Science.gov

Sample records for organic ultraviolet photovoltaic

  1. Solution processable organic/inorganic hybrid ultraviolet photovoltaic detector

    NASA Astrophysics Data System (ADS)

    Guo, Xiaopeng; Tang, Libin; Xiang, Jinzhong; Ji, Rongbin; Zhang, Kai; Lai, Sin Ki; Zhao, Jun; Kong, Jincheng; Lau, Shu Ping

    2016-05-01

    Ultraviolet (UV) photodetector is a kind of important optoelectronic device which can be widely used in scientific and engineering fields including astronomical research, environmental monitoring, forest-fire prevention, medical analysis, and missile approach warning etc. The development of UV detector is hindered by the acquirement of stable p-type materials, which makes it difficult to realize large array, low-power consumption UV focal plane array (FPA) detector. Here, we provide a novel structure (Al/Poly(9,9-di-n-octylfuorenyl-2,7-diyl)(PFO)/ZnO/ITO) to demonstrate the UV photovoltaic (PV) response. A rather smooth surface (RMS roughness: 0.28 nm) may be reached by solution process, which sheds light on the development of large-array, light-weight and low-cost UV FPA detectors.

  2. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  3. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Leo, Karl

    2016-08-01

    Organic photovoltaics are on the verge of revolutionizing building-integrated photovoltaics. For other applications, however, several basic open scientific questions need answering to, in particular, further improve energy-conversion efficiency and lifetime.

  4. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  5. Inverted organic photovoltaic cells.

    PubMed

    Wang, Kai; Liu, Chang; Meng, Tianyu; Yi, Chao; Gong, Xiong

    2016-05-21

    The advance in lifestyle, modern industrialization and future technological revolution are always at high expense of energy consumption. Unfortunately, there exist serious issues such as limited storage, high cost and toxic contamination in conventional fossil fuel energy sources. Instead, solar energy represents a renewable, economic and green alternative in the future energy market. Among the photovoltaic technologies, organic photovoltaics (OPVs) demonstrate a cheap, flexible, clean and easy-processing way to convert solar energy into electricity. However, OPVs with a conventional device structure are still far away from industrialization mainly because of their short lifetime and the energy-intensive deposition of top metal electrode. To address the stability and cost issue simultaneously, an inverted device structure has been introduced into OPVs, bridging laboratory research with practical application. In this review, recent progress in device structures, working mechanisms, functions and advances of each component layer as well their correlations with the efficiency and stability of inverted OPVs are reviewed and illustrated.

  6. Integrated organic photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Potscavage, William J.; Yoo, Seunghyup; Domercq, Benoit; Kim, Jungbae; Holt, Joe; Kippelen, Bernard

    2007-09-01

    Methods for scalable output voltage and encapsulation of organic photovoltaic cells are addressed in this paper. To obtain scalable output voltages, integrated photovoltaic modules comprised of a bulk heterojunction of poly(3- hexylthiophene) (P3HT) and a soluble C 70 derivative, [6,6]-phenyl C 71 butyric acid methyl ester (PCBM-70), were fabricated. Power conversion efficiency of individual P3HT/PCBM-70 cells was estimated to be 4.1 % for AM1.5 G illumination. Modules of one to four cells connected in series produced open-circuit voltages V OC that linearly depend on the number of cells N as V OC = N × 0.621 V with a nearly constant short-circuit current of 1.4 +/- 0.1 mA. Separately, shelf lifetimes of more than one year were achieved for pentacene/C 60 solar cells by encapsulation with a 200-nm-thick layer of Al IIO 3 deposited by atomic layer deposition (ALD). In addition, the ALD process improved the open-circuit voltage and power conversion efficiency of the solar cells by thermal annealing that occurs during the process.

  7. Liquid Crystals for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    O'Neill, Mary; Kelly, Stephen M.

    As discussed in Chaps. 2 (10.1007/978-90-481-2873-0_2), 3 (10.1007/978-90-481-2873-3), 5 (10.1007/978-90-481-2873-5) and 6 (10.1007/978-90-481-2873-6), columnar, smectic and, more recently, nematic liquid crystals are widely recognized as very promising charge-transporting organic semiconductors due to their ability to spontaneously self-assemble into highly ordered domains in uniform thin films over large areas. This and their broad absorption spectra make them suitable as active materials for organic photovoltaic devices. In this chapter, we discuss the use of liquid crystals in such devices. Firstly, we examine the principle of power generation via the photovoltaic effect in organic materials and the various device configurations that can optimise efficiency. Then we discuss photovoltaic devices incorporating columnar liquid crystals combined with electron accepting materials based on either perylene or fullerene. The use of nematic and sanditic liquid crystals in photovoltaics is investigated as well as a novel solar cell concentrator incorporating liquid crystals. Finally, we analyse the benefits and limitations of liquid-crystal-based photovoltaics in the context of the state-of-the-art for organics photovoltaics.

  8. The Harvard organic photovoltaic dataset.

    PubMed

    Lopez, Steven A; Pyzer-Knapp, Edward O; Simm, Gregor N; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-09-27

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications.

  9. The Harvard organic photovoltaic dataset

    NASA Astrophysics Data System (ADS)

    Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R.; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-09-01

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications.

  10. The Harvard organic photovoltaic dataset

    PubMed Central

    Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R.; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-01-01

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications. PMID:27676312

  11. Light Harvesting for Organic Photovoltaics

    PubMed Central

    2016-01-01

    The field of organic photovoltaics has developed rapidly over the last 2 decades, and small solar cells with power conversion efficiencies of 13% have been demonstrated. Light absorbed in the organic layers forms tightly bound excitons that are split into free electrons and holes using heterojunctions of electron donor and acceptor materials, which are then extracted at electrodes to give useful electrical power. This review gives a concise description of the fundamental processes in photovoltaic devices, with the main emphasis on the characterization of energy transfer and its role in dictating device architecture, including multilayer planar heterojunctions, and on the factors that impact free carrier generation from dissociated excitons. We briefly discuss harvesting of triplet excitons, which now attracts substantial interest when used in conjunction with singlet fission. Finally, we introduce the techniques used by researchers for characterization and engineering of bulk heterojunctions to realize large photocurrents, and examine the formed morphology in three prototypical blends. PMID:27951633

  12. Light Harvesting for Organic Photovoltaics.

    PubMed

    Hedley, Gordon J; Ruseckas, Arvydas; Samuel, Ifor D W

    2017-01-25

    The field of organic photovoltaics has developed rapidly over the last 2 decades, and small solar cells with power conversion efficiencies of 13% have been demonstrated. Light absorbed in the organic layers forms tightly bound excitons that are split into free electrons and holes using heterojunctions of electron donor and acceptor materials, which are then extracted at electrodes to give useful electrical power. This review gives a concise description of the fundamental processes in photovoltaic devices, with the main emphasis on the characterization of energy transfer and its role in dictating device architecture, including multilayer planar heterojunctions, and on the factors that impact free carrier generation from dissociated excitons. We briefly discuss harvesting of triplet excitons, which now attracts substantial interest when used in conjunction with singlet fission. Finally, we introduce the techniques used by researchers for characterization and engineering of bulk heterojunctions to realize large photocurrents, and examine the formed morphology in three prototypical blends.

  13. The future of organic photovoltaics.

    PubMed

    Mazzio, Katherine A; Luscombe, Christine K

    2015-01-07

    Increasing global demand for energy, along with dwindling fossil fuel resources and a better understanding of the hidden costs associated with these energy sources, have spurred substantial political, academic, and industrial interest in alternative energy resources. Photovoltaics based on organic semiconductors have emerged as promising low-cost alternatives for electricity generation that relies on sunlight. In this tutorial review we discuss the relevance of these organic photovoltaics beginning with some of the economic drivers for these technologies. We then examine the basic properties of these devices, including operation and materials requirements, in addition to presenting the development of the field from a historical perspective. Potential future directions are also briefly discussed. This tutorial review is intended to be an essential overview of the progress of the field, in addition to aiding in the discussion of the future of OPV technologies.

  14. Light Manipulation in Organic Photovoltaics.

    PubMed

    Ou, Qing-Dong; Li, Yan-Qing; Tang, Jian-Xin

    2016-07-01

    Organic photovoltaics (OPVs) hold great promise for next-generation photovoltaics in renewable energy because of the potential to realize low-cost mass production via large-area roll-to-roll printing technologies on flexible substrates. To achieve high-efficiency OPVs, one key issue is to overcome the insufficient photon absorption in organic photoactive layers, since their low carrier mobility limits the film thickness for minimized charge recombination loss. To solve the inherent trade-off between photon absorption and charge transport in OPVs, the optical manipulation of light with novel micro/nano-structures has become an increasingly popular strategy to boost the light harvesting efficiency. In this Review, we make an attempt to capture the recent advances in this area. A survey of light trapping schemes implemented to various functional components and interfaces in OPVs is given and discussed from the viewpoint of plasmonic and photonic resonances, addressing the external antireflection coatings, substrate geometry-induced trapping, the role of electrode design in optical enhancement, as well as optically modifying charge extraction and photoactive layers.

  15. Light Manipulation in Organic Photovoltaics

    PubMed Central

    Ou, Qing‐Dong

    2016-01-01

    Organic photovoltaics (OPVs) hold great promise for next‐generation photovoltaics in renewable energy because of the potential to realize low‐cost mass production via large‐area roll‐to‐roll printing technologies on flexible substrates. To achieve high‐efficiency OPVs, one key issue is to overcome the insufficient photon absorption in organic photoactive layers, since their low carrier mobility limits the film thickness for minimized charge recombination loss. To solve the inherent trade‐off between photon absorption and charge transport in OPVs, the optical manipulation of light with novel micro/nano‐structures has become an increasingly popular strategy to boost the light harvesting efficiency. In this Review, we make an attempt to capture the recent advances in this area. A survey of light trapping schemes implemented to various functional components and interfaces in OPVs is given and discussed from the viewpoint of plasmonic and photonic resonances, addressing the external antireflection coatings, substrate geometry‐induced trapping, the role of electrode design in optical enhancement, as well as optically modifying charge extraction and photoactive layers. PMID:27840805

  16. Classification of additives for organic photovoltaic devices.

    PubMed

    Machui, Florian; Maisch, Philipp; Burgués-Ceballos, Ignasi; Langner, Stefan; Krantz, Johannes; Ameri, Tayebeh; Brabec, Christoph J

    2015-04-27

    The use of additives to improve the performance of organic photovoltaic cells has been intensely researched in recent years. However, so far, no system has been reported for the classification of additives and their functions. In this report, a system for classifying additives according to the fundamental mechanism by which they influence microstructure formation for P3HT:PCBM is suggested. The major parameters used for their classification are solubility and drying kinetics. Both are discussed in detail and their consequences on processing are analyzed. Furthermore, a general mechanism to classify the impact of additives on structure formation is suggested and discussed for different materials relevant to organic photovoltaic devices.

  17. Interface modification for highly efficient organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Steim, Roland; Choulis, Stelios A.; Schilinsky, Pavel; Brabec, Christoph J.

    2008-03-01

    We present highly efficient inverted polymer:fullerene bulk-heterojunction solar cells by incorporation of a nanoscale organic interfacial layer between the indium tin oxide (ITO) and the metal oxide electron-conducting layer. We demonstrate that stacking of solution-processed organic and metal oxide interfacial layers gives highly charged selective low ohmic cathodes. The incorporation of a polyoxyethylene tridecyl ether interfacial layer between ITO and solution-processed titanium oxide (TiOx) raised the power conversion efficiency of inverted organic photovoltaics to 3.6%, an improvement of around 15% in their performance over comparable devices without the organic interfacial layer.

  18. Natural hybrid organic-inorganic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    De Padova, Paola; Lucci, Massimiliano; Olivieri, Bruno; Quaresima, Claudio; Priori, Sandro; Francini, Roberto; Grilli, Antonio; Hricovini, Karol; Davoli, Ivan

    2009-06-01

    Natural hybrid organic-inorganic photovoltaic devices based on TiO 2 have been realized. Chlorophyll A (from anacystis nidulans algae), chlorophyll B (from spinach), carmic acid (from insect Coccus cacti L.), synthetic trans- β-carotene, natural fresh picked Morus nigra, and their mixtures have been used as an organic photo active layer to fabricate photovoltaic prototypes. In order to reduce the charge's interfacial recombination, different thicknesses (5-45 nm) of Si layers, subsequently oxidized in air, were inserted between the TiO 2 and chlorophyll B. Scanning electron microscopy of TiO 2 and Si/TiO 2 systems shows the coexistence at least of four classes of nanoparticles of 60, 100, 150 and 250 nm in size. Auger electron spectroscopy of the Si L 2,3V V transition demonstrates the presence of silica and SiO x suboxides. Photocurrent measurements versus radiation wavelength in the range 300-800 nm exhibit different peaks according to the absorption spectra of the organic molecules. All realized photovoltaic devices are suitable for solar light electric energy conversion. Those made of a blend of all organic molecules achieved higher current and voltage output. The Si/TiO 2-based devices containing chlorophyll B exhibited an enhanced photocurrent response with respect to those with TiO 2 only.

  19. on the performance of organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Kim, Hyeong Pil; Yusoff, Abd Rashid bin Mohd; Lee, Hee Jae; Lee, Seung Joo; Kim, Hyo Min; Seo, Gi Jun; Youn, Jun Ho; Jang, Jin

    2014-06-01

    We demonstrate a new solution-processed electron transport layer (ETL), zinc oxide doped with cesium carbonate (ZnO:Cs2CO3), for achieving organic photovoltaics (OPVs) with good operational stability at ambient air. An OPV employing the ZnO:Cs2CO3 ETL exhibits a fill factor of 62%, an open circuit voltage of 0.90 V, and a short circuit current density of -6.14 mA/cm2 along with 3.43% power conversion efficiency. The device demonstrated air stability for a period over 4 weeks. In addition, we also studied the device structure dependence on the performance of organic photovoltaics. Thus, we conclude that ZnO:Cs2CO3 ETL could be employed in a suitable architecture to achieve high-performance OPV.

  20. Polymer Nanoparticle Superlattices for Organic Photovoltaic Applications

    SciTech Connect

    Sumpter, Bobby G; Barnes, Mike D.; Venkataraman, Dhandapani; Dinsmore, Anthony D; Labastide, Joelle; Baghgar, Mina; Yang, Yipeng

    2011-01-01

    In this Perspective, we discuss the possibility of constructing binary nanoparticle superlattices for organic photovoltaic applications and some of the interesting new photophysics emerging from preliminary studies. We summarize recent advances in nanoparticle preparation and photophysical characterization and some of the very interesting observed departures from thin-film photoluminescence dynamics. We conclude by discussing some of the challenges ahead and the possibility of new emergent physics in the assembly of polymer nanoparticles into functional devices.

  1. Aluminum doped zinc oxide for organic photovoltaics

    SciTech Connect

    Murdoch, G. B.; Hinds, S.; Sargent, E. H.; Tsang, S. W.; Mordoukhovski, L.; Lu, Z. H.

    2009-05-25

    Aluminum doped zinc oxide (AZO) was grown via magnetron sputtering as a low-cost alternative to indium tin oxide (ITO) for organic photovoltaics (OPVs). Postdeposition ozone treatment resulted in devices with lower series resistance, increased open-circuit voltage, and power conversion efficiency double that of devices fabricated on untreated AZO. Furthermore, cells fabricated using ozone treated AZO and standard ITO displayed comparable performance.

  2. Understanding Degradation Pathways in Organic Photovoltaics (Poster)

    SciTech Connect

    Lloyd, M. T.; Olson, D. C.; Garcia, A.; Kauvar, I.; Kopidakis, N.; Reese, M. O.; Berry, J. J.; Ginley, D. S.

    2011-02-01

    Organic Photovoltaics (OPVs) recently attained power conversion efficiencies that are of interest for commercial production. Consequently, one of the most important unsolved issues facing a new industry is understanding what governs lifetime in organic devices and discovering solutions to mitigate degradation mechanisms. Historically, the active organic components are considered vulnerable to photo-oxidation and represent the primary degradation channel. However, we present several (shelf life and light soaking) studies pointing the relative stability of the active layers and instabilities in commonly used electrode materials. We show that engineering of the hole/electron layer at the electrode can lead to environmentally stable devices even without encapsulation.

  3. Flexible, light trapping substrates for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Park, Yoonseok; Berger, Jana; Tang, Zheng; Müller-Meskamp, Lars; Lasagni, Andrés Fabián; Vandewal, Koen; Leo, Karl

    2016-08-01

    Micro-structured organic photovoltaic (OPV) devices on polyethylene terephthalate substrates are produced using direct laser interference patterning (DLIP). The performance of organic solar cells on these substrates is improved by a factor of 1.16, and a power conversion efficiency of 7.70% is achieved. We show that a shorter spatial period of the pattern allows for a stronger light trapping effect in solar cell, as it leads to a longer light path. Moreover, since the patterned structures are located on the outside of the fully encapsulated OPV devices, there are no problems with the roughness induced shunts.

  4. Spatially Resolved Photocurrent Mapping of Operating Organic Photovoltaic Devices Using Atomic Force Photovoltaic Microscopy

    DTIC Science & Technology

    2008-01-01

    106, 191 2006. 14H. R. Moutinho, R. G. Dhere, C. S. Jiang, M. M. Al-Jassim, and L. L. Kazmerski, Thin Solid Films 514, 150 2006. 15D. C. Coffey...characterize spatially localized inhomogeneities in organic photovoltaic (OPV) devices. In AFPM, a biased cAFM probe is raster scanned over an array...technique, atomic force photovoltaic microscopy (AFPM), has been developed to characterize spatially localized inhomogeneities in organic photovoltaic

  5. Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Chan, M. Y.; Lai, S. L.; Lau, K. M.; Lee, C. S.; Lee, S. T.

    2006-10-01

    An effective optical spacer based on doping of ytterbium (Yb) metal into bathophenanthroline (BPhen) has been developed for applications in organic photovoltaic (OPV) devices. Utilizing Yb:BPhen as an optical spacer in standard copper phthalocyanine/C60 photovoltaic devices, power efficiency can be increased by four times to 3.42%. Ultraviolet photoemission spectroscopy measurements reveal that the good electron transport between C60 and Yb:BPhen is mainly related to the suitable energy level alignment at the interface. Combining with its high optical transparency and electrical conductivity, the Yb:BPhen film provides a useful means for maximizing the power conversion efficiency of OPV devices.

  6. Is organic photovoltaics promising for indoor applications?

    NASA Astrophysics Data System (ADS)

    Lee, Harrison K. H.; Li, Zhe; Durrant, James R.; Tsoi, Wing C.

    2016-06-01

    This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  7. Ultraviolet Absorption by Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Madronich, S.; Lee-Taylor, J. M.; Hodzic, A.; Aumont, B.

    2014-12-01

    Secondary organic aerosols (SOA) are typically formed in the atmosphere by the condensation of a myriad of intermediates from the photo-oxidation of volatile organic compounds (VOCs). Many of these partly oxidized molecules have functional groups (chromophores) that absorb at the ultraviolet (UV) wavelengths available in the troposphere (λ ≳ 290 nm). We used the explicit chemical model GECKO-A (Generator of Explicit Chemistry and Kinetics for Organics in the Atmosphere) to estimate UV absorption cross sections for the gaseous and particulate components of SOA from different precursors (biogenic and anthropogenic) and formed in different environments (low and high NOx, day and night). Model predictions are evaluated with laboratory and field measurements of SOA UV optical properties (esp. mass absorption coefficients and single scattering albedo), and implications are presented for surface UV radiation trends, urban actinic flux modification, and SOA lifetimes.

  8. Acetylene-Based Materials in Organic Photovoltaics

    PubMed Central

    Silvestri, Fabio; Marrocchi, Assunta

    2010-01-01

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (poly)arylacetylenes that have been used in the field. A general introduction to (poly)arylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (co)polymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C60, and their use as the active materials in photovoltaic devices. PMID:20480031

  9. Acetylene-based materials in organic photovoltaics.

    PubMed

    Silvestri, Fabio; Marrocchi, Assunta

    2010-04-08

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (poly)arylacetylenes that have been used in the field. A general introduction to (poly)arylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (co)polymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C(60), and their use as the active materials in photovoltaic devices.

  10. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder

  11. Organic photovoltaic cells with controlled polarization sensitivity

    SciTech Connect

    Awartani, Omar; O'Connor, Brendan T.; Kudenov, Michael W.

    2014-03-03

    In this study, we demonstrate linearly polarized organic photovoltaic cells with a well-controlled level of polarization sensitivity. The polarized devices were created through the application of a large uniaxial strain to the bulk heterojunction poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) film and printing the plastically deformed active layer onto a PEDOT:PSS and indium tin oxide coated glass substrate. The P3HT:PCBM layer is processed such that it is able to accommodate high strains (over 100%) without fracture. After printing the strained films, thermal annealing is used to optimize solar cell performance while maintaining polarization sensitivity. A dichroic ratio and short circuit current ratio of ≈6.1 and ≈1.6 were achieved, respectively.

  12. Light trapping for flexible organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Park, Yoonseok; Berger, Jana; Will, Paul-Anton; Soldera, Marcos; Glatz, Bernhard; Müller-Meskamp, Lars; Taretto, Kurt; Fery, Andreas; Lasagni, Andrés. Fabián.; Vandewal, Koen; Leo, Karl

    2016-09-01

    Here we investigate light trapping substrates and electrodes for enhancing the performance of organic photovoltaics (OPVs). Their power conversion efficiency (PCE) can be improved by a factor of 1.16 using laser patterned PET substrates and by a factor of 1.13 using commercial, structured display films. Furthermore, we prepare light trapping electrodes using as flexible conductive polymer with embedded TiO2 nanoparticles, improving the PCE by a factor of 1.08 as compared to a neat polymer electrode. However, nano-imprinted conductive polymer electrodes does not provide light trapping effect due to the small size (50 nm) of the structures. Moreover flexible OPV devices, integrating the above light trapping elements, show non-degraded performance after bending tests.

  13. Density of organic thin films in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhao, Cindy X.; Xiao, Steven; Xu, Gu

    2015-07-01

    A practical parameter, the volume density of organic thin films, found to affect the electronic properties and in turn the performance of organic photovoltaics (OPVs), is investigated in order to benefit the polymer synthesis and thin film preparation in OPVs. To establish the correlation between film density and device performance, the density of organic thin films with various treatments was obtained, by two-dimensional X-ray diffraction measurement using the density mapping with respect to the crystallinity of thin films. Our results suggest that the OPV of higher performance has a denser photoactive layer, which may hopefully provide a solution to the question of whether the film density matters in organic electronics, and help to benefit the OPV industry in terms of better polymer design, standardized production, and quality control with less expenditure.

  14. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    PubMed

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  15. Interfacial Layer Optimization in Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Litofsky, Joshua; Lafalce, Evan; Jiang, Xiaomei

    2014-03-01

    Organic photovoltaic devices (OPVs) based on benchmark π - conjugated polymer polythiophene and electron acceptor PCBM are made up of a sandwich-like structure of multifunctional layers. Interfacial layers (IL) facilitate charge transport between the charge generation layer and the electrodes and enhance charge extraction. Optimizing the IL thus provides one mean of maximizing the efficiency of OPVs. Various electron transport layers such as ZnO and LiF were used, and hole transport layers included PEDOT:PSS and V2O5. Two different device architectures were explored: conventional structure with ITO serving as an anode and inverted structure when ITO acts as a cathode. Using various deposition techniques, we worked to optimize IL thickness and film formation methods. By analyzing device shunt and series resistances using a standard diode equation, we were able to identify the optimal parameters for device performance. The combination of thin IL with electrodes of appropriate work function yielded much better results compared to the control device with no IL. We can use these results and techniques to further optimize future OPV devices based on other novel material systems. This work was supported by the NSF REU grant # DMR-1263066: REU Site in Applied Physics at USF.

  16. Laminated fabric as top electrode for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Steim, R.; Chabrecek, P.; Sonderegger, U.; Kindle-Hasse, B.; Siefert, W.; Kroyer, T.; Reinecke, P.; Lanz, T.; Geiger, T.; Hany, R.; Nüesch, F.

    2015-05-01

    A simple lamination technique for conductive and semitransparent fabrics on top of organic photovoltaic cells is presented. Conductive fabrics consisted of metal wires woven in a fabric with polymeric fibers. The lamination of this conductive fabric with help of a high conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate formulation results in well aligned low resistive metal wires as top electrode. Semitransparent flexible organic photovoltaic cells were processed with laminated fabrics as top electrode and sputtered layers of aluminum doped zinc oxide and Ag as bottom electrode. The organic photovoltaic cells showed similar performance when illuminated through the bottom or top electrode. Optical simulations were performed to investigate light scattering effects of the fabric. Results are very promising for photovoltaic and lightning devices as well as for all kinds of devices where semitransparent, highly conductive, and non-vacuum processed electrode materials are needed.

  17. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)

    2003-01-01

    Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.

  18. Reporting performance in organic photovoltaic devices.

    PubMed

    Luber, Erik J; Buriak, Jillian M

    2013-06-25

    Research into organic photovoltaics (OPVs) is rapidly growing worldwide because it offers a route to low temperature, inexpensive processing of lightweight, flexible solar cells that can be mass manufactured cheaply. Unlike silicon or other inorganic semiconductors (e.g., CdTe, CIGs), OPVs are complicated by the requirement of having multiple materials and layers that must be integrated to enable the cell to function. The enormous number of research hours required to optimize all aspects of OPVs and to integrate them successfully is typically boiled down to one number-the power conversion efficiency (PCE) of the device. The PCE is the value by which comparisons are routinely made when modifications are made to devices; new bulk heterojunction materials, electron- and hole-transport layers, electrodes, plasmonic additives, and many other new advances are incorporated into OPV devices and compared with one, or a series of, control device(s). The concern relates to the statistical significance of this all-important efficiency/PCE value: is the observed change or improvement in performance truly greater than experimental error? If it is not, then the field can and will be misled by improper reporting of efficiencies, and future research in OPVs could be frustrated and, ultimately, irreversibly damaged. In this Perspective, the dangers of, for instance, cherry-picking of data and poor descriptions of experimental procedures, are outlined, followed by a discussion of a real data set of OPV devices, and how a simple and easy statistical treatment can help to distinguish between results that are indistinguishable experimentally, and those that do appear to be different.

  19. A Molecular Tetrapod for Organic Photovoltaics.

    PubMed

    Yang, Jianzhong; Zhang, Zhen; Qin, Yang

    2016-08-31

    The synthesis and characterization of a molecular tetrapod, SFBTD, featuring a tetraphenylsilane center and four identical conjugated arms, which structurally resembles breakwaters in common wave-reducing shore constructions, are reported. Cyclic voltammetry reveals that SFBTD has a medium band gap of ca. 2.0 eV and a low-lying HOMO energy level at ca. -5.2 eV. Absorption spectroscopy, X-ray diffraction, and differential scanning calorimetry experiments reveal a low degree of crystallinity in this compound and slow crystallization kinetics. Bulk heterojunction organic photovoltaics (OPVs) employing SFBTD and fullerene derivatives exhibit power conversion efficiencies (PCEs) up to 1.05% and open-circuit voltage (VOC) values as high as 1.02 V. To the best of our knowledge, this is the highest PCE obtained for OPVs employing molecular tetrapods as donor materials. These devices are relatively thermally stable due to the known ability of breakwater tetrapods to interlock, preventing dislodging and sliding. The lack of favorable phase separations and low hole mobilities of the blend films are the major factors limiting the device performance. Ternary blend devices by the addition of three low band gap poly(thienylene vinylene) (PTV) derivatives were fabricated and tested. We found that the added PTVs acted to be either the major hole conductor or a competing hole conduction channel depending on the HOMO level positions relative to that of SFBTD. Some of the ternary OPV devices out-performed the corresponding binary counterparts employing SFBTD or PTVs alone, suggesting cooperative effects in the ternary systems.

  20. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    SciTech Connect

    Lonergan, Mark

    2015-05-29

    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been the polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.

  1. In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices.

    PubMed

    Watanabe, Satoshi; Fukuchi, Yasumasa; Fukasawa, Masako; Sassa, Takafumi; Kimoto, Atsushi; Tajima, Yusuke; Uchiyama, Masanobu; Yamashita, Takashi; Matsumoto, Mutsuyoshi; Aoyama, Tetsuya

    2014-02-12

    Here, we discuss the local photovoltaic characteristics of a structured bulk heterojunction, organic photovoltaic devices fabricated with a liquid carbazole, and a fullerene derivative based on analysis by scanning kelvin probe force microscopy (KPFM). Periodic photopolymerization induced by an interference pattern from two laser beams formed surface relief gratings (SRG) in the structured films. The surface potential distribution in the SRGs indicates the formation of donor and acceptor spatial distribution. Under illumination, the surface potential reversibly changed because of the generation of fullerene anions and hole transport from the films to substrates, which indicates that we successfully imaged the local photovoltaic characteristics of the structured photovoltaic devices. Using atomic force microscopy, we confirmed the formation of the SRG because of the material migration to the photopolymerized region of the films, which was induced by light exposure through photomasks. The structuring technique allows for the direct fabrication and the control of donor and acceptor spatial distribution in organic photonic and electronic devices with minimized material consumption. This in situ KPFM technique is indispensable to the fabrication of nanoscale electron donor and electron acceptor spatial distribution in the devices.

  2. Ultraviolet Radiation Round-Robin Testing of Various Backsheets for Photovoltaic Modules

    SciTech Connect

    Koehl, Michael; Ballion, Amal; Lee, Yu-Hsien; Wu, Hung-Sen; Scott, Kurt; Glick, Stephen; Hacke, Peter; Koo, Hyun Jin

    2015-06-14

    Durability testing of materials exposed to natural weathering requires testing of the ultraviolet (UV) stability, especially for polymeric materials. The type approval testing of photovoltaic (PV) modules according to standards IEC 61215 and IEC 61646, which includes a so-called UV preconditioning test with a total UV dose of 15 kWh/m2, does not correspond to the real loads during lifetime. Between 3%-10% of the UV radiation has to be in the spectral range between 280 and 320 nm (UV-B) in the recent editions of the standards. However, the spectral distribution of the radiation source is very important because different samples show very individual spectral sensitivity for the radiation offered. Less than 6% of the intensity of solar radiation exists in the UV range. In the case of an increase of the intensity of the light source for accelerating the UV test, overheating of the samples would have to be prevented more rigorously and the temperature of the samples have to be measured to avoid misinterpretation of the test results.

  3. Fullerene concentration dependent bimolecular recombination in organic photovoltaic films

    NASA Astrophysics Data System (ADS)

    Kaake, Loren G.; Sun, Yanming; Bazan, Guillermo C.; Heeger, Alan J.

    2013-04-01

    Organic photovoltaic devices made of a solution processed small molecule and a fullerene show a decrease in short circuit current with decreasing fullerene amounts. Transient absorption experiments show that the rate of bimolecular recombination increases as the system is deprived of fullerene. A simple expression for the bimolecular recombination coefficient derived by accounting for intrinsic carrier generation reproduces the observed behavior.

  4. Photovoltaic effect in organic polymer-iodine complex

    NASA Technical Reports Server (NTRS)

    Hermann, A. M.; Rembaum, A.

    1967-01-01

    Certain charge transfer complexes formed from organic polymers and iodine generate appreciable voltages at relatively low impedances upon exposure to light. These films show promise in applications requiring chemically and electrically stable films as detectors of optical radiation and as energy converters in photovoltaic cells.

  5. Detailed balance limit of power conversion efficiency for organic photovoltaics

    SciTech Connect

    Seki, Kazuhiko; Furube, Akihiro; Yoshida, Yuji

    2013-12-16

    A fundamental difference between inorganic photovoltaic (IPV) and organic photovoltaic (OPV) cells is that charges are generated at the interface in OPV cells, while free charges can be generated in the bulk in IPV cells. In OPV cells, charge generation involves intrinsic energy losses to dissociate excitons at the interface between the donor and acceptor. By taking into account the energy losses, we show the theoretical limits of the power conversion efficiency set by radiative recombination of the carriers on the basis of the detailed balance relation between radiation from the cell and black-body radiation.

  6. Solar power wires based on organic photovoltaic materials.

    PubMed

    Lee, Michael R; Eckert, Robert D; Forberich, Karen; Dennler, Gilles; Brabec, Christoph J; Gaudiana, Russell A

    2009-04-10

    Organic photovoltaics in a flexible wire format has potential advantages that are described in this paper. A wire format requires long-distance transport of current that can be achieved only with conventional metals, thus eliminating the use of transparent oxide semiconductors. A phase-separated, photovoltaic layer, comprising a conducting polymer and a fullerene derivative, is coated onto a thin metal wire. A second wire, coated with a silver film, serving as the counter electrode, is wrapped around the first wire. Both wires are encased in a transparent polymer cladding. Incident light is focused by the cladding onto to the photovoltaic layer even when it is completely shadowed by the counter electrode. Efficiency values of the wires range from 2.79% to 3.27%.

  7. Organic/Organic' heterojunctions: organic light emitting diodes and organic photovoltaic devices.

    PubMed

    Armstrong, Neal R; Wang, Weining; Alloway, Dana M; Placencia, Diogenes; Ratcliff, Erin; Brumbach, Michael

    2009-05-19

    Heterojunctions created from thin films of two dissimilar organic semiconductor materials [organic/organic' (O/O') heterojunctions] are an essential component of organic light emitting diode displays and lighting systems (OLEDs, PLEDs) and small molecule or polymer-based organic photovoltaic (solar cell) technologies (OPVs). O/O' heterojunctions are the site for exciton formation in OLEDs, and the site for exciton dissociation and photocurrent production in OPVs. Frontier orbital energy offsets in O/O' heterojunctions establish the excess free energy controlling rates of charge recombination and formation of emissive states in OLEDs and PLEDs. These energy offsets also establish the excess free energy which controls charge separation and the short-circuit photocurrent (J(SC) ) in OPVs, and set the upper limit for the open-circuit photopotential (V(OC) ). We review here how these frontier orbital energy offsets are determined using photoemission spectroscopies, how these energies change as a function of molecular environment, and the influence of interface dipoles on these frontier orbital energies. Recent examples of heterojunctions based on small molecule materials are shown, emphasizing those heterojunctions which are of interest for photovoltaic applications. These include heterojunctions of perylenebisimide dyes with trivalent metal phthalocyanines, and heterojunctions of titanyl phthalocyanine with C(60) , and with pentacene. Organic solar cells comprised of donor/acceptor pairs of each of these last three materials confirm that the V(OC) scales with the energy offsets between the HOMO of the donor and LUMO of the acceptor ($E_{{\\rm HOMO}^{\\rm D} } - E_{{\\rm LUMO}^{\\rm A} }$).

  8. Benefit and risk of organic ultraviolet filters.

    PubMed

    Nohynek, G J; Schaefer, H

    2001-06-01

    Modern sunscreen products provide broad-spectrum UV protection and may contain one or several UV filters. A modern UV filter should be heat and photostable, water resistant, nontoxic, and easy to formulate. Identification of a substance that meets these criteria is as difficult as discovering a new drug; hundreds of new molecules are synthesized and screened before a lead candidate is identified. The most important aspect in the development of a new UV filter is its safety. In our laboratories, the safety of new ultraviolet filters is assessed by an initial in vitro screen including photostability, cytotoxicity, photocytotoxicity, genotoxicity, and photogenotoxicity tests. These tests are performed in mammalian, yeast, and bacterial cell systems. Skin penetration potential is measured in vitro using human skin or, when required by regulations, in vivo. Because modern sunscreens are selected on the basis of their retention on and in the stratum corneum and are formulated as poorly penetrating emulsions, they generally have very low to negligible penetration rates. The safety and efficacy of UV filters are regulated and approved by national and international health authorities. Safety standards in the European Union, United States, or Japan stipulate that new filters pass a stringent toxicological safety evaluation prior to approval. The safety dossier of a new UV filter resembles that of a new drug and includes acute toxicity, irritation, sensitization, phototoxicity, photosensitization, subchronic and chronic toxicity, reproductive toxicity, genotoxicity, photogenotoxicity, carcinogenicity, and, in the United States, photocarcinogenicity testing. The margin of safety of new UV filters for application to humans is estimated by comparing the potential human systemic exposure with the no-effect level from in vivo toxicity studies. Only substances with a safe toxicological profile and a margin of safety of at least 100-fold are approved for human use. Finally, prior to

  9. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future.

  10. Perylene imides for organic photovoltaics: yesterday, today, and tomorrow.

    PubMed

    Li, Chen; Wonneberger, Henrike

    2012-02-02

    Perylene imides have been an object of research for 100 years and their derivatives are key n-type semiconductors in the field of organic electronics. While perylene diimides have been applied in many electronic and photonic devices, their use can be traced back to the first efficient organic solar cell. By functionalizing different positions of the in total 12 positions (four peri, four bay, and four ortho-positions) on the perylene core, perylene imides with significantly different optical, electronic and morphological properties may be prepared. Perylene imides and their derivatives have been used in several types of organic photovoltaics, including flat-, and bulk-heterojunction devices as well as dye-sensitized solar cells. Additionally perylene imides-based copolymers or oligomers play an important role in single junction devices. In this review, the relationship between the photovoltaic performance and the structure of perylene imides is discussed.

  11. Efficient organic photovoltaic diodes based on doped pentacene.

    PubMed

    Schon, J H; Kloc, C; Bucher, E; Batlogg, B

    2000-01-27

    Recent work on solar cells based on interpenetrating polymer networks and solid-state dye-sensitized devices shows that efficient solar-energy conversion is possible using organic materials. Further, it has been demonstrated that the performance of photovoltaic devices based on small molecules can be effectively enhanced by doping the organic material with electron-accepting molecules. But as inorganic solar cells show much higher efficiencies, well above 15 per cent, the practical utility of organic-based cells will require their fabrication by lower-cost techniques, ideally on flexible substrates. Here we demonstrate efficiency enhancement by molecular doping in Schottky-type photovoltaic diodes based on pentacene--an organic semiconductor that has received much attention as a promising material for organic thin-film transistors, but relatively little attention for use in photovoltaic devices. The incorporation of the dopant improves the internal quantum efficiency by more than five orders of magnitude and yields an external energy conversion efficiency as high as 2.4 per cent for a standard solar spectrum. Thin-film devices based on doped pentacene therefore appear promising for the production of efficient 'plastic' solar cells.

  12. Quantitative Tomography of Organic Photovoltaic Blends at the Nanoscale.

    PubMed

    Pfannmöller, M; Heidari, H; Nanson, L; Lozman, O R; Chrapa, M; Offermans, T; Nisato, G; Bals, S

    2015-10-14

    The success of semiconducting organic materials has enabled green technologies for electronics, lighting, and photovoltaics. However, when blended together, these materials have also raised novel fundamental questions with respect to electronic, optical, and thermodynamic properties. This is particularly important for organic photovoltaic cells based on the bulk heterojunction. Here, the distribution of nanoscale domains plays a crucial role depending on the specific device structure. Hence, correlation of the aforementioned properties requires 3D nanoscale imaging of materials domains, which are embedded in a multilayer device. Such visualization has so far been elusive due to lack of contrast, insufficient signal, or resolution limits. In this Letter, we introduce spectral scanning transmission electron tomography for reconstruction of entire volume plasmon spectra from rod-shaped specimens. We provide 3D structural correlations and compositional mapping at a resolution of approximately 7 nm within advanced organic photovoltaic tandem cells. Novel insights that are obtained from quantitative 3D analyses reveal that efficiency loss upon thermal annealing can be attributed to subtle, fundamental blend properties. These results are invaluable in guiding the design and optimization of future devices in plastic electronics applications and provide an empirical basis for modeling and simulation of organic solar cells.

  13. The design of cathode for organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Song, De; Shi, Feng; Xia, Xuan; Li, Ye; Duanmu, Qingduo

    2016-11-01

    We have discussed the effect of the residual gas in the Al metal cathode deposition process and consequently influence the performance of organic photovoltaic devices (such as organic photoelectron detector or solar cell). We believe that the origin of degradation in Jsc and FF from the Al cathode device should be the formation of AlOx in the C60-Al interface, which contaminate the interface and plays a role like an energy barrier that block the charge collect process. To solve this problem the Ag and Alq3 layer had been inserted before the Al. Owing to the advantageous of Alq3 and Ag layer, the device which Al cathode prepared at a lower vacuum condition exhibits a comparable performance to that device which Al cathode deposited in regular situation. As an additional benefit, since the introducing of Alq3/Ag layer in the VOPc/C60 organic photovoltaic device performs a better near-infrared response, this phenomenon has been confirmed by means of both simulation and experimental data. So the design of our new cathode structure provides a degree of freedom to modulate the light absorption for organic photovoltaic devices in short-wave and long-wave.

  14. Small molecule semiconductors for high-efficiency organic photovoltaics.

    PubMed

    Lin, Yuze; Li, Yongfang; Zhan, Xiaowei

    2012-06-07

    Organic photovoltaic cells (OPVs) are a promising cost-effective alternative to silicon-based solar cells, and possess light-weight, low-cost, and flexibility advantages. Significant progress has been achieved in the development of novel photovoltaic materials and device structures in the last decade. Nowadays small molecular semiconductors for OPVs have attracted considerable attention, due to their advantages over their polymer counterparts, including well-defined molecular structure, definite molecular weight, and high purity without batch to batch variations. The highest power conversion efficiencies of OPVs based on small molecular donor/fullerene acceptors or polymeric donor/fullerene acceptors are up to 6.7% and 8.3%, respectively, and meanwhile nonfullerene acceptors have also exhibited some promising results. In this review we summarize the developments in small molecular donors, acceptors (fullerene derivatives and nonfullerene molecules), and donor-acceptor dyad systems for high-performance multilayer, bulk heterojunction, and single-component OPVs. We focus on correlations of molecular chemical structures with properties, such as absorption, energy levels, charge mobilities, and photovoltaic performances. This structure-property relationship analysis may guide rational structural design and evaluation of photovoltaic materials (253 references).

  15. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    DOEpatents

    Rand, Barry P.; Forrest, Stephen R.

    2011-05-24

    A photosensitive device includes a series of organic photoactive layers disposed between two electrodes. Each layer in the series is in direct contact with a next layer in the series. The series is arranged to form at least one donor-acceptor heterojunction, and includes a first organic photoactive layer comprising a first host material serving as a donor, a thin second organic photoactive layer comprising a second host material disposed between the first and a third organic photoactive layer, and the third organic photoactive layer comprising a third host material serving as an acceptor. The first, second, and third host materials are different. The thin second layer serves as an acceptor relative to the first layer or as a donor relative to the third layer.

  16. Phase Behavior of Polymer Blends for Organic Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Emerson, Jillian; Furst, Eric; Epps, Thomas, III

    2014-03-01

    Polymer blends offer a promising and economically-viable route to creating organic photovoltaic (OPV) devices, as blends can form bicontinuous domains via spinodal decomposition. Understanding the phase behavior of conjugated polymer blends commonly used in OPVs is vital to producing more efficient devices. In this work, we determined the Flory-Huggins solvent-polymer and polymer-polymer interaction parameters for a model system of poly(3-hexylthiophene) (P3HT) and polystyrene (PS) through solvent vapor swelling of thin polymer films. From these interaction parameters, we constructed a polymer/polymer/solvent phase diagram. The phase diagram was validated experimentally with solution-based transmission measurements of PS/P3HT. This work highlights a method to determine the phase behavior in polymer/polymer/solvent blends that can be extended to other combinations of macromolecules relevant to organic photovoltaics, composites, and other materials systems.

  17. Plasmonic electrodes for organic photovoltaics: polarization-independent absorption enhancement

    NASA Astrophysics Data System (ADS)

    Zeng, Beibei; Kafafi, Zakya H.; Bartoli, Filbert J.

    2014-10-01

    We systematically investigate the optical and electrical properties of ultrathin two-dimensional (2D) Ag nanogratings (NGs), and explore their use as plasmonic transparent conducting electrodes in molecular organic photovoltaics (OPVs). A large broadband and polarization-insensitive optical absorption enhancement in the CuPc (copper phthalocyanine): PTCBI (perylene tetracarboxylic bisbenzimidazole) active light-harvesting layers is demonstrated using ultrathin 2D Ag NGs, and is attributed to the excitation of surface plasmon resonances and plasmonic cavity modes.

  18. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    DOEpatents

    Forrest, Stephen R.; Yang, Fan; Rand, Barry P.

    2011-09-06

    A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.

  19. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices

    DTIC Science & Technology

    2014-03-06

    Microscopy Research, 2012, 7, 158-169. Organic photovoltaic materials, hybrid organic devices, solar cells 6 1 FINAL TECHNICAL REPORT 1... hybrids have potential applications in solar cells and may thus provide mobile energy sources for aircraft and soldier technologies. Modeling and...modeling and simulation developed in this project are encouraging further development. 2. Technical Activities Hybrid organic solar cells are an

  20. Modeling plasmonic efficiency enhancement in organic photovoltaics.

    PubMed

    Taff, Y; Apter, B; Katz, E A; Efron, U

    2015-09-10

    Efficiency enhancement of bulk heterojunction (BHJ) organic solar cells by means of the plasmonic effect is investigated by using finite-difference time-domain (FDTD) optical simulations combined with analytical modeling of exciton dissociation and charge transport efficiencies. The proposed method provides an improved analysis of the cell performance compared to previous FDTD studies. The results of the simulations predict an 11.8% increase in the cell's short circuit current with the use of Ag nano-hexagons.

  1. Studies of Organic Semiconductor Nanostructures and Their Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Ren, Guoqiang

    Organic solar cells are promising by virtue of their low-cost production, mechanical flexibility of plastics, and the range of possible applications. Although progress has been made in developing organic solar cells in the past decade, the power conversion efficiency now about 8-10% is still substantially lower than silicon-based devices. It has been recognized that the photovoltaic conversion process in organic solar cells is dependent on the morphology of the photoactive layer which consists of a binary blend of donor and acceptor materials. This work explores different approaches to controlling the morphology of bulk heterojunction polymer solar cells towards improving the photovoltaic efficiency, including diblock copolymer assemblies, organic semiconductor nanowires, and the use of processing additives. In addition, we explore a new method of characterizing the nanoscale morphology of polymer solar cells. Investigation of the photovoltaic properties, charge transport, and morphology of a series of diblock conjugated copolymers as a function of block composition showed that the highest efficiency was achieved at the 50% block composition. Nanowires assembled from diblock copolythiophenes of different compositions showed a tunable average aspect ratio (length/width) of 50-260, which revealed an increase of efficiency with increasing aspect ratio. All-nanowire solar cells comprising a polymer nanowire donor and a small-molecule nanowire acceptor were found to have enhanced photovoltaic efficiency. The use of a processing additive was found to give optimum device performance in benzobisthiazole-based donor-acceptor copolymer/fullerene and poly(3-hexylthiophene)/non-fullerene photovoltaic blend systems. The performance of non-fullerene polymer solar cells was enhanced 10-fold by using only 0.2 vol% additive and the mechanism of enhancement in efficiency was explained in terms of the optimized nanoscale morphology. Scanning transmission electron microscopy coupled

  2. Interface Modifications for Applications in Organic and Hybrid Photovoltaics

    NASA Astrophysics Data System (ADS)

    Mazzio, Katherine A.

    Considerable research has been conducted in the area of organic photovoltaics due to several intrinsic advantages, including their high throughput solution processability, light weight, and their applicability on flexible substrates. Product development has been limited, however, due to the low mobilities and short exciton diffusion lengths of organic materials relative to inorganic materials used for photovoltaics. In this dissertation, we look at interfacial phenomena in attempt to control the charge transport dynamics in different parts of photovoltaic systems. The first chapter provides an overview of the field of organic photovoltaics, including their benefits, operating procedures, and a brief history of materials and device development. Chapter 2 examines some donor-acceptor small molecules as the electron donors in all organic bulk heterojunction solar cells with soluble fullerene derivatives as the electron acceptors. The donor-acceptor small molecules are unique because their energy levels agree well with the theoretical optimal HOMO and LUMO energy levels required for high efficiency organic photovoltaics. Even with energy level matching, however, we found that we were only able to obtain modest device efficiencies due to the formation of large domains that are greater than the exciton diffusion length and result in large interfacial areas. In chapter 3 we examine some of the optical, physical, and charge transport properties of a series of fully conjugated brush copolymers that are comprised of a carbazole-diketopyrrolorpyrrole donor-acceptor backbone copolymerized with different lengths of poly(3-hexylthiophene) pendant chains. It was found that there was a sufficient break in conjugation between the two copolymers such that the absorbance characteristics of both could be realized independently. In addition, the physical and charge transport properties could be tuned to primarily show influence from either the ambipolar low band gap backbone or the p

  3. Status and prospects for ternary organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Lu, Luyao; Kelly, Mary Allison; You, Wei; Yu, Luping

    2015-08-01

    In the past few years, ternary organic solar cells (OSCs) featuring multiple donor or acceptor materials in the active layer have emerged as a promising structure to simultaneously improve all solar cell parameters compared with traditional binary OSCs. Power conversion efficiencies around 10% have been achieved for conjugated polymers in a ternary structure, showing the great potential of ternary systems. In this review, we summarize progress in developing ternary OSCs and discuss many of the designs, chemistries and mechanisms that have been investigated. We conclude by highlighting the challenges and future directions for further development in the field of ternary blend OSCs.

  4. Oligomer Molecules for Efficient Organic Photovoltaics.

    PubMed

    Lin, Yuze; Zhan, Xiaowei

    2016-02-16

    Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights <1000) and polymers (generally with molecular weights >10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability

  5. Understanding organic photovoltaic cells: Electrode, nanostructure, reliability, and performance

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Su

    My Ph.D. research has focused on alternative renewable energy using organic semiconductors. During my study, first, I have established reliable characterization methods of organic photovoltaic devices. More specifically, less than 5% variation of power conversion efficiency of fabricated organic blend photovoltaic cells (OBPC) was achieved after optimization. The reproducibility of organic photovoltaic cell performance is one of the essential issues that must be clarified before beginning serious investigations of the application of creative and challenging ideas. Second, the relationships between fill factor (FF) and process variables have been demonstrated with series and shunt resistance, and this provided a chance to understand the electrical device behavior. In the blend layer, series resistance (Rs) and shunt resistance (Rsh) were varied by controlling the morphology of the blend layer, the regioregularity of the conjugated polymer, and the thickness of the blend layer. At the interface between the cathode including PEDOT:PSS and the blend layer, cathode conductivity was controlled by varying the structure of the cathode or adding an additive. Third, we thoroughly examined possible characterization mistakes in OPVC. One significant characterization mistake is observed when the crossbar electrode geometry of OPVC using PEDOT:PSS was fabricated and characterized with illumination which is larger than the actual device area. The hypothesis to explain this overestimation was excess photo-current generated from the cell region outside the overlapped electrode area, where PEDOT:PSS plays as anode and this was clearly supported with investigations. Finally, I incorporated a creative idea, which enhances the exciton dissociation efficiency by increasing the interface area between donor and acceptor to improve the power conversion efficiency of organic photovoltaic cells. To achieve this, nanoimprint lithography was applied for interface area increase. To clarify the

  6. Highly sensitive organic ultraviolet optical sensor based on phosphorescent Cu (I) complex

    NASA Astrophysics Data System (ADS)

    Kong, Zhiguo; Li, Wenlian; Che, Guangbo; Chu, Bei; Bi, Defeng; Han, Liangliang; Chen, Lili; Hu, Zhizhi; Zhang, Zhiqiang

    2006-10-01

    Ultraviolet light-sensitive organic optical sensor based on photovoltaic diode was demonstrated by using a phosphorescent Cu complex and a diamine derivative as electroacceptor and electrodonor, respectively. The Cu complex is Cu(DPEphos )((Bphen))BF4, in which DPEphos and Bphen denote 6,7-dicyanodipyrido [2,2-d:2',3'-f] quinoxaline and bathophenanthroline. And the diamine derivative, m-MTDATA, is 4, 4',4″-tris-(2-methylphenyl phenylamino) triphenylamine. The sensor is highly sensitive to UV light band from 300to420nm while it has almost no response to the visible light, and under illumination of 365nm light with power of 1.7mW/cm2, the sensor exhibits an open circuit voltage of 1.86V, a short circuit current of 105.3μA/cm2, a fill factor of 0.246, and a power conversion efficiency of 2.83%. The dependences of ultraviolet responsive sensitivity on illumination intensity and working temperature were also discussed.

  7. Energy level alignment at C60/DTDCTB/PEDOT:PSS interfaces in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Yoo, Jisu; Jung, Kwanwook; Jeong, Junkyeong; Hyun, Gyeongho; Lee, Hyunbok; Yi, Yeonjin

    2017-04-01

    The electronic structure of a narrow band gap small molecule ditolylaminothienyl-benzothiadiazole-dicyanovinylene (DTDCTB), possessing a donor-acceptor-acceptor configuration, was investigated with regard to its application as an efficient donor material in organic photovoltaics (OPVs). The interfacial orbital alignment of C60/DTDCTB/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was determined using in situ ultraviolet photoelectron and inverse photoelectron spectroscopic methods. The ionization energy and electron affinity values of DTDCTB were measured to be 5.27 eV and 3.65 eV, respectively, and thus a very small transport gap of 1.62 eV was evaluated. Large band bending of DTDCTB on PEDOT:PSS was observed, resulting in a low hole extraction barrier. Additionally, the photovoltaic gap between the highest occupied molecular orbital level of the DTDCTB donor and the lowest unoccupied molecular orbital level of the C60 acceptor was estimated to be 1.30 eV, which is known to be the theoretical maximum open-circuit voltage in OPVs employing the C60/DTDCTB active layer. The unique electronic structures of DTDCTB contributed toward the recently reported excellent power conversion efficiencies of OPVs containing a DTDCTB donor material.

  8. Organic photovoltaics: key photophysical, device and design aspects

    NASA Astrophysics Data System (ADS)

    Joshi, Dhruv; Shivanna, Ravichandran; Narayan, K. S.

    2014-12-01

    Key aspects of Organic Photovoltaics (OPVs) have been reviewed in this tutorial. Issues pertaining to the choice of materials, fabrication processes, photophysical mechanisms, device characterization, morphology of active layers and manufacturing are discussed. Special emphasis has been given to recent developments in large-area modules. Current strategies in enhancing the performance using external optical engineering approaches have also been highlighted. OPVs as a technology combine low weight, flexibility, low cost, good form factor and high-throughput processing; making them a promising PV technology for the future.

  9. Influence of blend microstructure on bulk heterojunction organic photovoltaic performance.

    PubMed

    Brabec, Christoph J; Heeney, Martin; McCulloch, Iain; Nelson, Jenny

    2011-03-01

    The performance of organic photovoltaic devices based upon bulk heterojunction blends of donor and acceptor materials has been shown to be highly dependent on the thin film microstructure. In this tutorial review, we discuss the factors responsible for influencing blend microstructure and how these affect device performance. In particular we discuss how various molecular design approaches can affect the thin film morphology of both the donor and acceptor components, as well as their blend microstructure. We further examine the influence of polymer molecular weight and blend composition upon device performance, and discuss how a variety of processing techniques can be used to control the blend microstructure, leading to improvements in solar cell efficiencies.

  10. Surface-plasmon-enhanced photoconversion in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Morfa, Anthony John

    In this thesis, the benefits of including surface-plasmon-active materials into organic photovoltaics are investigated. First, the effect of discontinuous silver thin-films formed by physical vapor deposition at the transparent front electrode of the device is explored. A reproducible near doubling in efficiency is seen in these devices which arises from a near doubling of the short-circuit current. Analysis of the wavelength-dependence of the increase in current shows that the increase in current is due to surface-plasmon-enhanced optical absorption in the active layer of the devices. Additionally, these results are shown to be reproducible over several trials when using a fabrication routine that employs a low-temperature annealing step that retains the surface-plasmon activity of the substrate and prevents delamination of the active layers. The relative dielectric function of the active-layer material was determined at optical frequencies using variable-angle spectroscopic ellipsometry. A Huang-Rhys vibronic progression is used to model the peak energies of excitonic transitions in the film and the resulting parameters are found to be in excellent agreement with previously reported values. Theoretical calculations of the surface-plasmon enhancement are performed using the aforementioned dielectric function. The theoretical calculation of the skin depth of the surface plasmon is shown to be consistent with the observed wavelength dependence of the plasmonically enhanced current in organic photodiodes. In order to better understand the enhancement process and the fate of photogenerated holes and electrons, additional work was done to explore the electronic structure of the organic films using impedance spectroscopy. The results of this work indicate the presence of a Schottky diode at the metal/organic interface in standard device geometries. This result has several implications on charge extraction for standard devices and those including silver thin-films. It is

  11. Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application

    NASA Astrophysics Data System (ADS)

    Jeon, Sohee; Kang, Jae-Wook; Park, Hyung-Dol; Kim, Jang-Joo; Youn, Jae R.; Shim, Jongyoup; Jeong, Jun-ho; Choi, Dae-Geun; Kim, Ki-Don; Altun, Ali Ozhan; Kim, Se-Heon; Lee, Yong-Hee

    2008-06-01

    Light extraction efficiency of a conventional organic light emitting diode (OLED) remains limited to approximately 20% as most of the emission is trapped in the waveguide and glass modes. An etchless simple method was developed to fabricate two-dimensional nanostructures on glass substrate directly by using ultraviolet (UV) curable polymer resin and UV nanoimprint lithography in order to improve output coupling efficiency of OLEDs. The enhancement of the light extraction was predicted by the three-dimensional finite difference time domain method. OLEDs integrated on nanoimprinted substrates enhanced electroluminance intensity by up to 50% compared to the conventional device.

  12. Effects of solar ultraviolet radiation on coral reef organisms.

    PubMed

    Banaszak, Anastazia T; Lesser, Michael P

    2009-09-01

    Organisms living in shallow-water tropical coral reef environments are exposed to high UVR irradiances due to the low solar zenith angles (the angle of the sun from the vertical), the natural thinness of the ozone layer over tropical latitudes, and the high transparency of the water column. The hypothesis that solar ultraviolet radiation (UVR, 290-400 nm) is an important factor that affects the biology and ecology of coral reef organisms dates only to about 1980. It has been previously suggested that increased levels of biologically effective ultraviolet B radiation (UVB, 290-320 nm), which is the waveband primarily affected by ozone depletion, would have relatively small effects on corals and coral reefs and that these effects might be observed as changes in the minimum depths of occurrence of important reef taxa such as corals. This conclusion was based on predictions of increases in UVR as well as its attenuation with depth using the available data on UVR irradiances, ozone levels, and optical properties of the water overlying coral reefs. Here, we review the experimental evidence demonstrating the direct and indirect effects of UVR, both UVB and ultraviolet A (UVA, 320-400 nm) on corals and other reef associated biota, with emphasis on those studies conducted since 1996. Additionally, we re-examine the predictions made in 1996 for the increase in UVB on reefs with currently available data, assess whether those predictions were reasonable, and look at what changes might occur on coral reefs in the future as the multiple effects (i.e. increased temperature, hypercapnia, and ocean acidification) of global climate change continue.

  13. Organic photovoltaic device with interfacial layer and method of fabricating same

    DOEpatents

    Marks, Tobin J.; Hains, Alexander W.

    2013-03-19

    An organic photovoltaic device and method of forming same. In one embodiment, the organic photovoltaic device has an anode, a cathode, an active layer disposed between the anode and the cathode; and an interfacial layer disposed between the anode and the active layer, the interfacial layer comprising 5,5'-bis[(p-trichlorosilylpropylphenyl)phenylamino]-2,2'-bithiophene (PABTSi.sub.2).

  14. Solution processed nickel oxide anodes for organic photovoltaic devices

    SciTech Connect

    Mustafa, Bestoon; Griffin, Jonathan; Alsulami, Abdullah S.; Lidzey, David G.; Buckley, Alastair R.

    2014-02-10

    Nickel oxide thin films have been prepared from a nickel acetylacetonate (Ni(acac)) precursor for use in bulk heterojunction organic photovoltaic devices. The conversion of Ni(acac) to NiO{sub x} has been investigated. Oxygen plasma treatment of the NiO layer after annealing at 400 °C affords solar cell efficiencies of 5.2%. Photoelectron spectroscopy shows that high temperature annealing converts the Ni(acac) to a reduced form of nickel oxide. Additional oxygen plasma treatment further oxidizes the surface layers and deepens the NiO work function from 4.7 eV for the annealed film, to 5.0 eV allowing for efficient hole extraction at the organic interface.

  15. Exceptional ultraviolet photovoltaic response of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline based detector

    NASA Astrophysics Data System (ADS)

    Cai, Yuhua; Tang, Libin; Xiang, Jinzhong; Ji, Rongbin; Zhao, Jun; Yuan, Jun; Duan, Yu; Hu, Yanbo; Tai, Yunjian; Zhao, Jianhong

    2015-09-01

    UV photodetector is a kind of important optoelectronic devices that has vital applications in both scientific and engineering fields. The development of UV photodetectors has been impeded because of lacking stable p-type wide-gap semiconductor which is crucial for high-performance, low-cost, large-array UV photovoltaic detector. In this paper, we report a novel UV photovoltaic detector fabricated using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as a sole photoactive material. The highest detectivity (D*) reaches 9.02 × 1011 cm Hz1/2 W-1 at -1 V bias voltage at room temperature under 365 nm illumination for the un-optimized BCP based detector (without using pre-amplifier), which is the highest value for the sole UV organic photoactive material based photovoltaic detector. The optical, electrical, and photovoltaic properties, including the UV absorption, photoluminescence (PL) emission, PL excitation, I-V, C-V, and photoresponse, have been systematically investigated to disclose the internal mechanism. The present study paves the way for developing high-performance, low-cost UV focal plane array detectors.

