Sample records for organic uv absorbers

  1. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-06

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Method 415.3, Rev. 1.2: Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water

    EPA Science Inventory

    This method provides procedures for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), and UV absorption at 254 nm (UVA) in source waters and drinking waters. The DOC and UVA determinations are used in the calculation of the Specific UV Absorbance (S...

  3. Oceanic protection of prebiotic organic compounds from UV radiation

    NASA Technical Reports Server (NTRS)

    Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  4. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber

    PubMed Central

    Nikafshar, Saeid; Zabihi, Omid; Ahmadi, Mojtaba; Mirmohseni, Abdolreza; Taseidifar, Mojtaba; Naebe, Minoo

    2017-01-01

    Despite several excellent properties including low shrinkage, good chemical resistance, curable at low temperatures and the absence of byproducts or volatiles, epoxy resins are susceptible to ultra violet (UV) damage and their durability is reduced substantially when exposed to outdoor environments. To overcome this drawback, UV absorbers have been usually used to decrease the rate of UV degradation. In this present study, the effects of UV light on the chemical, mechanical and physical properties of cured epoxy structure, as well as the effect of an organic UV absorber, Tinuvin 1130, on the epoxy properties were investigated. Chemical changes in a cured epoxy system as a result of the presence and absence of Tinuvin 1130 were determined using Fourier transform infrared spectroscopy (FT-IR) analyses. The effect of Tinuvin 1130 on the surface morphology of the epoxy systems was also investigated by scanning electron microscopy (SEM) imaging. Additionally, the glass transition temperatures (Tg) before and during UV radiation were measured. After an 800 h UV radiation, mechanical test results revealed that the lack of the UV absorber can lead to a ~30% reduction in tensile strength. However, in the presence of Tinuvin 1130, the tensile strength was reduced only by ~11%. It was hypothesized that the use of Tinuvin 1130, as an organic UV absorber in the epoxy-amine system, could decrease the undesirable effects, arising from exposure to UV light. PMID:28772538

  5. Determination of ultraviolet filter activity on coconut oil cosmetic cream

    NASA Astrophysics Data System (ADS)

    Widiyati, Eni

    2017-08-01

    A research on determination of ultraviolet (UV) filter activity of cosmetic cream with coconut oil as raw material has been done. The cream was made by mixing the oil phase (coconut oil, stearic acid, lanolin and cetyl alcohol) at 70°C and the water phase (glycerin, aquadest and triethanolamine) at 70°C, while stirring until reached a temperature of 35°C. It was made also a cream with inorganic sunscreen TiO2 and organic sunscreen benzophenone-3 as a comparison. To study the UV filter activity, each cream was determined the UV absorption using UV spectrophotometer. The results show that cosmetic cream with coconut oil as raw material absorbs UV rays in the region of UV-C, whereas the cream with TiO2 absorbs the UV rays from UV-C to UV-A and cream with benzophenone-3 absorbs the UV rays from UV-B to UV-A region. This means that, the cosmetic cream with coconut oil as raw material has an activity as UV-C filter. If this cream is expected to have an activity as a sunscreen, it must be added an inorganic or organic sunscreen or a mixture of both as an active materials.

  6. Freshwater DOM quantity and quality from a two-component model of UV absorbance

    USGS Publications Warehouse

    Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John

    2012-01-01

    We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).

  7. Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate.

    PubMed

    Cursino, Ana Cristina Trindade; Gardolinski, José Eduardo Ferreira da Costa; Wypych, Fernando

    2010-07-01

    Layered zinc hydroxide nitrate (ZHN) was synthesized and nitrate ions were topotactically exchanged with three different anionic species of commercial organic ultraviolet (UV) ray absorbers: 2-mercaptobenzoic acid, 2-aminobenzoic acid, and 4-aminobenzoic acid. The exchange reactions were confirmed by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible (UV-Vis) spectroscopy, and thermal analysis (thermogravimetry, TGA, and differential thermal analysis, DTA). In all the anionic exchanged products, evidence of grafting of the organic species onto the inorganic matrix was obtained. In general, after intercalation/grafting, the UV absorption ability was improved in relation to the use of the parent organic material, showing that layered hydroxide salts (LHS) can be good alternative matrixes for the immobilization of organic species with UV-blocking properties in cosmetic products. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP

    NASA Astrophysics Data System (ADS)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Zhou, Yan; Lin, Changhong; Yang, Yuming

    2018-03-01

    Herein, PVDF membranes with excellent UV-absorbing property were first synthesized through grafting the polymerizable low-molecular-weight organic UV-absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) onto α-bromoester-functionalized PVDF membranes via the surface-initiated activator generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The surface initiators were immobilized by the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxylated PVDF membranes. PVDF-g-PBPMA membranes with different grafting densities were obtained by tuning the polymerization time and the modified membranes were characterized by 1H-NMR, FT-IR, XPS, SEM, UV-vis Spectrophotometer, TGA and DSC. The experimental results indicated that PBPMA chains were successfully introduced onto PVDF membranes. Most importantly, the PVDF-g-PBPMA membranes exhibited outstanding UV-shielding property. UV-vis transmittance spectra showed that most UV light below 360 nm could be absorbed by PVDF-g-PBPMA membranes and the whole UV light region (200-400 nm) can be blocked with the reaction time increased.

  9. CHANGES IN SPECTRAL AND PHOTOCHEMICAL PROPERTIES OF COLORED DISSOLVED ORGANIC MATTER IN A COASTAL ESTUARY

    EPA Science Inventory

    Colored dissolved organic matter (CDOM) is the primary determinant of UV penetration and exposure in freshwater and coastal environments. CDOM is photochemically reactive and its photoreactions can lead to reductions in UV absorbance and increased UV exposure in aquatic ecosystem...

  10. Construction of Nontoxic Polymeric UV-Absorber with Great Resistance to UV-Photoaging

    PubMed Central

    Huang, Zhong; Ding, Aishun; Guo, Hao; Lu, Guolin; Huang, Xiaoyu

    2016-01-01

    In this article, we developed a series of new nontoxic polymeric UV-absorbers through covalently attaching a benzophenone derivative onto the main chain of poly(vinyl chloride) (PVC) via mild and quantitative click chemistry. Azide groups were firstly introduced into the backbone of PVC via a nucleophilic reaction without affecting polymeric skeleton. Copper-catalyzed Husigen-Click cycloaddition reaction was performed between the pendant azide groups of PVC and alkynyl of (2-hydroxy-4-(prop-2-ynyloxy)phenyl)(phenyl)methanone at ambient temperature for affording the desired PVC-based UV-absorbers (PVC-UV) with different amounts of benzophenone moieties, which displayed great resistance to photoaging without degradation while exposed to UV irradiation. These polymeric UV-absorbers also showed good solubilities in common organic solvents and no cytotoxicity vs. HaCat cell. Small amounts of PVC-UV were homogeneously mixed with PVC as additive for stabilizing PVC against UV-photoaging without degradation and releasing small molecule even after 200 h while keeping thermal stability. This route of polymeric additive clearly paved an efficient way for solving the puzzle of separation of small molecule additive. PMID:27138547

  11. The removal of disinfection by-product precursors from water with ceramic membranes.

    PubMed

    Harman, B I; Koseoglu, H; Yigit, N O; Sayilgan, E; Beyhan, M; Kitis, M

    2010-01-01

    The main objective of this work was to investigate the effectiveness of ceramic ultrafiltration (UF) membranes with different pore sizes in removing natural organic matter (NOM) from model solutions and drinking water sources. A lab-scale, cross-flow ceramic membrane test unit was used in all experiments. Two different single-channel tubular ceramic membrane modules were tested with average pore sizes of 4 and 10 nm. The impacts of membrane pore size and pressure on permeate flux and the removals of UV(280 nm) absorbance, specific UV absorbance (SUVA(280 nm)), and dissolved organic carbon (DOC) were determined. Prior to experiments with model solutions and raw waters, clean water flux tests were conducted. UV(280) absorbance reductions ranged between 63 and 83% for all pressures and membranes tested in the raw water. More than 90% of UV(280) absorbance reduction was consistently achieved with both membranes in the model NOM solutions. Such high UV absorbance reductions are advantageous due to the fact that UV absorbing sites of NOM are known to be one of the major precursors to disinfection by-products (DBP) such as trihalomethanes and haloacetic acids. For both UF membranes, the ranges of DOC removals in the raw water and model NOM solutions were 55-73% and 79-91%, respectively. SUVA(280) value of the raw water decreased from 2 to about 1.5 L/mg-m by both membranes. For the model solutions, SUVA(280) values were consistently reduced to < or =1 L/mg-m levels after membrane treatment. As the SUVA(280) value of the NOM source increased, the extent of SUVA(280) reduction and DOC removal by the tested ceramic UF membranes also increased. The results overall indicated that ceramic UF membranes, especially the one with 4 nm average pore size, appear to be effective in removing organic matter and DBP precursors from drinking water sources with relatively high and sustainable permeate flux values.

  12. High-performance liquid chromatography - Ultraviolet method for the determination of total specific migration of nine ultraviolet absorbers in food simulants based on 1,1,3,3-Tetramethylguanidine and organic phase anion exchange solid phase extraction to remove glyceride.

    PubMed

    Wang, Jianling; Xiao, Xiaofeng; Chen, Tong; Liu, Tingfei; Tao, Huaming; He, Jun

    2016-06-17

    The glyceride in oil food simulant usually causes serious interferences to target analytes and leads to failure of the normal function of the RP-HPLC column. In this work, a convenient HPLC-UV method for the determination of the total specific migration of nine ultraviolet (UV) absorbers in food simulants was developed based on 1,1,3,3-tetramethylguanidine (TMG) and organic phase anion exchange (OPAE) SPE to efficiently remove glyceride in olive oil simulant. In contrast to the normal ion exchange carried out in an aqueous solution or aqueous phase environment, the OPAE SPE was performed in the organic phase environments, and the time-consuming and challenging extraction of the nine UV absorbers from vegetable oil with aqueous solution could be readily omitted. The method was proved to have good linearity (r≥0.99992), precision (intra-day RSD≤3.3%), and accuracy(91.0%≤recoveries≤107%); furthermore, the lower limit of quantifications (0.05-0.2mg/kg) in five types of food simulants(10% ethanol, 3% acetic acid, 20% ethanol, 50% ethanol and olive oil) was observed. The method was found to be well suited for quantitative determination of the total specific migration of the nine UV absorbers both in aqueous and vegetable oil simulant according to Commission Regulation (EU) No. 10/2011. Migration levels of the nine UV absorbers were determined in 31 plastic samples, and UV-24, UV-531, HHBP and UV-326 were frequently detected, especially in olive oil simulant for UV-326 in PE samples. In addition, the OPAE SPE procedure was also been applied to efficiently enrich or purify seven antioxidants in olive oil simulant. Results indicate that this procedure will have more extensive applications in the enriching or purification of the extremely weak acidic compounds with phenol hydroxyl group that are relatively stable in TMG n-hexane solution and that can be barely extracted from vegetable oil. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Light absorption of secondary organic aerosol: Composition and contribution of nitro-aromatic compounds

    EPA Science Inventory

    Secondary organic aerosol (SOA) might affect the atmospheric radiation balance through absorbing light at shorter visible and UV wavelengths. However, the composition and optical properties of light-absorbing SOA is poorly understood. In this work, SOA filter samples were collect...

  14. Direct DOC and nitrate determination in water using dual pathlength and second derivative UV spectrophotometry.

    PubMed

    Causse, Jean; Thomas, Olivier; Jung, Aude-Valérie; Thomas, Marie-Florence

    2017-01-01

    UV spectrophotometry is largely used for water and wastewater quality monitoring. The measurement/estimation of specific and aggregate parameters such as nitrate and dissolved organic carbon (DOC) is possible with UV spectra exploitation, from 2 to multi wavelengths calibration. However, if nitrate determination from UV absorbance is known, major optical interferences linked to the presence of suspended solids, colloids or dissolved organic matter limit the relevance of UV measurement for DOC assessment. A new method based on UV spectrophotometric measurement of raw samples (without filtration) coupling a dual pathlength for spectra acquisition and the second derivative exploitation of the signal is proposed in this work. The determination of nitrate concentration is carried out from the second derivative of the absorbance at 226 nm corresponding at the inflexion point of nitrate signal decrease. A short optical pathlength can be used considering the strong absorption of nitrate ion around 210 nm. For DOC concentration determination the second derivative absorbance at 295 nm is proposed after nitrate correction. Organic matter absorbing slightly in the 270-330 nm window, a long optical pathlength must be selected in order to increase the sensitivity. The method was tested on several hundred of samples from small rivers of two agricultural watersheds located in Brittany, France, taken during dry and wet periods. The comparison between the proposed method and the standardised procedures for nitrate and DOC measurement gave a good adjustment for both parameters for ranges of 2-100 mg/L NO3 and 1-30 mg/L DOC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Bioaccumulation and biomagnification of ultraviolet absorbents in marine wildlife of the Pearl River Estuarine, South China Sea.

    PubMed

    Peng, Xianzhi; Fan, Yujuan; Jin, Jiabin; Xiong, Songsong; Liu, Jun; Tang, Caiming

    2017-06-01

    Bioaccumulation and trophic transfer in ecosystems is an important criterion for assessing environmental risks of contaminants. This study investigated bioaccumulation and biomagnification of 13 organic ultraviolet absorbents (UVAs) in marine wildlife organisms in the Pearl River Estuary, South China Sea. The UVAs could accumulate in the organisms with biota - sediment accumulation factors (BSAF) of 0.003-2.152. UV531 was the most abundant and showed the highest tendency to accumulate in the organisms with a median BSAF of 1.105. The UVAs demonstrated species - and compound-specific accumulation in the marine organism. Fishes showed significantly higher capability than the cephalopods and crustaceans in accumulation of the UVAs. Habitat did not demonstrate obvious impact on accumulation of the UVA. On the other hand, benzophenone-3, UV328, and UV234 showed significantly higher concentration in the detritus feeding fishes than carnivorous and planktivorous fishes, suggesting governing effect of dietary habits of the organisms on bioaccumulation of these UVAs. Direct uptake from growth media was a significant exposure pathway of the organisms to the UVAs. The estimated trophic magnification factors and biomagnification factors revealed that UV329, UV531, and octocrylene could potentially biomagnify in the marine food web. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254nm/H2O2.

    PubMed

    Abdelraheem, Wael H M; He, Xuexiang; Duan, Xiaodi; Dionysiou, Dionysios D

    2015-01-23

    Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254nm/H2O2 advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0mM [H2O2]0, a complete removal of 40.0μM parent PBSA and 25% decrease in TOC were achieved with 190min of UV irradiation; SO4(2-) was formed and reached its maximum level while the release of nitrogen as NH4(+) was much lower (around 50%) at 190min. Sulfate removal was strongly enhanced by increasing [H2O2]0 in the range of 0-4.0mM, with slight inhibition in 4.0-12.0mM. Faster and earlier ammonia formation was observed at higher [H2O2]0. The presence of Br(-) slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl(-). Our study provides important technical and fundamental results on the HO based degradation and mineralization of SO3H and N-containing UV absorber compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer

    NASA Astrophysics Data System (ADS)

    Lei, Huibin; He, Deliang; Guo, Yanni; Tang, Yining; Huang, Houqiang

    2018-06-01

    A series of UV-absorbing fluorine-silicone acrylic resin polymers containing different amount of UV-absorbent were successfully prepared by solution polymerization, with 2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate (BHEM), vinyltrimethoxysilane (VTMS) and hexafluorobutyl methacrylate (HFMA) as modifying monomers. The acrylic polymers and the coatings thereof were characterized by Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) absorption spectrum, thermogravimetric analysis (TGA), water contact angle (CA) and Xenon lamp artificial accelerated aging tests. Results indicated that the resin exhibited high UV absorption performance as well as good thermal stability. The hydrophobicity of the coatings was of great improvement because of the bonded fluorine and silicone. Meanwhile, the weather-resistance was promoted through preferably colligating the protective effects of BHEM, organic fluorine and silicone. Also, a fitting formula about the weatherability with the BMHE content was tentatively proposed.

  18. Production of Chromophoric Dissolved Organic Matter from Mangrove Leaf Litter and Floating Sargassum Colonies

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) strongly absorbs solar radiation in the blue-green and serves as the primary attenuator of water column ultraviolet radiation (UV-R). CDOM interferes with remote sensing of ocean chlorophyll and can control UV-R-induced damage to light...

  19. Water quality monitor for recovered spacecraft water

    NASA Technical Reports Server (NTRS)

    Ejzak, E. M.; Price, D. F.

    1985-01-01

    A total organic carbon (TOC) analysis system based on ultraviolet absorption is described. The equation for measuring the intensity of the absorbed radiation of the organic substances, which is based on the Lambert-Beer law, is given; the intensity of the absorption is proportional to the concentration of the solution. The operation of the UV-Absorption analyzer, which utilizes a split beam, two wvaelength method, is studied. The influences of the cell path length and specific compounds in the solution flowing through the cell on absorbances is discussed. The performance and response of the analyzer is evaluated; good correlation is observed between the absorption value and TOC. The advantage of the UV-Absorption as compared with the UV-Oxidation are examined.

  20. Acute dermal toxicity and sensitization studies of novel nano-enhanced UV absorbers.

    PubMed

    Piasecka-Zelga, Joanna; Zelga, Piotr; Górnicz, Magdalena; Strzelczyk, Paweł; Sójka-Ledakowicz, Jadwiga

    2015-01-01

    Many employees working outside are exposed to the harmful effects of UV radiation. A growing problem is also sensitization to textile materials and allergic reactions to active compounds. Groups of inorganic UV blockers with nanoparticles may provide superior properties over organic UV absorbers with relatively less potential of provoking dermatitis. To assess acute dermal irritation and sensitization of nano UV absorbers. Five UV absorbers with nano-sized particles (Z11, TiO2 - SiO2 [TDPK], TK44, TK11, A8G) and 2 vehicles (paste-based on 10% PEG, and dispersion with 1% HEC) were tested. Acute dermal irritation was tested using group of 3 rabbits for each absorber. The sensitization study was carried out on groups of 15 guinea pigs for each tested textile with a UV absorber showing an Ultraviolet Protection Factor (UPF)>40. This research was designed according to OECD Test Guideline No. 404 and 406, and 21 rabbits and 60 guinea pigs were used in the study. In acute dermal irritation, Z11 and A8G modifiers and the analyzed paste gave results of 0.047 to 0.33 which classifies them as barely perceptible irritants, whereas the other analyzed modifiers and dispersion gave results of 0.00 and were classified as nonirritating. Only the textile with TK 11 did not have UPF>40. The analyzed barrier materials were classified as nonsenitizers (TDPK, A8G) or mild sensitizers (TK44, Z11). None of the analyzed materials or modifiers induced major skin reactions in animals. Therefore, they present low risk of provoking skin reactions in humans.

  1. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon

    USGS Publications Warehouse

    Weishaar, J.L.; Aiken, George R.; Bergamaschi, Brian A.; Fram, Miranda S.; Fujii, Roger; Mopper, K.

    2003-01-01

    Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems. Experiments involving the reactivity of DOC with chlorine and tetramethylammonium hydroxide (TMAH), however, show a wide range of reactivity for samples with similar SUVA values. These results indicate that, while SUVA measurements are good predictors of general chemical characteristics of DOC, they do not provide information about reactivity of DOC derived from different types of source materials. Sample pH, nitrate, and iron were found to influence SUVA measurements.

  2. Natural organic matters removal efficiency by coagulation

    NASA Astrophysics Data System (ADS)

    Sapingi, Mohd Sharizal Mohd; Pishal, Munirah; Murshed, Mohamad Fared

    2017-10-01

    The presence of Natural Organic Matter (NOM) in surface water results in unwanted characteristics in terms of color, odor, and taste. NOM content reaction with free chlorine in treated water lowers the water quality further. Chlorine is added for disinfection and produces undesirable disinfection by-products (DPBs). DBPs in drinking water are carcinogenic to consumers and may promote cancerous cell development in the human body. This study was performed to compare the coagulant efficiency of aluminum sulfate (Alum) and ferric chloride (FeCl3) on NOM removal (as in UV254 absorbance) and turbidity removal under three pH conditions (pH 6, pH 7, and sample actual pH). The three sampling points for these studies were Jalan Baru River, Kerian River, and Redac Pond. Additional sampling points, such as Lubuk Buntar and a tubewell located in the Civil Engineering School, were included to observe differences in characteristics. DOC, UV absorbance, and full wavelength were tested, after which samples treated with alum were also tested to further analyze the NOM content. Based on UV254 absorbance and DOC data, specific UV value was calculated to obtain vital synopsis of the characteristics of NOM content, as well as coagulation efficiency.

  3. Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell.

    PubMed

    Iskander, Syeed Md; Novak, John T; Brazil, Brian; He, Zhen

    2017-11-01

    The presence of UV quenching compounds in landfill leachate can negatively affect UV disinfection in a wastewater treatment plant when leachate is co-treated. Herein, a microbial fuel cell (MFC) was investigated to remove UV quenchers from a landfill leachate with simultaneous bioelectricity generation. The key operating parameters including hydraulic retention time (HRT), anolyte recirculation rate, and external resistance were systematically studied to maximize energy recovery and UV absorbance reduction. It was found that nearly 50% UV absorbance was reduced under a condition of HRT 40 days, continuous anolyte recirculation, and 10 Ω external resistance. Further analysis showed a total reduction of organics by 75.3%, including the reduction of humic acids, fulvic acids, and hydrophilic fraction concentration as TOC. The MFC consumed 0.056 kWh m -3 by its pump system for recirculation and oxygen supply. A reduced HRT of 20 days with periodical anode recirculation (1 hour in every 24 hours) and 39 Ω external resistance (equal to the internal resistance of the MFC) resulted in the highest net energy of 0.123 kWh m -3 . Granular activated carbon (GAC) was used as an effective post-treatment step and could achieve 89.1% UV absorbance reduction with 40 g L -1 . The combined MFC and GAC treatment could reduce 92.9% of the UV absorbance and remove 89.7% of the UV quenchers. The results of this study would encourage further exploration of using MFCs as an energy-efficient method for removing UV quenchers from landfill leachate.

  4. Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation.

    PubMed

    Jung, Chanil; Deng, Yang; Zhao, Renzun; Torrens, Kevin

    2017-01-01

    UV-quenching substance (UVQS), as an emerging municipal solid waste (MSW)-derived leachate contaminant, has a potential to interfere with UV disinfection when leachate is disposed of at publicly owned treatment works (POTWs). The objective of this study was to evaluate and compare two chemical oxidation processes under different operational conditions, i.e. Fenton process and ozonation, for alleviation of UV 254 absorbance of a biologically pre-treated landfill leachate. Results showed that leachate UV 254 absorbance was reduced due to the UVQS decomposition by hydroxyl radicals (·OH) during Fenton treatment, or by ozone (O 3 ) and ·OH during ozonation. Fenton process exhibited a better treatment performance than ozonation under their respective optimal conditions, because ·OH could effectively decompose both hydrophobic and hydrophilic dissolved organic matter (DOM), but O 3 tended to selectively oxidize hydrophobic compounds alone. Different analytical techniques, including molecular weight (MW) fractionation, hydrophobic/hydrophilic isolation, UV spectra scanning, parallel factor (PARAFAC) analysis, and fluorescence excitation-emission matrix spectrophotometry, were used to characterize UVQS. After either oxidation treatment, residual UVQS was more hydrophilic with a higher fraction of low MW molecules. It should be noted that the removed UV 254 absorbance (ΔUV 254 ) was directly proportional to the removed COD (ΔCOD) for the both treatments (Fenton process: ΔUV 254  = 0.011ΔCOD; ozonation: ΔUV 254  = 0.016ΔCOD). A greater ΔUV 254 /ΔCOD was observed for ozonation, suggesting that oxidant was more efficiently utilized during ozonation than in Fenton treatment for mitigation of the UV absorbance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Temporal-spatial variation of DOC concentration, UV absorbance and the flux estimation in the Lower Dagu River, China

    NASA Astrophysics Data System (ADS)

    Xi, Min; Kong, Fanlong; Li, Yue; Kong, Fanting

    2017-12-01

    Dissolved organic carbon (DOC) is an important component for both carbon cycle and energy balance. The concentration, UV absorbance, and export flux of DOC in the natural environment dominate many important transport processes. To better understand the temporal and spatial variation of DOC, 7 sites along the Lower Dagu River were chosen to conduct a comprehensive measurement from March 2013 to February 2014. Specifically, water samples were collected from the Lower Dagu River between the 26th and 29th of every month during the experimental period. The DOC concentration (CDOC) and UV absorbance were analyzed using a total organic carbon analyzer and the ultraviolet-visible absorption spectrum, and the DOC export flux was estimated with a simple empirical model. The results showed that the CDOC of the Lower Dagu River varied from 1.32 to 12.56 mg/L, consistent with global rivers. The CDOC and UV absorbance showed significant spatial variation in the Dagu River during the experiential period because of the upstream natural processes and human activities in the watershed. The spatial variation is mainly due to dam or reservoir constructions, riverside ecological environment changes, and non-point source or wastewater discharge. The seasonal variation of CDOC was mainly related to the source of water DOC, river runoff, and temperature, and the UV absorbance and humification degree of DOC had no obvious differences among months ( P<0.05). UV absorbance was applied to test the CDOC in Lower Dagu River using wave lengths of 254 and 280 nm. The results revealed that the annual DOC export flux varied from 1.6 to 3.76 × 105 g C/km2/yr in a complete hydrological year, significantly lower than the global average. It is worth mentioning that the DOC export flux was mainly concentrated in summer (˜90% of all-year flux in July and August), since the runoff in the Dagu River took place frequently in summer. These observations implied environment change could bring the temporal-spatial variation of DOC and the exports, which would further affect the land-ocean interactions in the Lower Dagu River and the global carbon cycle.

