy for charcoal C, dominated the

  2. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    SciTech Connect

    Fdez-Gueelfo, L.A.; Alvarez-Gallego, C.; Sales, D.; Romero Garcia, L.I.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  3. Temperature and organic matter controls on hyporheic greenhouse gas production

    NASA Astrophysics Data System (ADS)

    Comer-Warner, S.; Romeijn, P.; Krause, S.; Hannah, D. M.; Gooddy, D.

    2016-12-01

    The region of groundwater and surface water mixing, known as the hyporheic zone, has recently attracted interest as an area of greenhouse gas (GHG) production. Although high concentrations of GHG have been found in these environments, the drivers of hyporheic GHG production remain poorly understood. Here we present the results of a microcosm incubation experiment, designed to determine the effect of multiple environmental parameters on GHG production. Three sediment types, representing a gradient of organic matter contents, from two contrasting UK lowland rivers (sandstone and chalk), were incubated for 29 hours. Experiments were performed at five temperature treatments between 5 and 25°C, and the microbial metabolism of each microcosm was determined using the smart tracer Resazurin. Headspace concentrations of carbon dioxide, methane and nitrous oxide were measured to determine the effect of these environmental parameters on GHG production, and establish their roles as drivers of GHG production in the hyporheic zone. Our results indicate strong temperature controls of GHG production, overlapping with the observed impacts of varying organic matter content of different sediments. Experimental findings indicate that increased hyporheic temperatures during increasing baseflow and drought conditions may significantly enhance sediment respiration, and thus, GHG emissions from the streambed interface. This research advances understanding of drivers of whole stream carbon and nitrogen budgets, as well as the role of groundwater-surface water interfaces in GHG emissions, and allows the interaction of these controls to be assessed.

  4. Speciation of The Particulate Organic Matter In Three Remote Areas

    NASA Astrophysics Data System (ADS)

    Masclet, Pierre; Marchand, Nicolas; Jaffrezo, Jean Luc; Besombes, Jean Luc

    Total particulate matter was collected as part of three programs between 1999 and 2001 (EAAS in Finland, ESOMPTE in Marseille/Fos and POVA in french alpine valleys). The speciation of the particulate organic matter (POM) was performed by Gas Chromatography or HPLC coupled with a mass spectrometer. 13 organic families were identified in the 245 samples collected. The presence of some functional groups (- COOH; - OH and - CHO) and the carbon chain length are used in order to identify the sources of the particulate pollutants and the physicochemical behaviour during the long range atmospheric transport of the aerosol. The composition of the POM differs depending on the season (the secondary fraction reaches 27 % in summer and only 6% in winter) and on the remoteness of the sources. Alkanes are always the most abundant compounds. Polycyclic aromatic hydrocarbons, alcohols, esters, carboxylic acids and monoaromatic hydrocarbons are present in significant abundance. Some alkenes, aldehydes, ether oxydes, ketones and halocompounds are also found. Alcohols are more abundant in aerosols collected close to marine sites. Long carbon chain esters are mostly found in aerosols collected in high density vegetation areas and relatively high concentrations of PAH are measured in aerosols collected close to highly populated areas. These three families are good geochemical tracers, respectively of marine, biogenic and anthropic sources.

  5. Seasonal changes in photochemical properties of dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Porcal, P.; Dillon, P. J.; Molot, L. A.

    2013-03-01

    The fate of dissolved organic matter (DOM) in lakes and streams is significantly affected by photochemical transformation of DOM. A series of laboratory photochemical experiments was conducted to describe long-term changes in photochemical properties of DOM. The stream samples used in this study originated from three different catchments on the southern-most part of the Boreal ecozone near Dorset, Ontario, Canada. A first-order kinetics equation was used to model photochemical degradation of DOM and the kinetic rate constant, K, was used as an indicator of photochemical properties of DOM. Highest Kwas observed in samples from the catchment dominated by coniferous forest while the lowest K was measured in the deciduous catchment. Kinetic rate constants from all three catchments showed a sinusoidal pattern during the hydrological year. K increased steadily during autumn and winter and decreased during spring and summer. The highest values were observed during spring melt events when DOM was flushed from terrestrial sources by high flows. The minimum rate constants were found in summer when discharge was lowest. DOM molecular weight and specific absorbance at 254 nm also exhibited annual cycles corresponding to the seasonal cycles of terrestrial organic matter but the relationships between these properties and K was probably affected by previous exposure to solar radiation during transit from the catchment as well as pH and iron.