  16. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices

    DTIC Science & Technology

    2014-02-19

    hybrids have potential applications in solar cells and may thus provide mobile energy sources for aircraft and soldier technologies. Modeling and...modeling and simulation developed in this project are encouraging further development. 2. Technical Activities Hybrid organic solar cells are an...between surface-modified semiconducting nanoparticles and polymers often contributes to the limited efficiency of hybrid photovoltaic cells and

  17. Intrinsic coincident full-Stokes polarimeter using stacked organic photovoltaics.

    PubMed

    Yang, Ruonan; Sen, Pratik; O'Connor, B T; Kudenov, M W

    2017-02-20

    An intrinsic coincident full-Stokes polarimeter is demonstrated by using strain-aligned polymer-based organic photovoltaics (OPVs) that can preferentially absorb certain polarized states of incident light. The photovoltaic-based polarimeter is capable of measuring four Stokes parameters by cascading four semitransparent OPVs in series along the same optical axis. This in-line polarimeter concept potentially ensures high temporal and spatial resolution with higher radiometric efficiency as compared to the existing polarimeter architecture. Two wave plates were incorporated into the system to modulate the S3 Stokes parameter so as to reduce the condition number of the measurement matrix and maximize the measured signal-to-noise ratio. Radiometric calibration was carried out to determine the measurement matrix. The polarimeter presented in this paper demonstrated an average RMS error of 0.84% for reconstructed Stokes vectors after normalized to S0. A theoretical analysis of the minimum condition number of the four-cell OPV design showed that for individually optimized OPV cells, a condition number of 2.4 is possible.

  18. Multijunction organic photovoltaics with a broad spectral response.

    PubMed

    Macko, Jill A; Lunt, Richard R; Osedach, Timothy P; Brown, Patrick R; Barr, Miles C; Gleason, Karen K; Bulovic, Vladimir

    2012-11-14

    We demonstrate series-integrated multijunction organic photovoltaics fabricated monolithically by vapor-deposition in a transposed subcell order with the near-infrared-absorbing subcell in front of the green-absorbing subcell. This transposed subcell order is enabled by the highly complementary absorption spectra of a near-infrared-absorbing visibly-transparent subcell and a visible-absorbing subcell and motivated by the non-spatially-uniform optical intensity in nanoscale photovoltaics. The subcell order and thicknesses are optimized via transfer-matrix formalism and short-circuit current simulations. An efficient charge recombination zone consisting of layers of BCP/Ag/MoOx leads to negligible voltage and series-resistance losses. Under 1-sun illumination the multijunction solar cells exhibit a power conversion efficiency of 5.5 ± 0.2% with an FF of 0.685 ± 0.002 and a V(OC) of 1.65 ± 0.02 V, corresponding to the sum of the V(OC) of the component subcells. These devices exhibit a broad spectral response (in the wavelength range of 350 nm to 850 nm) but are limited by subcell external quantum efficiencies between 20% and 30% over the photoactive spectrum.

  19. Compatibilization of All-Conjugated Polymer Blends for Organic Photovoltaics.

    PubMed

    Lombeck, Florian; Sepe, Alessandro; Thomann, Ralf; Friend, Richard H; Sommer, Michael

    2016-08-23

    Compatibilization of an immiscible binary blend comprising a conjugated electron donor and a conjugated electron acceptor polymer with suitable electronic properties upon addition of a block copolymer (BCP) composed of the same building blocks is demonstrated. Efficient compatibilization during melt-annealing is feasible when the two polymers are immiscible in the melt, i.e. above the melting point of ∼250 °C of the semicrystalline donor polymer P3HT. To generate immiscibility at these high temperatures, the acceptor polymer PCDTBT is equipped with fluorinated side chains leading to an increased Flory-Huggins interaction parameter. Compatibilization in bulk and thin films is demonstrated, showing that the photovoltaic performance of pristine microphase separated and nanostructured BCPs can also be obtained for compatibilized blend films containing low contents of 10-20 wt % BCP. Thermodynamically stable domain sizes range between several tens of microns for pure blends and ∼10 nm for pure block copolymers. In addition to controlling domain size, the amount of block copolymer added dictates the ratio of edge-on and face-on P3HT crystals, with compatibilized films showing an increasing amount of face-on P3HT crystals with increasing amount of compatibilizer. This study demonstrates the prerequisites and benefits of compatibilizing all-conjugated semicrystalline polymer blends for organic photovoltaics.

  20. High performance organic photovoltaics with plasmonic-coupled metal nanoparticle clusters.

    PubMed

    Park, Hyung Il; Lee, Seunghoon; Lee, Ju Min; Nam, Soo Ah; Jeon, Taewoo; Han, Sang Woo; Kim, Sang Ouk

    2014-10-28

    Performance enhancement of organic photovoltaics using plasmonic nanoparticles has been limited without interparticle plasmon coupling. We demonstrate high performance organic photovoltaics employing gold nanoparticle clusters with controlled morphology as a plasmonic component. Near-field coupling at the interparticle gaps of nanoparticle clusters gives rise to strong enhancement in localized electromagnetic field, which led to the significant improvement of exciton generation and dissociation in the active layer of organic solar cells. A power conversion efficiency of 9.48% is attained by employing gold nanoparticle clusters at the bottom of the organic active layer. This is one of the highest efficiency values reported thus far for the single active layer organic photovoltaics.

  1. Low-Temperature, Solution-Processed Molybdenum Oxide Hole-Collection Layer for Organic Photovoltaics

    SciTech Connect

    Hammond, S. R.; Meyer, J.; Widjonarko, N. E.; Ndione, P. F.; Sigdel, A. K.; Garcia, A.; Miedaner, A.; Lloyd, M. T.; Kahn, A.; Ginley, D. S.; Berry, J. J.; Olson, D. C.

    2012-02-21

    We have utilized a commercially available metal-organic precursor to develop a new, low-temperature, solution-processed molybdenum oxide (MoO{sub x}) hole-collection layer (HCL) for organic photovoltaic (OPV) devices that is compatible with high-throughput roll-to-roll manufacturing. Thermogravimetric analysis indicates complete decomposition of the metal-organic precursor by 115 C in air. Acetonitrile solutions spin-cast in a N{sub 2} atmosphere and annealed in air yield continuous thin films of MoO{sub x}. Ultraviolet, inverse, and X-ray photoemission spectroscopies confirm the formation of MoO{sub x} and, along with Kelvin probe measurements, provide detailed information about the energetics of the MoO{sub x} thin films. Incorporation of these films into conventional architecture bulk heterojunction OPV devices with poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester afford comparable power conversion efficiencies to those obtained with the industry-standard material for hole injection and collection: poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The MoO{sub x} HCL devices exhibit slightly reduced open circuit voltages and short circuit current densities with respect to the PEDOT:PSS HCL devices, likely due in part to charge recombination at Mo{sup 5+} gap states in the MoO{sub x} HCL, and demonstrate enhanced fill factors due to reduced series resistance in the MoO{sub x} HCL.

  2. Synthesis of phthalocyanine derivatives as materials for organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Collazo-Ramos, Aura

    Organic photovoltaics (OPVs) are used to convert sunlight into electricity by using thin films of organic semiconductors. OPVs have the potential to produce low cost, lightweight, flexible devices with an eased manufacturing process. This technology contains the potential to increase the use of clean, sustainable solar energy, helping manage the global energy and environmental crisis that results majorly from the constant use of fossil fuels as an energy source. The ability to modulate the physical properties of organic molecules by tuning their chemical structure is an advantage for OPVs. Phthalocyanines (Pcs) are highly pi-conjugated synthetic porphyrin analogs that have been explored as active layer components in OPVs due to their high extinction coefficients and hole mobilities. The Pc structure can be modified by the introduction of metals in the core and the incorporation of substituents into the periphery. These modifications tend to tune the solubility, photophysical properties and condensed phase organization of Pcs. The research work in this dissertation describes improved methods towards substituted Pc derivatives addressing: (1) the use of mass spectrometry techniques for Pcs characterization, (2) efforts to achieve materials with near-infrared (NIR) absorption, and (3) the potential of Pc as electron-acceptor materials. Herein, the synthesis of a series of asymmetric and symmetric metallated Pcs has been established, which resulted in interesting chemical, photophysical and electrochemical properties. The materials investigated in this thesis increase the potential of Pcs as organic semiconductors for OPVs.

  3. Graphene - a promising material for organic photovoltaic cells.

    PubMed

    Wan, Xiangjian; Long, Guankui; Huang, Lu; Chen, Yongsheng

    2011-12-01

    As a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal, and mechanical properties, graphene has been proposed for many applications. In this Progress Report we summarize and discuss comprehensively the advances made so far for applications of graphene in organic photovoltaic (OPV) cells, including that for transparent electrodes, active layers and interfaces layer in OPV. It is concluded that graphene may very likely play a major role in new developments/improvements in OPVs. The future studies for this area are proposed to focus on the following: i) improving the conductivity without comprising the transparency as a transparent electrode material; ii) controlling the sheet sizes, band structure and surface morphology for use as a electron acceptor material, and iii) controlling and improving the functionalization and compatibility with other materials as interface layer material.

  4. Organic photovoltaic cells: from performance improvement to manufacturing processes.

    PubMed

    Youn, Hongseok; Park, Hui Joon; Guo, L Jay

    2015-05-20

    Organic photovoltaics (OPVs) have been pursued as a next generation power source due to their light weight, thin, flexible, and simple fabrication advantages. Improvements in OPV efficiency have attracted great attention in the past decade. Because the functional layers in OPVs can be dissolved in common solvents, they can be manufactured by eco-friendly and scalable printing or coating technologies. In this review article, the focus is on recent efforts to control nanomorphologies of photoactive layer and discussion of various solution-processed charge transport and extraction materials, to maximize the performance of OPV cells. Next, recent works on printing and coating technologies for OPVs to realize solution processing are reviewed. The review concludes with a discussion of recent advances in the development of non-traditional lamination and transfer method towards highly efficient and fully solution-processed OPV.

  5. Efficient organic photovoltaic cells with vertically ordered bulk heterojunctions.

    PubMed

    Yu, Bo; Wang, Haibo; Yan, Donghang

    2013-12-06

    Nanoscale morphology has been proved to be the key parameter deciding the exciton dissociation and charge transportation in bulk heterojunction (BHJ) solar cells. In this paper, we report a kind of small molecular organic photovoltaic cell (OPV) with a vertically ordered BHJ prepared by the weak epitaxial growth method. By this method, zinc phthalocyanine (ZnPc) can easily be formed into a highly ordered and continuous thin film and C60 is inclined to become dispersed crystalline grains in ZnPc film. Furthermore, we can control both the size and distribution density of C60 crystalline grains in ZnPc thin film without destroying the order of the ZnPc thin film. The OPVs with the vertically ordered BHJ show a high fill factor and a power conversion efficiency over 3% has been achieved.

  6. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier.

    PubMed

    Gan, Qiaoqiang; Bartoli, Filbert J; Kafafi, Zakya H

    2013-05-07

    Recent advances in molecular organic photovoltaics (OPVs) have shown 10% power conversion efficiency (PCE) for single-junction cells, which put them in direct competition with PVs based on amorphous silicon. Incorporation of plasmonic nanostructures for light trapping in these thin-film devices offers an attractive solution to realize higher-efficiency OPVs with PCE>10%. This article reviews recent progress on plasmonic-enhanced OPV devices using metallic nanoparticles, and one-dimensional (1D) and two-dimensional (2D) patterned periodic nanostructures. We discuss the benefits of using various plasmonic nanostructures for broad-band, polarization-insensitive and angle-independent absorption enhancement, and their integration with one or two electrode(s) of an OPV device.

  7. Empirically based device modeling of bulk heterojunction organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Pierre, Adrien; Lu, Shaofeng; Howard, Ian A.; Facchetti, Antonio; Arias, Ana Claudia

    2013-10-01

    An empirically based, open source, optoelectronic model is constructed to accurately simulate organic photovoltaic (OPV) devices. Bulk heterojunction OPV devices based on a new low band gap dithienothiophene- diketopyrrolopyrrole donor polymer (P(TBT-DPP)) are blended with PC70BM and processed under various conditions, with efficiencies up to 4.7%. The mobilities of electrons and holes, bimolecular recombination coefficients, exciton quenching efficiencies in donor and acceptor domains and optical constants of these devices are measured and input into the simulator to yield photocurrent with less than 7% error. The results from this model not only show carrier activity in the active layer but also elucidate new routes of device optimization by varying donor-acceptor composition as a function of position. Sets of high and low performance devices are investigated and compared side-by-side.

  8. Exciton Mobility in Organic Photovoltaic Heterojunctions from Femtosecond Stimulated Raman.

    PubMed

    Hoffman, David P; Leblebici, Sibel Y; Schwartzberg, Adam M; Mathies, Richard A

    2015-08-06

    Exciton mobility is crucial to organic photovoltaic (OPV) efficiency, but accurate, quantitative measures and therefore precise understanding of this process are currently lacking. Here, we exploit the unique capabilities of femtosecond stimulated Raman spectroscopy (FSRS) to disentangle the signatures of the bulk and interfacial donor response in a bulk heterojunction composed of poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and phenyl-C61-butyric acid methyl ester (PCBM). Surprisingly, we find that donor excitons are very mobile for the first ∼300 fs following excitation (before thermalization) even though their overall lifetime is significantly longer (170 ps). A sharp decrease in mobility occurs after the system relaxes out of the Franck-Condon (FC) region. From this observation we predict that any polymer lacking a significant resonance Raman effect and fluorescence Stokes shift, indicating slow FC relaxation and small reorganization energy, will make an efficient OPV material.

  9. Thermal effect on the morphology and performance of organic photovoltaics.

    PubMed

    Kawashima, Eisuke; Fujii, Mikiya; Yamashita, Koichi

    2016-09-29

    The morphology of organic photovoltaics (OPVs) is a significant factor in improving performance, and establishing a method for controlling morphology is necessary. In this study, we propose a device-size simulation model, combining reptation and the dynamic Monte Carlo (DMC) algorithm, to investigate the relationship between the manufacturing process, morphology, and OPV performance. The reptation reproduces morphologies under thermal annealing, and DMC showed morphology-dependence of performance: not only short-circuit current density but also open-circuit voltage had optimal interfacial areas due to competition between exciton dissociation and charge collection. Besides, we performed transient absorption spectroscopy of various BHJ morphologies under realistic conditions, which revealed prompt and delayed dynamics of charge generation-the majority of the charges were from excitons that were generated on interfaces and dissociated within a few picoseconds, and the others from excitons that migrated to interfaces and dissociated on the order of sub-nanoseconds.

  10. Solving the Dichotomy of Excitonic Challenges in Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Yambem, Soniya Devi

    The focus of this research is to design a novel architecture for organic photovoltaic (OPV) devices, a "wrapped OPV", which is tailored to the requirements of short exciton diffusion length and low charge carrier mobility of organic semiconductors. A wrapped OPV is a vertically oriented device, in contrast to typical flat panel OPV devices, in order to capture, manage, guide, and use all incident photons and therefore generate a higher current. Resonant light, on being transmitted into a wrapped OPV, makes multiple passes through the active layer, resulting in increased optical path length and consequently absorption of all incident resonant light. The wrapped OPV is constructed from a flexible "flat" OPV, fabricated using a bulk heterojunction photoactive layer of poly-(3-hexylthiophene) (P3HT): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). A flexible OPV is achieved by fabricating OPV devices on highly flexible semitransparent thin metal films. The outcome of the unique trapping of all resonant photons in a wrapped OPV is a two-fold increase in the current density which was obtained when light is incident at an angle of ˜ 30° at the face of the wrapped OPV. The angular dependence of current density is a complex relation that combines factors including transmittances across the different layers, area of illumination at the face of the OPV, optical path length, and geometry of the wrapped OPV. A mathematical model constructed, incorporating all these factors, shows a very close agreement with the experimental result obtained. The findings reported uncover a new direction for photovoltaic research which has the potential to increase performance of OPVs significantly.

  11. Doping effects of fluorinated organic dyes on the open-circuit voltage of bulk-heterojunction photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoki; Yamashita, Kenichi

    2015-08-01

    We have investigated photovoltaic properties of bulk-heterojunction (BHJ) organic absorption layer doped with fluorinated Coumarin dyes. By dilute doping of a fluorinated Coumarin dye, Coumarin 307, into poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) BHJ absorption layer, the open-circuit voltage of photovoltaic device increased by ∼90 mV without the significant degradation in the short-circuit current density. On the other hand, the doping of non-fluorinated Coumarin dye such as Coumarin 2 did not induce such the enhancement effect in the open-circuit voltage. In ultraviolet photoelectron spectroscopies, the doping of Coumarin 307 was found to have no impact on P3HT, but the density of state of PCBM was significantly modified by the doping. The change in the density of state was confirmed also in ultraviolet absorption measurement. Possible explanations for the enhancement in the open-circuit voltage are discussed from the experimental results, and a shift of the vacuum level by the doping can be considered as a direct origin.

  12. Organic and hybrid organic-inorganic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    McGehee, Michael

    2011-03-01

    The performance and limitations of the world's best organic and dye sensitized solar cells will be presented along with plans to increase the energy conversion efficiency to 15%. Topics of more detailed discussion could include the formation of polymer-fullerene co-crystals and their implications for recombination, the use of energy transfer to improve light harvesting~in~dye sensitized solar cells, solution deposited transparent electrodes or the use of plasmonics to improve light absorption.

  13. Improving, characterizing and predicting the lifetime of organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Gevorgyan, Suren A.; Heckler, Ilona Maria; Bundgaard, Eva; Corazza, Michael; Hösel, Markus; Søndergaard, Roar R.; Alves dos Reis Benatto, Gisele; Jørgensen, Mikkel; Krebs, Frederik C.

    2017-03-01

    This review summarizes the recent progress in the stability and lifetime of organic photovoltaics (OPVs). In particular, recently proposed solutions to failure mechanisms in different layers of the device stack are discussed comprising both structural and chemical modifications. Upscaling is additionally discussed from the perspective of stability presenting the challenges associated with device packaging and edge protection. An important part of device stability studies is the characterization, and this review provides a short overview of the most advanced techniques for stability characterization reported recently. Lifetime testing and determination is another challenge in the field of organic solar cells and the final sections of this review discuss the testing protocols as well as the generic marker for device lifetime and the methodology for comparing all the lifetime landmarks in one common diagram. These tools were used to determine the baselines for OPV lifetime tested under different ageing conditions. Finally, the current status of lifetime for organic solar cells is presented and predictions are made for progress in the near future.

  14. Fundamental and applied studies of organic photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Hill, Caleb M.

    Presented here are applied and fundamental studies of model organic photovoltaic (OPV) systems. Graphene oxide (GO) nanosheets were investigated as a potential electron acceptor in bulk heterojunction organic solar cells which employed poly[3-hexylthiophene] (P3HT) as an electron donor. GO nanosheets were transferred into organic solution through a surfactant-assisted phase transfer method. Electron transfer from P3HT to GO in solutions and thin films was established through fluorescence spectroscopy. Bulk heterojunction solar cells containing P3HT, P3HT-GO, and P3HT-phenyl-C61-butyric acid methyl ester (PCBM, a prototypical elector acceptor employed in polymer solar cells) were constructed and evaluated. Single molecule fluorescence spectroscopy was employed to study charge transfer between conjugated polymers and TiO2 at the single molecule level. The fluorescence of individual chains of the conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) at TiO2 surfaces was shown to exhibit increased intermittent (on/off "blinking") behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and TiO 2 substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between MEH-PPV and TiO2, which provides additional pathways between states of high and low fluorescence quantum efficiency. The electrodeposition of individual Ag nanoparticles (NPs), which can be used to enhance light harvesting in organic photovoltaic systems, was studied in situ via dark field scattering (DFS) microscopy. The scattering at the surface of an indium tin oxide (ITO) working electrode was measured during a potential sweep. Utilizing Mie scattering theory and high resolution scanning electron microscopy (SEM), the scattering data were used to

  15. Organic photovoltaic devices with a single layer geometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kolesov, Vladimir A.; Fuentes-Hernandez, Canek; Aizawa, Naoya; Larrain, Felipe A.; Chou, Wen-Fang; Perrotta, Alberto; Graham, Samuel; Kippelen, Bernard

    2016-09-01

    Organic photovoltaics (OPV) can lead to a low cost and short energy payback time alternative to existing photovoltaic technologies. However, to fulfill this promise, power conversion efficiencies must be improved and simultaneously the architecture of the devices and their processing steps need to be further simplified. In the most efficient devices to date, the functions of photocurrent generation, and hole/electron collection are achieved in different layers adding complexity to the device fabrication. In this talk, we present a novel approach that yields devices in which all these functions are combined in a single layer. Specifically, we report on bulk heterojunction devices in which amine-containing polymers are first mixed in the solution together with the donor and acceptor materials that form the active layer. A single-layer coating yields a self-forming bottom electron-collection layer comprised of the amine-containing polymer (e.g. PEIE). Hole-collection is achieved by subsequent immersion of this single layer in a solution of a polyoxometalate (e.g. phosphomolybdic acid (PMA)) leading to an electrically p-doped region formed by the diffusion of the dopant molecules into the bulk. The depth of this doped region can be controlled with values up to tens of nm by varying the immersion time. Devices with a single 500 nm-thick active layer of P3HT:ICBA processed using this method yield power conversion efficiency (PCE) values of 4.8 ± 0.3% at 1 sun and demonstrate a performance level superior to that of benchmark three-layer devices with separate layers of PEIE/P3HT:ICBA/MoOx (4.1 ± 0.4%). Devices remain stable after shelf lifetime experiments carried-out at 60 °C over 280 h.

  16. Tailoring porphyrin-based electron accepting materials for organic photovoltaics.

    PubMed

    Rawson, Jeff; Stuart, Andrew C; You, Wei; Therien, Michael J

    2014-12-17

    The syntheses, potentiometric responses, optical spectra, electronic structural properties, and integration into photovoltaic devices are described for ethyne-bridged isoindigo-(porphinato)zinc(II)-isoindigo chromophores built upon either electron-rich 10,20-diaryl porphyrin (Ar-Iso) or electron-deficient 10,20-bis(perfluoroalkyl)porphyrin (Rf-Iso) frameworks. These supermolecules evince electrochemical responses that trace their geneses to their respective porphyrinic and isoindigoid subunits. The ethyne linkage motif effectively mixes the comparatively weak isoindigo-derived visible excitations with porphyrinic π-π* states, endowing Ar-Iso and Rf-Iso with high extinction coefficient (ε ∼ 10(5) M(-1)·cm(-1)) long-axis polarized absorptions. Ar-Iso and Rf-Iso exhibit total absorptivities per unit mass that greatly exceed that for poly(3-hexyl)thiophene (P3HT) over the 375-900 nm wavelength range where solar flux is maximal. Time-dependent density functional theory calculations highlight the delocalized nature of the low energy singlet excited states of these chromophores, demonstrating how coupled oscillator photophysics can yield organic photovoltaic device (OPV) materials having absorptive properties that supersede those of conventional semiconducting polymers. Prototype OPVs crafted from the poly(3-hexyl)thiophene (P3HT) donor polymer and these new materials (i) confirm that solar power conversion depends critically upon the driving force for photoinduced hole transfer (HT) from these low-band-gap acceptors, and (ii) underscore the importance of the excited-state reduction potential (E(-/*)) parameter as a general design criterion for low-band-gap OPV acceptors. OPVs constructed from Rf-Iso and P3HT define rare examples whereby the acceptor material extends the device operating spectral range into the NIR, and demonstrate for the first time that high oscillator strength porphyrinic chromophores, conventionally utilized as electron donors in OPVs, can also

  17. Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cacha, Brian Joseph Gonda

    Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).

  18. Molecular Design and Device Application of Radical Polymers for Improved Charge Extraction in Organic Photovoltaic Cells

    DTIC Science & Technology

    2015-07-29

    AFRL-OSR-VA-TR-2015-0218 Molecular Design and Device Application of Radical Polymers for Improved Charge Extraction in Organic Photovoltaic Cells... APPLICATION OF RADICAL POLYMERS FOR IMPROVED CHARGE EXTRACTION IN ORGANIC PHOTOVOLTAIC CELLS" 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA-9550-12-1...radical polymers and offered a perspective of their potential organic electronic applications moving forward. This work cemented our group as a world

  19. ENGINEERED ELECTRODES AND ELECTRODE-ORGANIC INTERFACES FOR HIGH-EFFICIENCY ORGANIC PHOTOVOLTAICS

    SciTech Connect

    Tobin J. Marks; R.P.H. Chang; Tom Mason; Ken Poeppelmeier; Arthur J. Freeman

    2008-11-13

    Organic photovoltaic (OPV) cells offer the ultimate promise of low cost, readily manufacturable, and durable solar power. While recent advances have led to cells with impressive performance levels, OPV cells have yet to break the double-digit efficiency barrier. Further gains in efficiency and durability, to that competitive with high-performance inorganic photovoltaics will require breakthroughs in transparent electrode and interfacial materials science and engineering. This project involved an integrated basic research effort carried out by an experienced and highly collaborative interdisciplinary team to address in unconventional ways, critical electrode-interfacial issues underlying OPV performance--controlling band offsets between transparent electrodes and organics, addressing current loss/leakage problems at interfaces, enhancing adhesion, interfacial stability, and device durability while minimizing cost. It synergistically combined materials and interfacial reagent synthesis, nanostructural and photovoltaic characterization, and high level quantum theory. The research foci were: 1) understanding of/development of superior transparent electrode materials and materials morphologies--i.e., better matched electronically and chemically to organic active layers, 2) understanding-based development of inorganic interfacial current-collecting/charge-blocking layers, and 3) understanding-based development of self-assembled adhesion/current-collecting/charge-blocking/cross-linking layers for high-efficiency OPV interfaces. Pursing the goal of developing the fundamental scientific understanding needed to design, fabricate, prototype and ultimately test high-efficiency OPV cells incorporating these new concepts, we achieved a record power conversion efficiency of 5.2% for an organic bulk-heterjunction solar cell.

  20. Carbazole-based polymers for organic photovoltaic devices.

    PubMed

    Li, Jiaoli; Grimsdale, Andrew C

    2010-07-01

    Polymers based upon 2,7-disubstituted carbazole have recently become of great interest as electron-donating materials in organic photovoltaic devices. In this tutorial review the synthesis of such polymers and their relative performances in such devices are surveyed. In particular structure-property relationships are investigated and the potential for the rational design of materials for high efficiency solar cells is discussed. In the case of the 2,7-carbazole homopolymer it has been found that electron acceptors other than fullerenes produce higher energy conversion efficiencies. To get around possible problems with the build-up of charge density at the 3- and 6-positions and to improve the solar light harvesting ability of the polymers by reducing the bandgap, ladder- and step-ladder type 2,7-carbazole polymers have been synthesised. The fully ladderised polymers gave very poor results in devices, but efficiencies of over 1% have been obtained from a step-ladder polymer with a diindenocarbazole monomer unit. Donor-acceptor copolymers containing 2,7-carbazole donors and various electron-accepting comonomer units have been prepared. An efficiency of 6% has been reported from a device using such a copolymer and by suitable choice of the acceptor comonomer, polymers can be designed with potential theoretical power conversion efficiencies of 10%. While such efficiencies remain to be obtained, the results to date certainly suggest that carbazole-based polymers and copolymers are among the most promising materials yet proposed for obtaining high efficiency organic solar cells.

  1. Exciton management in organic photovoltaic multidonor energy cascades.

    PubMed

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.

  2. Exciton transport, charge extraction, and loss mechanisms in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Scully, Shawn Ryan

    Organic photovoltaics have attracted significant interest over the last decade due to their promise as clean low-cost alternatives to large-scale electric power generation such as coal-fired power, natural gas, and nuclear power. Many believe power conversion efficiency targets of 10-15% must be reached before commercialization is possible. Consequently, understanding the loss mechanisms which currently limit efficiencies to 4-5% is crucial to identify paths to reach higher efficiencies. In this work, we investigate the dominant loss mechanisms in some of the leading organic photovoltaic architectures. In the first class of architectures, which include planar heterojunctions and bulk heterojunctions with large domains, efficiencies are primarily limited by the distance photogenerated excitations (excitons) can be transported (termed the exciton diffusion length) to a heterojunction where the excitons may dissociate. We will discuss how to properly measure the exciton diffusion length focusing on the effects of optical interference and of energy transfer when using fullerenes as quenching layers and show how this explains the variety of diffusion lengths reported for the same material. After understanding that disorder and defects limit exciton diffusion lengths, we suggest some approaches to overcome this. We then extensively investigate the use of long-range resonant energy transfer to increase exciton harvesting. Using simulations and experiments as support, we discuss how energy transfer can be engineered into architectures to increase the distance excitons can be harvested. In an experimental model system, DOW Red/PTPTB, we will show how the distance excitons are harvested can be increased by almost an order of magnitude up to 27 nm from a heterojunction and give design rules and extensions of this concept for future architectures. After understanding exciton harvesting limitations we will look at other losses that are present in planar heterojunctions. One of

  3. Band offset of vanadium-doped molybdenum oxide hole transport layer in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Kuei; Huang, Yi-Chi; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-08-01

    Solution-processed vanadium-doped molybdenum oxide films (V)MoOx films with mole ratios of Mo:V = 1:0, 1:0.05, 1:0.2, 1:0.5, 0:1, are fabricated as hole transport layer (HTL) in organic photovoltaics with active layer blend comprising poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). The device structure is ITO/(V)MoOx/P3HT:PCBM/ZnO NP/Al, and the working area is 0.16 cm2. The result shows that the device using V0.05MoOx HTL has the best performance, including power conversion efficiency of 2.16%, Voc of 0.6 V, Jsc of 6.93 mA/cm2, and FF of 51.9%. Using ultraviolet photoelectron spectroscopy (UPS), we can define the energy levels of valence band edge and Fermi level of (V)MoOx films. UPS analysis indicates that V0.05MoOx has the smallest energy band offset between its valence band edge to the HOMO of P3HT, which is advantageous for hole transporting from P3HT to ITO anode via the V0.05MoOx HTL. In addition, V0.05MoOx film shows the lowest electrical resistivity among all (V)MoOx films, which is further beneficial for hole transportation.

  4. Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters.

    PubMed

    Lui, Gough Yumu; Roser, David; Corkish, Richard; Ashbolt, Nicholas; Jagals, Paul; Stuetz, Richard

    2014-09-15

    For many decades, populations in rural and remote developing regions will be unable to access centralised piped potable water supplies, and indeed, decentralised options may be more sustainable. Accordingly, improved household point-of-use (POU) disinfection technologies are urgently needed. Compared to alternatives, ultraviolet (UV) light disinfection is very attractive because of its efficacy against all pathogen groups and minimal operational consumables. Though mercury arc lamp technology is very efficient, it requires frequent lamp replacement, involves a toxic heavy metal, and their quartz envelopes and sleeves are expensive, fragile and require regular cleaning. An emerging alternative is semiconductor-based units where UV light emitting diodes (UV-LEDs) are powered by photovoltaics (PV). Our review charts the development of these two technologies, their current status, and challenges to their integration and POU application. It explores the themes of UV-C-LEDs, non-UV-C LED technology (e.g. UV-A, visible light, Advanced Oxidation), PV power supplies, PV/LED integration and POU suitability. While UV-C LED technology should mature in the next 10 years, research is also needed to address other unresolved barriers to in situ application as well as emerging research opportunities especially UV-A, photocatalyst/photosensitiser use and pulsed emission options.

  5. Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics

    NASA Astrophysics Data System (ADS)

    Kimber, Robin G. E.; Wright, Edward N.; O'Kane, Simon E. J.; Walker, Alison B.; Blakesley, James C.

    2012-12-01

    Measured mobility and current-voltage characteristics of single layer and photovoltaic (PV) devices composed of poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N,N'-phenyl-1,4-phenylene)diamine} (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) have been reproduced by a mesoscopic model employing the kinetic Monte Carlo (KMC) approach. Our aim is to show how to avoid the uncertainties common in electrical transport models arising from the need to fit a large number of parameters when little information is available, for example, a single current-voltage curve. Here, simulation parameters are derived from a series of measurements using a self-consistent “building-blocks” approach, starting from data on the simplest systems. We found that site energies show disorder and that correlations in the site energies and a distribution of deep traps must be included in order to reproduce measured charge mobility-field curves at low charge densities in bulk PFB and F8BT. The parameter set from the mobility-field curves reproduces the unipolar current in single layers of PFB and F8BT and allows us to deduce charge injection barriers. Finally, by combining these disorder descriptions and injection barriers with an optical model, the external quantum efficiency and current densities of blend and bilayer organic PV devices can be successfully reproduced across a voltage range encompassing reverse and forward bias, with the recombination rate the only parameter to be fitted, found to be 1×107 s-1. These findings demonstrate an approach that removes some of the arbitrariness present in transport models of organic devices, which validates the KMC as an accurate description of organic optoelectronic systems, and provides information on the microscopic origins of the device behavior.

  6. Near-ultraviolet lateral photovoltaic effect in Fe3O4/3C-SiC Schottky junctions.

    PubMed

    Song, Bingqian; Wang, Xianjie; Li, Bo; Zhang, Lingli; Lv, Zhe; Zhang, Yu; Wang, Yang; Tang, Jinke; Xu, Ping; Li, Bingsheng; Yang, Yanqiang; Sui, Yu; Song, Bo

    2016-10-17

    In this paper, we report a sensitive lateral photovoltaic effect (LPE) in Fe3O4/3C-SiC Schottky junctions with a fast relaxation time at near-ultraviolet wavelengths. The rectifying behavior suggests that the large build-in electric field was formed in the Schottky junctions. This device has excellent position sensitivity as high as 67.8 mV mm-1 illuminated by a 405 nm laser. The optical relaxation time of the LPE is about 30 μs. The fast relaxation and high positional sensitivity of the LPE make the Fe3O4/3C-SiC junction a promising candidate for a wide range of ultraviolet/near-ultraviolet optoelectronic applications.

  7. Performance limits of plasmon-enhanced organic photovoltaics

    SciTech Connect

    Karatay, Durmus U.; Ginger, David S.; Salvador, Michael; Yao, Kai; Jen, Alex K.-Y.

    2014-07-21

    We use a combination of experiment and modeling to explore the promise and limitations of using plasmon-resonant metal nanoparticles to enhance the device performance of organic photovoltaics (OPVs). We focus on optical properties typical of the current generation of low-bandgap donor polymers blended with the fullerene (6,6)-phenyl C{sub 71}-butyric acid methyl ester (PC{sub 71}BM) and use the polymer poly(indacenodithiophene-co-phenanthro[9,10-b]quinoxaline) (PIDT-PhanQ) as our test case. We model the optical properties and performance of these devices both in the presence and absence of a variety of colloidal silver nanoparticles. We show that for these materials, device performance is sensitive to the relative z-position and the density of nanoparticles inside the active layer. Using conservative estimates of the internal quantum efficiency for the PIDT-PhanQ/PC{sub 71}BM blend, we calculate that optimally placed silver nanoparticles could yield an enhancement in short-circuit current density of over 31% when used with ∼ 80-nm-thick active layers, resulting in an absolute increase in power conversion efficiency of up to ∼2% for the device based on optical engineering.

  8. Computational screening of organic materials towards improved photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan; Borunda, Mario

    2015-03-01

    The world today faces an energy crisis that is an obstruction to the development of the human civilization. One of the most promising solutions is solar energy harvested by economical solar cells. Being the third generation of solar cell materials, organic photovoltaic (OPV) materials is now under active development from both theoretical and experimental points of view. In this study, we constructed a parameter to select the desired molecules based on their optical spectra performance. We applied it to investigate a large collection of potential OPV materials, which were from the CEPDB database set up by the Harvard Clean Energy Project. Time dependent density functional theory (TD-DFT) modeling was used to calculate the absorption spectra of the molecules. Then based on the parameter, we screened out the top performing molecules for their potential OPV usage and suggested experimental efforts toward their synthesis. In addition, from those molecules, we summarized the functional groups that provided molecules certain spectrum capability. It is hoped that useful information could be mined out to provide hints to molecular design of OPV materials.

  9. Unsymmetrical and symmetrical azines toward application in organic photovoltaic

    NASA Astrophysics Data System (ADS)

    Jarczyk-Jedryka, Anna; Bijak, Katarzyna; Sek, Danuta; Siwy, Mariola; Filapek, Michal; Malecki, Grzegorz; Kula, Slawomir; Lewinska, Gabriela; Nowak, Elzbieta M.; Sanetra, Jerzy; Janeczek, Henryk; Smolarek, Karolina; Mackowski, Sebastian; Schab-Balcerzak, Ewa

    2015-01-01

    The unsymmetrical and symmetrical azines prepared by condensation of benzophenone hydrazone with (di)aldehydes with thiophene rings were reported in this study The structures of obtained compounds were characterized by FTIR, 1H NMR, and 13C NMR spectroscopy as well as elemental analysis. Optical, electrochemical, and thermal properties of azines were investigated. The unsymmetrical azine with bithiophene unit exhibited liquid crystalline properties as was detected by DSC and POM experiments. All compounds are electrochemically active, however, only azines with bithiophene structure undergo reversible reduction process as was found in cyclic and differential pulse voltammetry (CV and DPV) studies. Additionally, the electronic properties, that is, orbital energies and resulting energy gap were calculated theoretically by density functional theory (DFT). The photovoltaic properties of two azines as active layer in organic solar cells at the configuration ITO/PEDOT:PSS/active layer/Al under an illumination of 1.3 mW/cm2 were studied. Active cell layers blends of poly 3-hekxylthiophene (P3HT) or poly 3-butylthiophene (P3OT) with azines were applied. The device comprising P3HT with symmetrical azine containing bithiophene unit showed the highest value of power conversion efficiency (0.82%). To the best of our knowledge, the azines are very seldom considered as potential compounds in active layer in bulk heterojunction (BHJ) solar cells.

  10. Optical Spintronics in Organic-Inorganic Perovskite Photovoltaics.

    PubMed

    Li, Junwen; Haney, Paul M

    2016-04-15

    Organic-inorganic halide CH3NH3PbI3 solar cells have attracted enormous attention in recent years due to their remarkable power conversion efficiency. When inversion symmetry is broken, these materials should exhibit interesting spin-dependent properties as well, owing to their strong spin-orbit coupling. In this work, we consider the spin-dependent optical response of CH3NH3PbI3. We first use density functional theory to compute the ballistic spin current generated by absorption of unpolarized light. We then consider diffusive transport of photogenerated charge and spin for a thin CH3NH3PbI3 layer with a passivated surface and an Ohmic, non-selective contact. The spin density and spin current are evaluated by solving the drift-diffusion equations for a simplified 3-dimensional Rashba model of the electronic structure of the valence and conduction bands. We provide analytic expressions for the photon flux required to induce measurable spin densities, and propose that these spin densities can provide useful information about the role of grain boundaries in the photovoltaic behavior of these materials. We also discuss the prospects for measuring the optically generated spin current with the inverse spin Hall effect.

  11. Optical spintronics in organic-inorganic perovskite photovoltaics

    NASA Astrophysics Data System (ADS)

    Li, Junwen; Haney, Paul M.

    2016-04-01

    Organic-inorganic halide CH3NH3PbI3 solar cells have attracted enormous attention in recent years due to their remarkable power conversion efficiency. When inversion symmetry is broken, these materials should exhibit interesting spin-dependent properties as well, owing to their strong spin-orbit coupling. In this work, we consider the spin-dependent optical response of CH3NH3PbI3 . We first use density functional theory to compute the ballistic spin current generated by absorption of unpolarized light. We then consider diffusive transport of photogenerated charge and spin for a thin CH3NH3PbI3 layer with a passivated surface and an Ohmic, nonselective contact. The spin density and spin current are evaluated by solving the drift-diffusion equations for a simplified three-dimensional Rashba model of the electronic structure of the valence and conduction bands. We provide analytic expressions for the photon flux required to induce measurable spin densities, and propose that these spin densities can provide useful information about the role of grain boundaries in the photovoltaic behavior of these materials. We also discuss the prospects for measuring the optically generated spin current with the inverse spin Hall effect.

  12. Intrinsic coincident linear polarimetry using stacked organic photovoltaics.

    PubMed

    Roy, S Gupta; Awartani, O M; Sen, P; O'Connor, B T; Kudenov, M W

    2016-06-27

    Polarimetry has widespread applications within atmospheric sensing, telecommunications, biomedical imaging, and target detection. Several existing methods of imaging polarimetry trade off the sensor's spatial resolution for polarimetric resolution, and often have some form of spatial registration error. To mitigate these issues, we have developed a system using oriented polymer-based organic photovoltaics (OPVs) that can preferentially absorb linearly polarized light. Additionally, the OPV cells can be made semitransparent, enabling multiple detectors to be cascaded along the same optical axis. Since each device performs a partial polarization measurement of the same incident beam, high temporal resolution is maintained with the potential for inherent spatial registration. In this paper, a Mueller matrix model of the stacked OPV design is provided. Based on this model, a calibration technique is developed and presented. This calibration technique and model are validated with experimental data, taken with a cascaded three cell OPV Stokes polarimeter, capable of measuring incident linear polarization states. Our results indicate polarization measurement error of 1.2% RMS and an average absolute radiometric accuracy of 2.2% for the demonstrated polarimeter.

  13. Complete intrinsic coincident polarimetry using stacked organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Gupta Roy, S.; Awartani, O. M.; Sen, P.; O'Connor, B. T.; Kudenov, M. W.

    2015-09-01

    Measuring the 2 dimensional Stokes vector, to determine the polarization state of light, finds application in multiple areas, including the characterization of aerosol size distributions, target identification, quality control by evaluating the distribution of stress birefringence, resolving data channels in telecommunications, and for evaluating biological tissues in medical imaging. Conventional methods, such as channeled and division of focal plane polarimeters, usually limit spatial resolution, while others, like division of aperture or division of amplitude polarimeters, have higher complexity and less compactness. To help solve these issues, we have developed a system that uses semitransparent organic photovoltaics (OPVs) as photodetectors. The active area of the devices consist of biaxially oriented polymer films, which enables the device to preferentially absorb certain polarized states of incident light, depending on the orientation of the polymer chains. Taking advantage of the cells' transparency and ease of processing, compared to inorganic materials, enables multiple devices to be "stacked" along the optical axis. Presently, experiments have been conducted to detect linear polarization states of light. We use three stacked OPVs, where each device can measure one of the first three Stokes parameters simultaneously, thereby ensuring high spatial and temporal resolution with inherent spatial registration. In this paper, the fabrication of the OPVs and the design and calibration technique is documented, along with experimental data, supporting the hypothesis.

  14. Optical Spintronics in Organic-Inorganic Perovskite Photovoltaics

    PubMed Central

    Li, Junwen; Haney, Paul M.

    2016-01-01

    Organic-inorganic halide CH3NH3PbI3 solar cells have attracted enormous attention in recent years due to their remarkable power conversion efficiency. When inversion symmetry is broken, these materials should exhibit interesting spin-dependent properties as well, owing to their strong spin-orbit coupling. In this work, we consider the spin-dependent optical response of CH3NH3PbI3. We first use density functional theory to compute the ballistic spin current generated by absorption of unpolarized light. We then consider diffusive transport of photogenerated charge and spin for a thin CH3NH3PbI3 layer with a passivated surface and an Ohmic, non-selective contact. The spin density and spin current are evaluated by solving the drift-diffusion equations for a simplified 3-dimensional Rashba model of the electronic structure of the valence and conduction bands. We provide analytic expressions for the photon flux required to induce measurable spin densities, and propose that these spin densities can provide useful information about the role of grain boundaries in the photovoltaic behavior of these materials. We also discuss the prospects for measuring the optically generated spin current with the inverse spin Hall effect. PMID:27453958

  15. A predictive theory of charge separation in organic photovoltaics interfaces

    NASA Astrophysics Data System (ADS)

    Troisi, Alessandro; Liu, Tao; Caruso, Domenico; Cheung, David L.; McMahon, David P.

    2012-09-01

    The key process in organic photovoltaics cells is the separation of an exciton, close to the donor/acceptor interface into a free hole (in the donor) and a free electron (in the acceptor). In an efficient solar cell, the majority of absorbed photons generate such hole-electron pairs but it is not clear why such a charge separation process is so efficient in some blends (for example in the blend formed by poly(3- hexylthiophene) (P3HT) and a C60 derivative (PCBM)) and how can one design better OPV materials. The electronic and geometric structure of the prototypical polymer:fullerene interface (P3HT:PCBM) is investigated theoretically using a combination of classical and quantum simulation methods. It is shown that the electronic structure of P3HT in contact with PCBM is significantly altered compared to bulk P3HT. Due to the additional free volume of the interface, P3HT chains close to PCBM are more disordered and, consequently, they are characterized by an increased band gap. Excitons and holes are therefore repelled by the interface. This provides a possible explanation of the low recombination efficiency and supports the direct formation of "quasi-free" charge separated species at the interface. This idea is further explored here by using a more general system-independent model Hamiltonian. The long range exciton dissociation rate is computed as a function of the exciton distance from the interface and the average dissociation distance is evaluated by comparing this rate with the exciton migration rate with a kinetic model. The phenomenological model shows that also in a generic interface the direct formation if quasi-free charges is extremely likely.

  16. Empirically based device modeling of bulk heterojunction organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Pierre, Adrien; Lu, Shaofeng; Howard, Ian A.; Facchetti, Antonio; Arias, Ana Claudia

    2013-04-01

    We develop an empirically based optoelectronic model to accurately simulate the photocurrent in organic photovoltaic (OPV) devices with novel materials including bulk heterojunction OPV devices based on a new low band gap dithienothiophene-DPP donor polymer, P(TBT-DPP), blended with PC70BM at various donor-acceptor weight ratios and solvent compositions. Our devices exhibit power conversion efficiencies ranging from 1.8% to 4.7% at AM 1.5G. Electron and hole mobilities are determined using space-charge limited current measurements. Bimolecular recombination coefficients are both analytically calculated using slowest-carrier limited Langevin recombination and measured using an electro-optical pump-probe technique. Exciton quenching efficiencies in the donor and acceptor domains are determined from photoluminescence spectroscopy. In addition, dielectric and optical constants are experimentally determined. The photocurrent and its bias-dependence that we simulate using the optoelectronic model we develop, which takes into account these physically measured parameters, shows less than 7% error with respect to the experimental photocurrent (when both experimentally and semi-analytically determined recombination coefficient is used). Free carrier generation and recombination rates of the photocurrent are modeled as a function of the position in the active layer at various applied biases. These results show that while free carrier generation is maximized in the center of the device, free carrier recombination is most dominant near the electrodes even in high performance devices. Such knowledge of carrier activity is essential for the optimization of the active layer by enhancing light trapping and minimizing recombination. Our simulation program is intended to be freely distributed for use in laboratories fabricating OPV devices.

  17. A critical test of organic P-N photovoltaic cells

    SciTech Connect

    Bird, G.R.

    1996-09-01

    We present an urgent view of the field of organic solid state photovoltaic cells. This is a proper time to select the most promising materials from the Electrophotographic Industry, materials long tried in terms of stability, high quantum yield of charge carriers, but set apart by unusually high quantum yields at low applied fields. Our experience with the candidate dyes has covered new tests for identifiable impurities and removal of these impurities by verifiable methods. A new method of purification, reactive train sublimation, has been developed for DNT, one of the simplest of the outstanding perylene dyes, and the method seems applicable to some of the other promising perylene derivatives. It removes the offending impurity by converting it into the desired pure product. The role of water of hydration in the {open_quotes}wine cellar effect{close_quotes}, the slowly rising performance of newly made phthalocyanine containing cells has been analyzed. Under the concept of feasibility testing before a final refinement for practicality of materials and production methods, the hydration can be controlled for high level testing. At the same time, efforts go forward to eliminate the need. At least one of the best phthalocyanine components, X-H{sub 2}Pc, does not require water for peak performance. Finally, we have attacked BBIP (bis-benzimidazole perylene) one of the best and most enigmatic of the near infrared sensors. It has long been known and used as a mixture of synthetic isomers, and we hypothesize that either of these would be better than the uncontrolled mixture. A partial success in the form of isolating highly enriched crystals for an X-ray structure of the trans-molecule, is first presented here. A simple optical analysis method has been developed to follow enrichment procedures. For all of its difficult history, this material seems closest to a state of readiness for critical feasibility testing.

  18. Organic photovoltaics: potential fate and effects in the environment.

    PubMed

    Zimmermann, Yannick-Serge; Schäffer, Andreas; Hugi, Christoph; Fent, Karl; Corvini, Philippe F-X; Lenz, Markus

    2012-11-15

    In times of dwindling fossil fuels it is particularly crucial to develop novel "green" technologies in order to cover the increasing worldwide demand for energy. Organic photovoltaic solar cells (OPVs) are promising as a renewable energy source due to low energy requirement for production, low resource extraction, and no emission of greenhouse gasses during use. In contrast to silicium-based solar cells, OPVs offer the advantages of light-weight, semi-transparency and mechanical flexibility. As to a possible forthcoming large-scale production, the environmental impact of such OPVs should be assessed and compared to currently best available technologies. For the first time, this review compiles the existing knowledge and identifies gaps regarding the environmental impact of such OPVs in a systematic manner. In this regard, we discuss the components of a typical OPV layer by layer. We discuss the probability of enhanced release of OPV-borne components into the environment during use-phase (e.g. UV- and biodegradation) and end-of-life phase (e.g. incineration and waste disposal). For this purpose, we compiled available data on bioavailability, bioaccumulation, biodegradation, and ecotoxicity. Whereas considerable research has already been carried out concerning the ecotoxicity of certain OPV components (e.g. nanoparticles and fullerenes), others have not been investigated at all so far. In conclusion, there is a general lack of information about fate, behavior as well as potential ecotoxicity of most of the main OPV components and their degradation/transformation products. So far, there is no evidence for a worrying threat coming from OPVs, but since at present, no policy and procedures regarding recycling of OPVs are in action, in particular improper disposal upon end-of-life might result in an adverse effect of OPVs in the environment when applied in large-scale.

  19. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  20. Charge extraction from nanostructured hybrid organic-inorganic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Goh, Chiatzun

    Conjugated polymers are attractive for use in photovoltaic (PV) cells because they are highly absorptive, their absorption spectrum can be tuned to match various regions of the solar spectrum and their solubility in common solvents enables the use of low-cost printing technique to mass produce PV panels. Photoexcitation of conjugated polymers forms excitons, which are bound electron-hole pairs. In order to convert these excitons into free carriers, the polymers have to be blended with an electron acceptor in close promixity of ˜10 nm. The charge transfer process at the donor-acceptor interface provides the necessary driving force to split excitons, while the close proximity guarantees excitons reaching an interface before decaying. Once the carriers are split, they have to be transported to their respective electrodes before recombining. Ordered nanostructured titania (TiO2) matrix infiltrated with conjugated polymers is a promising acceptor-donor system, which can potentially meet these requirements. In this work, several optimizations are shown to be essential for increasing the performance of TiO2/polymer cells. First, we measure the hole mobility of poly(3-hexylthiophene) (P3HT) in a thin film diode in the space-charge limited regime. We show that the mobility increases with the polymer molecular weight and can be correlated to the film morphology. The anisotropy in P3HT chain packing suggests that its diode mobility of 10-4 cm 2/Vs can be further enhanced upon chain alignment in straight nanopores. Second, we investigate the use of molecular surface modification to control the interfacial energetics and charge transfer dynamics. By introducing dipoles at the TiO2/P3HT interface, the interfacial energy offset can be changed resulting in a concomitant change in the open circuit voltage. In addition, certain modifiers improve exciton harvesting by mediating charge transfer from the polymer to TiO2. We further show that the use of an amphiphilic molecule

  1. End-group-directed self-assembly of organic compounds useful for photovoltaic applications

    SciTech Connect

    Beaujuge, Pierre M.; Lee, Olivia P.; Yiu, Alan T.; Frechet, Jean M.J.

    2016-05-31

    The present invention provides for an organic compound comprising electron deficient unit covalently linked to two or more electron rich units. The present invention also provides for a device comprising the organic compound, such as a light-emitting diode, thin-film transistor, chemical biosensor, non-emissive electrochromic, memory device, photovoltaic cells, or the like.

  2. Dominant effects of first monolayer energetics at donor/acceptor interfaces on organic photovoltaics.

    PubMed

    Izawa, Seiichiro; Nakano, Kyohei; Suzuki, Kaori; Hashimoto, Kazuhito; Tajima, Keisuke

    2015-05-20

    Energy levels of the first monolayer are manipulated at donor/acceptor interfaces in planar heterojunction organic photovoltaics by using molecular self-organization. A "cascade" energy landscape allows thermal-activation-free charge generation by photoirradiation, destabilizes the energy of the interfacial charge-transfer state, and suppresses bimolecular charge recombination, resulting in a higher open-circuit voltage and fill factor.

  3. Tetracene dicarboxylic imide and its disulfide: synthesis of ambipolar organic semiconductors for organic photovoltaic cells.

    PubMed

    Okamoto, Toshihiro; Suzuki, Tsuyoshi; Tanaka, Hideyuki; Hashizume, Daisuke; Matsuo, Yutaka

    2012-01-02

    We have designed and synthesized a new donor/acceptor-type tetracene derivative by the introduction of dicarboxylic imide and disulfide groups as electron-withdrawing and -donating units, respectively. The prepared compounds, tetracene dicarboxylic imide (TI) and its disulfide (TIDS) have high chemical and electrochemical stability as well as long-wavelength absorptions of up to 886 nm in the thin films. The crystal packing structure of TIDS molecules features face-to-face π-stacking, derived from dipole-dipole interactions. Notably, TIDS exhibited ambipolar properties of both electron-donating and -accepting natures in p-n and p-i-n heterojunction organic thin-film photovoltaic devices. Accordingly, TI and TIDS are expected to be promising compounds for designing new organic semiconductors.

  4. Diarylindenotetracenes via a selective cross-coupling/C-H functionalization: electron donors for organic photovoltaic cells.

    PubMed

    Gu, Xingxian; Luhman, Wade A; Yagodkin, Elisey; Holmes, Russell J; Douglas, Christopher J

    2012-03-16

    A direct synthesis of new donor materials for organic photovoltaic cells is reported. Diaryindenotetracenes were synthesized utilizing a Kumada-Tamao-Corriu cross-coupling of peri-substituted tetrachlorotetracene with spontaneous indene annulation via C-H activation. Vacuum deposited planar heterojunction organic photovoltaic cells incorporating these molecules as electron donors exhibit power conversion efficiencies exceeding 1.5% with open-circuit voltages ranging from 0.7 to 1.1 V when coupled with C(60) as an electron acceptor.

  5. Characterisation of ultraviolet-absorbing recalcitrant organics in landfill leachate for treatment process optimisation.

    PubMed

    Keen, Olya S

    2017-03-01

    Organics in leachate from municipal solid waste landfills are notoriously difficult to treat by biological processes. These organics have high ultraviolet absorbance and can interfere with the ultraviolet disinfection process at the wastewater treatment plant that receives leachate if the leachate flow contribution is large enough. With more wastewater treatment plants switching to ultraviolet disinfection, landfills face increased pressure to treat leachate further. This study used size exclusion chromatography, fluorescence spectroscopy and ultraviolet/Vis spectrophotometry to characterise the bulk organic matter in raw landfill leachate and the biorecalcitrant organic matter in biologically treated leachate from the same site. The results indicate that biorecalcitrant organics have the polyphenolic absorbance peak at 280 nm, fluorescence peak at 280 nm excitation and 315 nm emission, and molecular size range of 1000-7000 Da, all of which are consistent with lignin. The lignin-like nature of biorecalcitrant leachate organics is supported by the fact that 30%-50% of municipal solid waste consists of plant debris and paper products. These findings shed light on the nature of biorecalcitrant organics in leachate and will be useful for the design of leachate treatment processes and further research on leachate treatment methods.

  6. Singlet Fission of Non-polycyclic Aromatic Molecules in Organic Photovoltaics.

    PubMed

    Kawata, So; Pu, Yong-Jin; Saito, Ayaka; Kurashige, Yuki; Beppu, Teruo; Katagiri, Hiroshi; Hada, Masaki; Kido, Junji

    2016-02-24

    Singlet fission of thienoquinoid compounds in organic photovoltaics is demonstrated. The escalation of the thienoquinoid length of the compounds realizes a suitable packing structure and energy levels for singlet fission. The magnetic-field dependence of the photocurrent and the external quantum efficiency of the devices reveal singlet fission of the compounds and dissociation of triplet excitons into charges.

  7. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    NASA Technical Reports Server (NTRS)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  8. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells

    PubMed Central

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-01-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials’ bandgap. PMID:28345043

  9. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    PubMed

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials' bandgap.

  10. Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics.

    PubMed

    Li, Hanying; Fan, Congcheng; Fu, Weifei; Xin, Huolin L; Chen, Hongzheng

    2015-01-12

    Organic single crystals are ideal candidates for high-performance photovoltaics due to their high charge mobility and long exciton diffusion length; however, they have not been largely considered for photovoltaics due to the practical difficulty in making a heterojunction between donor and acceptor single crystals. Here, we demonstrate that extended single-crystalline heterojunctions with a consistent donor-top and acceptor-bottom structure throughout the substrate can be simply obtained from a mixed solution of C60 (acceptor) and 3,6-bis(5-(4-n-butylphenyl)thiophene-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (donor). 46 photovoltaic devices were studied with the power conversion efficiency of (0.255±0.095)% under 1 sun, which is significantly higher than the previously reported value for a vapor-grown organic single-crystalline donor-acceptor heterojunction (0.007%). As such, this work opens a practical avenue for the study of organic photovoltaics based on single crystals.

  11. A-D-A small molecules for solution-processed organic photovoltaic cells.

    PubMed

    Ni, Wang; Wan, Xiangjian; Li, Miaomiao; Wang, Yunchuang; Chen, Yongsheng

    2015-03-25

    A-D-A small molecules have drawn more and more attention in solution-processed organic solar cells due to the advantages of a diversity of structures, easy control of energy levels, etc. Recently, a power conversion efficiency of nearly 10% has been achieved through careful material design and device optimization. This feature article reviews recent representative progress in the design and application of A-D-A small molecules in organic photovoltaic cells.

  12. Organic photovoltaic devices comprising solution-processed substituted metal-phthalocyanines and exhibiting near-IR photo-sensitivity

    DOEpatents

    McGrath, Dominic V.; Mayukh, Mayank; Placencia, Diogenes; Armstrong, Neal R.

    2016-11-29

    Organic photovoltaic (OPV) devices are disclosed. An exemplary device has first and second electrodes and an organic, photovoltaically active zone located between the first and second electrodes. The photovoltaically active zone includes an organic electron-donor material and an organic electron-acceptor material. The electron-donor material includes one or more trivalent- or tetravalent-metal phthalocyanines with alkylchalcogenide ring substituents, and is soluble in at least one organic solvent. This solubility facilitates liquid-processability of the donor material, including formation of thin-films, on an unlimited scale to form planar and bulk heterojunctions in organic OPVs. These donor materials are photovoltaically active in both visible and near-IR wavelengths of light, enabling more of the solar spectrum, for example, to be applied to producing electricity. Also disclosed are methods for producing the metalated phthalocyanines and actual devices.

  13. Organic photovoltaic cells based on ZnO thin film electrodes.

    PubMed

    Ghica, C; Ion, L; Epurescu, G; Nistor, L; Antohe, S; Dinescu, M

    2010-02-01

    Due to its wide band-gap (ca. 3.4 eV), ZnO is a possible candidate material to be used as transparent electrode for a new class of photovoltaic (PV) cells. Also, an increased interest for the photovoltaic properties of several organic monomers and polymers (merocyanines, phthalocyanines and porphyrins) was noticed, because of their high optical absorption in the visible region of the spectrum allowing them to be used as potential inexpensive materials for solar cells. Preparation and properties of CuPc (copper phthalocyanine) based photovoltaic cells using ZnO thin films as transparent conductor electrodes are presented in this paper. ZnO layers are grown by pulsed laser deposition, while the organic layers are obtained by thermal evaporation. Structural characterization is performed by electron microscopy. Optical and transport properties of the mutilayered structures are obtained by electrical and spectro-photometric measurements. The influence of the ZnO-polymer interface on the external quantum efficiency (EQE) of the photovoltaic cell is clearly evidenced by our measurements.

  14. First principles investigations of vinazene molecule and molecular crystal: a prospective candidate for organic photovoltaic applications.