  6. Abundance, size distributions and trace-element binding of organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field-flow fractionation and ICP-MS

    NASA Astrophysics Data System (ADS)

    Stolpe, Björn; Guo, Laodong; Shiller, Alan M.; Aiken, George R.

    2013-03-01

    Water samples were collected from six small rivers in the Yukon River basin in central Alaska to examine the role of colloids and organic matter in the transport of trace elements in Northern high latitude watersheds influenced by permafrost. Concentrations of dissolved organic carbon (DOC), selected elements (Al, Si, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Ba, Pb, U), and UV-absorbance spectra were measured in 0.45 μm filtered samples. 'Nanocolloidal size distributions' (0.5-40 nm, hydrodynamic diameter) of humic-type and chromophoric dissolved organic matter (CDOM), Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb were determined by on-line coupling of flow field-flow fractionation (FFF) to detectors including UV-absorbance, fluorescence, and ICP-MS. Total dissolved and nanocolloidal concentrations of the elements varied considerably between the rivers and between spring flood and late summer base flow. Data on specific UV-absorbance (SUVA), spectral slopes, and the nanocolloidal fraction of the UV-absorbance indicated a decrease in aromaticity and size of CDOM from spring flood to late summer. The nanocolloidal size distributions indicated the presence of different 'components' of nanocolloids. 'Fulvic-rich nanocolloids' had a hydrodynamic diameter of 0.5-3 nm throughout the sampling season; 'organic/iron-rich nanocolloids' occurred in the <8 nm size range during the spring flood; whereas 'iron-rich nanocolloids' formed a discrete 4-40 nm components during summer base flow. Mn, Co, Ni, Cu and Zn were distributed between the nanocolloid components depending on the stability constant of the metal (+II)-organic complexes, while stronger association of Cr to the iron-rich nanocolloids was attributed to the higher oxidation states of Cr (+III or +IV). Changes in total dissolved element concentrations, size and composition of CDOM, and occurrence and size of organic/iron and iron-rich nanocolloids were related to variations in their sources from either the upper organic-rich soil or the deeper mineral layer, depending on seasonal variations in hydrological flow patterns and permafrost dynamics.

  7. Solution-processed nanoparticle super-float-gated organic field-effect transistor as un-cooled ultraviolet and infrared photon counter.

    PubMed

    Yuan, Yongbo; Dong, Qingfeng; Yang, Bin; Guo, Fawen; Zhang, Qi; Han, Ming; Huang, Jinsong

    2013-01-01

    High sensitivity photodetectors in ultraviolet (UV) and infrared (IR) range have broad civilian and military applications. Here we report on an un-cooled solution-processed UV-IR photon counter based on modified organic field-effect transistors. This type of UV detectors have light absorbing zinc oxide nanoparticles (NPs) sandwiched between two gate dielectric layers as a floating gate. The photon-generated charges on the floating gate cause high resistance regions in the transistor channel and tune the source-drain output current. This "super-float-gating" mechanism enables very high sensitivity photodetectors with a minimum detectable ultraviolet light intensity of 2.6 photons/μm(2)s at room temperature as well as photon counting capability. Based on same mechansim, infrared photodetectors with lead sulfide NPs as light absorbing materials have also been demonstrated.

  8. Corrosion Finishing/Coating Systems for DoD Metallic Substrates Based on Non-Chromate Inhibitors and UV Curable, Zero VOC Materials

    DTIC Science & Technology

    2010-08-01

    Corrosion resistant coatings containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications...Transmission Electron Microscopy TRI – Toxic Release Inventory UV – Ultraviolet UVAs – Ultraviolet Absorbers VOCs – Volatile Organic Compounds XPS – X...containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications. The technical effort

  9. Ultraviolet absorbance as a proxy for total dissolved mercury in streams

    USGS Publications Warehouse

    Dittman, J.A.; Shanley, J.B.; Driscoll, C.T.; Aiken, G.R.; Chalmers, A.T.; Towse, J.E.

    2009-01-01

    Stream water samples were collected over a range of hydrologic and seasonal conditions at three forested watersheds in the northeastern USA. Samples were analyzed for dissolved total mercury (THgd), DOC concentration and DOC composition, and UV254 absorbance across the three sites over different seasons and flow conditions. Pooling data from all sites, we found a strong positive correlation of THgd to DOC (r2 = 0.87), but progressively stronger correlations of THgd with the hydrophobic acid fraction (HPOA) of DOC (r2 = 0.91) and with UV254 absorbance (r2 = 0.92). The strength of the UV254 absorbance-THgd relationship suggests that optical properties associated with dissolved organic matter may be excellent proxies for THgd concentration in these streams. Ease of sample collection and analysis, the potential application of in-situ optical sensors, and the possibility for intensive monitoring over the hydrograph make this an effective, inexpensive approach to estimate THgd flux in drainage waters. ?? 2009 Elsevier Ltd.

  10. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  11. Characterization of Natural Organic Matter by FeCl3 Coagulation

    NASA Astrophysics Data System (ADS)

    Cahyonugroho, O. H.; Hidayah, E. N.

    2018-01-01

    Natural organic matter (NOM) is heterogenous mixture of organic compounds that enter the water from various decomposition and metabolic reactions, including animal, plant, domestic and industrial wastes. NOM refers to group of carbon-based compounds that are found in surface water and ground water. The aim of the study is to assess organic matter characteristics in Jagir River as drinking water source and to characterize the organic components that could be removed during coagulation. Coagulation is the common water treatment process can be used to remove NOM with FeCl3 coagulant in various dosage. NOM surrogates, including total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV254) and specific UV absorbance (SUVA) were chosen to assess the organic removal. Results of jar test experiments showed that NOM can be removed about 40% of NOM surrogates with 200 mg/L FeCl3. About 60% removal of total organic fraction, which is mainly humic substances, as detected by size exclusion chromatography (SEC).

  12. Ozone-induced changes in natural organic matter (NOM) structure

    USGS Publications Warehouse

    Westerhoff, P.; Debroux, J.; Aiken, G.; Amy, G.

    1999-01-01

    Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US fiver systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US river systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.

  13. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.

    PubMed

    Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min

    2016-04-15

    Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Liposomogenic UV Absorbers are Water-Resistant on Pig Skin-A Model Study With Relevance for Sunscreens.

    PubMed

    Herzog, Bernd; Hüglin, Dietmar; Luther, Helmut

    2017-02-01

    An important property of sunscreens is their water resistance after the application on human skin. In this work, the hypothesis that UV absorber molecules which are able to form liposomes, so-called liposomogenic UV absorbers, show better water resistance on a pig skin model than UV-absorbing molecules lacking this ability was tested. The assumption behind is that molecules which can form liposomes are able to integrate into the stratum corneum lipids of the skin. Three different liposomogenic UV absorbers were synthesized and their behavior investigated, leading to the confirmation of the hypothesis. With one of the liposomogenic UV absorbers, it was possible to show the integration of the UV absorber molecules into the bilayers of another liposome consisting of phosphatidylcholine, supporting the assumption that liposomogenic UV absorbers exhibit improved water resistance because they integrate into the skin lipids. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. UV-absorbing bacteria in coral mucus and their response to simulated temperature elevations

    NASA Astrophysics Data System (ADS)

    Ravindran, J.; Kannapiran, E.; Manikandan, B.; Francis, K.; Arora, Shruti; Karunya, E.; Kumar, Amit; Singh, S. K.; Jose, Jiya

    2013-12-01

    Reef-building corals encompass various strategies to defend against harmful ultraviolet (UV) radiation. Coral mucus contains UV-absorbing compounds and has rich prokaryotic diversity associated with it. In this study, we isolated and characterized the UV-absorbing bacteria from the mucus of the corals Porites lutea and Acropora hyacinthus during the pre-summer and summer seasons. A total of 17 UV-absorbing bacteria were isolated and sequenced. The UV-absorbing bacteria showed UV absorption at wavelengths ranging from λ max = 333 nm to λ min = 208 nm. Analysis of the DNA sequences revealed that the majority of the UV-absorbing bacteria belonged to the family Firmicutes and the remaining belonged to the family Proteobacteria (class Gammaproteobacteria). Comparison of the sequences with the curated database yielded four distinct bacterial groups belonging to the genus Bacillus, Staphylococcus, Salinicoccus and Vibrio. The absorption peaks for the UV-absorbing bacteria shifted to the UV-A range (320-400 nm) when they were incubated at higher temperatures. Deciphering the complex relationship between corals and their associated bacteria will help us to understand their adaptive strategies to various stresses.

  16. Evaluation of disinfection by-product formation during chlor(am)ination from algal organic matter after UV irradiation.

    PubMed

    Chen, Shi; Deng, Jing; Li, Lei; Gao, Naiyun

    2018-02-01

    This study evaluated the effect of low-pressure ultraviolet (UV) irradiation on the formation of disinfection by-products (DBPs) from algal organic matter of Microcystis aeruginosa during subsequent chlorination and chloramination. The algal organic matter includes extracellular organic matter (EOM) and intracellular organic matter (IOM). The fluorescence excitation-emission matrix spectra indicated that the humic/fulvic acid-like organics of EOM and the protein-like organics of IOM may be preferentially degraded by UV treatment. UV irradiation with low specific UV absorbance values was effective in reducing the formation of trihalomethanes and dichloroacetic acid from EOM and IOM during the subsequent chlorination. During the UV-chloramine process, higher UV dose (1000 mJ/cm 2 ) led to the decrease of the formation of dichloroacetic acid, trichloroacetic acid, and haloketones from IOM by an average of 24%. Furthermore, UV irradiation can slightly increase the bromine substitution factors (BSFs) of haloacetic acids from EOM during chlorination, including dihaloacetic acids and trihaloacetic acids in the presence of bromide (50 μg/L). However, UV irradiation did not shift the formation of DBPs from IOM to more brominated species, since the BSFs of trihalomethanes, dihaloacetic acids, trihaloacetic acids, and dihaloacetonitriles almost kept unchanged during UV-chlorine process. As for UV-chloramine process, UV irradiation decreased the BSFs of trihalomethanes, while increased the BSFs of dihaloacetic acid for both EOM and IOM. Overall, the UV pretreatment process is a potential technology in treating algae-rich water.

  17. Structural, energetic, and UV-Vis spectral analysis of UVA filter 4-tert-butyl-4'-methoxydibenzoylmethane.

    PubMed

    Pinto da Silva, Luís; Ferreira, Paulo J O; Duarte, Darío J R; Miranda, Margarida S; Esteves da Silva, Joaquim C G

    2014-02-27

    The growing awareness of the harmful effects of ultraviolet (UV) solar radiation has increased the production and consumption of sunscreen products, which contain organic and inorganic molecules named UV filters that absorb, reflect, or scatter UV radiation, thus minimizing negative human health effects. 4-tert-Butyl-4'-methoxydibenzoylmethane (BMDBM) is one of the few organic UVA filters and the most commonly used. BMDBM exists in sunscreens in the enol form which absorbs strongly in the UVA range. However, under sunlight irradiation tautomerization occurs to the keto form, resulting in the loss of UV protection. In this study we have performed quantum chemical calculations to study the excited-state molecular structure and excitation spectra of the enol and keto tautomers of BMDBM. This knowledge is of the utmost importance as the starting point for studies aiming at the understanding of its activity when applied on human skin and also its fate once released into the aquatic environment. The efficiency of excitation transitions was rationalized based on the concept of molecular orbital superposition. The loss of UV protection was attributed to the enol → keto phototautomerism and subsequent photodegradation. Although this process is not energetically favorable in the singlet bright state, photodegradation is possible because of intersystem crossing to the first two triplet states.

  18. Syntheses, structures and photoelectrochemical properties of three water-stable, visible light absorbing mental-organic frameworks based on tetrakis(4-carboxyphenyl)silane and 1,4-bis(pyridyl)benzene mixed ligands

    NASA Astrophysics Data System (ADS)

    Guo, Tiantian; Yang, Xiaowei; Li, Ruyan; Liu, Xiaoyu; Gao, Yanling; Dai, Zhihui; Fang, Min; Liu, Hong-Ke; Wu, Yong

    2017-09-01

    Photovoltaics (PV), which directly convert solar energy into electricity generally using semiconductors, offer a practical and sustainable solution to the current energy shortage and environmental pollution crisis. Photovoltaic applications of metal-organic frameworks (MOFs) belong to a relatively new area of research. Given that UV light accounts for only 4% while visible light contributes 43% of solar energy, it is rather imperative to develop semiconductors with narrow band gaps so that they could absorb visible light. In this work, three water-stable, narrow band semiconducting MOFs of [Cu(H2TCS)(H2O)] (1), [Co(H2TCS)(BPB)] (2) and [Ni(H2TCS)(BPB)] (3) were synthesized using tetrakis(4-carboxyphenyl)silane (H4TCS) and 1,4-bis (pyridyl)benzene (BPB) in water, and structurally characterized by single-crystal X-ray diffractions. MOF 1 has a 2D structure. MOF 2 and 3 are isostructrual and have 3D frameworks formed by interwoven 2D layers. All three MOFs are stable in acidic water solutions and can be stable in water for 7 days. MOFs 1-3 absorb UV and visible light and have band gaps of 0.50, 1.77 and 1.49 eV, respectively. Rapid and stable photocurrent responses of MOFs 1-3 under UV and visible light illuminations are observed. This work demonstrates that using electron rich Cu2+, Co2+, or Ni2+ as metal nodes can effectively decrease the band gaps of MOFs to make them absorbing visible light. To increase the conjugation in the linker is generally considered to be the method to decrease the band gap of MOFs. The conjugation in H4TCS is not significant and this ligand basically only absorbs UV light. However, by using electron rich Cu2+ ions as metal nodes, the prepared [Cu(H2TCS)(H2O)]·H2O (1) absorbs broadly in the visible light region. Thus, this work suggests that by using electron rich Cu2+, many narrow-band semiconductor MOFs can be prepared even by using ligands which only absorbs UV light.

  19. Compositional Characteristics of Dissolved Organic Matter released from the sediment of Han river in Korea.

    NASA Astrophysics Data System (ADS)

    Oh, H.; Choi, J. H.

    2017-12-01

    The dissolved organic matter (DOM) has variable characteristics depending on the sources. The DOM of a river is affected by rain water, windborne material, surface and groundwater flow, and sediments. In particular, sediments are sources and sinks of nutrients and pollutants in aquatic ecosystems by supplying large amounts of organic matter. The DOM which absorbs ultraviolet and visible light is called colored dissolved organic matter (CDOM). CDOM is responsible for the optical properties of natural waters in several biogeochemical and photochemical processes and absorbs UV-A (315-400 nm) and UV-B (280-315), which are harmful to aquatic ecosystems (Helms et al., 2008). In this study, we investigated the quantity and quality of DOM and CDOM released from the sediments of Han river which was impacted by anthropogenic activities and hydrologic alternation of 4 Major River Restoration Project. The target area of this study is Gangchenbo (GC), Yeojubo (YJ), and Ipobo(IP) of the Han River, Korea. Sediments and water samples were taken on July and August of 2016 and were incubated at 20° up to 7 days. Absorbance was measured with UV-visible spectrophotometer (Libra S32 PC, Biochrom). Fluorescence intensity determined with Fluorescence EEMs (F-7000, Hitachi). Absorbance and fluorescence intensity were used to calculate Specific Ultraviolet Absorbance (SUVA254), Humification index (HIX), Biological index (BIX), Spectral slope (SR) and component analysis. The DOC concentration increased after 3 days of incubation. According to the SUVA254 analysis, the microbial activity is highest in the initial overlying water of IP. HIX have range of 1.35-4.08, and decrease poly aromatic structures of organic matter during incubation. From the results of the BIX, autochthonous organic matter was released from the sediments. In all sites, Humic-like DOM, Microbial humic-like DOM and Protein-like DOM increased significantly between Day 0 and 3(except Humic-like, Microbial humic-like DOM in IP). Spectral slope ratio of all sites increased according to incubation, which means that the amount of CDOM increased from the sediment to overlying water.

  20. Ozonation of the oxybenzone, octinoxate, and octocrylene UV-filters: Reaction kinetics, absorbance characteristics, and transformation products.

    PubMed

    Hopkins, Zachary R; Snowberger, Sebastian; Blaney, Lee

    2017-09-15

    UV-filters (UVFs) are active ingredients in personal care products that protect skin from exposure to UV light. Environmentally-relevant concentrations of UVFs have recently been linked to toxicity in aquatic organisms, necessitating research into improved UVF removal in water/wastewater treatment. Here, we investigated ozonation of the three most commonly employed UVFs: octinoxate (OMC), octocrylene (OC), and oxybenzone (OXY). Specific second-order rate constants for UVF reaction with ozone were identified as follows: OMC, 5.25×10 4 M -1 s -1 ; OC, 1.58M -1 s -1 ; OXY (neutral), 3.80×10 2 M -1 s -1 ; and, OXY (anion), 1.51×10 6 M -1 s -1 . These kinetic parameters indicated that OMC and OXY undergo significant (2-log or greater) transformation for typical ozone exposures in disinfection processes; however, minimal oxidation is expected for OC. UV absorbance mapping was employed to characterize the loss of UVF activity (i.e., absorbance across the UV-A, UV-B, and UV-C ranges) during ozonation. These 4-dimensional maps also confirmed ozone attack mechanisms, namely reaction at phenolate (OXY) and olefin (OMC, OC) groups. Primary transformation products from these reactions were identified for all three UVFs of concern. For OC and OXY, the benzophenone structure is conserved, suggesting that transformation products retain toxicity concerns. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preparation of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene

    NASA Astrophysics Data System (ADS)

    Li, Dianqing; Tuo, Zhenjun; Evans, David G.; Duan, Xue

    2006-10-01

    An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3-LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability.

  2. UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation.

    PubMed

    Peacock, Mike; Evans, Chris D; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Jones, Timothy G; Lebron, Inma

    2014-05-01

    Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.

  3. The Relationship Between Dissolved Organic Matter Composition and Organic Matter Optical Properties in Freshwaters

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Spencer, R. G.; Butler, K.

    2010-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful, albeit, underutilized, indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with resource management. Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals (e.g. Hg). In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of multi-year studies designed to assess the seasonal and spatial variability of DOM quantity and quality for 57 North American Rivers. DOM concentrations and composition, based on DOM fractionation on XAD resins, ultraviolet (UV)/visible absorption and fluorescence spectroscopic analyses, and specific compound analyses, varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration (<80 to >4000 µM C* L-1) and specific ultra-violet absorbance at 254 nm (SUVA254) (0.6 to 5 L *mg C-1 *m-1), an optical measurement that is an indicator of aromatic carbon content. In almost all systems, UV absorbance measured at specific wavelengths (e.g. 254 nm) correlated strongly with DOM and hydrophobic organic acid (HPOA) content (aquatic humic substances). The relationships between dissolved organic carbon (DOC) concentration and absorbance for the range of systems were quite variable due to variation in the fraction of non-chromophoric DOM. However, the relationship between HPOA content and UV absorbance was stronger and more consistent because the HPOA fraction contains a greater percentage of UV absorbing compounds than other fractions of the DOM. These results demonstrate that optical properties, such as UV absorbance, are excellent proxies for DOC and HPOA concentrations within a given system. For a limited set of samples, we observed that optical measurements were strongly correlated with lignin phenols, a biomarker indicative of higher plant sources of DOM, and with Hg, which interacts strongly with DOM. Optical measurements are relatively inexpensive to obtain, provide critical information related to DOM composition and reactivity, and can be measured in situ. When combined with discharge data, optical measurements allow estimation of both DOM flux and reactivity in streams and rivers. The link between the nature and reactivity of DOM and its optical properties can be exploited to provide powerful monitoring tools to assess the impacts of climate change and management practices on overall water quality, on DOM transport and transformation, and on the transport of other chemical constituents of interest.

  4. Phototransformation of dissolved organic carbon within mercury sensitive lakes in Kejimkujik National Park, Nova Scotia, Canada

    NASA Astrophysics Data System (ADS)

    Klapstein, S.; O'Driscoll, N.; Risk, D. A.; Ziegler, S. E.

    2013-12-01

    Methyl mercury bioaccumulation is an issue for aquatic and terrestrial wildlife in high dissolved organic matter (DOM) lake systems of Kejimkujik National Park, Nova Scotia. While many studies have focused on mercury methylation processes, few have examined mercury photodemethylation rates and how these rates may vary temporally and with DOM quality. To gain understanding of lake photodemethylation processes we must first determine the effect of radiation on chromophoric DOM (CDOM). The goal of this study was to quantify changes in DOM concentration and quality (i.e. chromophoric properties) with ultraviolet (UV) radiation exposure and seasonal changes in UV attenuation. Six lakes were sampled for irradiation experiments three times during the summer of 2013. Floating equipment was installed in two lakes to continuously monitor UV, photosynthetically active radiation (PAR), and temperature at three depths in the lake water columns. Lake water was filtered and continuously irradiated in a Luzchem photoreactor using 47 W/m2 UVA radiation for 24 hours. Subsamples were analyzed at 0, 4, 8, 12, 16, 20, and 24 hours for absorbance, fluorescence, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) concentrations. Several phototransformation indicators were used in this study, including: loss of absorbance at 350 nm, changes in absorption ratios a254:a350, spectral slopes S275-295 and S350-400, and these spectral slopes ratio (S275-295:S350-400; SR) to characterize CDOM optical properties of the molecules. With the exception of one lake, lower initial concentrations of DOC yielded greater losses of absorbance at 350 nm throughout the experiments. This trend suggests that lower C lakes are more susceptible to undergo rapid changes in DOM optical properties. Across all lakes absorbance losses at 350 nm ranged from 18-33% after 24 hours. All other phototransformation indices increased significantly with irradiation in all but one lake suggesting a decrease in high molecular weight relative to low molecular weight CDOM with UV exposure. Ongoing research will investigate the seasonality of UV attenuation and DOM photolability and link these properties with photodemethylation rates in Kejimkujik lakes.

  5. Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates.

    PubMed

    Anumol, Tarun; Sgroi, Massimiliano; Park, Minkyu; Roccaro, Paolo; Snyder, Shane A

    2015-06-01

    This study investigated the applicability of bulk organic parameters like dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), and total fluorescence (TF) to act as surrogates in predicting trace organic compound (TOrC) removal by granular activated carbon in water reuse applications. Using rapid small-scale column testing, empirical linear correlations for thirteen TOrCs were determined with DOC, UV254, and TF in four wastewater effluents. Linear correlations (R(2) > 0.7) were obtained for eight TOrCs in each water quality in the UV254 model, while ten TOrCs had R(2) > 0.7 in the TF model. Conversely, DOC was shown to be a poor surrogate for TOrC breakthrough prediction. When the data from all four water qualities was combined, good linear correlations were still obtained with TF having higher R(2) than UV254 especially for TOrCs with log Dow>1. Excellent linear relationship (R(2) > 0.9) between log Dow and the removal of TOrC at 0% surrogate removal (y-intercept) were obtained for the five neutral TOrCs tested in this study. Positively charged TOrCs had enhanced removals due to electrostatic interactions with negatively charged GAC that caused them to deviate from removals that would be expected with their log Dow. Application of the empirical linear correlation models to full-scale samples provided good results for six of seven TOrCs (except meprobamate) tested when comparing predicted TOrC removal by UV254 and TF with actual removals for GAC in all the five samples tested. Surrogate predictions using UV254 and TF provide valuable tools for rapid or on-line monitoring of GAC performance and can result in cost savings by extended GAC run times as compared to using DOC breakthrough to trigger regeneration or replacement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Ultraviolet-induced responses in two species of climax tropical marine macrophytes.

    PubMed

    Detrés, Y; Armstrong, R A; Connelly, X M

    2001-09-01

    In tropical regions nominal reductions in stratospheric ozone could be detrimental to marine organisms that live near their upper tolerance levels of ultraviolet (UV) radiation and temperature. Well-known plant responses to UV include inhibition of photosynthesis, reductions in chlorophyll content, morphological changes and production of UV absorbing compounds such as flavonoids. An assessment of the effects and responses of two tropical marine macrophytes to full solar radiation and solar radiation depleted of UV were conducted in southwestern Puerto Rico. Changes in concentration of photosynthetic and photoprotective pigments, and in leaf optical properties of the red mangrove Rhizophora mangle and the seagrass Thalassia testudinum, were evaluated in field exclusion experiments. Rhizophora mangle exposed to full solar radiation showed lower leaf reflectance and a shift of 5 nm in the inflection point of the red edge. Thalassia testudinum samples excluded from UV had significant increases in total chlorophyll and carotenoid concentrations. These marine macrophytes showed increments in their concentration of UV-B absorbing compounds with exposure to UV radiation. Results indicate that even minor increases in UV radiation at low latitudes could have significant effects on the pigment composition of these climax species.

  7. The role of a generalized ultraviolet cue for blackbird food selection.

    PubMed

    Werner, Scott J; Tupper, Shelagh K; Carlson, James C; Pettit, Susan E; Ellis, Jeremy W; Linz, George M

    2012-07-16

    Birds utilize ultraviolet (UV) wavelengths for plumage signaling and sexual selection. Ultraviolet cues may also be used for the process of avian food selection. The aim of our study was to investigate whether a UV cue and a postingestive repellent can be used to condition food avoidance in red-winged blackbirds (Agelaius phoeniceus). We found that birds conditioned with an UV-absorbent, postingestive repellent subsequently avoided UV-absorbent food. Thus, the UV-absorbent cue (coupled with 0-20% of the conditioned repellent concentration) was used to maintain avoidance for up to 18 days post-conditioning. Similarly, birds conditioned with the UV-absorbent, postingestive repellent subsequently avoided UV-reflective food. Thus, conditioned avoidance of an UV-absorbent cue can be generalized to an unconditioned, UV-reflective cue for nutrient selection and toxin avoidance. These findings support the hypothesized function of UV vision for avian food selection, the implications of which remain to be explored for the sensory and behavioral ecology within agronomic and natural environments. Published by Elsevier Inc.