  6. Wastewater disinfection and organic matter removal using ferrate (VI) oxidation.

    PubMed

    Bandala, Erick R; Miranda, Jocelyn; Beltran, Margarita; Vaca, Mabel; López, Raymundo; Torres, Luis G

    2009-09-01

    The use of iron in a +6 valence state, (Fe (VI), as FeO4(-2)) was tested as a novel alternative for wastewater disinfection and decontamination. The removal of organic matter (OM) and index microorganisms present in an effluent of a wastewater plant was determined using FeO4(-2) without any pH adjustment. It was observed that concentrations of FeO4(-2) ranging between 5 and 14 mg l(-1) inactivated up to 4-log of the index microorganisms (initial concentration c.a. 10(6) CFU/100 ml) and achieved OM removal up to almost 50%. The performance of FeO4(-2) was compared with OM oxidation and disinfection using hypochlorite. It was observed that hypochlorite was less effective in OM oxidation and coliform inactivation than ferrate. Results of this work suggest that FeO4(-2) could be an interesting oxidant able to deactivate pathogenic microorganisms in water with high OM content and readily oxidize organic matter without jeopardizing its efficiency on microorganism inactivation.

  7. Black Carbon - Soil Organic Matter abiotic and biotic interactions

    NASA Astrophysics Data System (ADS)

    Cotrufo, Francesca; Boot, Claudia; Denef, Karolien; Foster, Erika; Haddix, Michelle; Jiang, Xinyu; Soong, Jennifer; Stewart, Catherine

    2014-05-01

    Wildfires, prescribed burns and the use of char as a soil amendment all add large quantities of black carbon to soils, with profound, yet poorly understood, effects on soil biology and chemical-physical structure. We will present results emerging from our black carbon program, which addresses questions concerning: 1) black carbon-soil organic matter interactions, 2) char decomposition and 3) impacts on microbial community structure and activities. Our understanding derives from a complementary set of post-fire black carbon field surveys and laboratory and field experiments with grass and wood char amendments, in which we used molecular (i.e., BPCA, PLFA) and isotopic (i.e., 13C and 15N labelled char) tracers. Overall, emerging results demonstrate that char additions to soil are prone to fast erosion, but a fraction remains that increases water retention and creates a better environment for the microbial community, particularly favoring gram negative bacteria. However, microbial decomposition of black carbon only slowly consumes a small fraction of it, thus char still significantly contributes to soil carbon sequestration. This is especially true in soils with little organic matter, where black carbon additions may even induce negative priming.

  8. Terrestrial and marine perspectives on modeling organic matter degradation pathways.

    PubMed

    Burd, Adrian B; Frey, Serita; Cabre, Anna; Ito, Takamitsu; Levine, Naomi M; Lønborg, Christian; Long, Matthew; Mauritz, Marguerite; Thomas, R Quinn; Stephens, Brandon M; Vanwalleghem, Tom; Zeng, Ning

    2016-01-01

    Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO2 ) in the atmosphere, and annual fluxes of CO2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems and that our respective scientific communities would benefit from closer collaboration.

  9. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    PubMed

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify.

  10. Alcohol and substance abuse in solid-organ transplant recipients.

    PubMed

    Parker, Richard; Armstrong, Matthew J; Corbett, Chris; Day, Edward J; Neuberger, James M

    2013-12-27

    This review focuses on alcohol and substance abuse in the context of solid-organ transplantation. Alcohol and substance abuse are common and may lead to a need for solid-organ transplantation and may also contribute to significant physical and psychologic problems that impact upon the recipient. Damaging levels of alcohol intake can occur in the absence of dependence. Alcohol or substance abuse after transplantation is associated with poor medication compliance and this may increase risk of graft loss. Intravenous drug use is associated with increased risk of infections (especially secondary to opportunistic organisms-bacterial, viral, protozoal, and others-and such infections may be more severe in the immunosuppressed), but there is only anecdotal evidence that such behavior has a worse outcome in transplant recipients. Whereas previous alcohol excess and drug use in kidney recipients are both associated with a small but statistically significantly increased risk of adverse outcomes (hazard ratio, 1.16-1.56), alcohol use within recommended guidelines after transplantation appears safe and possibly beneficial. Robust data are lacking for other organs, but those available suggest that heart transplantation is safe in individuals with a history of alcohol or substance abuse. Health specialists in drug or alcohol addiction should carefully screen all potential transplant candidates for these conditions, and where there is evidence of dependency or abuse, effective psychologic and physical treatment should be offered. Studies have shown that interventions such as psychologic intervention have improved alcohol behavior in the context of liver transplantation. Although there are no comparable studies with other solid-organ recipients, it is reasonable to expect transferable outcomes.