    PubMed

    Mohamad, Mazmira; Ahmed, Rashid; Shaari, Amirudin; Goumri-Said, Souraya

    2015-02-01

    Escalating demand for sustainable energy resources, because of the rapid exhaustion of conventional energy resources as well as to maintain the environmental level of carbon dioxide (CO2) to avoid its adverse effect on the climate, has led to the exploitation of photovoltaic technology manifold more than ever. In this regard organic materials have attracted great attention on account of demonstrating their potential to harvest solar energy at an affordable rate for photovoltaic technology. 2-vinyl-4,5-dicyanoimidazole (vinazene) is considered as a suitable material over the fullerenes for photovoltaic applications because of its particular chemical and physical nature. In the present study, DFT approaches are employed to provide an exposition of optoelectronic properties of vinazene molecule and molecular crystal. To gain insight into its properties, different forms of exchange correlation energy functional/potential such as LDA, GGA, BLYP, and BL3YP are used. Calculated electronic structure of vinazene molecule has been displayed via HOMO-LUMO isosurfaces, whereas electronic structure of the vinazene molecular crystal, via electronic band structure, is presented. The calculated electronic and optical properties were analyzed and compared as well. Our results endorse vinazene as a suitable material for organic photovoltaic applications.

  15. EMERGING TECHNOLOGY REPORT: DESTRUCTION OF ORGANIC CONTAMINANTS IN AIR USING ADVANCED ULTRAVIOLET FLASHLAMPS

    EPA Science Inventory

    This paper describes a new process for photo-oxidation of volatile organic compounds (VOCs) in air using an advanced ultraviolet source, a Purus xenon flashlamp. The flashlamps have greater output at 200-250 nm than medium-pressure mercury lamps at the same power and therefore ca...

  16. Theoretical description of structural and electronic properties of organic photovoltaic materials.

    PubMed

    Zhugayevych, Andriy; Tretiak, Sergei

    2015-04-01

    We review recent progress in the modeling of organic solar cells and photovoltaic materials, as well as discuss the underlying theoretical methods with an emphasis on dynamical electronic processes occurring in organic semiconductors. The key feature of the latter is a strong electron-phonon interaction, making the evolution of electronic and structural degrees of freedom inseparable. We discuss commonly used approaches for first-principles modeling of this evolution, focusing on a multiscale framework based on the Holstein-Peierls Hamiltonian solved via polaron transformation. A challenge for both theoretical and experimental investigations of organic solar cells is the complex multiscale morphology of these devices. Nevertheless, predictive modeling of photovoltaic materials and devices is attainable and is rapidly developing, as reviewed here.

  17. Theoretical Description of Structural and Electronic Properties of Organic Photovoltaic Materials

    NASA Astrophysics Data System (ADS)

    Zhugayevych, Andriy; Tretiak, Sergei

    2015-04-01

    We review recent progress in the modeling of organic solar cells and photovoltaic materials, as well as discuss the underlying theoretical methods with an emphasis on dynamical electronic processes occurring in organic semiconductors. The key feature of the latter is a strong electron-phonon interaction, making the evolution of electronic and structural degrees of freedom inseparable. We discuss commonly used approaches for first-principles modeling of this evolution, focusing on a multiscale framework based on the Holstein-Peierls Hamiltonian solved via polaron transformation. A challenge for both theoretical and experimental investigations of organic solar cells is the complex multiscale morphology of these devices. Nevertheless, predictive modeling of photovoltaic materials and devices is attainable and is rapidly developing, as reviewed here.

  18. Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics

    NASA Astrophysics Data System (ADS)

    D'Avino, Gabriele; Muccioli, Luca; Castet, Frédéric; Poelking, Carl; Andrienko, Denis; Soos, Zoltán G.; Cornil, Jérôme; Beljonne, David

    2016-11-01

    This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electrostatic and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells.

  19. The electrodeposition of multilayers on a polymeric substrate in flexible organic photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Guedes, Andre F. S.; Guedes, Vilmar P.; Souza, Monica L.; Tartari, Simone; Cunha, Idaulo J.

    2015-09-01

    Flexible organic photovoltaic solar cells have drawn intense attention due to their advantages over competing solar cell technologies. The method utilized to deposit as well as to integrate solutions and processed materials, manufacturing organic solar cells by the Electrodeposition System, has been presented in this research. In addition, we have demonstrated a successful integration of a process for manufacturing the flexible organic solar cell prototype and we have discussed on the factors that make this process possible. The maximum process temperature was 120°C, which corresponds to the baking of the active polymeric layer. Moreover, the new process of the Electrodeposition of complementary active layer is based on the application of voltage versus time in order to obtain a homogeneous layer with thin film. This thin film was not only obtained by the electrodeposition of PANI-X1 on P3HT/PCBM Blend, but also prepared in perchloric acid solution. Furthermore, these flexible organic photovoltaic solar cells presented power conversion efficiency of 12% and the inclusion of the PANI-X1 layer reduced the effects of degradation on these organic photovoltaic panels induced by solar irradiation. Thus, in the Scanning Electron Microscopy (SEM), these studies have revealed that the surface of PANI-X1 layers is strongly conditioned by the dielectric surface morphology.

  20. Multilayer Polymeric Encapsulation of Flexible Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Madakasira, Pallavi

    2005-03-01

    Flexible solar cells, based on conjugated polymeric D-A systems have stimulated considerable interest recently. We obtained efficiencies ˜4% in heat-treated PHT/PCBM based solar cells [1]. These have the advantage of being mounted easily on either a flat or curved surface. One of the major problems is their protection from degradation due to exposure to air and moisture under intense light irradiation.These necessitate use of flexible encapsulation. Parylene has been used to encapsulate various devices,like OLEDs [2,3]. It is stable when deposited on devices in vacuum. First results on conformal deposition on solar cells is reported here, and effects of protection depending on the thickness of parylene film. It provides pin-hole free coating for dielectric protection. [1] K. Inoue, R. Ulbricht, P. C. Madakasira, W.M. Sampson, S. Lee, J. Gutierrez, J. Ferraris and A. A. Zakhidov,Proc. of SPIE -- Org. Photovoltaics V, 5520, p.256-262 (2004). [2]Z.Zhang, G.Xiao, J.Liu and C.P. Grover, Fiber and Integrated Optics,22:343-355-2003 [3] Y.S. Jeong, B.Ratier, A. Moliton and L.Guyard, Synthetic Materials 127 (2002) 189-193

  1. Magnetic Studies of Photovoltaic Processes in Organic Solar Cells

    SciTech Connect

    Zang, Huidong; Ivanov, Ilia N; Hu, Bin

    2010-01-01

    In this paper, we use magnetic field effects of photocurrent (MFEPC ) to study the photovoltaic processes in pristine conjugated polymer, bulk heterojunction, and double-layer solar cells, respectively, based on poly(3-alkylthiophene) (P3HT). The MFEPC reveals that the photocurrent generation undergoes the dissociation in polaron pair states and the charge reaction in excitonic states in pristine conjugated polymers. As for the bulk-heterojunction solar cells consisting of electron donor P3HT and electron acceptor [6,6]-phenyl C61-butyric acid methyl ester (PCBM), the MFEPC indicates that the dissociated electrons and holes inevitably form the intermolecular charge-transfer (CT) complexes at donor and acceptor interfaces. Essentially, the photocurrent generation relies on the further dissociation of intermolecular CT complexes. Moreover, we use double-layer solar cell to further study the intermolecular CT complexes with well-controlled donor acceptor interfaces based on double-layer P3HT/TiOx design. We find that the increase in free energies can significantly reduce the density of CT complexes upon thermal annealing.

  2. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    NASA Technical Reports Server (NTRS)

    Sun, Sam

    2002-01-01

    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  3. The early faint sun paradox: Organic shielding of ultraviolet-labile greenhouse gases

    SciTech Connect

    Sagan, C.; Chyba, C.

    1997-05-23

    Atmospheric mixing ratios of {approximately}10{sup -5 {+-}1} for ammonia on the early Earth would have been sufficient, through the resulting greenhouse warming, to counteract the temperature effects of the faint early sun. One argument against such model atmospheres has been the short time scale for ammonia photodissociation by solar ultraviolet light. Here it is shown that ultraviolet absorption by steady-state amounts of high-altitude organic solids produced from methane photolysis may have shielded ammonia sufficiently that ammonia resupply rates were able to maintain surface temperatures above freezing. 78 refs., 2 figs., 1 tab.

  4. The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Chyba, C.

    1997-01-01

    Atmospheric mixing ratios of approximately 10(-5 +/- 1) for ammonia on the early Earth would have been sufficient, through the resulting greenhouse warming, to counteract the temperature effects of the faint early sun. One argument against such model atmospheres has been the short time scale for ammonia photodissociation by solar ultraviolet light. Here it is shown that ultraviolet absorption by steady-state amounts of high-altitude organic solids produced from methane photolysis may have shielded ammonia sufficiently that ammonia resupply rates were able to maintain surface temperatures above freezing.

  5. Organic residues from ultraviolet irradiation of interstellar ice analogs

    NASA Astrophysics Data System (ADS)

    Modica, P.; de Marcellus, P.; Baklouti, D.; Brunetto, R.; Noun, M.; Della Negra, S.; Le Sergeant d'Hendecourt, L.

    2012-02-01

    Interstellar ices are widely observed in the infrared spectra of regions where stars and planetary systems form. Photochemical and thermal evolution of these ices is simulated and studied in our laboratory where the resulting production of complex organic residues is routinely performed. Observations of their variability with slightly different starting chemical conditions can be performed by means of infrared spectroscopy. Organic residues have interesting chemical properties that make them good potential candidates for prebiotic chemistry. Numerous other analytical methods (GC-MS, HPLC, mass spectrometry, etc.) can be combined to refine the knowledge of their chemical composition and structure. We present here some results on the obtained organic residue resulting from subsequent heating and sublimation of the irradiated ices which show the formation of some macromolecular species.

  6. Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance.

    PubMed

    Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Spanos, Michael; Ameri, Tayebeh; Brabec, Christoph J; Chochos, Christos L; Avgeropoulos, Apostolos

    2015-10-01

    The molecular weight of an electron donor-conjugated polymer is as essential as other well-known parameters in the chemical structure of the polymer, such as length and the nature of any side groups (alkyl chains) positioned on the polymeric backbone, as well as their placement, relative strength, the ratio of the donor and acceptor moieties in the backbone of donor-acceptor (D-A)-conjugated polymers, and the arrangement of their energy levels for organic photovoltaic performance. Finding the "optimal" molecular weight for a specific conjugated polymer is an important aspect for the development of novel photovoltaic polymers. Therefore, it is evident that the chemistry of functional conjugated polymers faces major challenges and materials have to adopt a broad range of specifications in order to be established for high photovoltaic performance. In this review, the approaches followed for enhancing the molecular weight of electron-donor polymers are presented in detail, as well as how this influences the optoelectronic properties, charge transport properties, structural conformation, morphology, and the photovoltaic performance of the active layer.

  7. Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics.

    PubMed

    Kim, Hyeong Pil; Yusoff, Abd Rashid Bin Mohd; Lee, Hee Jae; Lee, Seung Joo; Kim, Hyo Min; Seo, Gi Jun; Youn, Jun Ho; Jang, Jin

    2014-01-01

    We demonstrate a new solution-processed electron transport layer (ETL), zinc oxide doped with cesium carbonate (ZnO:Cs2CO3), for achieving organic photovoltaics (OPVs) with good operational stability at ambient air. An OPV employing the ZnO:Cs2CO3 ETL exhibits a fill factor of 62%, an open circuit voltage of 0.90 V, and a short circuit current density of -6.14 mA/cm(2) along with 3.43% power conversion efficiency. The device demonstrated air stability for a period over 4 weeks. In addition, we also studied the device structure dependence on the performance of organic photovoltaics. Thus, we conclude that ZnO:Cs2CO3 ETL could be employed in a suitable architecture to achieve high-performance OPV.

  8. Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics.

    PubMed

    Bai, Wenli; Gan, Qiaoqiang; Song, Guofeng; Chen, Lianghui; Kafafi, Zakya; Bartoli, Filbert

    2010-11-08

    We theoretically demonstrate a polarization-independent nanopatterned ultra-thin metallic structure supporting short-range surface plasmon polariton (SRSPP) modes to improve the performance of organic solar cells. The physical mechanism and the mode distribution of the SRSPP excited in the cell device were analyzed, and reveal that the SRSPP-assisted broadband absorption enhancement peak could be tuned by tailoring the parameters of the nanopatterned metallic structure. Three-dimensional finite-difference time domain calculations show that this plasmonic structure can enhance the optical absorption of polymer-based photovoltaics by 39% to 112%, depending on the nature of the active layer (corresponding to an enhancement in short-circuit current density by 47% to 130%). These results are promising for the design of organic photovoltaics with enhanced performance.

  9. Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency.

    PubMed

    Oh, Yulin; Lim, Ju Won; Kim, Jae Geun; Wang, Huan; Kang, Byung-Hyun; Park, Young Wook; Kim, Heejun; Jang, Yu Jin; Kim, Jihyeon; Kim, Dong Ha; Ju, Byeong-Kwon

    2016-11-22

    In this study, we demonstrate a viable and promising optical engineering technique enabling the development of high-performance plasmonic organic photovoltaic devices. Laser interference lithography was explored to fabricate metal nanodot (MND) arrays with elaborately controlled dot size as well as periodicity, allowing spectral overlap between the absorption range of the active layers and the surface plasmon band of MND arrays. MND arrays with ∼91 nm dot size and ∼202 nm periodicity embedded in a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transport layer remarkably enhanced the average power conversion efficiency (PCE) from 7.52% up to 10.11%, representing one of the highest PCE and degree of enhancement (∼34.4%) levels compared to the pristine device among plasmonic organic photovoltaics reported to date. The plasmonic enhancement mechanism was investigated by both optical and electrical analyses using finite difference time domain simulation and conductive atomic force microscopy studies.

  10. Modeling the Free Carrier Recombination Kinetics in PTB7:PCBM Organic Photovoltaics

    SciTech Connect

    Oosterhout, Stefan D.; Ferguson, Andrew J.; Larson, Bryon W.; Olson, Dana C.; Kopidakis, Nikos

    2016-11-03

    Currently the exact recombination mechanism of free carriers in organic photovoltaic (OPV) devices is poorly understood. Often a reduced Langevin model is used to describe the decay behavior of electrons and holes. Here we propose a novel, simple kinetic model that accurately describes the decay behavior of free carriers in the PTB7:PCBM organic photovoltaic blend. This model needs to only take into account free and trapped holes in the polymer, and free electrons in the fullerene, to accurately describe the recombination behavior of free carriers as measured by time-resolved microwave conductivity (TRMC). The model is consistent for different PTB7:PCBM blend ratios and spans a light intensity range of over 3 orders of magnitude. The model demonstrates that dark carriers exist in the polymer and interact with photoinduced charge carriers, and that the trapping and detrapping rates of the holes are of high importance to the overall carrier lifetime.

  11. Energetics and dynamics in organic-inorganic halide perovskite photovoltaics and light emitters

    NASA Astrophysics Data System (ADS)

    Chien Sum, Tze; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo

    2015-08-01

    The rapid transcendence of organic-inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley-Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic-inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted.

  12. Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics

    PubMed Central

    2014-01-01

    We demonstrate a new solution-processed electron transport layer (ETL), zinc oxide doped with cesium carbonate (ZnO:Cs2CO3), for achieving organic photovoltaics (OPVs) with good operational stability at ambient air. An OPV employing the ZnO:Cs2CO3 ETL exhibits a fill factor of 62%, an open circuit voltage of 0.90 V, and a short circuit current density of −6.14 mA/cm2 along with 3.43% power conversion efficiency. The device demonstrated air stability for a period over 4 weeks. In addition, we also studied the device structure dependence on the performance of organic photovoltaics. Thus, we conclude that ZnO:Cs2CO3 ETL could be employed in a suitable architecture to achieve high-performance OPV. PMID:25045340

  13. Robust carrier formation process in low-band gap organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Yonezawa, Kouhei; Kamioka, Hayato; Yasuda, Takeshi; Han, Liyuan; Moritomo, Yutaka

    2013-10-01

    By means of femto-second time-resolved spectroscopy, we investigated the carrier formation process against film morphology and temperature (T) in highly-efficient organic photovoltaic, poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b '] dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b] thiophenediyl

  14. An amorphous mesophase generated by thermal annealing for high-performance organic photovoltaic devices.

    PubMed

    Tanaka, Hideyuki; Abe, Yoko; Matsuo, Yutaka; Kawai, Junya; Soga, Iwao; Sato, Yoshiharu; Nakamura, Eiichi

    2012-07-10

    Thermal annealing of a p-i-n organic photovoltaic device containing a crystalline benzoporphyrin donor and solvated crystals of a silylmethylfullerene acceptor increases the device performance at a temperature where partial desolvation of the acceptor produces an amorphous mesophase. This suggests that the mesophase improves the hierarchical ordering of the materials, that is, the morphology of the n-layer and the interfacial contact and, hence, the carrier generation efficiency at the donor-acceptor interface.

  15. Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Luhman, Wade A.; Hoon Lee, Si; Johnson, Timothy W.; Holmes, Russell J.; Oh, Sang-Hyun

    2011-09-01

    We investigate thin Ag films incorporating plasmonic nanohole arrays as transparent conducting electrodes for organic photovoltaic cells. Plasmonic electrodes are fabricated using nanosphere lithography to create hexagonal nanohole arrays over centimeter-sized areas. Devices constructed using a nanopatterned Ag anode show power conversion efficiencies that exceed those of devices constructed on conventional indium-tin-oxide, independent of light polarization. In comparison to cells constructed on unpatterned Ag, the power conversion efficiency is noted to double with patterning.

  16. Graphene nanoribbons as low band gap donor materials for organic photovoltaics: quantum chemical aided design.

    PubMed

    Osella, Silvio; Narita, Akimitsu; Schwab, Matthias Georg; Hernandez, Yenny; Feng, Xinliang; Müllen, Klaus; Beljonne, David

    2012-06-26

    Graphene nanoribbons (GNRs) are strips of graphene cut along a specific direction that feature peculiar electronic and optical properties owing to lateral confinement effects. We show here by means of (time-dependent) density functional theory calculations that GNRs with properly designed edge structures fulfill the requirements in terms of electronic level alignment with common acceptors (namely, C(60)), solar light harvesting, and singlet-triplet exchange energy to be used as low band gap semiconductors for organic photovoltaics.

  17. Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating.

    PubMed

    Liu, Feng; Ferdous, Sunzida; Schaible, Eric; Hexemer, Alexander; Church, Matthew; Ding, Xiaodong; Wang, Cheng; Russell, Thomas P

    2015-02-04

    The mini-slot-die coater offers a simple, convenient, materials-efficient route to print bulk-heterojunction (BHJ) organic photovoltaics (OPVs) that show efficiencies similar to spin-coating. Grazing-incidence X-ray diffraction (GIXD) and GI small-angle X-ray scattering (GISAXS) methods are used in real time to characterize the active-layer formation during printing. A polymer-aggregation-phase-separation-crystallization mechanism for the evolution of the morphology describes the observations.

  18. A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics.

    PubMed

    Liu, Shi-Yong; Wu, Chen-Hao; Li, Chang-Zhi; Liu, Sheng-Qiang; Wei, Kung-Hwa; Chen, Hong-Zheng; Jen, Alex K-Y

    2015-04-01

    A nonfullerene acceptor based on a 3D tetraperylene diimide is developed for bulk heterojunction organic photovoltaics. The disruption of perylene diimide planarity with a 3D framework suppresses the self-aggregation of perylene diimide and inhibits excimer formation. From planar monoperylene diimide to 3D tetraperylene diimide, a significant improvement of power conversion efficiency from 0.63% to 3.54% can be achieved.

  19. Aqueous photolysis of the organic ultraviolet filter chemical octyl methoxycinnamate.

    PubMed

    MacManus-Spencer, Laura A; Tse, Monica L; Klein, Jacob L; Kracunas, Alison E

    2011-05-01

    Organic UV filter chemicals are the active ingredients in personal care products designed to protect the skin from UV radiation, and hundreds of tons are estimated to be produced annually. Despite their entrance into the aquatic environment by both direct and indirect routes and their detection in surface waters and fish, little is known about their environmental fate. UV filter chemicals are designed to be photostable, but some undergo transformation upon exposure to UV light. Octyl methoxycinnamate (OMC), a commonly used UV filter chemical, degrades rapidly by direct photolysis; previous studies have focused on its photoisomerization, and a few investigators have reported the formation of cyclodimers. Here, we present the kinetics and quantum efficiency of the direct photolysis of OMC and confirm that dimerization occurs as a result of direct photolysis in aqueous solution. Likely identities of the dimers are offered based on comparison to reported results for other cinnamate derivatives. We have identified additional products of direct photolysis that have not been previously reported and investigated their photostability, as well as the mechanism of product formation. There is also some evidence of indirect photolysis in the presence of dissolved natural organic matter.

  20. Rapid and Checkable Electrical Post-Treatment Method for Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Park, Sangheon; Seo, Yu-Seong; Shin, Won Suk; Moon, Sang-Jin; Hwang, Jungseek

    2016-03-01

    Post-treatment processes improve the performance of organic photovoltaic devices by changing the microscopic morphology and configuration of the vertical phase separation in the active layer. Thermal annealing and solvent vapor (or chemical) treatment processes have been extensively used to improve the performance of bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices. In this work we introduce a new post-treatment process which we apply only electrical voltage to the BHJ-OPV devices. We used the commercially available P3HT [Poly(3-hexylthiophene)] and PC61BM (Phenyl-C61-Butyric acid Methyl ester) photovoltaic materials as donor and acceptor, respectively. We monitored the voltage and current applied to the device to check for when the post-treatment process had been completed. This electrical treatment process is simpler and faster than other post-treatment methods, and the performance of the electrically treated solar cell is comparable to that of a reference (thermally annealed) device. Our results indicate that the proposed treatment process can be used efficiently to fabricate high-performance BHJ-OPV devices.

  1. Organic sensitizers featuring thiophene derivative based donors with improved stability and photovoltaic performance.

    PubMed

    Miao, Kai; Liang, Mao; Wang, Zhihui; Zhang, Chunyao; Sun, Zhe; Xue, Song

    2017-01-18

    Thiophene derivatives, including thieno[3,2-b][1]benzothiophene (TBT), benzo[b]thiophene (BT), 2-phenylthieno[3,2-b]thiophene (PTT) and 2-phenylthiophene (PT), have been introduced as donors for the construction of triarylamine organic dyes (M52, M53, M56, M57 and M52A). The absorption, electrochemical and photovoltaic properties as well as the stabilities of these dyes are systematically investigated and compared with the reference dye (M55), whose donor is composed of the hexyloxybenzene (HOB) unit. It is found that introducing the TBT, BT, PTT or PT donors positively shifted the HOMO and LUMO levels of the organic dyes, providing a larger driving force for regeneration and reducing the energy loss for electron injection. In addition, we found that M52, which contains the TBT unit, exhibited better photovoltaic performance and photostability as compared to the reference dye. In contrast, M53 displayed the lowest efficiency and stability of these dyes, indicating that the BT unit is not a good building block for donors. Interestingly, upon the incorporation of the mixed donor (TBT-HOB), M52A achieved a desirable driving force for regeneration without a loss in light absorption, thus resulting in a further improved photovoltaic performance with respect to that of M52. This work demonstrates that introducing donors based on thiophene derivatives is a good strategy for tuning the energy levels and thereby enhancing the efficiency of the resulting devices.

  2. Rapid and Checkable Electrical Post-Treatment Method for Organic Photovoltaic Devices.

    PubMed

    Park, Sangheon; Seo, Yu-Seong; Shin, Won Suk; Moon, Sang-Jin; Hwang, Jungseek

    2016-03-02

    Post-treatment processes improve the performance of organic photovoltaic devices by changing the microscopic morphology and configuration of the vertical phase separation in the active layer. Thermal annealing and solvent vapor (or chemical) treatment processes have been extensively used to improve the performance of bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices. In this work we introduce a new post-treatment process which we apply only electrical voltage to the BHJ-OPV devices. We used the commercially available P3HT [Poly(3-hexylthiophene)] and PC61BM (Phenyl-C61-Butyric acid Methyl ester) photovoltaic materials as donor and acceptor, respectively. We monitored the voltage and current applied to the device to check for when the post-treatment process had been completed. This electrical treatment process is simpler and faster than other post-treatment methods, and the performance of the electrically treated solar cell is comparable to that of a reference (thermally annealed) device. Our results indicate that the proposed treatment process can be used efficiently to fabricate high-performance BHJ-OPV devices.

  3. Organic photovoltaic with various plasmonic nanostructures using titanium nitride

    NASA Astrophysics Data System (ADS)

    Magdi, Sara; Gan, Qiaoqiang; Swillam, Mohamed A.

    2016-03-01

    We demonstrate absorption improvement in organic solar cells due to the incorporation of TiN nanopatterned back electrode. Organic solar cells (OSC) have already reached 10% power conversion efficiency (PCE), which made them comparable to commercial solar cells. Localizing light using plasmonic nanostructures has the potential to overcome OSC absorption limitations and thus further improve their PCE. Using a C-MOS compatible, cheap and abundant material for light trapping could facilitate the commercialization of OSC. This work theoretically shows that the replacement of Ag nanopatterned back electrode with TiN in plasmonic OSC gives enhanced performance. In addition, the incorporation of TiN nanoparticles inside the active layer has been studied and analyzed.

  4. A hybrid organic semiconductor/silicon photodiode for efficient ultraviolet photodetection.

    PubMed

    Levell, J W; Giardini, M E; Samuel, I D W

    2010-02-15

    A method employing conjugated polymer thin film blends is shown to provide a simple and convenient way of greatly enhancing the ultraviolet response of silicon photodetectors. Hybrid organic semiconductor/silicon photodetectors are demonstrated using fluorene copolymers and give a quantum efficiency of 60% at 200 nm. The quantum efficiency is greater than 34% over the entire 200-620 nm range. These devices show promise for use in high sensitivity, low cost UV-visible photodetection and imaging applications.

  5. Controlling the Solidification of Organic Photovoltaic Blends with Nucleating Agents

    NASA Astrophysics Data System (ADS)

    Nekuda Malik, Jennifer A.; Treat, Neil D.; Abdelsamie, Maged; Yu, Liyang; Li, Ruipeng; Smilgies, Detlef-M.; Amassian, Aram; Hawker, Craig J.; Chabinyc, Michael L.; Stingelin, Natalie

    2014-11-01

    Blending fullerenes with a donor polymer for the fabrication of organic solar cells often leads to at least partial vitrification of one, if not both, components. For prototypical poly(3-hexylthiophene):fullerene blend, we show that the addition of a commercial nucleating agent, di(3,4-dimethyl benzylidene)sorbitol, to such binary blends accelerates the crystallization of the donor, resulting in an increase in its degree of crystallinity in as-cast structures. This allows manipulation of the extent of intermixing/ phase separation of the donor and acceptor directly from solution, offering a tool to improve device characteristics such as power conversion efficiency.

  6. The preparation of a Eu3+-doped ZnO bi-functional layer and its application in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Wu, Na; Luo, Qun; Qiao, Xvsheng; Ma, Chang-Qi

    2015-12-01

    Recently, spectra conversion has been used to minimize energy loss in photovoltaic devices. In this work, we explore the development of a novel Eu3+-doped ZnO bi-functional layer for use in organic solar cells. The bi-functional layer acts as both a spectra conversion and an electron transporting layer. Compared to conventional spectra conversion layers, it has a simpler device structure, is easier to fabricate, and has a wider spectrum-sensitized region. A series of Eu3+-doped ZnO nanocrystals were synthesized using the simple solution route. X-ray powder diffraction patterns (XRD), transmission electron microscopy (TEM), and UV-visible absorbance spectra were used to characterize the obtained ZnO nanocrystals. The results reveal that the size and bandgap of ZnO nanocrystals can be controlled through regulation of the doping concentration of Eu3+ ions. The energy transfer of ZnO → Eu3+ is observed by photoluminescence (PL) spectra. At a bandgap excitation of around 300-400 nm, a typical emission band from the Eu3+ is obtained. By employing the Eu3+- doped ZnO nanocrystals as a buffer layer in a P3HT:PC61BM bulk heterojunction device, the obtained performance is similar to the undoped ZnO device, indicating that the electrical properties of ZnO are not affected by Eu3+ doping. Due to the down-conversion energy transfer between ZnO and Eu3+, the external quantum efficiency of the ZnO:Eu3+ device at 300-400 nm is higher than that of the pure ZnO device, which subsequently leads to an increase in short circuit current density (J SC). This work proves that it is possible to improve the solar spectrum response in the ultraviolet region of organic solar cells effectively by incorporating the bi-functional layer.

  7. Self-assembled, aligned ZnO nanorod buffer layers for high-current-density, inverted organic photovoltaics.

    PubMed

    Rao, Arun D; Karalatti, Suresh; Thomas, Tiju; Ramamurthy, Praveen C

    2014-10-08

    Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of ∼3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.

  8. Morphology optimization for enhanced performance in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Wodo, Olga; Zola, Jaroslaw; Ganapathysubramanian, Baskar

    2015-03-01

    Organic solar cells have the potential for widespread usage due to their low cost-per-watt and mechanical flexibility. Their wide spread use, however, is bottlenecked primarily by their low solar efficiencies. Experimental evidence suggests that a key property determining the solar efficiency of such devices is the final morphological distribution of the electron-donor and electron-acceptor constituents. By carefully designing the morphology of the device, one could potentially significantly enhance their performance. This is an area of intense experimental effort that is mostly trial-and-error based, and serves as a fertile area for introducing mechanics and computational thinking. In this work, we use optimization techniques coupled with computational modeling to identify the optimal structures for high efficiency solar cells. In particular, we use adaptive population-based incremental learning method linked to graph-based surrogate model to evaluate properties for given structure. We study several different criterions and find optimal structure that that improve the performance of currently hypothesized optimal structures by 29%.

  9. Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods.

    PubMed

    Park, Sung-Eun; Kim, Sehwan; Kim, Kangmin; Joe, Hang-Eun; Jung, Buyoung; Kim, Eunkyoung; Kim, Woochul; Min, Byung-Kwon; Hwang, Jungho

    2012-12-21

    Organic photovoltaic cells with an ordered heterojunction (OHJ) active layer are expected to show increased performance. In the study described here, OHJ cells were fabricated using a combination of nanoimprinting and electrohydrodynamic (EHD) spray deposition methods. After an electron donor material was nanoimprinted with a PDMS stamp (valley width: 230 nm, period: 590 nm) duplicated from a Si nanomold, an electron acceptor material was deposited onto the nanoimprinted donor layer using an EHD spray deposition method. The donor-acceptor interface layer was observed by obtaining cross-sectional images with a focused ion beam (FIB) microscope. The photocurrent generation performance of the OHJ cells was evaluated with the current density-voltage curve under air mass (AM) 1.5 conditions. It was found that the surface morphology of the electron acceptor layer affected the current and voltage outputs of the photovoltaic cells. When an electron acceptor layer with a smooth thin (250 nm above the valley of the electron donor layer) surface morphology was obtained, power conversion efficiency was as high as 0.55%. The electrohydrodynamic spray deposition method used to produce OHJ photovoltaic cells provides a means for the adoption of large area, high throughput processes.

  10. Conjugated-Polymer Blends for Organic Photovoltaics: Rational Control of Vertical Stratification for High Performance.

    PubMed

    Yan, Yu; Liu, Xuan; Wang, Tao

    2017-02-13

    The photoactive layer of bulk-heterojunction organic solar cells, in a thickness range of tens to hundreds of nanometers, comprises phase-separated electron donors and acceptors after solution casting. The component distribution in the cross-section of these thin films is found to be heterogeneous, with electron donors or acceptors accumulated or depleted near the electrode interfaces. This vertical stratification of the photovoltaic blend influences device metrics through its impact on charge transport and recombination, and consequently plays an important role in determining the power conversion efficiency of photovoltaic devices. Here, different techniques, e.g., surface analysis and sputter-assisted depth-profiling, reflectivity modeling, and 3D imaging, that have been employed to characterize vertical stratification in bulk-heterojunction photovoltaic blends are reviewed. The origins of vertical stratification are summarized, including thermodynamics, kinetics, surface free energy, and selective dissolubility. The impact of correct and wrong vertical stratification to device metrics of solar cells are highlighted. Examples are then given to demonstrate how desired vertical stratification can be controlled with properly aligned device architecture to enable solar cells with high efficiency.

  11. Miscibility Study of PCBM/P3EHT Organic Photovoltaics via Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Yin, Wen; McCulloch, Bryan; Segalman, Rachel; Dadmun, Mark

    2011-03-01

    Organic photovoltaics (OPV) attracted considerable interest as lightweight, inexpensive, and easily processable replacement of inorganic photovoltaics. Current results indicate that the morphology of these photovoltaic materials is essential to their solar energy conversion efficiency but a detailed and fundamental understanding is absent. In this paper, the miscibility and structure of P3EHT/PCBM composites with varying PCBM loading level are investigated via small angle neutron scattering (SANS). With P3EHT having a melting temperature below 100°C, SANS experiments of the blends are conducted above the melting point to unequivocally determine the miscibility of PCBM and P3EHT without the added complexity of polymer crystals. Our SANS results show that blends with 20 and 50 wt% PCBM exhibit dramatically larger scattering at low-Q regime relative to 10 and 15wt% PCBM samples. This result implies that the miscibility limit of PCBM and P3EHT lies between 15:85 and 20:80. Further analysis is underway to correlate these results to OPV efficiency.

  12. Promising Strategy To Improve Charge Separation in Organic Photovoltaics: Installing Permanent Dipoles in PCBM Analogues.

    PubMed

    de Gier, Hilde D; Jahani, Fatemeh; Broer, Ria; Hummelen, Jan C; Havenith, Remco W A

    2016-07-14

    A multidisciplinary approach involving organic synthesis and theoretical chemistry was applied to investigate a promising strategy to improve charge separation in organic photovoltaics: installing permanent dipoles in fullerene derivatives. First, a PCBM analogue with a permanent dipole in the side chain (PCBDN) and its reference analogue without a permanent dipole (PCBBz) were successfully synthesized and characterized. Second, a multiscale modeling approach was applied to investigate if a PCBDN environment around a central donor-acceptor complex indeed facilitates charge separation. Alignment of the embedding dipoles in response to charges present on the central donor-acceptor complex enhances charge separation. The good correspondence between experimentally and theoretically determined electronic and optical properties of PCBDN, PCBBz, and PCBM indicates that the theoretical analysis of the embedding effects of these molecules gives a reliable expectation for their influence on the charge separation process at a microscopic scale in a real device. This work suggests the following strategies to improve charge separation in organic photovoltaics: installing permanent dipoles in PCBM analogues and tuning the concentration of these molecules in an organic donor/acceptor blend.

  13. Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices.

    PubMed

    Wang, Jian; Xu, Liang; Lee, Yun-Ju; De Anda Villa, Manuel; Malko, Anton V; Hsu, Julia W P

    2015-11-11

    Substrates can significantly affect the electronic properties of organic semiconductors. In this paper, we report the effects of contact-induced doping, arising from charge transfer between a high work function hole extraction layer (HEL) and the organic active layer, on organic photovoltaic device performance. Employing a high work function HEL is found to increase doping in the active layer and decrease photocurrent. Combined experimental and modeling investigations reveal that higher doping increases polaron-exciton quenching and carrier recombination within the field-free region. Consequently, there exists an optimal HEL work function that enables a large built-in field while keeping the active layer doping low. This value is found to be ~0.4 eV larger than the pinning level of the active layer material. These understandings establish a criterion for optimal design of the HEL when adapting a new active layer system and can shed light on optimizing performance in other organic electronic devices.

  14. Architectures and criteria for the design of high efficiency organic photovoltaic cells

    DOEpatents

    Rand, Barry; Forrest, Stephen R; Pendergrast Burk, Diane

    2015-03-31

    A method for fabricating an organic photovoltaic cell includes providing a first electrode; depositing a series of at least seven layers onto the first electrode, each layer consisting essentially of a different organic semiconductor material, the organic semiconductor material of at least an intermediate layer of the sequence being a photoconductive material; and depositing a second electrode onto the sequence of at least seven layers. One of the first electrode and the second electrode is an anode and the other is a cathode. The organic semiconductor materials of the series of at least seven layers are arranged to provide a sequence of decreasing lowest unoccupied molecular orbitals (LUMOs) and a sequence of decreasing highest occupied molecular orbitals (HOMOs) across the series from the anode to the cathode.

  15. Organic photovoltaic solar cells with cathode modified by ZnO.

    PubMed

    Kim, Hyeong Pil; Yusoff, Abd Rashid Bin Mohd; Jang, Jin

    2013-07-01

    Solution processed cathode organic photovoltaic cells (OPVs) utilizing thin layer of ZnO with 27% increase in power conversion efficiency (PCE) to control devices have been demonstrated. Devices without the presence of ZnO layer have much lower PCE than the ones with ZnO layer. Cathode modification layer can be used to reduce photogenerated excitions and finally improve the performance of the OPVs. The successful demonstrations of OPVs with an introduction of ZnO cathode layer give promise of further device progresses.

  16. Effects on Organic Photovoltaics Using Femtosecond-Laser-Treated Indium Tin Oxides.

    PubMed

    Chen, Mei-Hsin; Tseng, Ya-Hsin; Chao, Yi-Ping; Tseng, Sheng-Yang; Lin, Zong-Rong; Chu, Hui-Hsin; Chang, Jan-Kai; Luo, Chih-Wei

    2016-09-28

    The effects of femtosecond-laser-induced periodic surface structures (LIPSS) on an indium tin oxide (ITO) surface applied to an organic photovoltaic (OPV) system were investigated. The modifications of ITO induced by LIPPS in OPV devices result in more than 14% increase in power conversion efficiency (PCE) and short-circuit current density relative to those of the standard device. The basic mechanisms for the enhanced short-circuit current density are attributed to better light harvesting, increased scattering effects, and more efficient charge collection between the ITO and photoactive layers. Results show that higher PCEs would be achieved by laser-pulse-treated electrodes.

  17. Air processed organic photovoltaic devices incorporating a MoOx anode buffer layer

    NASA Astrophysics Data System (ADS)

    Bovill, Edward S. R.; Griffin, Jonathan; Wang, Tao; Kingsley, James W.; Yi, Hunan; Iraqi, Ahmed; Buckley, Alastair R.; Lidzey, David G.

    2013-05-01

    Molybdenum oxide (MoOx) has been shown to act as an efficient hole extraction layer in organic photovoltaic (OPV) devices. However, exposing MoOx films to air is problematic as it is hygroscopic; the uptake of moisture having a negative impact on its electronic properties. Here, we use spectroscopic ellipsometry to characterise the uptake of water, and fabricate PCDTBT:PC70BM based OPVs to determine its effects on device performance. We then show that thermally annealing MoOx reduces its hygroscopicity, permitting it to be processed in air. Using this process, we create air-processsed OPVs having PCEs (power conversion efficiencies) of up to 5.36%.

  18. Intrinsic and extrinsic parameters for controlling the growth of organic single-crystalline nanopillars in photovoltaics.

    PubMed

    Zhang, Yue; Diao, Ying; Lee, Hyunbok; Mirabito, Timothy J; Johnson, Richard W; Puodziukynaite, Egle; John, Jacob; Carter, Kenneth R; Emrick, Todd; Mannsfeld, Stefan C B; Briseno, Alejandro L

    2014-10-08

    The most efficient architecture for achieving high donor/acceptor interfacial area in organic photovoltaics (OPVs) would employ arrays of vertically interdigitated p- and n- type semiconductor nanopillars (NPs). Such morphology could have an advantage in bulk heterojunction systems; however, precise control of the dimension morphology in a crystalline, interpenetrating architecture has not yet been realized. Here we present a simple, yet facile, crystallization technique for the growth of vertically oriented NPs utilizing a modified thermal evaporation technique that hinges on a fast deposition rate, short substrate-source distance, and ballistic mass transport. A broad range of organic semiconductor materials is beneficial from the technique to generate NP geometries. Moreover, this technique can also be generalized to various substrates, namely, graphene, PEDOT-PSS, ZnO, CuI, MoO3, and MoS2. The advantage of the NP architecture over the conventional thin film counterpart is demonstrated with an increase of power conversion efficiency of 32% in photovoltaics. This technique will advance the knowledge of organic semiconductor crystallization and create opportunities for the fabrication and processing of NPs for applications that include solar cells, charge storage devices, sensors, and vertical transistors.

  19. Near room-temperature direct encapsulation of organic photovoltaics by plasma-based deposition techniques

    NASA Astrophysics Data System (ADS)

    Perrotta, Alberto; Fuentes-Hernandez, Canek; Khan, Talha M.; Kippelen, Bernard; Creatore, Mariadriana; Graham, Samuel

    2017-01-01

    Plasma-assisted atomic layer deposition (ALD) is used for the deposition of environmental barriers directly onto organic photovoltaic devices (OPVs) at near room temperature (30 °C). To study the effect of the ALD process on the organic materials forming the device, the precursor diffusion and intermixing at the interface during the growth of different plasma-assisted ALD inorganic barriers (i.e. Al2O3 and TiO2) onto the organic photoactive layer (P3HT:ICBA) was investigated. Depth profile x-ray photoelectron spectroscopy was used to analyze the composition of the organic/inorganic interface to investigate the infiltration of the plasma-assisted ALD precursors into the photoactive layer as a function of the precursor dimension, the process temperature, and organic layer morphology. The free volume in the photoactive layer accessible to the ALD precursor was characterized by means of ellipsometric porosimetry (EP) and spectroscopic ellipsometry as a function of temperature. The organic layer is shown to exhibit free volume broadening at high temperatures, increasing the infiltration depth of the ALD precursor into the photoactive layer. Furthermore, based on previous investigations, the intrinsic permeation properties of the inorganic layers deposited by plasma-assisted ALD were predicted from the nano-porosity content as measured by EP and found to be in the 10-6 gm-2 d-1 range. Insight from our studies was used to design and fabricate multilayer barriers synthesized at near-room temperature by plasma-assisted ALD in combination with plasma-enhanced CVD onto organic photovoltaic (OPVs) devices. Encapsulated OPVs displayed shelf-lifetimes up to 1400 h at ambient conditions.

  20. Spatially-resolved in-situ structural study of organic electronic devices with nanoscale resolution: the plasmonic photovoltaic case study.

    PubMed

    Paci, B; Bailo, D; Albertini, V Rossi; Wright, J; Ferrero, C; Spyropoulos, G D; Stratakis, E; Kymakis, E

    2013-09-14

    A novel high spatial resolution synchrotron X-ray diffraction stratigraphy technique has been applied in-situ to an integrated plasmonic nanoparticle-based organic photovoltaic device. This original approach allows for the disclosure of structure-property relations linking large scale organic devices to length scales of local nano/hetero structures and interfaces between the different components.

  1. Correlating Molecular Structures with Transport Dynamics in High-Efficiency Small-Molecule Organic Photovoltaics.

    PubMed

    Peng, Jiajun; Chen, Yani; Wu, Xiaohan; Zhang, Qian; Kan, Bin; Chen, Xiaoqing; Chen, Yongsheng; Huang, Jia; Liang, Ziqi

    2015-06-24

    Efficient charge transport is a key step toward high efficiency in small-molecule organic photovoltaics. Here we applied time-of-flight and organic field-effect transistor to complementarily study the influences of molecular structure, trap states, and molecular orientation on charge transport of small-molecule DRCN7T (D1) and its analogue DERHD7T (D2). It is revealed that, despite the subtle difference of the chemical structures, D1 exhibits higher charge mobility, the absence of shallow traps, and better photosensitivity than D2. Moreover, charge transport is favored in the out-of-plane structure within D1-based organic solar cells, while D2 prefers in-plane charge transport.

  2. Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.

    PubMed

    Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C

    2016-03-01

    This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications.

  3. Research in the Field of Organic Photovoltaics at the Institute for Problems of Chemical Physics of Russian Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Troshin, Pavel A.

    2015-08-01

    In the present review we highlight the main research activities in the field of organic photonics and photovoltaics at the Institute for Problems of Chemical Physics of Russian Academy of Sciences (IPCP RAS). Extensive investigation of optical and electrical properties of π-conjugated organic compounds performed at IPCP RAS since 1960's resulted in design of many exciting materials representing organic semiconductors, metals and superconductors. Organic Schottky barrier and p/n junction photovoltaic devices constructed at IPCP RAS in 1960's and 1970's were among the first examples of reasonably efficient organic solar cells at that time. These early discoveries inspired younger generations of the researchers to continue the work of their mentors and explore the world of organic materials and photonic devices such as molecular photonic switches, organic light emitting diodes, solar cells, photodetectors, photoswitchable organic field-effect transistors and memory elements.

  4. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    PubMed

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  5. Transport Effects on Capacitance-Frequency Analysis for Defect Characterization in Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Wang, Jian; Hsu, Julia W. P.

    2016-12-01

    Using capacitance-frequency (C -f ) analysis to characterize the density-of-states (DOS) distribution of defects has been well established for inorganic thin-film photovoltaic devices. While C -f analysis has also been applied to bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices, we show that the low carrier mobility in the BHJ material can severely alter the C -f behaviors and lead to misinterpretations. Because of the complicated nature of disorders in organic materials, artifacts from an erroneous C -f analysis are difficult to identify. Here we compare drift-diffusion simulations with experiments to reveal situations when the validity of C -f analysis for defect characterization breaks down. When a flat-band region is present in the low-mobility active layer, the capacitive response cannot follow the electrical modulation and behaves as if the active layer is a dielectric at frequencies higher than the characteristic frequency determined by carrier mobility and thickness. The transition produces a fictitious shallow defect when defect analysis is applied. Even in fully depleted devices, the defect distributions derived from C -f analysis can appear at spuriously deeper energies if the mobility is too low. Through simulations, we determine the ranges of mobility and thickness for which the C -f analysis can effectively yield credible defect DOS information. Insight from this study also sheds light on transport limitation when using capacitance spectroscopy for defect characterization in general.

  6. Fullerene C{sub 70} as a p-type donor in organic photovoltaic cells

    SciTech Connect

    Zhuang, Taojun; Wang, Xiao-Feng E-mail: zrhong@ucla.edu Sano, Takeshi; Kido, Junji E-mail: zrhong@ucla.edu; Hong, Ziruo E-mail: zrhong@ucla.edu; Li, Gang; Yang, Yang

    2014-09-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C{sub 70}, known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C{sub 70} layer even up to 100 nm thick in PHJ cells, suggesting the superior potential of fullerene C{sub 70} as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm{sup 2}, an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  7. Enhanced performance of semitransparent inverted organic photovoltaic devices via a high reflector structure.

    PubMed

    Zhang, Dan-Dan; Jiang, Xiao-Chen; Wang, Rong; Xie, Hao-Jun; Ma, Guo-Fu; Ou, Qing-Dong; Chen, Yuan-Li; Li, Yan-Qing; Tang, Jian-Xin

    2013-10-23

    Significantly enhanced performances of semitransparent inverted organic photovoltaic devices have been realized by simply introducing a high reflector structure, which comprises several pairs of MoO3/LiF with a thickness of 60 nm for MoO3 and 90 nm for LiF, respectively. After optimizing the reflector structure, the enhanced light harvesting is achieved, and thus the increased optical current is obtained. The short-circuit current density (JSC) and power conversion efficiency (PCE) are increased to 10.9 mA cm(-2) and 4.32%, compared to 8.09 mA cm(-2) and 3.36% in the control device. This leads to a 30% enhancement in PCE. According to the experimental and simulated results, the improved performance is attributed to the effective reflection of light at the wavelength from 450 to 600 nm, which corresponds to the absorption range of the active layer. The demonstrated light-trapping approach is expected to be an effective method to realize the high efficiency in semitransparent organic photovoltaic devices.

  8. Organic photovoltaic cells with stable top metal electrodes modified with polyethylenimine.

    PubMed

    Khan, Talha M; Zhou, Yinhua; Dindar, Amir; Shim, Jae Won; Fuentes-Hernandez, Canek; Kippelen, Bernard

    2014-05-14

    Efficient organic photovoltaic cells (OPV) often contain highly reactive low-work-function calcium electron-collecting electrodes. In this work, efficient OPV are demonstrated in which calcium electrodes were avoided by depositing a thin layer of the amine-containing nonconjugated polymer, polyethylenimine (PEIE), between the photoactive organic semiconductor layer and stable metal electrodes such as aluminum, silver, or gold. Devices with structure ITO/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/poly(3-hexylthiophene):indene-C60-bis-adduct (P3HT:ICBA)/PEIE/Al demonstrated overall photovoltaic device performance comparable to devices containing calcium electron-collecting electrodes, ITO/PEDOT:PSS/P3HT:ICBA/Ca/Al, with open-circuit voltage of 775±6 mV, short-circuit current density of 9.1±0.5 mA cm(-2), fill factor of 0.65±0.01, and power conversion efficiency of 4.6±0.3%, averaged over 5 devices at 1 sun.

  9. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    PubMed Central

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.

    2015-01-01

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor–inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance. PMID:26080437

  10. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    SciTech Connect

    Zhou, Nanjia; Kim, Myung -Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.

    2015-06-15

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor– inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Lastly, continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  11. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    PubMed

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  12. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    DOE PAGES

    Zhou, Nanjia; Kim, Myung -Gil; Loser, Stephen; ...

    2015-06-15

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor– inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactivemore » materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Lastly, continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.« less

  13. Architectures and criteria for the design of high efficiency organic photovoltaic cells

    DOEpatents

    Rand, Barry; Forrest, Stephen R; Burk, Diana Pendergrast

    2015-03-24

    An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode. Each layer of the second set consists essentially of a different organic semiconductor material having a lower LUMO and a lower HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the anode.

  14. Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive

    SciTech Connect

    Suzuki, Atsushi; Zushi, Masahito; Suzuki, Hisato; Ogahara, Shinichi; Akiyama, Tsuyoshi; Oku, Takeo

    2014-02-20

    Bulk heterojunction organic solar cell based on liquid crystal semiconducting polymers of poly[9,9-dioctylfluorene-co-bithiophene] (F8T2) as p-type semiconductors and fullerenes (C{sub 60}) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as electron donor and acceptor has been fabricated and characterized for improving photovoltaic and optical properties. The photovoltaic performance including current voltage curves in the dark and illumination of the F8T2/C{sub 60} conventional and inverted bulk heterojunction solar cells were investigated. Relationship between the photovoltaic properties and morphological behavior was focused on tuning for optimization of photo-voltaic performance under annealing condition near glass transition temperature. Additive-effect of diiodooctane (DIO) and poly(3-hexylthiophene-2,5-diyl) (P3HT) on the photovoltaic performance and optical properties was investigated. Mechanism of the photovoltaic properties of the conventional and inverted solar cells will be discussed by the experimental results.

  15. Evaluation of the charge transfer efficiency of organic thin-film photovoltaic devices fabricated using a photoprecursor approach.

    PubMed

    Masuo, Sadahiro; Sato, Wataru; Yamaguchi, Yuji; Suzuki, Mitsuharu; Nakayama, Ken-ichi; Yamada, Hiroko

    2015-05-01

    Recently, a unique 'photoprecursor approach' was reported as a new option to fabricate a p-i-n triple-layer organic photovoltaic device (OPV) through solution processes. By fabricating the p-i-n architecture using two kinds of photoprecursors and a [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as the donor and the acceptor, the p-i-n OPVs afforded a higher photovoltaic efficiency than the corresponding p-n devices and i-devices, while the photovoltaic efficiency of p-i-n OPVs depended on the photoprecursors. In this work, the charge transfer efficiency of the i-devices composed of the photoprecursors and PC71BM was investigated using high-sensitivity fluorescence microspectroscopy combined with a time-correlated single photon counting technique to elucidate the photovoltaic efficiency depending on the photoprecursors and the effects of the p-i-n architecture. The spatially resolved fluorescence images and fluorescence lifetime measurements clearly indicated that the compatibility of the photoprecursors with PC71BM influences the charge transfer and the photovoltaic efficiencies. Although the charge transfer efficiency of the i-device was quite high, the photovoltaic efficiency of the i-device was much lower than that of the p-i-n device. These results imply that the carrier generation and carrier transportation efficiencies can be increased by fabricating the p-i-n architecture.

  16. Amorphous thieno[3,2-b]thiophene and benzothiadiazole based copolymers for organic photovoltaics.

    PubMed

    Lee, Wonho; Cha, Hyojung; Kim, Yu Jin; Jeong, Ji-Eun; Hwang, Sungu; Park, Chan Eon; Woo, Han Young

    2014-11-26

    Three types of amorphous thienothiophene (TT)-benzothiadiazole (BT) based copolymers (PFTTBT) were synthesized by incorporating alkyl-substituted fluorene moieties as a third component in the polymer backbone. Their optical, electrochemical, morphological, and photovoltaic properties were examined by a comparison with those of a crystalline TT-BT derivative (PTTBT14). PTTBT14 was reported to have a high hole mobility (0.26 cm(2)/(V s)) due to the pronounced interchain ordering but poor photovoltaic power conversion efficiency (PCE) of 2.4-2.6% was reported due to excessively strong self-interactions with poor miscibility with fullerene structures. By incorporating fluorene units, the UV-vis spectra showed an increased bandgap (∼1.9 eV) with the disappearance of the packing-originated shoulder peak, and the valence band decreased compared to crystalline PTTBT14. The amorphous PFTTBT polymers showed substantially improved photovoltaic properties compared to PTTBT14, even though they showed poor hole mobility (∼10(-6) cm2/(V s)) and fill factor. The optimal devices were achieved by blending with excess PC71BM (polymer:PC71BM=1:4 by weight), showing little improvement in the thermal and additive treatments. Under simulated solar illumination of AM 1.5 G, the best PCE of 6.6% was achieved for a PFehTTBT:PC71BM device with an open-circuit voltage of 0.92 V, a short-circuit current of 15.1 mA/cm2, and a fill factor of 0.48. These results suggest that it is useful to disrupt partially the interchain organizations of excessively crystalline polymers, enabling fine-control of intermolecular ordering and the morphological properties (i.e., miscibility with fullerene derivatives, etc.) to utilize the advantages of both crystalline and amorphous materials for further improving PCE of polymer solar cells.

  17. Synthesis and Characterization of Conjugated Polymers and Small Molecules for Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Kwon, Obum

    Solar energy harvested directly from sunlight using photovoltaic (PV) technology has become one of the most promising ways to meet growing global energy needs with a sustainable resource while minimizing environmental concerns. Especially, organic bulk heterojunction (BHJ) solar cells have been attracting a great deal of interest as a source of renewable energy because of their potential as low-cost, flexible, light-weight and large-scale devices. The choice of materials in a BHJ solar cell is very important for device performance because the power conversion efficiencies (PCEs) are determined by their some crucial characteristics such as energy levels, charge transfer mobilities and structural orders. In this dissertation, two carbazole-diketopyrrolopyrrole based conjugated polymers (P1 and P2) and three thieno-[3,4-c]pyrrole-4,6-dione (TPD) based small molecules (M1, SM1 and SM2) were synthesized and characterized to investigate their optical, electrical and photovoltaic properties. First, the substitution of alkyl and aryl side chains on the carbazole moiety of two push-pull conjugated polymers (P1 and P2) shows the significant differences in the optical, electrical and photovoltaic properties. Second, TPD-based conjugated small molecule with a donor-acceptor-donor-acceptor-donor (D-A-D-A-D) framework, M1 shows the relatively deep HOMO level resulting the relatively high Voc.(0.85 eV) Small molecule BHJ solar cells were fabricated and characterized using different M1:PC71BM blend ratios, solvents, and additives and the highest PCE achieved in this study was 1.86%. Lastly, different bridgehead atoms of SM1 and SM2 can affect their energy band levels and device performances. The PCE (2.5%) of the SM2-based SM-BHJ solar cell was higher than that of the SM1-based SM-BHJ solar cell (1.5%).

  18. Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer

    NASA Astrophysics Data System (ADS)

    Chan, M. Y.; Lee, C. S.; Lai, S. L.; Fung, M. K.; Wong, F. L.; Sun, H. Y.; Lau, K. M.; Lee, S. T.

    2006-11-01

    By using bathophenanthroline (BPhen) as an exciton blocking layer (EBL) at the organic/cathode contact of a standard copper phthalocyanine/C60 organic photovoltaic (OPV) device, power conversion efficiency was substantially increased from 0.86% to 2.64%. The BPhen-based devices showed a 45% increase in power conversion efficiency over that of an equivalent device with an EBL of bathocuproine. The performance improvement was analyzed in terms of the electron energy levels, optical transparencies and electron mobilities of the two EBLs. Based on these results, the roles of and requirements for an effective EBL were discussed. Combining the use of BPhen and a WO3 anodic buffer layer further increased the power conversion efficiency of the OPV device to 3.33%.

  19. Charge transport and absorption study of metal nanoparticle plasmonics for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Xue, Mei; Zhu, Jinfeng; Shen, Huajun; Kim, Seongku; Ho, Jack J.; Qasem, Hussam Aldeen S.; Otaibi, Zaid S. Al; Wang, Kang L.; Device Research Laboratory, Ucla Team; Kacst/California Institute Of Excellence On Green Nanotechnology Team

    2011-03-01

    A hybrid plasmonic nanostructure of an optically sensitive heterojunction organic film incorporating metal nanoparticles is fabricated. From the Charge Extraction in Linearly Increasing Voltage (CELIV) measurements, the mobility of this hybrid plasmonic nanostructure has been experimentally extracted to be at least one order of the magnitude higher than that of the organic film without metal nanoparticles. The measured absorption spectrum also shows the increasing of the intensity by around 28% as well as the broadening of the spectrum. The theoretical calculation confirms this broadband optical absorption enhancement results from localized surface plasmon resonance. The optimization of the density of the metal nanoparticles has been done to achieve the best performance for the photovoltaic devices. This work is supported in part by KACST/California Institute of Excellence on Green Nanotechnology.

  20. Performance enhancement of organic photovoltaic devices enabled by Au nanoarrows inducing surface plasmonic resonance effect.

    PubMed

    Li, Shujun; Li, Zhiqi; Zhang, Xinyuan; Zhang, Zhihui; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-09-21

    The surface plasmon resonance (SPR) effect of metal nanoparticles is widely employed in organic solar cells to enhance device performance. However, the light-harvesting improvement is highly dependent on the shape of the metal nanoparticles. In this study, the significantly enhanced performance upon incorporation of Au nanoarrows in solution-processed organic photovoltaic devices is demonstrated. Incorporating Au nanoarrows into the ZnO cathode buffer layer results in superior broadband optical absorption improvement and a power conversion efficiency of 7.82% is realized with a 27.3% enhancement compared with the control device. The experimental and theoretical results indicate that the introduction of Au nanoarrows not only increases optical trapping by the SPR effect but also facilitates exciton generation, dissociation, and charge transport inside the thin film device.

  1. Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics.

    PubMed

    Park, Hyesung; Chang, Sehoon; Smith, Matthew; Gradečak, Silvija; Kong, Jing

    2013-01-01

    The high transparency of graphene, together with its good electrical conductivity and mechanical robustness, enable its use as transparent electrodes in optoelectronic devices such as solar cells. While initial demonstrations of graphene-based organic photovoltaics (OPV) have been promising, realization of scalable technologies remains challenging due to their performance and, critically, poor device reproducibility and yield. In this work, we demonstrate by engineering the interface between graphene and organic layers, device performance and yield become close to devices using indium tin oxide. Our study confirms that the key issue leading to the poor performance or irreproducibility in graphene-based OPV originates from the graphene interface, and can be addressed by a simple interface modification method introduced in this work. We also show similar approach allows graphene to be used as cathode in inverted OPV geometry, thereby demonstrating the universal application of graphene as transparent conductors for both the anode and cathode.

  2. Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method.

    PubMed

    Wang, Wei-Li; Zou, Xian-Shao; Zhang, Bin; Dong, Jun; Niu, Qiao-Li; Yin, Yi-An; Zhang, Yong

    2014-06-01

    A method has been developed to fabricate organic-inorganic hybrid heterojunction solar cells based on n-type silicon nanowire (SiNW) and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) hybrid structures by evacuating the PEDOT:PSS solution with dip-dropping on the top of SiNWs before spin-coating (solution-evacuating). The coverage and contact interface between PEDOT:PSS and SiNW arrays can be dramatically enhanced by optimizing the solution-evacuated time. The maximum power conversion efficiency (PCE) reaches 9.22% for a solution-evacuated time of 2 min compared with 5.17% for the untreated pristine device. The improvement photovoltaic performance is mainly attributed to better organic coverage and contact with an n-type SiNW surface.

  3. Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics

    PubMed Central

    Park, Hyesung; Chang, Sehoon; Smith, Matthew; Gradečak, Silvija; Kong, Jing

    2013-01-01

    The high transparency of graphene, together with its good electrical conductivity and mechanical robustness, enable its use as transparent electrodes in optoelectronic devices such as solar cells. While initial demonstrations of graphene-based organic photovoltaics (OPV) have been promising, realization of scalable technologies remains challenging due to their performance and, critically, poor device reproducibility and yield. In this work, we demonstrate by engineering the interface between graphene and organic layers, device performance and yield become close to devices using indium tin oxide. Our study confirms that the key issue leading to the poor performance or irreproducibility in graphene-based OPV originates from the graphene interface, and can be addressed by a simple interface modification method introduced in this work. We also show similar approach allows graphene to be used as cathode in inverted OPV geometry, thereby demonstrating the universal application of graphene as transparent conductors for both the anode and cathode. PMID:23545570

  4. On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics.

    PubMed

    Yoshikawa, Saya; Saeki, Akinori; Saito, Masahiko; Osaka, Itaru; Seki, Shu

    2015-07-21

    Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.