  8. Ultraviolet spectrophotometry as an index parameter for estimating the biochemical oxygen demand of domestic wastewater.

    PubMed

    Nataraja, M; Qin, Y; Seagren, E A

    2006-07-01

    The relationship between ultraviolet absorbance at 280 nm (UV280) and the 5-day Biochemical Oxygen Demand (BOD5) test was evaluated using wastewater samples collected during March - December 1998 from the Fort Meade wastewater treatment plant (Maryland, U.S.A.). Three types of samples were collected: raw influent wastewater, primary effluent, and the effluent from the nitrification settling basin. A regression of BOD5 on UV280 was obtained using half of the data, with the other half of the data used to test application of the equation. The presence of NO3 and NO2, did not interfere with the BOD5/UV relationship. However, the relative fraction of organic compounds that absorb at UV280 and are biodegradable did appear to decrease across the treatment plant, thereby reducing the strength of the association between BOD5 and UV280 further along the treatment train. Interestingly, the exclusion of solids > 1 microm from the BOD5 test did not strengthen the association between BOD5 and UV280. These results suggest that simple UV absorbance measurements may be a useful analytical tool for wastewater treatment personnel, allowing them to quickly monitor for changes in the BOD5 during the treatment process and to quickly estimate the BOD5 when determining what dilutions to use in the standard BOD5 test. However, such relationships are likely to be wastewater and treatment plant specific and variable with time and treatment.

  9. A novel catalytic ceramic membrane fabricated with CuMn2O4 particles for emerging UV absorbers degradation from aqueous and membrane fouling elimination.

    PubMed

    Guo, Yang; Song, Zilong; Xu, Bingbing; Li, Yanning; Qi, Fei; Croue, Jean-Philippe; Yuan, Donghai

    2018-02-15

    A novel catalytic ceramic membrane (CM) for improving ozonation and filtration performance was fabricated by surface coating CuMn 2 O 4 particles on a tubular CM. The degradation of ultraviolet (UV) absorbers, reduction of toxicity, elimination of membrane fouling and catalytic mechanism were investigated. The characterization results suggested the particles were well-fixed on membrane surface. The modified membrane showed improved benzophenone-3 removal performance (from 28% to 34%), detoxification (EC 50 as 12.77%) and the stability of catalytic activity. In the degradation performance of model UV absorbers, the developed membrane significantly decreased the UV254 and DOC values in effluent. Compared with a virgin CM, this CM ozonation increased water flux as 29.9% by in-situ degrade effluent organic matters. The CuMn 2 O 4 modified membrane enhanced the ozone self-decompose to generate O 2 - and initiated the chain reaction of ozone decomposition, and subsequently reacted with molecule ozone to produce OH. Additionally, CM was able to promote the interaction between ozone and catalyst/organic chemicals to form H 2 O 2 that promoted the formation of OH. This catalytic ceramic membrane combining with ozonation showed potential applications in emerging pollutant degradation and membrane fouling elimination, and acted as a novel ternary technology for wastewater treatment and water reuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Preparation and characterization of functional poly(vinylidene fluoride) (PVDF) membranes with ultraviolet-absorbing property

    NASA Astrophysics Data System (ADS)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Lin, Changhong; Zhou, Yan; Yang, Yuming

    2018-06-01

    We first reported a strategy to prepare functional poly(vinylidene fluoride) (PVDF) membranes with excellent ultraviolet-absorbing property through chemically induced grafting. Herein, the polymerizable ultraviolet (UV) absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) made by ourselves was grafted onto the PVDF chains that have been pretreated with tetraethylammonium hydroxide (TEAH) alkaline solution. Moreover, the effect of experiment conditions such as the alkali and monomer concentrations, alkali treatment time on the UV-absorbing property of the obtained PVDF-g-PBPMA membranes were studied in detail. The chemical structure of the modified membranes was confirmed by 1H NMR, FT-IR and XPS measurements. Meanwhile, the thermal and UV-absorbing properties were characterized by TGA, DSC and UV-Vis spectrophotometer, respectively. The results indicated that BPMA side chains were successfully introduced onto PVDF backbones. Most importantly, the obtained PVDF-g-PBPMA membranes exhibited excellent UV-absorbing property. The transmittance of UV light at 300 nm decreased to as low as 0.02% and the UV light below 388 nm could be completely absorbed by the PVDF-g-PBPMA membrane made under optimal condition.

  11. CUVE - Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Aslam, S.; D'Aversa, E.; Glaze, L.; Gorius, N.; Hewagama, T.; Ignatiev, N.; Piccioni, G.

    2017-09-01

    Our Venus mission concept Cubesat UV Experiment (CUVE) is one of ten proposals selected for funding by the NASA PSDS3 Program - Planetary Science Deep Space SmallSat Studies. CUVE concept is to insert a CubeSat spacecraft into a Venusian orbit and perform remote sensing of the UV spectral region using a high spectral resolution point spectrometer to resolve UV molecular bands, observe nightglow, and characterize the unidentified main UV absorber. The UV spectrometer is complemented by an imaging UV camera with multiple bands in the UV absorber main band range for contextual imaging. CUVE Science Objectives are: the nature of the "Unknown" UV-absorber; the abundances and distributions of SO2 and SO at and above Venus's cloud tops and their correlation with the UV absorber; the atmospheric dynamics at the cloud tops, structure of upper clouds and wind measurements from cloud-tracking; the nightglow emissions: NO, CO, O2. This mission will therefore be an excellent platform to study Venus' cloud top atmospheric properties where the UV absorption drives the planet's energy balance. CUVE would complement past, current and future Venus missions with conventional spacecraft, and address critical science questions cost effectively.

  12. Efficiency of ocular UV protection by clear lenses

    PubMed Central

    Rifai, Katharina; Hornauer, Matthias; Buechinger, Ramona; Schoen, Roland; Barraza-Bernal, Maria; Habtegiorgis, Selam; Glasenapp, Carsten; Wahl, Siegfried; Mappes, Timo

    2018-01-01

    Ocular UV doses accumulate all-day, not only during periods of direct sun exposure. The UV protection efficiency of three clear lenses was evaluated experimentally, validated by simulation, and compared to non-UV protection: a first spectacle lens with a tailored UV absorber, a second spectacle lens, minimizing UV back reflections, as well as a third spectacle lens, combining both. A tailored UV-absorber efficiently reduced overall UV irradiance to 7 %, whereas reduction of back-reflections still left UV irradiance at 42 %. Thus, clear lenses with a tailored UV absorber efficiently protect the eye from UV, supplementing sun glasses wear to an all-day protection scenario. PMID:29675331

  13. Efficiency of ocular UV protection by clear lenses.

    PubMed

    Rifai, Katharina; Hornauer, Matthias; Buechinger, Ramona; Schoen, Roland; Barraza-Bernal, Maria; Habtegiorgis, Selam; Glasenapp, Carsten; Wahl, Siegfried; Mappes, Timo

    2018-04-01

    Ocular UV doses accumulate all-day, not only during periods of direct sun exposure. The UV protection efficiency of three clear lenses was evaluated experimentally, validated by simulation, and compared to non-UV protection: a first spectacle lens with a tailored UV absorber, a second spectacle lens, minimizing UV back reflections, as well as a third spectacle lens, combining both. A tailored UV-absorber efficiently reduced overall UV irradiance to 7 %, whereas reduction of back-reflections still left UV irradiance at 42 %. Thus, clear lenses with a tailored UV absorber efficiently protect the eye from UV, supplementing sun glasses wear to an all-day protection scenario.

  14. Long-term changes in pigmentation of arctic Daphnia provide potential for reconstructing aquatic UV exposure

    NASA Astrophysics Data System (ADS)

    Nevalainen, Liisa; Rantala, Marttiina V.; Luoto, Tomi P.; Ojala, Antti E. K.; Rautio, Milla

    2016-07-01

    Despite the biologically damaging impacts of solar ultraviolet radiation (UV) in nature, little is known about its natural variability, forcing mechanisms, and long-term effects on ecosystems and organisms. Arctic zooplankton, for example the aquatic keystone genus Daphnia (Crustacea, Cladocera) responds to biologically damaging UV by utilizing photoprotective strategies, including pigmentation. We examined the preservation and content of UV-screening pigments in fossil Daphnia remains (ephippia) in two arctic lake sediment cores from Cornwallis Island (Lake R1), Canada, and Spitsbergen (Lake Fugledammen), Svalbard. The aims were to document changes in the degree of UV-protective pigmentation throughout the past centuries, elucidate the adaptive responses of zooplankton to long-term variations in UV exposure, and estimate the potential of fossil zooplankton pigments in reconstructing aquatic UV regimes. The spectroscopic absorbance measurements of fossil Daphnia ephippia under UV (280-400 nm) and visible light (400-700 nm) spectral ranges indicated that melanin (absorbance maxima at UV wavebands 280-350 nm) and carotenoids (absorbance maxima at 400-450 nm) pigments were preserved in the ephippia in both sediment cores. Downcore measurements of the most important UV-protective pigment melanin (absorbance measured at 305 and 340 nm) showed marked long-term variations in the degree of melanisation. These variations likely represented long-term trends in aquatic UV exposure and were positively related with solar radiation intensity. The corresponding trends in melanisation and solar activity were disrupted at the turn of the 20th century in R1, but remained as strong in Fugledammen. The reversed trends in the R1 core were simultaneous with a significant aquatic community reorganization taking place in the lake, suggesting that recent environmental changes, likely related to climate warming had a local effect on pigmentation strategies. This time horizon is also concurrent with previously recorded major ecological shifts in circumpolar lakes when human induced changes in ecological processes of sensitive arctic ecosystems started to occur. The current centennial record of UV-induced melanisation of sedimentary Daphnia ephippia presents unique reference material for assessing UV impacts in arctic aquatic ecosystems before human influence and during the 20th century climate change and provides potential for assessing past aquatic UV regimes.

  15. Removal of organic matter from a variety of water matrices by UV photolysis and UV/H2O2 method.

    PubMed

    Vilhunen, Sari; Vilve, Miia; Vepsäläinen, Mikko; Sillanpää, Mika

    2010-07-15

    A re-circulated flow-through photoreactor was used to evaluate the ultraviolet (UV) photolysis and UV/H(2)O(2) oxidation process in the purification of three different water matrices. Chemically coagulated and electrocoagulated surface water, groundwater contaminated with creosote wood preservative and 1,2-dichloroethane (DCE) containing washing water from the plant manufacturing tailor-made ion-exchange resins were used as sample waters. The organic constituents of creosote consist mainly of harmful polycyclic aromatic hydrocarbons (PAH) whereas 1,2-DCE is a toxic volatile organic compound (VOC). Besides analyzing the specific target compounds, total organic carbon (TOC) analysis and measurement of change in UV absorbance at 254 nm (UV(254)) were performed. Initial TOC, UV(254) and pH varied significantly among treated waters. Initial H(2)O(2) concentrations 0-200 mg/l were used. The UV/H(2)O(2) treatment was efficient in removing the hazardous target pollutants (PAHs and 1,2-DCE) and natural organic matter (NOM). In addition, high removal efficiency for TOC was achieved for coagulated waters and groundwater. Also, the efficiency of direct photolysis in UV(254) removal was significant except in the treatment of 1,2-DCE containing washing water. Overall, UV(254) and TOC removal rates were high, except in case of washing water, and the target pollutants were efficiently decomposed with the UV/H(2)O(2) method. 2010 Elsevier B.V. All rights reserved.

  16. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska

    Treesearch

    Jason B. Fellman; David V. D' Amore; Eran Hood; Richard D. Boone

    2008-01-01

    Understanding how the concentration and chemical quality of dissolved organic matter (DOM) varies in soils is critical because DOM influences an array of biological, chemical, and physical processes. We used PARAFAC modeling of excitation-emission fluorescence spectroscopy, specific UV absorbance (SUVA254) and biodegradable dissolved organic...

  17. METHOD 415.3 - MEASUREMENT OF TOTAL ORGANIC CARBON, DISSOLVED ORGANIC CARBON AND SPECIFIC UV ABSORBANCE AT 254 NM IN SOURCE WATER AND DRINKING WATER

    EPA Science Inventory

    2.0 SUMMARY OF METHOD

    2.1 In both TOC and DOC determinations, organic carbon in the water sample is oxidized to form carbon dioxide (CO2), which is then measured by a detection system. There are two different approaches for the oxidation of organic carbon in water sample...

  18. Effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme in bean (Phaseolus vulgaris L.) grown under different nitrogen conditions.

    PubMed

    Pinto, M E; Casati, P; Hsu, T P; Ku, M S; Edwards, G E

    1999-02-01

    The effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme have been examined in different cultivars of Phaseolous vulgaris L. grown under 1 and 12 mM nitrogen. Low nitrogen nutrition reduces chlorophyll and soluble protein contents in the leaves and thus the photosynthesis rate and dry-matter accumulation. Chlorophyll, soluble protein and Rubisco contents and photosynthesis rate are not significantly altered by ambient levels of UV-B radiation (17 microW m-2, 290-320 nm, 4 h/day for one week). Comparative studies show that under high nitrogen, UV-B radiation slightly enhances leaf expansion and dry-matter accumulation in cultivar Pinto, but inhibits these parameters in Vilmorin. These results suggest that the UV-B effect on growth is mediated through leaf expansion, which is particularly sensitive to UV-B, and that Pinto is more tolerant than Vilmorin. The effect of UV-B radiation on UV-B-absorbing compounds and on NADP-malic enzyme (NADP-ME) activity is also examined. Both UV-B radiation and low-nitrogen nutrition enhance the content of UV-B-absorbing compounds, and among the three cultivars used, Pinto exhibits the highest increases and Arroz the lowest. The same trend is observed for the specific activity and content of NADP-ME. On a leaf-area basis, the amount of UV-B-absorbing compounds is highly correlated with the enzyme activity (r2 = 0.83), suggesting that NADP-ME plays a key role in biosynthesis of these compounds. Furthermore, the higher sensitivity of Vilmorin than Pinto to UV-B radiation appears to be related to the activity of NADP-ME and the capacity of the plants to accumulate UV-B-absorbing compounds.

  19. Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues

    PubMed Central

    Casati, Paula; Walbot, Virginia

    2004-01-01

    Background Depletion of stratospheric ozone has raised terrestrial levels of ultraviolet-B radiation (UV-B), an environmental change linked to an increased risk of skin cancer and with potentially deleterious consequences for plants. To better understand the processes of UV-B acclimation that result in altered plant morphology and physiology, we investigated gene expression in different organs of maize at several UV-B fluence rates and exposure times. Results Microarray hybridization was used to assess UV-B responses in directly exposed maize organs and organs shielded by a plastic that absorbs UV-B. After 8 hours of high UV-B, the abundance of 347 transcripts was altered: 285 were increased significantly in at least one organ and 80 were downregulated. More transcript changes occurred in directly exposed than in shielded organs, and the levels of more transcripts were changed in adult compared to seedling tissues. The time course of transcript abundance changes indicated that the response kinetics to UV-B is very rapid, as some transcript levels were altered within 1 hour of exposure. Conclusions Most of the UV-B regulated genes are organ-specific. Because shielded tissues, including roots, immature ears, and leaves, displayed altered transcriptome profiles after exposure of the plant to UV-B, some signal(s) must be transmitted from irradiated to shielded tissues. These results indicate that there are integrated responses to UV-B radiation above normal levels. As the same total UV-B irradiation dose applied at three intensities elicited different transcript profiles, the transcriptome changes exhibit threshold effects rather than a reciprocal dose-effect response. Transcriptome profiling highlights possible signaling pathways and molecules for future research. PMID:15003119

  20. Replicated mesocosm study on the role of natural ultraviolet radiation in high CDOM, shallow lakes.

    PubMed

    Pérez, A Patricia; Diaz, Mónica M; Ferraro, Marcela A; Cusminsky, Gabriela C; Zagarese, Horacio E

    2003-02-01

    The role of ultraviolet radiation on shallow, high CDOM (colored dissolved organic matter) lakes was investigated during two consecutive summers (1999 and 2000) in replicated mesocosms (rectangular fiberglass tanks). Each tank (volume: 300 L; depth: 40 cm) was covered with a layer (approximately 3 cm) of sediment from lake El Toro (40 degrees 14' S; 70 degrees 22' W) and filled with filtered water. The experimental design consisted of two treatments: full natural radiation (UV-exposed) and natural radiation without ultraviolet radiation (UV-shielded). UV-exposed and UV-shielded treatments differed in most studied variables as revealed by repeated measures ANOVA. UV-exposed tanks displayed lower CDOM levels (dissolved absorbance) of lower average molecular size (absorbance ratio between 250 and 365 nm), higher bacterial biomass, and lower chlorophyll a concentration. The effect on consumers (rotifers and crustaceans) was less noticeable. The results are consistent with UV stimulation of bacteria production mediated by higher rates of CDOM photobleaching, and the photoinhibition of planktonic algae. Thus, a major effect of UVR in shallow, high CDOM ecosystems appears to be the stimulation of heterotrophic pathways and a simultaneous inhibition of photoautotrophs.

  1. Effect of UV-B radiation on UV absorbing compounds and pigments of moss and lichen of Schirmacher oasis region, East Antarctica.

    PubMed

    Singh, J; Gautam, S; Bhushan Pant, A

    2012-12-22

    The survival of Antarctic flora under ozone depletion depends on their ability to acclimate against increasing UV—B radiation by employing photo protective mechanisms either by avoiding or repairing UV—B damage. A fifteen days experiment was designed to study moss (Bryum argenteum) and lichen (Umbilicaria aprina) under natural UV—B exposure and under UV filter frames at the Maitri region of Schirmacher oasis, East Antarctica. Changes in UV absorbing compounds, phenolics, carotenoids and chlorophyll content were studied for continuous fifteen days and significant changes were observed in the UV exposed plants of B. argenteum and U. aprina. The change in the UV absorbing compounds was more significant in B. argenteum (P<0.0001) than U. aprina (P<0.0002). The change in phenolic contents and total carotenoid content was significant (P<0.0001) in both B. argenteum and lichen U. aprina indicating that the increase in UV absorbing compounds, phenolic contents and total carotenoid content act as a protective mechanism against the deleterious effect of UV—B radiations.

  2. In vitro photostability and photoprotection studies of a novel 'multi-active' UV-absorber.

    PubMed

    Venditti, E; Spadoni, T; Tiano, L; Astolfi, P; Greci, L; Littarru, G P; Damiani, E

    2008-08-01

    This paper reports on the synthesis and properties of a new UV-absorber (OC-NO) based on the most popular UV filter worldwide, ethylhexyl methoxycinnamate (OMC) in which the methoxy group has been replaced with a pyrrolidine nitroxide bearing antioxidant activity. This sunscreen active has therefore both UV-absorbing and antioxidant properties which could ideally address both the UV-B and UV-A skin photo-damage. For broad-spectrum coverage, the combinations of OC-NO with two commonly used UV-A absorbers (BMDBM and DHHB) were also studied. The results obtained reveal that OC-NO: (a) is as photostable as OMC after UV-A exposure; (b) acts as free radical scavenger as demonstrated by EPR and chemical studies; (c) reduces UV-A and UV-A+BMDBM induced lipid peroxidation in liposomes and cells, measured as reduced TBARS levels and increased C11-BODIPY red fluorescence, respectively; (d) has comparable antioxidant activity to that of vitamin E and BHT commonly used in skin care formulations; (e) is non-cytotoxic to human skin fibroblasts as assessed with the MTT assay when exposed to increasing doses of UV-A; and (f) OC-NO+DHHB is a promising, photostable broad spectrum UV-filter combination that concomitantly reduces UV-induced free radical damage. These results suggest that nitroxide/antioxidant-based UV-absorbers may pave the way for the utilization of 'multi-active' ingredients in sunscreens thereby reducing the number of ingredients in these formulations.

  3. Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece.

    PubMed

    Papageorgiou, A; Papadakis, N; Voutsa, D

    2016-01-01

    The aim of this study was to investigate the fate of natural organic matter (NOM) and subsequent changes during the various treatment processes at a full-scale Drinking Water Treatment Plant (DWTP). Monthly sampling campaigns were conducted for 1 year at six sites along DWTP of Thessaloniki, Northern Greece including raw water from the Aliakmonas River that supplies DWTP and samples from various treatment processes (pre-ozonation, coagulation, sand filtration, ozonation, and granular activated carbon (GAC) filtration). The concentration of NOM and its characteristics as well as the removal efficiency of various treatment processes on the basis of dissolved organic carbon, UV absorbance, specific ultra-violet absorbance, fluorescence intensity, hydrophobicity, biodegradable dissolved organic carbon, and formation potential of chlorination by-products trihalomethanes (THMs) and haloacetic acids (HAAs) were studied. The concentration of dissolved organic carbon (DOC) in reservoir of the Aliakmonas River ranged from 1.46 to 1.84 mg/L, exhibiting variations regarding UV, fluorescence, and hydrophobic character through the year. Along DWTP, a significant reduction of aromatic, fluorophoric, and hydrophobic character of NOM was observed resulting in significant elimination of THM (63%) and HAAs (75%) precursors.

  4. Skin protection efficacy from UV irradiation and skin penetration property of polysaccharide-benzophenone conjugates as a sunscreen agent.

    PubMed

    Heo, Sukyoung; Hwang, Hee Sook; Jeong, Yohan; Na, Kun

    2018-09-01

    Sunscreen materials have been developed to protect skin from UV radiation. However, many organic sunscreen materials are small molecules and absorbed into human skin after topical application and lead to systemic side effects. To improve the adverse effects of conventional sunscreen materials, we designed a sunscreen agent using an organic sunscreen material and a polymer. Dioxybenzone, an organic sunscreen compound is selected and polymerized with natural polymer pullulan. Polymerization not only provides a long polymer backbone to dioxybenzone, but also keeps the distance between benzene rings of the dioxybenzone and prevents reduction of photoabsorption intensity. UV/vis spectrophotometry confirmed that dioxybenzone-pullulan polymer (DOB-PUL) and dioxybenzone (DOB) demonstrated similar UV absorption. To measure the accumulation of sunscreen materials on skin, Franz diffusion cell was used to confirm the accumulation of DOB and lack of penetration of DOB-PUL. Most importantly, DOB showed higher plasma concentration after multiple applications compared to that of DOB-PUL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Skin photoprotection improvement: synergistic interaction between lipid nanoparticles and organic UV filters.

    PubMed

    Nikolić, S; Keck, C M; Anselmi, C; Müller, R H

    2011-07-29

    A photoprotective formulation was developed with an increased sunprotection factor (SPF), compared to a conventional nanoemulsion, but having the same concentration of three molecular sunscreens, namely ethylhexyl triazone, bis-ethylhexyloxyphenol methoxyphenyl triazine, and ethylhexyl methoxycinnamate. The sunscreen mixture was incorporated into nanostructured lipid carriers (NLCs). The ability of nine different solid lipids to yield stable aqueous NLC suspensions was assessed. After the production by hot high pressure homogenization, the NLC were analyzed in terms of particle size, physical state, particle shape, ultraviolet absorbance and stability. The particle size for all NLC was around 200 nm after production. The NLC suspension with carnauba wax had superior UV absorbance, NLC from bees wax showed similar efficiency as the reference emulsion. The NLC formulations were incorporated into hydrogel formulations and the in vitro SPF was measured. This study demonstrated that approximately 45% higher SPF values could be obtained when the organic UV filters were incorporated into carnauba wax NLC, in comparison to the reference nanoemulsion and bees wax NLC. The data showed that the synergistic effect of NLC and incorporated sunscreens depends not only on the solid state of the lipid but also on its type. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems.

    PubMed

    Garcia, J C; Oliveira, J L; Silva, A E C; Oliveira, C C; Nozaki, J; de Souza, N E

    2007-08-17

    This work investigated the treatability of real textile effluents using several systems involving advanced oxidation processes (AOPs) such as UV/H2O2, UV/TiO2, UV/TiO2/H2O2, and UV/Fe2+/H2O2. The efficiency of each technique was evaluated according to the reduction levels observed in the UV absorbance of the effluents, COD, and organic nitrogen reduction, as well as mineralization as indicated by the formation of ammonium, nitrate, and sulfate ions. The results indicate the association of TiO2 and H2O2 as the most efficient treatment for removing organic pollutants from textile effluents. In spite of their efficiency, Fenton reactions based treatment proved to be slower and exhibited more complicated kinetics than the ones using TiO2, which are pseudo-first-order reactions. Decolorization was fast and effective in all the experiments despite the fact that only H2O2 was used.

  7. Organic Aerosols in the Presence of CO2 in the Early Earth and Exoplanets: UV-Vis Refractive Indices of Oxidized Tholins

    NASA Astrophysics Data System (ADS)

    Gavilan, Lisseth; Broch, Laurent; Carrasco, Nathalie; Fleury, Benjamin; Vettier, Ludovic

    2017-10-01

    In this experimental study we investigate the role of atmospheric CO2 on the optical properties of organic photochemical aerosols. To this end, we add CO2 to a N2:CH4 gas mixture used in a plasma typically used for Titan studies. We produce organic thin films (tholins) in plasmas where the CO2/CH4 ratio is increased from 0 to 4. We measure these films via spectrometric ellipsometry and apply a Tauc-Lorentz model, used for optically transparent materials, to obtain the thickness of the thin film, its optical band gap, and the refractive indices in the UV-visible (270-600 nm). All samples present a significant absorption band in the UV. According to the Tauc-Lorentz model, as the CO2/CH4 ratio is quadrupled, the position of the UV band is shifted from ˜177 nm to 264 nm while its strength is quadrupled. Consequently, we infer that oxidized organic aerosols absorb more efficiently at longer UV wavelengths than reduced aerosols. Our laboratory wavelength-tabulated UV-vis refractive indices provide new constraints to atmospheric models of the early Earth and Earth-like exoplanets including photochemical hazes formed under increasingly oxidizing conditions.