  11. Periocular Skin Cancer in Solid Organ Transplant Recipients.

    PubMed

    Perry, Julian D; Polito, Sara C; Chundury, Rao V; Singh, Arun D; Fritz, Michael A; Vidimos, Allison T; Gastman, Brian R; Koyfman, Shlomo A

    2016-01-01

    To determine the proportion of solid organ transplant recipients developing periocular nonmelanoma skin cancer and to describe the morbidity of these cancers in transplant recipients. Cohort study. Consecutive patients undergoing solid organ transplantation at the Cleveland Clinic between 1990 and 2008. The charts of all patients receiving a solid organ transplant from 1990-2008 evaluated in the dermatology department for a subsequent biopsy-proven head and neck malignancy through April 2015 were reviewed. Patients with a periocular region nonmelanoma skin cancer (NMSC) or a nonperiocular NMSC causing a complication requiring eyelid surgery were included. Charts were reviewed for demographic data; transplant date, type, and source; immunosuppressive agents received at diagnosis; and type of NMSC, number of nonperiocular NMSCs, ophthalmologic findings, and periocular sequelae after the repair. Primary outcome measures included the type, location, final defect size, tumor-node-metastasis classification, presence of perineural invasion, and reconstruction technique(s) used for each periocular NMSC. Secondary outcome measures included the type and treatment of ocular sequelae due to nonperiocular facial NMSC. A total of 3489 patients underwent solid organ transplantation between 1990 and 2008. Of these, 420 patients were evaluated in the dermatology clinic for biopsy-proven NMSC of the head and neck during the study period, and 11 patients (15 malignancies) met inclusion criteria. Nine patients developed 12 periocular malignancies and 3 patients required eyelid surgery for facial malignancies outside the periocular zone. All 11 patients developed a squamous cell carcinoma (14 malignancies), and 1 patient (1 malignancy) also developed a periocular basal cell carcinoma. There was orbital invasion in 4 cases and paranasal and/or cavernous sinus invasion in 3 cases. Two patients underwent exenteration. Seven cases required reconstruction with a free flap or graft

  12. Sulfur species behavior in soil organic matter during decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Graham, M.; Kaste, J.M.; Mitchell, M.J.; Friedland, A.J.

    2007-01-01

    Soil organic matter (SOM) is a primary re??servoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to spqciation in SOM, particularly in conifer forests, and S species fractions in SOM change, during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S. Copyright 2007 by the American Geophysical Union.

  13. Origin of sedimentary organic matter at the Northern Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Kaneko, M.; Naraoka, H.

    2007-12-01

    Gas hydrate in marine sediments may have important roles on global carbon cycle and climatic change. We examined origins of sedimentary organic matter and bacterial activity in deep and hydrate-bearing sediment cored in Site U1327 and U1328 at northern Cascadia Margin by IODP Exp311, using σ13C of total organic carbon (TOC), σ15N of total nitrogen (TN), σ34S of total sulfur (TS), and σ13C of biomarkers in hydrocarbon fraction. In both sites, TOC/TN ratios and σ13C of TOC values ranged from 5.5 to 18.0 and -25.7 to -21.5 ‰, respectively, suggesting that sedimentary organic matter is a mixture of terrestrial and marine sources. Long chain (n)-alkanes (C27, C29, and C30), known as biomarkers of terrestrial higher plant were most abundant components (up to ~50 μg/gCorg) through down to 300 mbsf, and their σ13C values (-34.3 to -28.7 ‰) reveal their C3 plant origin. In addition, very long-chain alkene (C37) occurred in some sediments, which suggests the blooming by coccolithophore in the past. σ34S of TS values at both sites show large variation between -30 to +20 ‰. Most of σ34S of TS values were less than present σ34S value of seawater sulfate (+20.3 ‰). This is attributable to isotope fractionation during microbial sulfate reduction. Crocetenes including one double bond occurred in deep sediments with higher σ13C values (-23 ‰) than the reported σ13C values (< ~ -100 ‰, Elvert et al, 2000), providing possibility of heterotrophic archaea using marine organic matter as a carbon source. Pentamethylicosane (PMI) was detected in relatively high concentrations at 249 mbsf at Site U1328 and its σ13C value was -46.4 ‰. This PMI could be chemoautotrophic archaea in origin such as methanogen. Diploptene was also detected in most sediments with the σ13C value of -37 to -35 ‰, probably being characteristic of chemoautotrophic bacteria.