  5. Hybrid photovoltaic junctions: metal/molecular organic insulator/semiconductor MOIS solar cells

    NASA Astrophysics Data System (ADS)

    Har-Lavan, Rotem; Ron, Izhar; Thieblemont, Florent; Cahen, David

    2008-04-01

    Using a dense organic monolayer, self-assembled and directly bound to n-Si, as high quality insulator with a thickness that can be varied from 1.5-2.5 nm, we construct a Metal-Organic Insulator-Semiconductor (MOIS) structure, which, if fabricated with semi-transparent top electrode, performs as a hybrid organic-inorganic photovoltaic device. The feasibility of the concept and the electrical properties of the insulating layer were first shown with a Hg top electrode, allowing use of prior know-how from electron transport through molecular monolayers, but with photon collection only from around the electrode. We then used another bottom-up fabrication technique, in addition to molecular self-assembly, electro-less metal deposition, to implement an all-covalently bound solid state device. Electro-less Au deposition yields an electrically continuous, porous and semi-transparent top electrode, improving photon harvesting. Aside from being a nearly ideal insulator, the monolayer acts to passivate and protect the interfacial Si layer from defects and to decrease the surface state density. In addition the cell, like any MIS solar cell, benefits from that the light needs only to cross a few thin transparent layers (anti-reflective coating, organic insulator) to reach the photovoltaically active cell part. This helps to generate carriers close to the junction area, even by short wavelength photons, and, thus, to increase light collection, compared to p-n junction solar cells. Due to low temperature cell fabrication without high vacuum steps, the MOIS approach might be interesting for low cost solar cells.

  6. Effect of ultraviolet A exposure on transport of compatible organic osmolytes in human lens epithelial cells.

    PubMed

    Wu, D Y; Zhang, J S

    2015-05-18

    Compatible organic osmolytes, such as betaine, myoinositol, and taurine, are involved in antioxidant defense, protein stabilization, and stress responses. This osmolyte strategy requires the expression of specific osmolyte transporters such as betaine (BGT-1), myoinositol (SMIT), and taurine (TAUT). In contrast to the kidney, keratinocytes, and neural cells, few studies have examined osmolytes in human lens epithelial cells (HLECs). We examined the expression of mRNA specific for BGT-1, SMIT, and TAUT in HLECs. In comparison to normoosmotic (305 mOsM) controls, there was a 3-5-fold time-dependent reaction of BGT-1, SMIT, and TAUT mRNA levels in HLECs exposed to hyperosmotic stress (405 mOsM). Maximal responses were obtained for BGT-1, SMIT, and TAUT mRNA expression after 3, 24 and 9 h of hyperosmotic exposure, respectively. This expression was correlated with increased osmolyte uptake. In contrast, hypoosmotic (205 mOsM) stimulation led to a significant efflux of osmolytes. Exposure to ultraviolet A (340-400 nm) radiation significantly stimulated osmolyte uptake. Increased osmolyte uptake was associated with upregulation of mRNA steady-state levels for osmolyte transporters in irradiated cells. These results demonstrate that ultraviolet A radiation leads to the accumulation of compatible organic osmolytes in HLECs as hyperosmotic pressure, which can maintain cellular environmental homeostasis.

  7. Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics.

    PubMed

    Choy, Wallace C H; Zhang, Di

    2016-01-27

    Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field.

  8. High-Performance Silver Window Electrodes for Top-Illuminated Organic Photovoltaics Using an Organo-molybdenum Oxide Bronze Interlayer.

    PubMed

    Tyler, Martin S; Walker, Marc; Hatton, Ross A

    2016-05-18

    We report an organo-molybdenumn oxide bronze that enables the fabrication of high-performance silver window electrodes for top-illuminated solution processed organic photovoltaics without complicating the process of device fabrication. This hybrid material combines the function of wide-band-gap interlayer for efficient hole extraction with the role of metal electrode seed layer, enabling the fabrication of highly transparent, low-sheet-resistance silver window electrodes. Additionally it is also processed from ethanol, which ensures orthogonality with a large range of solution processed organic semiconductors. The key organic component is the low cost small molecule 3-mercaptopropionic acid, which (i) promotes metal film formation and imparts robustness at low metal thickness, (ii) reduces the contact resistance at the Ag/molybdenumn oxide bronze interface, (iii) and greatly improves the film forming properties. Silver electrodes with a thickness of 8 nm deposited by simple vacuum evaporation onto this hybrid interlayer have a sheet resistance as low as 9.7 Ohms per square and mean transparency ∼80% over the wavelength range 400-900 nm without the aid of an antireflecting layer, which makes them well-matched to the needs of organic photovoltaics and applicable to perovskite photovoltaics. The application of this hybrid material is demonstrated in two types of top-illuminated organic photovoltaic devices.

  9. Exciton-blocking phosphonic acid-treated anode buffer layers for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Zimmerman, Jeramy D.; Song, Byeongseop; Griffith, Olga; Forrest, Stephen R.

    2013-12-01

    We demonstrate significant improvements in power conversion efficiency of bilayer organic photovoltaics by replacing the exciton-quenching MoO3 anode buffer layer with an exciton-blocking benzylphosphonic acid (BPA)-treated MoO3 or NiO layer. We show that the phosphonic acid treatment creates buffers that block up to 70% of excitons without sacrificing the hole extraction efficiency. Compared to untreated MoO3 anode buffers, BPA-treated NiO buffers exhibit a ˜ 25% increase in the near-infrared spectral response in diphenylanilo functionalized squaraine (DPSQ)/C60-based bilayer devices, increasing the power conversion efficiency under 1 sun AM1.5G simulated solar illumination from 4.8 ± 0.2% to 5.4 ± 0.3%. The efficiency can be further increased to 5.9 ± 0.3% by incorporating a highly conductive exciton blocking bathophenanthroline (BPhen):C60 cathode buffer. We find similar increases in efficiency in two other small-molecule photovoltaic systems, indicating the generality of the phosphonic acid-treated buffer approach to enhance exciton blocking.

  10. Concurrent Quantitative Conductivity and Mechanical Properties Measurements of Organic Photovoltaic Materials using AFM

    PubMed Central

    Nikiforov, Maxim P.; Darling, Seth B.

    2013-01-01

    Organic photovoltaic (OPV) materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials affects performance of photovoltaic devices. Thus, understanding of spatial variations in composition as well as electrical properties of OPV materials is of paramount importance for moving PV technology forward.1,2 In this paper, we describe a protocol for quantitative measurements of electrical and mechanical properties of OPV materials with sub-100 nm resolution. Currently, materials properties measurements performed using commercially available AFM-based techniques (PeakForce, conductive AFM) generally provide only qualitative information. The values for resistance as well as Young's modulus measured using our method on the prototypical ITO/PEDOT:PSS/P3HT:PC61BM system correspond well with literature data. The P3HT:PC61BM blend separates onto PC61BM-rich and P3HT-rich domains. Mechanical properties of PC61BM-rich and P3HT-rich domains are different, which allows for domain attribution on the surface of the film. Importantly, combining mechanical and electrical data allows for correlation of the domain structure on the surface of the film with electrical properties variation measured through the thickness of the film. PMID:23380988

  11. Multiscale active layer morphologies for organic photovoltaics through self-assembly of nanospheres.

    PubMed

    Gehan, Timothy S; Bag, Monojit; Renna, Lawrence A; Shen, Xiaobo; Algaier, Dana D; Lahti, Paul M; Russell, Thomas P; Venkataraman, Dhandapani

    2014-09-10

    We address here the need for a general strategy to control molecular assembly over multiple length scales. Efficient organic photovoltaics require an active layer comprised of a mesoscale interconnected networks of nanoscale aggregates of semiconductors. We demonstrate a method, using principles of molecular self-assembly and geometric packing, for controlled assembly of semiconductors at the nanoscale and mesoscale. Nanoparticles of poly(3-hexylthiophene) (P3HT) or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were fabricated with targeted sizes. Nanoparticles containing a blend of both P3HT and PCBM were also fabricated. The active layer morphology was tuned by the changing particle composition, particle radii, and the ratios of P3HT:PCBM particles. Photovoltaic devices were fabricated from these aqueous nanoparticle dispersions with comparable device performance to typical bulk-heterojunction devices. Our strategy opens a revolutionary pathway to study and tune the active layer morphology systematically while exercising control of the component assembly at multiple length scales.

  12. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics.

    PubMed

    Mateker, William R; McGehee, Michael D

    2017-03-01

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  13. A molecular nematic liquid crystalline material for high-performance organic photovoltaics

    PubMed Central

    Sun, Kuan; Xiao, Zeyun; Lu, Shirong; Zajaczkowski, Wojciech; Pisula, Wojciech; Hanssen, Eric; White, Jonathan M.; Williamson, Rachel M.; Subbiah, Jegadesan; Ouyang, Jianyong; Holmes, Andrew B.; Wong, Wallace W.H.; Jones, David J.

    2015-01-01

    Solution-processed organic photovoltaic cells (OPVs) hold great promise to enable roll-to-roll printing of environmentally friendly, mechanically flexible and cost-effective photovoltaic devices. Nevertheless, many high-performing systems show best power conversion efficiencies (PCEs) with a thin active layer (thickness is ~100 nm) that is difficult to translate to roll-to-roll processing with high reproducibility. Here we report a new molecular donor, benzodithiophene terthiophene rhodanine (BTR), which exhibits good processability, nematic liquid crystalline behaviour and excellent optoelectronic properties. A maximum PCE of 9.3% is achieved under AM 1.5G solar irradiation, with fill factor reaching 77%, rarely achieved in solution-processed OPVs. Particularly promising is the fact that BTR-based devices with active layer thicknesses up to 400 nm can still afford high fill factor of ~70% and high PCE of ~8%. Together, the results suggest, with better device architectures for longer device lifetime, BTR is an ideal candidate for mass production of OPVs. PMID:25586307

  14. Water Based Inkjet Material Deposition Of Donor-Acceptor Nanoparticles For Usage In Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Penmetcha, Anirudh Raju

    Significant efficiency increases are being made for bulk heterojunction organic photovoltaic prototype devices with world records at 11%. However the chlorinated solvents most frequently used in prototype manufacture would cause local health and safety concerns or large scale environmental pollution upon expansion of these techniques for commercialization. Moreover, research to bridge prototype and large-scale production of these solar cells is still in its infancy. Most prototype devices are made in inert glove box environments using spin-coating. There is a need to develop a non-toxic ink and incorporate it into a material deposition system that can be used in mass production. In this thesis, P3HT:PCBM organic photovoltaic devices were fabricated with the help of inkjet printing. P3HT:PCBM blends were dissolved in organic solvent systems, and this solution was used as the ink for the printer. The "coffee-ring effect" as well as the effect of inkjet printing parameters on film formation were highlighted - thus the inkjet printing method was validated as a stepping stone between lab-scale production of OPVs and large-scale roll-to-roll manufacturing. To address the need of a non-toxic ink, P3HT:PCBM blends were then dispersed in water, using the miniemulsion method. The nanoparticles were characterized for their size, as well as the blending between the P3HT and PCBM within the nanoparticle. These dispersions were then converted into inks. Finally, these nanoparticle inks were inkjet-printed to fabricate OPV devices. Based on the results obtained here, tentative "next steps" have been outlined in order to improve upon this research work, in the future.

  15. Motivating California organic farmers to go solar: Economics may trump philosophy in deciding to adopt photovoltaics

    NASA Astrophysics Data System (ADS)

    Fata, Johnathon A.

    Organic farmers who have adopted solar photovoltaic (PV) systems to generate electricity are leaders in agricultural energy sustainability, yet research on their culture and motivations is largely incomplete. These farmers share economic and logistical constraints, but they may differ in their underlying worldviews. To better understand what motivates San Francisco Bay Area organic farmers to install solar PV systems, 14 in-depth interviews and short surveys were conducted and included a "frontier mentality" rubric. Additionally, nine online surveys were administered. In this study's sample, financial concerns turned out to provide the greatest motivation for farmers to adopt solar PV. Concern for the environment followed closely. Among farms that did not have solar, the overwhelming prohibiting factor was upfront cost. Climate change was not cited directly as a driving force for adoption of solar PV by any of the participants. A wide range of differences among organic farmers existed in environmental attitudes. This reflected the diversity of views held by organic farmers in California today. For example, certified organic farmers had less strongly held environmental values than did those that eschew third-party certification in favor of a trust-based connection to the consumer. Understanding this group of highly involved environmental players provides insight into environmental behavior of other farmers as well as broader categories of consumers and businesses.

  16. Optimizing organic photovoltaics using tailored heterojunctions: A photoinduced absorption study of oligothiophenes with low band gaps

    NASA Astrophysics Data System (ADS)

    Schueppel, R.; Schmidt, K.; Uhrich, C.; Schulze, K.; Wynands, D.; Brédas, J. L.; Brier, E.; Reinold, E.; Bu, H.-B.; Baeuerle, P.; Maennig, B.; Pfeiffer, M.; Leo, K.

    2008-02-01

    A power conversion efficiency of 3.4% with an open-circuit voltage of 1V was recently demonstrated in a thin film solar cell utilizing fullerene C60 as acceptor and a new acceptor-substituted oligothiophene with an optical gap of 1.77eV as donor [K. Schulze , Adv. Mater. (Weinheim, Ger.) 18, 2872 (2006)]. This prompted us to systematically study the energy- and electron transfer processes at the oligothiophene:fullerene heterojunction for a homologous series of these oligothiophenes. Cyclic voltammetry and ultraviolet photoelectron spectroscopy data show that the heterojunction is modified due to tuning of the highest occupied molecular orbital energy for different oligothiophene chain lengths, while the lowest unoccupied molecular orbital energy remains essentially fixed due to the presence of electron-withdrawing end groups (dicyanovinyl) attached to the oligothiophene. Use of photoinduced absorption (PA) allows the study of the electron transfer process at the heterojunction to C60 . Quantum-chemical calculations performed at the density functional theory and/or time-dependent density functional theory level and cation absorption spectra of diluted DCVnT provide an unambiguous identification of the transitions observed in the PA spectra. Upon increasing the effective energy gap of the donor-acceptor pair by increasing the ionization energy of the donor, photoinduced electron transfer is eventually replaced with energy transfer, which alters the photovoltaic operation conditions. The optimum open-circuit voltage of a solar cell is thus a trade-off between efficient charge separation at the interface and maximized effective gap. It appears that the open-circuit voltages of 1.0-1.1V in our solar cell devices have reached an optimum since higher voltages result in a loss in charge separation efficiency.

  17. Enhanced exciton diffusion in an organic photovoltaic cell by energy transfer using a phosphorescent sensitizer

    NASA Astrophysics Data System (ADS)

    Luhman, Wade A.; Holmes, Russell J.

    2009-04-01

    We demonstrate enhanced exciton diffusion in an organic photovoltaic cell through the incorporation of a phosphorescent sensitizer. The increase in exciton diffusion length (LD) is realized using a composite electron donor layer consisting of a N ,N'-bis(naphthalen-1-yl)-N ,N'-bis(phenyl)-benzidine (NPD) host doped with the phosphorescent guest fac-tris(2-phenylpyridine) iridium [Ir(ppy)3]. The presence of the phosphor at low concentration allows for the population of the long-lived NPD triplet state and an increase in LD. An increase in the NPD LD from 6.5±0.3 to 11.8±0.6 nm is extracted from measurements of the external quantum efficiency for donor layers containing 5 wt % Ir(ppy)3. This enhancement leads to a ˜80% improvement in the power conversion efficiency relative to devices containing an undoped donor layer.

  18. Organic Photovoltaic Cells with Improved Performance Using Bathophenanthroline as a Buffer Layer

    NASA Astrophysics Data System (ADS)

    Wang, Na-na; Yu, Jun-sheng; Lin, Hui; Jiang, Ya-dong

    2010-02-01

    The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60.

  19. Effect of temperature on carrier formation efficiency in organic photovoltaic cells

    SciTech Connect

    Moritomo, Yutaka Yonezawa, Kouhei; Yasuda, Takeshi

    2014-08-18

    The internal quantum efficiency (ϕ{sub IQ}) of an organic photovoltaic cell is governed by plural processes. Here, we propose that ϕ{sub IQ} can be experimentally decomposed into carrier formation (ϕ{sub CF}) and carrier transfer (ϕ{sub CT}) efficiencies. By combining femtosecond time-resolved and electrochemical spectroscopy, we clarified the effect of temperature on ϕ{sub CF} in a regioregular poly(3-hexylthiophene) (rr-P3HT)/[6,6]-phenyl C{sub 61}-butyric acid methyl ester blend film. We found that ϕ{sub CF} (=0.55) at 80 K is the same as that (=0.55) at 300 K. The temperature insensitivity of ϕ{sub CF} indicates that the electron-hole pairs at the D/A interface are seldom subjected to coulombic binding energy.

  20. Delocalization and dielectric screening of charge transfer states in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Bernardo, B.; Cheyns, D.; Verreet, B.; Schaller, R. D.; Rand, B. P.; Giebink, N. C.

    2014-02-01

    Charge transfer (CT) states at a donor-acceptor heterojunction have a key role in the charge photogeneration process of organic solar cells, however, the mechanism by which these states dissociate efficiently into free carriers remains unclear. Here we explore the nature of these states in small molecule-fullerene bulk heterojunction photovoltaics with varying fullerene fraction and find that the CT energy scales with dielectric constant at high fullerene loading but that there is a threshold C60 crystallite size of ~4 nm below which the spatial extent of these states is reduced. Electroabsorption measurements indicate an increase in CT polarizability when C60 crystallite size exceeds this threshold, and that this change is correlated with increased charge separation yield supported by CT photoluminescence transients. These results support a model of charge separation via delocalized CT states independent of excess heterojunction offset driving energy and indicate that local fullerene crystallinity is critical to the charge separation process.

  1. Organic photovoltaic devices with the bilayer cathode interfacial structure of pyromellitic dianhydride and lithium fluoride

    NASA Astrophysics Data System (ADS)

    Nam, Eunkyoung; Oh, Seungsik; Jung, Donggeun; Kim, Hyoungsub; Chae, Heeyeop; Yi, Junsin

    2012-10-01

    In this study, we fabricated and characterized an organic photovoltaic (OPV) device with a pyromellitic dianhydride (PMDA)/lithium fluoride (LiF) cathode interfacial layer between poly(3-hexylthiophene-2,5-diyl)(P3HT)+[6,6]-phenyl C61 butyric acid methyl ester (PCBM) and Al. Compared to the OPV device with a LiF-only cathode interfacial layer having a power conversion efficiency (PCE) of 2.7%, the OPV device with the bilayer cathode interfacial structure [PMDA (0.3 nm)/LiF (0.7 nm)] exhibited a reduced resistance and a PCE value enhanced to 3.9% under an illumination condition of 100 mW cm-2 (AM1.5). The observed improvement of the OPV characteristics was attributed to the reduced leakage current of the device by the bilayer cathode interfacial layer.

  2. 25th anniversary article: a decade of organic/polymeric photovoltaic research.

    PubMed

    Dou, Letian; You, Jingbi; Hong, Ziruo; Xu, Zheng; Li, Gang; Street, Robert A; Yang, Yang

    2013-12-10

    Organic photovoltaic (OPV) technology has been developed and improved from a fancy concept with less than 1% power conversion efficiency (PCE) to over 10% PCE, particularly through the efforts in the last decade. The significant progress is the result of multidisciplinary research ranging from chemistry, material science, physics, and engineering. These efforts include the design and synthesis of novel compounds, understanding and controlling the film morphology, elucidating the device mechanisms, developing new device architectures, and improving large-scale manufacture. All of these achievements catalyzed the rapid growth of the OPV technology. This review article takes a retrospective look at the research and development of OPV, and focuses on recent advances of solution-processed materials and devices during the last decade, particular the polymer version of the materials and devices. The work in this field is exciting and OPV technology is a promising candidate for future thin film solar cells.

  3. High performance organic photovoltaics with zinc oxide and graphene oxide buffer layers

    NASA Astrophysics Data System (ADS)

    Mohd Yusoff, Abd Rashid Bin; Kim, Hyeong Pil; Jang, Jin

    2014-01-01

    We report air stable inverted organic photovoltaics (OPVs) incorporating graphene oxide (GO) and solution processed zinc oxide (ZnO) as hole transport and electron transport layers, respectively. Both the hole transport layer and the electron transport layer (HTL and ETL) are of advantage in high transparency and environmental stability. The use of GO and ZnO in poly(2,7-carbazole) derivative (PCDTBT):fullerene derivative (PC70BM)-based inverted OPVs leads to an improved device stability and enhanced high open circuit voltage (Voc) of 0.81 V, a short-circuit current density (Jsc) of 14.10 mA cm-2, and a fill factor (FF) of 54.44 along with a power conversion efficiency of 6.20%.

  4. Interaction of two plasmon modes in the organic photovoltaic devices with patterned back-electrode

    NASA Astrophysics Data System (ADS)

    Lu, D.; Rengnath, E.; Cui, Y.; Wang, Z.; Ding, Y.; Park, W.

    2013-06-01

    We designed and fabricated silver grating structures on the back-electrodes of organic photovoltaic (OPV) devices to achieve absorption enhancement. The observed enhancement is attributed to several effects, including scattering through corrugated grating surface and surface plasmon modes generated by periodic plasmonic structure. Two plasmon modes are identified in our structure: localized surface plasmon (LSP) and surface plasmon polariton (SPP) modes. The former exists near the absorption edge of the active material and extends the absorption band while the latter provides an absorption pathway in the sub-gap region. Also, LSP is insensitive to active layer thickness and grating period, while the SPP which is excited whenever the momentum matching condition is satisfied shows strong dependence on active layer thickness and grating period. The two modes also exhibit strong interaction as indicated by anti-crossing behavior and thus the interplay between the two modes must be considered for back-electrode design.

  5. Broadband light trapping in thin organic photovoltaic cells using plasmonic resonant antennas

    NASA Astrophysics Data System (ADS)

    Le, Khai Q.

    2013-08-01

    A numerical investigation of plasmonic resonant antennas influence on optical absorption efficiency of organic photovoltaic (PV) cells with thin active layers is reported. Integrating cylindrical Ag antennas on PV cells can enhance absorption efficiency by up to 22%, over a broad bandwidth of operation. This corresponds to an increase in integrated AM1.5G absorption at normal incidence from 48 to 58.5%. Broadband enhancement is observed for transverse-electric and transverse-magnetic polarized incident light, over a wide angle range. It is attributed to plasmonic antennas converting incident sunlight to surface plasmon resonant modes, localized around the antenna/polymer active layer interface. This results in a strong field enhancement in the active layer and enhances absorption efficiency.

  6. Optimisation of the material properties of indium tin oxide layers for use in organic photovoltaics

    SciTech Connect

    Doggart, P.; Bristow, N.; Kettle, J.

    2014-09-14

    The influence of indium tin oxide [(In{sub 2}O{sub 3}:Sn), ITO] material properties on the output performance of organic photovoltaic (OPV) devices has been modelled and investigated. In particular, the effect of altering carrier concentration (n), thickness (t), and mobility (μ{sub e}) in ITO films and their impact on the optical performance, parasitic resistances and overall efficiency in OPVs was studied. This enables optimal values of these parameters to be calculated for solar cells made with P3HT:PC{sub 61}BM and PCPDTBT:PC{sub 71}BM active layers. The optimal values of n, t and μ{sub e} are not constant between different OPV active layers and depend on the absorption spectrum of the underlying active layer material system. Consequently, design rules for these optimal values as a function of donor bandgap in bulk-heterojunction active layers have been formulated.

  7. Planarity and multiple components promote organic photovoltaic efficiency by improving electronic transport.

    PubMed

    Goldey, Matthew B; Reid, Daniel; de Pablo, Juan; Galli, Giulia

    2016-11-23

    Establishing how the conformation of organic photovoltaic (OPV) polymers affects their electronic and transport properties is critical in order to determine design rules for new OPV materials and in particular to understand the performance enhancements recently reported for ternary blends. We report coupled classical and ab initio molecular dynamics simulations showing that polymer linkage twisting significantly reduces optical absorption efficiency, as well as hole transport rates in donor polymers. We predict that blends with components favoring planar geometries contribute to the enhancement of the overall efficiency of ternary OPVs. Furthermore, our electronic structure calculations for the PTB7-PID2-PC71BM system show that hole transfer rates are enhanced in ternary blends with respect to their binary counterpart. Finally, our results point at thermal disorder in the blend as a key reason responsible for device voltage losses and at the need to carry out electronic structure calculations at finite temperature to reliably compare with experiments.

  8. Effect of temperature on carrier formation efficiency in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Moritomo, Yutaka; Yonezawa, Kouhei; Yasuda, Takeshi

    2014-08-01

    The internal quantum efficiency ( ϕ IQ) of an organic photovoltaic cell is governed by plural processes. Here, we propose that ϕ IQ can be experimentally decomposed into carrier formation ( ϕ CF) and carrier transfer ( ϕ CT) efficiencies. By combining femtosecond time-resolved and electrochemical spectroscopy, we clarified the effect of temperature on ϕ CF in a regioregular poly(3-hexylthiophene) (rr-P3HT)/[6,6]-phenyl C61-butyric acid methyl ester blend film. We found that ϕ CF ( = 0.55 ) at 80 K is the same as that (=0.55) at 300 K. The temperature insensitivity of ϕ CF indicates that the electron-hole pairs at the D/A interface are seldom subjected to coulombic binding energy.

  9. Custom-Shaped Organic Photovoltaic Modules—Freedom of Design by Printing

    NASA Astrophysics Data System (ADS)

    Välimäki, M.; Jansson, E.; Korhonen, P.; Peltoniemi, A.; Rousu, S.

    2017-02-01

    Freedom of design that was introduced as organic photovoltaic (OPV) modules were fabricated by printing. As proof-of-concept, we show OPV leaf fabrication in A5 size using gravure and rotary screen printing processes for the main active layers of the OPV structure. These printing methods allow direct printing of any kind of arbitrary, two-dimensional shapes including patterning of the electric contacts thus post-patterning stages are not needed. Fabrication of custom-shaped OPV modules requires detailed information about the technical boundaries set by the manufacturing process and materials which in turn influence the layout design and R2R upscaling. In this paper, we show custom-shaped OPV modules, patterned directly in a shape of a tree leaf with an overall size of 110 cm2 and an active area of 50 cm2 providing a power conversion efficiency of 2.0% and maximum power of 98 mW.

  10. Copper thiocyanate: An attractive hole transport/extraction layer for use in organic photovoltaic cells

    SciTech Connect

    Treat, Neil D. E-mail: t.anthopoulos@imperial.ac.uk; Stingelin, Natalie; Yaacobi-Gross, Nir; Faber, Hendrik; Perumal, Ajay K.; Bradley, Donal D. C.; Anthopoulos, Thomas D. E-mail: t.anthopoulos@imperial.ac.uk

    2015-07-06

    We report the advantageous properties of the inorganic molecular semiconductor copper(I) thiocyanate (CuSCN) for use as a hole collection/transport layer (HTL) in organic photovoltaic (OPV) cells. CuSCN possesses desirable HTL energy levels [i.e., valence band at −5.35 eV, 0.35 eV deeper than poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)], which produces a 17% increase in power conversion efficiency (PCE) relative to PEDOT:PSS-based devices. In addition, a two-fold increase in shunt resistance for the solar cells measured in dark conditions is achieved. Ultimately, CuSCN enables polymer:fullerene based OPV cells to achieve PCE > 8%. CuSCN continues to offer promise as a chemically stable and straightforward replacement for the commonly used PEDOT:PSS.

  11. A nanocomposite interconnecting layer for tandem small molecular organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Luo, D. Y.; Yu, L. M.; Man, J. X.; Liu, Z.; Lu, Z. H.

    2014-03-01

    A nanocomposite interconnecting layer of C60:LiF/Ag/MoOx had been applied in the tandem structure of organic photovoltaic cells to achieve high short circuit current (Jsc) and power conversion efficiency (PCE). The Jsc had been enhanced 40% after applying the nanocomposite interconnecting layer into a tandem structure compared to the conventional interconnecting layer of Bathocuproine (BCP)/Ag/MoOx. The improvement is due to the enhancement of the light absorption of the devices. A tandem device PCE of 3.04% was achieved by further improving the light absorption in the individual subcell units in the tandem structure by means of a bi-functional buffer layer of C60:LiF/BCP.

  12. Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials.

    PubMed

    Heitzer, Henry M; Savoie, Brett M; Marks, Tobin J; Ratner, Mark A

    2014-07-14

    Organic photovoltaics (OPVs) offer the opportunity for cheap, lightweight and mass-producible devices. However, an incomplete understanding of the charge generation process, in particular the timescale of dynamics and role of exciton diffusion, has slowed further progress in the field. We report a new Kinetic Monte Carlo model for the exciton dissociation mechanism in OPVs that addresses the origin of ultra-fast (<1 ps) dissociation by incorporating exciton delocalization. The model reproduces experimental results, such as the diminished rapid dissociation with increasing domain size, and also lends insight into the interplay between mixed domains, domain geometry, and exciton delocalization. Additionally, the model addresses the recent dispute on the origin of ultra-fast exciton dissociation by comparing the effects of exciton delocalization and impure domains on the photo-dynamics.This model provides insight into exciton dynamics that can advance our understanding of OPV structure-function relationships.

  13. Bulk heterojunction organic photovoltaics from water-processable nanomaterials and their facile fabrication approaches.

    PubMed

    Subianto, Surya; Dutta, Naba; Andersson, Mats; Choudhury, Namita Roy

    2016-09-01

    Organic thin film photovoltaics based on bulk-heterojunction donor-acceptor combinations have received significant interest due to their potential for low-cost, large-scale solution processing. However, current state-of-the-art cells utilise materials soluble mainly in halogenated solvents which pose processing challenges due to their toxicity and thus environmental hazards. In this contribution, we look at various nanomaterials, and alternative processing of these solar cells using environmentally friendly solvents, and review recently reported different strategies and approaches that are making inroads in this field. Specifically, we focus on the use of water-dispersible donors and acceptors, use of aqueous solvents for fabrication and discuss the merits of the two main approaches of water-processable solar cells; namely, through the use of water-soluble materials and the use of aqueous dispersion rather than a solution, as well as review some of the recent advances in alternative fabrication techniques.

  14. Monte Carlo Simulations of Charge Transport in 2D Organic Photovoltaics.

    PubMed

    Gagorik, Adam G; Mohin, Jacob W; Kowalewski, Tomasz; Hutchison, Geoffrey R

    2013-01-03

    The effect of morphology on charge transport in organic photovoltaics is assessed using Monte Carlo. In isotopic two-phase morphologies, increasing the domain size from 6.3 to 18.3 nm improves the fill factor by 11.6%, a result of decreased tortuosity and relaxation of Coulombic barriers. Additionally, when small aggregates of electron acceptors are interdispersed into the electron donor phase, charged defects form in the system, reducing fill factors by 23.3% on average, compared with systems without aggregates. In contrast, systems with idealized connectivity show a 3.31% decrease in fill factor when domain size was increased from 4 to 64 nm. We attribute this to a decreased rate of exciton separation at donor-acceptor interfaces. Finally, we notice that the presence of Coulomb interactions increases device performance as devices become smaller. The results suggest that for commonly found isotropic morphologies the Coulomb interactions between charge carriers dominates exciton separation effects.

  15. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting.

    PubMed

    Pellet, Norman; Gao, Peng; Gregori, Giuliano; Yang, Tae-Youl; Nazeeruddin, Mohammad K; Maier, Joachim; Grätzel, Michael

    2014-03-17

    Hybrid organic-inorganic lead halide perovskite APbX3 pigments, such as methylammonium lead iodide, have recently emerged as excellent light harvesters in solid-state mesoscopic solar cells. An important target for the further improvement of the performance of perovskite-based photovoltaics is to extend their optical-absorption onset further into the red to enhance solar-light harvesting. Herein, we show that this goal can be reached by using a mixture of formamidinium (HN=CHNH3 (+), FA) and methylammonium (CH3 NH3 (+), MA) cations in the A position of the APbI3 perovskite structure. This combination leads to an enhanced short-circuit current and thus superior devices to those based on only CH3 NH3 (+). This concept has not been applied previously in perovskite-based solar cells. It shows great potential as a versatile tool to tune the structural, electrical, and optoelectronic properties of the light-harvesting materials.

  16. Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics.

    PubMed

    Guan, Zhiqiang; Li, Ho-Wa; Zhang, Jinfeng; Cheng, Yuanhang; Yang, Qingdan; Lo, Ming-Fai; Ng, Tsz-Wai; Tsang, Sai-Wing; Lee, Chun-Sing

    2016-08-24

    How charge-transfer states (CTSs) assist charge separation of a Coulombically bound exciton in organic photovoltaics has been a hot topic. It is believed that the delocalization feature of a CTS plays a crucial role in the charge separation process. However, the delocalization of the "hot" and the "relaxed" CTSs is still under debate. Here, with a novel frequency dependent charge-modulated electroabsorption spectroscopy (CMEAS) technique, we elucidate clearly that both "hot" and "relaxed" CTSs are loosely bound and delocalized states. This is confirmed by comparing the CMEAS results of CTSs with those of localized polaron states. Our results reveal the role of CTS delocalization on charge separation and indicate that no substantial delocalization gradient exists in CTSs.

  17. Methods for improving the lifetime performance of organic photovoltaics with low-costing encapsulation.

    PubMed

    Giannouli, Myrsini; Drakonakis, Vasileios M; Savva, Achilleas; Eleftheriou, Polyvios; Florides, Georgios; Choulis, Stelios A

    2015-04-27

    Recent years have seen considerable advances in organic photovoltaics (OPVs), most notably a significant increase in their efficiency, from around 4 % to over 10 %. The stability of these devices, however, continues to remain an issue that needs to be resolved to enable their commercialization. This review discusses the main degradation processes of OPVs and recent methods that help to increase device stability and lifetime. One of the most effective steps that can be taken to increase the lifetime of OPVs is their encapsulation, which protects them from atmospheric degradation. Efficient encapsulation is essential for long-term device performance, but it is equally important for the commercialization of OPVs to strike a balance between achieving the maximum device protection possible and using low-cost processing for their encapsulation. Various encapsulation techniques are discussed herein, with emphasis on their cost effectiveness and their overall suitability for commercial applications.

  18. Integrating nanostructured electrodes in organic photovoltaic devices for enhancing near-infrared photoresponse

    SciTech Connect

    Nardes, Alexandre M.; Ahn, Sungmo; Rourke, Devin; Mao, Chenchen; van de Lagemaat, Jao; Ferguson, Andrew J.; Park, Wounjhang; Kopidakis, Nikos

    2016-12-01

    We introduce a simple methodology to integrate prefabricated nanostructured-electrodes in solution-processed organic photovoltaic (OPV) devices. The tailored 'photonic electrode' nanostructure is used for light management in the device and for hole collection. This approach opens up new possibilities for designing photonically active structures that can enhance the absorption of sub-bandgap photons in the active layer. We discuss the design, fabrication and characterization of photonic electrodes, and the methodology for integrating them to OPV devices using a simple lamination technique. We demonstrate theoretically and experimentally that OPV devices using photonic electrodes show a factor of ca. 5 enhancement in external quantum efficiency (EQE) in the near infrared region. We use simulations to trace this observed efficiency enhancement to surface plasmon polariton modes in the nanostructure.

  19. Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells.

    PubMed

    Huh, Yoon Ho; Bae, In-Gon; Jeon, Hong Goo; Park, Byoungchoo

    2016-10-31

    We herein report a homogeneous [6,6]-phenyl C61 butyric acid methyl ester (PCBM) layer, produced by a solution process of horizontal-dipping (H-dipping) to improve the photovoltaic (PV) effects of bilayer heterojunction organic photovoltaic cells (OPVs) based on a bi-stacked poly(3-hexylthiophene) (P3HT) electron donor layer and a PCBM electron acceptor layer (P3HT/PCBM). It was shown that a homogeneous and uniform coating of PCBM layers in the P3HT/PCBM bilayer OPVs resulted in reliable and reproducible device performance. We recorded a power conversion efficiency (PCE) of 2.89%, which is higher than that (2.00%) of bilayer OPVs with a spin-coated PCBM layer. Moreover, introducing surfactant additives of poly(oxyethylene tridecyl ether) (PTE) into the homogeneous P3HT/PCBM PV layers resulted in the bilayer OPVs showing a PCE value of 3.95%, which is comparable to those of conventional bulk-heterojunction (BHJ) OPVs (3.57-4.13%) fabricated by conventional spin-coating. This improved device performance may be attributed to the selective collection of charge carriers at the interfaces among the active layers and electrodes due to the PTE additives as well as the homogeneous formation of the functional PCBM layer on the P3HT layer. Furthermore, H-dip-coated PCBM layers were deposited onto aligned P3HT layers by a rubbing technique, and the rubbed bilayer OPV exhibited improved in-plane anisotropic PV effects with PCE anisotropy as high as 1.81, which is also higher than that (1.54) of conventional rubbed BHJ OPVs. Our results suggest that the use of the H-dip-coating process in the fabrication of PCBM layers with the PTE interface-engineering additive could be of considerable interest to those seeking to improve PCBM-based opto-electrical organic thin-film devices.

  20. Elucidating the Role of Conjugated Polyelectrolyte Interlayers for High-Efficiency Organic Photovoltaics.

    PubMed

    Lim, Kyung-Geun; Park, Sung Min; Woo, Han Young; Lee, Tae-Woo

    2015-09-21

    Despite the promising function of conjugated polyelectrolytes (CPEs) as an interfacial layer in organic photovoltaics (OPVs), the underlying mechanism of dipole orientation and the electrical characteristics of CPE interlayers remain unclear. Currently, the ionic functionality of CPEs (i.e., whether they are cationic or anionic) is believed to determine the interfacial dipole alignment and the resulting electron or hole extraction properties at the interface between an organic photoactive layer and a metal electrode. In this research, we find that in contrast to this common belief, the photovoltaic efficiency can be improved significantly by both cationic and anionic CPE layers regardless of the ion functionality of the CPE. This improvement occurs because the interfacial dipoles of cationic and anionic CPEs are realigned in the identical direction despite the different ionic functionality. The net dipole is determined not by the intrinsic molecular dipole of the CPE but by the ionic redistribution in the CPE layer and the resulting interfacial dipole at the intimate contact with adjacent layers. We also demonstrated that the energy level alignment and performance parameters of OPVs can be controlled systematically by the electrically poled CPE layers with the oriented interfacial dipoles; the distribution of positive and negative ions in the CPE layer was adjusted by applying an appropriate external electric field, and the energy alignment was reversible by changing the electric field direction. The anionic and cationic CPEs (PSBFP-Na and PAHFP-Br) based on the same π-conjugated backbone of fluorene-phenylene were each used as the electron extraction layer on a photoactive layer. Both anionic and cationic CPE interlayers improved the energy level alignment at the interface between the photoactive layer and the electrode and the resulting performance parameters, which thereby increased the power conversion efficiency to 8.3 %.

  1. Donor-Acceptor Interface Stabilizer Based on Fullerene Derivatives toward Efficient and Thermal Stable Organic Photovoltaics.

    PubMed

    Li, Junli; Zhu, Xiaoguang; Yuan, Tao; Shen, Jiulin; Liu, Jikang; Zhang, Jian; Tu, Guoli

    2017-02-22

    An interface stabilizer based on alkylation-functionalized fullerene derivatives, [6, 6]-Phenyl-C61-butyric acid (3,5-bis(octyloxy)phenyl)methyl ester (PCB-C8oc), was successfully synthesized and applied for the active layer of Organic Photovoltaics (OPVs). The PCB-C8oc can replace part of the phenyl-C61-buty-ric acid methyl ester (PCBM) and be distributed on the interface of poly(3-hexylthiophene) (P3HT) and PCBM to form P3HT/PCBM/PCB-C8oc ternary blends, leading to thermally stable and efficient organic photovoltaics. The octyl groups of PCB-C8oc exhibit intermolecular interaction with the hexyl groups of P3HT, and the fullerene unit of PCB-C8oc are in tight contact with PCBM. The dual functions of PCB-C8oc will inhibit the phase separation between electron donor and acceptor, thereby improving the stability of devices under long-time thermal annealing at high temperature. When doped with 10 wt % PCB-C8oc, the power conversion efficiency (PCE) of the P3HT system decreased from 3.54% to 2.88% after 48 h of thermal treatment at 150 °C, whereas the PCE of the reference device without PCB-C8oc dramatically dropped from 3.53% to 0.73%. When doping 10 or 20 wt % PCB-C8oc, the unannealed P3HT/PCBM/PCB-C8oc device achieved a higher PCE than the P3HT/PCBM device without any annealing following the same fabricating condition. For the PTB7/PCBM-based devices, after adding only 5 wt % PCB-C8oc, the OPVs also exhibited thermally stable morphology and better device performances. All these results demonstrate that the utilization of alkyl interchain interactions is an effective and practical strategy to control morphological evolution.

  2. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    PubMed

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  3. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films.

    PubMed

    Peumans, Peter; Uchida, Soichi; Forrest, Stephen R

    2003-09-11

    The power conversion efficiency of small-molecular-weight and polymer organic photovoltaic cells has increased steadily over the past decade. This progress is chiefly attributable to the introduction of the donor-acceptor heterojunction that functions as a dissociation site for the strongly bound photogenerated excitons. Further progress was realized in polymer devices through use of blends of the donor and acceptor materials: phase separation during spin-coating leads to a bulk heterojunction that removes the exciton diffusion bottleneck by creating an interpenetrating network of the donor and acceptor materials. The realization of bulk heterojunctions using mixtures of vacuum-deposited small-molecular-weight materials has, on the other hand, posed elusive: phase separation induced by elevating the substrate temperature inevitably leads to a significant roughening of the film surface and to short-circuited devices. Here, we demonstrate that the use of a metal cap to confine the organic materials during annealing prevents the formation of a rough surface morphology while allowing for the formation of an interpenetrating donor-acceptor network. This method results in a power conversion efficiency 50 per cent higher than the best values reported for comparable bilayer devices, suggesting that this strained annealing process could allow for the formation of low-cost and high-efficiency thin film organic solar cells based on vacuum-deposited small-molecular-weight organic materials.

  4. The influence of active cell design on a monolithic organic photovoltaic module: fabrication and simulation

    NASA Astrophysics Data System (ADS)

    Lyu, Hong-Kun; Sim, Jun Hyoung; Jeong, Seonju; Woo, Sung-Ho; Shin, Jang-Kyoo; Han, Yoon Soo

    2011-09-01

    In this study, the influence of an active cell design on the power conversion efficiency (PCE) of a monolithic organic photovoltaic (OPV) module was investigated using experimental methods and circuit simulation. For circuit simulation using computer simulation-based study, the organic PV cell was described by a circuit-based two-diode model and the modules were simulated under several conditions including shading effect, diode model parameters, series resistance and shunt resistance, etc. A unit organic PV cell as a reference device and four types of monolithic organic PV modules with different active cell length were fabricated together on the same glass substrate. The characteristics of the fabricated unit OPV cell were measured and the electrical parameters were extracted to use them for the simulation of four types of monolithic organic PV modules. To analyze the influence of OPV cell design on the PCE of monolithic organic PV modules, the current-voltage (I-V) characteristic curves and the PCEs of the four type monolithic OPV modules with different active cell length were obtained and compared with the simulated results. The simulated I-V curves were matched well with the measured I-V curves for the four types of monolithic organic PV modules with different active cell length. The highest PCE of the monolithic OPV module was 2.86 % with the active cell length of 11.6 mm. We expect that this work is meaningful to enhance the performance of a monolithic OPV module to a certain extent and it offers a method to design a high-efficiency large-area monolithic OPV module.

  5. Mesoporous silicate MCM-41 containing organic ultraviolet ray absorbents: Preparation, photostability and in vitro release

    NASA Astrophysics Data System (ADS)

    Ambrogi, V.; Perioli, L.; Marmottini, F.; Latterini, L.; Rossi, C.; Costantino, U.

    2007-05-01

    The mesoporous silicate MCM-41 was studied for its properties to adsorb and to influence the photostability and the release of three organic ultraviolet (UV) ray absorbents, namely benzophenone-3 (B3), benzophenone-2 (B2) and p-aminobenzoic acid (PABA). MCM-41 microcrystals have been loaded with the UV absorbents obtaining a good loading w/w percentage. The loaded samples have been characterized by chemical and thermal analyses, X-ray diffraction, N2 adsorption isotherms. Photochemical studies demonstrated that the UV-shielding properties of B2 were maintained whereas in other cases a small reduction of sunscreen protection range was noticed. B3 and B2 release from loaded MCM-41 formulations were studied and compared to those obtained from formulations containing free UV ray absorbent; no remarkable differences were observed in the release profiles.

  6. High response organic deep ultraviolet photodetector with PEDOT:PSS anode.

    PubMed

    Zhu, Lu; Dai, Qian; Hu, Zuo-Fu; Zhang, Xi-Qing; Wang, Yong-Sheng

    2011-05-15

    We have fabricated an organic deep ultraviolet photodetector (PD) using PEDOT:PSS (PH 1000) as a transparent anode. NPB and PBD were employed as electron donor and acceptor, respectively. The PD exhibits a dark current of 0.0829 μA/cm(2) and a photocurrent of 85.3 μA/cm(2) at -12 V under 280 nm light illumination with an intensity of 0.488 mW/cm(2). A high response at 248-370 nm with its peak of 0.18 A/W at 280 nm and a detectivity of 1.1×10(12) cm Hz(1/2)  W(-1) were achieved. The more detailed mechanism of harvesting high performance and the dependence of photocurrent density on illumination intensity are also discussed.

  7. Study on electrical and thermal behavior of organic photovoltaic (OPV) cells

    NASA Astrophysics Data System (ADS)

    Dobre, Robert Alexandru; Ionescu, Ciprian; Vlǎdescu, Marian; NiÅ£ǎ, Valentin Adrian

    2015-02-01

    Organic photovoltaic cells represent a major application of Flexible Organic and Large Area Electronics (FOLAE) field. The advantages of these cells are represented by flexibility and reduced thickness, making them easy to be integrated in electronics designs, removing the necessity of having a large, flat, heavy surface for energy harvesting. Although many studies about the structure1 and chemical reactions that occur exist, not a large amount of information is available about the characteristics that would be useful for an electronics engineer designing an electronic system. This paper presents the investigations of the electrical2 and thermal behavior of OPV cells, offering as results the optimal operating conditions and their evaluation using a comparison with the standard, semiconductor-based cells. Thermal characterization is very important because the targeted light source is the sun. By exposing the panels to sunlight in a summer day will greatly increase the working temperature of the cells, implying the necessity of knowing the impact on their electrical characteristics. The response of the cells at different wavelengths of the incident light, voltage vs. current and output voltage diagrams for different light intensities and different temperatures will be determined. In addition, the behavior of the cell as a light sensor will be investigated and a system that uses organic electronics at both ends: for sensing light intensity and also displaying this information will be built, using an electrochromic display.

  8. Direct Free Carrier Photogeneration in Single Layer and Stacked Organic Photovoltaic Devices.

    PubMed

    Chandran, Hrisheekesh Thachoth; Ng, Tsz-Wai; Foo, Yishu; Li, Ho-Wa; Qing, Jian; Liu, Xiao-Ke; Chan, Chiu-Yee; Wong, Fu-Lung; Zapien, Juan Antonio; Tsang, Sai-Wing; Lo, Ming-Fai; Lee, Chun-Sing

    2017-04-03

    High performance organic photovoltaic devices typically rely on type-II P/N junctions for assisting exciton dissociation. Heremans and co-workers recently reported a high efficiency device with a third organic layer which is spatially separated from the active P/N junction; but still contributes to the carrier generation by passing its energy to the P/N junction via a long-range exciton energy transfer mechanism. In this study the authors show that there is an additional mechanism contributing to the high efficiency. Some bipolar materials (e.g., subnaphthalocyanine chloride (SubNc) and subphthalocyanine chloride (SubPc)) are observed to generate free carriers much more effectively than typical organic semiconductors upon photoexcitation. Single-layer devices with SubNc or SubPc sandwiched between two electrodes can give power conversion efficiencies 30 times higher than those of reported single-layer devices. In addition, internal quantum efficiencies (IQEs) of bilayer devices with opposite stacking sequences (i.e., SubNc/SubPc vs SubPc/SubNc) are found to be the sum of IQEs of single layer devices. These results confirm that SubNc and SubPc can directly generate free carriers upon photoexcitation without assistance from a P/N junction. These allow them to be stacked onto each other with reversible sequence or simply stacking onto another P/N junction and contribute to the photocarrier generation.

  9. Solution Processable n-Type Perylene Diimide Copolymers for Organic Photovoltaics

    SciTech Connect

    Liang, Z.; Cormier, R. A.; Nardes, A. M.; Gregg, B. A.

    2011-01-01

    Perylene diimides are known as promising n-type semiconductor building blocks. Here we report the synthesis and characterization of a set of three soluble poly(perylene diimide)s and their preliminary characterization in organic photovoltaic cells. These polymers are made through the polycondensation of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) with a variety of poly(ethylene glycol) (PEG)- or poly(propylene glycol) (PPG)-based diamine comonomers. The flexible spacer offers increased solubility in organic solvents and allows the perylene core to assume a conformation that promotes favorable cofacial {pi}-{pi} interactions. Mixtures of these polymers with the hole-transporting polymer, poly(3-hexylthiophene) (P3HT) result in significant fluorescence quenching. However, the phase separation occurs on a scale too large for a bulk heterojunction solar cell. The PPGylated poly(perylene diimide) shows an unusually low free electron concentration ({approx}1.0 x 10{sup 12} cm{sup -3}) and therefore makes an excellent model system for future doping studies. These new polymers may have promise as stable electron-conductive layers with large light-absorptivities in solution-processable applications of organic electronics.

  10. Donor-Acceptor-Donor Modular Small Organic Molecules Based on the Naphthalene Diimide Acceptor Unit for Solution-Processable Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Patil, Hemlata; Gupta, Akhil; Bilic, Ante; Jackson, Sam Leslie; Latham, Kay; Bhosale, Sheshanath V.

    2014-09-01

    Two novel solution-processable small organic molecules, 4,9-bis(4-(diphenylamino)phenyl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8(2 H,7 H)-tetraone ( S6) and 4,9-bis(benzo[ b]thiophen-2-yl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8 (2 H,7 H)-tetraone ( S7), have been successfully designed, synthesized, characterized, and applied in solution-processable photovoltaic devices. S6 and S7 contain a common electron-accepting moiety, naphthalene diimide (NDI), with different electron-donating moieties, triphenylamine ( S6) and benzothiophene ( S7), and are based on a donor-acceptor-donor structure. S7 was isolated as black, rod-shaped crystals. Its triclinic structure was determined by single crystal x-ray diffraction (XRD): space group , Z = 2, a = 9.434(5) Å, b = 14.460(7) Å, c = 15.359(8) Å, α = 67.256(9) degrees, β = 80.356(11) degrees, γ = 76.618(10) degrees, at 150 Kelvin (K), R = 0.073. Ultraviolet-visible absorption spectra revealed that use of triphenylamine donor functionality with the NDI acceptor unit resulted in an enhanced intramolecular charge transfer (ICT) transition and reduction of the optical band gap compared with the benzothiophene analogue. Solution-processable inverted bulk heterojunction devices with the structure indium tin oxide/zinc oxide (30 nm)/active layer/molybdenum trioxide (10 nm)/silver (100 nm) were fabricated with S6 and S7 as donors and (6,6)-phenyl C70-butyric acid methyl ester (PC70BM) as acceptor. Power conversion efficiencies of 0.22% for S6/PC70BM and 0.10% for S7/PC70BM were achieved for the preliminary photovoltaic devices under simulated AM 1.5 illumination (100 mW cm-2). This paper reports donor-acceptor-donor modular small organic molecules, with NDI as central accepting unit, that have been screened for use in solution-processable inverted photovoltaic devices.

  11. Donor-acceptor small molecules for organic photovoltaics: single-atom substitution (Se or S).

    PubMed

    He, Xiaoming; Cao, Bing; Hauger, Tate C; Kang, Minkyu; Gusarov, Sergey; Luber, Erik J; Buriak, Jillian M

    2015-04-22

    Two isostructural low-band-gap small molecules that contain a one-atom substitution, S for Se, were designed and synthesized. The molecule 7,7'-[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene]bis[6-fluoro-4-(5'-hexyl-2,2'-bithiophen-5-yl)benzo[c][1,2,5]thiadiazole] (1) and its selenium analogue 7,7'-[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene]bis[6-fluoro-4-(5'-hexyl-2,2'-bithiophen-5-yl)benzo[c][1,2,5]selenodiazole] (2) are both based on the electron-rich central unit benzo[1,2-b:4,5-b']dithiophene. The aim of this work was to investigate the effect of one-atom substitution on the optoelectronic properties and photovoltaic performance of devices. Theoretical calculations revealed that this one-atom variation has a small but measurable effect on the energy of frontier molecular orbital (HOMO and LUMO), which, in turn, can affect the absorption profile of the molecules, both neat and when mixed in a bulk heterojunction (BHJ) with PC71BM. The Se-containing variant 2 led to higher efficiencies [highest power conversion efficiency (PCE) of 2.6%] in a standard organic photovoltaic architecture, when combined with PC71BM after a brief thermal annealing, than the S-containing molecule 1 (highest PCE of 1.0%). Studies of the resulting morphologies of BHJs based on 1 and 2 showed that one-atom substitution could engender important differences in the solubilities, which then influenced the crystal orientations of the small molecules within this thin layer. Brief thermal annealing resulted in rotation of the crystalline grains of both molecules to more energetically favorable configurations.

  12. Required Equipment for Photo-Switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    DTIC Science & Technology

    2014-01-24

    Effects on interfacial morphology and charge injection in organic light-emitting diodes. Thin Solid Films 2007, 515 (5), 2833-2841. 3. Lee, J.; Jung...HBCU) - Required Equipment for Photo-switchable Donor- Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells...Equipment for Photo-switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells" N/A FA9550-12-1-0468 CFDA

  13. Characteristics of dissolved organic carbon revealed by ultraviolet/visible absorbance and fluorescence spectroscopy: The current status and future exploration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic carbon (DOC) is an important research subject for various disciplines. The objectives of this chapter are to review and summarize recent advancement in characterization of DOC by ultraviolet/visible (UV/Vis) and fluorescence spectroscopies and to identify the information gaps for ...

  14. Computational characterization of the molecular structure and properties of Dye 7 for organic photovoltaics.

    PubMed

    Baldenebro-López, Jesús; Castorena-González, José; Flores-Holguin, Norma; Calderón-Guillén, Joel; Glossman-Mitnik, Daniel

    2012-03-01

    Organic dyes have great potential for its use in solar cells. In this recent work, the molecular structure and properties of Dye 7 were obtained using density functional theory (DFT) and different levels of calculation. Upon comparing the molecular structure and the ultraviolet visible spectrum with experimental data reported in the literature, it was found that the M05-2X/6-31G(d) level of calculation gave the best approximation. Once the appropriate methodology had been obtained, the molecule was characterized by obtaining the infrared spectrum, dipole moment, total energy, isotropic polarizability, molecular orbital energies, free energy of solvation in different solvents, and the chemical reactivity sites using the condensed Fukui functions.

  15. Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics.

    PubMed

    Sauvé, Geneviève; Fernando, Roshan

    2015-09-17

    Organic photovoltaics (OPVs) are promising candidates for providing a low cost, widespread energy source by converting sunlight into electricity. Solution-processable active layers have predominantly consisted of a conjugated polymer donor blended with a fullerene derivative as the acceptor. Although fullerene derivatives have been the acceptor of choice, they have drawbacks such as weak visible light absorption and poor energy tuning that limit overall efficiencies. This has recently fueled new research to explore alternative acceptors that would overcome those limitations. During this exploration, one question arises: what are the important design principles for developing nonfullerene acceptors? It is generally accepted that acceptors should have high electron affinity, electron mobility, and absorption coefficient in the visible and near-IR region of the spectra. In this Perspective, we argue that alternative molecular acceptors, when blended with a conjugated polymer donor, should also have large nonplanar structures to promote nanoscale phase separation, charge separation and charge transport in blend films. Additionally, new material design should address the low dielectric constant of organic semiconductors that have so far limited their widespread application.

  16. Geminate electron-hole recombination in organic photovoltaic cells. A semi-empirical theory.

    PubMed

    Wojcik, Mariusz; Nowak, Artur; Seki, Kazuhiko

    2017-02-07

    We propose a semi-empirical theory which describes the geminate electron-hole separation probability in both homogeneous systems and donor-acceptor heterojunction systems applicable in organic photovoltaics. The theory is based on the results of extensive simulation calculations, which were carried out using various lattice models of the medium and different charge-carrier hopping mechanisms, over the parameter ranges typical for organic solar cells. It is found that the electron-hole separation probability can be conveniently described in terms of measurable parameters by a formula whose functional form is derived from the existing recombination theories, and which contains only one empirical parameter. For homogeneous systems, this parameter is determined by the structure of the medium and only weakly depends on the charge-carrier hopping mechanism. In the case of donor-acceptor heterojunction systems, this empirical parameter shows a simple power-law dependence on the product of the dielectric constant and inter-molecular contact distance. We also study the effect of heterojunction structure on the electron-hole separation probability and show that this probability decreases with increasing roughness of the heterojunction. By analyzing the simulation results obtained for systems under the influence of an external electric field, we find that the field effect on the electron-hole separation probability in donor-acceptor heterojunction systems is weaker than in homogeneous systems. We also describe this field effect by a convenient empirical formula.

  17. Interface control in organic heterojunction photovoltaic cells by phase separation processes

    NASA Astrophysics Data System (ADS)

    Heier, Jakob; Castro, Fernando A.; Nüesch, Frank; Hany, Roland

    2007-09-01

    Significant progress is being made in the photovoltaic energy conversion using organic semiconducting materials. One of the focuses of attention is the nanoscale morphology of the donor-acceptor mixture, to ensure efficient charge generation and loss-free charge transport at the same time. Using small molecule and polymer blend systems, recent efforts highlight the problems to ensure an optimized relationship between molecular structure, morphology and device properties. Here, we present two examples using a host/guest mixture approach for the controlled, sequential design of bilayer organic solar cell architectures that consist of a large interface area with connecting paths to the respective electrodes at the same time. In the first example, we employed polymer demixing during spin coating to produce a rough interface: surface directed spinodal decomposition leads to a 2-dimensional spinodal pattern with submicrometer features at the polymer-polymer interface. The second system consists of a solution of a blend of small molecules, where phase separation into a bilayer during spin coating is followed by dewetting. For both cases, the guest can be removed using a selective solvent after the phase separation process, and the rough host surface can be covered with a second active, semiconducting component. We explain the potential merits of the resulting interdigitated bilayer films, and explore to which extent polymer-polymer and surface interactions can be employed to create surface features in the nanometer range.

  18. Geminate electron-hole recombination in organic photovoltaic cells. A semi-empirical theory

    NASA Astrophysics Data System (ADS)

    Wojcik, Mariusz; Nowak, Artur; Seki, Kazuhiko

    2017-02-01

    We propose a semi-empirical theory which describes the geminate electron-hole separation probability in both homogeneous systems and donor-acceptor heterojunction systems applicable in organic photovoltaics. The theory is based on the results of extensive simulation calculations, which were carried out using various lattice models of the medium and different charge-carrier hopping mechanisms, over the parameter ranges typical for organic solar cells. It is found that the electron-hole separation probability can be conveniently described in terms of measurable parameters by a formula whose functional form is derived from the existing recombination theories, and which contains only one empirical parameter. For homogeneous systems, this parameter is determined by the structure of the medium and only weakly depends on the charge-carrier hopping mechanism. In the case of donor-acceptor heterojunction systems, this empirical parameter shows a simple power-law dependence on the product of the dielectric constant and inter-molecular contact distance. We also study the effect of heterojunction structure on the electron-hole separation probability and show that this probability decreases with increasing roughness of the heterojunction. By analyzing the simulation results obtained for systems under the influence of an external electric field, we find that the field effect on the electron-hole separation probability in donor-acceptor heterojunction systems is weaker than in homogeneous systems. We also describe this field effect by a convenient empirical formula.

  19. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells

    PubMed Central

    Hedley, Gordon J.; Ward, Alexander J.; Alekseev, Alexander; Howells, Calvyn T.; Martins, Emiliano R.; Serrano, Luis A.; Cooke, Graeme; Ruseckas, Arvydas; Samuel, Ifor D. W.