  8. Organic UV filters in personal care products in Switzerland: a survey of occurrence and concentrations.

    PubMed

    Manová, Eva; von Goetz, Natalie; Hauri, Urs; Bogdal, Christian; Hungerbühler, Konrad

    2013-07-01

    Organic ultraviolet (UV) filters are a group of compounds designed to absorb UV radiation and hence protect our skin against UV-induced damage. Apart from traditional sunscreens, they can be found in many other categories of personal care products (PCPs). These include skin care, facial makeup and lip care products, which are often used simultaneously, and on a regular basis. The frequency of occurrence as well as concentrations of organic UV filters contained in PCPs change over time. Furthermore, in Switzerland the exact UV filter concentrations are confidential. To date, only limited data are available for the levels of organic UV filters in PCPs, and these data refer mainly to sunscreens. In this paper, we provide an up-to-date frequency of occurrence and concentrations of organic UV filters in PCPs, including for the first time PCPs used in everyday life. A total of 116 PCPs was selected on the basis of a product-use questionnaire and distributed among seven PCP categories: lip care products, lipsticks, face creams, liquid makeup foundations, aftershaves, hand creams, and sunscreens. Concentrations of 22 organic UV filters were measured in the selected PCPs. The most frequently occurring UV filters were butyl methoxydibenzoylmethane (BMBM) detected in 82 products (71%), ethylhexyl methoxycinnamate (EHMC) in 59 products (51%) and octocrylene (OCT) in 50 products (43%). BMBM, EHMC and OCT concentrations averaged 2.6%, 4.0%, and 6.0%, respectively. Overall, UV filter concentrations in PCPs applied regularly throughout the year can be as high as those in sunscreens that are primarily used for sun protection and hence applied only on selected days. PCPs that are used on a regular basis, and often simultaneously, thus represent an important and, as yet, unquantified source of UV filter exposure. This study provides essential information for aggregate exposure assessments that combine data on concentrations of individual UV filters widely used in a variety of PCP categories. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Removal of humic acid using TiO2 photocatalytic process--fractionation and molecular weight characterisation studies.

    PubMed

    Liu, Sanly; Lim, May; Fabris, Rolando; Chow, Christopher; Chiang, Ken; Drikas, Mary; Amal, Rose

    2008-05-01

    The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV(254) absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV(254) absorbance. The THMFPs of samples were decreased to below 20 microg l(-1) after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.

  10. Changes in UV absorption of sunscreens after UV irradiation

    NASA Astrophysics Data System (ADS)

    Tarras-Wahlberg, N.; Stenhagen, G.; Larkö, O.; Rosén, A.; Wennberg, A.-M.; Wennerström, O.

    2000-03-01

    In the present investigation we have studied the change in the absorption spectrum of some photoactive organic species in sunscreens after UVA and UVB irradiation in a dose normally encountered during a full day in the sun. The absorbance of 2-ethylhexyl 4-methoxycinnamate was reduced significantly, while 3-(4-methylbenzyliden)camphor seemed to be rather stable. The benzophenones studied seemed to be relatively stable. In the case of 4-tert.butyl-4´-methoxy-dibenzoylmethane there was a rapid decrease in the UVA absorption leading to unsatisfactory protection in the UVA region. 4-Isopropyl-dibenzoylmethane also lost most of its UV protective capacity after irradiation with UVA. UVB seemed to have a minor effect on all the samples. The present study including gas chromatography and mass spectrometry analysis indicates that some of the photoactive organic species commonly used today in sunscreens are unstable following UV irradiation.

  11. Changes in growth, leaf anatomy and pigment concentrations in pea under modulated UV-B field treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, T.A.; Howells, B.W.; Ruhland, C.T.

    1995-06-01

    In growth-chamber and greenhouse studies, garden pea is typically quite sensitive to enhanced UV-B radiation (280-320 nm). We assessed whether growth of pea was reduced under more ecologically relevant UV-B enhancements by employing modulated field lampbanks simulating 0, 16 or 24% ozone depletion. We also examined if these UV-B treatments altered leaf anatomy and concentrations of chlorophyll and UV-B-absorbing compounds, and whether this was dependent on leaf age. We used Pisum sativum mutant Argenteum which has an easily detachable epidermis that allowed us to compare concentrations in epidermal and mesophyll tissues. There were no significant UV-B effects on whole-plant growth.more » Of the 15 leaf-level parameters we examined, UV-B had a strong effect on only two parameters: the ratio of UV-B-absorbing compounds to chlorophyll (which increased with UV-B dose), and stomatal density of the adaxial surface (which decreased with UV-B dose). Chlorophyll concentrations tended to decrease, while the proportion of UV-B-absorbing compounds in the adaxial epidermis tended to increase with UV-B dose (p = 0.11 for both). In contrast to UV-B effects, we found strong leaf-age effects on nearly all parameters except the ratio of UV-B-absorbing compounds to chlorophyll, which remained relatively constant with leaf age.« less

  12. Quantifying and correcting the impacts of freezing samples on dissolved organic matter absorbance

    NASA Astrophysics Data System (ADS)

    Griffin, C. G.; McClelland, J. W.; Frey, K. E.; Holmes, R. M.

    2012-12-01

    The use of optical measurements as proxies for organic matter concentration and composition has become increasingly popular in recent years. Absorbance of chromophoric dissolved organic matter (CDOM) can be used to estimate concentrations of dissolved organic carbon (DOC), as a qualitative assessment of dissolved organic matter (DOM) average molecular weight and is often used to calibrate satellite remote sensing of organic matter. However, there is evidence that preservation of samples can lead to significant changes in CDOM absorbance spectra. Freezing is a popular means of preservation, but can result in flocculation of DOM when samples are thawed for analysis. We hypothesize that the particles generated as a result of a freeze/thaw cycle lead to increasing absorption in visible wavelengths (400-800 nm). Yet, absorbance in the UV spectra should remain similar to original values. These hypotheses are tested on CDOM spectra collected from two large Arctic watersheds (the Mackenzie and Yukon rivers) and four smaller Texas watersheds (the Colorado, Guadalupe, Nueces and San Antonio rivers). In addition, we experiment with additional filtering and sonication to correct for flocculation from frozen samples. Preliminary data show that short wavelengths are relatively well preserved (200-300 nm). However, CDOM absorption changes unpredictably from 350-450 nm, the wavelengths most commonly used to estimate DOC. Absorption coefficients tend to be higher in these wavelengths after a freeze/thaw cycle, but the magnitude of this increase varies. Some of these impacts can be corrected for with sonication. For instance, when comparing experimental treatments to initial absorption at 365 nm from Mackenzie River samples, R2 increases from 0.60 to 0.79 for samples undergoing one freeze/thaw cycle to those that were also sonicated. Regardless of treatment, however, no spectral slopes were well preserved after a freeze/thaw cycle. These results reinforce earlier work that it is best for all CDOM samples to be measured immediately, without preservation. CDOM measured on frozen samples, particularly after sonicating, can be used as a proxy for bulk DOC concentrations and specific UV absorbance (SUVA), but freeze/thaw effects confound our ability to examine DOM composition from spectral slopes.

  13. W Photoprotection in Tropical Marine Organisms

    NASA Technical Reports Server (NTRS)

    Armstrong, Roy A.

    1997-01-01

    Increasing levels of ultraviolet (UV) radiation reaching the earth's surface which results from stratospheric ozone depletions could have serious implications for terrestrial plants and for aquatic organisms within the euphotic zone. A documented 9% decline in ozone at mid-latitudes is considered to produce a 12% increase in harmful UV radiation. The biologically damaging effects of higher UV levels, particularly W-B (280-320 rim), could manifest earlier in the tropics because of the relative thinness of the earth's equatorial ozone layer. Tropical marine organisms are also living close to their upper tolerance levels of water temperature, However, despite the large potential effects on plants and animals, little is known about UV effects on tropical ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial and marine ecosystems and to produce reliable data for prediction. Plants have developed several mechanisms to protect themselves from harmful UV radiation, one of which is the production of secondary leaf pigments that absorb W-B radiation (screening pigments). A higher concentration of screening pigments (e.g. flavonoids) in leaves may be interpreted as a natural response to increased W radiation. If higher concentrations of flavonoids filter out the excessive W radiation, no damage will occur, as suggested by Caldwell et al. (1989) and Tevini (1993). Failure to screen all W-B may result in deleterious effects on photosynthesis, plant genetic material, and plant and leaf morphology and growth. Eventually this will have an impact on ecosystem processes, structure, species composition, and productivity. This paper describes an ongoing project that is assessing the responses of mangroves, seagrasses and corals to W radiation by studying pigment concentrations, biophysical parameters, and variations in spectral reflectance in the field and in W-reduction experiments. Preliminary results on the distribution of W-absorbing flavonoid compounds in red mangroves (Rhizophora mangle) and the seagrass Thalassia testudinum, are presented. This research also provides, for the first time, a permanent record of daily W irradiance measurements at a tropical -location.

  14. The influence of enhanced UV-B radiation on Batrachium trichophyllum and Potamogeton alpinus -- aquatic macrophytes with amphibious character.

    PubMed

    Germ, Mateja; Mazej, Zdenka; Gaberscik, Alenka; Häder, Donat P

    2002-02-01

    The responses of two amphibious species, Batrachium trichophyllum and Potamogeton alpinus to different UV-B environments were studied. Plant material from natural environments, as well as from outdoor treatments was examined. In long-term outdoor experiments plants were grown under three different levels of UV-B radiation: reduced and ambient UV-B levels, and a UV-B level simulating 17% ozone depletion. The following parameters were monitored: contents of total methanol soluble UV-absorbing compounds and chlorophyll a, terminal electron transport system (ETS) activity and optimal and effective quantum yield of photosystem II. No effect of the different UV-B levels on the measured parameters was observed. The amount of UV-B absorbing compounds seems to be saturated, since no differences were observed between treatments and no increase was found in peak season, when natural UV-B levels were the highest. Physiological measurements revealed no harmful effects; neither on potential and actual photochemical efficiency, nor on terminal ETS activity. The contents of UV-B absorbing compounds were examined also in plant material sampled in low and high altitude environments during the growth season. Both species exhibited no seasonal dynamics of production of UV-absorbing compounds. The contents were variable and showed no significant differences between high and low altitude populations.

  15. Identification and determination butylmethoxydibenzoylmethane in the presence benzophenone-3 and ethylhexylmethoxycinnamate in suncare preparation.

    PubMed

    Imamović, B; Sober, M; Becić, E

    2009-10-01

    The protection of sun radiation is a problem on global level for all living organisms on Earth. The need of people for the overexposure to the UV radiation led human population towards finding novel ways of protection of this kind of radiation, in form of cosmetic preparations applied on the skin. So far, the high values of protection factors of preparations and total block preparations with sun protection factor of 50+ were achieved. Physical and chemical filters which absorb radiation are constituents of these preparations. European Union has set regulations as which substances and in what amounts could be used as UV absorbers. American FDA (Food and Drug Administration) also gave its list of the most frequently used UV absorbers in the sunscreen products, as well as their declared concentrations. The most frequently used concentrations of UV filters in cosmetics is between 0.1% and 10%. Concentrations of UV filters in sunscreen products have to be monitored in order to ensure that they are not less from the declared levels, on which depends the efficacy and safety of the product. Butyl methoxydibenzoylmethane (BMDM) is used as a UV-A filter in suncare products. Optimized high performance liquid chromatography method for BMDM determination in the presence of other UV filters in suncare preparations is presented in this paper. Determination was performed on C(8) reversed phase using UV detection at 357 nm and isocratic mobile phase of acetonitrile and 0.5% phosphoric acid (70 : 30 v/v). Proposed method has limit of detection of 0.058 microg mL(-1), limit of quantification 0.193 microg mL(-1) and linearity correlation coefficient of 0.9989. Commercially available products were analysed using the proposed method. All analysed samples complied with EU directives limit of BMDM content to no more than 5%.

  16. Macroevolutionary patterns of ultraviolet floral pigmentation explained by geography and associated bioclimatic factors.

    PubMed

    Koski, Matthew H; Ashman, Tia-Lynn

    2016-07-01

    Selection driven by biotic interactions can generate variation in floral traits. Abiotic selection, however, also contributes to floral diversity, especially with respect to patterns of pigmentation. Combining comparative studies of floral pigmentation and geography can reveal the bioclimatic factors that may drive macroevolutionary patterns of floral color. We create a molecular phylogeny and measure ultraviolet (UV) floral pattern for 177 species in the Potentilleae tribe (Rosaceae). Species are similar in flower shape and visible color but vary in UV floral pattern. We use comparative approaches to determine whether UV pigmentation variation is associated with geography and/or bioclimatic features (UV-B, precipitation, temperature). Floral UV pattern was present in half of the species, while others were uniformly UV-absorbing. Phylogenetic signal was detected for presence/absence of pattern, but among patterned species, quantitative variation in UV-absorbing area was evolutionarily labile. Uniformly UV-absorbing species tended to experience higher UV-B irradiance. Patterned species occurring at higher altitudes had larger UV-absorbing petal areas, corresponding with low temperature and high UV exposure. This analysis expands our understanding of the covariation of UV-B irradiance and UV floral pigmentation from within species to that among species, and supports the view that abiotic selection is associated with floral diversification among species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. A Novel UV-Shielding and Transparent Polymer Film: When Bioinspired Dopamine-Melanin Hollow Nanoparticles Join Polymers.

    PubMed

    Wang, Yang; Su, Jing; Li, Ting; Ma, Piming; Bai, Huiyu; Xie, Yi; Chen, Mingqing; Dong, Weifu

    2017-10-18

    Ultraviolet (UV) light is known to be harmful to human health and cause organic materials to undergo photodegradation. In this Research Article, bioinspired dopamine-melanin solid nanoparticles (Dpa-s NPs) and hollow nanoparticles (Dpa-h NPs) as UV-absorbers were introduced to enhance the UV-shielding performance of polymer. First, Dpa-s NPs were synthesized through autoxidation of dopamine in alkaline aqueous solution. Dpa-h NPs were prepared by the spontaneous oxidative polymerization of dopamine solution onto polystyrene (PS) nanospheres template, followed by removal of the template. Poly(vinyl alcohol) (PVA)/Dpa nanocomposite films were subsequently fabricated by a simple casting solvent. UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of Dpa-s versus Dpa-h NPs. In contrast to PVA/Dpa-s films, PVA/Dpa-h films exhibit stronger UV-shielding capabilities and can almost block the complete UV region (200-400 nm). The excellent UV-shielding performance of the PVA/Dpa-h films mainly arises from multiple absorption because of the hollow structure and large specific area of Dpa-h NPs. Moreover, the wall thickness of Dpa-h NPs can be simply controlled from 28 to 8 nm, depending on the ratio between PS and dopamine. The resulting films with Dpa-h NPs (wall thickness = ∼8 nm) maintained relatively high transparency to visible light because of the thinner wall thickness. The results indicate that the prepared Dpa-h NPs can be used as a novel UV absorber for next-generation transparent UV-shielding materials.

  18. Photoprotectant improves photostability and bioactivity of abscisic acid under UV radiation.

    PubMed

    Gao, Fei; Hu, Tanglu; Tan, Weiming; Yu, Chunxin; Li, Zhaohu; Zhang, Lizhen; Duan, Liusheng

    2016-05-01

    Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Physical properties of organic particulate UV-absorbers used in sunscreens. I. Determination of particle size with fiber-optic quasi-elastic light scattering (FOQELS), disc centrifugation, and laser diffractometry.

    PubMed

    Herzog, Bernd; Katzenstein, Armin; Quass, Katja; Stehlin, Albert; Luther, Helmut

    2004-03-01

    In this study microparticles consisting of a benzotriazole derivative, which are used as absorbers for UV radiation in cosmetic sunscreens, were investigated. The particles were micronized in presence of a dispersing agent by means of a ball milling process. According to the energy input different particle sizes were produced in the range of 0.16 to 4 microm. The particle sizes obtained after different stages of the micronization process were measured using fiber-optic quasi-elastic light scattering (FOQELS), disc centrifugation, and laser diffractometry. All methods showed satisfactory agreement over the whole range of sizes. With the FOQELS technique the particle size distribution could be resolved to sizes well below 0.1 microm.

  20. UV absorbers for cellulosic apparels: A computational and experimental study

    NASA Astrophysics Data System (ADS)

    Sahar, Anum; Ali, Shaukat; Hussain, Tanveer; Irfan, Muhammad; Eliasson, Bertil; Iqbal, Javed

    2018-01-01

    Two triazine based Ultra Violet (UV) absorbers Sulfuric acid mono-(2-{4-[4-chloro-6-(4-{4-chloro-6-[4-(2-sulfooxy-ethanesulfonyl)-phenylamino]-[1,3,5] triazin-2-ylamino-phenylamino)-[1,3,5]triazin-2-ylamino]-benzenesulfonyl}-ethyl) ester (1a) and 4-{4-chloro-6-[4-(2-sulfooxy-ethanesulfonyl)-phenylamino]-[1,3,5] triazin-2-ylamino}-2-[4-chloro-6-(2-sulfooxy-ethanesulfonyl)-[1,3,5]triazin-2-ylamino]-benzenesulfonic acid (2a) with different substituents were designed computationally. The influence of different substituents on the electrochemical properties and UV spectra of the absorbers was investigated. The presence of electron deficient unit in 1a to the molecular core significantly reduces the LUMO levels and energy gap. The designed absorbers were synthesized via condensation reaction and characterized by UV-Vis, FT-IR, MS studies. The performance of synthesized compounds as UV absorbers and their fastness properties were assessed by finishing the cotton fabric through exhaust method at different concentration and results appeared in good range.

  1. Anti-Inflammation Activities of Mycosporine-Like Amino Acids (MAAs) in Response to UV Radiation Suggest Potential Anti-Skin Aging Activity

    PubMed Central

    Suh, Sung-Suk; Hwang, Jinik; Park, Mirye; Seo, Hyo Hyun; Kim, Hyoung-Shik; Lee, Jeong Hun; Moh, Sang Hyun; Lee, Taek-Kyun

    2014-01-01

    Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs). In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly), based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE) and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells. PMID:25317535

  2. Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity.

    PubMed

    Suh, Sung-Suk; Hwang, Jinik; Park, Mirye; Seo, Hyo Hyun; Kim, Hyoung-Shik; Lee, Jeong Hun; Moh, Sang Hyun; Lee, Taek-Kyun

    2014-10-14

    Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs). In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly), based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE) and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells.

  3. Effect of ultraviolet light absorbers on photostabilization of azadirachtin-A in solution (part: II).

    PubMed

    Deota, P T; Upadhyay, P R; Valodkar, V B

    2003-01-01

    The effect of photostabilization of azadirachtin-A (Aza-A) was examined in solutions when exposed to UV radiation, in the presence of four structurally different UV absorbers namely, p-aminobenzoic acid, 2,4-dihydroxybenzophenone, 4,4'-dihydroxybenzophenone and phenyl salicylate. The percentages of Aza-A recovered from the solutions after 6 h exposed to UV radiation in the presence and absence of UV absorbers indicated that the order of stabilization of Aza-A by these absorbers was similar to that obtained in the solid phase experiments in accordance with our previous observations. It is observed that the addition of phenyl salicylate in Aza-A (in 1:1 mole ratio) provides the excellent photostabilization of Aza-A molecule in solid phase as well as in solution among the four absorbers studied.

  4. An ultraviolet simulator for the incident Martian surface radiation and its applications

    NASA Astrophysics Data System (ADS)

    Kolb, C.; Abart, R.; Bérces, A.; Garry, J. R. C.; Hansen, A. A.; Hohenau, W.; Kargl, G.; Lammer, H.; Patel, M. R.; Rettberg, P.; Stan-Lotter, H.

    2005-10-01

    Ultraviolet (UV) radiation can act on putative organic/biological matter at the Martian surface in several ways. Only absorbed, but not transmitted or reflected, radiation energy can be photo-chemically effective. The most important biological UV effects are due to photochemical reactions in nucleic acids, DNA or RNA, which constitute the genetic material of all cellular organisms and viruses. Protein or lipid effects generally play a minor role, but they are also relevant in some cases. UV radiation can induce wavelengths-specific types of DNA damage. At the same time it can also induce the photo-reversion reaction of a UV induced DNA photoproduct of nucleic acid bases, the pyrimidine dimers. Intense UVB and UVC radiation, experienced on early Earth and present-day Mars, has been revealed to be harmful to all organisms, including extremophile bacteria and spores. Moreover, the formation of oxidants, catalytically produced in the Martian environment through UV irradiation, may be responsible for the destruction of organic matter on Mars. Following this, more laboratory simulations are vital in order to investigate and understand UV effects on organic matter in the case of Mars. We have designed a radiation apparatus that simulates the anticipated Martian UV surface spectrum between 200 and 400 nm (UVC UVA). The system comprises a UV enhanced xenon arc lamp, special filter-sets and mirrors to simulate the effects of the Martian atmospheric column and dust loading. We describe the technical setup and performance of the system and discuss its uses for different applications. The design is focused on portability, therefore, the Mars-UV simulator represents a device for several different Mars simulation facilities with specific emphasis on Mars research topics.

  5. PM2.5 soluble brown-carbon measured in contrasting urban and rural environments

    NASA Astrophysics Data System (ADS)

    Weber, R.; Zhang, X.

    2011-12-01

    An instrument was developed to continuously measure the light absorption spectra and carbon mass of soluble PM2.5 components by coupling a particle-into-liquid sampler (PILS), UV-VIS (200-800nm) spectrophotometer with long-path absorption cell and total organic carbon (TOC) analyzer. The analytical system has also been used to measure brown carbon in aqueous extracts from integrated filters. Measurements have been conducted at a number of locations, including urban sites in Los Angeles, Atlanta and smaller urban and rural locations in the southeastern US. At all locations a characteristic brown carbon absorption spectra was observed, where soluble chromophores produce an increasing absorption with decreasing wavelength, starting from mid-visible and extending into the near UV. Incomplete combustion from biomass and fossil fuel burning and secondary processes have been identified as sources of soluble brown carbon. During summer when biomass burning impacts were minimal, mass absorption efficiencies calculated relative to ambient particle water-soluble organic carbon (WSOC) were highest in Los Angeles and correlated with the daily production of secondary organic aerosol. Nitro-aromatics were identified as a component of the brown carbon. In contrast, the Atlanta secondary aerosol was significantly less light-absorbing, and unlike Los Angeles the diurnal trend in brown carbon largely tracked primary sources. Absorption Angstrom exponents varied between 3 and 7 with fresh Los Angeles secondary organic aerosol associated with smaller exponents, indicting greater absorption into the visible spectrum. The southeastern US regional/rural brown carbon was the least absorbing per WSOC mass in the UV and with largest Angstrom exponents (7) the least absorbing at higher wavelengths. A correlation between the regional brown carbon and fine particle oxalate suggested an aqueous phase heterogeneous source for these chromophores. Compared to pure black carbon, brown carbon was optically significant at low wavelengths (365 nm) and most important in rural regions due to low black carbon concentrations.

  6. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur.

    PubMed

    Shamjad, P M; Tripathi, S N; Thamban, Navaneeth M; Vreeland, Heidi

    2016-11-24

    Atmospheric aerosols influence Earth's radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species.

  7. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur

    PubMed Central

    Shamjad, P. M.; Tripathi, S. N.; Thamban, Navaneeth M.; Vreeland, Heidi

    2016-01-01

    Atmospheric aerosols influence Earth’s radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species. PMID:27883083

  8. Use of a New Simltaneous Absorbance-Fluorescene Instrument to Monitor Hydraluic Fracture Mining Waste Water to Prevent Drinking Water Contamination

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2013-05-01

    Recently, the issue of waste water effuse from oil and gas mining, especially that including hydraulic fracturing, has resurfaced on the news and the political atmosphere as an area of concern. One of the key concerns is drinking water contamination from the hydraulic fracturing chemicals and chemicals contained in the water introduced into the well at high-pressure and the flowback and produced water associate with the petroleum product extraction. The key to successfully meeting drinking water safety requirements lies in the drinking water treatment plant's ability to deal with often dramatic source-water variations in natural organic matter (NOM) content that can react during disinfection with high levels of chloride and bromide found in hydraulic facture waste water to form toxc disinfection by-products (DBPs). Importantly, the brominated DBP species are particularly dangerous. Whereas the regulated levels of NOM can roughly determined by measuring total organic carbon (TOC), often this parameter does not provide rapid or cost-effective qualitative or quantitative assessment of the various humic, fulvic and other aromatic NOM components associated with DBP formation. However, two main optical techniques namely UV absorbance and fluorescence excitation-emission mapping can be used for rapid assessment with precise identification of humic and fulvic components that cause DBPs. This study presents data from a new type of instrument which simultaneously measures the UV-VIS absorbance spectrum and EEM. The rapid absorbance-EEM is facilitated by a single system that is more than 100 time faster than conventional scanning absorbance and fluorescence optical benches. The new system can continuously collect EEMs and absorbance spectra at a rate often greater than 1 per min with the extra capacity to monitor the UV254 absorbance and fluorescence emission spectrum excited at 254 nm in 4 ms intervals (an equivalent scan rate of 5.5 million nm/min). The EEM spectral data is corrected for all instrumental response factors including concentration dependent inner-filter effects. The accumulated EEM data sets can be modeled using conventional peak identification, PARAFAC and or PCA analysis of the fractionated samples to predict the trihalomethane forming potential (THMFP). Moreover, the instrument and methods can be used to identify and quantify hundreds of chemicals including oils, PAHs and other key chemicals of concern from hydraulic fracturing practices.