  14. Risk for transmission of Naegleria fowleri from solid organ transplantation.

    PubMed

    Roy, S L; Metzger, R; Chen, J G; Laham, F R; Martin, M; Kipper, S W; Smith, L E; Lyon, G M; Haffner, J; Ross, J E; Rye, A K; Johnson, W; Bodager, D; Friedman, M; Walsh, D J; Collins, C; Inman, B; Davis, B J; Robinson, T; Paddock, C; Zaki, S R; Kuehnert, M; DaSilva, A; Qvarnstrom, Y; Sriram, R; Visvesvara, G S

    2014-01-01

    Primary amebic meningoencephalitis (PAM) caused by the free-living ameba (FLA) Naegleria fowleri is a rare but rapidly fatal disease of the central nervous system (CNS) affecting predominantly young, previously healthy persons. No effective chemotherapeutic prophylaxis or treatment has been identified. Recently, three transplant-associated clusters of encephalitis caused by another FLA, Balamuthia mandrillaris, have occurred, prompting questions regarding the suitability of extra-CNS solid organ transplantation from donors with PAM. During 1995-2012, 21 transplant recipients of solid organs donated by five patients with fatal cases of PAM were reported in the United States. None of the recipients developed PAM, and several recipients tested negative for N. fowleri by serology. However, historical PAM case reports and animal experiments with N. fowleri, combined with new postmortem findings from four patients with PAM, suggest that extra-CNS dissemination of N. fowleri can occur and might pose a risk for disease transmission via transplantation. The risks of transplantation with an organ possibly harboring N. fowleri should be carefully weighed for each individual recipient against the potentially greater risk of delaying transplantation while waiting for another suitable organ. In this article, we present a case series and review existing data to inform such risk assessments.

  15. Travel to High Altitude Following Solid Organ Transplantation.

    PubMed

    Luks, Andrew M

    2016-09-01

    Luks, Andrew M. Clinician's corner: travel to high altitude following solid organ transplantation. High Alt Med Biol. 17:147-156, 2016.-As they regain active lifestyles following successful organ transplantation, transplant recipients may travel to high altitude for a variety of activities, including skiing, climbing, and trekking. This review is intended to provide information for medical providers who may encounter transplant patients seeking advice before planned high altitude travel or care for medical issues that develop during the actual sojourn. There is currently limited information in the literature about outcomes during high-altitude travel following solid organ transplantation, but the available evidence suggests that the physiologic responses to hypobaric hypoxia are comparable to those seen in nontransplanted individuals and well-selected transplant recipients with no evidence of organ rejection can tolerate ascents as high as 6200 m. All transplant recipients planning high-altitude travel should undergo pretravel assessment and counseling with an emphasis on the recognition, prevention, and treatment of altitude illness, as well as the importance of preventing infection and limiting sun exposure. Transplant recipients can use the standard medications for altitude illness prophylaxis and treatment, but the choice and dose of medication should take into account the patient's preexisting medication regimen and current renal function. With careful attention to these and other details, the healthy transplant recipient can safely experience the rewards of traveling in the mountains.

  16. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for

  17. Spectroscopic characterization of dissolved organic matter isolated from rainwater.

    PubMed

    Santos, Patrícia S M; Otero, Marta; Duarte, Regina M B O; Duarte, Armando C

    2009-02-01

    Rainwater is a matrix containing extremely low concentrations (in the range of muM C) of dissolved organic carbon (DOC) and for its characterization, an efficient extraction procedure is essential. A recently developed procedure based on adsorption onto XAD-8 and XAD-4 resins in series was used in this work for the extraction and isolation of rainwater dissolved organic matter (DOM). Prior to the isolation and fractionation of DOM, and to obtain sufficient mass for the spectroscopic analyses, individual rainwater samples were batched together according to similar meteorological conditions on a total of three composed samples. The results of the isolation procedure indicated that the resin tandem procedure is not applicable for rainwater DOM since the XAD-4 resin caused samples contamination. On the other hand, the XAD-8 resin allowed DOM recoveries of 39.9-50.5% of the DOC of the original combined samples. This recovered organic fraction was characterized by UV-visible, molecular fluorescence, FTIR-ATR and 1H NMR spectroscopies. The chemical characterization of the