    2013-01-01

    The morphology of bulk heterojunction organic photovoltaic cells controls many of the performance characteristics of devices. However, measuring this morphology is challenging because of the small length-scales and low contrast between organic materials. Here we use nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high-performance blend of PTB7:PC71BM. We show that optimized blends consist of elongated fullerene-rich and polymer-rich fibre-like domains, which are 10–50 nm wide and 200–400 nm long. These elongated domains provide a concentration gradient for directional charge diffusion that helps in the extraction of charge pairs with 80% efficiency. In contrast, blends with agglomerated fullerene domains show a much lower efficiency of charge extraction of ~45%, which is attributed to poor electron and hole transport. Our results show that the formation of narrow and elongated domains is desirable for efficient bulk heterojunction solar cells. PMID:24343223

  20. Preparation of electron buffer layer with crystalline ZnO nanoparticles in inverted organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Lee, Donghwan; Kang, Taeho; Choi, Yoon-Young; Oh, Seong-Geun

    2017-06-01

    Zinc oxide (ZnO) nanoparticles synthesized through sol-gel method were used to fabricate the electron buffer layer in inverted organic photovoltaic cells (OPVs) after thermal treatment. To investigate the effect of thermal treatment on the formation of crystalline ZnO nanoparticles, the amorphous ZnO nanoparticles were treated via hydrothermal method. The crystalline phase of ZnO with well-ordered structure could be obtained when the amorphous phase of ZnO was processed under hydrothermal treatment at 170 °C. The crystalline structure of ZnO thin film in inverted organic solar cell could be obtained under relatively low annealing temperature by using thermally treated ZnO nanoparticles. The OPVs fabricated by using crystalline ZnO nanoparticles for electron buffer layer exhibited higher efficiency than the conventional ZnO nanoparticles. The best power conversion efficiency (PCE) was achieved for 7.16% through the ZnO film using the crystalline ZnO nanoparticles. The proposed method to prepared ZnO nanoparticles (NPs) could effectively reduce energy consumption during the fabrication of OPVs, which would greatly contribute to advantages such as lower manufacturing costs, higher productivity and application on flexible substrates.

  1. Lead-free Organic-Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives.

    PubMed

    Shi, Zejiao; Guo, Jia; Chen, Yonghua; Li, Qi; Pan, Yufeng; Zhang, Haijuan; Xia, Yingdong; Huang, Wei

    2017-02-03

    Organic-inorganic hybrid halide perovskites (e.g., MAPbI3 ) have recently emerged as novel active materials for photovoltaic applications with power conversion efficiency over 22%. Conventional perovskite solar cells (PSCs); however, suffer the issue that lead is toxic to the environment and organisms for a long time and is hard to excrete from the body. Therefore, it is imperative to find environmentally-friendly metal ions to replace lead for the further development of PSCs. Previous work has demonstrated that Sn, Ge, Cu, Bi, and Sb ions could be used as alternative ions in perovskite configurations to form a new environmentally-friendly lead-free perovskite structure. Here, we review recent progress on lead-free PSCs in terms of the theoretical insight and experimental explorations of the crystal structure of lead-free perovskite, thin film deposition, and device performance. We also discuss the importance of obtaining further understanding of the fundamental properties of lead-free hybrid perovskites, especially those related to photophysics.

  2. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale.

    PubMed

    Luo, Guoping; Ren, Xingang; Zhang, Su; Wu, Hongbin; Choy, Wallace C H; He, Zhicai; Cao, Yong

    2016-03-23

    Organic photovoltaic (OPV) devices, which can directly convert absorbed sunlight to electricity, are stacked thin films of tens to hundreds of nanometers. They have emerged as a promising candidate for affordable, clean, and renewable energy. In the past few years, a rapid increase has been seen in the power conversion efficiency of OPV devices toward 10% and above, through comprehensive optimizations via novel photoactive donor and acceptor materials, control of thin-film morphology on the nanoscale, device structure developments, and interfacial and optical engineering. The intrinsic problems of short exciton diffusion length and low carrier mobility in organic semiconductors creates a challenge for OPV designs for achieving optically thick and electrically thin device structures to achieve sufficient light absorption and efficient electron/hole extraction. Recent advances in the field of OPV devices are reviewed, with a focus on the progress in device architecture and optical engineering approaches that lead to improved electrical and optical characteristics in OPV devices. Successful strategies are highlighted for light wave distribution, modulation, and absorption promotion inside the active layer of OPV devices by incorporating periodic nanopatterns/nanostructures or incorporating metallic nanomaterials and nanostructures.

  3. Enhanced organic photovoltaic properties via structural modifications in PEDOT:PSS due to graphene oxide doping

    SciTech Connect

    Goutham, Raj P.; Sandhya, Rani V.; Kanwat, Anil; Jang, Jin

    2016-02-15

    Highlights: • Graphene oxide(GO) blended with PEDOT:PSS is used as HTL for PTB7:PCBM BHJ solar cells. • Increase in conductivity due to structural alterations in PEDOT:PSS by GO addition. • The structural alterations are reaveled under Raman spectroscopy, XPS and AFM. • PEDOT:PSS changed to extended coil due to addition of GO to PEDOT:PSS. • Enhanced conductivity after GO addition to PEDOT:PSS resulted in enhanced PCE. - Abstract: Poly(3,4-thylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS is a well-known conductive polymer for hole transport in organic devices, the properties of which can be enhanced by doping. Common dopants are metal oxides and nanoparticles. In this study, addition of graphene oxide (GO) to PEDOT:PSS as a dopant is addressed in organic photovoltaics (OPVs). With GO doping, electrical conductivity and transport properties of PEDOT:PSS increases due to structural alterations in the presence of −COOH and −OH functional groups in GO. These structural alterations have been revealed under detailed study of Raman spectra, X-ray photoelectron spectroscopy (XPS) analysis, Topographical and conductive Atom force microscopy (AFM/C-AFM) mapping. OPVs fabricated using PEDOT:PSS: GO (5:1) as a hole transport layer (HTL) exhibited a power conversion efficiency (PCE) of 7.68%, which was higher than the 7.01% that was obtained for the OPVs using pristine PEDOT:PSS.

  4. Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects.

    PubMed

    Santos, Elton J G; Wang, W L

    2016-09-21

    Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum-classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.

  5. Removal of fluorescence and ultraviolet absorbance of dissolved organic matter in reclaimed water by solar light.

    PubMed

    Wu, Qianyuan; Li, Chao; Wang, Wenlong; He, Tao; Hu, Hongying; Du, Ye; Wang, Ting

    2016-05-01

    Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter (DOM) was investigated in this study. Solar light significantly decreased the UV254 absorbance and fluorescence (FLU) intensity of reclaimed water. However, its effect on the dissolved organic carbon (DOC) value of reclaimed water was very limited. The decrease in the UV254 absorbance intensity and FLU excitation-emission matrix regional integration volume (FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV254 absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV254 absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV254 and FLU intensity were independent of light intensity. The peaks of the UV254 absorbance and FLU intensity with an apparent molecular weight (AMW) of 100Da to 2000Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change.

  6. Low-frequency noise properties of metal-organic-metal ultraviolet sensors

    NASA Astrophysics Data System (ADS)

    Su, Peng-Yin; Chuang, Ricky-Wenkuei; Chen, Chin-Hsiang; Kao, Tsung-Hsien

    2015-04-01

    For this study, the metal-organic-metal (MOM) ultraviolet (UV) sensors with organic 4,4‧,4‧‧-tris[3-methylphenyl(phenyl)amino]triphenylamine (m-MTDATA) thin films of various thicknesses were fabricated successfully, and their low-frequency noise (LFN) characteristics were also analyzed. The findings revealed that the UV-to-visible rejection ratio of the fabricated 80-nm-thick m-MTDATA UV sensor was approximately 7.81 when biased at 5 V, with a cutoff at 220 nm. With an incident light wavelength of 220 nm and an applied bias of 5 V, the measured responsivity of the 80-nm-thick m-MTDATA UV sensor was found to be 2.84 × 10-4 A/W. Furthermore, a noise-equivalent power (NEP) of 9.8 × 10-11 W and a detectivity (D*) of 8.3 × 108 cm Hz0.5 W-1 can be achieved using the fabricated 80-nm-thick m-MTDATA UV sensor.

  7. Organic molecules and nanoparticles in inorganic crystals: Vitamin C in CaCO3 as an ultraviolet absorber

    NASA Astrophysics Data System (ADS)

    Sato, H.; Ikeya, M.

    2004-03-01

    Organic molecules and nanoparticles embedded in inorganic crystalline lattices have been studied to add different properties and functions to composite materials. Calcium carbonate was precipitated by dropping an aqueous solution of CaCl2 into that of Na2CO3 containing dissolved vitamin C (ascorbic acid). The optical absorption ascribed to divalent ascorbate anions in the lattice was observed in the ultraviolet B (wavelength: 280-315 nm) region, while solid vitamin C exhibited absorption in the ultraviolet C (100-280 nm) region. The divalent ascorbate anion is only stable in CaCO3 due to the absence of oxygen molecules. Doping CaCO3 with nanoparticles of ZnO also enhanced the absorption in the ultraviolet A (315-380 nm) region. These composite materials are suggested for use as UV absorbers.

  8. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    PubMed

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk.

  9. Dependence of light-emitting and photovoltaic properties of dual-function organic diodes on carrier-transporting layers

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Nyeon; Choi, Mun Soo

    2013-10-01

    Dual-function photovoltaic organic light-emitting diodes (PVOEDs) have been investigated in this work. The PVOLEDs emit light when forward biased and generate electricity when backward biased. This dual function is based on the half-gap junction composed of 5,6,11,12-tetraphenylnaphthacene (rubrene) and C 60. The device structure was optimized through experiments using various organic materials for the electron-transporting layer (ETL) and electron-injection layer (EIL). Through this work, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), C 60 and LiF were selected as the ETL, electron-accepting layer and EIL, respectively. Using this device structure, we obtained a current efficiency of 0.27 cd/A for the light-emitting mode and a power-conversion efficiency of 1.95% for the photovoltaic mode.

  10. Optical, electrical, and magnetic field studies of organic materials for light emitting diodes and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Basel, Tek Prasad

    We studied optical, electrical, and magnetic field responses of films and devices based on organic semiconductors that are used for organic light emitting diodes (OLEDs) and photovoltaic (OPV) solar cell applications. Our studies show that the hyperfine interaction (HFI)-mediated spin mixing is the key process underlying various magnetic field effects (MFE) and spin transport in aluminum tris(8-hydroxyquinoline)[Alq3]-based OLEDs and organic spin-valve (OSV). Conductivity-detected magnetic resonance in OLEDs and magneto-resistance (MR) in OSVs show substantial isotope dependence. In contrast, isotope-insensitive behavior in the magneto-conductance (MC) of same devices is explained by the collision of spin ½ carriers with triplet polaron pairs. We used steady state optical spectroscopy for studying the energy transfer dynamics in films and OLEDs based on host-guest blends of the fluorescent polymer and phosphorescent molecule. We have also studied the magnetic-field controlled color manipulation in these devices, which provide a strong proof for the `polaron-pair' mechanism underlying the MFE in organic devices. The critical issue that hampers organic spintronics device applications is significant magneto-electroluminescence (MEL) at room temperature (RT). Whereas inorganic spin valves (ISVs) show RT magneto-resistance, MR>80%, however, the devices do not exhibit electroluminescence (EL). In contrast, OLEDs show substantive EL emission, and are particularly attractive because of their flexibility, low cost, and potential for multicolor display. We report a conceptual novel hybrid organic/inorganic spintronics device (h-OLED), where we employ both ISV with large MR at RT, and OLED that has efficient EL emission. We investigated the charge transfer process in an OPV solar cell through optical, electrical, and magnetic field measurements of thin films and devices based on a low bandgap polymer, PTB7 (fluorinated poly-thienothiophene-benzodithiophene). We found that

  11. How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells.

    PubMed

    Kulbak, Michael; Cahen, David; Hodes, Gary

    2015-07-02

    Hybrid organic-inorganic lead halide perovskite photovoltaic cells have already surpassed 20% conversion efficiency in the few years that they have been seriously studied. However, many fundamental questions still remain unanswered as to why they are so good. One of these is "Is the organic cation really necessary to obtain high quality cells?" In this study, we show that an all-inorganic version of the lead bromide perovskite material works equally well as the organic one, in particular generating the high open circuit voltages that are an important feature of these cells.

  12. New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177

    SciTech Connect

    Olson, D.

    2014-08-01

    This CRADA will develop improved thin film organic solar cells using a new n-type semiconducting polymer. High efficiency photovoltaics (PVs) based on inorganic semiconductors have good efficiencies (up to 30%) but are extremely expensive to manufacture. Organic PV technology has the potential to overcome this problem through the use of high-throughput production methods like reel-to-reel printing on flexible substrates. Unfortunately, today's best organic PVs have only a few percent efficiency, a number that is insufficient for virtually all commercial applications. The limited choice of stable n-type (acceptor) organic semiconductor materials is one of the key factors that prevent the further improvement of organic PVs. TDA Research, Inc. (TDA) previously developed a new class of electron-deficient (n-type) conjugated polymers for use in organic light emitting diodes (OLEDs). During this project TDA in collaboration with the National Renewable Energy Laboratory (NREL) will incorporate these electron-deficient polymers into organic photovoltaics and investigate their performance. TDA Research, Inc. (TDA) is developing new materials and polymers to improve the performance of organic solar cells. Materials being developed at TDA include spin coated transparent conductors, charge injection layers, fullerene derivatives, electron-deficient polymers, and three-phase (fullerene/polythiophene/dye) active layer inks.

  13. Enhancement in Organic Photovoltaic Efficiency through the Synergistic Interplay of Molecular Donor Hydrogen Bonding and -Stacking

    SciTech Connect

    Shewmon, Nathan; Watkins, Davita; Galindo, Johan; Zerdan, Raghida; Chen, Jihua; Keum, Jong Kahk; Roitberg, Adrian; Xue, Jiangeng; Castellano, Ronald

    2015-07-20

    For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom-up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H-bonding) interactions between π-conjugated electron donor molecules encourage formation of vertically aligned donor π-stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groups that are either capable or incapable of self-complementary H-bonding. When applied to OPVs, the H-bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H-bond promoted assembly results in redshifted absorption (in neat films and donor:C 60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X-ray scattering reveals a synergistic interplay of lateral H-bonding interactions and vertical π-stacking for directing the favorable morphology of the BHJ.

  14. Detailed analysis of ultrathin fluorescent red dye interlayer for organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zang, Yue; Yu, Jun-Sheng; Wang, Na-Na; Jiang, Ya-Dong

    2011-01-01

    The influence of an ultrathin 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) fluorescent dye layer at donor/acceptor heterojunction on the performance of small-molecule organic photovoltaic (OPV) cell is studied. The structure of OPV cell is of indium-tin oxide (ITO)/copper phthalocyanine (CuPc)/DCJTB/fullerene (C60)/bathophenanthroline (Bphen)/Ag. The results show that open circuit voltage (VOC) increases to 0.57 V as the film thickness of DCJTB layer increases from 0.2 to 2.0 nm. By using an equivalent circuit model, the enhancement of VOC is found to be attributed to the reduced reverse saturation current density (JS) which is due to the lower highest occupied molecular orbital (HOMO) level in DCJTB than that in CuPc. Also, the short circuit current density (JSC) is affected when the DCJTB layer becomes thicker, resulting from the high series resistance RSA due to the low charge carrier mobility of fluorescent red dye.

  15. Broad spectral sensitivity and improved efficiency in CuPc/Sub-Pc organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Kumar, Hemant; Kumar, Pankaj; Bhardwaj, Ramil; Sharma, G. D.; Chand, Suresh; Jain, S. C.; Kumar, Vikram

    2009-01-01

    We demonstrate organic photovoltaic devices incorporating two donors, namely, copper phthalocyanine (CuPc) and boron sub-phthalocyanine chloride (Sub-Pc) in association with single acceptor fullerene (C60) with sensitivity extending across the visible solar spectrum. It has been found that the absorption in different spectral regions in CuPc and Sub-Pc results in efficient harvesting of incident light photons which leads to enhanced power conversion efficiency (η). An enhancement in η from 0.64%, in the device architecture indium-tin-oxide (ITO)/CuPc(20 nm)/C60(40 nm)/bathophenanthroline (BPhen) (8 nm)/Al(150 nm), to ~1.3% in the optimized device having a 2 nm layer of Sub-Pc in the geometry ITO/CuPc(18 nm)/Sub-Pc(2 nm)/C60 (40 nm)/BPhen (8 nm)/Al(150 nm) has been observed. This enhancement in η is dominantly attributed to the increment in short circuit current density (Jsc) due to efficient photon harvesting by incorporation of dual donors.

  16. Reconciling macro- with nano- carrier mobility measurements in organic photovoltaic blends

    SciTech Connect

    Omar, Yamila M.; Maragliano, Carlo; Chiesa, Matteo; Al Ghaferi, Amal; Stefancich, Marco

    2014-04-28

    Conductive atomic force microscopy (CAFM) is a valuable tool for electrical characterization of organic photovoltaics. However, the quantitative interpretation of the data is complicated by an apparent disagreement between the carrier mobilities calculated by CAFM and those determined by macroscopic measurements, with no apparent physical explanation for the discrepancy. In the present work, the space charge limited current model (specifically Mott-Gurney law) and its assumptions are assessed, and a physical model reconciling this discrepancy is proposed. Its applicability on the tip-sample system used in CAFM measurements is discussed, by accounting for the high electric fields arising around the tip of the CAFM probe and affecting carrier mobility. Charge carrier mobility is calculated from current-voltage curves obtained from conductive atomic force microscopy spectroscopy scans done on Poly(3-hexylthiophene-2,5-diyl): 95% PC{sub 70}BM ([6,6]-Phenyl-C71-butyric acid methyl ester)/5% PC{sub 60}BM ([6,6]-Phenyl-C61-butyric acid methyl ester) samples for different concentration ratios of donor and acceptor. We show that charge carrier mobilities obtained with this model are in satisfactory agreement with macroscopic measurements available in literature.

  17. Interpreting impedance spectra of organic photovoltaic cells—Extracting charge transit and recombination rates

    SciTech Connect

    Mullenbach, Tyler K.; Zou, Yunlong; Holmes, Russell J.; Holst, James

    2014-09-28

    Impedance spectroscopy has been widely used to extract the electron-hole recombination rate constant in organic photovoltaic cells (OPVs). This technique is typically performed on OPVs held at open-circuit. Under these conditions, the analysis is simplified with recombination as the only pathway for the decay of excess charge carriers; transit provides no net change in the charge density. In this work, we generalize the application and interpretation of impedance spectroscopy for bulk heterojunction OPVs at any operating voltage. This, in conjunction with reverse bias external quantum efficiency measurements, permits the extraction of both recombination and transit rate constants. Using this approach, the transit and recombination rate constants are determined for OPVs with a variety of electron donor-acceptor pairings and compositions. It is found that neither rate constant individually is sufficient to characterize the efficiency of charge collection in an OPV. It is demonstrated that a large recombination rate constant can be accompanied by a large transit rate constant, thus fast recombination is not necessarily detrimental to OPV performance. Extracting the transit and recombination rate constants permits a detailed understanding of how OPV architecture and processing conditions impact the transient behavior of charge carriers, elucidating the origin of optimum device configurations.

  18. Analysis of degradation mechanisms in donor-acceptor copolymer based organic photovoltaic devices using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Srivastava, S. B.; Sonar, P.; Singh, S. P.

    2016-09-01

    The stability of organic photovoltaic (OPV) devices in ambient conditions has been a serious issue which needs to be addressed and resolved timely. In order to probe the degradation mechanism in a donor-acceptor polymer PDPP-TNT: PC71BM bulk heterojunction based OPV devices, we have studied current density-voltage (J-V) behavior and impedance spectroscopy of fresh and aged devices. The current-voltage characteristic of optimized fresh devices exhibit a short circuit current density (J sc) of 8.9 mA cm-2, open circuit voltage (V oc) of 0.79 V, fill factor (FF) of 54.6%, and power conversion efficiency (PCE) of 3.8%. For aged devices, J sc, V oc, FF, and PCE were reduced to 57.3%, 89.8%, 44.3% and 23.7% of its initial value, respectively. The impedance spectra measured under illumination for these devices were successfully fitted using a CPE-based circuit model. For aged devices, the low-frequency response in impedance spectra suggests an accumulation of the photo-generated charge carriers at the interfaces which leads to a significant lowering in fill factor. Such degradation in device performance is attributed to the incorporation of oxygen and water molecules in devices. An increase in the recombination resistance indicates a deterioration of free charge carrier generation and conduction in devices.

  19. Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions

    PubMed Central

    Nam, Minwoo; Cha, Minjeong; Lee, Hyun Hwi; Hur, Kahyun; Lee, Kyu-Tae; Yoo, Jaehong; Han, Il Ki; Kwon, S. Joon; Ko, Doo-Hyun

    2017-01-01

    A major impediment to the commercialization of organic photovoltaics (OPVs) is attaining long-term morphological stability of the bulk heterojunction (BHJ) layer. To secure the stability while pursuing optimized performance, multi-component BHJ-based OPVs have been strategically explored. Here we demonstrate the use of quaternary BHJs (q-BHJs) composed of two conjugated polymer donors and two fullerene acceptors as a novel platform to produce high-efficiency and long-term durable OPVs. A q-BHJ OPV (q-OPV) with an experimentally optimized composition exhibits an enhanced efficiency and extended operational lifetime than does the binary reference OPV. The q-OPV would retain more than 72% of its initial efficiency (for example, 8.42–6.06%) after a 1-year operation at an elevated temperature of 65 °C. This is superior to those of the state-of-the-art BHJ-based OPVs. We attribute the enhanced stability to the significant suppression of domain growth and phase separation between the components via kinetic trapping effect. PMID:28091606

  20. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells.

    PubMed

    Ryuzaki, Sou; Onoe, Jun

    2013-01-01

    Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells.

  1. Fast Printing and In-Situ Morphology Observation of Organic Photovoltaics using Slot-Die Coating

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Ferdous, Sunzida; Wang, Cheng; Hexamer, Alexander; Russell, Thomas; Cheng Wang Collaboration; Thomas Russell Team

    2014-03-01

    The solvent-processibility of polymer semiconductors is a key advantage for the fabrication of large area, organic bulk-heterojunction (BHJ) photovoltaic devices. Most reported power conversion efficiencies (PCE) are based on small active areas, fabricated by spin-coating technique. In general, this does not reflect device fabrication in an industrial setting. To realize commercial viability, devices need to be fabricated in a roll-to-roll fashion. The evolution of the morphology associated with different processing parameters, like solvent choice, concentration and temperature, needs to be understood and controlled. We developed a mini slot-die coater, to fabricate BHJ devices using various low band gap polymers mixed with phenyl-C71-butyric acid methyl ester (PCBM). Solvent choice, processing additives, coating rate and coating temperatures were used to control the final morphology. Efficiencies comparable to lab-setting spin-coated devices are obtained. The evolution of the morphology was monitored by in situ scattering measurements, detecting the onset of the polymer chain packing in solution that led to the formation of a fibrillar network in the film.

  2. How disorder controls the kinetics of triplet charge recombination in semiconducting organic polymer photovoltaics.

    PubMed

    Bittner, Eric R; Lankevich, Vladimir; Gélinas, Simon; Rao, Akshay; Ginger, David A; Friend, Richard H

    2014-10-14

    Recent experiments by Rao et al. (Nature, 2013, 500, 435-439) indicate that recombination of triplet charge-separated states is suppressed in organic polymer-fullerene based bulk-heterojunction (BHJ) photovoltaic cells exhibiting a high degree of crystallinity in the fullerene phase relative to systems with more disorder. In this paper, we use a series of Frenkel-exciton lattice models to rationalize these results in terms of wave-function localization, interface geometry, and density of states. In one-dimensional co-linear and co-facial models of the interface, increasing local energetic disorder in one phase localizes the interfacial triplet charge-transfer ((3)CT) states and increases the rate at which these states relax to form lower-energy triplet excitons. In two dimensional BHJ models, energetic disorder within the fullerene phase plays little role in further localizing states pinned to the interface. However, inhomogeneous broadening introduces strong coupling between the interfacial (3)CT and nearby fullerene triplet excitons and can enhance the decay of these states in systems with higher degrees of energetic disorder.

  3. Analysis of Charge Carrier Transport in Organic Photovoltaic Thin Films and Nanoparticle Assemblies

    NASA Astrophysics Data System (ADS)

    Han, Xu; Maroudas, Dimitrios

    2014-03-01

    We present a systematic analysis of charge carrier transport in organic photovoltaic (OPV) devices based on phenomenological charge carrier transport models. These transient drift-diffusion-reaction models describe electron and hole transport and their trapping, detrapping, and recombination self-consistently with Poisson's equation for the electric field in the active layer. We predict transient currents in devices with active layers composed of P3HT, PCBM, and PBTDV polymers, as well as donor-acceptor blends. The propensity of the material to generate charge, zero-field carrier mobilities, as well as trapping, detrapping, and recombination rate coefficients are determined by fitting the modeling predictions to experimental data of photocurrent evolution. We have investigated effects of material structure and morphology by comparing the fitting outcomes for active layers consisting of both thin films and nanoparticle assemblies. We have also analyzed the effect on charge carrier transport of nanoparticle surface characteristics, as well as of thermal annealing of both thin-film and nanoparticle-assembly active layers. The model predictions provide valuable input toward synthesis of new nanoparticle assemblies that lead to improved OPV device performance.

  4. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics.

    PubMed

    Choi, Minjung; Kang, Gumin; Shin, Dongheok; Barange, Nilesh; Lee, Chang-Won; Ko, Doo-Hyun; Kim, Kyoungsik

    2016-05-25

    Strategies to confine electromagnetic field within ultrathin film emerge as essential technologies for applications from thin-film solar cells to imaging and sensing devices. We demonstrate a lithography-free, low-cost, large-scale method to realize broadband ultrathi-film metal-dielectric-metal (MDM) absorbers, by exploiting gap-plasmon resonances for strongly confined electromagnetic field. A two-steps method, first organizing Au nanoparticles via thermal dewetting and then transferring the nanoparticles to a spacer-reflector substrate, is used to achieve broader absorption bandwidth by manipulating geometric shapes of the top metallic layer into hemiellipsoids. A fast-deposited nominal Au film, instead of a conventional slow one, is employed in the Ostwald ripening process to attain hemiellipsoidal nanoparticles. A polymer supported transferring step allows a wider range of dewetting temperature to manipulate the nanoparticles' shape. By incorporating circularity with ImageJ software, the geometries of hemiellipsoidal nanoparticles are quantitatively characterized. Controlling the top geometry of MDM structure from hemisphere to hemiellipsoid increases the average absorption at 500-900 nm from 23.1% to 43.5% in the ultrathin film and full width at half-maximum of 132-324 nm, which is consistently explained by finite-difference time-domain simulation. The structural advantages of our scheme are easily applicable to thin-film photovoltaic devices because metal electrodes can act as metal reflectors and semiconductor layers as dielectric spacers.

  5. In situ formation of organic-inorganic hybrid nanostructures for photovoltaic applications.

    PubMed

    Wood, Sebastian; Garnett, Oliver; Tokmoldin, Nurlan; Tsoi, Wing C; Haque, Saif A; Kim, Ji-Seon

    2014-01-01

    The performance of hybrid (organic-inorganic) photovoltaic devices is critically dependent on the thin film morphology. This work studies the film formation process using the in situ thermal decomposition of a soluble precursor to form a well-distributed network of CdS nanoparticles within a poly(3-hexylthiophene) (P3HT) polymer matrix. Resonant Raman spectroscopy is used to probe the formation of the inorganic nanoparticles and the corresponding changes in the molecular order of the polymer. We find that the CdS precursor decomposes rapidly upon heating to 160 °C, but that this has a disruptive effect on the P3HT. The extent of this disruption can be controlled by adjusting the annealing temperature, and nanowire aggregates of P3HT are found to have increased susceptibility. Atomic force microscopy reveals that at high temperatures (>200 °C), cracks form in the film, resulting in a 'plateau'-like microstructure. In order to retain the preferable 'granular' microstructure and to control the molecular disruption, low decomposition temperatures are needed. This work identifies a particular problem for optimising the hybrid thin film morphology and shows how it can be partially overcome.

  6. Efficient Organic Photovoltaics Utilizing Nanoscale Heterojunctions in Sequentially Deposited Polymer/fullerene Bilayer

    PubMed Central

    Seok, Jeesoo; Shin, Tae Joo; Park, Sungmin; Cho, Changsoon; Lee, Jung-Yong; Yeol Ryu, Du; Kim, Myung Hwa; Kim, Kyungkon

    2015-01-01

    A highly efficient sequentially deposited bilayer (SD-bilayer) of polymer/fullerene organic photovoltaic (OPV) device is developed via the solution process. Herein, we resolve two essential problems regarding the construction of an efficient SD-bilayer OPV. First, the solution process fabrication of the SD-bilayer is resolved by incorporating an ordering agent (OA) to the polymer solution, which improves the ordering of the polymer chain and prevents the bottom-layer from dissolving into the top-layer solution. Second, a non-planar heterojunction with a large surface area is formed by the incorporation of a heterojunction agent (HA) to the top-layer solution. Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) is used for the bottom-layer and phenyl-C71-butyric-acid-methyl ester (PC70BM) is used for the top-layer. The SD-bilayer OPV produced utilizing both an OA and HA exhibits a power conversion efficiency (PCE) of 7.12% with a high internal quantum efficiency (IQE). We believe our bilayer system affords a new way of forming OPVs distinct from bulk heterojunction (BHJ) systems and offers a chance to reconsider the polymers that have thus far shown unsatisfactory performance in BHJ systems. PMID:25670623

  7. Effect of annealing copper phthalocyanine on the performance of interdigitated bulk-heterojunction organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Wang, N. N.; Yu, J. S.; Yuan, Z. L.; Jiang, Y. D.

    2012-05-01

    Organic photovoltaic (OPV) cells with improved efficiency using thermal annealing-induced nanostructured copper phthalocyanine as a donor layer were fabricated. A power conversion efficiency of 1.47% in the OPV cell with interdigitated CuPc/C60 bulk heterojunction has been obtained under AM 1.5 solar illumination at an intensity of 100 mW/cm2, which is higher than 0.63% of CuPc/C60 planar cell. Through varying the annealing temperature of CuPc films, the influence of interface morphology and crystallinity of CuPc films on the performance of OPV cells was systematically studied. Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and spectrophotometry were used to characterize the CuPc films. The results showed that at an optimal annealing temperature, the crystalline nature and vertical orientation of nanostructured CuPc have been modified, which can facilitate the separation of interfacial electron-hole pairs and charge carrier transport to electrodes.

  8. Optimization of hybrid organic-inorganic interdigitated photovoltaic device structure using a 2D diffusion model.

    PubMed

    Krali, Emiljana; Curry, Richard J

    2011-04-26

    To improve the efficiency of organic photovoltaic devices the inclusion of semiconducting nanoparticles such as PbS has been used to enhance near-infrared absorption. Additionally the use of interdigitated heterojunctions has been explored as a means of improving charge extraction. In this paper we provide a two-dimensional model taking into account these approaches with the aim of predicting an optimized device geometry to maximize the efficiency. The steady-state exciton population has been calculated in each of the active regions taking into account the full optical response based on using a finite difference approach to obtain approximate numerical solutions to the 2D exciton diffusion equation. On the basis of this we calculate the contribution of each active material to the device short circuit current and power conversion efficiency. We show that optimized structures can lead to power conversions efficiencies of ∼50% compared to a maximum of ∼17% for planar heterojunction devices. To achieve this the interdigitated region thickness should be ∼800 nm with PbS and C(60) widths of ∼60 and 20 nm, respectively. Even modest nanopatterning using much thinner active regions provides improvements in efficiency and may be approached using a variety of methods including nanoimprinting lithography, nanotemplating, or the incorporation of presynthesized nanorod structures.

  9. Electrosprayed molybdenum trioxide aqueous solution and its application in organic photovoltaic cells.

    PubMed

    Suzuki, Katsumi; Fukuda, Takeshi; Liao, Yingjie

    2014-01-01

    A molybdenum trioxide thin film with smooth surface and uniform thickness was successfully achieved by an electrospray deposition method using an aqueous solution with a drastically low concentration of 0.05 wt%. Previous papers demonstrated that an additive solvent technique is useful for depositing the thin film by the electrospray deposition, and the high vapor pressure and a low surface tension of an additive solvent were found to be important factors. As a result, the smooth molybdenum trioxide thin film was obtained when the acetonitrile was used as the additive solvent. Furthermore, the vapor pressure of acetone is much higher than that of aqueous solution, and this indicates that the acetone is easily evaporated after spraying from the glass capillary. By optimizing a concentration of acetone in the molybdenum aqueous solution, a minimum root mean square roughness of the MoO3 thin film became 3.7 nm. In addition, an organic photovoltaic cell was also demonstrated using the molybdenum trioxide as a hole transport layer. Highest photoconversion efficiency was 1.72%, a value comparable to that using conventional thermal evaporation process even though the aqueous solution was used for the solution process. The photovonversion efficiency was not an optimized value, and the higher value can be achieved by optimizing the coating condition of the active layer.

  10. Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions

    NASA Astrophysics Data System (ADS)

    Nam, Minwoo; Cha, Minjeong; Lee, Hyun Hwi; Hur, Kahyun; Lee, Kyu-Tae; Yoo, Jaehong; Han, Il Ki; Kwon, S. Joon; Ko, Doo-Hyun

    2017-01-01

    A major impediment to the commercialization of organic photovoltaics (OPVs) is attaining long-term morphological stability of the bulk heterojunction (BHJ) layer. To secure the stability while pursuing optimized performance, multi-component BHJ-based OPVs have been strategically explored. Here we demonstrate the use of quaternary BHJs (q-BHJs) composed of two conjugated polymer donors and two fullerene acceptors as a novel platform to produce high-efficiency and long-term durable OPVs. A q-BHJ OPV (q-OPV) with an experimentally optimized composition exhibits an enhanced efficiency and extended operational lifetime than does the binary reference OPV. The q-OPV would retain more than 72% of its initial efficiency (for example, 8.42-6.06%) after a 1-year operation at an elevated temperature of 65 °C. This is superior to those of the state-of-the-art BHJ-based OPVs. We attribute the enhanced stability to the significant suppression of domain growth and phase separation between the components via kinetic trapping effect.

  11. Organic photovoltaic devices with colloidal TiO2 nanorods as key functional components.

    PubMed

    Loiudice, Anna; Rizzo, Aurora; De Marco, Luisa; Belviso, Maria R; Caputo, Gianvito; Cozzoli, P Davide; Gigli, Giuseppe

    2012-03-21

    We report on a novel approach to integrate colloidal anatase TiO(2) nanorods as key functional components into polymer bulk heterojunction (BHJ) photovoltaic devices by means of mild, all-solution-based processing techniques. The successful integration of colloidal nanoparticles in organic solar cells relies on the ability to remove the long chain insulating ligands, which indeed severely reduces the charge transport. To this aim we have exploited the concomitant mechanisms of UV-light-driven photocatalytic removal of adsorbed capping ligands and hydrophilicization of TiO(2) surfaces in both solid-state and liquid-phase conditions. We have demonstrated the successful integration of the UV-irradiated films and colloidal solutions of TiO(2) nanorods in inverted and conventional solar cell geometries, respectively. The inverted devices show a power conversion efficiency of 2.3% that is a ca. three times improvement over their corresponding cell counterparts incorporating untreated TiO(2), demonstrating the excellent electron-collecting property of the UV-irradiated TiO(2) films. The integration of UV-treated TiO(2) solutions in conventional devices results in doubled power conversion efficiency for the thinner active layer and in maximum power conversion efficiency of 2.8% for 110 nm thick devices. In addition, we have demonstrated, with the support of device characterizations and optical simulations, that the TiO(2) nanocrystal buffer layer acts both as electron-transporting/hole-blocking material and optical spacer.

  12. Inverted organic photovoltaic cells using three-dimensionally interconnected TiO2 nanotube arrays.

    PubMed

    Kim, Sehwan; Koh, Joo Hwan; Kim, Jong Hak; Kim, Eunkyoung

    2013-04-01

    Here we describe a simple sol-gel method to fabricate inverted organic photovoltaics (OPV) using interconnected TiO2 nanotubes (inter-TiO2 NT) as an efficient electron transport layer. Three-dimensionally inter-TiO2 NT arrays were prepared by spin-coating a TiO2 precursor solution on the ZnO nanorod (NR) template grown via the liquid phase deposition method. Upon etching of ZnO NRs, inter-TiO2 NT arrays were generated, as confirmed by X-ray diffraction (XRD), energy-filtering transmission electron microscopy (EF-TEM) and field-emission scanning electron microscopy (FE-SEM). A blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) deeply infiltrated into the pores of inter-TiO2 NT, as revealed by FE-SEM and atomic force microscopy (AFM) images. The power conversion efficiency (PCE) of inter-TiO2 NT-based inverted OPV reached 3.0% at an air mass of 1.5 (100 mW/cm2), which is a 25% performance improvement compared to flat TiO2 films derived from the sol-gel process or commercial paste. The efficiency improvement arises from facilitated charge separation and collection due to the increased TiO2 interface arera and efficient transport pathway.

  13. Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging

    SciTech Connect

    Dyck, Ondrej; Hu, Sheng; Das, Sanjib; Keum, Jong; Xiao, Kai; Khomami, Bamin; Duscher, Gerd

    2015-11-24

    Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. Our paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. One complementary spectrum image capturing the carbon and sulfur core loss edges is compared with the plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We also show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.

  14. Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    van de Wiel, H. J.; Galagan, Y.; van Lammeren, T. J.; de Riet, J. F. J.; Gilot, J.; Nagelkerke, M. G. M.; Lelieveld, R. H. C. A. T.; Shanmugam, S.; Pagudala, A.; Hui, D.; Groen, W. A.

    2013-12-01

    Highly conductive screen printed metallic (silver) structures (current collecting grids) combined with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are a viable replacement for indium tin oxide (ITO) and inkjet printed silver as transparent electrode materials. To provide successful integration into organic photovoltaic (OPV) devices, screen printed silver current collecting grids should be embedded into a substrate to avoid topology issues. In this study micron-thick conductive structures are embedded and integrated into OPV devices. The embedded structures are produced roll-to-roll with optimized process settings and materials. Topology measurements show that the embedded grids are well suited for integration into OPV devices since the surface is almost without spikes and has low surface roughness. JV measurements of OPV devices with embedded structures on a polyethylene terephthalate/silicon nitride (PET/SiN) substrate show an efficiency of 2.15%, which is significantly higher than identical flexible devices with ITO (1.02%) and inkjet printed silver (1.48%). The use of embedded screen printed silver instead of ITO and inkjet printed silver in OPV devices will allow for higher efficiency devices which can be produced with larger design and process freedom.

  15. Contribution of Aggregate States and Energetic Disorder to a Squaraine System Targeted for Organic Photovoltaic Devices.

    PubMed

    Zheng, Chenyu; Penmetcha, Anirudh Raju; Cona, Brandon; Spencer, Susan D; Zhu, Bi; Heaphy, Patrick; Cody, Jeremy A; Collison, Christopher J

    2015-07-21

    Squaraine dyes have significant potential for use in organic photovoltaic devices because their chemical and packing structure tunability leads to a broad solid state panchromaticity. Nevertheless, broadening of the spectrum does not always give rise to increasing power conversion efficiencies. Furthermore, the same processing strategy used to make devices from different squaraines does not lead to the same optimized performance. In this work, by varying the environmental conditions of a set of anilinic squaraines, we demonstrate that spin-cast thin films are made up of a complex set of states, with each state contributing differently to the overall device efficiency. We demonstrate crystallochromy in that small changes in the packing structure give rise to dramatically different absorption spectra. Through a remarkable comparison between squaraines in poly(methyl methacrylate) solid solution and squaraine:PC60BM blends, we also show long-range and orientational disorder broadening, which distorts the ability to correlate qualitative spectroscopic assessment with an understanding of the device mechanism. We conclude that a full quantitative assessment of the populations of each excited state must be carried out in order to make progress toward an improved understanding of each state's contribution to charge transfer at the bulk heterojunction interface.

  16. Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency.

    PubMed

    Menke, S Matthew; Luhman, Wade A; Holmes, Russell J

    2013-02-01

    Photoconversion in planar-heterojunction organic photovoltaic cells (OPVs) is limited by a short exciton diffusion length (L(D)) that restricts migration to the dissociating electron donor/acceptor interface. Consequently, bulk heterojunctions are often used to realize high efficiency as these structures reduce the distance an exciton must travel to be dissociated. Here, we present an alternative approach that seeks to directly engineer L(D) by optimizing the intermolecular separation and consequently, the photophysical parameters responsible for excitonic energy transfer. By diluting the electron donor boron subphthalocyanine chloride into a wide-energy-gap host material, we optimize the degree of interaction between donor molecules and observe a ~50% increase in L(D). Using this approach, we construct planar-heterojunction OPVs with a power conversion efficiency of (4.4 ± 0.3)%, > 30% larger than the case of optimized devices containing an undiluted donor layer. The underlying correlation between L(D) and the degree of molecular interaction has wide implications for the design of both OPV active materials and device architectures.

  17. Photoexcitation and Photochemical Stability of Organic Photovoltaic Materials from First Principles

    NASA Astrophysics Data System (ADS)

    Sai, Na; Leung, Kevin

    2013-03-01

    The development of high efficiency organic photovoltaics (OPV) has recently become enabled by the synthesis of new conjugated polymers with low band gap that allow light absorption over a broader range of the spectrum. Stability of these new polymers, a key requirement for commercialization, has not yet received sufficient attention. Here, we report first-principles theoretical modeling of photo-induced degradation of OPV polymers carried out using ab-initio density functional theory (DFT). We report photooxidation routes and reaction products for reactive species including superoxide oxygen anions and hydroxyl groups interacting with the standard workhorse OPV polymer, poly(3-hexyl-thiophene) (P3HT). We discuss theoretical issues and challenges affecting the modeling such reactions in OPV polymers. We also discuss the application of theoretical methods to low-band-gap polymers, and in particular, the effect of the chemical substitution on the photoexcitation properties of these new polymers. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work is supported by the Energy Frontier Research Center funded by the U.S. DOE Office of Basic Energy Sciences under Award number DE-SC0001091.

  18. The Miscibility of PCBM in Low Band-Gap Conjugated Polymers in Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Chen, Huipeng; You, Wei; Peet, Jeff; Azoulay, Jason; Bazan, Guillermo; Dadmun, Mark

    2012-02-01

    Understanding the morphology of the photoactive layer in organic photovoltaics (OPVs) is essential to optimizing conjugated polymer-based solar cells to meet the targeted efficiency of 10%. The miscibility and interdiffusion of components are among the key elements that impact the development of morphology and structure in OPV active layers. This study uses neutron reflectivity to correlate the structure of low band gap polymers to their miscibility with PCBM. Several low band gap polymers that exhibit power conversion efficiencies exceeding 7%, including PBnDT-DTffBT were examined. The intermixing of low band-gap polymer and PCBM bilayers was monitored by neutron reflectivity before and after thermal annealing, providing quantification of the miscibility and interdiffusion of PCBM within the low band gap polymer layer. These results indicate that the miscibility of PCBM ranges from 3% to 26% with the low band-gap polymers studied. The correlation between low band gap polymer structure and miscibility of PCBM will also be discussed.

  19. Enhancement in Organic Photovoltaic Efficiency through the Synergistic Interplay of Molecular Donor Hydrogen Bonding and -Stacking

    DOE PAGES

    Shewmon, Nathan; Watkins, Davita; Galindo, Johan; ...

    2015-07-20

    For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom-up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H-bonding) interactions between π-conjugated electron donor molecules encourage formation of vertically aligned donor π-stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groupsmore » that are either capable or incapable of self-complementary H-bonding. When applied to OPVs, the H-bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H-bond promoted assembly results in redshifted absorption (in neat films and donor:C 60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X-ray scattering reveals a synergistic interplay of lateral H-bonding interactions and vertical π-stacking for directing the favorable morphology of the BHJ.« less

  20. Site-specific probing of charge transfer dynamics in organic photovoltaics

    SciTech Connect

    Arion, Tiberiu; Roth, Friedrich; Hussain, Zahid; Eberhardt, Wolfgang

    2015-03-23

    We report the site-specific probing of charge-transfer dynamics in a prototype system for organic photovoltaics (OPVs) by picosecond time-resolved X-ray photoelectron spectroscopy. A layered system consisting of approximately two monolayers of C{sub 60} deposited on top of a thin film of Copper-Phthalocyanine (CuPC) is excited by an optical pump pulse and the induced electronic dynamics are probed with 590 eV X-ray pulses. Charge transfer from the electron donor (CuPC) to the acceptor (C{sub 60}) and subsequent charge carrier dynamics are monitored by recording the time-dependent C 1s core level photoemission spectrum of the system. The arrival of electrons in the C{sub 60} layer is readily observed as a completely reversible, transient shift of the C{sub 60} associated C 1s core level, while the C 1s level of the CuPC remains unchanged. The capability to probe charge transfer and recombination dynamics in OPV assemblies directly in the time domain and from the perspective of well-defined domains is expected to open additional pathways to better understand and optimize the performance of this emerging technology.

  1. Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging

    DOE PAGES

    Dyck, Ondrej; Hu, Sheng; Das, Sanjib; ...

    2015-11-24

    Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. Our paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. One complementary spectrum image capturing the carbon and sulfur core loss edges is compared with themore » plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We also show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.« less

  2. Doped Interlayers for Improved Selectivity in Bulk Herterojunction Organic Photovoltaic Devices

    DOE PAGES

    Mauger, Scott A.; Glasser, Melodie P.; Tremolet de Villers, Bertrand J.; ...

    2016-01-21

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is less selective for holes in inverted-architecture organic photovoltaic (OPV) than it is in a conventional-architecture OPV device due differences between the interfacial-PSS concentration at the top and bottom of the PEDOT:PSS layer. In this work, thin layers of polysulfonic acids are inserted between the P3HT:ICBA bulk heterojunction (BHJ) active layer and PEDOT:PSS to create a higher concentration of acid at this interface and, therefore, mimic the distribution of materials present in a conventional device. Upon thermal annealing, this acid layer oxidizes P3HT, creating a thin p-type interlayer of P3HT+/acid- on top of the BHJ. Using x-raymore » absorption spectroscopy, Kelvin probe and ellipsometry measurements, this P3HT+/acid- layer is shown to be insoluble in water, indicating it remains intact during the subsequent deposition of PEDOT:PSS. Current density - voltage measurements show this doped interlayer reduces injected dark current while increasing both open-circuit voltage and fill factor through the creation of a more hole selective BHJ-PEDOT:PSS interface.« less

  3. Doped Interlayers for Improved Selectivity in Bulk Herterojunction Organic Photovoltaic Devices

    SciTech Connect

    Mauger, Scott A.; Glasser, Melodie P.; Tremolet de Villers, Bertrand J.; Duong, Vincent V.; Ayzner, Alexander L.; Olson, Dana C.

    2016-01-21

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is less selective for holes in inverted-architecture organic photovoltaic (OPV) than it is in a conventional-architecture OPV device due differences between the interfacial-PSS concentration at the top and bottom of the PEDOT:PSS layer. In this work, thin layers of polysulfonic acids are inserted between the P3HT:ICBA bulk heterojunction (BHJ) active layer and PEDOT:PSS to create a higher concentration of acid at this interface and, therefore, mimic the distribution of materials present in a conventional device. Upon thermal annealing, this acid layer oxidizes P3HT, creating a thin p-type interlayer of P3HT+/acid- on top of the BHJ. Using x-ray absorption spectroscopy, Kelvin probe and ellipsometry measurements, this P3HT+/acid- layer is shown to be insoluble in water, indicating it remains intact during the subsequent deposition of PEDOT:PSS. Current density - voltage measurements show this doped interlayer reduces injected dark current while increasing both open-circuit voltage and fill factor through the creation of a more hole selective BHJ-PEDOT:PSS interface.

  4. Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions.

    PubMed

    Nam, Minwoo; Cha, Minjeong; Lee, Hyun Hwi; Hur, Kahyun; Lee, Kyu-Tae; Yoo, Jaehong; Han, Il Ki; Kwon, S Joon; Ko, Doo-Hyun

    2017-01-16

    A major impediment to the commercialization of organic photovoltaics (OPVs) is attaining long-term morphological stability of the bulk heterojunction (BHJ) layer. To secure the stability while pursuing optimized performance, multi-component BHJ-based OPVs have been strategically explored. Here we demonstrate the use of quaternary BHJs (q-BHJs) composed of two conjugated polymer donors and two fullerene acceptors as a novel platform to produce high-efficiency and long-term durable OPVs. A q-BHJ OPV (q-OPV) with an experimentally optimized composition exhibits an enhanced efficiency and extended operational lifetime than does the binary reference OPV. The q-OPV would retain more than 72% of its initial efficiency (for example, 8.42-6.06%) after a 1-year operation at an elevated temperature of 65 °C. This is superior to those of the state-of-the-art BHJ-based OPVs. We attribute the enhanced stability to the significant suppression of domain growth and phase separation between the components via kinetic trapping effect.

  5. A silver-free, reflective substrate electrode for electron extraction in top-illuminated organic photovoltaics.

    PubMed

    Tyler, Martin S; Hutter, Oliver S; Walker, Marc; Hatton, Ross A

    2015-04-27

    The choice of metals suitable as the reflective substrate electrode for top-illuminated organic photovoltaics (OPVs) is extremely limited. Herein, we report a novel substrate electrode for this class of OPV architecture based on an Al | Cu | AlOx triple-layer structure, which offers a reflectivity comparable to that of Al over the wavelength range 400-900 nm, a work function suitable for efficient electron extraction in OPVs and high stability towards oxidation. In addition to demonstrating the advantage of this composite electrode over Al in model top-illuminated OPVs, we also present the results of a photoelectron spectroscopy study, which show that an oxidised 0.8 nm Al layer deposited by thermal evaporation onto an Al | Cu reflective substrate electrode is sufficient to block oxidation of the underlying Cu by air or during deposition of a ZnO1-x electron-transport layer. This is remarkable given that the self-limiting oxide thickness on Al metal is greater than 2 nm.

  6. High-Performance Inverted Organic Photovoltaics Without Hole-Selective Contact.

    PubMed

    Savva, Achilleas; Burgués-Ceballos, Ignasi; Papazoglou, Giannis; Choulis, Stelios A

    2015-11-11

    A detailed investigation of the functionality of inverted organic photovoltaics (OPVs) using bare Ag contacts as the top electrode is presented. The inverted OPVs without a hole-transporting layer (HTL) exhibit a significant gain in hole-carrier selectivity and power-conversion efficiency (PCE) after exposure in ambient conditions. Inverted OPVs comprised of ITO-ZnO-poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)-Ag demonstrate over 3.5% power conversion efficiency only if the devices are exposed in air for over 4 days. As concluded through a series of measurements, the oxygen presence is essential to obtaining fully operational solar cell devices without HTL. Moreover, accelerated stability tests under damp heat conditions (RH = 85% and T = 65 °C) performed to nonencapsulated OPVs demonstrate that HTL-free inverted OPVs exhibit comparable stability to the reference inverted OPVs. Importantly, it is shown that bare Ag top electrodes can be efficiently used in inverted OPVs using various high-performance polymer-fullerene bulk heterojunction material systems demonstrating 6.5% power-conversion efficiencies.

  7. Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices.

    PubMed

    van de Wiel, H J; Galagan, Y; van Lammeren, T J; de Riet, J F J; Gilot, J; Nagelkerke, M G M; Lelieveld, R H C A T; Shanmugam, S; Pagudala, A; Hui, D; Groen, W A

    2013-12-06

    Highly conductive screen printed metallic (silver) structures (current collecting grids) combined with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are a viable replacement for indium tin oxide (ITO) and inkjet printed silver as transparent electrode materials. To provide successful integration into organic photovoltaic (OPV) devices, screen printed silver current collecting grids should be embedded into a substrate to avoid topology issues. In this study micron-thick conductive structures are embedded and integrated into OPV devices. The embedded structures are produced roll-to-roll with optimized process settings and materials. Topology measurements show that the embedded grids are well suited for integration into OPV devices since the surface is almost without spikes and has low surface roughness. JV measurements of OPV devices with embedded structures on a polyethylene terephthalate/silicon nitride (PET/SiN) substrate show an efficiency of 2.15%, which is significantly higher than identical flexible devices with ITO (1.02%) and inkjet printed silver (1.48%). The use of embedded screen printed silver instead of ITO and inkjet printed silver in OPV devices will allow for higher efficiency devices which can be produced with larger design and process freedom.

  8. High-Performance Inverted Organic Photovoltaics Without Hole-Selective Contact

    PubMed Central

    2015-01-01

    A detailed investigation of the functionality of inverted organic photovoltaics (OPVs) using bare Ag contacts as the top electrode is presented. The inverted OPVs without a hole-transporting layer (HTL) exhibit a significant gain in hole-carrier selectivity and power-conversion efficiency (PCE) after exposure in ambient conditions. Inverted OPVs comprised of ITO–ZnO–poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)–Ag demonstrate over 3.5% power conversion efficiency only if the devices are exposed in air for over 4 days. As concluded through a series of measurements, the oxygen presence is essential to obtaining fully operational solar cell devices without HTL. Moreover, accelerated stability tests under damp heat conditions (RH = 85% and T = 65 °C) performed to nonencapsulated OPVs demonstrate that HTL-free inverted OPVs exhibit comparable stability to the reference inverted OPVs. Importantly, it is shown that bare Ag top electrodes can be efficiently used in inverted OPVs using various high-performance polymer–fullerene bulk heterojunction material systems demonstrating 6.5% power-conversion efficiencies. PMID:26468993

  9. Simulation and optimization of the performance of organic photovoltaic cells based on capped copolymers for bulk heterojunctions

    NASA Astrophysics Data System (ADS)

    Mhamdi, A.; Boukhili, W.; Raissi, M.; Mahdouani, M.; Vignau, L.; Bourguiga, R.

    2016-08-01

    Recently many investigations have been done to improve the performance of solar cells photovoltaic. One of this devices developed is the Bulk Heterojunction (BHJ) solar cells based on poly (3-hexylthiophene) (P3HT)/[6, 6]-phenyl C61-butyric acid methyl ester (PCBM) blend which have been fabricated by spin-coating. It is known that the nanostructure of the active layer of this device has an important impact on the photovoltaic performances. In this work, we analyze the results obtained on solar cells using a copolymer P3HT-b-PS based on poly (3-hexylthiophene) (P3HT) as a donor block and polystyrene (PS) as a soft block, their compatibility with the blend of P3HT/PCBM at various weight percentages (0%-5%). The addition of this weight percentage is in order to improve the performance of polymer solar cells. It has been demonstrated that the addition of a small amount of P3HT-b-PS (from 0.5%-1.5%) led to an increase in photovoltaic efficiency compared to devices made from P3HT/PCBM only. To study the impact of the added amount of the P3HT-b-PS on the performances of the fabricated organic cells, we used an equivalent circuit model based on single diode model with five photovoltaic parameters. Then, we extracted these physical parameters of the organic photovoltaic cells such as the saturation current density, the series and shunt resistances, the ideality factor and the photogenerated current density from the experimental characteristics (J-V) in the dark and under illumination. We proposed and developed the used procedure based on this model and we resolved the analytic equations of the density-current using the Lambert W-function. A good agreement between the theoretical model and the experimental data of electrical characteristics is obtained illustrating the enhancement of the addition of a small amount of P3HT-b-PS (≤1.5%) in the P3HT/PCBM blend on the characteristics of BHJ organic photovoltaic cells.

  10. Ultraviolet A induces transport of compatible organic osmolytes in human dermal fibroblasts.

    PubMed

    Warskulat, Ulrich; Brookmann, Stefanie; Felsner, Ingo; Brenden, Heidi; Grether-Beck, Susanne; Häussinger, Dieter

    2008-12-01

    Compatible organic osmolytes, such as betaine, myo-inositol and taurine, are involved in cell protection. Human dermal fibroblasts accumulate these osmolytes and express mRNA specific for their transporting systems betaine-/gamma-amino-n-butyric acid (GABA) transporter (BGT-1), sodium-dependent myo-inositol transporter (SMIT) and taurine transporter (TAUT). Taurine uptake was about sixfold higher than that of betaine and myo-inositol. Compared with normoosmotic (305 mOsm/l) control, hyperosmotic exposure (405 mOsm/l) led to a twofold induction of osmolyte uptake. Ultraviolet A (UVA) upregulated osmolyte transporter mRNA levels and increased osmolyte uptake. Taurine inhibited UVA-induced interleukin-6 (Il-6) mRNA expression by 40%. Furthermore, Il-6 accumulation in the supernatants of UVA-irradiated dermal fibroblasts was much slower when cells were preincubated with taurine. These data indicate that taurine accumulation seems to be part of the fibroblast response to UVA radiation and may protect against UVA-induced Il-6 overexpression.

  11. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    PubMed

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-03-02

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (<3eV). In this contribution, high-resolution EELS was used to investigate four materials commonly used in organic photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C60). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan(3) 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered.

  12. The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell

    2015-03-01

    Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.

  13. Understanding device-structure-induced variations in open-circuit voltage for organic photovoltaics.

    PubMed

    Wang, Zhiping; Uemura, Yu; Zhou, Ying; Miyadera, Tetsuhiko; Azumi, Reiko; Yoshida, Yuji; Chikamatsu, Masayuki

    2015-05-27

    We investigate the structural influences on the device performance, especially on open-circuit voltage (V(OC)) in squaraine (SQ)/fullerene (C60) bilayer cells. Simply changing the SQ thickness could lead to 40% variation in V(OC) from 0.62 to 0.86 V. The ionization potential (IP) of SQ films and recombination at the anode surface as well as donor/acceptor (D/A) interface sensitively vary with film thicknesses, which account for the shifts in V(OC). The anode recombination can be effectively suppressed by preventing direct contact between C60 and the anode with a buffer layer, delivering an elevated V(OC). Through polarized infrared-multiple-angle incidence resolution spectroscopy measurement, the molecular structure of SQ films is found to gradually evolve from lying-down on indium-tin oxide substrates with noncentrosymmetric orientation at low thicknesses to random structure at high thicknesses. The different molecular orientation may yield different strengths of electronic coupling, which affects the charge-carrier recombination and thus V(OC). Moreover, the oriented SQ films would spontaneously compose aligned dipole moments at the D/A interface because of the strong dipolar effects in SQ molecules identified by density functional theory calculations, whereas no aligned interfacial dipole moment exists in the random structure. The resulting interfacial dipole moments would form an electric field at the D/A interface, leading to variations in the IP and thus impacting V(OC). Our findings demonstrate that V(OC) in organic photovoltaic cells is critically associated with the molecular orientation that affects the charge-carrier recombination and interfacial dipole alignment, which should be seriously taken into consideration for the design of organic molecules and optimization of the cell efficiency.

  14. Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth.

    PubMed

    Hsiao, Yu-Sheng; Liao, Yan-Hao; Chen, Huan-Lin; Chen, Peilin; Chen, Fang-Chung

    2016-04-13

    Current bioelectronic medicines for neurological therapies generally involve treatment with a bioelectronic system comprising a power supply unit and a bioelectrode device. Further integration of wireless and self-powered units is of practical importance for implantable bioelectronics. In this study, we developed biocompatible organic photovoltaics (OPVs) for serving as wireless electrical power supply units that can be operated under illumination with near-infrared (NIR) light, and organic bioelectronic interface (OBEI) electrode devices as neural stimulation electrodes. The OPV/OBEI integrated system is capable to provide electrical stimulation (ES) as a means of enhancing neuron-like PC12 cell differentiation and neurite outgrowth. For the OPV design, we prepared devices incorporating two photoactive material systems--β-carotene/N,N'-dioctyl-3,4,9,10-perylenedicarboximide (β-carotene/PTCDI-C8) and poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)--that exhibited open circuit voltages of 0.11 and 0.49 V, respectively, under NIR light LED (NLED) illumination. Then, we connected OBEI devices with different electrode gaps, incorporating biocompatible poly(hydroxymethylated-3,4-ethylenedioxythiophene), to OPVs to precisely tailor the direct current electric field conditions during the culturing of PC12 cells. This NIR light-driven OPV/OBEI system could be engineered to provide tunable control over the electric field (from 220 to 980 mV mm(-1)) to promote 64% enhancement in the neurite length, direct the neurite orientation on chips, or both. The OPV/OBEI integrated systems under NIR illumination appear to function as effective power delivery platforms that should meet the requirements for wirelessly offering medical ES to a portion of the nervous system; they might also be a key technology for the development of next-generation implantable bioelectronics.

  15. Ultraviolet irradiation effects incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2012-01-01

    One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, 15N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of 15N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of 15N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290–300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.