  9. The Enhancement of H2O2/UV AOPs for the Removal of Selected Organic Pollutants from Drinking Water with Hydrodynamic Cavitation.

    PubMed

    Čehovin, Matej; Medic, Alojz; Kompare, Boris; Žgajnar Gotvajn, Andreja

    2016-12-01

    Drinking water contains organic matter that occasionally needs to be treated to assure its sufficient quality and safety for the consumers. H2O2 and UV advanced oxidation processes (H2O2/UV AOPs) were combined with hydrodynamic cavitation (HC) to assess the effects on the removal of selected organic pollutants. Water samples containing humic acid, methylene blue dye and micropollutants (metaldehyde, diatrizoic acid, iohexol) were treated first by H2O2 (dosages from 1 to 12 mg L-1) and UV (dosages from 300 to 2800 mJ cm-2) AOPs alone and later in combination with HC, generated by nozzles and orifice plates (4, 8, 18 orifices). Using HC, the removal of humic acid was enhanced by 5-15%, methylene blue by 5-20% and metaldehyde by approx. 10%. Under favouring conditions, i.e. high UV absorbance of the matrix (more than 0.050 cm-1 at a wavelength of 254 nm) and a high pollutant to oxidants ratio, HC was found to improve the hydrodynamic conditions in the photolytic reactor, to improve the subjection of the H2O2 to the UV fluence rate distribution and to enhance the removal of the tested organic pollutants, thus showing promising potential of further research in this field.

  10. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation

    USGS Publications Warehouse

    Osburn, C.L.; Morris, D.P.; Thorn, K.A.; Moeller, R.E.

    2001-01-01

    We studied the chemical and optical changes in the dissolved organic matter (DOM) from two freshwater lakes and a Sphagnum bog after exposure to solar radiation. Stable carbon isotopes and solid-state 13C-NMR spectra of DOM were used together with optical and chemical data to interpret results from experimental exposures of DOM to sunlight and from seasonal observations of two lakes in northeastern Pennsylvania. Solar photochemical oxidation of humic-rich bog DOM to smaller LMW compounds and to DIC was inferred from losses of UV absorbance, optical indices of molecular weight and changes in DOM chemistry. Experimentally, we observed a 1.2??? enrichment in ??13C and a 47% loss in aromatic C functionality in bog DOM samples exposed to solar UVR. Similar results were observed in the surface waters of both lakes. In late summer hypolimnetic water in humic Lake Lacawac, we observed 3 to 4.5??? enrichments in ??13C and a 30% increase in aromatic C relative to early spring values during spring mixing. These changes coincided with increases in molecular weight and UV absorbance. Anaerobic conditions of the hypolimnion in Lake Lacawac suggest that microbial metabolism may be turning over allochthonous C introduced during spring mixing, as well as autochthonous C. This metabolic activity produces HMW DOM during the summer, which is photochemically labile and isotopically distinct from allochthonous DOM or autochthonous DOM. These results suggest both photooxidation of allochthonous DOM in the epilimnion and autotrophic production of DOM by bacteria in the hypolimnion cause seasonal trends in the UV absorbance of lakes.

  11. The effects of simulated solar UVB radiation on early developmental stages of the Northwestern Salamander (Ambystoma gracile) from three lakes

    USGS Publications Warehouse

    Calfee, Robin D.; Little, Edward E.; Pearl, Christopher A.; Hoffman, Robert L.

    2010-01-01

    Solar ultraviolet radiation (UV) has received much attention as a factor that could play a role in amphibian population declines. UV can be hazardous to some amphibians, but the resultant effects depend on a variety of environmental and behavioral factors. In this study, the potential effects of UV on the Northwestern Salamander, Ambystoma gracile, from three lakes were assessed in the laboratory using a solar simulator. We measured the survival of embryos and the survival and growth of larvae exposed to four UV treatments in controlled laboratory studies, the UV absorbance of egg jelly, oviposition depths in the lakes, and UV absorbance in water samples from the three lakes. Hatching success of embryos decreased in the higher UV treatments as compared to the control treatments, and growth of surviving larvae was significantly reduced in the higher UVB irradiance treatments. The egg jelly exhibited a small peak of absorbance within the UVB range (290–320 nm). The magnitude of UV absorbance differed among egg jellies from the three lakes. Oviposition depths at the three sites averaged 1.10 m below the water surface. Approximately 66% of surface UVB radiation was attenuated at 10-cm depth in all three lakes. Results of this study indicate that larvae may be sensitive to UVB exposure under laboratory conditions; however, in field conditions the depths of egg deposition in the lakes, absorbance of UV radiation by the water column, and the potential for behavioral adjustments may mitigate severe effects of UV radiation.

  12. Effects of simulated solar UVB radiation on early developmental stages of the northwestern salamander (Ambystoma gracile) from three lakes

    USGS Publications Warehouse

    Calfee, R.D.; Little, E.E.; Pearl, C.A.; Hoffman, R.L.

    2010-01-01

    Solar ultraviolet radiation (UV) has received much attention as a factor that could play a role in amphibian population declines. UV can be hazardous to some amphibians, but the resultant effects depend on a variety of environmental and behavioral factors. In this study, the potential effects of UV on the Northwestern Salamander, Ambystoma gracile, from three lakes were assessed in the laboratory using a solar simulator. We measured the survival of embryos and the survival and growth of larvae exposed to four UV treatments in controlled laboratory studies, the UV absorbance of egg jelly, oviposition depths in the lakes, and UV absorbance in water samples from the three lakes. Hatching success of embryos decreased in the higher UV treatments as compared to the control treatments, and growth of surviving larvae was significantly reduced in the higher UVB irradiance treatments. The egg jelly exhibited a small peak of absorbance within the UVB range (290-320 nm). The magnitude of UV absorbance differed among egg jellies from the three lakes. Oviposition depths at the three sites averaged 1.10 m below the water surface. Approximately 66 of surface UVB radiation was attenuated at 10-cm depth in all three lakes. Results of this study indicate that larvae may be sensitive to UVB exposure under laboratory conditions; however, in field conditions the depths of egg deposition in the lakes, absorbance of UV radiation by the water column, and the potential for behavioral adjustments may mitigate severe effects of UV radiation. Copyright 2010 Society for the Study of Amphibians and Reptiles.

  13. UV-A/Blue-Light responses in algae

    NASA Technical Reports Server (NTRS)

    Senger, Horst; Hermsmeier, Dieter

    1994-01-01

    All life on earth depends on light. A variety of photoreceptors capture the light for a wide range of reactions. Photosynthetic organisms absorb the light necessary for energy transformation and charge separation facilitating photosynthesis. In addition to the bulk pigments there is a great diversity of photoreceptors present in minute concentrations that control development, metabolism and orientation of plants and microorganisms. Based on its spectral absorbance, the well-studied phytochrome system acts in the RL (red light) region as well as in the UV-A/BL (blue light) region where the above mentioned reactions are mediated by a variety of photoreceptors whose natures are largely unknown. Phyllogenetically the UV-A/BL photoreceptors seem to be more ancient pigments that eventually were replaced by the phytochrome system. However, there are many reports that suggest a coaction between the UV-A/BL receptors and the phytochrome system. In several cases the UV-A/BL activation is the prerequisite for the phytochrome reaction. Historically it was the German botanist Julius Sachs who first discovered in 1864 that phototropism in plants was due to BL reactions. It took over 70 years until Bunning (1937) and Galston and Baker (1949) rediscovered the BL response. Since then, an ever-increasing attention has been paid to this effect. In this contribution, the general aspect of UV-A/BL responses and especially the responsiveness of algae will be covered.

  14. Chiral analysis of UV nonabsorbing compounds by capillary electrophoresis using macrocyclic antibiotics: 1. Separation of aspartic and glutamic acid enantiomers.

    PubMed

    Bednar, P; Aturki, Z; Stransky, Z; Fanali, S

    2001-07-01

    Glycopeptide antibiotics, namely vancomycin or teicoplanin, were evaluated in capillary electrophoresis for the analysis of UV nonabsorbing compounds such as aspartic and glutamic acid enantiomers. Electrophoretic runs were performed in laboratory-made polyacrylamide-coated capillaries using the partial filling-counter current method in order to avoid the presence on the detector path of the absorbing chiral selector. The background electrolyte consisted of an aqueous or aqueous-organic buffer in the pH range of 4.5-6.5 of sorbic acid/histidine and the appropriate concentration of chiral selector. Several experimental parameters such as antibiotic concentration and type, buffer pH, organic modifier, type and concentration of absorbing co-ion (for the indirect UV detection) were studied in order to find the optimum conditions for the chiral resolution of the two underivatized amino acids in their enantiomers. Among the two investigated chiral selectors, vancomycin resulted to be the most useful chiral selector allowing relatively high chiral resolution of the studied compounds even at low concentration. The optimized method (10 mM sorbic acid/histidine, pH 5, and 10 mM of vancomycin) was used for the analysis of real samples such as teeth dentine and beer.

  15. Simultaneous flame ionization and absorbance detection of volatile and nonvolatile compounds by reversed-phase liquid chromatography with a water mobile phase.

    PubMed

    Bruckner, C A; Ecker, S T; Synovec, R E

    1997-09-01

    A flame ionization detector (FID) is used to detect volatile organic compounds that have been separated by water-only reversed-phase liquid chromatography (WRP-LC). The mobile phase is 100% water at room temperature, without use of organic solvent modifiers. An interface between the LC and detector is presented, whereby a helium stream samples the vapor of volatile components from individual drops of the LC eluent, and the vapor-enriched gas stream is sent to the FID. The design of the drop headspace cell is simple because the water-only nature of the LC separation obviates the need to do any organic solvent removal prior to gas phase detection. Despite the absence of organic modifier, hydrophobic compounds can be separated in a reasonable time due to the low phase volume ratio of the WRP-LC columns. The drop headspace interface easily handles LC flows of 1 mL/min, and, in fact, compound detection limits are improved at faster liquid flow rates. The transfer efficiency of the headspace interface was estimated at 10% for toluene in water at 1 mL/min but varies depending on the volatility of each analyte. The detection system is linear over more than 5 orders of 1-butanol concentration in water and is able to detect sub-ppb amounts of o-xylene and other aromatic compounds in water. In order to analyze volatile and nonvolatile analytes simultaneously, the FID is coupled in series to a WRP-LC system with UV absorbance detection. WRP-LC improves UV absorbance detection limits because the absence of organic modifier allows the detector to be operated in the short-wavelength UV region, where analytes generally have significantly larger molar absorptivities. The selectivity the headspace interface provides for flame ionization detection of volatiles is demonstrated with a separation of 1-butanol, 1,1,2-trichloroethane (TCE), and chlorobenzene in a mixture of benzoic acid in water. Despite coelution of butanol and TCE with the benzoate anion, the nonvolatile benzoate anion does not appear in the FID signal, allowing the analytes of interest to be readily detected. The complementary selectivity of UV-visible absorbance detection and this implementation of flame ionization detection allows for the analysis of volatile and nonvolatile components of complex samples using WRP-LC without the requirement that all the components of interest be fully resolved, thus simplifying the sample preparation and chromatographic requirements. This instrument should be applicable to routine automated water monitoring, in which repetitive injection of water samples onto a gas chromatograph is not recommended.

  16. Tinted windows: The presence of the UV absorbing compounds called mycosporine-like amino acids embedded in the frustules of marine diatoms

    NASA Astrophysics Data System (ADS)

    Ingalls, Anitra E.; Whitehead, Kenia; Bridoux, Maxime C.

    2010-01-01

    Diatom frustule-bound organic compounds presumably play an important role in biomineralization and constitute an important pool of organic matter preserved in diatom frustule-rich sediments. In this study, detailed analysis of diatom frustule-bound organic matter in opal-rich Southern Ocean plankton and sediments revealed for the first time the presence of low molecular weight, UV light absorbing compounds called mycosporine-like amino acids (MAAs). Chemically cleaned diatom frustule-derived biosilica was dissolved in HF, releasing bound or entrapped organic compounds that were subsequently characterized using liquid chromatography with UV-Vis and electrospray ionization mass spectrometry (LC/PDA/ESI-MS). Palythine ([M+H] + = 245), porphyra-334 ([M+H] + = 347) and shinorine ([M+H] + = 333) were the most abundant MAAs detected in HF digests of plankton and sediment. Traces of asterina ([M+H] + = 289), palythinol ([M+H] + = 303) and palythinic acid ([M+H] + = 329) were also detected. MAAs in cleaned HF digested frustules were up to two orders of magnitude more abundant than methanol extractable MAAs. MAAs are substituted with acid hydrolysable amino acid residues. Our results suggest that MAAs, and not proteins, could be responsible for the high proportion of the amino acids glycine and threonine found in hydrolysates of HF digested diatom-rich environmental samples. Total MAAs accounted for 3-27% of the carbon and 2-18% of total nitrogen in the frustules undergoing various chemical cleaning treatments. This is the first report of MAAs in close association with a mineral phase and we hypothesize that the mineral matrix could stabilize these compounds, thereby enhancing photoprotection against the harmful effects of UV light. The presence of frustule-bound MAAs in sediment cores further suggests the possibility that they could be used in compound-specific isotope analysis of diatom-bound organic matter and as indicators of past solar irradiance.

  17. Enhanced optical absorbance and fabrication of periodic arrays on nickel surface using nanosecond laser

    NASA Astrophysics Data System (ADS)

    Fu, Jinxiang; Liang, Hao; Zhang, Jingyuan; Wang, Yibo; Liu, Yannan; Zhang, Zhiyan; Lin, Xuechun

    2017-04-01

    A hundred-nanosecond pulsed laser was employed to structure the nickel surface. The effects of laser spatial filling interval and laser scanning speed on the optical absorbance capacity and morphologies on the nickel surface were experimentally investigated. The black nickel surface covered with dense micro/nanostructured broccoli-like clusters with strong light trapping capacity ranging from the UV to the near IR was produced at a high laser scanning speed up to v=100 mm/s. The absorbance of the black nickel is as high as 98% in the UV range of 200-400 nm, more than 97% in the visible spectrum, ranging from 400 to 800 nm, and over 90% in the IR between 800 and 2000 nm. In addition, when the nickel surface was irradiated in two-dimensional crossing scans by laser with different processing parameters, self-organized and shape-controllable structures of three-dimensional (3D) periodic arrays can be fabricated. Compared with ultrafast laser systems previously used for such processing, the nanosecond fiber laser used in this work is more cost-effective, compact and allows higher processing rates. This nickel surface structured technique may be applicable in optoelectronics, batteries industry, solar/wave absorbers, and wettability materials.

  18. The Nature of the UV/X-ray Absorber In PG 2302+029

    NASA Technical Reports Server (NTRS)

    Sabra, Bassem M.; Hamann, Fred; Jannuzi, Buell T.; George, Ian M.; Shields, Joseph C.

    2003-01-01

    We present Chandra X-ray observations of the radio-quiet QSO PG 2302+029. This quasar has a rare system of ultra-high velocity (-56,000 km s(exp -1) UV absorption lines that form in an outflow from the active nucleus. The Chandra data indicate that soft X-ray absorption is also present. We perform a joint UV and X-ray analysis, using photoionization calculations, to determine the nature of the absorbing gas. The UV and X-ray datasets were not obtained simultaneously. Nonetheless, our analysis suggests that the X-ray absorption occurs at high velocities in the same general region as the UV absorber. There are not enough constraints to rule out multi-zone models. In fact, the distinct broad and narrow UV line profiles clearly indicate that multiple zones are present. Our preferred estimates of the ionization and total column density in the X-ray absorber (logU = 1.6, N(sub eta) = 10(exp 22.4) cm (exp -2) over predict the O VI lambda lambda1032,1038 absorption unless the X-ray absorber is also outflowing at approximately 56,000 km s(exp-l), but they over predict the Ne VIII lambda lambda 770,780 absorption at all velocities. If we assume that the X-ray absorbing gas is outflowing at the same velocity of the UV-absorbing wind and that the wind is radiatively accelerated, then the outflow must be launched at a radius of less than or equal to 10(exp 15) cm from the central continuum source. The smallness of this radius casts doubts on the assumption of radiative acceleration.

  19. Growth of a mat-forming photograph in the presence of UV radiation

    NASA Technical Reports Server (NTRS)

    Pierson, Beverly K.; Ruff, A. L.

    1989-01-01

    Knowledge of the survival and growth of microorganisms in the presence of ultraviolet radiation is important for understanding the potential for life to exist in environments exposed to high fluxes of UV radiation. The growth of a mat-forming phototrophic prokaryote, Chloroflexus aurantiacus, was examined in the presence of continuous high UV irradiation under otherwise optimal growth conditions. Evidence was sought for an intrinsic ability to grow in the presence of UV radiation in a carefully chosen organism known to be unusually resistant to UV radiation, of ancient lineage among the phototrophs, to resemble ancient microfossils from the Precambrian, and to be a mat-former. It was assumed that even a high intrinsic UV resistance would be inadequate for survival and growth in the presence of very high UV fluxes, and iron (Fe3+) was selected as a common, abundant UV-absorbing substance that might protest microorganisms growing in or under iron-bearing sediments. The effectiveness of Fe(3+) was tested as a UV protective agent at low concentrations in thin layers. It was concluded that intrinsic UV resistance in some organisms may account for growth, not just survival, of these organisms when exposed to high UV fluxes under otherwise optimal growth conditions in an anoxic environment. It was also concluded that Fe(3+) bearing sediments of 1 mm or less in thickness may provide an adequate shield against high UV fluxes permitting the growth of microorganisms just below their surface. As long as growth conditions were met, then the evolution and development of microorganisms would not be hampered by high UV fluxes impinging upon the surface of iron-bearing sediments.

  20. Variations of aerosol size distribution, chemical composition and optical properties from roadside to ambient environment: A case study in Hong Kong, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Ning, Zhi; Shen, Zhenxing; Li, Guoliang; Zhang, Junke; Lei, Yali; Xu, Hongmei; Sun, Jian; Zhang, Leiming; Westerdahl, Dane; Gali, Nirmal Kumar; Gong, Xuesong

    2017-10-01

    This study investigated the ;roadside-to-ambient; evolution of particle physicochemical and optical properties in typical urban atmospheres of Hong Kong through collection of chemically-resolved PM2.5 data and PM2.5 size distribution at a roadside and an ambient site. Roadside particle size distribution showed typical peaks in the nuclei mode (30-40 nm) while ambient measurements peaked in the Aitken mode (50-70 nm), revealing possible condensation and coagulation growth of freshly emitted particles during aging processes. Much higher levels of anthropogenic chemical components, i.e. nitrate, sulfate, ammonium, organic carbon (OC) and elemental carbon (EC), but lower levels of OC/EC and secondary inorganic aerosols (SIA)/EC ratios appeared in roadside than ambient particles. The high OC/EC and SIA/EC ratios in ambient particles implied high contributions from secondary aerosols. Black carbon (BC), a strong light absorbing material, showed large variations in optical properties when mixed with other inorganic and organic components. Particle-bound polycyclic aromatic hydrocarbons (p-PAHs), an indicator of brown carbon (BrC), showed significant UV-absorbing ability. The average BC and p-PAHs concentrations were 3.8 and 87.6 ng m-3, respectively, at the roadside, but were only 1.5 and 18.1 ng m-3 at the ambient site, suggesting BC and p-PAHs concentrations heavily driven by traffic emissions. In contrast, PM2.5 UV light absorption coefficients (babs-BrC,370nm) at the ambient site (4.2 Mm-1) and at the roadside site (4.1 Mm-1) were similar, emphasizing that particle aging processes enhanced UV light-absorbing properties, a conclusion that was also supported by the finding that the Absorption Ångström coefficient (AAC) value at UV wavelengths (AAC_UV band) at the ambient site were ∼1.7 times higher than that at the roadside. Both aqueous reaction and photochemically produced secondary organic aerosol (SOA) for ambient aerosols contributed to the peak values of babs-BrC,370nm in ambient particles at midnight and around noon, highlighting that secondary BrC had different sources and particle aging in the atmosphere affected BrC and BC properties and related aerosol light absorption.

  1. Anthropogenic signature of sediment organic matter probed by UV-Visible and fluorescence spectroscopy and the association with heavy metal enrichment.

    PubMed

    He, Wei; Lee, Jong-Hyun; Hur, Jin

    2016-05-01

    Sediment organic matter (SOM) was extracted in an alkaline solution from 43 stream sediments in order to explore the anthropogenic signatures. The SOM spectroscopic characteristics including excitation-emission matrix (EEM)-parallel factor analysis (PARAFAC) were compared for five sampling site groups classified by the anthropogenic variables of land use, population density, the loadings of organics and nutrients, and metal enrichment. The conventional spectroscopic characteristics including specific UV absorbance, absorbance ratio, and humification index did not properly discriminate among the different cluster groups except in the case of metal enrichment. Of the four decomposed PARAFAC components, humic-like and tryptophan-like fluorescence responded negatively and positively, respectively, to increasing degrees of the anthropogenic variables except for land use. The anthropogenic enrichment of heavy metals was positively associated with the abundance of tryptophan-like component. In contrast, humic-like component, known to be mostly responsible for metal binding, exhibited a decreasing trend corresponding with metal enrichment. These conflicting trends can be attributed to the overwhelmed effects of the coupled discharges of heavy metals and organic pollutants into sediments. Our study suggests that the PARAFAC components can be used as functional signatures to probe the anthropogenic influences on sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of UV-B Radiation and Desiccation Stress on Photoprotective Compounds Accumulation in Marine Leptolyngbya sp.

    PubMed

    Joshi, Devika; Mohandass, C; Dhale, Mohan

    2018-01-01

    Increased awareness regarding the harmful effects of ultraviolet (UV)-B radiation has led to the search for new sources of natural UV-B protecting compounds. Mycosporine-like amino acids are one of such promising compounds found in several organisms. Cyanobacteria are ideal organisms for isolation of these compounds due to their compatibility and adaptability to thrive under harsh environmental conditions. In the following investigation, we report the production of shinorine in Leptolyngbya sp. isolated from the intertidal region. Based on the spectral characteristics and liquid chromatography-mass spectrometry analysis, the UV-absorbing compound was identified as shinorine. To the best of our knowledge, this is the first report on the occurrence of shinorine in Leptolyngbya sp. We also investigated the effect of artificial UV-B radiation and periodic desiccation on chlorophyll-a, total carotenoids, and mycosporine-like amino acids (MAAs) production. The UV-B radiation had a negative effect on growth and chlorophyll concentration, whereas it showed an inductive effect on the production of total carotenoids and MAAs. Desiccation along with UV-B radiation led to an increase in the concentration of photoprotective compounds. These results indicate that carotenoids and MAAs thus facilitate cyanobacteria to avoid and protect themselves from the deleterious effects of UV-B and desiccation.

  3. Molecular Characterization of Brown Carbon (BrC) Chromophores in Secondary Organic Aerosol Generated From Photo-Oxidation of Toluene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Peng; Liu, Jiumeng; Shilling, John E.

    Atmospheric Brown carbon (BrC) is a significant contributor to light absorption and climate forcing. However, little is known about a fundamental relationship between the chemical composition of BrC and its optical properties. In this work, light-absorbing secondary organic aerosol (SOA) was generated in the PNNL chamber from toluene photo-oxidation in the presence of NOx (Tol-SOA). Molecular structures of BrC components were examined using nanospray desorption electrospray ionization (nano-DESI) and liquid chromatography (LC) combined with UV/Vis spectroscopy and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). The chemical composition of BrC chromophores and the light absorption properties of toluene SOA (Tol-SOA) dependmore » strongly on the initial NOx concentration. Specifically, Tol-SOA generated under high-NOx conditions (defined here as initial NOx/toluene of 5/1) appears yellow and mass absorption coefficient of the bulk sample (MACbulk@365nm = 0.78 m2 g-1) is nearly 80 fold higher than that measured for the Tol-SOA sample generated under low-NOx conditions (NOx/toluene < 1/300). Fifteen compounds, most of which are nitrophenols, are identified as major BrC chromophores responsible for the enhanced light absorption of Tol-SOA material produced in the presence of NOx. The integrated absorbance of these fifteen chromophores accounts for 40-60% of the total light absorbance by Tol-SOA at wavelengths between 300 nm and 500 nm. The combination of tandem LC-UV/Vis-ESI/HRMS measurements provides an analytical platform for predictive understanding of light absorption properties by BrC and their relationship to the structure of individual chromophores. General trends in the UV/vis absorption by plausible isomers of the BrC chromophores were evaluated using theoretical chemistry calculations. The molecular-level understanding of BrC chemistry is helpful for better understanding the evolution and behavior of light absorbing aerosols in the atmosphere.« less

  4. Promotion by humus-reducing bacteria for the degradation of UV254 absorbance in reverse-osmosis concentrates pretreated with O3-assisted UV-Fenton method.