  16. The Harvard Clean Energy Project: High-throughput screening of organic photovoltaic materials using cheminformatics, machine learning, and pattern recognition

    NASA Astrophysics Data System (ADS)

    Olivares-Amaya, Roberto; Hachmann, Johannes; Amador-Bedolla, Carlos; Daly, Aidan; Jinich, Adrian; Atahan-Evrenk, Sule; Boixo, Sergio; Aspuru-Guzik, Alán

    2012-02-01

    Organic photovoltaic devices have emerged as competitors to silicon-based solar cells, currently reaching efficiencies of over 9% and offering desirable properties for manufacturing and installation. We study conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices with a molecular library motivated by experimental feasibility. We use quantum mechanics and a distributed computing approach to explore this vast molecular space. We will detail the screening approach starting from the generation of the molecular library, which can be easily extended to other kinds of molecular systems. We will describe the screening method for these materials which ranges from descriptor models, ubiquitous in the drug discovery community, to eventually reaching first principles quantum chemistry methods. We will present results on the statistical analysis, based principally on machine learning, specifically partial least squares and Gaussian processes. Alongside, clustering methods and the use of the hypergeometric distribution reveal moieties important for the donor materials and allow us to quantify structure-property relationships. These efforts enable us to accelerate materials discovery in organic photovoltaics through our collaboration with experimental groups.

  17. Three approaches to economical photovoltaics: Conformal copper sulfide , organic luminescent films, and lead selenide nanocrystal superlattices

    NASA Astrophysics Data System (ADS)

    Carbone, Ian A.

    Three routes to more efficient photovoltaics using conformal Cu2S, organic luminescent films, and nanocrystalline PbSe films are outlined below. Properties of these materials are investigated experimentally and numerically in separate studies. In the first study, chemical vapor deposition (CVD) processes were used to fabricate Cu2S using hydrogen sulfide and the metal-organic precursor, KI5. The alternating exposure of mesoporous TiO2 and planar ZnO to the two precursors resulted in films that penetrated porous structures and deposited at a constant rate of 0.08nm/cycle over the temperature range 150C-400°C. Sheet resistance and optical absorption measurements suggest the presence of a metallic copper-poor phase of less than 100nm thick forming at the Cu2S/substrate boundary. In a separate study, organic films doped with luminescent dyes were placed above CdTe/CdS solar cells to convert high energy photons to lower energies, better matched to the CdTe/CdS quantum efficiency peak. Efficiency improvements of up to 8.5% were obtained after optimizing dye concentration, dye chemistry, and the host material. Long-term stability tests show that the organic films are stable for at least 5000 hours under 1 sun illumination provided that the dye is encapsulated in an oxygen and water free environment. Finally, a Monte Carlo model was developed to simulate electron and hole transport in nanocrystalline PbSe films. Transport is carried out as a series of thermally activated tunneling events between neighboring sites on a cubic lattice. Each site, representing an individual nanocrystal, is assigned a size-dependent electronic structure, and the effects of crystal size, charging, inter-crystal coupling, and energetic disorder on electron and hole mobilities/conductivities are investigated. Results of simulated field effect measurements confirm that electron mobilities and conductivities increase by an order of magnitude when the average nanocrystal diameter is increased in the

  18. Materials Science of Electrodes and Interfaces for High-Performance Organic Photovoltaics

    SciTech Connect

    Marks, Tobin

    2016-11-18

    The science of organic photovoltaic (OPV) cells has made dramatic advances over the past three years with power conversion efficiencies (PCEs) now reaching ~12%. The upper PCE limit of light-to-electrical power conversion for single-junction OPVs as predicted by theory is ~23%. With further basic research, the vision of such devices, composed of non-toxic, earth-abundant, readily easily processed materials replacing/supplementing current-generation inorganic solar cells may become a reality. Organic cells offer potentially low-cost, roll-to-roll manufacturable, and durable solar power for diverse in-door and out-door applications. Importantly, further gains in efficiency and durability, to that competitive with inorganic PVs, will require fundamental, understanding-based advances in transparent electrode and interfacial materials science and engineering. This team-science research effort brought together an experienced and highly collaborative interdisciplinary group with expertise in hard and soft matter materials chemistry, materials electronic structure theory, solar cell fabrication and characterization, microstructure characterization, and low temperature materials processing. We addressed in unconventional ways critical electrode-interfacial issues underlying OPV performance -- controlling band offsets between transparent electrodes and organic active-materials, addressing current loss/leakage phenomena at interfaces, and new techniques in cost-effective low temperature and large area cell fabrication. The research foci were: 1) Theory-guided design and synthesis of advanced crystalline and amorphous transparent conducting oxide (TCO) layers which test our basic understanding of TCO structure-transport property relationships, and have high conductivity, transparency, and tunable work functions but without (or minimizing) the dependence on indium. 2) Development of theory-based understanding of optimum configurations for the interfaces between oxide electrodes

  19. INTERACTIONS OF SOLAR ULTRAVIOLET RADIATION AND DISSOLVED ORGANIC MATTER IN FRESHWATER AND MARINE ENVIRONMENTS

    EPA Science Inventory

    Solar radiation provides the primary driving force for the biogeochemical cycles upon which life and climate depend. Recent studies have demonstrated that the absorption of solar radiation, especially 'm the ultraviolet spectral region, results in photochemical reactions that can...

  20. Photovoltaics industry profile

    SciTech Connect

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  1. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.

  2. Quantitative comparison of organic photovoltaic bulk heterojunction photostability under laser illumination

    SciTech Connect

    Lesoine, Michael D.; Bobbitt, Jonathan M.; Carr, John A.; Elshobaki, Moneim; Chaudhary, Sumit; Smith, Emily A.

    2014-11-20

    The photostability of bulk heterojunction organic photovoltaic films containing a polymer donor and a fullerene-derivative acceptor was examined using resonance Raman spectroscopy and controlled laser power densities. The polymer donors were poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7). Four sample preparation methods were studied: (i) thin or (ii) thick films with fast solvent evaporation under nitrogen, (iii) thick films with slow solvent evaporation under nitrogen, and (iv) thin films dried under nitrogen followed by thermal annealing. Polymer order was assessed by monitoring a Raman peak’s full width at half-maximum and location as a function of illumination time and laser power densities from 2.5 × 103 to 2.5 × 105 W cm–2. Resonance Raman spectroscopy measurements show that before prolonged illumination, PCDTBT and PTB7 have the same initial order for all preparation conditions, while P3HT order improves with slow solvent drying or thermal annealing. All films exhibited changes to bulk heterojunction structure with 2.5 × 105 Wcm–2 laser illumination as measured by resonance Raman spectroscopy, and atomic force microscopy images show evidence of sample heating that affects the polymer over an area greater than the illumination profile. Furthermore, photostability data are important for proper characterization by techniques involving illumination and the development of devices suitable for real-world applications.

  3. Quantitative comparison of organic photovoltaic bulk heterojunction photostability under laser illumination

    DOE PAGES

    Lesoine, Michael D.; Bobbitt, Jonathan M.; Carr, John A.; ...

    2014-11-20

    The photostability of bulk heterojunction organic photovoltaic films containing a polymer donor and a fullerene-derivative acceptor was examined using resonance Raman spectroscopy and controlled laser power densities. The polymer donors were poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7). Four sample preparation methods were studied: (i) thin or (ii) thick films with fast solvent evaporation under nitrogen, (iii) thick films with slow solvent evaporation under nitrogen, and (iv) thin films dried under nitrogen followed by thermal annealing. Polymer order was assessed by monitoring a Raman peak’s full width at half-maximum and location as a function of illumination time and laser powermore » densities from 2.5 × 103 to 2.5 × 105 W cm–2. Resonance Raman spectroscopy measurements show that before prolonged illumination, PCDTBT and PTB7 have the same initial order for all preparation conditions, while P3HT order improves with slow solvent drying or thermal annealing. All films exhibited changes to bulk heterojunction structure with 2.5 × 105 Wcm–2 laser illumination as measured by resonance Raman spectroscopy, and atomic force microscopy images show evidence of sample heating that affects the polymer over an area greater than the illumination profile. Furthermore, photostability data are important for proper characterization by techniques involving illumination and the development of devices suitable for real-world applications.« less

  4. Bimolecular crystals with an intercalated structure improve poly(p-phenylenevinylene)-based organic photovoltaic cells.

    PubMed

    Lim, Kyung-Geun; Park, Jun-Mo; Mangold, Hannah; Laquai, Frédéric; Choi, Tae-Lim; Lee, Tae-Woo

    2015-01-01

    The exciton dissociation, recombination, and charge transport of bulk heterojunction organic photovoltaic cells (OPVs) is influenced strongly by the nanomorphology of the blend, such as the grain size and the molecular packing. Although it is well known that polymers based on amorphous poly(p-phenylenevinylene) (PPV) have a fundamental limit to their efficiency because of low carrier mobility, which leads to increased recombination and unbalanced charge extraction, herein, we demonstrate that the issue can be overcome by forming bimolecular crystals of an amorphous PPV-based polymer:phenyl-C61 -butyric acid methyl ester (PCBM) intercalated structure. We used amorphous poly(2,5-dioctyloxy-p-phenylene vinylene-alt-2',5'-thienylene vinylene) (PPVTV), which has a simple chemical structure. A reasonably high power conversion efficiency (∼3.5 %) was obtained, although the material has an intrinsically amorphous structure and a relatively large band gap (2.0 eV). We demonstrate a correlation between a well-ordered bimolecular crystal of PPVTV:PCBM and an improved hole mobility of a PPVTV:PCBM film compared to a pristine PPVTV film by using 2 D grazing incidence XRD and space-charge-limited current measurements. Furthermore, we show that the bimolecular crystal structure in high-performance OPVs is related to an optimum molecular packing, which is influenced by the PPVTV:PCBM blending ratio, side-chain length, and molecular weight of the PPVTV polymer. Improved charge transport in PPVTV:PCBM bimolecular crystals leads to a fast sweep out of charges and thus suppression of nongeminate recombination under the operating conditions.

  5. Synthesis and characterization of fluorinated azadipyrromethene complexes as acceptors for organic photovoltaics

    PubMed Central

    Etheridge, Forrest S; Fernando, Roshan J; Pejić, Sandra; Zeller, Matthias

    2016-01-01

    Summary Homoleptic zinc(II) complexes of di(phenylacetylene)azadipyrromethene (e.g., Zn(WS3)2) are potential non-fullerene electron acceptors for organic photovoltaics. To tune their properties, fluorination of Zn(WS3)2 at various positions was investigated. Three fluorinated azadipyrromethene-based ligands were synthesized with fluorine at the para-position of the proximal and distal phenyl groups, and at the pyrrolic phenylacetylene moieties. Additionally, a CF3 moiety was added to the pyrrolic phenyl positions to study the effects of a stronger electron withdrawing unit at that position. The four ligands were chelated with zinc(II) and BF2 + and the optical and electrochemical properties were studied. Fluorination had little effect on the optical properties of both the zinc(II) and BF2 + complexes, with λmax in solution around 755 nm and 785 nm, and high molar absorptivities of 100 × 103 M−1cm−1 and 50 × 103 M−1cm−1, respectively. Fluorination of Zn(WS3)2 raised the oxidation potentials by 0.04 V to 0.10 V, and the reduction potentials by 0.01 V to 0.10 V, depending on the position and type of substitution. The largest change was observed for fluorine substitution at the proximal phenyl groups and CF3 substitution at the pyrrolic phenylacetylene moieties. The later complexes are expected to be stronger electron acceptors than Zn(WS3)2, and may enable charge transfer from other conjugated polymer donors that have lower energy levels than poly(3-hexylthiophene) (P3HT). PMID:27829899

  6. New acceptor-donor-acceptor (A-D-A) type copolymers for efficient organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Ayachi, S.; Alimi, K.

    2015-01-01

    Three new conjugated systems alternating acceptor-donor-acceptor (A-D-A) type copolymers have been investigated by means of Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) at the 6-31g (d) level of theory. 4,4‧-Dimethoxy-chalcone, also called the 1,3-bis(4-methoxyphenyl)prop-2-en-1-one (BMP), has been used as a common acceptor moiety. It forced intra-molecular S⋯O interactions through alternating oligo-thiophene derivatives: 4-AlkylThiophenes (4-ATP), 4-AlkylBithiophenes (4-ABTP) and 4-Thienylene Vinylene (4-TEV) as donor moieties. The band gap, HOMO and LUMO electron distributions as well as optical properties were analyzed for each molecule. The fully optimized resulting copolymers showed low band gaps (2.2-2.8 eV) and deep HOMO energy levels ranging from -4.66 to -4.86 eV. A broad absorption [300-900 nm] covering the solar spectrum and absorption maxima ranges from 486 to 604 nm. In addition, organic photovoltaic cells (OPCs) based on alternating copolymers in bulk heterojunction (BHJ) composites with the 1-(3-methoxycarbonyl) propyl-1-phenyl-[6,6]-C61 (PCBM), as an acceptor, have been optimized. Thus, the band gap decreased to 1.62 eV, the power conversion efficiencies (PCEs) were about 3-5% and the open circuit voltage Voc of the resulting molecules decreased from 1.50 to 1.27 eV.

  7. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells

    PubMed Central

    Ryuzaki, Sou; Onoe, Jun

    2013-01-01

    Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells. PMID:23853702

  8. Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics.

    PubMed

    Hartnett, Patrick E; Timalsina, Amod; Matte, H S S Ramakrishna; Zhou, Nanjia; Guo, Xugang; Zhao, Wei; Facchetti, Antonio; Chang, Robert P H; Hersam, Mark C; Wasielewski, Michael R; Marks, Tobin J

    2014-11-19

    Perylenediimide (PDI)-based acceptors offer a potential replacement for fullerenes in bulk-heterojunction (BHJ) organic photovoltaic cells (OPVs). The most promising efforts have focused on creating twisted PDI dimers to disrupt aggregation and thereby suppress excimer formation. Here, we present an alternative strategy for developing high-performance OPVs based on PDI acceptors that promote slip-stacking in the solid state, thus preventing the coupling necessary for rapid excimer formation. This packing structure is accomplished by substitution at the PDI 2,5,8,11-positions ("headland positions"). Using this design principle, three PDI acceptors, N,N-bis(n-octyl)-2,5,8,11-tetra(n-hexyl)-PDI (Hexyl-PDI), N,N-bis(n-octyl)-2,5,8,11-tetraphenethyl-PDI (Phenethyl-PDI), and N,N-bis(n-octyl)-2,5,8,11-tetraphenyl-PDI (Phenyl-PDI), were synthesized, and their molecular and electronic structures were characterized. They were then blended with the donor polymer PBTI3T, and inverted OPVs of the structure ITO/ZnO/Active Layer/MoO3/Ag were fabricated and characterized. Of these, 1:1 PBTI3T:Phenyl-PDI proved to have the best performance with Jsc = 6.56 mA/cm(2), Voc = 1.024 V, FF = 54.59%, and power conversion efficiency (PCE) = 3.67%. Devices fabricated with Phenethyl-PDI and Hexyl-PDI have significantly lower performance. The thin film morphology and the electronic and photophysical properties of the three materials are examined, and although all three materials undergo efficient charge separation, PBTI3T:Phenyl-PDI is found to have the deepest LUMO, intermediate crystallinity, and the most well-mixed domains. This minimizes geminate recombination in Phenyl-PDI OPVs and affords the highest PCE. Thus, slip-stacked PDI strategies represent a promising approach to fullerene replacements in BHJ OPVs.

  9. Synthesis and characterization of fluorinated azadipyrromethene complexes as acceptors for organic photovoltaics.

    PubMed

    Etheridge, Forrest S; Fernando, Roshan J; Pejić, Sandra; Zeller, Matthias; Sauvé, Geneviève

    2016-01-01

    Homoleptic zinc(II) complexes of di(phenylacetylene)azadipyrromethene (e.g., Zn(WS3)2) are potential non-fullerene electron acceptors for organic photovoltaics. To tune their properties, fluorination of Zn(WS3)2 at various positions was investigated. Three fluorinated azadipyrromethene-based ligands were synthesized with fluorine at the para-position of the proximal and distal phenyl groups, and at the pyrrolic phenylacetylene moieties. Additionally, a CF3 moiety was added to the pyrrolic phenyl positions to study the effects of a stronger electron withdrawing unit at that position. The four ligands were chelated with zinc(II) and BF2(+) and the optical and electrochemical properties were studied. Fluorination had little effect on the optical properties of both the zinc(II) and BF2(+) complexes, with λmax in solution around 755 nm and 785 nm, and high molar absorptivities of 100 × 10(3) M(-1)cm(-1) and 50 × 10(3) M(-1)cm(-1), respectively. Fluorination of Zn(WS3)2 raised the oxidation potentials by 0.04 V to 0.10 V, and the reduction potentials by 0.01 V to 0.10 V, depending on the position and type of substitution. The largest change was observed for fluorine substitution at the proximal phenyl groups and CF3 substitution at the pyrrolic phenylacetylene moieties. The later complexes are expected to be stronger electron acceptors than Zn(WS3)2, and may enable charge transfer from other conjugated polymer donors that have lower energy levels than poly(3-hexylthiophene) (P3HT).

  10. Strong photocurrent enhancements in plasmonic organic photovoltaics by biomimetic nanoarchitectures with efficient light harvesting.

    PubMed

    Leem, Jung Woo; Kim, Sehwan; Park, Chihyun; Kim, Eunkyoung; Yu, Jae Su

    2015-04-01

    We propose the biomimetic moth-eye nanoarchitectures as a novel plasmonic light-harvesting structure for further enhancing the solar-generated photocurrents in organic photovoltaics (OPVs). The full moth-eye nanoarchitectures are composed of two-dimensional hexagonal periodic grating arrays on surfaces of both the front zinc oxide (ZnO) and rear active layers, which are prepared by a simple and cost-effective soft imprint nanopatterning technique. For the 380 nm period ZnO and 650 nm period active gratings (i.e., ZnO(P380)/Active(P650)), the poly(3-hexylthiophene-2,5-diyl):indene-C60 bis-adduct (P3HT:ICBA)-based plasmonic OPVs exhibit an improvement of the absorption spectrum compared to the pristine OPVs over a broad wavelength range of 350-750 nm, showing absorption enhancement peaks at wavelengths of ∼370, 450, and 670 nm, respectively. This leads to a considerable increase of short-circuit current density (Jsc) from 10.9 to 13.32 mA/cm(2), showing a large Jsc enhancement percentage of ∼22.2%. As a result, the strongly improved power conversion efficiency (PCE) of 6.28% is obtained compared to that (i.e., PCE = 5.12%) of the pristine OPVs. For the angle-dependent light-absorption characteristics, the plasmonic OPVs with ZnO(P380)/Active(P650) have a better absorption performance than that of the pristine OPVs at incident angles of 20-70°. For optical absorption characteristics and near-field intensity distributions of plasmonic OPVs, theoretical analyses are also performed by a rigorous coupled-wave analysis method, which gives a similar tendency with the experimentally measured data.

  11. Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic photovoltaics.

    PubMed

    Graham, Kenneth R; Cabanetos, Clement; Jahnke, Justin P; Idso, Matthew N; El Labban, Abdulrahman; Ngongang Ndjawa, Guy O; Heumueller, Thomas; Vandewal, Koen; Salleo, Alberto; Chmelka, Bradley F; Amassian, Aram; Beaujuge, Pierre M; McGehee, Michael D

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) (13)C{(1)H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material

  12. Theoretical characterization on photoelectric properties of benzothiadiazole- and fluorene-based small molecule acceptor materials for the organic photovoltaics.

    PubMed

    Sui, Mingyue; Li, Shuangbao; Pan, Qingqing; Sun, Guangyan; Geng, Yun

    2017-01-01

    The upper efficiency of heterojunction organic photovoltaics depends on the increased open-circuit voltage (V oc) and short-circuit current (J sc). So, a higher lowest unoccupied molecular orbital (LUMO) level is necessary for organic acceptor material to possess higher V oc and more photons absorbsorption in the solar spectrum is needed for larger J sc. In this article, we theoretically designed some small molecule acceptors (2∼5) based on fluorene (F), benzothiadiazole, and cyano group (CN) referring to the reported acceptor material 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile (1), the crucial parameters affecting photoelectrical properties of compounds 2∼5 were evaluated by the density functional theory (DFT) and time dependent density functional theory (TDDFT) methods. The results reveal that compared with 1, 3 and 4 could have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, and the decreased electronic organization energy (λ e). From the simulation of transition density matrix, it is very clear that the excitons of molecules 3 and 4 are easier to separate in the material surface. Therefore, 3 and 4 may become potential acceptor candidates for organic photovoltaic cells. In addition, with the increased number of CN, the optoelectronic properties of the molecules show a regular change, mainly improve the LUMO level, energy gap, V oc, and absorption intensity. In summary, reasonably adjusting CN can effectively improve the photovoltaic properties of small molecule acceptors. Graphical Abstract Structure-property relationship of small molecule acceptors could be rationally evaluated in the article. The changes of conjugate length and CN are important strategies to alter the photovoltaic properties of small molecule acceptors. Therefore, taking the K12/1 as a reference, we have theoretically designed a series of small molecule acceptors (2-4). The calculated

  13. The effect of branching in a semiconducting polymer on the efficiency of organic photovoltaic cells.

    PubMed

    Heintges, Gaël H L; van Franeker, Jacobus J; Wienk, Martijn M; Janssen, René A J

    2016-01-04

    The impact of branching in a diketopyrrolopyrrole polymer on the performance of polymer-fullerene photovoltaic cells is investigated. Compared to the linear polymer, the branched polymer affords a more finely dispersed fibrillar network in the photoactive layer and as a result a large enhancement of the photocurrent and power conversion efficiency.

  14. Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions

    PubMed Central

    Nguyen, Bichlien H; Perkins, Robert J; Smith, Jake A

    2015-01-01

    Summary The combination of visible light, photovoltaics, and electrochemistry provides a convenient, inexpensive platform for conducting a wide variety of sustainable oxidation reactions. The approach presented in this article is compatible with both direct and indirect oxidation reactions, avoids the need for a stoichiometric oxidant, and leads to hydrogen gas as the only byproduct from the corresponding reduction reaction. PMID:25815081

  15. Hole-transport limited S-shaped I-V curves in planar heterojunction organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zhang, Minlu; Wang, Hui; Tang, C. W.

    2011-11-01

    Current-voltage (I-V) characteristics of planar heterojunction organic photovoltaic cells based on N',N'-Di-[(1-naphthyl)-N',N'-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB) and C60 are investigated. Through variation of the layer thickness and composition, specifically chemical doping NPB with MoOx, we show that the hole-transport limitation in the NPB layer is the determining factor in shaping the I-V characteristics of NPB/C60 cells.

  16. An Azulene-Containing Low Bandgap Small Molecule for Organic Photovoltaics with High Open-Circuit Voltage.

    PubMed

    Chen, Yao; Zhu, Youqin; Yang, Daobin; Zhao, Suling; Zhang, Lei; Yang, Lin; Wu, Jianglin; Huang, Yan; Xu, Zheng; Lu, Zhiyun

    2016-10-04

    A simple azulene-containing squaraine dye (AzUSQ) showing bandgap of 1.38 eV and hole mobility up to 1.25×10(-4)  cm(2)  V(-1)  s(-1) was synthesized. With its low bandgap, an organic photovoltaic (OPV) device based on it has been made that exhibits an impressive open-circuit voltages (Voc ) of 0.80 V. Hence, azulene might be a promising structural unit to construct OPV materials with simultaneous low bandgap, high hole mobility and high Voc .

  17. 25th anniversary article: organic photovoltaic modules and biopolymer supercapacitors for supply of renewable electricity: a perspective from Africa.

    PubMed

    Inganäs, Olle; Admassie, Shimelis

    2014-02-12

    The role of materials in civilization is well demonstrated over the centuries and millennia, as materials have come to serve as the classifier of stages of civilization. With the advent of materials science, this relation has become even more pronounced. The pivotal role of advanced materials in industrial economies has not yet been matched by the influence of advanced materials during the transition from agricultural to modern societies. The role of advanced materials in poverty eradication can be very large, in particular if new trajectories of social and economic development become possible. This is the topic of this essay, different in format from the traditional scientific review, as we try to encompass not only two infant technologies of solar energy conversion and storage by means of organic materials, but also the social conditions for introduction of the technologies. The development of organic-based photovoltaic energy conversion has been rapid, and promises to deliver new alternatives to well-established silicon photovoltaics. Our recent development of organic biopolymer composite electrodes opens avenues towards the use of renewable materials in the construction of wooden batteries or supercapacitors for charge storage. Combining these new elements may give different conditions for introduction of energy technology in areas now lacking electrical grids, but having sufficient solar energy inputs. These areas are found close to the equator, and include some of the poorest regions on earth.

  18. Multi-Chlorine-Substituted Self-Assembled Molecules As Anode Interlayers: Tuning Surface Properties and Humidity Stability for Organic Photovoltaics.

    PubMed

    Cheng, Xiaofang; Huang, Liqiang; Zhang, Lifu; Ai, Qingyun; Chen, Lie; Chen, Yiwang

    2017-03-01

    Self-assembled small molecules (SASMs) are effective materials to improve the interfacial properties between a metal/metal oxide and the overlying organic layer. In this work, surface modification of indium tin oxide (ITO) electrode by a series of Cl-containing SASMs has been exploited to control the surface properties of ITO and device performance for organic photovoltaics. Depending on the position and degrees of chlorination for SASMs, we could precisely manipulate the work function of the ITO electrode, and chemisorption of SASMs on ITO as well. Consequently, a power conversion efficiency (PCE) of 9.1% was achieved with tetrachlorobenzoic acid (2,3,4,5-CBA) SASM by a simple solution-processed method based on PTB7-Th-PC71BM heterojunction. More intriguingly, we discover that device performance is closely associated with the humidity of ambient conditions. When the humidity increases from 35-55% to 80-95%, device performance with 2,3,4,5-CBA has negligible reduction, in contrast with other SASMs that show a sharp reduction in PCEs. The increased device performance is primarily attributed to a matched work function, stable chemisorption, and beneficial wettability with overlying active layer. These findings suggest an available approach for manufacturing inexpensive, stable, efficient, and environmentally friendly organic photovoltaics by appropriate self-assembled small molecules.

  19. Trimetallic nitride endohedral C80 fullerenes and their application in Organic Photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ross, Russel Brett

    Trimetallic nitride endohedral C80 fullerenes (TNEF) materials offer a reduced lowest unoccupied molecular orbital energy (LUMO) offset when compared with many of the polymer donor systems currently being employed in Organic Photovoltaic (OPV) research. This lower LUMO offset allows for higher open circuit voltages, and therefore, higher efficiencies in OPV devices. Presented here is a comprehensive study of the room temperature absorption and emission of a series of trimetallic nitride endohedral metallofullerenes, M3N C80, (M = Er, Gd, Ho, Lu, Sc, Y), as well the investigation and demonstration of TNEFs use as an acceptor material in OPV devices. Morphology and electrode contacts are shown to have large influence on TNEF-based OPV performance, in poly(3-hexyl)thiophene (P3HT) and 1-(3-hexoxycarbonyl)propyl-1-phenyl-[6,6]-Lu3N C81 (Lu3N C80-PCBH) based OPV devices. Decreasing the LUMO offset between P3HT and the acceptor material, reduced energy losses in the charge transfer process, which yield an increased open circuit voltage to 280mV above reference devices made with P3HT & [6,6]-phenyl-C61-butyric methyl ester (C60-PCBM). OPV energy conversion efficiencies of > 4% are observed with P3HT/Lu3N C80-PCBH active layer with a predicted upper limit on power conversion efficiency of > 6% for this donor/acceptor system. The data displayed within this work constitutes proof of concept that the varying reduction potential (160--290 meV vs. C 60-PCBM) of the TNEF acceptor molecules provides a pathway to enhancing OPV device performance by closing down the molecular orbital offset of the donor/acceptor heterojunction. TNEF acceptor materials in single bulk heterojunction devices offer a viable path to 11% conversion efficiency with already-reported-on low-band-gap donors, such as poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)- alt-4,7-(2,1,3-benzothiadiazole), PCPDTBT.

  20. Quantum Chemistry in Nanoscale Environments: Insights on Surface-Enhanced Raman Scattering and Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Olivares-Amaya, Roberto

    The understanding of molecular effects in nanoscale environments is becoming increasingly relevant for various emerging fields. These include spectroscopy for molecular identification as well as in finding molecules for energy harvesting. Theoretical quantum chemistry has been increasingly useful to address these phenomena to yield an understanding of these effects. In the first part of this dissertation, we study the chemical effect of surface-enhanced Raman scattering (SERS). We use quantum chemistry simulations to study the metal-molecule interactions present in these systems. We find that the excitations that provide a chemical enhancement contain a mixed contribution from the metal and the molecule. Moreover, using atomistic studies we propose an additional source of enhancement, where a transition metal dopant surface could provide an additional enhancement. We also develop methods to study the electrostatic effects of molecules in metallic environments. We study the importance of image-charge effects, as well as field-bias to molecules interacting with perfect conductors. The atomistic modeling and the electrostatic approximation enable us to study the effects of the metal interacting with the molecule in a complementary fashion, which provides a better understanding of the complex effects present in SERS. In the second part of this dissertation, we present the Harvard Clean Energy Project, a high-throughput approach for a large-scale computational screening and design of organic photovoltaic materials. We create molecular libraries to search for candidates structures and use quantum chemistry, machine learning and cheminformatics methods to characterize these systems and find structure-property relations. The scale of this study requires an equally large computational resource. We rely on distributed volunteer computing to obtain these properties. In the third part of this dissertation we present our work related to the acceleration of electronic structure

  1. Ultraviolet-visible absorption spectra of chromophoric dissolved organic matter (CDOM) in waters throughout the Kolyma River basin, East Siberia

    NASA Astrophysics Data System (ADS)

    Frey, K. E.; Bulygina, E. B.; Bunn, A. G.; Chandra, S.; Davydov, S.; Holmes, R. M.; Schade, J. D.; Sobczak, W. V.; Spektor, V. V.; Zimov, S. A.

    2009-12-01

    The Kolyma River in East Siberia is among the six largest Arctic rivers and drains a region underlain by vast deposits of Pleistocene loess known as yedoma, most of which are currently stored in ice-rich permafrost throughout the region. These yedoma deposits are important sources of dissolved organic matter to terrestrial waters that in turn play a significant role in the transport and ultimate mineralization of organic carbon to atmospheric CO2 and CH4. In order to determine the concentrations and characteristics of this dissolved organic matter, we measured the ultraviolet-visible absorption spectra (200-800 nm) of chromophoric dissolved organic matter (CDOM) from a broad collection of waters throughout a ~250 km transect of the northern Kolyma River basin. 124 samples were collected during July 2008 and 2009 and include soil pore waters, lakes, streams, rivers, and the Kolyma River mainstem. Absorbance values are highly positively correlated with dissolved organic carbon concentrations, with the highest values in soil pore waters and lowest values in the Kolyma River mainstem. Spectral slopes (at 275-295 nm and 350-400 nm, calculated within log-transformed absorption spectra) are also used to investigate contrasting water types and are found to be useful indicators of the bioavailability of dissolved organic matter. With ongoing and future permafrost degradation, yedoma deposits throughout the East Siberian region will become more hydrologically active and have the potential to be even greater sources of dissolved organic matter to soil pore waters, lakes, streams, rivers, and ultimately to the Arctic Ocean. As such, the ability to easily and comprehensively monitor the quantity and quality of dissolved organic matter across the landscape through methods such as ultraviolet-visible absorption is becoming critical for understanding the global significance of the Arctic carbon cycle.

  2. Polyethylenimine Interfacial Layers in Inverted Organic Photovoltaic Devices: Effects of Ethoxylation and Molecular Weight on Efficiency and Temporal Stability.

    PubMed

    Courtright, Brett A E; Jenekhe, Samson A

    2015-12-02

    We report a comparative study of polyethylenimine (PEI) and ethoxylated-polyethylenimine (PEIE) cathode buffer layers in high performance inverted organic photovoltaic devices. The work function of the indium-tin oxide (ITO)/zinc oxide (ZnO) cathode was reduced substantially (Δφ = 0.73-1.09 eV) as the molecular weight of PEI was varied from 800 g mol(-1) to 750 000 g mol(-1) compared with the observed much smaller reduction when using a PEIE thin film (Δφ = 0.56 eV). The reference inverted polymer solar cells based on the small band gap polymer PBDTT-FTTE (ITO/ZnO/PBDTT-FTTE:PC70BM/MoO3/Ag), without a cathode buffer layer, had an average power conversion efficiency (PCE) of 6.06 ± 0.22%. Incorporation of a PEIE cathode buffer layer in the same PBDTT-FTTE:PC70BM blend devices gave an enhanced performance with a PCE of 7.37 ± 0.53%. In contrast, an even greater photovoltaic efficiency with a PCE of 8.22 ± 0.10% was obtained in similar PBDTT-FTTE:PC70BM blend solar cells containing a PEI cathode buffer layer. The temporal stability of the inverted polymer solar cells was found to increase with increasing molecular weight of the cathode buffer layer. The results show that PEI is superior to PEIE as a cathode buffer layer in high performance organic photovoltaic devices and that the highest molecular weight PEI interlayer provides the highest temporal stability.

  3. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-09-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates 1-3. Various approaches including optimizing morphology of the active layers 1, 2, introducing new materials as the donor and acceptor 3,4, new device structures such as tandem structure 5, 6 have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer 5, 7.

  4. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-03-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates [1-3]. Various approaches including optimizing morphology of the active layers [1,2], introducing new materials as the donor and acceptor [3,4], new device structures such as tandem structure [5,6] have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer [5,7].

  5. Syntheses of D-A-A Type Small Molecular Donor Materials Having Various Electron Accepting Moiety for Organic Photovoltaic Application.

    PubMed

    Kim, Nahyeon; Park, Sangman; Lee, Myong-Hoon; Lee, Jaemin; Lee, Changjin; Yoon, Sung Cheol

    2016-03-01

    Small molecular donor, DTDCTB achieved a high power conversion efficiency (PCE) value of 6.6 ± 0.2% in vacuum-deposited planar mixed heterojunction (PMHJ) structure. However, the same material just recorded PCE of 0.34% in solution processed small molecule based bulk heterjunction (BHJ) organic photovoltaic cells. For the improvement of organic photovoltaic cells (OPVs), In this study, we designed and synthesized several D-A-A (donor-acceptor-acceptor) type molecular electron donating materials. Ditolylaminothienyl moiety as an electron donating group connected to 1,2,5-benzothiadiazole as a conjugated electron accepting unit, simultaneously with an electron accepting terminal group such as cyano alkyl acetate and N-alkyl rhodanine. The thermal, photophysical, and electrochemical properties of prepared small molecules were investigated by DSC, UV/Vis spectroscopy and Cyclic Voltametry, respectively. As a result, 0.89% of PCE can be obtained from OPV using a mixture of DTATBTER and PCBM as an active layer with a Voc of 0.87 V, a Jsc of 3.20 mA/cm2, and a fill factor of 31.9%.

  6. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    PubMed

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system.

  7. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    SciTech Connect

    Moore, David T.; Sai, Hiroaki; Wee Tan, Kwan; Estroff, Lara A.; Wiesner, Ulrich

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  8. Hybrid Inorganic/Organic Photovoltaics: Translating Fundamental Nanostructure Research to Enhanced Solar Conversion Efficiency

    DTIC Science & Technology

    2010-11-15

    strength from the fluorene to cyclopentadithiophene unit. PCPBBT showed highest CT transition absorption at 926 nm red-shifted to 53 nm compared with the...got at conc. Ax8 was 3.97%. Compared to the original efficiency (η0=3.10%), the efficiency of our solar cell was improved about 28% (Figure 9...nanocrystals as well as improved charge generation. Such a photovoltaic performance is confirmed to originate from the both contribution of polymer

  9. Highly Efficient Organic Photovoltaic Cells from Polymer-Aligned Carbon Nanotube Dispersed Heterojunctions

    DTIC Science & Technology

    2009-09-01

    turning over the Scotch-supported ACNT film upside down (middle right of Figure 5a), and pushing up the Scotch tape underneath the metal-patterned...nanotube arrays opened up avenues for multifunctional applications, including polymer-aligned carbon nanotube photovoltaic cells. a) Selective...It was thus found that the open-circuit voltage (Voc) increased ( up to 0.93 V) with the decrease in the content of thiophene unit. Although the

  10. Photo-enhanced toxicity of fluoranthene to Gulf of Mexico marine organisms at different larval ages and ultraviolet light intensities.

    PubMed

    Finch, Bryson E; Stubblefield, William A

    2016-05-01

    Significant increases in toxicity have been observed as a result of polycyclic aromatic hydrocarbon (PAH) absorption of ultraviolet (UV) radiation in aquatic organisms. Early life stage aquatic organisms are predicted to be more susceptible to PAH photo-enhanced toxicity as a result of their translucence and tendency to inhabit shallow littoral or surface waters. The objective of the present study was to evaluate the sensitivity of varying ages of larval mysid shrimp (Americamysis bahia), inland silverside (Menidia beryllina), sheepshead minnow (Cyprinodon variegatus), and Gulf killifish (Fundulus grandis) to photo-enhanced toxicity and to examine the correlation between photo-enhanced toxicity and organism pigmentation. Organisms were exposed to fluoranthene and artificial UV light at different larval ages and results were compared using median lethal concentrations (LC50s) and the lethal time-to-death (LT50s). In addition, a high UV light intensity, short-duration (4-h) experiment was conducted at approximately 24 W/m(2) of ultraviolet radiation A (UV-A) and compared with a low-intensity, long-duration (12-h) experiment at approximately 8 W/m(2) of UV-A. The results indicated decreased toxicity with increasing age for all larval organisms. The amount of organism pigmentation was correlated with observed LC50 and LT50 values. High-intensity short-duration exposure resulted in greater toxicity than low-intensity long-duration UV treatments for mysid shrimp, inland silverside, and sheepshead minnow. Data from these experiments suggest that toxicity is dependent on age, pigmentation, UV light intensity, and fluoranthene concentration.

  11. Influence of a MoOx interlayer on the open-circuit voltage in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell J.

    2013-07-01

    Metal-oxides have been used as interlayers at the anode-organic interface in organic photovoltaic cells (OPVs) to increase the open-circuit voltage (VOC). We examine the role of MoOx in determining the maximum VOC in a planar heterojunction OPV and find that the interlayer strongly affects the temperature dependence of VOC. Boron subphthalocyanine chloride (SubPc)-C60 OPVs that contain no interlayer show a maximum VOC of 1.2 V at low temperature, while those with MoOx show no saturation, reaching VOC > 1.4 V. We propose that the MoOx-SubPc interface forms a Schottky junction that provides an additional contribution to VOC at low temperature.

  12. Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhang, Yunfang; Zhang, Fute; Sun, Baoquan

    2013-01-01

    Hybrid organic-inorganic photovoltaic devices based on nanostructured silicon and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hybrid devices present excellent light harvesting capabilities as well as a simple fabrication process. Unlike the metal/Si junction, PEDOT:PSS solution can be solution-casted onto the silicon surface structure to build up hybrid photovoltaic devices without using vacuum deposition techniques. Detailed electronic characterization at PEDOT:PSS/Si heterojunctions is indispensable for achieving a high-performance device. In this paper, the electronic properties of current-voltage, capacitance-voltage, and internal quantum efficiency are characterized in order to explore the organic-inorganic heterojunctions properties. The interfacial defect state density (Dit) of hybrid organic-inorganic photovoltaic devices as well as majority carrier charge transfer velocity (vn) has been extracted from the electrical measurement results. It has been found that less Dit and lower vn can lead to improved electric output characteristics of the organic-inorganic heterojunctions photovoltaic devices, which is ascribed to suppressed charge recombination at the organic-inorganic interface.

  13. Can Femtosecond Transient Absorption Spectroscopy Predict the Potential of Small Molecules as Perspective Donors for Organic Photovoltaics?

    NASA Astrophysics Data System (ADS)

    DiScipio, Regina; Sauve, Genevieve; Crespo-Hernández, Carlos E.

    2015-06-01

    The utility of a perspective donor or acceptor molecule for photoelectric applications is difficult to predict a priori. This hinders productive synthetic exploration and necessitates lengthy device optimization procedures for reasonable estimation of said molecule's applicability. Using femtosecond broadband transient absorption spectroscopy, supported by time-dependent density functional theory computations and steady-state-absorption and emission spectroscopies, we have characterized a family of perspective optoelectronic compounds, in an effort to predict their relative performance in organic photovoltaic devices from information accrued from excited-state dynamics and photophysical properties. A series of tetraphenylazadipyrromethene (ADP) complexes chelated with three different metal centers was investigated. We have determined that the chelating metal has little effect on the ground state properties of this family. However their excited state dynamics are strongly modulated by the metal. Specifically, the zinc-chelated ADP complex remains in the excited state tenfold longer than the cobalt or nickel complexes. We assert that this is key photophysical property that should make the zinc complex outperform the other two complexes in photovoltaic applications. This hypothesis is supported by preliminary power conversion efficiency results in devices.

  14. Effect of potassium iodide on luminescent and photovoltaic properties of organic solar cells P3HT-PCBM

    NASA Astrophysics Data System (ADS)

    Ibrayev, N. Kh; Afanasyev, D. A.; Zhapabaev, K. A.

    2016-02-01

    It has been investigated spectral-luminescence properties of polymer films, doped with potassium iodide (KI). Using of KI didn't lead to the gradual changes of optical density of polymer films and the range of band gap semiconductor polymer P3HT. The fluorescence intensity of P3HT decreased and changed by use of KI. Using of 1% KI in polymer leaded to decrease of fluorescence lifetime. Influence of heavy atom on photovoltaic effect of organic solar cells has been investigated. 1% of KI in polymer film leaded to decrease of Isc and slightly decrease of Uoc. Investigation shows that magnetic field does not affect on photovoltaic properties of cells P3HT-PCBM. Magnetic field increased of open circuit voltage and short circuit current of solar cells with 1% of KI. Study of electrical impedance of cells revealed the magnetic sensivity of solar cells with KI additives. The lifetime of free charge carriers increased in the magnetic field for solar cells with KI additives.

  15. Novel High Efficient Organic Photovoltaic Materials: Appendix for Summary of Research. Appendix

    NASA Technical Reports Server (NTRS)

    Sun, Sam

    2002-01-01

    There are many different kinds of conjugated polymers that may be useful in photovoltaic devices. So far, the most popular and successful conjugated polymers used in photovoltaic devices include poly(1,4-)phenylenevinylenes (PPV), C60 and their derivatives. The discovery of electro-luminescence in PPV has stimulated a great deal of interest in developing "plastic" solid-state semiconductor devices. The overall synthetic methodology for the preparation of PPV can be divided into three main categories: (1) side chain derivatization, (2) precursor approach, and (3) in-situ polymerization. In this project, the first method was adopted. As discussed in project proposal and literatures, the overall efficiency of photovoltaic devices containing conjugated polymers is determined by the materials ability to generate excitons from incoming radiation, and then to separate the charges at donor/acceptor interfaces, and then to transport charges to respective electrodes. Given that effective exciton diffusion range are typical less then 30 nm, unique morphological structures are needed. This need led to several research groups to the idea that interpenetrating or bi-continuous networks of donor (electron donating) and acceptor (electron withdrawing) polymers should give better results. One approach involved the use of functionalized PPV. The attachment of electron withdrawing cyano groups to a PPV forms the CN-PPV, making it a strong electron acceptor. Underivatized PPV is a generally considered a hole-transporting material. Using blends of MEH-PPV, a soluble donor PPV derivative, as a hole transporter and CN-PPV as an electron transporter, a quantum efficiencies of up to 6% was achieved.

  16. Low-cost, high-efficiency organic/inorganic hetero-junction hybrid solar cells for next generation photovoltaic device

    NASA Astrophysics Data System (ADS)

    Pudasaini, P. R.; Ayon, A. A.

    2013-12-01

    Organic/inorganic hybrid structures are considered innovative alternatives for the next generation of low-cost photovoltaic devices because they combine advantages of the purely organic and inorganic versions. Here, we report an efficient hybrid solar cell based on sub-wavelength silicon nanotexturization in combination with the spin-coating of poly (3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The described devices were analyzed by collecting current-voltage and capacitance-voltage measurements in order to explore the organic/inorganic heterojunction properties. ALD deposited ultrathin aluminium oxide was used as a junction passivation layer between the nanotextured silicon surface and the organic polymer. The measured interface defect density of the device was observed to decrease with the inclusion of an ultrathin Al2O3 passivation layer leading to an improved electrical performance. This effect is thought to be ascribed to the suppression of charge recombination at the organic/inorganic interface. A maximum power conversion efficiency in excess of 10% has been achieved for the optimized geometry of the device, in spite of lacking an antireflection layer or back surface field enhancement schemes.

  17. Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites.

    PubMed

    Stylianakis, Minas M; Stratakis, Emmanuel; Koudoumas, Emmanuel; Kymakis, Emmanuel; Anastasiadis, Spiros H

    2012-09-26

    A solution-processed graphene content was synthesized by treatment of graphite oxide (GO) with phenyl isothiocyanate (PITC) by taking advantage of the functional carboxyl groups of graphene oxide. The GO was prepared by the oxidation of natural graphite powder and was expanded by ultrasonication in order to exfoliate single or/and few-layered graphene oxide sheets. The functionalized graphene oxide, GO-PITC, can be dispersed within poly-(3-hexylthiophene) (P3HT) and can be utilized as the electron acceptor in bulk heterojunction polymer photovoltaic cells. When P3HT is doped with GO-PITC, a great quenching of the photoluminescence of the P3HT occurred, indicating a strong electron transfer from the P3HT to the GO-PITC. The utilization of GO-PITC as the electron acceptor material in poly-(3-hexylthiophene) (P3HT) bulk heterojunction photovoltaic devices was demonstrated, yielding in a power conversion efficiency enhancement of 2 orders of magnitude compared with that of pristine P3HT.

  18. Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size

    PubMed Central

    Roehling, John D.; Baran, Derya; Sit, Joseph; Kassar, Thaer; Ameri, Tayebeh; Unruh, Tobias; Brabec, Christoph J.; Moulé, Adam J.

    2016-01-01

    High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100’s of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu3N@PC80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu3N@PC80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaic devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu3N@PC80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu3N@PC80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all. PMID:27498880

  19. Controlling the Morphology of BDTT-DPP-Based Small Molecules via End-Group Functionalization for Highly Efficient Single and Tandem Organic Photovoltaic Cells.

    PubMed

    Kim, Ji-Hoon; Park, Jong Baek; Yang, Hoichang; Jung, In Hwan; Yoon, Sung Cheol; Kim, Dongwook; Hwang, Do-Hoon

    2015-11-04

    A series of narrow-band gap, π-conjugated small molecules based on diketopyrrolopyrrole (DPP) electron acceptor units coupled with alkylthienyl-substituted-benzodithiophene (BDTT) electron donors were designed and synthesized for use as donor materials in solution-processed organic photovoltaic cells. In particular, by end-group functionalization of the small molecules with fluorine derivatives, the nanoscale morphologies of the photoactive layers of the photovoltaic cells were successfully controlled. The influences of different fluorine-based end-groups on the optoelectronic and morphological properties, carrier mobilities, and the photovoltaic performances of these materials were investigated. A high power conversion efficiency (PCE) of 6.00% under simulated solar light (AM 1.5G) illumination has been achieved for organic photovoltaic cells based on a small-molecule bulk heterojunction system consisting of a trifluoromethylbenzene (CF3) end-group-containing oligomer (BDTT-(DPP)2-CF3) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor. As a result, the introduction of CF3 end-groups has been found to enhance both the short circuit current density (JSC) and fill factor (FF). A tandem photovoltaic device comprising an inverted BDTT-(DPP)2-CF3:PC71BM cell and a poly(3-hexylthiophene) (P3HT):indene-C60-bisadduct (IC60BA)-based cell as the top and bottom cell components, respectively, showed a maximum PCE of 8.30%. These results provide valuable guidelines for the rational design of conjugated small molecules for applications in high-performance organic photovoltaic cells. Furthermore, to the best of our knowledge, this is the first report on the design of fluorine-functionalized BDTT-DPP-based small molecules, which have been shown to be a viable candidate for use in inverted tandem cells.

  20. An N-ethylated barbituric acid end-capped bithiophene as an electron-acceptor material in fullerene-free organic photovoltaics.

    PubMed

    Sullivan, Paul; Collis, Gavin E; Rochford, Luke A; Arantes, Junior Ferreira; Kemppinen, Peter; Jones, Tim S; Winzenberg, Kevin N

    2015-04-11

    A new evaporable electron acceptor material for organic photovoltaics based on N-ethyl barbituric acid bithiophene (EBB) has been demonstrated. Bilayer devices fabricated with this non-fullerene acceptor and boron subphthalocyanine chloride (SubPc) donor produce power conversion efficiencies as high as 2.6% with an extremely large open-circuit voltage approaching 1.4 V.

  1. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods.

    PubMed

    Camino, Fernando E; Nam, Chang-Yong; Pang, Yutong T; Hoy, Jessica; Eisaman, Matthew D; Black, Charles T; Sfeir, Matthew Y

    2014-12-15

    We present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm(2)). This allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for use as transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.

  2. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods

    SciTech Connect

    Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; Hoy, Jessica; Eisaman, Matthew D.; Black, Charles T.; Sfeir, Matthew Y.

    2014-05-15

    Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for use as transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.

  3. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods

    DOE PAGES

    Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; ...

    2014-05-15

    Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for use asmore » transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.« less

  4. Simultaneous Engineering of the Substrate Temperature and Mixing Ratio to Improve the Performance of Organic Photovoltaic Cells.

    PubMed

    Song, Hyung-Jun; Roh, Jeongkyun; Lee, Changhee

    2016-05-01

    In this study, we investigated the effect of the donor/acceptor mixing ratio and the substrate temperature (T(SUB)) during the co-deposition process on the performance of bulk heterojunction organic photovoltaic cells. We found that the ratio of dispersed donor islands (less than 10 nm), which hinders charge carrier transport, increased as the donor concentration (C(D)) increased in the film processed at room temperature. By contrast, the donor cluster (larger than 10 nm), providing percolation paths for the carriers, was enlarged in the film containing a high C(D) fabricated at high T(SUB) (70 degrees C). This enhanced phase separation in the mixed layer led to an improved fill factor and a decreased activation energy of the short-circuit current (J(SC)). Therefore, we demonstrated a 23% improvement in the device performance by employing an elevated T(SUB) and optimized mixing ratio in comparison with the device fabricated at room temperature.

  5. A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency

    NASA Astrophysics Data System (ADS)

    Hong, Soonil; Kang, Hongkyu; Kim, Geunjin; Lee, Seongyu; Kim, Seok; Lee, Jong-Hoon; Lee, Jinho; Yi, Minjin; Kim, Junghwan; Back, Hyungcheol; Kim, Jae-Ryoung; Lee, Kwanghee

    2016-01-01

    The fabrication of organic photovoltaic modules via printing techniques has been the greatest challenge for their commercial manufacture. Current module architecture, which is based on a monolithic geometry consisting of serially interconnecting stripe-patterned subcells with finite widths, requires highly sophisticated patterning processes that significantly increase the complexity of printing production lines and cause serious reductions in module efficiency due to so-called aperture loss in series connection regions. Herein we demonstrate an innovative module structure that can simultaneously reduce both patterning processes and aperture loss. By using a charge recombination feature that occurs at contacts between electron- and hole-transport layers, we devise a series connection method that facilitates module fabrication without patterning the charge transport layers. With the successive deposition of component layers using slot-die and doctor-blade printing techniques, we achieve a high module efficiency reaching 7.5% with area of 4.15 cm2.

  6. Urea, glycolic acid, and glycerol in an organic residue produced by ultraviolet irradiation of interstellar/pre-cometary ice analogs.

    PubMed

    Nuevo, Michel; Bredehöft, Jan Hendrik; Meierhenrich, Uwe J; d'Hendecourt, Louis; Thiemann, Wolfram H-P

    2010-03-01

    More than 50 stable organic molecules have been detected in the interstellar medium (ISM), from ground-based and onboard-satellite astronomical observations, in the gas and solid phases. Some of these organics may be prebiotic compounds that were delivered to early Earth by comets and meteorites and may have triggered the first chemical reactions involved in the origin of life. Ultraviolet irradiation of ices simulating photoprocesses of cold solid matter in astrophysical environments have shown that photochemistry can lead to the formation of amino acids and related compounds. In this work, we experimentally searched for other organic molecules of prebiotic interest, namely, oxidized acid labile compounds. In a setup that simulates conditions relevant to the ISM and Solar System icy bodies such as comets, a condensed CH(3)OH:NH(3) = 1:1 ice mixture was UV irradiated at approximately 80 K. The molecular constituents of the nonvolatile organic residue that remained at room temperature were separated by capillary gas chromatography and identified by mass spectrometry. Urea, glycolic acid, and glycerol were detected in this residue, as well as hydroxyacetamide, glycerolic acid, and glycerol amide. These organics are interesting target molecules to be searched for in space. Finally, tentative mechanisms of formation for these compounds under interstellar/pre-cometary conditions are proposed.

  7. High performance organic integrated device with ultraviolet photodetective and electroluminescent properties consisting of a charge-transfer-featured naphthalimide derivative

    SciTech Connect

    Wang, Hanyu; Wang, Xu; Yu, Junsheng E-mail: jsyu@uestc.edu.cn; Zhou, Jie; Lu, Zhiyun E-mail: jsyu@uestc.edu.cn

    2014-08-11

    A high performance organic integrated device (OID) with ultraviolet photodetective and electroluminescent (EL) properties was fabricated by using a charge-transfer-featured naphthalimide derivative of 6-(3,5-bis-[9-(4-t-butylphenyl)-9H-carbazol-3-yl]-phenoxy)-2- (4-t-butylphenyl)-benzo[de]isoquinoline-1,3-dione (CzPhONI) as the active layer. The results showed that the OID had a high detectivity of 1.5 × 10{sup 11} Jones at −3 V under the UV-350 nm illumination with an intensity of 0.6 mW/cm{sup 2}, and yielded an exciplex EL light emission with a maximum brightness of 1437 cd/m{sup 2}. Based on the energy band diagram, both the charge transfer feature of CzPhONI and matched energy level alignment were responsible for the dual ultraviolet photodetective and EL functions of OID.

  8. Fabrication of three-dimensional hybrid nanostructure-embedded ITO and its application as a transparent electrode for high-efficiency solution processable organic photovoltaic devices.

    PubMed

    Kim, Jeong Won; Jeon, Hwan-Jin; Lee, Chang-Lyoul; Ahn, Chi Won

    2017-03-02

    Well-aligned, high-resolution (10 nm), three-dimensional (3D) hybrid nanostructures consisting of patterned cylinders and Au islands were fabricated on ITO substrates using an ion bombardment process and a tilted deposition process. The fabricated 3D hybrid nanostructure-embedded ITO maintained its excellent electrical and optical properties after applying a surface-structuring process. The solution processable organic photovoltaic device (SP-OPV) employing a 3D hybrid nanostructure-embedded ITO as the anode displayed a 10% enhancement in the photovoltaic performance compared to the photovoltaic device prepared using a flat ITO electrode, due to the improved charge collection (extraction and transport) efficiency as well as light absorbance by the photo-active layer.

  9. Degradation of organic ultraviolet filter diethylamino hydroxybenzoyl hexyl benzoate in aqueous solution by UV/H2O2.

    PubMed

    Gong, Ping; Yuan, Haixia; Zhai, Pingping; Dong, Wenbo; Li, Hongjing

    2015-07-01

    Steady-state and transient-state photolysis experiments were conducted to investigate the degradation of organic ultraviolet filter diethylamino hydroxybenzoyl hexyl benzoate (DHHB) in the aqueous solution by UV/H2O2. Results showed that the obvious degradation of DHHB was not observed under UV irradiation (λ = 254 nm), and the DHHB degradation was conducted due to the oxidation by hydroxyl radical (HO·). While the H2O2 concentration was between 0.05 and 0.10 mol L(-1), the highest DHHB degradation efficiency was obtained. The lower solution pH favored the transformation of DHHB, and the coexisting Cl(-) and NO3(-) ions slightly enhanced the conversion. The degradation of DHHB by HO· followed a pseudo-first-order kinetic model with different initial DHHB concentrations. By intermediate products during DHHB oxidation and laser flash photolysis spectra analysis, a primary degradation pathway was proposed.

  10. Vacuum ultraviolet photoionization mass spectra and cross-sections for volatile organic compounds at 10.5 eV.

    PubMed

    Kanno, Nozomu; Tonokura, Kenichi

    2007-08-01

    Vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS) has been applied to the detection of volatile organic compounds (VOCs), including aromatic, chlorinated, and oxygenated compounds. Photoionization mass spectra of 23 VOCs were measured using SPI-TOFMS at 10.5 eV (118 nm). The limits of detection of VOCs using SPI-TOFMS at 10.5 eV were estimated to be a few ppbv. The mass spectra of 20 VOCs exhibit only the parent ion and its isotopes' signals. The ionization processes of the VOCs were discussed on the basis of the reaction enthalpies predicted by the quantum chemical calculations. Absolute photoionization cross-sections for 23 VOCs, including 12 newly measured VOCs, at 10.5 eV were determined in comparison to the reported absolute photoionization cross-section of NO.

  11. Remarkable improvement in electroluminescence benefited from appropriate electron injection and transporting in ultraviolet organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    You, Fengjiao; Mo, Bingjie; Liu, Liming; Wang, Honghang; Bin Wei; Xu, Jiwen; Zhang, Xiaowen

    2016-08-01

    Suitable thickness of LiF and 4,7-diphenyl-1, 10-phenanthroline with slightly weakened electron injection and transporting is proposed to match the intractable hole injection capacity in ultraviolet organic light-emitting diode (UV OLED). By using this strategy, the device performance is remarkably improved. With 4,4‧-bis(carbazol-9-yl)biphenyl (CBP) and 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole (TAZ) as emitters, the UV OLED shows maximum radiance of 5.8 mW/cm2 and external quantum efficiency of 2.1% with emission peak of ~380 nm predominantly from TAZ and noticeable shoulder emission of ~410 nm from CBP. The retarded electron injection and transporting contribute to optimizing hole-electron recombination zone and balance within the emitting layers, which accounts for the improved electroluminescent intensity. The detailed mechanism is further clarified with impedance spectroscopy.

  12. Photovoltaic Small Molecules of TPA(FxBT-T-Cz)3: Tuning Open-Circuit Voltage over 1.0 V for Their Organic Solar Cells by Increasing Fluorine Substitution.

    PubMed

    Wang, Qiong; Duan, Linrui; Tao, Qiang; Peng, Wenhong; Chen, Jianhua; Tan, Hua; Yang, Renqiang; Zhu, Weiguo

    2016-11-09

    To simultaneously improve both open-circuit voltage (Voc) and short-circuit current density (Jsc) for organic solar cells, a novel D(A-π-Ar)3 type of photovoltaic small molecules of TPA(FxBT-T-3Cz)3 was designed and synthesized, which contain central triphenylamine (TPA), terminal carbazole (Cz), armed fluorine-substituted benzothiadiazole (FxBT, where x = 1 or 2), and bridged thiophene (T) units. A narrowed ultraviolet-visible absorption and a decreasing highest occupied molecular orbital energy level were observed from TPA(F1BT-T-3Cz)3 to TPA(F2BT-T-3Cz)3 with increasing fluorine substitution. However, the TPA(F2BT-T-3Cz)3/PC71BM-based solar devices showed a rising Voc of 1.01 V and an enhanced Jsc of 10.84 mA cm(-2) as well as a comparable power conversion efficiency of 4.81% in comparison to the TPA(F1BT-T-3Cz)3/PC71BM-based devices. Furthermore, in comparison to the parent TPA(BT-T-3Cz)3 molecule without fluorine substitution, the fluorine-substituted TPA(FxBT-T-3Cz)3 molecules exhibited significantly incremental Voc and Jsc values in their bulk heterojunction organic solar cells, owing to fluorine incorporation in the electron-deficient benzothiadiazole unit.

  13. Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer.

    PubMed

    Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L

    2017-01-07

    The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoOx) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoOx interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoOx/CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.

  14. High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions

    DOEpatents

    Xue, Jiangeng; Uchida, Soichi; Rand, Barry P.; Forrest, Stephen

    2015-08-18

    A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first photoactive organic layer that is a mixture of an organic acceptor material and an organic donor material, wherein the first photoactive organic layer has a thickness not greater than 0.8 characteristic charge transport lengths; a second photoactive organic layer in direct contact with the first organic layer, wherein the second photoactive organic layer is an unmixed layer of the organic acceptor material of the first photoactive organic layer, and the second photoactive organic layer has a thickness not less than about 0.1 optical absorption lengths; and a third photoactive organic layer disposed between the first electrode and the second electrode and in direct contact with the first photoactive organic layer. The third photoactive organic layer is an unmixed layer of the organic donor layer of the first photoactive organic layer and has a thickness not less than about 0.1 optical absorption lengths.

  15. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-06

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment.

  16. Effect of ultraviolet light on toxicity of the PAH fluoranthene to freshwater organisms

    SciTech Connect

    Brooke, L.T.; Cox, D.; Kahl, M.; Spehar, R.L.