    PubMed

    Xia, Jiaohui; Zhang, Hui; Ding, Shaoxuan; Li, Changyu; Ding, Jincheng; Lu, Jie

    2017-07-12

    The primary pollutants in reverse-osmosis concentrates (ROC) are the substances with the UV absorbance at 254 nm (UV 254 ), which is closely related to humic substances that can be degraded by humus-reducing bacteria. This work studied the degradation characteristics of humus-reducing bacteria in ROC treatment. The physiological and biochemical characteristics of humus-reducing bacteria were investigated, and the effects of pH values and electron donors on the reduction of humic analog, antraquinone-2, 6-disulfonate were explored to optimize the degradation. Furthermore, the O 3 -assisted UV-Fenton method was applied for the pretreatment of ROC, and the degradation of UV 254 absorbance was apparently promoted with their removal rate, reaching 84.2% after 10 days of degradation by humus-reducing bacteria.

  5. Integrating Elemental Analysis and Chromatography Techniques by Analyzing Metal Oxide and Organic UV Absorbers in Commercial Sunscreens

    ERIC Educational Resources Information Center

    Quin~ones, Rosalynn; Bayline, Jennifer Logan; Polvani, Deborah A.; Neff, David; Westfall, Tamara D.; Hijazi, Abdullah

    2016-01-01

    A series of undergraduate laboratory experiments that utilize reversed-phase HPLC separation, inductively coupled plasma spectroscopy (ICP), and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) are described for the analysis of commercial sunscreens. The active ingredients of many sunscreen brands include zinc or titanium…

  6. [Research progress and direction of atmospheric brown carbon].

    PubMed

    Yan, Cai-Qing; Zheng, Mei; Zhang, Yuan-Hang

    2014-11-01

    Organic aerosol is one of the most important components of atmospheric aerosols. In recent years, organic aerosol has been found and proved to be light absorbing in UV-Visible region. Light absorbing organic carbon (also named as brown carbon) has been one of the forefronts in the field of atmospheric research. Its light absorption contributions to radiative forcing, regional air quality, and global climate change have drawn much attention. Regional air pollution is complex in China. Frequent visibility decline and severe regional haze episodes occurred since January 2013. Previous studies showed high amount of estimated columnar light-absorbing organic carbon in China, and according to current research findings, major sources of fine particulate matter in China (e. g. biomass burning and fossil fuel combustion) were also recognized as the main sources for brown carbon. Considering the high abundance of brown carbon in atmosphere, there is a great need to reconsider and reevaluate contributions of organic aerosol to light absorption, especially its role in haze formation and radiative forcing. However, up to now, basic researches on light absorbing organic carbon are still limited in China. This study aimed to elucidate the need for basic research on brown carbon, summarize previous studies and research progress from different aspects such as sources, composition, measurement, mass concentration distribution, optical property, radiative forcing of brown carbon, point out the existing problems and deficiencies, and put forward suggestions for future study.

  7. Novel Organic Phototransistor-Based Nonvolatile Memory Integrated with UV-Sensing/Green-Emissive Aggregation Enhanced Emission (AEE)-Active Aromatic Polyamide Electret Layer.

    PubMed

    Cheng, Shun-Wen; Han, Ting; Huang, Teng-Yung; Chang Chien, Yu-Hsin; Liu, Cheng-Liang; Tang, Ben Zhong; Liou, Guey-Sheng

    2018-05-30

    A novel aggregation enhanced emission (AEE)-active polyamide TPA-CN-TPE with a high photoluminesence characteristic was successfully synthesized by the direct polymerization of 4-cyanotriphenyl diamine (TPA-CN) and tetraphenylethene (TPE)-containing dicarboxylic acid. The obtained luminescent polyamide plays a significant role as the polymer electret layer in organic field-effect transistors (OFETs)-type memory. The strong green emission of TPA-CN-TPE under ultraviolet (UV) irradiation can be directly absorbed by the pentacene channel, displaying a light-induced programming and voltage-driven erasing organic phototransistor-based nonvolatile memory. Memory window can be effectively manipulated between the programming and erasing states by applying UV light illumination and electrical field, respectively. The photoinduced memory behavior can be maintained for over 10 4 s between these two states with an on/off ratio of 10 4 , and the memory switching can be steadily operated for many cycles. With high photoresponsivity ( R) and photosensitivity ( S), this organic phototransistor integrated with AEE-active polyamide electret layer could serve as an excellent candidate for UV photodetectors in optical applications. For comparison, an AEE-inactive aromatic polyimide TPA-PIS electret with much weaker solid-state emission was also applied in the same OFETs device architecture, but this device did not show any UV-sensitive and UV-induced memory characteristics, which further confirmed the significance of the light-emitting capability of the electret layer.

  8. Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille.

    PubMed

    Gorton, Holly L; Vogelmann, Thomas C

    2003-06-01

    Aplanospores of Chlamydomonas nivalis are frequently found in high-altitude, persistent snowfields where they are photosynthetically active despite cold temperatures and high levels of visible and ultraviolet (UV) radiation. The goals of this work were to characterize the UV environment of the cells in the snow and to investigate the existence and localization of screening compounds that might prevent UV damage. UV irradiance decreased precipitously in snow, with UV radiation of wavelengths 280-315 nm and UV radiation of wavelengths 315-400 nm dropping to 50% of incident levels in the top 1 and 2 cm, respectively. Isolated cell walls exhibited UV absorbance, possibly by sporopollenin, but this absorbance was weak in images of broken or plasmolyzed cells observed through a UV microscope. The cells also contained UV-absorbing cytoplasmic compounds, with the extrachloroplastic carotenoid astaxanthin providing most of the screening. Additional screening compound(s) soluble in aqueous methanol with an absorption maximum at 335 nm played a minor role. Thus, cells are protected against potentially high levels of UV radiation by the snow itself when they live several centimeters beneath the surface, and they rely on cellular screening compounds, chiefly astaxanthin, when located near the surface where UV fluxes are high.

  9. Altered UV absorbance and cytotoxicity of chlorinated sunscreen agents.

    PubMed

    Sherwood, Vaughn F; Kennedy, Steven; Zhang, Hualin; Purser, Gordon H; Sheaff, Robert J

    2012-12-01

    Sunscreens are widely utilized due to the adverse effects of ultraviolet (UV) radiation on human health. The safety of their active ingredients as well as that of any modified versions generated during use is thus of concern. Chlorine is used as a chemical disinfectant in swimming pools. Its reactivity suggests sunscreen components might be chlorinated, altering their absorptive and/or cytotoxic properties. To test this hypothesis, the UV-filters oxybenzone, dioxybenzone, and sulisobenzone were reacted with chlorinating agents and their UV spectra analyzed. In all cases, a decrease in UV absorbance was observed. Given that chlorinated compounds can be cytotoxic, the effect of modified UV-filters on cell viability was examined. Chlorinated oxybenzone and dioxybenzone caused significantly more cell death than unchlorinated controls. In contrast, chlorination of sulisobenzone actually reduced cytotoxicity of the parent compound. Exposing a commercially available sunscreen product to chlorine also resulted in decreased UV absorbance, loss of UV protection, and enhanced cytotoxicity. These observations show chlorination of sunscreen active ingredients can dramatically decrease UV absorption and generate derivatives with altered biological properties.

  10. The two parallel photocycles of the Chlamydomonas sensory photoreceptor histidine kinase rhodopsin 1.

    PubMed

    Luck, Meike; Hegemann, Peter

    2017-10-01

    Histidine kinase rhodopsins (HKRs) belong to a class of unexplored sensory photoreceptors that share a similar modular architecture. The light sensing rhodopsin domain is covalently linked to signal-transducing modules and in some cases to a C-terminal guanylyl-cyclase effector. In spite of their wide distribution in unicellular organisms, very little is known about their physiological role and mechanistic functioning. We investigated the photochemical properties of the recombinant rhodopsin-fragment of Cr-HKR1 originating from Chlamydomonas reinhardtii. Our spectroscopic studies revealed an unusual thermal stability of the photoproducts with the deprotonated retinal Schiff base (RSB). Upon UV-irradiation these Rh-UV states with maximal absorbance in the UVA-region (Rh-UV) photochemically convert to stable blue light absorbing rhodopsin (Rh-Bl) with protonated chromophore. The heterogeneity of the sample is based on two parallel photocycles with the chromophore in C 15 =N-syn- or -anti-configuration. This report represents an attempt to decipher the underlying reaction schemes and interconversions of the two coexisting photocycles. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. The role of solar UV radiation in the ecology of alpine lakes.

    PubMed

    Sommaruga, R

    2001-09-01

    Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.

  12. Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water.

    PubMed

    Čehovin, Matej; Medic, Alojz; Scheideler, Jens; Mielcke, Jörg; Ried, Achim; Kompare, Boris; Žgajnar Gotvajn, Andreja

    2017-07-01

    Natural organic matter in drinking water is causing concern especially due to the formation of disinfection by-products (DBPs) by chlorine, as these are proven to have adverse health effects on consumers. In this research, humic acid was used as a source of dissolved organic carbon (DOC) in drinking water (up to 3mgL -1 ). The efficiency of DOC removal was studied by applying O 3 , H 2 O 2 /O 3 , H 2 O 2 /UV and O 3 /UV advanced oxidation processes (AOPs) alone and combined with hybrid hydrodynamic cavitation (HC), generated by an orifice plate, as this technology recently shows promising potential for the treatment of water, containing recalcitrant organic substances. It was observed that the combined treatment by HC could significantly affect the performance of the applied AOPs, with as little as 3-9 passes through the cavitation generators. For O 3 and H 2 O 2 dosages up to 2 and 4mgL -1 , respectively, and UV dosage up to 300mJcm -2 , HC enhanced DOC removal by 5-15% in all combinations, except for O 3 /UV AOPs. Overall, the potential benefits of HC for DOC removal were emphasized for low ratio between applied oxidants to DOC and high UV absorbance of the sample. Investigated DBPs formation potentials require special attention for H 2 O 2 /UV AOPs and combinations with HC. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Iohexol degradation in wastewater and urine by UV-based Advanced Oxidation Processes (AOPs): Process modeling and by-products identification.

    PubMed

    Giannakis, Stefanos; Jovic, Milica; Gasilova, Natalia; Pastor Gelabert, Miquel; Schindelholz, Simon; Furbringer, Jean-Marie; Girault, Hubert; Pulgarin, César

    2017-06-15

    In this work, an Iodinated Contrast Medium (ICM), Iohexol, was subjected to treatment by 3 Advanced Oxidation Processes (AOPs) (UV, UV/H 2 O 2 , UV/H 2 O 2 /Fe 2+ ). Water, wastewater and urine were spiked with Iohexol, in order to investigate the treatment efficiency of AOPs. A tri-level approach has been deployed to assess the UV-based AOPs efficacy. The treatment was heavily influenced by the UV transmittance and the organics content of the matrix, as dilution and acidification improved the degradation but iron/H 2 O 2 increase only moderately. Furthermore, optimization of the treatment conditions, as well as modeling of the degradation was performed, by step-wise constructed quadratic or product models, and determination of the optimal operational regions was achieved through desirability functions. Finally, global chemical parameters (COD, TOC and UV-Vis absorbance) were followed in parallel with specific analyses to elucidate the degradation process of Iohexol by UV-based AOPs. Through HPLC/MS analysis the degradation pathway and the effects the operational parameters were monitored, thus attributing the pathways the respective modifications. The addition of iron in the UV/H 2 O 2 process inflicted additional pathways beneficial for both Iohexol and organics removal from the matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Fingerprinting Dissolved Organic Carbon (DOC) Sources with Specific UV Absorbance (SUVA) and Fluorescence

    NASA Astrophysics Data System (ADS)

    van Verseveld, W. J.; Lajtha, K.; McDonnell, J. J.

    2007-12-01

    DOC is an important water quality constituent because it is an important food source for stream biota, it plays a significant role in metal toxicity and transport, and protects aquatic organisms by absorbing visible and UV light. However, sources of stream DOC and changes in DOC quality at storm and seasonal scales remain poorly understood. We characterized DOC concentrations and SUVA (as an indicator of aromaticity) at the plot, hillslope and catchment scale during and between five storm events over the period Fall 2004 until Spring 2005, in WS10, H.J. Andrews, Oregon, USA. This study site has hillslopes that issue directly into the stream. This enabled us to compare a trenched hillslope response to the stream response without the influence of a riparian zone. The main result of this study was that SUVA in addition to DOC was needed to fingerprint sources of DOC. Stream water and lateral subsurface flow showed a clockwise DOC and SUVA hysteresis pattern. Both organic horizon water and transient groundwater were characterized by high DOC concentrations and SUVA values, while DOC concentrations and SUVA values in soil water decreased with depth in the soil profile. This indicates transient groundwater was an important contributor to high DOC concentrations and SUVA values during storm events. During the falling limb of the hydrograph deep soil water and seepage groundwater based on SUVA values contributed significantly to lateral subsurface flow and stream water. Preliminary results showed that fluorescence of stream water and lateral subsurface flow continuously measured with a fluorometer was significantly related to UV-absorbance during a December storm event. Finally, SUVA of lateral subsurface flow was lower than SUVA of stream water at the seasonal scale, indicating a difference in mixing of water sources at the hillslope and catchment scale. Overall, our results show that SUVA and fluorescence are useful tracers for fingerprinting DOC sources.

  15. Design of tunable ultraviolet (UV) absorbance by controlling the Agsbnd Al co-sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Yuan; Chen, Lei; Wang, Yaxin; Zhang, Yongjun; Yang, Jinghai; Choi, Hyun Chul; Jung, Young Mee

    2018-05-01

    Changing the structure and composition of a material can alter its properties; hence, the controlled fabrication of metal nanostructures plays a key role in a wide range of applications. In this study, the structure of Agsbnd Al ordered arrays fabricated by co-sputtering deposition onto a monolayer colloidal crystal significantly increased its ultraviolet (UV) absorbance owing to a tunable localized surface plasmon resonance (LSPR) effect. By increasing the spacing between two nanospheres and the content of aluminum, absorbance in the UV region could be changed from UVA (320-400 nm) to UVC (200-275 nm), and the LSPR peak in the visible region gradually shifted to the UV region. This provides the potential for surface-enhanced Raman scattering (SERS) in both the UV and visible regions.

  16. Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass.

    PubMed

    Budisulistiorini, Sri Hapsari; Riva, Matthieu; Williams, Michael; Chen, Jing; Itoh, Masayuki; Surratt, Jason D; Kuwata, Mikinori

    2017-04-18

    Light-absorbing brown carbon (BrC) constituents of organic aerosol (OA) have been shown to significantly absorb ultraviolet (UV) and visible light and thus impact radiative forcing. However, molecular identification of the BrC constituents is still limited. In this study, we characterize BrC constituents at the molecular level in (i) aerosols emitted by combustion of peat, fern/leaf, and charcoal from Indonesia and (ii) ambient aerosols collected in Singapore during the 2015 haze episode. Aerosols were analyzed using ultra performance liquid chromatography instrument interfaced to a diode array detector and electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in the negative ion mode. In the laboratory-generated aerosols, we identified 41 compounds that can potentially absorb near-UV and visible wavelengths, such as oxygenated-conjugated compounds, nitroaromatics, and S-containing compounds. The sum of BrC constituents in peat, fern/leaf, and charcoal burning aerosols are 16%, 35%, and 28% of the OA mass, respectively, giving an average contribution of 24%. On average, the BrC constituents account for 0.4% of the ambient OA mass; however, large uncertainties in mass closure remain because of the lack of authentic standards. This study highlights the potential of light-absorbing BrC OA constituents from peat, fern/leaf, and charcoal burning and their importance in the atmosphere.

  17. Carbonaceous Aerosol Removal During Precipitation Events: Climate Implications

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Bridges, G. L.; Marchany-Rivera, A.; Begum, M.

    2009-12-01

    Atmospheric aerosols and their links to clouds are one of the main focus areas of the Department of Energy’s Atmospheric Systems Research, due to the fact that aerosols and clouds constitute the major uncertainties in radiative forcing that need to be reduced for more accurate modeling of climate, particularly regional climate. The impact of absorbing aerosols on radiative balance of the atmosphere will depend on their atmospheric lifetimes as well as their UV-visible absorption profiles. Aerosol lifetimes depend on the aerosols ability to take up water and grow to sufficient size to be either removed by gravitational settling or to act as cloud condensation nuclei and be removed by precipitation scavenging. The investigation of uv-visible absorbing aerosols is underway using a seven-channel aethalometer to evaluate the change in aerosol optical absorption during precipitation events. Angstrom absorption exponents (AAEs) are determined before, during, and after rain events to examine the impact on the aerosol absorption profiles anticipated by removal of the water soluble short-wave absorbing species (i.e. HULIS) that can be produced by photochemical oxidation of biogenic emissions (isoprene, monoterpenes, sesquiterpenes). Aerosol absorption data are presented from observations made at the University of Arkansas at Little Rock and other sites, which clearly show that a significant amount of absorbing carbon is not removed during rain events, and that the organic matter removed is likely secondary organics produced from biogenic precursors. The dissolved organic carbon measured in precipitation samples along with determinations of natural radionuclide tracers are also used to help examine the extent of carbonaceous aerosol removal by precipitation. The data are discussed in terms of the potential impacts of anthropogenic enhancement of aerosol absorption by secondary organic aerosols adding to atmospheric heating and changes in atmospheric dynamics. The potential impacts of these organic aerosol species as sources of organic carbon in surface waters is also addressed. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 and Grant No. DE-FG02-07-ER64329 as part of the Atmospheric Science Program.

  18. Analyzing Exonuclease-Induced Hyperchromicity by Uv Spectroscopy: An Undergraduate Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ackerman, Megan M.; Ricciardi, Christopher; Weiss, David; Chant, Alan; Kraemer-Chant, Christina M.

    2016-01-01

    An undergraduate biochemistry laboratory experiment is described that utilizes free online bioinformatics tools along with readily available exonucleases to study the effects of base stacking and hydrogen bonding on the UV absorbance of DNA samples. UV absorbance of double-stranded DNA at the ?[subscript max] is decreased when the DNA bases are…

  19. Corneal epithelium and UV-protection of the eye.

    PubMed

    Ringvold, A

    1998-04-01

    To study UV-absorption and UV-induced fluorescence in the bovine corneal epithelium. Spectrophotometry and spectrofluorimetry. The corneal epithelium absorbs UV-B radiation mainly owing to its content of protein, RNA, and ascorbate. Some of the absorbed energy is transformed to the less biotoxic UV-A radiation by fluorescence. RNA and ascorbate reduce tissue fluorescence. The corneal epithelium acts as a UV-filter, protecting internal eye structures through three different mechanisms: (1) Absorption of UV-B roughly below 310 nm wavelength. (2) Fluorescence-mediated ray transformation to longer wavelengths. (3) Fluorescence reduction. The extremely high ascorbate concentration in the corneal epithelium has a key role in two of these processes.

  20. Spectrophotometry of Artemisia tridentata to quantitatively determine subspecies

    USGS Publications Warehouse

    Richardson, Bryce; Boyd, Alicia; Tobiasson, Tanner; Germino, Matthew

    2018-01-01

    Ecological restoration is predicated on our abilities to discern plant taxa. Taxonomic identification is a first step in ensuring that plants are appropriately adapted to the site. An example of the need to identify taxonomic differences comes from big sagebrush (Artemisia tridentata). This species is composed of three predominant subspecies occupying distinct environmental niches, but overlap and hybridization are common in ecotones. Restoration of A. tridentata largely occurs using wildland collected seed, but there is uncertainty in the identification of subspecies or mix of subspecies from seed collections. Laboratory techniques that can determine subspecies composition would be desirable to ensure that subspecies match the restoration site environment. In this study, we use spectrophotometry to quantify chemical differences in the water-soluble compound, coumarin. Ultraviolet (UV) absorbance of A. tridentata subsp. vaseyana showed distinct differences among A.t. tridentata and wyomingensis. No UV absorbance differences were detected between A.t. tridentata and wyomingensis. Analyses of samples from > 600 plants growing in two common gardens showed that UV absorbance was unaffected by environment. Moreover, plant tissues (leaves and seed chaff) explained only a small amount of the variance. UV fluorescence of water-eluted plant tissue has been used for many years to indicate A.t. vaseyana; however, interpretation has been subjective. Use of spectrophotometry to acquire UV absorbance provides empirical results that can be used in seed testing laboratories using the seed chaff present with the seed to certify A. tridentata subspecies composition. On the basis of our methods, UV absorbance values 3.1 would indicate either A.t. tridentata or wyomingensis. UV absorbance values between 2.7 and 3.1 would indicate a mixture of A.t. vaseyana and the other two subspecies.

  1. Croconic acid - An absorber in the Venus clouds?

    NASA Technical Reports Server (NTRS)

    Hartley, Karen K.; Wolff, Andrew R.; Travis, Larry D.

    1989-01-01

    The absorbing species responsible for the UV cloud features and pale yellow hue of the Venus clouds is presently suggested to be the carbon monoxide-polymer croconic acid, which strongly absorbs in the blue and near-UV. Laboratory absorption-coefficient measurements of a dilute solution of croconic acid in sulfuric acid are used as the bases of cloud-scattering models; the Venus planetary albedo's observed behavior in the blue and near-UV are noted to be qualitatively reproduced. Attention is given to a plausible croconic acid-production mechanism for the Venus cloudtop region.

  2. Determining the refractive index of human hemoglobin solutions by Kramers-Kronig relations with an improved absorption model.

    PubMed

    Gienger, Jonas; Groß, Hermann; Neukammer, Jörg; Bär, Markus

    2016-11-01

    The real part of the refractive index of aqueous solutions of human hemoglobin is computed from their absorption spectra in the wavelength range 250-1100 nm using the Kramers-Kronig (KK) relations, and the corresponding uncertainty analysis is provided. The strong ultraviolet (UV) and infrared absorbance of the water outside this spectral range were taken into account in a previous study employing KK relations. We improve these results by including the concentration dependence of the water absorbance as well as by modeling the deep UV absorbance of hemoglobin's peptide backbone. The two free parameters of the model for the deep UV absorbance are fixed by a global fit.

  3. UV-A/blue-light responses in algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senger, H.; Hermsmeier, D.

    1994-12-31

    All life on earth depends on light. A variety of photoreceptors capture the light for a wide range of reactions. Photosynthetic organisms absorb the light necessary for energy transformation and charge separation facilitating photosynthesis. In addition to the bulk pigments there are a great diversity of photoreceptors present in minute concentrations that control development, metabolism and orientation of plants and microorganisms. Based on its spectral absorbance, the well-studied phytochrome system acts in the RL region as well as in the UV-A/BL region where the above mentioned reactions are mediated by a variety of photoreceptors whose natures are largely unknown. Phyllogeneticallymore » the UV-A/BL photoreceptors seem to be more ancient pigments that eventually were replaced by the phytochrome system. However, there are many reports that suggest a coaction between the UV-A/BL receptors and the phytochrome system. In several cases the UV-A/BL activation is the prerequisite for the phytochrome reaction. Historically it was the German botanist Julius Sachs who first discovered in 1864 that phototropism in plants was due to BL reactions. It took over 70 years until Bunning (1937) and Galston and Baker (1949) rediscovered the BL response. Since then, an ever-increasing attention has been paid to this effect. Two international conferences in 1979 and 1983 have been entirely dedicated to the BL phenomenon. In this contribution, the general aspect of UV-A/BL responses and especially the responsiveness of algae will be covered. There are numerous review articles covering the various aspects of UV-A/BL action and the photoreceptors involved.« less

  4. Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents.

    PubMed

    Chon, Kangmin; Salhi, Elisabeth; von Gunten, Urs

    2015-09-15

    In this study, the changes in UV absorbance at 254 nm (UVA254) and electron donating capacity (EDC) were investigated as surrogate indicators for assessing removal of micropollutants and bromate formation during ozonation of wastewater effluents. To measure the EDC, a novel method based on size exclusion chromatography followed by a post-column reaction was developed and calibrated against an existing electrochemical method. Low specific ozone doses led to a more efficient abatement of EDC than of UVA254. This was attributed to the abatement of phenolic moieties in the dissolved organic matter (DOM), which lose their EDC upon oxidation, but are partially transformed into quinones, which still absorb in the measured UV range. For higher specific ozone doses, the relative EDC abatement was lower than the relative UVA abatement, which can be explained by the oxidation of UV absorbing moieties (e.g. non-activated aromatic compounds), which contribute less to EDC. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), atenolol (ATE), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) varied significantly depending on their reactivity with ozone in the examined specific ozone dose range of 0-1.45 mgO3/mgDOC. The decrease of EE2 and CBZ with high ozone reactivity was linearly proportional to the reduction of the relative residuals of UVA254 and EDC. The abatement of ATE, BZF, IBU, and pCBA with intermediate to low ozone reactivities was not significant in a first phase (UVA254/UVA254,0 = 1.00-0.70; EDC/EDC0 = 1.00-0.56) while their abatement was more efficient than the degradation of the relative residual UVA254 and much more noticeable than the degradation of the relative residual EDC in a second phase (UVA254/UVA254,0 = 0.70-0.25; EDC/EDC0 = 0.56-0.25) because the partially destroyed UV absorbing and electron donating DOM moieties become recalcitrant to ozone attack. Bromate formation was pronounced for specific ozone doses >0.25 mgO3/mgDOC. At these ozone doses, the residual DOM competes less with bromide for ozone as the electron-rich DOM moieties are almost completely degraded. Overall, these results imply that a combination of the relative residual UVA254 and EDC more truly reflects the intrinsic reactivity of DOM associated with the removal of micropollutants and bromate formation than the single use of the UV absorbance-based surrogate indicators. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Discovery of Associated Absorption Lines in an X-Ray Warm Absorber: Hubble Space Telescope Faint Object Spectrograph Observations of MR 2251-178

    NASA Technical Reports Server (NTRS)

    Monier, Eric M.; Mathur, Smita; Wilkes, Belinda; Elvis, Martin

    2001-01-01

    The presence of a 'warm absorber' was first suggested to explain spectral variability in an X-ray spectrum of the radio-quiet quasi-stellar object (QSO) MR 2251-178. A unified picture, in which X-ray warm absorbers and 'intrinsic' UV absorbers are the same, offers the opportunity to probe the nuclear environment of active galactic nuclei. To test this scenario and understand the physical properties of the absorber, we obtained a UV spectrum of MR 2251-178 with the Faint Object Spectrograph on board the Hubble Space Telescope (HST). The HST spectrum clearly shows absorption due to Lyalpha, N v, and C IV, blueshifted by 300 km s(exp -1) from the emission redshift of the QSO. The rarity of both X-ray and UV absorbers in radio-quiet QSOs suggests these absorbers are physically related, if not identical. Assuming the unified scenario, we place constraints on the physical parameters of the absorber and conclude the mass outflow rate is essentially the same as the accretion rate in MR 2251-178.