    1994-12-31

    Certain polyaromatic hydrocarbons (PAHs) can be activated by irradiation with ultraviolet light in the near UV waveband to increase their biocidal qualities. Fluoranthene is one of the PAHs that has this capacity. Ten species of freshwater animals and one species of freshwater plant were acutely exposed to several concentrations of fluoranthene in the presence of additional UV light and to standard light conditions. Tests were conducted using flow-through static or renewal techniques. Fluoranthene concentrations were measured using high pressure liquid chromatography. UV light was produced by UV-emitting fluorescent lamps. UV-C was removed from the spectrum by cellulose triacetate filters. Separate measurements were made of spectral ranges 310 to 390, 265 to 328 and < 320 nm. All species tested except for a dragonfly, Ophiogomphus sp. were more sensitive to fluoranthene in the presence of UV light ranging from 449 to 926 {mu}W/CM{sup 2} than the same species exposed to this chemical in tests using standard light conditions. Sensitivity increased by factors of {<=}32 times in these tests. Two species were tested for effects of UV light during chronic exposure. The cladoceran, Daphnia magna, showed a 17.1 fold increase in sensitivity to fluoranthene due to UV light and the fathead minnow showed a 5.77 fold increase. Results show that water quality criteria for fluoranthene should be adjusted for UV light effects.

  17. TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells

    DOEpatents

    Marks, Iobin J [Evanston, IL; Hains, Alexander W [Evanston, IL

    2011-02-15

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.

  18. High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions

    DOEpatents

    Xue, Jiangeng; Uchida, Soichi; Rand, Barry P; Forrest, Stephen

    2013-11-19

    A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first organic layer comprising a mixture of an organic acceptor material and an organic donor material, wherein the first organic layer has a thickness not greater than 0.8 characteristic charge transport lengths, and a second organic layer in direct contact with the first organic layer, wherein: the second organic layer comprises an unmixed layer of the organic acceptor material or the organic donor material of the first organic layer, and the second organic layer has a thickness not less than about 0.1 optical absorption lengths. Preferably, the first organic layer has a thickness not greater than 0.3 characteristic charge transport lengths. Preferably, the second organic layer has a thickness of not less than about 0.2 optical absorption lengths. Embodiments of the invention can be capable of power efficiencies of 2% or greater, and preferably 5% or greater.

  19. Real-time detection of organic contamination events in water distribution systems by principal components analysis of ultraviolet spectral data.

    PubMed

    Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo

    2017-04-01

    The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T(2) statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.

  20. Evolution of Morphological and Physical Properties of Laboratory Interstellar Organic Residues with Ultraviolet Irradiation

    NASA Astrophysics Data System (ADS)

    Piani, L.; Tachibana, S.; Hama, T.; Tanaka, H.; Endo, Y.; Sugawara, I.; Dessimoulie, L.; Kimura, Y.; Miyake, A.; Matsuno, J.; Tsuchiyama, A.; Fujita, K.; Nakatsubo, S.; Fukushi, H.; Mori, S.; Chigai, T.; Yurimoto, H.; Kouchi, A.

    2017-03-01

    Refractory organic compounds formed in molecular clouds are among the building blocks of the solar system objects and could be the precursors of organic matter found in primitive meteorites and cometary materials. However, little is known about the evolutionary pathways of molecular cloud organics from dense molecular clouds to planetary systems. In this study, we focus on the evolution of the morphological and viscoelastic properties of molecular cloud refractory organic matter. We found that the organic residue, experimentally synthesized at ∼10 K from UV-irradiated H2O-CH3OH-NH3 ice, changed significantly in terms of its nanometer- to micrometer-scale morphology and viscoelastic properties after UV irradiation at room temperature. The dose of this irradiation was equivalent to that experienced after short residence in diffuse clouds (≤104 years) or irradiation in outer protoplanetary disks. The irradiated organic residues became highly porous and more rigid and formed amorphous nanospherules. These nanospherules are morphologically similar to organic nanoglobules observed in the least-altered chondrites, chondritic porous interplanetary dust particles, and cometary samples, suggesting that irradiation of refractory organics could be a possible formation pathway for such nanoglobules. The storage modulus (elasticity) of photo-irradiated organic residues is ∼100 MPa irrespective of vibrational frequency, a value that is lower than the storage moduli of minerals and ice. Dust grains coated with such irradiated organics would therefore stick together efficiently, but growth to larger grains might be suppressed due to an increase in aggregate brittleness caused by the strong connections between grains.

  1. Interfacial composition of the oxide-donor interface: Probing morphology and charge injection/extraction in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Gantz, Jeremy L.

    The role of the transparent conducting oxide (TCO) and the organic donor material interface in small molecule planar heterojunction (PHJ) and bulk heterojunction (BHJ) solar cells (OPV) was investigated and are presented as three projects: 1) the influence of the electrode surface composition and energetics on small molecule organic solar cell performance: Polar vs. non-polar donors on indium tin oxide (ITO) contacts, 2) the study of the oxide donor contact electrical properties utilizing metal-insulator-semiconductor capacitor (MIS-C) devices to probe the dark current contributions of a single interface in organic solar cells, 3) the role of the hole transport layer type and morphology in small molecule BHJ solar cells: correlating trap state density with OPV performance and d) using fluorinated subphthalocyanines as multifunctional materials in OPVs. Organic semiconductor material properties are varied and the role of each class of material functions differently when incorporated into an organic photovoltaic. Polar donor materials such as indium (III) phthalocyanine chloride (ClInPc) adopt different molecular configurations on high work function ITO electrodes as opposed to low work function electrodes which sets itself apart from non-polar electron donating materials. We find that not only does molecular orientation effect the optical properties of these thin films, but the charge transfer properties that occur at the oxide/donor interface influence the overall device performance in OPVs and can be probed using MIS-C devices and high resolution photoemission spectroscopy. We also investigate how the morphology of the hole selective interlayer in BHJ OPVs influences the resulting trap state density and OPV performance.

  2. P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology.

    PubMed

    Chen, Dian; Nakahara, Atsuhiro; Wei, Dongguang; Nordlund, Dennis; Russell, Thomas P

    2011-02-09

    Controlling thin film morphology is key in optimizing the efficiency of polymer-based photovoltaic (PV) devices. We show that morphology and interfacial behavior of the multicomponent active layers confined between electrodes are strongly influenced by the preparation conditions. Here, we provide detailed descriptions of the morphologies and interfacial behavior in thin film mixtures of regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM), a typical active layer in a polymer-based PV device, in contact with an anode layer of PEDOT-PSS and either unconfined or confined by an Al cathode during thermal treatment. Small angle neutron scattering and electron microscopy show that a nanoscopic, bicontinuous morphology develops within seconds of annealing at 150 °C and coarsens slightly with further annealing. P3HT and PCBM are shown to be highly miscible, to exhibit a rapid, unusual interdiffusion, and to display a preferential segregation of one component to the electrode interfaces. The ultimate morphology is related to device efficiency.

  3. P3HT/PCBM Bulk Heterojunction Organic Photovoltaics. Correlating Efficiency and Morphology

    SciTech Connect

    Chen, Dian; Nakahara, Atsuhiro; Wei, Dongguang; Nordlund, Dennis; Russell, Thomas P.

    2010-12-21

    Controlling thin film morphology is key in optimizing the efficiency of polymer-based photovoltaic (PV) devices. We show that morphology and interfacial behavior of the multicomponent active layers confined between electrodes are strongly influenced by the preparation conditions. Here, we provide detailed descriptions of the morphologies and interfacial behavior in thin film mixtures of regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM), a typical active layer in a polymer-based PV device, in contact with an anode layer of PEDOT-PSS and either unconfined or confined by an Al cathode during thermal treatment. Small angle neutron scattering and electron microscopy show that a nanoscopic, bicontinuous morphology develops within seconds of annealing at 150 °C and coarsens slightly with further annealing. P3HT and PCBM are shown to be highly miscible, to exhibit a rapid, unusual interdiffusion, and to display a preferential segregation of one component to the electrode interfaces. The ultimate morphology is related to device efficiency.

  4. Facile Preparation of Molybdenum Bronzes as an Efficient Hole Extraction Layer in Organic Photovoltaics.

    PubMed

    Wang, Jiantai; Zhang, Jun; Meng, Bin; Zhang, Baohua; Xie, Zhiyuan; Wang, Lixiang

    2015-06-24

    We proposed a facile and green one-pot strategy to synthesize Mo bronzes nanoparticles to serve as an efficient hole extraction layer in polymer solar cells. Mo bronzes were obtained through reducing the fractional self-aggregated ammonium heptamolybdate with appropriate reducing agent ascorbic acid, and its optoelectronic properties were fully characterized. The synthesized Mo bronzes displayed strong n-type semiconductor characteristics with a work function of 5.2-5.4 eV, matched well with the energy levels of current donor polymers. The presented gap states of the Mo bronzes near the Fermi level were beneficial for facilitating charge extraction. The as-synthesized Mo bronzes were used as hole extraction layer in polymer solar cells and significantly enhanced the photovoltaic performance and stability. The power conversion efficiency was increased by more than 18% compared with the polyethylene dioxythiophene:polystyrenesulfonate-based reference cell. The excellent performance and facile preparation render the as-synthesized solution-processed Mo bronzes nanoparticles a promising candidate for hole extraction layer in low-cost and efficient polymer solar cells.

  5. Device and morphological engineering of organic solar cells for enhanced charge transport and photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Adhikari, Nirmal; Khatiwada, Devendra; Dubey, Ashish; Qiao, Qiquan

    2015-01-01

    Conjugated polymers are potential materials for photovoltaic applications due to their high absorption coefficient, mechanical flexibility, and solution-based processing for low-cost solar cells. A bulk heterojunction (BHJ) structure made of donor-acceptor composite can lead to high charge transfer and power conversion efficiency. Active layer morphology is a key factor for device performance. Film formation processes (e.g., spray-coating, spin-coating, and dip-coating), post-treatment (e.g., annealing and UV ozone treatment), and use of additives are typically used to engineer the morphology, which optimizes physical properties, such as molecular configuration, miscibility, lateral and vertical phase separation. We will review electronic donor-acceptor interactions in conjugated polymer composites, the effect of processing parameters and morphology on solar cell performance, and charge carrier transport in polymer solar cells. This review provides the basis for selection of different processing conditions for optimized nanomorphology of active layers and reduced bimolecular recombination to enhance open-circuit voltage, short-circuit current density, and fill factor of BHJ solar cells.

  6. Photovoltaic device

    DOEpatents

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  7. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  8. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  9. Screening of inorganic wide-bandgap p-type semiconductors for high performance hole transport layers in organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ginley, David; Zakutayev, Andriy; Garcia, Andreas; Widjonarko, Nicodemus; Ndione, Paul; Sigdel, Ajaya; Parilla, Phillip; Olson, Dana; Perkins, John; Berry, Joseph

    2011-03-01

    We will report on the development of novel inorganic hole transport layers (HTL) for organic photovoltaics (OPV). All the studied materials belong to the general class of wide-bandgap p-type oxide semiconductors. Potential candidates suitable for HTL applications include SnO, NiO, Cu2O (and related CuAlO2, CuCrO2, SrCu2O4 etc) and Co3O4 (and related ZnCo2O4, NiCo2O4, MgCo2O4 etc.). Materials have been optimized by high-throughput combinatorial approaches. The thin films were deposited by RF sputtering and pulsed laser deposition at ambient and elevated temperatures. Performance of the inorganic HTLs and that of the reference organic PEDOT:PSS HTL were compared by measuring the power conversion efficiencies and spectral responses of the P3HT/PCBM- and PCDTBT/PCBM-based OPV devices. Preliminary results indicate that Co3O4-based HTLs have performance comparable to that of our previously reported NiOs and PEDOT:PSS HTLs, leading to a power conversion efficiency of about 4 percent. The effect of composition and work function of the ternary materials on their performance in OPV devices is under investigation.

  10. PEDOT:PSS with embedded TiO2 nanoparticles as light trapping electrode for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Park, Yoonseok; Müller-Meskamp, Lars; Vandewal, Koen; Leo, Karl

    2016-06-01

    The performance of organic optoelectronic devices can be improved by employing a suitable optical cavity design beyond the standard plane layer approach, e.g., by the inclusion of periodically or randomly textured structures which increase light incoupling or extraction. One of the simplest approaches is to add an additional layer containing light scattering particles into the device stack. Solution processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin films are promising for replacing the brittle and expensive indium tin oxide transparent electrode. We use a blend of 100 nm TiO2 scattering particles in PEDOT:PSS solution to fabricate transparent electrode films which also functions as a scattering layer. When utilized in an organic photovoltaic device, a power conversion efficiency of 7.92% is achieved, which is an 8.6% relative improvement compared to a device with a neat PEDOT:PSS electrode without the nanoparticles. This improvement is caused by an increase in short-circuit current due to an improved photon harvesting in the 320 nm-700 nm spectral wavelength range.

  11. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  12. Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy.

    PubMed

    Groves, Chris; Reid, Obadiah G; Ginger, David S

    2010-05-18

    The use of organic photovoltaics (OPVs) could reduce production costs for solar cells because these materials are solution processable and can be manufactured by roll-to-roll printing. The nanoscale texture, or film morphology, of the donor/acceptor blends used in most OPVs is a critical variable that can dominate both the performance of new materials being optimized in the lab and efforts to move from laboratory-scale to factory-scale production. Although efficiencies of organic solar cells have improved significantly in recent years, progress in morphology optimization still occurs largely by trial and error, in part because much of our basic understanding of how nanoscale morphology affects the optoelectronic properties of these heterogeneous organic semiconductor films has to be inferred indirectly from macroscopic measurements. In this Account, we review the importance of nanoscale morphology in organic semiconductors and the use of electrical scanning probe microscopy techniques to directly probe the local optoelectronic properties of OPV devices. We have observed local heterogeneity of electronic properties and performance in a wide range of systems, including model polymer-fullerene blends such as poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM), newer polyfluorene copolymer-PCBM blends, and even all polymer donor-acceptor blends. The observed heterogeneity in local photocurrent poses important questions, chiefly what information is contained and what is lost when using average values obtained from conventional measurements on macroscopic devices and bulk samples? We show that in many cases OPVs are best thought of as a collection of nanoscopic photodiodes connected in parallel, each with their own morphological and therefore electronic and optical properties. This local heterogeneity forces us to carefully consider the adequacy of describing OPVs solely by "average" properties such as the bulk carrier mobility

  13. Comparing Vacuum and Extreme Ultraviolet Radiation for Postionization of Laser Desorbed Neutrals from Bacterial Biofilms and Organic Fullerene

    SciTech Connect

    Gaspera, Gerald L.; Takahashi, Lynelle K.; Zhou, Jia; Ahmed, Musahid; Moored, Jerry F.; Hanley, Luke

    2010-12-08

    Vacuum and extreme ultraviolet radiation from 8 - 24 eV generated at a synchrotron was used to postionize laser desorbed neutrals of antibiotic-treated biofilms and a modified fullerene using laser desorption postionization mass spectrometry (LDPI-MS). Results show detection of the parent ion, various fragments, and extracellular material from biofilms using LDPI-MS with both vacuum and extreme ultraviolet photons. Parent ions were observed for both cases, but extreme ultraviolet photons (16-24 eV) induced more fragmentation than vacuum ultraviolet (8-14 eV) photons.

  14. Synergetic Solvent Engineering of Film Nanomorphology to Enhance Planar Perylene Diimide-Based Organic Photovoltaics.

    PubMed

    Wang, Jialin; Liang, Ziqi

    2016-08-31

    Solvent additive has proven as a useful protocol for improving the film nanomorphology of polymer donor (D): fullerene acceptor (A) blends in bulk heterojunction (BHJ) photovoltaic cells. By contrast, the effect of such solvent additive on nonfullerene BHJ cells based on perylene diimide acceptor, for instance, is less effective because of their highly planar structure and strong π-aggregation in solid state. Here we choose N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) and thieno[3,4-b]thiophene-alt-benzodithiophene (PTB7) as a model D:A blend system to investigate how solvent engineering strategy synergistically impacts the blend film nanomorphology. Based on the differences of solvent volatility and solubility, various host solvents-chloroform (CF) and chlorobenzene (CB) and solvent additives-chloronaphthalene (CN) and 1,8-diiodooctane (DIO) are selected for comparative studies. It is found that the π-aggregation of PDIs can be largely suppressed by using low-boiling point (Tb) CF solvent, yet enlarged by using high-Tb CB. Moreover, CN additive provides good solubility of PDI molecules and hence reduces large PDI aggregates in CB system, while DIO exhibiting poor solubility works oppositely. By contrast, DIO that presents larger Tb difference with CF prolongs the film-forming, which assists in optimizing the PDI aggregation and increases the intermixed PTB7:PDI phases more significantly than CN in CF system, yielding the finest phase-separation morphology and balanced charge mobility. Consequently, the inverted BHJ cells based on CF-processed PTB7:PDI blend film with 0.4 vol % DIO exhibit the highest PCE of 3.55% with a fill factor of 56%, both of which are among the best performance for such a paradigm PTB7:PDI blend-based BHJ cells.

  15. Free Carrier Generation in Organic Photovoltaic Bulk Heterojunctions of Conjugated Polymers with Molecular Acceptors: Planar versus Spherical Acceptors

    SciTech Connect

    Nardes, Alexandre M.; Ferguson, Andrew J.; Wolfer, Pascal; Gui, Kurt; Burn, Paul L.; Meredith, Paul; Kopidakis, Nikos

    2014-03-05

    We present a comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small-molecule acceptor in an organic photovoltaic device. The small-molecule planar acceptor is 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge-carrier generation and transport in blends of PC61BM or K12 with poly(3-n-hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time-resolved microwave conductivity (TRMC) method. In contrast, approximately 85 % of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron-transport properties in the mixed P3HT:K12 phase. Here, we propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three-dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub

  16. Technical Note: Nanometric organic photovoltaic thin film detectors for dose monitoring in diagnostic x-ray imaging

    SciTech Connect

    Elshahat, Bassem; Gill, Hardeep Singh; Kumar, Jayant; Filipyev, Ilya; Zygmanski, Piotr; Shrestha, Suman; Karellas, Andrew; Hesser, Jürgen; Sajo, Erno

    2015-07-15

    Purpose: To fabricate organic photovoltaic (OPV) cells with nanometric active layers sensitive to ionizing radiation and measure their dosimetric characteristics in clinical x-ray beams in the diagnostic tube potential range of 60–150 kVp. Methods: Experiments were designed to optimize the detector’s x-ray response and find the best parameter combination by changing the active layer thickness and the area of the electrode. The OPV cell consisted of poly (3-hexylthiophene-2,5-diyl): [6,6]-phenyl C{sub 61} butyric acid methyl ester photoactive donor and acceptor semiconducting organic materials sandwiched between an aluminum electrode as an anode and an indium tin oxide electrode as a cathode. The authors measured the radiation-induced electric current at zero bias voltage in all fabricated OPV cells. Results: The net OPV current as a function of beam potential (kVp) was proportional to kVp{sup −0.5} when normalized to x-ray tube output, which varies with kVp. Of the tested configurations, the best combination of parameters was 270 nm active layer thicknesses with 0.7 cm{sup 2} electrode area, which provided the highest signal per electrode area. For this cell, the measured current ranged from approximately 0.7 to 2.4 nA/cm{sup 2} for 60–150 kVp, corresponding to about 0.09 nA–0.06 nA/mGy air kerma, respectively. When compared to commercial amorphous silicon thin film photovoltaic cells irradiated under the same conditions, this represents 2.5 times greater sensitivity. An additional 40% signal enhancement was observed when a 1 mm layer of plastic scintillator was attached to the cells’ beam-facing side. Conclusions: Since both OPVs can be produced as flexible devices and they do not require external bias voltage, they open the possibility for use as thin film in vivo detectors for dose monitoring in diagnostic x-ray imaging.

  17. Single Component Lanthanide Hybrids Based on Metal-Organic Framework for Near-Ultraviolet White Light LED.

    PubMed

    Zhao, Yan-Wu; Zhang, Fu-Qiang; Zhang, Xian-Ming

    2016-09-14

    Near-UV single-phase white-light phosphor (Eu0.045Tb0.955CPOMBA/La0.6Eu0.1Tb0.3CPOMBA) based on metal-organic framework was prepared by in situ doping isostructural lanthanide MOF with Eu(3+) and Tb(3+), and it is found that the energy can effectively transfer from organic ligand to lanthanides, which can overcome weak absorption under direct excitation of lanthanide ions due to the forbidden f-f transitions. The photoluminescence and thermostability of the new MOF phosphor are investigated, and effective white-light emission is achieved under 365 and 380 nm excitations. By employing Eu0.045Tb0.955CPOMBA as phosphor, we fabricated a near-ultraviolet white-light-emitting diode (n-UV WLED) (365 nm) with low CCT (5733 K), high CRI (Ra = 73.4), and CIE chromaticity coordinate (0.3264, 0.3427). This approach may open new perspectives for developing single-phase UV phosphors.

  18. Desorption dynamics, internal energies, and imaging of organic molecules from surfaces with laser desorption and vacuum ultraviolet (VUV) photoionization.

    PubMed

    Kostko, Oleg; Takahashi, Lynelle K; Ahmed, Musahid

    2011-11-04

    There is enormous interest in visualizing the chemical composition of organic material that comprises our world. A convenient method to obtain molecular information with high spatial resolution is imaging mass spectrometry. However, the internal energy deposited within molecules upon transfer to the gas phase from a surface can lead to increased fragmentation and to complications in analysis of mass spectra. Here it is shown that in laser desorption with postionization by tunable vacuum ultraviolet (VUV) radiation, the internal energy gained during laser desorption leads to minimal fragmentation of DNA bases. The internal temperature of laser-desorbed triacontane molecules approaches 670 K, whereas the internal temperature of thymine is 800 K. A synchrotron-based VUV postionization technique for determining translational temperatures reveals that biomolecules have translational temperatures in the range of 216-346 K. The observed low translational temperatures as well as their decrease with increased desorption laser power is explained by collisional cooling. An example of imaging mass spectrometry on an organic polymer by using laser-desorption VUV postionization shows 5 μm feature details while using a 30 μm laser spot size and 7 ns pulse duration. Applications of laser-desorption postionization to the analysis of cellulose, lignin, and humic acids are briefly discussed.

  19. Desorption Dynamics, Internal Energies and Imaging of Organic Molecules from Surfaces with Laser Desorption and Vacuum Ultraviolet (VUV) Photoionization

    SciTech Connect

    Kostko, Oleg; Takahashi, Lynelle K.; Ahmed, Musahid

    2011-04-05

    There is enormous interest in visualizing the chemical composition of organic material that comprises our world. A convenient method to obtain molecular information with high spatial resolution is imaging mass spectrometry. However, the internal energy deposited within molecules upon transfer to the gas phase from a surface can lead to increased fragmentation and to complications in analysis of mass spectra. Here it is shown that in laser desorption with postionization by tunable vacuum ultraviolet (VUV) radiation, the internal energy gained during laser desorption leads to minimal fragmentation of DNA bases. The internal temperature of laser-desorbed triacontane molecules approaches 670 K, whereas the internal temperature of thymine is 800 K. A synchrotron-based VUV postionization technique for determining translational temperatures reveals that biomolecules have translational temperatures in the range of 216-346 K. The observed low translational temperatures, as well as their decrease with increased desorption laser power is explained by collisional cooling. An example of imaging mass spectrometry on an organic polymer, using laser desorption VUV postionization shows 5 mu m feature details while using a 30 mu m laser spot size and 7 ns duration. Applications of laser desorption postionization to the analysis of cellulose, lignin and humic acids are briefly discussed.

  20. Exceeding 4% external quantum efficiency in ultraviolet organic light-emitting diode using PEDOT:PSS/MoOx double-stacked hole injection layer

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; You, Fengjiao; Liu, Shiqi; Mo, Bingjie; Zhang, Zheling; Xiong, Jian; Cai, Ping; Xue, Xiaogang; Zhang, Jian; Wei, Bin

    2017-01-01

    An effective and simple method has been explored to construct an efficient ultraviolet organic light-emitting diode (OLED) by incorporating poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/MoOx double-stacked hole injection layer (HIL) and slightly retarding electron injection for achieving extremely balanced charge carriers. The device produces 4.6% external quantum efficiency with an attractive ultraviolet emission peak of 377 nm and full width at half maximum of 35 nm. Ultraviolet photoelectron spectroscopy and impedance spectroscopy analysis determine the substantially enhanced hole injection capacity of PEDOT:PSS/MoOx double-stacked HIL, which accordingly contributes to optimizing carrier balance. The results pave a way to advancing OLED in potential application towards short wavelength emission.

  1. The effects of ultraviolet light on the degradation of organic compounds - A possible explanation for the absence of organic matter on Mars

    NASA Technical Reports Server (NTRS)

    Oro, J.; Holzer, G.

    1979-01-01

    The analysis of the top layer of the Martian regolith at the two Viking landing sites did not reveal any indigenous organic compounds. However, the existence of such compounds at deeper layers cannot be ruled out. Cosmochemical considerations indicate various potential sources for organic matter on Mars, such as comets and meteorites. The study tested the stability of a sample of the Murchison meteorite and various organic substances which have been detected in carbonaceous chondrites, such as glycine, adenine and naphthalene, to the action of ultraviolet light. The compounds were adsorbed on powdered quartz and on California desert soil and were irradiated in the presence or absence of oxygen. The organic content, before and after irradiation, was measured by carbon elementary analysis, UV-absorption, amino acid analysis or pyrolysis-gas chromatography-mass spectrometry. In the absence of oxygen, adenine and glycine appear to be stable over the given part of irradiation. A definite degradation was noticed in the case of naphtalene and the Murchison meteorite. In the presence of oxygen in amounts comparable to those on Mars all compounds were degraded. The degree of degradation was influenced by the irradiation time, temperature and oxygen content.

  2. Effect of molecular electrical doping on polyfuran based photovoltaic cells

    SciTech Connect

    Yu, Shuwen; Opitz, Andreas; Salzmann, Ingo; Frisch, Johannes; Cohen, Erez; Bendikov, Michael; Koch, Norbert

    2015-05-18

    The electronic, optical, and morphological properties of molecularly p-doped polyfuran (PF) films were investigated over a wide range of doping ratio in order to explore the impact of doping in photovoltaic applications. We find evidence for integer-charge transfer between PF and the prototypical molecular p-dopant tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and employed the doped polymer in bilayer organic solar cells using fullerene as acceptor. The conductivity increase in the PF films at dopant loadings ≤2% significantly enhances the short-circuit current of photovoltaic devices. For higher doping ratios, however, F4TCNQ is found to precipitate at the heterojunction between the doped donor polymer and the fullerene acceptor. Ultraviolet photoelectron spectroscopy reveals that its presence acts beneficial to the energy-level alignment by doubling the open-circuit voltage of solar cells from 0.2 V to ca. 0.4 V, as compared to pristine PF.

  3. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions.

    PubMed

    Poch, Olivier; Jaber, Maguy; Stalport, Fabien; Nowak, Sophie; Georgelin, Thomas; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-03-01

    Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe(3+)-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K), and pressure (6 ± 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6 × 10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate.

  4. Development of New Absorber Materials to Achieve Organic Photovoltaic Commercial Modules with 15% Efficiency and 20 Years Lifetime: Cooperative Research and Development Final Report, CRADA Number CRD-12-498

    SciTech Connect

    Olson, D.

    2014-08-01

    Under this CRADA the parties will develop intermediates or materials that can be employed as the active layer in dye sensitized solar cells printed polymer systems, or small molecule organic photovoltaics.

  5. Ultraviolet Waves

    ERIC Educational Resources Information Center

    Molde, Trevor

    1973-01-01

    Outlines the discovery and nature of ultraviolet light, discusses some applications for these wavelengths, and describes a number of experiments with ultraviolet radiation suitable for secondary school science classes. (JR)

  6. An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics.

    PubMed

    Zhang, Cheng; Zhao, Dewei; Gu, Deen; Kim, Hyunsoo; Ling, Tao; Wu, Yi-Kuei Ryan; Guo, L Jay

    2014-08-27

    An ultrathin, smooth, and low-loss Ag film without a wetting layer is achieved by co-depositing a small amount of Al into Ag. The film can be as thin as 6 nm, with a roughness below 1 nm and excellent mechanical flexibility. Organic photovoltaics that use these thin films as transparent electrode show superior efficiency to their indium tin oxide (ITO) counterparts because of improved photon management.

  7. The Effect of Processing Additives on Energetic Disorder in Highly Efficient Organic Photovoltaics: A Case Study on PBDTTT-C-T:PC71 BM.

    PubMed

    Gao, Feng; Himmelberger, Scott; Andersson, Mattias; Hanifi, David; Xia, Yuxin; Zhang, Shaoqing; Wang, Jianpu; Hou, Jianhui; Salleo, Alberto; Inganäs, Olle

    2015-07-08

    Energetic disorder, an important parameter affecting the performance of organic photovoltaics, is significantly decreased upon the addition of processing additives in a highly efficient benzodithiophene-based copolymer blend (PBDTTT-C-T:PC71 BM). Wide-angle and small-angle X-ray scattering measurements suggest that the origin of this reduced energetic disorder is due to increased aggregation and a larger average fullerene domain size together with purer phases.

  8. Ultrashort-pulsed laser processing and solution based coating in roll-to-roll manufacturing of organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Hördemann, C.; Hirschfelder, K.; Schaefer, M.; Gillner, A.

    2015-09-01

    The breakthrough of flexible organic electronics and especially organic photovoltaics is highly dependent on cost-efficient production technologies. Roll-2-Roll processes show potential for a promising solution in terms of high throughput and low-cost production of thin film organic components. Solution based material deposition and integrated laser patterning processes offer new possibilities for versatile production lines. The use of flexible polymeric substrates brings along challenges in laser patterning which have to be overcome. One main challenge when patterning transparent conductive layers on polymeric substrates are material bulges at the edges of the ablated area. Bulges can lead to short circuits in the layer system leading to device failure. Therefore following layers have to have a sufficient thickness to cover and smooth the ridge. In order to minimize the bulging height, a study has been carried out on transparent conductive ITO layers on flexible PET substrates. Ablation results using different beam shapes, such as Gaussian beam, Top-Hat beam and Donut-shaped beam, as well as multi-pass scribing and double-pulsed ablation are compared. Furthermore, lab scale methods for cleaning the patterned layer and eliminating bulges are contrasted to the use of additional water based sacrificial layers in order to obtain an alternative procedure suitable for large scale Roll-2-Roll manufacturing. Besides progress in research, ongoing transfer of laser processes into a Roll-2-Roll demonstrator is illustrated. By using fixed optical elements in combination with a galvanometric scanner, scribing, variable patterning and edge deletion can be performed individually.

  9. UV Crosslinkable Polythiophene for Nano-imprinting and Photolithography toward Ordered Bulk Heterojunction in Organic Photovoltaics

    SciTech Connect

    Yang, Q.; Hlaing, H.; Ocko, B.; Black, C.; Grubbs, R.B.

    2010-07-25

    Exciton travel distance in organic material is on the order of 10-20 nm, thus the morphology of the organic active layer is critical to achieve high performance in OPVs. An ordered bulk heterojunction (BHJ) morphology with phase separation on the order of 10-20 nm will collect all excitons at the interface and give uninterrupted paths to all separated charges to reach the corresponding electrodes.

  10. Solar ultraviolet radiation, vitamin D and skin cancer surveillance in organ transplant recipients (OTRs): an update.

    PubMed

    Reichrath, Jörg

    2014-01-01

    During the last decades, the annual numbers of performed solid organ transplants have continuously increased world-wide. Solid organ transplant recipients (OTR) have a greater risk to develop malignancies, with skin cancer representing the most common neoplasia. Additionally, OTRs in general develop a more aggressive form of malignancies. In consequence, dermatologic surveillance is of high importance for OTRs and these patients represent an increasing and significant challenge to clinicians including dermatologists. In OTRs, patient and organ survival have increased considerably and continuously over the past two decades as a result of better immunosuppressive regimens and better posttransplant care. Great progress has been made in our understanding that individual immunosuppressive regiments differ in their effect on skin cancer risk in OTRs, and that effects of individual immunosuppressive regiments on skin cancer risk depend on various other factors including viral infections. Since sunlight is the major source of vitamin D for most humans, OTRs, who have to protect themselves consequently against solar or artificial UV radiation, are at high risk of developing vitamin D deficiency. Vitamin D deficiency is not only associated with increased risk for metabolic bone disease, but with other severe health problems including various types of malignancies. As a consequence, screening for and treatment of vitamin D deficiency is warranted in OTRs. In this review, we give an update on our present understanding of skin cancer surveillance in OTRs.

  11. First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Blase, X.; Attaccalite, C.; Olevano, V.

    2011-03-01

    We evaluate the performances of ab initio GW calculations for the ionization energies and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps of 13 gas phase molecules of interest for organic electronic and photovoltaic applications, including the C60 fullerene, pentacene, free-base porphyrins and phtalocyanine, PTCDA, and standard monomers such as thiophene, fluorene, benzothiazole, or thiadiazole. Standard G0W0 calculations, that is, starting from eigenstates obtained with local or semilocal functionals, significantly improve the ionization energy and band gap as compared to density functional theory Kohn-Sham results, but the calculated quasiparticle values remain too small as a result of overscreening. Starting from Hartree-Fock-like eigenvalues provides much better results and is equivalent to performing self-consistency on the eigenvalues, with a resulting accuracy of 2%-4% as compared to experiment. Our calculations are based on an efficient Gaussian-basis implementation of GW with explicit treatment of the dynamical screening through contour deformation techniques.

  12. Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates

    NASA Astrophysics Data System (ADS)

    Richardson, Beau J.; Zhu, Leize; Yu, Qiuming

    2017-04-01

    Indium tin oxide (ITO) is the most common transparent electrode used in organic photovoltaics (OPVs), yet limited indium reserves and poor mechanical properties make it non-ideal for large-scale OPV production. To replace ITO, we designed, fabricated, and deployed plasmonic nanostructured electrodes in inverted OPV devices. We found that active layer absorption is significantly impacted by ZnO thickness which affects the optical field distribution inside the resonant cavity formed between the plasmonic nanostructured electrode and top electrode. High quality Cr/Au nanostructured electrodes were fabricated by nanoimprint lithography and deployed in ITO-free inverted devices on glass. Devices with thinner ZnO showed a PCE as high as 5.70% and higher J SC’s than devices on thicker ZnO, in agreement with finite-difference time-domain simulations. In addition, as the active layer was made optically thin, ITO-based devices showed diminished J SC while the resonant cavity effect from plasmonic nanostructured electrodes retained J SC. Preliminary ITO-free, flexible devices on PET showed a PCE of 1.82% and those fabricated on ultrathin and conformable Parylene substrates yielded an initial PCE over 1%. The plasmonic electrodes and device designs in this work show promise for developing highly functioning conformable devices that can be applied to numerous needs for lightweight, ubiquitous power generation.

  13. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  14. Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates.

    PubMed

    Richardson, Beau J; Zhu, Leize; Yu, Qiuming

    2017-04-21

    Indium tin oxide (ITO) is the most common transparent electrode used in organic photovoltaics (OPVs), yet limited indium reserves and poor mechanical properties make it non-ideal for large-scale OPV production. To replace ITO, we designed, fabricated, and deployed plasmonic nanostructured electrodes in inverted OPV devices. We found that active layer absorption is significantly impacted by ZnO thickness which affects the optical field distribution inside the resonant cavity formed between the plasmonic nanostructured electrode and top electrode. High quality Cr/Au nanostructured electrodes were fabricated by nanoimprint lithography and deployed in ITO-free inverted devices on glass. Devices with thinner ZnO showed a PCE as high as 5.70% and higher J SC's than devices on thicker ZnO, in agreement with finite-difference time-domain simulations. In addition, as the active layer was made optically thin, ITO-based devices showed diminished J SC while the resonant cavity effect from plasmonic nanostructured electrodes retained J SC. Preliminary ITO-free, flexible devices on PET showed a PCE of 1.82% and those fabricated on ultrathin and conformable Parylene substrates yielded an initial PCE over 1%. The plasmonic electrodes and device designs in this work show promise for developing highly functioning conformable devices that can be applied to numerous needs for lightweight, ubiquitous power generation.

  15. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    NASA Astrophysics Data System (ADS)

    Rourke, Devin; Ahn, Sungmo; Nardes, Alexandre M.; van de Lagemaat, Jao; Kopidakis, Nikos; Park, Wounjhang

    2014-09-01

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer:fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent.

  16. Effects of ytterbium on electrical and optical properties of BCP/Ag/WO3 transparent electrode based organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Oh, Il Soo; Ji, Chan Hyuk; Oh, Se Young

    2016-01-01

    This study introduces dielectric/metal/dielectric multilayers based on a WO3/Ag/WO3 (WAW) anode and Yb/BCP/Ag/WO3 (Yb/BAW) cathode for use in organic photovoltaic cells (OPVs). Here, the Yb/BCP hybrid multilayer provides an effective electron transport layer (ETL), while the Yb doping ensures that voltage loss due to interfacial band bending is effectively suppressed. Transparent OPVs produced with a structure of WAW/P3HT:PCBM/Yb/BAW are shown to exhibit a power conversion efficiency (PCE) of up to 2.42%, achieving a 65.4% fill factor (FF) under one sun irradiation. These results indicate that the use of Yb in transparent OPVs is vastly superior to other ETLs, as it improves the majority of critical parameters such as short circuit current (Jsc), fill factor (FF) and PCE. This is attributed to a decrease in the series resistance and increase in the shunt resistance, while an increase in electron mobility also helps to ensure faster sweep out. [Figure not available: see fulltext.

  17. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    SciTech Connect

    Rourke, Devin; Ahn, Sungmo; Nardes, Alexandre M.; Lagemaat, Jao van de; Kopidakis, Nikos; Park, Wounjhang

    2014-09-21

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer:fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent.

  18. Post-annealed gallium and aluminum co-doped zinc oxide films applied in organic photovoltaic devices

    PubMed Central

    2014-01-01

    Gallium and aluminum co-doped zinc oxide (GAZO) films were produced by magnetron sputtering. The GAZO films were post-annealed in either vacuum or hydrogen microwave plasma. Vacuum- and hydrogen microwave plasma-annealed GAZO films show different surface morphologies and lattice structures. The surface roughness and the spacing between adjacent (002) planes decrease; grain growth occurs for the GAZO films after vacuum annealing. The surface roughness increases and nanocrystals are grown for the GAZO films after hydrogen microwave plasma annealing. Both vacuum and hydrogen microwave plasma annealing can improve the electrical and optical properties of GAZO films. Hydrogen microwave plasma annealing improves more than vacuum annealing does for GAZO films. An electrical resistivity of 4.7 × 10−4 Ω-cm and average optical transmittance in the visible range from 400 to 800 nm of 95% can be obtained for the GAZO films after hydrogen microwave plasma annealing. Hybrid organic photovoltaic (OPV) devices were fabricated on the as-deposited, vacuum-annealed, and hydrogen microwave plasma-annealed GAZO-coated glass substrates. The active layer consisted of blended poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) in the OPV devices. The power conversion efficiency of the OPV devices is 1.22% for the hydrogen microwave plasma-annealed GAZO films, which is nearly two times higher compared with that for the as-deposited GAZO films. PMID:25352768

  19. Improvement of pentathiophene/fullerene planar heterojunction photovoltaic cells by improving the organic films morphology through the anode buffer bilayer

    NASA Astrophysics Data System (ADS)

    El Jouad, Zouhair; Cattin, Linda; Martinez, Francisco; Neculqueo, Gloria; Louarn, Guy; Addou, Mohammed; Predeep, Padmanabhan; Manuvel, Jayan; Bernède, Jean-Christian

    2016-05-01

    Organic photovoltaic cells (OPVCs) are based on a heterojunction electron donor (ED)/electron acceptor (EA). In the present work, the electron donor which is also the absorber of light is pentathiophene. The typical cells were ITO/HTL/pentathiophene/fullerene/Alq3/Al with HTL (hole transport layer) = MoO3, CuI, MoO3/CuI. After optimisation of the pentathiophene thickness, 70 nm, the highest efficiency, 0.81%, is obtained with the bilayer MoO3/CuI as HTL. In order to understand these results the pentathiophene films deposited onto the different HTLs were characterized by scanning electron microscopy, atomic force microscopy, X-rays diffraction, optical absorption and electrical characterization. It is shown that CuI improves the conductivity of the pentathiophene layer through the modification of the film structure, while MoO3 decreases the leakage current. Using the bilayer MoO3/CuI allows cumulating the advantages of each layer. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  20. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  1. High-Pressure Solvent Vapor Annealing with a Benign Solvent To Rapidly Enhance the Performance of Organic Photovoltaics.

    PubMed

    Jung, Buyoung; Kim, Kangmin; Eom, Yoomin; Kim, Woochul

    2015-06-24

    A high-pressure solvent vapor annealing (HPSVA) treatment is suggested as an annealing process to rapidly achieve high-performance organic photovoltaics (OPVs); this process can be compatible with roll-to-roll processing methods and uses a benign solvent: acetone. Solvent vapor annealing can produce an advantageous vertical distribution in the active layer; however, conventional solvent vapor annealing is also time-consuming. To shorten the annealing time, high-pressure solvent vapor is exposed on the active layer of OPVs. Acetone is a nonsolvent for poly(3-hexylthiophene-2,5-diyl) (P3HT), but it can dissolve small amounts of 1-(3-methoxycarbonyl)-propyl-1,1-phenyl-(6,6)C61 (PCBM). Acetone vapor molecules can penetrate into the active layer under high vapor pressure conditions to alter the morphology. HPSVA induces a PCBM-rich phase near the cathode and facilitates the transport of free charge carriers to the electrode. Although P3HT is not soluble in acetone, locally rearranged P3HT crystallites are generated. The performance of OPV films was enhanced after HPSVA; the film treated at 30 kPa for 10 s showed optimum performance. Additionally, this HPSVA method could be adapted for mass production because the temporary exposure of films to high-pressure acetone vapor in ambient conditions also improved performance.

  2. Fast Recovery of the High Work Function of Tungsten and Molybdenum Oxides via Microwave Exposure for Efficient Organic Photovoltaics.

    PubMed

    Vasilopoulou, Maria; Soultati, Anastasia; Argitis, Panagiotis; Stergiopoulos, Thomas; Davazoglou, Dimitris

    2014-06-05

    In this work, we use microwave exposure of tungsten and molybdenum oxides to improve hole extraction in organic photovoltaics (OPVs). This is a result of fast recovery of the high work function of metal oxides occurring within a few seconds of microwave processing. Using the space-charge-limited current model, we verified the formation of an anode contact that facilitates hole extraction, while Mott-Schottky analysis revealed the enhancement of the device built-in field in the devices with the microwave-exposed metal oxides. Both were attributed to the formation of large interfacial dipoles at the ITO/microwave-exposed metal oxide interface. The power conversion efficiency (PCE) of OPVs using microwave-exposed metal oxides and based on blends of poly[(9-(1-octylnonyl)-9H-carbazole-2,7-diyl)-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) with ([6,6]-phenyl-C71 butyric acid methyl ester, PC71BM) reached values of 7.2%, which represents an increase of about 30% compared with the efficiency of 5.7% of devices using metal oxides not subjected to microwave exposure.

  3. Improving performance and lifetime of small-molecule organic photovoltaic devices by using bathocuproine-fullerene cathodic layer.

    PubMed

    Liu, Shun-Wei; Lee, Chih-Chien; Su, Wei-Cheng; Yuan, Chih-Hsien; Shu, Yi-Sheng; Chang, Wen-Chang; Guo, Jhih-Yan; Chiu, Chien-Feng; Li, Ya-Ze; Su, Tsung-Hao; Chen, Kuan-Ting; Chang, Po-Chien; Yeh, Tzu-Hung; Liu, Yu-Hsuan

    2015-05-06

    In this study, we compared the use of neat bathocuproine (BCP) and BCP:C60 mixed buffer layers in chloroboron subphthalocyanine (SubPc)/C60 bilayer organic photovoltaic (OPV) devices and analyzed their influence on device performance. Replacing the conventional BCP with BCP:C60 enabled manipulating the optical field distribution for optimizing the optical properties of the devices. Estimation of the interfacial barrier indicated that the insertion of the BCP:C60 between the C60 and electrode can effectively reduce the barrier for electrons and enhance electron collection at the electrode. Temperature-dependent measurements of the OPV devices performed to calculate the barrier height at the SubPc/C60 interface suggested that band bending was larger when the BCP:C60 buffer layer was used, reflecting increased exciton dissociation efficiency. In addition, the device lifetime was considerably improved when the BCP:C60 buffer layer was used. The device performance was stabilized after the photodegradation of the active layers, thereby increasing the device lifetime compared with the use of the neat BCP buffer layer. Atomic force microscopy images showed that the neat BCP was easily crystallized and could degrade the cathodic interface, whereas the blend of C60 and BCP suppressed the crystallization of BCP. Therefore, the optimal buffer layer improved both the device performance and the device lifetime.

  4. Efficiently-designed hybrid tandem photovoltaic with organic and inorganic single cells

    NASA Astrophysics Data System (ADS)

    Vincent, Premkumar; Bae, Jin-Hyuk; Kim, Hyeok

    2016-05-01

    Conjugated polymers for solar-cell applications have been extensively studied and have proven highly beneficial in tandem solar-cell structures. This study focuses on achieving power conversion efficiencies of greater than 10% when in tandem with a highly efficient copper indium gallium diselenide (CIGS) solar cell. The optimal design is suggested based on the result of optical simulations on the organic-CIGS tandem structure. This is one of the first reports to show theoretically an organic-CIGS tandem solar cell to obtain an efficiency of greater than 10%. The best PCE was at a thickness of 200 nm for PTB7:PCBM, the active layer of the organic solar cell, and 400 nm for CIGS active layer. Our best datum showed an efficiency of 11.41% with a short-circuit current density of 11.56 mA/cm2 and a good spectral response at our optimized thicknesses.

  5. [Research on rapid determination of organic matter concentration in aquaculture water based on ultraviolet/visible spectroscopy].

    PubMed

    Cao, Hong; Qu, Wen-Tai; Yang, Xiang-Long; Jia, Sheng-Yao; Wang, Chun-Long; Lu, Chen

    2014-11-01

    Ultraviolet/visible (UV/Vis) spectroscopy was investigated for the rapid determination of chemical oxygen demand (COD) which was an indicator to measure the concentration of organic matter in aquaculture water. A total number of 135 collected turtle breeding water samples were scanned for UV/Vis spectrum, uninformative variable elimination (UVE) and successive projections algorithm (SPA) were combined as a mixed variable selection method to perform characteristic wavelength selection from the full wavelength spectrum, 7 characteristic wavelengths were selected from full 201 UV/Vis spectral variables, which were just 3.48% number of the full range spectrum, and the calibration time and complexity of the modeling were greatly reduced. The predicted results which were obtained by using least squares-support vector machine (LS-SVM) calibration showed that the characteristic wavelengths achieved better results (0.89 for correlation coefficient (r), 15.46 mg x L(-1) for root mean square error of prediction (RMSEP)) than full wavelengths did (0.88 for r and 15.71 mg x L(-1) for RMSEP). The comprehensive results revealed that the UV/Vis characteristic wavelengths which were obtained by UVE-SPA variable selection method, combined with LS-SVM calibration could apply to the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.

  6. Molecular depth profiling of organic photovoltaic heterojunction layers by ToF-SIMS: comparative evaluation of three sputtering beams.

    PubMed

    Mouhib, T; Poleunis, C; Wehbe, N; Michels, J J; Galagan, Y; Houssiau, L; Bertrand, P; Delcorte, A

    2013-11-21

    With the recent developments in secondary ion mass spectrometry (SIMS), it is now possible to obtain molecular depth profiles and 3D molecular images of organic thin films, i.e. SIMS depth profiles where the molecular information of the mass spectrum is retained through the sputtering of the sample. Several approaches have been proposed for "damageless" profiling, including the sputtering with SF5(+) and C60(+) clusters, low energy Cs(+) ions and, more recently, large noble gas clusters (Ar500-5000(+)). In this article, we evaluate the merits of these different approaches for the in depth analysis of organic photovoltaic heterojunctions involving poly(3-hexylthiophene) (P3HT) as the electron donor and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as the acceptor. It is demonstrated that the use of 30 keV C60(3+) and 500 eV Cs(+) (500 eV per atom) leads to strong artifacts for layers in which the fullerene derivative PCBM is involved, related to crosslinking and topography development. In comparison, the profiles obtained using 10 keV Ar1700(+) (∼6 eV per atom) do not indicate any sign of artifacts and reveal fine compositional details in the blends. However, increasing the energy of the Ar cluster beam beyond that value leads to irreversible damage and failure of the molecular depth profiling. The profile qualities, apparent interface widths and sputtering yields are analyzed in detail. On the grounds of these experiments and recent molecular dynamics simulations, the discussion addresses the issues of damage and crater formation induced by the sputtering and the analysis ions in such radiation-sensitive materials, and their effects on the profile quality and the depth resolution. Solutions are proposed to optimize the depth resolution using either large Ar clusters or low energy cesium projectiles for sputtering and/or analysis.

  7. Tunable ultraviolet laser-induced fluorescence detection of trace plastics and dissolved organic compounds in water.

    PubMed

    Sivaprakasam, Vasanthi; Killinger, Dennis K

    2003-11-20

    We developed a tunable (220-285-nm) UV and fixed 266-nm laser-induced fluorescence (LIF) system using a spectrometer and a cooled CCD imaging detector to measure the excitation-emission matrix spectra of various compounds in water, including quinine sulfate and plastic compound bisphenol-A. The LIF instrument was used for the fast, nonspecific determination of trace amounts of dissolved organic compounds present in natural water supplies and various brand name bottled distilled water and bottled drinking water. Plastic-related compounds that leached out of plastic utensils and containers were also detected with this instrument. The sensitivity of the system was approximately 1-2 orders of magnitude better than that for a commercial system.

  8. Tunable ultraviolet laser-induced fluorescence detection of trace plastics and dissolved organic compounds in water

    NASA Astrophysics Data System (ADS)

    Sivaprakasam, Vasanthi; Killinger, Dennis K.

    2003-11-01

    We developed a tunable (220-285-nm) UV and fixed 266-nm laser-induced fluorescence (LIF) system using a spectrometer and a cooled CCD imaging detector to measure the excitation-emission matrix spectra of various compounds in water, including quinine sulfate and plastic compound bisphenol-A. The LIF instrument was used for the fast, nonspecific determination of trace amounts of dissolved organic compounds present in natural water supplies and various brand name bottled distilled water and bottled drinking water. Plastic-related compounds that leached out of plastic utensils and containers were also detected with this instrument. The sensitivity of the system was approximately 1-2 orders of magnitude better than that for a commercial system.

  9. Nanostructured organic/inorganic semicondutor photovoltaics: Investigation on morphology and optoelectronics performance

    NASA Astrophysics Data System (ADS)

    Wanninayake, Aruna Pushpa Kumara

    Organic solar cell is a promising technology because of the versatility of organic materials in terms of tunability of their electrical and optical properties. In addition, their relative insensitivity to film imperfections potentially allows for very low-cost high-throughput roll-to-roll processing. However, the power conversion efficiency of organic solar cell is still limited and needs to be improved in order to be competitive with grid parity. This work is focused on the design and characterization of a new organic/inorganic hybrid device to enhance the efficiency factors of bilayer organic solar cells such as: light absorption, exciton diffusion, exciton dissociation, charge transportation and charge collection at the electrodes. In a hybrid solar cell operation, external quantum efficiency is determined by these five factors. The external quantum efficiency has linear relationship to the power conversation efficiency via short circuit current density. Bulk heterojunction (BHJ) PSCs benefit from a homogeneous donor-acceptor (D-A) contact interface compared to their inorganic counterpart. A homogenous D-A interface offers a longer free path for charge carriers, resulting in a longer diffusional pathway and a larger coulomb interaction between electrons and holes. This is triggered by the low dielectric constant of organic semiconductors. Among various conventional donor-acceptor structures, poly(3-hexylthiophene)/[6,6]-phenyl-C70-butyric acid methyl ester (P3HT/PCBM) mixture is the most promising and ideal donor-acceptor pair due to their unique properties. In order to take benefits from both organic and inorganic materials, inorganic nanoparticles are incorporated in this donor-acceptor polymer structure. Light trapping enhances light absorption and increases efficiencies with thinner device structure. In this study, copper oxide nanoparticles are used in the P3HT/PC70BM active layer to optimize the optical absorption properties in the blend. In addition, zinc

  10. The fate of electron-hole pairs in polymer:fullerene blends for organic photovoltaics.

    PubMed

    Causa', Martina; De Jonghe-Risse, Jelissa; Scarongella, Mariateresa; Brauer, Jan C; Buchaca-Domingo, Ester; Moser, Jacques-E; Stingelin, Natalie; Banerji, Natalie

    2016-09-02

    There has been long-standing debate on how free charges are generated in donor:acceptor blends that are used in organic solar cells, and which are generally comprised of a complex phase morphology, where intermixed and neat phases of the donor and acceptor material co-exist. Here we resolve this question, basing our conclusions on Stark effect spectroscopy data obtained in the absence and presence of externally applied electric fields. Reconciling opposing views found in literature, we unambiguously demonstrate that the fate of photogenerated electron-hole pairs-whether they will dissociate to free charges or geminately recombine-is determined at ultrafast times, despite the fact that their actual spatial separation can be much slower. Our insights are important to further develop rational approaches towards material design and processing of organic solar cells, assisting to realize their purported promise as lead-free, third-generation energy technology that can reach efficiencies over 10%.

  11. The fate of electron–hole pairs in polymer:fullerene blends for organic photovoltaics

    PubMed Central

    Causa', Martina; De Jonghe-Risse, Jelissa; Scarongella, Mariateresa; Brauer, Jan C.; Buchaca-Domingo, Ester; Moser, Jacques-E.; Stingelin, Natalie; Banerji, Natalie

    2016-01-01

    There has been long-standing debate on how free charges are generated in donor:acceptor blends that are used in organic solar cells, and which are generally comprised of a complex phase morphology, where intermixed and neat phases of the donor and acceptor material co-exist. Here we resolve this question, basing our conclusions on Stark effect spectroscopy data obtained in the absence and presence of externally applied electric fields. Reconciling opposing views found in literature, we unambiguously demonstrate that the fate of photogenerated electron–hole pairs—whether they will dissociate to free charges or geminately recombine—is determined at ultrafast times, despite the fact that their actual spatial separation can be much slower. Our insights are important to further develop rational approaches towards material design and processing of organic solar cells, assisting to realize their purported promise as lead-free, third-generation energy technology that can reach efficiencies over 10%. PMID:27586309

  12. The fate of electron-hole pairs in polymer:fullerene blends for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Causa', Martina; de Jonghe-Risse, Jelissa; Scarongella, Mariateresa; Brauer, Jan C.; Buchaca-Domingo, Ester; Moser, Jacques-E.; Stingelin, Natalie; Banerji, Natalie

    2016-09-01

    There has been long-standing debate on how free charges are generated in donor:acceptor blends that are used in organic solar cells, and which are generally comprised of a complex phase morphology, where intermixed and neat phases of the donor and acceptor material co-exist. Here we resolve this question, basing our conclusions on Stark effect spectroscopy data obtained in the absence and presence of externally applied electric fields. Reconciling opposing views found in literature, we unambiguously demonstrate that the fate of photogenerated electron-hole pairs--whether they will dissociate to free charges or geminately recombine--is determined at ultrafast times, despite the fact that their actual spatial separation can be much slower. Our insights are important to further develop rational approaches towards material design and processing of organic solar cells, assisting to realize their purported promise as lead-free, third-generation energy technology that can reach efficiencies over 10%.

  13. Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfeng; Xue, Mei; Shen, Huajun; Wu, Zhe; Kim, Seongku; Ho, Jyh-Jier; Hassani-Afshar, Aram; Zeng, Baoqing; Wang, Kang L.

    2011-04-01

    We present a plasmonic nanostructure design by embedding a layer of hexagonal periodic metallic nanospheres between the active layer and transparent anode for bulk heterojunction organic solar cells. The hybrid structure shows broadband optical absorption enhancement from localized surface plasmon resonance with a weak dependence on polarization of incident light. We also theoretically study the optimization of the design to enhance the absorption up to 1.90 times for a typical hybrid active layer based on a low band gap material.

  14. Work-Function and Surface Energy Tunable Cyanoacrylic Acid Small-Molecule Derivative Interlayer on Planar ZnO Nanorods for Improved Organic Photovoltaic Performance.

    PubMed

    Ambade, Swapnil B; Ambade, Rohan B; Bagde, Sushil S; Lee, Soo-Hyoung

    2016-12-28

    The issue of work-function and surface energy is fundamental to "decode" the critical inorganic/organic interface in hybrid organic photovoltaics, which influences important photovoltaic events like exciton dissociation, charge transfer, photocurrent (Jsc), open-circuit voltage (Voc), etc. We demonstrate that by incorporating an interlayer of cyanoacrylic acid small molecular layer (SML) on solution-processed, spin-coated, planar ZnO nanorods (P-ZnO NRs), higher photovoltaic (PV) performances were achieved in both inverted organic photovoltaic (iOPV) and hybrid organic photovoltaic (HOPV) devices, where ZnO acts as an "electron-transporting layer" and as an "electron acceptor", respectively. For the tuned range of surface energy from 52.5 to 33 mN/m, the power conversion efficiency (PCE) in bulk heterojunction (BHJ) iOPVs based on poly(3-hexylthiophene) (P3HT) and phenyl-C60-butyric acid methyl ester (PC60BM) increases from 3.16% to 3.68%, and that based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl)] (PTB7:Th):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM) photoactive BHJ increases from 6.55% to 8.0%, respectively. The improved PV performance in iOPV devices is majorly attributed to enhanced photocurrents achieved as a result of reduced surface energy and greater electron affinity from the covalent attachment of the strong electron-withdrawing cyano moiety, while that in HOPV devices, where PCE increases from 0.21% to 0.79% for SML-modified devices, is ascribed to a large increase in Voc benefitted due to reduced work function effected from the presence of strong dipole moment in SML that points away from P-ZnO NRs.

  15. Ferroelectric Thin-Film Capacitors As Ultraviolet Detectors

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1995-01-01

    Advantages include rapid response, solar blindness, and relative invulnerability to ionizing radiation. Ferroelectric capacitor made to function as photovoltaic detector of ultraviolet photons by making one of its electrodes semitransparent. Photovoltaic effect exploited more fully by making Schottky barrier at illuminated semitransparent-electrode/ferroelectric interface taller than Schottky barrier at other electrode/ferroelectric interface.

  16. The emerging multiple metal nanostructures for enhancing the light trapping of thin film organic photovoltaic cells.

    PubMed

    Choy, Wallace C H

    2014-10-18

    Recently, various metal nanostructures have been introduced into organic solar cells (OSCs) for performance enhancement. Here, we review the recent progress in OSCs incorporated with multiple metal nanostructures including various metal nanopatterns and metal nanomaterials. Multiple physical effects arise from these incorporated nanostructures, which require careful distinction. Changes induced by the metal nanostructures are examined in detail from the optical and electrical aspects. With the comprehensive understanding of the physical mechanisms for various metal nanostructures, further improvement in device performance and emerging applications can be expected for the new class of nanostructure-incorporated OSCs.

  17. In situ optical measurement of charge transport dynamics in organic photovoltaics.

    PubMed

    Chow, Philip C Y; Bayliss, Sam L; Lakhwani, Girish; Greenham, Neil C; Friend, Richard H

    2015-02-11

    We present a novel experimental approach which allows extraction of both spatial and temporal information on charge dynamics in organic solar cells. Using the wavelength dependence of the photonic structure in these devices, we monitor the change in spatial overlap between the photogenerated hole distribution and the optical probe profile as a function of time. In a model system we find evidence for a buildup of the photogenerated hole population close to the hole-extracting electrode on a nanosecond time scale and show that this can limit charge transport through space-charge effects under operating conditions.

  18. Artificially MoO3 graded ITO anodes for acidic buffer layer free organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Lee, Hye-Min; Kim, Seok-Soon; Kim, Han-Ki

    2016-02-01

    We report characteristics of MoO3 graded ITO anodes prepared by a RF/DC graded sputtering for acidic poly(3,4-ethylene dioxylene thiophene):poly(styrene sulfonic acid) (PEDOT:PSS)-free organic solar cells (OSCs). Graded sputtering of the MoO3 buffer layer on top of the ITO layer produced MoO3 graded ITO anodes with a sheet resistance of 12.67 Ω/square, a resistivity of 2.54 × 10-4 Ω cm, and an optical transmittance of 86.78%, all of which were comparable to a conventional ITO anode. In addition, the MoO3 graded ITO electrode showed a greater work function of 4.92 eV than that (4.6 eV) of an ITO anode, which is beneficial for hole extraction from an organic active layer. Due to the high work function of MoO3 graded ITO electrodes, the acidic PEDOT:PSS-free OSCs fabricated on the MoO3 graded ITO electrode exhibited a power conversion efficiency 3.60% greater than that of a PEDOT:PSS-free OSC on the conventional ITO anode. The successful operation of PEDOT:PSS-free OSCs indicates simpler fabrication steps for cost-effective OSCs and elimination of interfacial reactions caused by the acidic PEDOT:PSS layer for reliable OSCs.