  6. Astrophysical and biological constraints on radiopanspermia.

    PubMed

    Secker, J; Wesson, P S; Lepock, J R

    1996-08-01

    We have carried out a series of calculations involving bacteria and viruses embedded in dust grains, which are ejected from our solar system by radiation pressure and travel through space to other star systems. Under many conditions this type of panspermia is impractical, primarily because the ultraviolet (UV) radiation of the present Sun inactivates the micro-organisms. However, if the organisms are shielded by an absorbing material like carbon and if ejection takes place in the red-giant phase of a one solar mass star like our Sun, there is a significant probability that the micro-organisms can reach another star system alive (i.e. with only sub-lethal damage from UV and ionizing radiation). In addition to panspermia with viable micro-organisms, it is possible to seed the Galaxy with inactivated ones whose DNA and RNA fragments may provide the initial information necessary to start biological evolution in favourable environments.

  7. Optimized treatment conditions for textile wastewater reuse using photocatalytic processes under UV and visible light sources.

    PubMed

    Starling, Maria Clara V M; Castro, Luiz Augusto S; Marcelino, Rafaela B P; Leão, Mônica M D; Amorim, Camila C

    2017-03-01

    In this study, photo-Fenton systems using visible light sources with iron and ferrioxalate were tested for the DOC degradation and decolorization of textile wastewater. Textile wastewaters originated after the dyeing stage of dark-colored tissue in the textile industry, and the optimization of treatment processes was studied to produce water suitable for reuse. Dissolved organic carbon, absorbance, turbidity, anionic concentrations, carboxylic acids, and preliminary cost analysis were performed for the proposed treatments. Conventional photo-Fenton process achieved near 99 % DOC degradation rates and complete absorbance removal, and no carboxylic acids were found as products of degradation. Ferrioxalate photo-Fenton system achieved 82 % of DOC degradation and showed complete absorbance removal, and oxalic acid has been detected through HPLC analysis in the treated sample. In contrast, photo-peroxidation with UV light was proved effective only for absorbance removal, with DOC degradation efficiency near 50 %. Treated wastewater was compared with reclaimed water and had a similar quality, indicating that these processes can be effectively applied for textile wastewater reuse. The results of the preliminary cost analysis indicated costs of 0.91 to 1.07 US$ m -3 for the conventional and ferrioxalate photo-Fenton systems, respectively. Graphical Abstract ᅟ.

  8. Bacterial Sunscreen: Layer-by-Layer Deposition of UV-Absorbing Polymers on Whole-Cell Biosensors (POSTPRINT)

    DTIC Science & Technology

    2012-06-13

    mycosporine - like amino acids that absorb in the UV range and can quench UV-induced intracellular free radicals.2,3 Common in both microorganisms and higher...oxygen, which will react with amino acid side chains and reduce protein stability. GFPuv is excited by long-wave UV and requires ionization for...vinyl sulfate, poly-4-styrenesulfonic acid , and humic acid ) were used to encapsulate E. coli cells expressing green fluorescent protein (GFP) either

  9. Theoretical insights on flavanones as antioxidants and UV filters: A TDDFT and NLMO study.

    PubMed

    Ajmala Shireen, P; Abdul Mujeeb, V M; Muraleedharan, K

    2017-05-01

    UV radiations can cause several irritations to the skin like sunburn, photo aging and even skin cancer. Sunscreens are widely used to protect the skin against these harmful radiations. One of the ingredients present in these sunscreens are organic molecules capable of absorbing these harmful radiations. Recently, the search is on for antioxidant molecules which can act as UV filters as they can facilitate photo protection. In this study, a computational investigation based on density functional theory (DFT) is attempted on flavanones namely pinocembrin, pinostrobin and alpinetin found in Boesenbergia pandurata. Several quantum chemical descriptors are computed to understand the antioxidant potentiality of these molecules. Quantum chemical descriptors of these flavanone molecules are found to be comparable to that of well-known anti-oxidant quercetin. UV response of these molecules are studied using time dependent density functional theory (TD-DFT) formalism and by means of natural bond orbital (NBO) theory. It could be seen that these molecules exhibit a broad absorption in the UV region 270-390nm. This falls exactly in the region of harmful UVB and UVA radiation. Thus, these molecules have the potential to absorb the harmful UV radiation. From NLMO cluster studies, the orbital contribution to absorption is explained. In flavanones, unlike other classes of flavonoids, there is a discontinuity in the electron conjugation due to the absence of C2C3 double bond. This might be the key structural feature that leads to the absorption of these molecules to be centered around the UV region. These molecules can thus be treated as promising candidates for antioxidant UV filters in sunscreens. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Far Ultraviolet Spectroscopic Explorer Observations of the Seyfert 1.5 Galaxy NGC 5548 in a Low State

    NASA Technical Reports Server (NTRS)

    Brotherton, M. S.; Green, R. F.; Kriss, G. A.; Oegerle, W.; Kaiser, M. E.; Zheng, W.; Hutchings, J. B.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present far-ultraviolet spectra of the Seyfert 1.5 galaxy NGC 5548 obtained in 2000 June with the Far Ultraviolet Spectroscopic Explorer (FUSE). Our data span the observed wavelength range 915-1185 A at a resolution of approximately 20 km s(exp -1). The spectrum shows a weak continuum and emission from O VI (lambda)(lambda)1032, 1038, C III (lambda)977, and He II (lambda)1085. The FUSE data were obtained when the AGN (Active Galactic Nuclei) was in a low state, which has revealed strong, narrow O VI emission lines. We also resolve intrinsic, associated absorption lines of O VI and the Lyman series. Several distinct kinematic components are present, spanning a velocity range of approximately 0 to -1300 km s(exp -1) relative to systemic, with kinematic structure similar to that seen in previous observations of longer wavelength ultraviolet (UV) lines. We explore the relationships between the far-UV (ultraviolet) absorbers and those seen previously in the UV and X-rays. We find that the high-velocity UV absorption component is consistent with being low-ionization, contrary to some previous claims, and is consistent with its non-detection in high-resolution X-ray spectra. The intermediate velocity absorbers, at -300 to -400 km s(exp -1), show H I and O VI column densities consistent with having contributions from both a high-ionization X-ray absorber and a low-ionization UV absorber. No single far-UV absorbing component can be solely identified with the X-ray absorber.

  11. Submersible UV-Vis Spectroscopy for Quantifying Streamwater Organic Carbon Dynamics: Implementation and Challenges before and after Forest Harvest in a Headwater Stream

    PubMed Central

    Jollymore, Ashlee; Johnson, Mark S.; Hawthorne, Iain

    2012-01-01

    Organic material, including total and dissolved organic carbon (DOC), is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro∷lyzer model, s∷can, Vienna, Austria) to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada). Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps). DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss. PMID:22666002

  12. Submersible UV-Vis spectroscopy for quantifying streamwater organic carbon dynamics: implementation and challenges before and after forest harvest in a headwater stream.

    PubMed

    Jollymore, Ashlee; Johnson, Mark S; Hawthorne, Iain

    2012-01-01

    Organic material, including total and dissolved organic carbon (DOC), is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro::lyzer model, s::can, Vienna, Austria) to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada). Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps). DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss.

  13. Responses of a marine red tide alga Skeletonema costatum (Bacillariophyceae) to long-term UV radiation exposures.

    PubMed

    Wu, Hongyan; Gao, Kunshan; Wu, Haiyan

    2009-02-09

    UV radiation (280-400 nm) is known to affect phytoplankton in negative, neutral and positive ways depending on the species or levels of irradiation energy. However, little has been documented on how photosynthetic physiology and growth of red tide alga respond to UVR in a long-term period. We exposed the cells of the marine red tide diatom Skeletonema costatum for 6 days to simulated solar radiations with UV-A (320-400 nm) or UV-A+UV-B (295-400 nm) and examined their changes in photosynthesis and growth. Presence of UV-B continuously reduced the effective photosynthetic quantum yield of PSII, and resulted in complete growth inhibition and death of cells. When UV-B or UV-B+UV-A was screened off, the growth rate decreased initially but regained thereafter. UV-absorbing compounds and carotenoids increased in response to the exposures with UVR. However, mechanisms for photoprotection associated with the increased carotenoids or UV-absorbing compounds were not adequate under the continuous exposure to a constant level of UV-B (0.09 Wm(-2), DNA-weighted). In contrast, under solar radiation screened off UV-B, the photoprotection was first accomplished by an initial increase of carotenoids and a later increase in UV-absorbing compounds. The overall response of this red tide alga to prolonged UV exposures indicates that S. costatum is a UV-B-sensitive species and increased UV-B irradiance would influence the formation of its blooms.

  14. Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.

    PubMed

    Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen

    2013-01-01

    Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum. © 2013 The American Society of Photobiology.

  15. Implications of effluent organic matter and its hydrophilic fraction on zinc(II) complexation in rivers under strong urban pressure: aromaticity as an inaccurate indicator of DOM-metal binding.

    PubMed

    Louis, Yoann; Pernet-Coudrier, Benoît; Varrault, Gilles

    2014-08-15

    The zinc binding characteristics of dissolved organic matter (DOM) fractions from the Seine River Basin were studied after being separated and extracted according to their polarity: hydrophobic, transphilic, and hydrophilic. The applied experimental methodology was based on a determination of labile zinc species by means of differential pulse anodic stripping voltammetry (DPASV) at increasing concentrations of total zinc on a logarithmic scale and at fixed levels of: pH, ionic strength, and temperature. Fitting the DOM fractions with two discrete classes of ligands successfully allowed determining the conditional zinc binding constants (Ki) as well as total ligand density (LiT). The binding constants obtained for each DOM fraction were then compared and discussed with respect to the hydrophobic/hydrophilic nature and sample origin. Results highlighted a strong complexation of zinc to the effluent organic matter and especially the most hydrophilic fraction, which also displayed a very low specific UV absorbance. Although the biotic ligand model takes into account the quality of DOM through UV absorbance in the predictions of metal bioavailability and toxicity, this correction is not efficient for urban waters. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Photocatalytic oxidation of organic compounds via waveguide-supported titanium dioxide films

    NASA Astrophysics Data System (ADS)

    Miller, Lawrence W.

    A photochemical reactor based on titanium dioxide (TiO2)-coated silica optical fibers was constructed to explore the use of waveguide-supported TiO2 films for photocatalytic oxidation of organic compounds. The reactor was used for the photocatalytic oxidation of 4-chlorophenol in water. It was confirmed that TiO2 films could be securely attached to silica optical fibers. The 4-chlorophenol (100 mumol/L in water) was successfully oxidized on the TiO2 surface when UV light (310 nm--380 nm) was propagated through the fibers to the films. Rates of 4-chlorophenol oxidation and UV light flux to the fibers were measured. The quantum efficiency of 4-chlorophenol oxidation [defined as the change in 4-chlorophenol concentration divided by the UV light absorbed by the catalyst] was determined as a function of TiO2 catalyst film thickness and internal incident angle of propagating UV light. A maximum quantum efficiency of 2.8% was measured when TiO2 film thickness was ca. 80 nm and the maximum internal incident angle of propagating light was 84°. Quantum efficiency increased with increasing internal angle of incidence of propagating light and decreased with TiO2 film thickness. UV-Visible internal reflection spectroscopy was used to determine whether UV light propagated through TiO2-coated silica waveguides in an ATR mode. Propagation of UV light in an ATR mode was confirmed by the similarities between internal reflection spectra of phenolphthalein obtained with uncoated and TiO2-coated silica crystals. Planar silica waveguides coated with TiO2 were employed in a photocatalytic reactor for the oxidation of formic acid (833 mumol/L in water). It was shown that the quantum yield of formic acid oxidation [defined as the moles of formic acid oxidized divided by the moles of UV photons absorbed by the catalyst] on the waveguide-supported TiO2 surface is enhanced when UV light propagates through the waveguides in an ATR mode. A maximum quantum yield of 3.9% was found for formic acid oxidation on silica waveguides. The waveguides were coated with 150 nm of TiO2 and activated with UV light (lambdamax = 360 nm) propagating through the waveguides at an internal incident angle of 68°.

  17. Light Absorptive Properties of Articular Cartilage, ECM Molecules, Synovial Fluid, and Photoinitiators as Potential Barriers to Light-Initiated Polymer Scaffolding Procedures.

    PubMed

    Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A

    2017-06-01

    Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.

  18. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    PubMed

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  19. Model of radiation transmittance by inorganic fouling on UV reactor lamp sleeves.

    PubMed

    Wait, Isaac W; Blatchley, Ernest R

    2010-11-01

    The efficacy of UV disinfection of water depends on the ability of radiation to pass from UV lamps through the quartz sleeves that encase them; the accumulation of metal-containing foulants on sleeve surfaces inhibits disinfection by absorbing radiation that would otherwise be available for inactivation. In a series of experiments, the composition and quantity of sleeve foulants were studied relative to water chemistry and sleeve transmittance. Findings indicate that iron and calcium dominate fouling, with elevated fouling activity by iron, aluminum, manganese, and zinc. A regression-based modeling approach was used to characterize and quantify the effects of foulant metals on UV absorbance. The molar extinction coefficient for iron was found to be more than 3 times greater than that of calcium. Iron's relatively high activity in fouling reactions, elevated capacity to absorb UV, and reduced solubility under oxidizing conditions makes it a fouling precursor of particular concern, with respect to potential for sleeve fouling in UV reactors.

  20. From UV to Near-Infrared Light-Responsive Metal-Organic Framework Composites: Plasmon and Upconversion Enhanced Photocatalysis.

    PubMed

    Li, Dandan; Yu, Shu-Hong; Jiang, Hai-Long

    2018-05-15

    The exploitation of photocatalysts that harvest solar spectrum as broad as possible remains a high-priority target yet grand challenge. In this work, for the first time, metal-organic framework (MOF) composites are rationally fabricated to achieve broadband spectral response from UV to near-infrared (NIR) region. In the core-shell structured upconversion nanoparticles (UCNPs)-Pt@MOF/Au composites, the MOF is responsive to UV and a bit visible light, the plasmonic Au nanoparticles (NPs) accept visible light, whereas the UCNPs absorb NIR light to emit UV and visible light that are harvested by the MOF and Au once again. Moreover, the MOF not only facilitates the generation of "bare and clean" Au NPs on its surface and realizes the spatial separation for the Au and Pt NPs, but also provides necessary access for catalytic substrates/products to Pt active sites. As a result, the optimized composite exhibits excellent photocatalytic hydrogen production activity (280 µmol g -1 h -1 ) under simulated solar light, and the involved mechanism of photocatalytic H 2 production under UV, visible, and NIR irradiation is elucidated. Reportedly, this is an extremely rare study on photocatalytic H 2 production by light harvesting in all UV, visible, and NIR regions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ultraviolet absorbing compounds provide a rapid response mechanism for UV protection in some reef fish.

    PubMed

    Braun, C; Reef, R; Siebeck, U E

    2016-07-01

    The external mucus surface of reef fish contains ultraviolet absorbing compounds (UVAC), most prominently Mycosporine-like Amino Acids (MAAs). MAAs in the external mucus of reef fish are thought to act as sunscreens by preventing the damaging effects of ultraviolet radiation (UVR), however, direct evidence for their protective role has been missing. We tested the protective function of UVAC's by exposing fish with naturally low, Pomacentrus amboinensis, and high, Thalassoma lunare, mucus absorption properties to a high dose of UVR (UVB: 13.4W∗m(-2), UVA: 6.1W∗m(-2)) and measuring the resulting DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). For both species, the amount of UV induced DNA damage sustained following the exposure to a 1h pulse of high UVR was negatively correlated with mucus absorbance, a proxy for MAA concentration. Furthermore, a rapid and significant increase in UVAC concentration was observed in P. amboinensis following UV exposure, directly after capture and after ten days in captivity. No such increase was observed in T. lunare, which maintained relatively high levels of UV absorbance at all times. P. amboinensis, in contrast to T. lunare, uses UV communication and thus must maintain UV transparent mucus to be able to display its UV patterns. The ability to rapidly alter the transparency of mucus could be an important adaptation in the trade off between protection from harmful UVR and UV communication. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Light absorption of organic aerosol from pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  3. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  4. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    NASA Astrophysics Data System (ADS)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  5. Mycosporine-Like Amino Acids and Their Derivatives as Natural Antioxidants

    PubMed Central

    Wada, Naoki; Sakamoto, Toshio; Matsugo, Seiichi

    2015-01-01

    Mycosporine-like amino acids (MAAs) are water-soluble molecules that absorb UV-A and UV-B radiation and disperse the energy as heat. MAAs show great diversity in their molecular structures, which exhibit a range of molecular weights spanning 188 to 1050 Daltons. MAAs are utilized in a wide variety of organisms including prokaryotes and eukaryotic micro-organisms that inhabit aquatic, terrestrial, and marine environments. These features suggest that MAAs are stable and fundamental molecules that allow these organisms to live under UV irradiation. MAAs are thought to have been greatly important to ancient forms of life on Earth, functioning as a primary sunscreen to reduce short-wavelength light. Structurally different MAAs might have been developed in MAA-producing organisms during their environmental adaptation. Harmful irradiation directly damages biomolecules, including lipids, proteins and DNA, and induces oxidative stress through radical-propagating processes. Thus, MAAs are expected to play an additional role in the antioxidant system. This review focuses on MAAs with radical scavenging activities. To cover all the reported MAAs known thus far, we surveyed the CAS database and have summarized the structures and the chemical and physical properties of these MAAs, including their antioxidant activities. PMID:26783847

  6. Reaction behaviors of decomposition of monocrotophos in aqueous solution by UV and UV/O processes.

    PubMed

    Ku, Y; Wang, W; Shen, Y S

    2000-02-01

    The decomposition of monocrotophos (cis-3-dimethoxyphosphinyloxy-N-methyl-crotonamide) in aqueous solution by UV and UV/O(3) processes was studied. The experiments were carried out under various solution pH values to investigate the decomposition efficiencies of the reactant and organic intermediates in order to determine the completeness of decomposition. The photolytic decomposition rate of monocrotophos was increased with increasing solution pH because the solution pH affects the distribution and light absorbance of monocrotophos species. The combination of O(3) with UV light apparently promoted the decomposition and mineralization of monocrotophos in aqueous solution. For the UV/O(3) process, the breakage of the >C=C< bond of monocrotophos by ozone molecules was found to occur first, followed by mineralization by hydroxyl radicals to generate CO(3)(2-), PO4(3-), and NO(3)(-) anions in sequence. The quasi-global kinetics based on a simplified consecutive-parallel reaction scheme was developed to describe the temporal behavior of monocrotophos decomposition in aqueous solution by the UV/O(3) process.

  7. Study the Characterization of Spectral Absorbance on Irradiated Milk Protein

    NASA Astrophysics Data System (ADS)

    Fohely, F.; Suardi, N.

    2018-04-01

    The milk has been adopted as a structural nature food for a long era since it is containing most of the growth factors, protective agents, and enzymes needed for the body. a few attempts have been conducted to treat the dairy products especially raw milk by the means of ionizing radiation. as its production has been an expanding industry for many years due to the high demands from the consumers worldwide, there is still some doubt about preserving these products by irradiation. In this work, a preliminary effort to describe the influences of ionizing radiation on raw milk’s protein will be devoted to measuring the spectral absorbance of the total protein (after subjected to varied radiation doses) by UV-VIS-NIR spectroscopy analysis. The absorbance spectrum then analyzed based on absorbance spectra of organic compounds. A comparison is made between the effects of different radiation doses to estimate the influence in milk’s structure.

  8. Interaction between morin and AOT reversed micelles--studies with UV-vis at 25 °C.

    PubMed

    Bhattarai, Ajaya; Wilczura-Wachnik, H

    2014-01-30

    The precise measurements of morin absorbance in presence of surfactant/solvent/water systems at 25 °C by UV-vis technique are reported. The surfactant used in presented study was sodium bis(2-ethylhexyl) sulfosuccinate called Aerosol-OT or AOT. The solvents selected were: ethanol, ethylene glycol, and n-decanol. The concentrations of AOT were varied between 0.001 and 0.4 mol/kg. Morin concentration in quvette during UV-vis registration was not equals in all solvent because of its different solubility and absorption intensity depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=[H2O]/[AOT] and was equal 0, 30 and 40 in ethanol; 0, 10, 20 and 30 in ethylene glycol and 0, 10, 20, 30, and 40 in n-decanol. In presented work a Nernstian distribution of morin between the organic and micellar phases was assumed. The intensity of morin absorbance as a function of AOT concentration was analyzed. Using Non-linear Regression Procedure (NLREG) morin binding constant (K' [mol/kg]), and morin distribution constant (K) between organic phase and AOT micellar phase have been calculated. The experimental results have shown a significant influence of solvent, surfactant and water presence on morin UV-vis spectrum. Calculated data pointed out on different transfer of morin molecules from the organic to micellar phase depending on the solvent. Moreover, results of calculations indicate on competition between morin and water molecules interacting with AOT polar heads. Morin molecules privileged location in AOT reversed micelles strongly depends on the solvent. In case of systems with ethylene glycol as solvent is possible morin molecules location in polar cores of AOT reversed micelles as results of strong interaction between AOT polar heads and morin hydroxyl groups, whereas in case of ethanol and n-decanol morin molecules are located in palisade layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Optical and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-ethylhexyl salicylate and homomenthyl salicylate.

    PubMed

    Sugiyama, Kazuto; Tsuchiya, Takumi; Kikuchi, Azusa; Yagi, Mikio

    2015-09-26

    The energy levels and lifetimes of the lowest excited triplet (T1) states of UV-B absorbers, 2-ethylhexyl salicylate (EHS) and homomenthyl salicylate (HMS), and their deprotonated anions (EHS(-) and HMS(-)) were determined through measurements of phosphorescence and electron paramagnetic resonance (EPR) spectra in rigid solutions at 77 K. The observed T1 energies of EHS and HMS are higher than those of butylmethoxydibenzoylmethane, the most widely used UV-A absorber, and octyl methoxycinnamate, the most widely used UV-B absorber. The T1 states of EHS, HMS, EHS(-) and HMS(-) were assigned to almost pure (3)ππ* state from the observed T1 lifetimes and zero-field splitting parameters. EHS and HMS with an intramolecular hydrogen bond show a photoinduced phosphorescence enhancement in ethanol at 77 K. The EPR signals of the T1 states of EHS and HMS also increase in intensity with UV-irradiation time (photoinduced EPR enhancement). The T1 lifetimes of EHS and HMS at room temperature were determined through triplet-triplet absorption measurements in ethanol. The quantum yields of singlet oxygen production by EHS and HMS were determined by using time-resolved near-IR phosphorescence.

  10. Analysis of UV-absorbing photoprotectant mycosporine-like amino acid (MAA) in the cyanobacterium Arthrospira sp. CU2556.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran

    2014-07-01

    Mycosporine-like amino acids (MAAs) are ecologically important biomolecules with great photoprotective potential. The present study aimed to investigate the biosynthesis of MAAs in the cyanobacterium Arthrospira sp. CU2556. High-performance liquid chromatography (HPLC) with photodiode-array detection studies revealed the presence of a UV-absorbing compound with an absorption maximum at 310 nm. Based on its UV absorption spectrum and ion trap liquid chromatography/mass spectrometry (LC/MS) analysis, the compound was identified as a primary MAA mycosporine-glycine (m/z: 246). To the best of our knowledge this is the first report on the occurrence of MAA mycosporine-glycine (M-Gly) in Arthrospira strains studied so far. In contrast to photosynthetic activity under UV-A radiation, the induction of the biosynthesis of M-Gly was significantly more prominent under UV-B radiation. The content of M-Gly was found to increase with the increase in exposure time under UV-B radiation. The MAA M-Gly was highly stable under UV radiation, heat, strongly acidic and alkaline conditions. It also exhibited good antioxidant activity and photoprotective ability by detoxifying the in vivo reactive oxygen species (ROS) generated by UV radiation. Our results indicate that the studied cyanobacterium may protect itself by synthesizing the UV-absorbing/screening compounds as important defense mechanisms, in their natural brightly-lit habitat with high solar UV-B fluxes.