  19. Synthesis and functionalization of gold nanorods for probing plasmonic enhancement mechanisms in organic photovoltaic active layers

    NASA Astrophysics Data System (ADS)

    Wadams, Robert Christopher

    DNA nanotechnology is one of the most flourishing interdisciplinary research fields. Through the features of programmability and predictability, DNA nanostructures can be designed to self-assemble into a variety of periodic or aperiodic patterns of different shapes and length scales, and more importantly, they can be used as scaffolds for organizing other nanoparticles, proteins and chemical groups. By leveraging these molecules, DNA nanostructures can be used to direct the organization of complex bio-inspired materials that may serve as smart drug delivery systems and in vitro or in vivo bio-molecular computing and diagnostic devices. In this dissertation I describe a systematic study of the thermodynamic properties of complex DNA nanostructures, including 2D and 3D DNA origami, in order to understand their assembly, stability and functionality and inform future design endeavors. It is conceivable that a more thorough understanding of DNA self-assembly can be used to guide the structural design process and optimize the conditions for assembly, manipulation, and functionalization, thus benefiting both upstream design and downstream applications. As a biocompatible nanoscale motif, the successful integration, stabilization and separation of DNA nanostructures from cells/cell lysate suggests its potential to serve as a diagnostic platform at the cellular level. Here, DNA origami was used to capture and identify multiple T cell receptor mRNA species from single cells within a mixed cell population. This demonstrates the potential of DNA nanostructure as an ideal nano scale tool for biological applications.

  20. Surfactant-free, low band gap conjugated polymer nanoparticles and polymer:fullerene nanohybrids with potential for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Wang, Suxiao; Singh, Amita; Walsh, Nichola; Redmond, Gareth

    2016-06-01

    Stable, aqueous dispersions of nanoparticles based on the low band gap polymers poly [2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole)] (APFO-3) and poly [N-9‧-heptadecanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole)] (PCDTBT) were prepared, using a flexible, surfactant-free reprecipitation method, and characterized by a variety of optical techniques. Light scattering measurements indicated average nanoparticle hydrodynamic diameters of approximately 40 nm. The particles presented wide-bandwidth absorption and photoluminescence excitation spectra with high absorption cross-sections on the order of 10-12 cm2. Nanoparticle emission spectra were significantly red-shifted, with decreased emission quantum yields and lifetimes, consistent with increased inter-polymer chain interactions in the condensed phase. Single particle photoluminescence studies highlighted the multi-chromophoric nature of the polymer nanoparticles and confirmed their favorable photostabilities. When the nanoparticles were doped with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), the correspondence of photoluminescence emission quenching, quantum yield decreases, emission lifetime shortening, and increased non-radiative rates with increasing PCBM concentration suggested efficient photo-induced donor-to-acceptor charge transfer between the conjugated polymers and the fullerene dopants co-localized in the nanoparticle cores. Taken together, the data suggest that these surfactant-free hybrid nanomaterials may be useful for integration with future nanostructured organic photovoltaics technologies.

  1. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    SciTech Connect

    Rourke, D; Ahn, S; Nardes, AM; van de Lagemaat, J; Kopidakis, N; Park, W

    2014-09-21

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer: fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent. (C) 2014 AIP Publishing LLC.

  2. Planar heterojunction organic photovoltaic cells based on tetramethyl substituted copper(II) phthalocyanine treated with thermal annealing

    NASA Astrophysics Data System (ADS)

    Qu, Dalong; Guo, Runda; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Cheng, Gang

    2014-10-01

    The fabrication of planar heterojunction (PHJ) organic photovoltaic (OPV) cells using tetramethyl substituted copper(II) phthalocyanine (CuMePc) as an electron donor and C60 as an acceptor is described. The impact of post-fabrication thermal annealing upon the performance of these cells has been examined. Atomic force microscopy (AFM) images and UV-visible absorption spectra of CuMePc thin films revealed crystallization of CuMePc induced by thermal annealing at 190 °C. The crystallized CuMePc films accounted for improved hole mobility, broadened absorption spectrum, and increased donor/acceptor interface in the as-fabricated cells after thermal annealing. AFM images also revealed that the surface of MoO3 film was smooth and close-packed after thermal annealing, which efficiently blocked the leakage current in the annealed cells, leading to dramatic improvement of performance for the PHJ cells using CuMePc as the electron donor and MoO3 or V2O5 as the anode buffer layer. The power conversion efficiency of the thermal-annealed PHJ cell with a configuration of ITO/MoO3/CuMePc/C60/Bathocuproine/Al was higher than that of the bulk heterojunction (BHJ) cell fabricated by co-depositing CuMePc and C60. It was mainly because the isolated clusters of CuMePc and/or C60 molecules formed during the fabrication of the BHJ cell was avoided in the PHJ cell.

  3. Influence of MoOx interlayer on the maximum achievable open-circuit voltage in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell

    2013-03-01

    Transition metal oxides including molybdenum oxide (MoOx) are characterized by large work functions and deep energy levels relative to the organic semiconductors used in photovoltaic cells (OPVs). These materials have been used in OPVs as interlayers between the indium-tin-oxide anode and the active layers to increase the open-circuit voltage (VOC) and power conversion efficiency. We examine the role of MoOx in determining the maximum achievable VOC in planar heterojunction OPVs based on the donor-acceptor pairing of boron subphthalocyanine chloride (SubPc) and C60. While causing minor changes in VOC at room temperature, the inclusion of MoOx significantly changes the temperature dependence of VOC. Devices containing no interlayer show a maximum VOC\\ of 1.2 V, while devices containing MoOx show no saturation in VOC, reaching a value of >1.4 V at 110 K. We propose that the MoOx-SubPc interface forms a dissociating Schottky junction that provides an additional contribution to VOC at low temperature. Separate measurements of photoluminescence confirm that excitons in SubPc can be quenched by MoOx. Charge transfer at this interface is by hole extraction from SubPc to MoOx, and this mechanism favors donors with a deep highest occupied molecular orbital (HOMO) energy level. Consistent with this expectation, the temperature dependence of VOC for devices constructed using a donor with a shallower HOMO level, e.g. copper phthalocyanine, is independent of the presence of MoOx.

  4. Modeling morphology dependence of the power generation in bulk heterojunction organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Schlittenhardt, Timothy; Hershfield, Selman

    Bulk heterojunctions are mixtures of differently doped organic semiconducting materials that provide for a highly interconnected and complex morphology. A three dimensional simulation is conducted of these systems, where the junctions are modeled by diodes with a given j-V characteristic and the transport within a particular material is treated as ohmic. The current and potential profile are calculated throughout the sample with an iterative method that allows us to readily treat systems with 104 sites for a full range of applied voltage biases. Visualizations of the current flow and voltage profile are given. It is found that power is not generated uniformly throughout the sample, but is concentrated near the edges. As has been observed experimentally, this leads to an optimal thickness for power generation. A simple analytical model is presented which reproduces and provides understanding of our simulation results.

  5. An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene)

    PubMed Central

    Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Lin, Jianming; Huang, Miaoliang; Lan, Zhang; Tang, Qunwei; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio

    2013-01-01

    Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO2/P3HT) heterojuction. In this solar cell, TiO2 is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 100 mW·cm−2, the hybrid solar cell doped with 1.0 wt.% lithium iodide achieves an energy conversion efficiency of 1.28%, which is increased by 33.3% compared to that of the hybrid solar cell without lithium iodide doping. Our results open a novel sunlight irradiation field for solar energy utilization, demonstrate the feasibility of ultraviolet responsive solar cells, and provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23412470

  6. Spatial and temporal variability in the amount and source of dissolved organic carbon: Implications for ultraviolet exposure in amphibian habitats

    USGS Publications Warehouse

    Brooks, P.D.; O'Reilly, C. M.; Diamond, S.A.; Campbell, D.H.; Knapp, R.; Bradford, D.; Corn, P.S.; Hossack, B.; Tonnessen, K.

    2005-01-01

    The amount, chemical composition, and source of dissolved organic carbon (DOC), together with in situ ultraviolet (UV-B) attenuation, were measured at 1–2 week intervals throughout the summers of 1999, 2000, and 2001 at four sites in Rocky Mountain National Park (Colorado). Eight additional sites, four in Sequoia and Kings Canyon National Park/John Muir Wilderness (California) and four in Glacier National Park (Montana), were sampled during the summer of 2000. Attenuation of UV-B was significantly related to DOC concentrations over the three years in Rocky Mountain (R2 = 0.39, F = 25.71, P < 0.0001) and across all parks in 2000 (R2 = 0.44, F = 38.25, P < 0.0001). The relatively low R2 values, however, reflect significant temporal and spatial variability in the specific attenuation per unit DOC. Fluorescence analysis of the fulvic acid DOC fraction (roughly 600–2,000 Daltons) indicated that the source of DOC significantly affected the attenuation of UV-B. Sites in Sequoia–Kings Canyon were characterized by DOC derived primarily from algal sources and showed much deeper UV-B penetration, whereas sites in Glacier and Rocky Mountain contained a mix of algal and terrestrial DOC-dominated sites, with more terrestrially dominated sites characterized by greater UV-B attenuation per unit DOC. In general, site characteristics that promoted the accumulation of terrestrially derived DOC showed greater attenuation of UV-B per unit DOC; however, catchment vegetation and soil characteristics, precipitation, and local hydrology interacted to make it difficult to predict potential exposure from DOC concentrations.

  7. Photovoltaic cell

    DOEpatents

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  8. Localized photovoltaic investigations on organic semiconductors and bulk heterojunction solar cells

    PubMed Central

    Kollender, Jan Philipp; Gasiorowski, Jacek; Sariciftci, Niyazi Serdar; Mardare, Andrei Ionut; Hassel, Achim Walter

    2014-01-01

    Newly synthesized organic electronics materials are often available in submicrogram amounts only. Photoelectrochemical scanning droplet cell microscopy is a powerful method that allows a comprehensive characterisation of such small amounts including oxidation, reduction potentials, doping, determination of charge carriers, band gap, charge capacity, over-oxidation sensitivity and many more. Localized photoelectrochemical characterization of the poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-thieno [3,4-b] thiophene-2,6-diyl] (PBDTTT-c) and PBDTTT-c:PCBM bulk heterojunction was performed using photoelectrochemical scanning droplet cell microscopy (PE-SDCM). The optical properties and the real and imaginary part of the dielectric function, of the polymer were determined using spectroscopic ellipsometry. The photoelectrochemical characterizations were performed in a three and two electrode configuration of PE-SDCM under laser and white light illumination. The effect of illumination was characterized using dark/illumination sequences. The stability of the photocurrent was studied using longer term (600 s) illumination. Finally the effect of cell configuration and illumination conditions on the photovoltage was studied. PMID:27877711

  9. Ultrafast Photo Physics of P3HT/PCBM blends for Organic Photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Pandit, Bill; Singh, Sanjeev; Valy Vardeny, Zeev

    2012-02-01

    We studied the ultrafast dynamics of photoexcitations in pristine polymer films of regio-regular polythiophene, regio-random polythiophene, and their blends with the fullerene derivative C61-PCBM using the pump-probe photomodulation (PM) spectroscopy with ˜150 fs time resolution. Our transient PM spectrum covers the broad spectral range of 0.25 -- 2.4 eV using two different laser systems; which allows us to simultaneously monitor the dynamics of various photoinduced absorption bands such as intrachain excitons, charge transfer excitons, and polaron-pairs. Surprisingly, we have been able to monitor the decay of intrachain exciton on the polymer chains in films of polymer/fullerene blends, but unable to detect the subsequent generation of polarons in the donor (D) and acceptor (A) materials up to ˜ 1 ns. We explain this finding considering that the excitons in the polymer chains form charge transfer excitons upon reaching the D-A interface, rather than undergo a more direct dissociation on the D-A materials. The understanding of charge separation at the D-A interface is crucial for improving the power conversion efficiency of organic solar cell devices. Supported in part by the DOE grant No. DE-FG02-04ER46109.

  10. Wafer-scale self-organized InP nanopillars with controlled orientation for photovoltaic devices.

    PubMed

    Sanatinia, Reza; Berrier, Audrey; Dhaka, Veer; Perros, Alexander P; Huhtio, Teppo; Lipsanen, Harri; Anand, Srinivasan

    2015-10-16

    A unique wafer-scale self-organization process for generation of InP nanopillars is demonstrated, which is based on maskless ion-beam etching (IBE) of InP developed to obtain the nanopillars, where the height, shape, and orientation of the nanopillars can be varied by controlling the processing parameters. The fabricated InP nanopillars exhibit broadband suppression of the reflectance, 'black InP,' a property useful for solar cells. The realization of a conformal p-n junction for carrier collection, in the fabricated solar cells, is achieved by a metalorganic vapor phase epitaxy (MOVPE) overgrowth step on the fabricated pillars. The conformal overgrowth retains the broadband anti-reflection property of the InP nanopillars, indicating the feasibility of this technology for solar cells. Surface passivation of the formed InP nanopillars using sulfur-oleylamine solution resulted in improved solar-cell characteristics. An open-circuit voltage of 0.71 V and an increase of 0.13 V compared to the unpassivated device were achieved.

  11. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells.

    PubMed

    De Angelis, Filippo

    2014-11-18

    CONSPECTUS: Over the last 2 decades, researchers have invested enormous research effort into hybrid/organic photovoltaics, leading to the recent launch of the first commercial products that use this technology. Dye-sensitized solar cells (DSCs) have shown clear advantages over competing technologies. The top certified efficiency of DSCs exceeds 11%, and the laboratory-cell efficiency is greater than 13%. In 2012, the first reports of high efficiency solid-state DSCs based on organohalide lead perovskites completely revolutionized the field. These materials are used as light absorbers in DSCs and as light-harvesting materials and electron conductors in meso-superstructured and flat heterojunction solar cells and show certified efficiencies that exceed 17%. To effectively compete with conventional photovoltaics, emerging technologies such as DSCs need to achieve higher efficiency and stability, while maintaining low production costs. Many of the advances in the DSC field have relied on the computational design and screening of new materials, with researchers examining material characteristics that can improve device performance or stability. Suitable modeling strategies allow researchers to observe the otherwise inaccessible but crucial heterointerfaces that control the operation of DSCs, offering the opportunity to develop new and more efficient materials and optimize processes. In this Account, we present a unified view of recent computational modeling research examining DSCs, illustrating how the principles and simulation tools used for these systems can also be adapted to study the emerging field of perovskite solar cells. Researchers have widely applied first-principles modeling to the DSC field and, more recently, to perovskite-based solar cells. DFT/TDDFT methods provide the basic framework to describe most of the desired materials and interfacial properties, and Car-Parrinello molecular dynamics allow researchers the further ability to sample local minima and

  12. Improving Device Efficiencies in Organic Photovoltaics through the Manipulation of Device Architectures and the Development of Low-Bandgap Materials

    NASA Astrophysics Data System (ADS)

    Rice, Andrew Hideo

    Over the past two decades, vast amounts of research have been conducted in the pursuit of suitable organic semiconductors to replace inorganic materials in electronic applications due to their advantages of being lightweight, flexible, and solution-processible. However, before organic photovoltaics (OPVs) can be truly competitive and commercially viable, their efficiencies must be improved significantly. In this examination, we pursue higher efficiency OPVs in two different ways. Our attempts focus on 1) altering the microstructure of devices to improve charge dissociation, charge transport, and our understanding of how these devices function, and 2) tailoring materials to achieve optimal band gaps and energy levels for use in organic electronics. First, we demonstrate how the vertical morphology of bulk heterojunction (BHJ) solar cells, with an active layer consisting of self-assembled poly(3-hexylthiophene) (P3HT) nanowires and (6,6)-phenyl C61-butyric acid methyl ester (PCBM), can be beneficially influenced. Most device fabrication routes using similar materials employ an annealing step to influence active layer morphology, but this process can create an unfavorable phase migration where P3HT is driven toward the cathode. In contrast, we demonstrate devices that exhibit an increase in relative fullerene concentration at the top of the active layer by introducing the donor phase as a solid nanowire in the active layer solution and altering the pre-spin drying time. X-ray photoelectron spectroscopy (XPS) and conductive and photoconductive atomic force microscopy (cAFM and pcAFM) provide detailed information about how the surface of the active layer can be influenced; this is done by tracking the concentration and alignment of P3HT and PCBM domains. Using this new procedure, devices are made with power conversion efficiencies surpassing 2%. Additionally, we show that nanowires grown in the presence of the fullerene perform differently than those that are grown and

  13. Structure-Property-Performance Relationships for Organic Photovoltaics and the Utilization of Photoconducting Atomic Force Microscopy for Characterizing Organic Thin Films

    NASA Astrophysics Data System (ADS)

    Guide, Michele Elyse

    Progress in the development of organic photovoltaics (OPVs) depends on a continually growing understanding of the effects of chemical composition or processing method on the optoelectronic and structural properties and, in turn, how those properties influence device performance. Unfortunately, no single characterization method can provide all of the necessary information to develop these structure-property-performance relationships. This thesis details examples of structure-property-performance studies in which multiple characterization methods are used to identify the root cause of limited device performance for a particular photovoltaic system. As a large part of this work, the refinement and utilization of a nanoscale characterization technique, namely photoconducting atomic force microscopy (pc-AFM) is presented, not as an alternative to other characterization methods, but as a unique approach to characterizing the nanoscale morphology and local optoelectronic properties of an organic thin film simultaneously. The goal of this work was to make pc-AFM as robust and reliable a characterization tool and as close an analog to bulk OPV performance testing as possible. The first sections of this thesis focus on the development of pc-AFM for the characterization of OPVs. The capabilities of pc-AFM at the time this research commenced are illustrated in a study of a multilayered p/i/n architecture OPV system comprising a thermoset small molecule donor, tetrabenzoporphyrin (BP) and one of two structurally similar soluble fullerene derivative acceptors. By investigating the nanoscale topography, dark current, and photocurrent in each layer of these multilayer devices, the differences in bulk device performance can be rationalized and the composition of specific morphological features can be identified. At the same time, this study demonstrates how interpretation of pc-AFM measurements was not straightforward and required knowledge of the bulk performance. This issue

  14. Ultraviolet filters.

    PubMed

    Shaath, Nadim A

    2010-04-01

    The chemistry, photostability and mechanism of action of ultraviolet filters are reviewed. The worldwide regulatory status of the 55 approved ultraviolet filters and their optical properties are documented. The photostabilty of butyl methoxydibenzoyl methane (avobenzone) is considered and methods to stabilize it in cosmetic formulations are presented.

  15. Solution-Processed Nanoparticle Super-Float-Gated Organic Field-Effect Transistor as Un-cooled Ultraviolet and Infrared Photon Counter

    PubMed Central

    Yuan, Yongbo; Dong, Qingfeng; Yang, Bin; Guo, Fawen; Zhang, Qi; Han, Ming; Huang, Jinsong

    2013-01-01

    High sensitivity photodetectors in ultraviolet (UV) and infrared (IR) range have broad civilian and military applications. Here we report on an un-cooled solution-processed UV-IR photon counter based on modified organic field-effect transistors. This type of UV detectors have light absorbing zinc oxide nanoparticles (NPs) sandwiched between two gate dielectric layers as a floating gate. The photon-generated charges on the floating gate cause high resistance regions in the transistor channel and tune the source-drain output current. This “super-float-gating” mechanism enables very high sensitivity photodetectors with a minimum detectable ultraviolet light intensity of 2.6 photons/μm2s at room temperature as well as photon counting capability. Based on same mechansim, infrared photodetectors with lead sulfide NPs as light absorbing materials have also been demonstrated. PMID:24048259

  16. A study of interfaces between organic and metal materials and their application in polymer light-emitting diodes and polymer photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Li, Juo-Hao

    2009-12-01

    In the past few decades, it attracts a lot of attention for the researches of organic semiconductor due to its new and interesting properties, compared with conventional soft material and inorganic semiconductor. Several kinds of electronic devices such as light emitting diodes, thin film transistors and photovoltaic solar cell based on these organic semiconductors are also proposed and studied. This dissertation will focus on interface between organic and metal, which is one of the mysteries and critical issues remaining in the material properties and limiting the device performance. In the first chapter, a brief review and introduction of the organic semiconductor and organic electronics will be described. The purpose is to introduce the research background, motivation and methodology. Chapter two demonstrates the concept of top-emitting light-emitting diodes and the research focus on the interfaces between the light-emitting polymer and electrodes. An interfacial layer is introduced to improve the hole-injection from the anode. Except for alternating the electrode architecture, surface treatment or modification also have significant influences on interfacial electronic structure. Chapter three describes the discovery of solvent treatment on top of the light-emitting polymer and its application on organic electrophosphorescent devices. To further study the interfaces in organic electronics, an interface layer of sol-gel processed titanium oxide is introduced into organic electronic devices. Chapter four describes the amorphous titanium oxide and its application on polymer light-emitting diodes, while Chapter five demonstrates nanocrystalline titanium dioxide and its application in both light-emitting devices and polymer photovoltaic solar cells.

  17. BMDO photovoltaics program overview

    NASA Technical Reports Server (NTRS)

    Caveny, Leonard H.; Allen, Douglas M.

    1994-01-01

    This is an overview of the Ballistic Missile Defense Organization (BMDO) Photovoltaic Program. Areas discussed are: (1) BMDO advanced Solar Array program; (2) Brilliant Eyes type satellites; (3) Electric propulsion; (4) Contractor Solar arrays; (5) Iofee Concentrator and Cell development; (6) Entech linear mini-dome concentrator; and (7) Flight test update/plans.

  18. Enhancement of the power conversion efficiency for inverted organic photovoltaic devices due to the localized surface plasmonic resonant effect of Au nanoparticles embedded in ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Yong Hun; Kim, Dae Hun; Lee, Dea Uk; Li, Fushan; Kim, Tae Whan

    2015-07-01

    The absorption spectra and input photon-to-converted current efficiency curves showed that Au nanoparticles increased the plasmonic broadband light absorption, thereby enhancing the short-circuit current density of the inverted organic photovoltaic (OPV) cells with a Au-ZnO nanocomposite electron transport layer (ETL). The power conversion efficiency of the inverted OPV cell fabricated with a Au-ZnO nanocomposite ETL was higher by 40% than that of the inverted OPV cell fabricated with a ZnO nanoparticle ETL, which could be attributed to the enhanced photon absorption in the active layer due to the localized surface plasmonic resonance of the Au nanoparticles.

  19. Polarization-diverse light absorption enhancement in organic photovoltaic structures with one-dimensional, long-pitch metallic gratings: Design and experiment

    NASA Astrophysics Data System (ADS)

    Liu, Yifen; Dhakal, Rabin; Dalal, Vikram; Kim, Jaeyoun

    2012-12-01

    We report the design and experimental realization of an organic photovoltaic device structure that can trap incident light in all polarization states without relying on two-dimensional, short-pitch (<400 nm) gratings. Instead, we utilized easily patternable one-dimensional, long-pitch (>1000 nm) gratings and achieved the polarization diversity through balanced allocation of the plasmonic and guided mode-based light trapping routes to different polarization states. The experimental results showed strong enhancements in light absorption in all polarization states that would translate into a 15%-25% increase in the power conversion efficiency.

  20. Charge transport dependent high open circuit voltage tandem organic photovoltaic cells with low temperature deposited HATCN-based charge recombination layers.

    PubMed

    Wei, Huai-Xin; Zu, Feng-Shuo; Li, Yan-Qing; Chen, Wen-Cheng; Yuan, Yi; Tang, Jian-Xin; Fung, Man-Keung; Lee, Chun-Sing; Noh, Yong-Young

    2016-02-07

    Mechanisms of charge transport between the interconnector and its neighboring layers in tandem organic photovoltaic cells have been systematically investigated by studying electronic properties of the involving interfaces with photoelectron spectroscopies and performance of the corresponding devices. The results show that charge recombination occurs at HATCN and its neighboring hole transport layers which can be deposited at low temperature. The hole transport layer plays an equal role to the interconnector itself. These insights provide guidance for the identification of new materials and the device architecture for high performance devices.

  1. Donor-to-Donor vs Donor-to-Acceptor Interfacial Charge Transfer States in the Phthalocyanine-Fullerene Organic Photovoltaic System.

    PubMed

    Lee, Myeong H; Dunietz, Barry D; Geva, Eitan

    2014-11-06

    Charge transfer (CT) states formed at the donor/acceptor heterointerface are key for photocurrent generation in organic photovoltaics (OPV). Our calculations show that interfacial donor-to-donor CT states in the phthalocyanine-fullerene OPV system may be more stable than donor-to-acceptor CT states and that they may rapidly recombine, thereby constituting a potentially critical and thus far overlooked loss mechanism. Our results provide new insight into processes that may compete with charge separation, and suggest that the efficiency for charge separation may be improved by destabilizing donor-to-donor CT states or decoupling them from other states.

  2. Combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  3. Opto-electrical studies of self-assembled monolayer diodes and bulk hetero-junction organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ndobe, Alexandre

    The present dissertation is the result of our studies of the optical and electrical properties of self-assembled monolayer (SAM) diodes and bulk heterojunction organic photovoltaic(BOPV) devices. In our studies of SAM diodes, we fabricated solid-state mixtures of two different kinds of molecules; 1,4 benzene-dimethane-thiol (MeBDT) and 1-pentanethiol (PT). By varying the concentration r of MeBDT with respect to PT, we can go from a regime of isolated molecular wires (10--8 < r 10-3). For r = 0, we found that a potential barrier dominated the transport properties of the device. In the isolated molecules regime, the conductance of MeBDT dominates the transport. In this regime, because of the linearity of the conductance with respect to r, we were able to obtain a "single molecule resistance" at V = 0.1 V of RM = 6x 10--9 . In the aggregated molecules regime, an ohmic response in the current-voltage (I-V) characteristics was observed for bias voltages ≤ 0.5V with the appearance of a new band in the differential conductance around V = 0 along with a new double band in the optical gap at 2.4eV resulting in yellow/red photoluminescence emission. Opto-electrical studies of BOPV devices reveal that there are very few similarities between these types of solar cells and conventional solar cells. From simulations and experiemental measurements of the I-V characteristics, we found that while the open voltage circuit (Voc) is important for engineers, it carries no intrinsic information of the device. It cannot exceed the built-in potential of the device (Vbuilt--in ). The later origin was found to be dependent on electrode work function difference for a non-Ohmic contact configuration and on the active layer's blend in an Ohmic contact configuration. In a bid to improve BOPV device performance, we added to the blend spin 1/2 radical molecules. At concentration ( ≤2%), an increase in device performance was observed. The principal cause for this increase was the increase in

  4. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen.

    PubMed

    Maja, Mengistu M; Kasurinen, Anne; Holopainen, Toini; Julkunen-Tiitto, Riitta; Holopainen, Jarmo K

    2016-03-15

    Different environmental stress factors often occur together but their combined effects on plant secondary metabolism are seldom considered. We studied the effect of enhanced ultraviolet (UV-B) (31% increase) radiation and temperature (ambient +2 °C) singly and in combination on gender-specific emissions of volatile organic compounds (VOCs) from 2-year-old clones of European aspen (Populus tremula L.). Plants grew in 36 experimental plots (6 replicates for Control, UV-A, UV-B, T, UV-A+T and UV-B+T treatments), in an experimental field. VOCs emitted from shoots were sampled from two (1 male and 1 female) randomly selected saplings (total of 72 saplings), per plot on two sampling occasions (June and July) in 2014. There was a significant UV-B×temperature interaction effect on emission rates of different VOCs. Isoprene emission rate was increased due to warming, but warming also modified VOC responses to both UV-A and UV-B radiation. Thus, UV-A increased isoprene emissions without warming, whereas UV-B increased emissions only in combination with warming. Warming-modified UV-A and UV-B responses were also seen in monoterpenes (MTs), sesquiterpenes (SQTs) and green leaf volatiles (GLVs). MTs showed also a UV × gender interaction effect as females had higher emission rates under UV-A and UV-B than males. UV × gender and T × gender interactions caused significant differences in VOC blend as there was more variation (more GLVs and trans-β-caryophyllene) in VOCs from female saplings compared to male saplings. VOCs from the rhizosphere were also collected from each plot in two exposure seasons, but no significant treatment effects were observed. Our results suggest that simultaneous warming and elevated-UV-radiation increase the emission of VOCs from aspen. Thus the contribution of combined environmental factors on VOC emissions may have a greater impact to the photochemical reactions in the atmosphere compared to the impact of individual factors acting alone.

  5. Assessing the effectiveness of low-pressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms

    EPA Science Inventory

    Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...

  6. Synthesis and photovoltaic properties of organic sensitizers incorporating a thieno[3,4-c]pyrrole-4,6-dione moiety.

    PubMed

    Feng, Quanyou; Lu, Xuefeng; Zhou, Gang; Wang, Zhong-Sheng

    2012-06-14

    Novel organic sensitizers containing a thieno[3,4-c]pyrrole-4,6-dione (TPD) moiety with triphenylamine or julolidine as the electron donor have been designed and synthesized for quasi-solid-state dye-sensitized solar cells (DSSCs). For comparison, two organic dyes based on a terthiophene spacer have also been synthesized. The absorption, electrochemical and photovoltaic properties of all sensitizers have been systematically investigated. We found that the incorporation of TPD is highly beneficial to broaden the absorption spectra of the organic sensitizers and prevent the intermolecular interaction. Therefore, the charge recombination possibility is reduced, which is revealed by the controlled intensity modulated photovoltage spectroscopy. A quasi-solid-state DSSC based on sensitizer FNE38 with TPD and triphenylamine moieties demonstrates a solar energy conversion efficiency of 4.71% under standard AM 1.5G sunlight without the use of coadsorbant agents.

  7. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

    Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

    The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

    The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of

  8. A novel Ni/Na - Containing inorganic-organic hybrid supramolecule based on polyoxometalate and EDTA with ultraviolet-visible light photochromism

    NASA Astrophysics Data System (ADS)

    Xiao, Han-Xi; Teng, Chun-Lin; Cai, Qing; Sun, Su-Qin; Cai, Tie-Jun; Deng, Qian

    2016-08-01

    A novel Ni/Na - containing inorganic-organic hybrid supramolecule {(PW12O40)·[Na2(NiH2EDTA·H2O)(H4EDTA)·2H2O]·2H2O·H3O}n (short for NiEDTA-PW12) has been successfully synthesized by solution method, and investigated by thermogravimetric-differential thermal analysis (TG-DTA), ultraviolet visible (UV-Vis) spectroscopy, cyclic voltammetry (CV), photoluminescence (PL), ultraviolet visible diffuse reflectance spectrum (UV-vis DRS) and single-crystal X-ray diffraction (XRD). NiEDTA-PW12 exhibits intriguing infinite supramolecular structure with Na+ ions as linker. Furthermore, NiEDTA-PW12 displays a fast-responsive reversible photochromism under ultraviolet or visible light. The photochromic property of NiEDTA-PW12 has been investigated by techniques of UV-vis DRS and PL, and the impact of the O2 on fading of the colored NiEDTA-PW12 has been investigated.

  9. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    PubMed

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  10. Influence of Indium Tin Oxide Surface Treatment on Spatially Localized Photocurrent Variations in Bulk Heterojunction Organic Photovoltaic Devices

    DTIC Science & Technology

    2011-01-01

    solar cell at higher biases. Although this work focused on BHJ OPV devices, AFPM is a general technique that can be extended to numerous other thin film ...photovoltaic (PV) technologies for similar investigations of photocurrent variability. Thin film PV devices typically include a transparent conducting... thin film PV devices, such as polycrystal- line silicon,46 CdTe/CdS,47 and Cu(InGa)Se2 48 (CIGS), or to the nanoparticles or patterned back electrode in

  11. Polymer-facilitated low temperature fusing of spray-coated silver nanowire networks as transparent top and bottom electrodes in small molecule organic photovoltaics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Selzer, Franz; Weiß, Nelli; Kneppe, David; Bormann, Ludwig; Sachse, Christoph; Gaponik, Nikolai; Eychmüller, Alexander; Leo, Karl; Müller-Meskamp, Lars

    2015-10-01

    Networks of silver nanowires (AgNWs) are promising candidates for transparent conducting electrodes in organic photovoltaics (OPV), as they achieve similar performance as the commonly used indium tin oxide (ITO) at lower cost and increased flexibility. The initial sheet resistance (Rs) of AgNW electrodes typically needs to be reduced by a post-annealing step (90 min@200 °C), being detrimental for processing on polymeric substrates. We present novel low temperature-based methods to integrate AgNWs in organic small molecule-based photovoltaics, either as transparent and highly conductive bottom-electrode or, for the first time, as spray-coated AgNW top-electrode. The bottom-electrodes are prepared by organic matrix assisted low-temperature fusing. Here, selected polymers are coated below the AgNWs to increase the interaction between NWs and substrate. In comparison to networks without these polymeric sublayers, the Rs is reduced by two orders of magnitude. AgNW top-electrodes are realized by dispersing modified high-quality AgNWs in inert solvents, which do not damage small molecule layers. Accordingly, our AgNW dispersion can be spray-coated onto all kind of OPV devices. Both bottom- and top-electrodes show a Rs of <11 Ω/ at >87 % transparency directly after spray-coating at very low substrate temperatures of <80 °C. We also demonstrate the implementation of our AgNW electrodes in organic solar cells. The corresponding devices show almost identical performance compared to organic solar cells exploiting ITO as bottom or thermally evaporated thin-metal as top-electrode.

  12. Self-organized micro-holes on titania based sol-gel films under continuous direct writing with a continuous wave ultraviolet laser

    SciTech Connect

    Bakhti, S.; Destouches, N.; Gamet, E.; Reynaud, S.; Balan, L.

    2013-05-27

    The microstructuring of titania based sol-gel films is investigated by direct writing with a continuous wave ultraviolet laser beam emitting at 244 nm. Depending on the exposure conditions, the films exhibit a volume expansion, a volume shrinkage, a self-shaped delamination, or are damaged. This paper is mainly focused on the regime where spontaneous local delamination occurs, which corresponds to a narrow range of laser irradiances and writing speeds. In this regime, self-organized round-shape micro-holes opened on the substrate are generated.

  13. Ultraviolet radiation changes

    NASA Technical Reports Server (NTRS)

    Mckenzie, Richard L.; Frederick, John E.; Ilyas, Mohammad; Filyushkin, V.; Wahner, Andreas; Stamnes, K.; Muthusubramanian, P.; Blumthaler, M.; Roy, Colin E.; Madronich, Sasha

    1991-01-01

    A major consequence of ozone depletion is an increase in solar ultraviolet (UV) radiation received at the Earth's surface. This chapter discusses advances that were made since the previous assessment (World Meteorological Organization (WMO)) to our understanding of UV radiation. The impacts of these changes in UV on the biosphere are not included, because they are discussed in the effects assessment.

  14. Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Ramavenkateswari, K.; Venkatachalam, P.

    2016-09-01

    This work investigates the proficiency of acceptor-donor-acceptor (A-D-A) organic dye Diisopropyl azodicarboxylate (DIAC) as photosensitizer on the photovoltaic parameters of silver (Ag) doped TiO2 photoanode dye-sensitized solar cells (DSSCs) with quasi-solid state electrolyte/hole transport material (HTM) spiro-MeOTAD. TNSs (TiO2 nanosticks) photoanodes are prepared through sol-gel method and hydrothermal technique. X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and BET measurement were used to characterize the structure and morphology of TiO2 nanostructures. The Diisopropyl azodicarboxylate organic dye with TNPs-Ag@TNSs composite photoanode structure and spiro-MeOTAD HTM exhibited better power conversion efficiency (PCE).

  15. ULTRAVIOLET PROTECTIVE COMPOUNDS AS A RESPONSE TO ULTRAVIOLET RADIATION EXPOSURE

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet radiation. In response to UVR organisms have adapted myriad responses; behavioral, morphological and physiological. Behaviorally, some orga...

  16. Layered and Pb-Free Organic-Inorganic Perovskite Materials for Ultraviolet Photoresponse: (010)-Oriented (CH3NH3)2MnCl4 Thin Film.

    PubMed

    Nie, Zhonghao; Yin, Jie; Zhou, Huawei; Chai, Ning; Chen, Baoli; Zhang, Yingtian; Qu, Konggang; Shen, Guodong; Ma, Huiyan; Li, Yuchao; Zhao, Jinsheng; Zhang, Xianxi

    2016-10-07

    Organic-inorganic lead perovskite materials show impressive performance in photovoltaics, photodetectors, light-emitting diodes, lasers, sensors, medical imaging devices, and other applications. Although organic-inorganic lead perovskites have shown good performance in numerous fields, they contain toxic Pb, which is expected to cause environmental pollution in future large-scale applications. Thus, the photoelectric properties of Pb-free organic-inorganic perovskite materials should be developed and studied. In this paper, we report on the photoresponse of Pb-free organic-inorganic hybrid manganese perovskite (CH3NH3)2MnCl4. To the best of our knowledge, this study demonstrates the first time that organic-inorganic hybrid manganese perovskites are used for this type of application. We found that the solution-processed MA2MnCl4 thin film tends to be oriented along the b-axis direction on the TiO2 surface. The evident photoresponse of the FTO/TiO2/MA2MnCl4/carbon electrode devices was observed under 10-30 Hz flashlight frequencies and a 330 nm light beam. This simple, green, and low-cost photoresponsive device is beneficial for the future industrial production of optical recorders and optical memory devices.

  17. Photovoltaic Engineering

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Ohio Aerospace Institute through David Scheiman and Phillip Jenkins provided the Photovoltaics Branch at the NASA Glenn Research Center (GRC) with expertise in photovoltaic (PV) research, flight experiments and solar cell calibration. NASA GRC maintains the only world-class solar cell calibration and measurement facility within NASA. GRC also has a leadership role within the solar cell calibration community, and is leading the effort to develop ISO standards for solar cell calibration. OAI scientists working under this grant provided much of the expertise and leadership in this area.

  18. Photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    Boes, E. C.

    1980-01-01

    A status report on photovoltaic (PV) concentrators technology is presented. The major topics covered are as follows: (1) current PV concentrator arrays; designs, performances, and costs; (2) current PV concentrator array components; cells and cell assemblies, optical concentrators, support structures, tracking, and drive; (3) design of PV concentrator arrays; and (4) array manufacturing technology.

  19. Improvement of both efficiency and working lifetime in organic photovoltaic devices by using bathophenanthroline/tin(IV) phthalocyanine dichloride as bilayer exciton blocking layers

    NASA Astrophysics Data System (ADS)

    Zhuang, Taojun; Su, Zisheng; Liu, Yadong; Chu, Bei; Li, Wenlian; Wang, Junbo; Jin, Fangming; Yan, Xingwu; Zhao, Bo; Zhang, Feng; Fan, Di

    2012-06-01

    We demonstrate that the improvement of both efficiency and lifetime of organic photovoltaic (OPV) devices by employing thinner bathophenanthroline (Bphen) and thicker tin(IV) phthalocyanine dichloride (SnCl2Pc) as the bilayer exciton blocking layers (EBLs), where Bphen and SnCl2Pc acts as the photogenerated exciton blocking layer and optical spacer, respectively. The thicker SnCl2Pc layer can be adopted due to its high electron mobility and aligned lowest unoccupied molecular orbital with the acceptor. The OPV device with such a bilayer EBL leads to an increase by 27% in power conversion efficiency compared to the device with a traditional bathocuproine EBL. Moreover, the lifetime is also improved due to the superior oxygen and moisture diffusion blocking effect of the thick SnCl2Pc layer. The operation mechanism for the improvement in PCE and lifetime was also discussed.

  20. Solution-processed nanocomposites containing molybdenum oxide and gold nanoparticles as anode buffer layers in plasmonic-enhanced organic photovoltaic devices.

    PubMed

    Tan, Kim-Shih; Chuang, Ming-Kai; Chen, Fang-Chung; Hsu, Chain-Shu

    2013-12-11

    Solution-processed nanocomposites containing molybdenum oxide (MoO3) and gold nanoparticles (Au NPs) have been used as anode buffer layers in organic photovoltaic devices (OPVs). The resulting devices exhibit a remarkable enhancement in power conversion efficiency after Au NPs were incorporated into the device. Such enhancements can be attributed to the localized surface plasmon resonance induced by the metallic nanostructures. We have also found that the rate of exciton generation and the probability of exciton dissociation were increased. Furthermore, the devices made of the MoO3 buffer layer containing Au NPs exhibited superior stability. This work opens up the possibility of fabricating OPVs with both high efficiency and a prolonged lifetime.

  1. Towards 3rd generation organic tandem solar cells with 20% efficiency: Accelerated discovery and rational design of carbon-based photovoltaic materials through massive distributed volunteer computing

    SciTech Connect

    Aspuru-Guzik, Alan

    2016-11-04

    Clean, affordable, and renewable energy sources are urgently needed to satisfy the 10s of terawatts (TW) energy need of human beings. Solar cells are one promising choice to replace traditional energy sources. Our broad efforts have expanded the knowledge of possible donor materials for organic photovoltaics, while increasing access of our results to the world through the Clean Energy Project database (www.molecularspace.org). Machine learning techniques, including Gaussian Processes have been used to calibrate frontier molecular orbital energies, and OPV bulk properties (open-circuit voltage, percent conversion efficiencies, and short-circuit current). This grant allowed us to delve into the solid-state properties of OPVs (charge-carrier dynamics). One particular example allowed us to predict charge-carrier dynamics and make predictions about future hydrogen-bonded materials.

  2. Triplet formation by charge recombination in thin film blends of perylene red and pyrene: developing a target model for the photophysics of organic photovoltaic materials.

    PubMed

    Williams, René M; Vân Anh, Nguyễn; van Stokkum, Ivo H M

    2013-09-26

    Photoinduced charge separation in a mixture of Perylene Red (N,N'-bis(2,6-di-isopropylphenyl)-1,6,7,12-tetraphenoxyperylene-3,4:9,10-tetracarboxylic acid bis-imide) and pyrene, organized in thin solid film on quartz, was studied by means of steady-state absorption and emission spectroscopy and by femtosecond transient absorption spectroscopy. Steady state spectroscopy shows substantial interaction between the two chromophores in the ground and excited states. Luminescence quenching indicates charge transfer interaction. Global and target analysis of the transient absorption data indicates a complex photophysical behavior with the formation of long-lived charges (free charge carriers) and of a triplet excited state species (with rates of ∼10.4 × 10(9) and 72.1 × 10(6) s(-1)) via charge recombination pathways from charged states. A generally applicable target model for the analysis of photophysical data of photovoltaic blends is developed.

  3. High-performance liquid chromatography - Ultraviolet method for the determination of total specific migration of nine ultraviolet absorbers in food simulants based on 1,1,3,3-Tetramethylguanidine and organic phase anion exchange solid phase extraction to remove glyceride.

    PubMed

    Wang, Jianling; Xiao, Xiaofeng; Chen, Tong; Liu, Tingfei; Tao, Huaming; He, Jun

    2016-06-17

    The glyceride in oil food simulant usually causes serious interferences to target analytes and leads to failure of the normal function of the RP-HPLC column. In this work, a convenient HPLC-UV method for the determination of the total specific migration of nine ultraviolet (UV) absorbers in food simulants was developed based on 1,1,3,3-tetramethylguanidine (TMG) and organic phase anion exchange (OPAE) SPE to efficiently remove glyceride in olive oil simulant. In contrast to the normal ion exchange carried out in an aqueous solution or aqueous phase environment, the OPAE SPE was performed in the organic phase environments, and the time-consuming and challenging extraction of the nine UV absorbers from vegetable oil with aqueous solution could be readily omitted. The method was proved to have good linearity (r≥0.99992), precision (intra-day RSD≤3.3%), and accuracy(91.0%≤recoveries≤107%); furthermore, the lower limit of quantifications (0.05-0.2mg/kg) in five types of food simulants(10% ethanol, 3% acetic acid, 20% ethanol, 50% ethanol and olive oil) was observed. The method was found to be well suited for quantitative determination of the total specific migration of the nine UV absorbers both in aqueous and vegetable oil simulant according to Commission Regulation (EU) No. 10/2011. Migration levels of the nine UV absorbers were determined in 31 plastic samples, and UV-24, UV-531, HHBP and UV-326 were frequently detected, especially in olive oil simulant for UV-326 in PE samples. In addition, the OPAE SPE procedure was also been applied to efficiently enrich or purify seven antioxidants in olive oil simulant. Results indicate that this procedure will have more extensive applications in the enriching or purification of the extremely weak acidic compounds with phenol hydroxyl group that are relatively stable in TMG n-hexane solution and that can be barely extracted from vegetable oil.

  4. Thickness dependent effects of an intermediate molecular blocking layer on the optoelectronic characteristics of organic bilayer photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Steindamm, A.; Brendel, M.; Topczak, A. K.; Pflaum, J.

    2012-10-01

    In this work, we address the microscopic effects related to the implementation of a bathophenanthroline (BPhen) exciton blocking layer (EBL) sandwiched between Ag cathode and molecular diindenoperylene (DIP)/C60 bilayer of a photovoltaic cell. Complementary studies of current density, external quantum efficiency, and photoluminescence quenching for EBL thicknesses up to 50 nm indicate that Ag atoms are able to penetrate through the whole 35 nm thick C60 film into the polycrystalline DIP layer underneath, thereby enhancing exciton quenching if no blocking layer is applied. In contrast, an optimal trade-off between exciton blocking, suppression of metal penetration, and electron transport is achieved for a 5 nm thick BPhen layer yielding an improvement of power conversion efficiency by more than a factor of 2.

  5. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  6. Factors that may increase the risk of aquatic organisms to the harmful effects of ultraviolet-B radiation: A management perspective

    SciTech Connect

    Little, E.E.; Fabacher, D.L.

    1995-12-31

    Elevated levels of solar ultraviolet-B (UVB) radiation resulting from stratospheric ozone depletion may cause harmful effects in aquatic organisms. Solar UVB radiation penetrates clear water and can have a direct biological impact on some organisms, causing lesions, infection, and mortality. Numerous evolutionary adaptations and repair mechanisms appear to have evolved in aquatic organisms for coping with solar radiation. The authors found that some species of fish are more susceptible to the harmful effects of solar simulated UVB than other species. Such differences were directly related to the amount of an unidentified dorsal skin component that may function as a natural sunscreen and protect some fish from the harmful effects of UVB. Ozone depletion arising from the destruction of ozone by chlorofluorocarbons is expected to average around 11% annually in mid-northern latitudes through the rest of the century. Since many aquatic organisms appear to exist at their limits of tolerance for solar UVB radiation, environmental changes that result in increased UVB radiation may be directly harmful to sensitive populations. Identification of risk factors and management of aquatic communities exposed to enhanced UVB require not only information about UVB climatology, but also knowledge of the sensitivity and behavioral habits of each species, and an assessment of environmental variables that may increase or mitigate UVB exposure.

  7. Effects of the novel poly(methyl methacrylate) (PMMA)-encapsulated organic ultraviolet (UV) filters on the UV absorbance and in vitro sun protection factor (SPF).

    PubMed

    Wu, Pey-Shiuan; Huang, Lan-Ni; Guo, Yi-Cing; Lin, Chih-Chien

    2014-02-05

    Sunscreens are thought to protect skin from many of the harmful effects of ultraviolet (UV) light and the photostability of sunscreens is thus an important concern in their application. Therefore, to discover new UV filters or to modify well-known UV filters are presents an important way for development of sunscreens. In this study, we presented several novel poly(methyl methacrylate) (PMMA) encapsulated organic UV filters, including encapsulated benzophenone-3 (TB-MS), avobenzone (TA-MS), octyl methoxycinnamate (TO-MS) and diethylamino hydroxybenzoyl hexyl benzoate (TD-MS). Our results have demonstrated that PMMA-encapsulated UV filters have improved safety, photoprotective ability and photostability. We proposed therefore that these PMMA-encapsulated UV filters can be used as ingredients for sunscreen products in the future.

  8. Ultraviolet-radiation-curing of an organically modified silicate-based material system with epoxy functionality, and the role of titanium

    NASA Astrophysics Data System (ADS)

    Çopuroğlu, Mehmet; Şen, Murat

    2012-09-01

    An organically modified silicate-based material system with epoxy functionality was synthesised by the sol-gel method using some certain Si- and Ti-alkoxide precursors. The resultant system was processed with ultraviolet (UV)-radiation. Influences of certain synthesis and process parameters, including Ti content, sol ageing time, and UV-irradiation time, on various properties of the system were detailed. Overall results demonstrated that Ti-based precursors and UV-radiation could be employed to modify the microstructure, and that the final properties of the system might be tuned by an optimal combination of these two parameters. This preliminary study therefore revealed that this technique described herein might be used to develop a new process regime to obtain materials of this type with desired properties.

  9. Photovoltaic properties of interfaces of organic films of substituted perylene with TiO{sub 2} and SnO{sub 2} surfaces

    SciTech Connect

    Komolov, A. S. Lazneva, E. F.; Komolov, S. A.; Busin, I. S.; Zimina, M. V.

    2011-02-15

    The photovoltaic effect has been detected and studied in structures based on ultrathin vacuum-deposited organic films of perylene-3,4,9,10-tetracarboxylic acid dianhydride on the titanium and tin dioxide surfaces. The interfacial potential barrier shape in these structures is studied by low-energy electron total current spectroscopy. Changes in the surface potential upon exposure to visible light are recorded in situ using an electron-beam probe with energies from 0 to 25 eV. The photovoltage is detected at incident photon energies of 1.5-2.5 eV, which corresponds to the organic film absorption range and simultaneously to the transmission band of titanium and tin dioxides. An analysis of the spectral distributions and transient responses shows that two components of the observed photovoltage can be distinguished. The relation of one of the components to the excitation of interband transitions in the organic film and another component to electronic transitions involving interfacial energy states are discussed.

  10. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  11. Solution Processed Organic Photovoltaic Cells Using D-A-D-A-D Type Small Molecular Donor Materials with Benzodithiophene and Diketopyrrolopyrrole Units.

    PubMed

    Park, Sangman; Nam, So Yeon; Suh, Dong Hack; Lee, Jaemin; Lee, Changjin; Yoon, Sung Cheol

    2016-03-01

    Organic photovoltaic Cells (OPVs) have been considered to be a next-generation energy source to overcome exhaustion of resources. Currently, OPVs are developed based on two types of donor material with polymer and small molecule. Polymeric donor materials have shown better power conversion efficiency (PCE) than small molecular donor materials, since it's easy to control the morphology of photoactive film. However, the difficulty in synthetic reproducibility and purification of polymeric donor were main drawback to overcome. And then, recently small molecule donor materials have been overcome bad morphology of OPVs film by using appropriate alkyl substituents and relatively long conjugation system. In this study, we designed and synthesized D-A-D-A-D type small molecular donor materials containing alternatively linked benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units. Also, we studied on the effect of photovoltaic performance of prepared small molecular D-A-D-A-D type donor with variation of thiophene links and with/without hexyl substituent. Our small molecular donors showed HOMO energy levels from -5.26 to -5.34 eV and optical bandgaps from 1.70 to 1.87 eV by CV (cyclic voltammetry) and UV/Vis spectroscopy, respectively. Finally, 3.4% of PCE can be obtained using a mixture of BDT(DPP)2-T2 and PCBM as an active layer with a Voc of 0.78 V, a Jsc of 9.72 mA/cm2, and a fill factor of 0.44 under 100 mW/cm2 AM 1.5G simulated light. We will discuss the performance of D-A-D-A-D type small molecular donor based OPVs with variation of both terminal substituents.

  12. Photosynthetic Photovoltaic Cells

    DTIC Science & Technology

    2007-06-21

    PHOTOSYNTHETIC PHOTOVOLTAIC CELLS 5b. GRANT NUMBER F49620-02-1-0399 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER MARC A. BALDO 5e. TASK...building an ’antenna’ on top of a conventional solar cell. Biomimetic organic solar cells operate as follows: The antenna absorbs the light, and acts to...no longer must absorb all the light. Thus, its quantum efficiency can approach 100% potentially doubling the performance of organic solar cells. 15

  13. Phase transfer membrane supported liquid-liquid-liquid microextraction combined with large volume sample injection capillary electrophoresis-ultraviolet detection for the speciation of inorganic and organic mercury.

    PubMed

    Li, Pingjing; Zhang, Xing; Hu, Bin

    2011-12-30

    In this paper, a novel sample pretreatment technique termed phase transfer based liquid-liquid-liquid microextraction (PT-LLLME) was proposed for the simultaneous extraction of inorganic and organic mercury species. In PT-LLLME, an intermediate solvent (acetonitrile) was added into the donor phase to improve the contacting between target mercury species and complexing reagent. Meanwhile, a membrane supported (MS)-LLLME unit was designed to realize the PT-LLLME procedure. By using nylon membrane as supporting carrier, larger than 50 μL of acceptor solution could be hung up. Following PT/MS-LLLME, the acceptor solutions were directly analyzed by large volume sample stacking capillary electrophoresis/ultraviolet detection (LVSS-CE/UV). Accordingly, a new method of PT/MS-LLLME combined with LVSS-CE/UV was developed for the simultaneous speciation of inorganic and organic mercury species. Parameters affecting the extraction efficiency of PT/MS-LLLME were investigated in details. Under the optimized conditions, enrichment factors (EFs) ranging from 160- to 478-fold were obtained for the extraction of target mercury species by PT/MS-LLLME. By combining PT/MS-LLLME with LVSS-CE/UV, EFs were magnified up to 12,138-fold and the limits of detection (at a signal-to-noise ratio of 3) were at sub ppb level. The established approach of PT/MS-LLLME-LVSS-CE/UV was successfully applied to simultaneous determination of inorganic and organic mercury species in biological samples and environmental water samples.

  14. MOD silver metallization for photovoltaics. Quarterly technical report, December 1, 1983-February 29, 1984. [Metallo-organic decomposition

    SciTech Connect

    Vest, G.M.; Vest, R.W.

    1984-03-20

    It was determined that pyrolysis products can produce dark surface films on MOD silver conductors. Improving the purity of all ink ingredients helped this problem. It was established that the existence and nature of the surface film is influenced by the rate of air flow during firing and by the heating rate in the 70 to 225/sup 0/C range, but these processing parameters have not as yet been optimized. Low temperature solvent removal was determined to be of prime importance in obtaining good adhesion between the MOD films and the substrate. For inks developed to date, 15 to 30 minutes at 60 to 70/sup 0/C was required. It was also determined that the adhesion is influenced by the air flow rate during firing, the heating rate in the 100 to 250/sup 0/C range, and the maximum firing temperature. Results during the first 3 months of effort on this project have demonstrated that it is essential to use generic compounds, and that the compounds must be prepared from high purity raw materials. It was also established that the quality and properties of the MOD silver films are intimately dependent on the time-temperature processing. All of the results obtained to date still indicate that MOD silver shows great promise for low temperature metallization of photovoltaic cells.

  15. One-Step Synthesis of Precursor Oligomers for Organic Photovoltaics: A Comparative Study between Polymers and Small Molecules.

    PubMed

    Li, Wei; Wang, Daojuan; Wang, Suhao; Ma, Wei; Hedström, Svante; James, David Ian; Xu, Xiaofeng; Persson, Petter; Fabiano, Simone; Berggren, Magnus; Inganäs, Olle; Huang, Fei; Wang, Ergang

    2015-12-16

    Two series of oligomers TQ and rhodanine end-capped TQ-DR were synthesized using a facile one-step method. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated and compared. The TQ series of oligomers were found to be amorphous, whereas the TQ-DR series are semicrystalline. For the TQ oligomers, the results obtained in solar cells show that as the chain length of the oligomers increases, an increase in power conversion efficiency (PCE) is obtained. However, when introducing 3-ethylrhodanine into the TQ oligomers as end groups, the PCE of the TQ-DR series of oligomers decreases as the chain length increases. Moreover, the TQ-DR series of oligomers give much higher performances compared to the original amorphous TQ series of oligomers owing to the improved extinction coefficient (ε) and crystallinity afforded by the rhodanine. In particular, the highly crystalline oligomer TQ5-DR, which has the shortest conjugation length shows a high hole mobility of 0.034 cm(2) V(-1) s(-1) and a high PCE of 3.14%, which is the highest efficiency out of all of the six oligomers. The structure-property correlations for all of the oligomers and the TQ1 polymer demonstrate that structural control of enhanced intermolecular interactions and crystallinity is a key for small molecules/oligomers to achieve high mobilities, which is an essential requirement for use in OPVs.

  16. Effect of Blend Composition and Additives on the Morphology of PCPDTBT:PC71BM Thin Films for Organic Photovoltaics.

    PubMed

    Schaffer, Christoph J; Schlipf, Johannes; Dwi Indari, Efi; Su, Bo; Bernstorff, Sigrid; Müller-Buschbaum, Peter

    2015-09-30

    The use of solvent additives in the fabrication of bulk heterojunction polymer:fullerene solar cells allows to boost efficiencies in several low bandgap polymeric systems. It is known that solvent additives tune the nanometer scale morphology of the bulk heterojunction. The full mechanism of efficiency improvement is, however, not completely understood. In this work, we investigate the influences of blend composition and the addition of 3 vol % 1,8-octanedithiol (ODT) as solvent additive on polymer crystallization and both, vertical and lateral morphologies of poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] and [6,6]-phenyl C71-butyric acid methyl ester (PCPDTBT:PC71BM) blend thin films processed from chlorobenzene-based solutions. The nanoscale morphology is probed with grazing incidence small- and wide-angle X-ray scattering as well as X-ray reflectivity and complemented with UV/vis spectroscopy. In PCPDTBT:PC71BM films the use of ODT is found to lower the solubility of fullerene in the polymer matrix and to promote polymer crystallization, both vertical and lateral microphase separation with morphological coarsening, and formation of a fullerene-rich topping layer. The enhanced photovoltaic performance is explained by these findings.

  17. Charge transport studies in donor-acceptor block copolymer PDPP-TNT and PC71BM based inverted organic photovoltaic devices processed in room conditions

    SciTech Connect

    Srivastava, Shashi B.; Singh, Samarendra P.; Sonar, Prashant

    2015-07-15

    Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C{sub 71} butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO{sub 3}/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10{sup −3} cm{sup 2}V{sup −1}s{sup −1}, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10{sup −5} cm{sup 2}V{sup −1}s{sup −1}, and electron mobility of 8.7 × 10{sup −4} cm{sup 2}V{sup −1}s{sup −1}.

  18. Investigation of the Degradation Mechanisms of a Variety of Organic Photovoltaic Devices by Combination of Imaging Techniques—the ISOS-3Inter-laboratory Collaboration

    SciTech Connect

    Germack D.; Rosch, R.; Tanenbaum, D.M.; Jorgensen, M.; Seeland, M.; Barenklau, M.; Hermenau, M.; Voroshazi, E.; Lloyd, M.T.; Galagan, Y.; Zimmermann, B.; Wurfel, U.; Hosel, M.; Dam, H.F.; Gevorgyan, S.A.; Kudret, S.; Maes, W.; Lutsen, L.; Vanderzande, D.; Andriessen, R.; Teran-Escobar, G.; Lira-Cantu, M.; Rivaton, A.; Uzunoglu, G.Y.; Andreasen, B.; Madsen, M.V.; Norrman, K.; Hoppe, H.; Krebs, F.C.

    2012-04-01

    The investigation of degradation of seven distinct sets (with a number of individual cells of n {ge} 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Risoe DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imaging techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results - hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.

  19. Investigation of the Degradation Mechanisms of a Variety of Organic Photovoltaic Devices by Combination of Imaging Techniques - The ISOS-3 Inter-Laboratory Collaboration

    SciTech Connect

    Rosch, R.; Tanenbaum, D. M.; Jrgensen, M.; Seeland, M.; Barenklau, M.; Hermenau, M.; Voroshazi, E.; Lloyd, M. T.; Galagan, Y.; Zimmermann, B.; Wurfel, U.; Hosel, M.; Dam, H. F.; Gevorgyan, S. A.; Kudret, S.; Maes, W.; Lutsen, L.; Vanderzande, D.; Andriessen, R.; Teran-Escobar, G.

    2012-04-01

    The investigation of degradation of seven distinct sets (with a number of individual cells of n {>=} 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Riso DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imaging techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results -- hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.

  20. ITO-free flexible organic photovoltaics with multilayer MoO3/LiF/MoO3/Ag/MoO3 as the transparent electrode

    NASA Astrophysics Data System (ADS)

    Chen, Shilin; Dai, Yunjie; Zhao, Dewei; Zhang, Hongmei

    2016-05-01

    We present efficient flexible organic photovoltaics (OPVs) with multiple layers of molybdenum oxide (MoO3)/LiF/MoO3/Ag/MoO3 as the transparent electrode, where the thin Ag layer yields high conductivity and the dielectric layer MoO3/LiF/MoO3 has high transparency due to optical interference, leading to improved power conversion efficiency compared with indium tin oxide (ITO) based devices. The MoO3 contacting organic active layer is used as a buffer layer for good hole extraction. Thus, the multilayer MoO3/LiF/MoO3/Ag/MoO3 can improve light transmittance and also facilitate charge carrier extraction. Such an electrode shows excellent mechanical bendability with a 9% reduction of efficiency after 1000 cycles of bending due to the ductile nature of the thin metal layer and dielectric layer used. Our results suggest that the MoO3/LiF/MoO3/Ag/MoO3 multilayer electrode is a promising alternative to ITO as an electrode in OPVs.