  11. Genomic Survey and Biochemical Analysis of Recombinant Candidate Cyanobacteriochromes Reveals Enrichment for Near UV/Violet Sensors in the Halotolerant and Alkaliphilic Cyanobacterium Microcoleus IPPAS B353*

    PubMed Central

    Cho, Sung Mi; Jeoung, Sae Chae; Song, Ji-Young; Kupriyanova, Elena V.; Pronina, Natalia A.; Lee, Bong-Woo; Jo, Seong-Whan; Park, Beom-Seok; Choi, Sang-Bong; Song, Ji-Joon; Park, Youn-Il

    2015-01-01

    Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found. PMID:26405033

  12. Toxic effects of combined effects of anthracene and UV radiation on Brachionus plicatilis

    NASA Astrophysics Data System (ADS)

    Gao, Ceng; Zhang, Xinxin; Xu, Ningning; Tang, Xuexi

    2017-05-01

    Anthracene is a typical polycyclic aromatic hydrocarbon, with photo activity, can absorb ultraviolet light a series of chemical reactions, aquatic organisms in the ecosystem has a potential light induced toxicity. In this paper, the effects of anthracene and UV radiation on the light-induced toxicity of Brachionus plicatilis were studied. The main methods and experimental results were as follows: (1) The semi-lethal concentration of anthracene in UV light was much lower than that in normal light, The rotifers have significant light-induced acute toxicity. (2) Under UV irradiation, anthracene could induce the increase of ROS and MDA content in B. plicatilis, and the activity of antioxidant enzymes in B. plicatilis significantly changed, Where SOD, GPx activity was induced within 24 hours of the beginning of the experiment. And the content of GPX and CAT was inhibited after 48 hours. Therefore, the anthracite stress induced by UV radiation could more strongly interfere with the ant oxidative metabolism of B. plicatilis, and more seriously cause oxidative damage, significant light-induced toxicity.

  13. Venus Upper Clouds and the UV Absorber From MESSENGER/MASCS Observations

    NASA Astrophysics Data System (ADS)

    Pérez-Hoyos, S.; Sánchez-Lavega, A.; García-Muñoz, A.; Irwin, P. G. J.; Peralta, J.; Holsclaw, G.; McClintock, W. M.; Sanz-Requena, J. F.

    2018-01-01

    One of the most intriguing, long-standing questions regarding Venus's atmosphere is the origin and distribution of the unknown UV absorber, responsible for the absorption band detected at the near-UV and blue range of Venus's spectrum. In this work, we use data collected by Mercury Atmospheric and Surface Composition Spectrometer (MASCS) spectrograph on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission during its second Venus flyby in June 2007 to address this issue. Spectra range from 0.3 μm to 1.5 μm including some gaseous H2O and CO2 bands, as well as part of the SO2 absorption band and the core of the UV absorption. We used the NEMESIS radiative transfer code and retrieval suite to investigate the vertical distribution of particles in the equatorial atmosphere and to retrieve the imaginary refractive indices of the UV absorber, assumed to be well mixed with Venus's small mode 1 particles. The results show a homogeneous equatorial atmosphere, with cloud tops (height for unity optical depth) at 75 ± 2 km above surface. The UV absorption is found to be centered at 0.34 ± 0.03 μm with a full width at half maximum of 0.14 ± 0.01 μm. Our values are compared with previous candidates for the UV aerosol absorber, among which disulfur oxide (S2O) and dioxide disulfur (S2O2) provide the best agreement with our results.

  14. A Long-term Record of Saharan Dust Aerosol Properties from TOMS Observations: Optical Depth and Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Herman, J. R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The interaction between the strong Rayleigh scattering in the near UV spectral region (330-380 nm) and the processes of aerosol absorption and scattering, produce a clear spectral signal in the upwelling radiance at the top of the atmosphere. This interaction is the basis of the TOMS (Total Ozone Mapping Spectrometer) aerosol retrieval technique that can be used for their characterization and to differentiate non-absorbing sulfates from strongly UV-absorbing aerosols such as mineral dust. For absorbing aerosols, the characterization is in terms of the optical depth and single scattering albedo with assumptions about the aerosol plume height. The results for non-absorbing aerosols are not dependent on plume height. Although iron compounds represent only between 5% to 8% of desert dust aerosol mass, hematite (Fe2O3) accounts for most of the near UV absorption. Because of the large ultraviolet absorption characteristic of hematite, the near UV method of aerosol sensing is especially suited for the detection and characterization of desert dust aerosols. Using the combined record of near UV measurements by the Nimbus7 (1978-1992) and Earth Probe (1996-present) TOMS instruments, a global longterm climatology of near UV optical depth and single scattering albedo has been produced. The multi-year long record of mineral aerosol properties over the area of influence of the Saharan desert, will be discussed.

  15. Effects of enhanced ultraviolet-B radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances in two different moss species.

    PubMed

    Hui, Rong; Zhao, Ruiming; Song, Guang; Li, Yixuan; Zhao, Yang; Wang, Yanli

    2018-05-01

    A simulation experiment was conducted to explore the influence of enhanced ultraviolet-B (UV-B) radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances of mosses Bryum argenteum and Didymodon vinealis isolated from biological soil crusts (BSCs) growing in a revegetated area of the Tengger Desert, China. Four levels of UV-B radiation and two gradients of water regime were employed. Compared with their controls, amounts of total flavonoids, chlorophyll, carotenoids, soluble sugars, and soluble proteins significantly decreased (p < 0.05), but proline content significantly increased (p < 0.05), when exposed to either enhanced UV-B or water deficit. The negative effects of enhanced UV-B were alleviated when water deficit was applied. There were increases in UV-absorbing compounds and osmotic adjustment substances when exposed to a combination of enhanced UV-B and water deficit compared with single stresses, except for the proline content in D. vinealis. In addition, our results also indicated interspecific differences in response to enhanced UV-B, water deficit, and their combination. Compared with B. argenteum, D. vinealis was more resistant to enhanced UV-B and water deficit singly and in combination. These results suggest that the damage of enhanced UV-B on both species might be alleviated by water deficit. This alleviation is important for understanding the response of BSCs to UV-B radiation in future global climate change. This also provides novel insights into assessment damages of UV-B to BSC stability in arid and semiarid regions.

  16. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    NASA Astrophysics Data System (ADS)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  17. Study of noninvasive detection of latent fingerprints using UV laser

    NASA Astrophysics Data System (ADS)

    Li, Hong-xia; Cao, Jing; Niu, Jie-qing; Huang, Yun-gang; Mao, Lin-jie; Chen, Jing-rong

    2011-06-01

    Latent fingerprints present a considerable challenge in forensics, and noninvasive procedure that captures a digital image of the latent fingerprints is significant in the field of criminal investigation. The capability of photography technologies using 266nm UV Nd:YAG solid state laser as excitation light source to provide detailed images of unprocessed latent fingerprints is demonstrated. Unprocessed latent fingerprints were developed on various non-absorbent and absorbing substrates. According to the special absorption, reflection, scattering and fluorescence characterization of the various residues in fingerprints (fatty acid ester, protein, and carbosylic acid salts etc) to the UV light to weaken or eliminate the background disturbance and increase the brightness contrast of fingerprints with the background, and using 266nm UV laser as excitation light source, fresh and old latent fingerprints on the surface of four types of non-absorbent objects as magazine cover, glass, back of cellphone, wood desktop paintwork and two types of absorbing objects as manila envelope, notebook paper were noninvasive detected and appeared through reflection photography and fluorescence photography technologies, and the results meet the fingerprint identification requirements in forensic science.

  18. UV-responsive nano-sponge for oil absorption and desorption

    PubMed Central

    Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil. PMID:26260470

  19. Organic molecules and nanoparticles in inorganic crystals: Vitamin C in CaCO3 as an ultraviolet absorber

    NASA Astrophysics Data System (ADS)

    Sato, H.; Ikeya, M.

    2004-03-01

    Organic molecules and nanoparticles embedded in inorganic crystalline lattices have been studied to add different properties and functions to composite materials. Calcium carbonate was precipitated by dropping an aqueous solution of CaCl2 into that of Na2CO3 containing dissolved vitamin C (ascorbic acid). The optical absorption ascribed to divalent ascorbate anions in the lattice was observed in the ultraviolet B (wavelength: 280-315 nm) region, while solid vitamin C exhibited absorption in the ultraviolet C (100-280 nm) region. The divalent ascorbate anion is only stable in CaCO3 due to the absence of oxygen molecules. Doping CaCO3 with nanoparticles of ZnO also enhanced the absorption in the ultraviolet A (315-380 nm) region. These composite materials are suggested for use as UV absorbers.

  20. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    PubMed

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  1. Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater--Aligning breakthrough curves and capacities.

    PubMed

    Zietzschmann, Frederik; Stützer, Christian; Jekel, Martin

    2016-04-01

    Small-scale granular activated carbon (GAC) tests for the adsorption of organic micro-pollutants (OMP) were conducted with drinking water and wastewater treatment plant (WWTP) effluent. In both waters, three influent OMP concentration levels were tested. As long as the influent OMP concentrations are below certain thresholds, the relative breakthrough behavior is not impacted in the respective water. Accordingly, the GAC capacity for OMP is directly proportional to the influent OMP concentration in the corresponding water. The differences between the OMP breakthrough curves in drinking water and WWTP effluent can be attributed to the concentrations of the low molecular weight acid and neutral (LMW) organics of the waters. Presenting the relative OMP concentrations (c/c0) over the specific throughput of the LMW organics (mg LMW organics/g GAC), the OMP breakthrough curves in drinking water and WWTP effluent superimpose each other. This superimposition can be further increased if the UV absorbance at 254 nm (UV254) of the LMW organics is considered. In contrast, using the specific throughput of the dissolved organic carbon (DOC) did not suffice to obtain superimposed breakthrough curves. Thus, the LMW organics are the major water constituent impacting OMP adsorption onto GAC. The results demonstrate that knowing the influent OMP and LMW organics concentrations (and UV254) of different waters, the OMP breakthroughs and GAC capacities corresponding to any water can be applied to all other waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Influence of Transcutol CG on the skin accumulation and transdermal permeation of ultraviolet absorbers.

    PubMed

    Godwin, Donald A; Kim, Nae-Hwa; Felton, Linda A

    2002-01-01

    The objective of this study was to determine the influence of Transcutol CG concentration on the transdermal permeation and skin accumulation of two ultraviolet (UV) absorbers, 2-hydroxy-4-methoxybenzophenone (oxybenzone) and 2-octyl-4-methoxycinnamate (cinnamate). The concentration of the UV absorber was held constant at 6% (w/w) for all vehicle systems while the concentration of Transcutol CG was varied from 0 to 50% (w/w). Data showed that both UV absorbers exhibited increases in skin accumulation with increasing concentrations of Transcutol CG. Skin accumulation of oxybenzone was significantly (P<0.05) greater than that of cinnamate for all formulations investigated. Oxybenzone skin accumulation ranged from 22.9+/-2.8 microg/mg (0% Transcutol CG) to 80.8+/-27.2 microg/mg (50% Transcutol CG). Cinnamate skin accumulation ranged from 9.0+/-0.9 microg/mg to 39.8+/-12.2 microg/mg at 0 and 50% Transcutol CG, respectively. No significant differences were found in the transdermal permeation of oxybenzone or cinnamate for any of the formulations tested. The results of this study demonstrate that the inclusion of Transcutol CG in sunscreen formulations increases the skin accumulation of the UV absorbers oxybenzone and cinnamate without a concomitant increase in transdermal permeation.

  3. Kinetic study on UV-absorber photodegradation under different conditions

    NASA Astrophysics Data System (ADS)

    Bubev, Emil; Georgiev, Anton; Machkova, Maria

    2016-09-01

    The photodegradation kinetics of two benzophenone derivative UV-absorbers (UVAs)-BP-4 (benzophenone-4) and 4-HBP (4-hydroxybenzophenone), as additives in polyvinyl acetate (PVAc) films, were studied. Solution-processed PVAc films were irradiated in different environments in order to study oxygen and atmospheric humidity influence on UVA photodegradation. Photodegradation was traced by absorption intensity loss via UV-vis spectroscopy. Both UVAs exhibited excellent photostability in an inert atmosphere. Rate constants showed that BP-4 has better permanence in absence of oxygen. Both film types experienced rapid absorption loss, when irradiated in an oxygen containing atmosphere. UVA degradation was treated as a two-stage process. The photodegradation kinetics in the first stage agreed with the adopted complex rate law, but the second stage was best described by pseudo-first order kinetics. BP-4 exhibited better stability. Oxygen was established as the main accelerating factor for photodegradation of benzophenone derivatives UV-absorbers in thin PVAc films.

  4. On the Validity of Beer-Lambert Law and its Significance for Sunscreens.

    PubMed

    Herzog, Bernd; Schultheiss, Amélie; Giesinger, Jochen

    2018-03-01

    The sun protection factor (SPF) is the most important quantity to characterize the performance of sunscreens. As the standard method for its determination is based on clinical trials involving irradiation of human volunteers, calculations of sunscreen performance have become quite popular to reduce the number of in vivo studies. Such simulations imply the calculation of UV transmittance of the sunscreen film using the amounts and spectroscopic properties of the UV absorbers employed, and presuppose the validity of the Beer-Lambert law. As sunscreen films on human skin can contain considerable concentrations of UV absorbers, it is questioned whether the Beer-Lambert law is still valid for these systems. The results of this work show that the validity of the Beer-Lambert law is still given at the high concentrations at which UV absorbers occur in sunscreen films on human skin. © 2017 The American Society of Photobiology.

  5. Method of fabricating a high aspect ratio microstructure

    DOEpatents

    Warren, John B.

    2003-05-06

    The present invention is for a method of fabricating a high aspect ratio, freestanding microstructure. The fabrication method modifies the exposure process for SU-8, an negative-acting, ultraviolet-sensitive photoresist used for microfabrication whereby a UV-absorbent glass substrate, chosen for complete absorption of UV radiation at 380 nanometers or less, is coated with a negative photoresist, exposed and developed according to standard practice. This UV absorbent glass enables the fabrication of cylindrical cavities in a negative photoresist microstructures that have aspect ratios of 8:1.

  6. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus reducing the bias against observed values. We calculate the direct radiative effect (DRE) of BrC using GEOS-Chem coupled with the radiative transfer model RRTMG (GC-RT). Treating organic aerosol as containing more strongly absorbing BrC changes the global annual mean all-sky top of atmosphere (TOA) DRE by +0.03Wm(exp -2) and all-sky surface DRE by -0.08Wm(exp -2). Regional changes of up to +0.3Wm(exp -2) at TOA and down to -1.5Wm(exp -2) at the surface are found over major biomass burning regions.

  7. Surface Composition and Physical Mixture State of the Regoliths of Outer Solar System Satellites: The Role of Scattering and Absorption by the non-Ice Components and Implications for Rayleigh Absorption and Rayleigh Scattering

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Perlman, Z. S.; Pearson, N.; Hendrix, A. R.; Cuzzi, J. N.; Cruikshank, D. P.; Bradley, E. T.; Filacchione, G.; Nicholson, P. D.; Hedman, M. M.; Brown, R. H.; Buratti, B. J.; Baines, K. H.; Sotin, C.; Nelson, R. M.

    2014-12-01

    Many outer Solar System satellites have surfaces dominated by water ice and a mysterious material(s) causing strong visible to ultraviolet absorption along with trace other compounds with infrared absorptions, including CO2 and organics. Various mechanisms have been proposed for the UV absorber, including tholins, iron oxides, and nano-sized metallic iron particles (e.g. see Clark et al., 2012, Icarus v218 p831, and references therein). We have constructed extensive laboratory analog measurements and radiative transfer modeling of the materials and scattering conditions that can contribute to the optical properties seen on outer Solar System satellites. We have successfully modeled Rayleigh absorption and Rayleigh scattering to produce spectral shapes typical of those seen in spectra of icy Solar System satellites, including those in the Saturn system observed with the Cassini UVIS and VIMS instruments. While it is easy to create these absorptions with radiative transfer modeling, it has been more difficult to do with laboratory analogs. We are finding that laboratory analogs refine and restricts the possible mixing states of the UV absorber in icy satellite surfaces. We have found that just because a particle is highly absorbing, as in metallic iron, if the particle is not embedded in another matrix, scattering will dominate over absorption and Rayleigh absorption will not be observed. Further, the closer the indices of refraction match between the absorbing particle and the matrix, there will be less scattering and more absorption will occur. But we have also found this to be true with other absorbing material, like Tholins. It is very difficult to obtain the very low reflectances observed in the UV in icy satellite spectra using traditional intimate mixtures, as scattering and first surface reflections contribute significantly to the reflectance. The solution, both from radiative transfer modeling and laboratory analogs point to embedded absorbing materials. For example, nano-phase metallic iron embedded in a less absorbing silicate matrix as meteoritic dust infall onto satellitesurfaces is one explanation. An alternative would be tholins embedded in the ice. Spectral features should be able to distinguish between these and other possibilities and will be explored.

  8. Role of near ultraviolet wavelength measurements in the detection and retrieval of absorbing aerosols from space

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Fujito, Toshiyuki; Nakata, Makiko; Sano, Itaru

    2017-10-01

    Aerosol remote sensing by ultraviolet (UV) wavelength is established by a Total Ozone Mapping Spectrometer (TOMS) mounted on the long-life satellite Nimbus-7 and continues to make observations using Ozone monitoring instrument (OMI) located on the Aura satellite. For example, TOMS demonstrated that UV radiation (0.331 and 0.360 μm) could easily detect absorbing particles such as mineral dust or smoke aerosols. TOMS-AI (absorbing aerosol index) has been used to identify the absorbing aerosols from space. For an upcoming mission, JAXA/GCOM-C will have the polarization sensor SGLI boarded in December 2017. The SGLI has multi (19)-channels including near UV (0.380 μm) and violet (0.412 μm) wavelengths. This work intends to examine the role of near UV data in the detection of absorbing aerosols similar to TOMS-AI played. In practice, the measurements by GLI mounted on the short Japanese mission JAXA/ADEOS-2, whose data archive period was just 8 months from April to October in 2003, are available for simulation of SGLI data because ADEOS-2/GLI installed near UV and violet channels. First of all, the ratio of data at 0.412 μm to that at 0.380 μm is examined as an indicator to detect absorbing aerosols on a global scale during ADEOS-2 era. It is noted that our research group has developed an efficient algorithm for aerosol retrieval in hazy episodes (dense concentrations of atmospheric aerosols). It can be said that at least this work is an attempt to grasp the biomass burning plumes from the satellite.

  9. Preparation of O/I1-type Emulsions and S/I1-type Dispersions Encapsulating UV-Absorbing Agents.

    PubMed

    Aramaki, Kenji; Kimura, Minami; Masuda, Kazuki

    2015-01-01

    Oil-in-cubic phase (O/I1) emulsions encapsulating the cosmetic UV absorbing agents 2-ethylhexyl 4-methoxycinnamate (EHMC), 2-ethylhexyl 2-cyano-3,3-diphenylacrylate (octocrylene, OCR) and 1-(4-tertbutylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione (Avobenzone, TBMP) were prepared by vortex mixing accompanied by a heating-cooling process. A ternary phase diagram in a water/C12EO25/EHMC system at 25°C was constructed and the two-phase equilibrium of an oil phase and an I1 phase, which is necessary to prepare the O/I1-type emulsions, was confirmed. Also, the melting of the I1 phase into a fluid micellar solution phase was confirmed, allowing emulsification by a heating-cooling process. The O/I1-type emulsions were formulated in the ternary system as well as a quaternary system. The four-component system contained an additional cosolvent, isopropyl myristate (IPM). The use of the cosolvent allows the use of reduced amounts of EHMC, which is desirable because EHMC can cause temporary skin irritation. Formulation of the O/I1-type emulsions with other UV absorbing agents (OCR and TBMP) was also possible using the same emulsification method. When IPM was changed to tripalmitin, which has a melting point greater than room temperature, a solid-oil dispersion in I1 phase was formed. We have termed this a "solidin-cubic phase (S/I1) type dispersion". These novel emulsions have not been reported previously. The UV absorbability of the O/I1-type emulsions and S/I1-type dispersions that encapsulate the UV absorbing agents was confirmed by measurement of UV absorption spectra.

  10. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I: Physical Conditions in the UV Absorbers

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.

    2003-01-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.

  11. Measuring the Impact of AGN Outflows via Intensive UV and X-ray Monitoring Campaigns

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard

    2015-08-01

    Observations of AGN outflows have progressed from the era of single-object surveys to intensive monitoring campaigns spanning weeks to months. The combination of multiple observations, improved temporal coverage, multi-wavelength monitoring in both the X-ray and UV bands, and the baseline of prior historical observations has enabled determinations of the locations, mass flux, and kinetic luminosities of the outflowing absorbing gas in several AGN, notably Mrk 509, NGC 5548, Mrk 335, and NGC 985. Another intensive campaign is planned for 2015-2016 on NGC 7469. In all cases, the mass flux and kinetic energy is dominated by the higher-ionization X-ray absorbing gas. But the higher-resolution UV observations give a kinematically resolved picture of the overall outflow. In most cases, the outflowing gas is located at parsec to kpc scales, with insufficient kinetic luminosity to have an evolutionary impact on the host galaxy. Typically, the kinetic luminosity is less than a percent of the Eddington luminosity. In some cases, transient, broad UV absorption troughs have appeared (e.g., Mrk 335 and NGC 5548), with variability timescales suggesting locations near the broad-line region of the AGN. Yet these higher-velocity outflows also have low-impact kinetic luminosities. In the best-studied case of NGC 5548, the strength of the broad UV absorption lines varies with the degree of soft X-ray obscuration first revealed by XMM-Newton spectra. The lower-ionization, narrow associated absorption lines in the UV spectrum of NGC 5548 that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. The intensive monitoring allows us to fit time-dependent photoionization models to the UV-absorbing gas, allowing precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.

  12. A novel research model for evaluating sunscreen protection in the UV-A1.

    PubMed

    Figueiredo, Sônia Aparecida; de Moraes, Dayane Cristina; Vilela, Fernanda Maria Pinto; de Faria, Amanda Natalina; Dos Santos, Marcelo Henrique; Fonseca, Maria José Vieira

    2018-01-01

    The use of a broad spectrum sunscreen is considered one of the main and most popular measures for preventing the damaging effects of ultraviolet radiation (UVR) on the skin. In this study we have developed a novel in vitro method to assess sunscreens efficacy to protect calcineurin enzyme activity, a skin cell marker. The photoprotective efficacy of sunscreen products was assessed by measuring the UV-A1 radiation-induced depletion of calcineurin (Cn) enzyme activity in primary neonatal human dermal fibroblast (HDFn) cell lysates. After exposure to 24J/cm 2 UV-A1 radiation, the sunscreens containing larger amounts of UV-A1 filters (brand B), the astaxanthin (UV-A1 absorber) and the Tinosorb® M (UV-A1 absorber) were capable of preventing loss of Cn activity when compared to the sunscreens formulations of brand A (low concentration of UV-A1 filters), with the Garcinia brasiliensis extract (UV-B absorber) and with the unprotected cell lysate and exposed to irradiation (Irradiated Control - IC). The Cn activity assay is a reproducible, accurate and selective technique for evaluating the effectiveness of sunscreens against the effects of UV-A1 radiation. The developed method showed that calcineurin activity have the potential to act as a biological indicator of UV-A1 radiation-induced damages in skin and the assay might be used to assess the efficacy of sunscreens agents and plant extracts prior to in vivo tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Formation of Light Absorbing Soluble Secondary Organics and Insoluble Polymeric Particles from the Dark Reaction of Catechol and Guaiacol with Fe(III).

    PubMed

    Slikboer, Samantha; Grandy, Lindsay; Blair, Sandra L; Nizkorodov, Sergey A; Smith, Richard W; Al-Abadleh, Hind A

    2015-07-07

    Transition metals such as iron are reactive components of environmentally relevant surfaces. Here, dark reaction of Fe(III) with catechol and guaiacol was investigated in an aqueous solution at pH 3 under experimental conditions that mimic reactions in the adsorbed phase of water. Using UV-vis spectroscopy, liquid chromatography, mass spectrometry, elemental analysis, dynamic light scattering, and electron microscopy techniques, we characterized the reactants, intermediates, and products as a function of reaction time. The reactions of Fe(III) with catechol and guaiacol produced significant changes in the optical spectra of the solutions due to the formation of light absorbing secondary organics and colloidal organic particles. The primary steps in the reaction mechanism were shown to include oxidation of catechol and guaiacol to hydroxy- and methoxy-quinones. The particles formed within a few minutes of reaction and grew to micron-size aggregates after half an hour reaction. The mass-normalized absorption coefficients of the particles were comparable to those of strongly absorbing brown carbon compounds produced by biomass burning. These results could account for new pathways that lead to atmospheric secondary organic aerosol formation and abiotic polymer formation on environmental surfaces mediated by transition metals.

  14. Response of Two Legumes to Two Ultraviolet-B Radiation Regimes

    NASA Technical Reports Server (NTRS)

    Levy, Daniel L.; Skiles, J. W.

    2000-01-01

    Depletion of the stratospheric ozone layer has been directly linked to increased levels of UV radiation at the earth's surface. The purpose of this study was to evaluate the responses of soybean (Glycine max) and alfalfa (Medicago sativa) to increased UV-B radiation (280-320 nm). Soybean and alfalfa were grown successively in a growth chamber that provided UV-B intensities 45% above nominal summer field levels. Mylar-D (UVB opaque) and mono-acetate (UV-B transparent) films were used to establish the two UV-B treatments. Soybean grown under increased UV showed 21% smaller internodal lengths and higher concentrations of UV-B absorbing pigments (i.e. flavonoids) compared to plants grown under no UV. Significant results for alfalfa included 22% greater leaf flavonoid concentration under increased UV, 14% greater leaf chlorophyll concentration under no UV, and 32% greater above-ground biomass with no UV. These leguminous species possess mechanisms that protect against UV-B damage as indicated by increases in foliar concentrations of UV-B absorbing compounds. Alfalfa appears to be more sensitive to UV-B damage than soybean. Remote sensing of chlorophyll fluorescence may offer a means of monitoring UV-induced plant stress and damage.

  15. Effect of UV-C radiation and vapor released from a water hyacinth root absorbent containing bergamot oil to control mold on storage of brown rice.

    PubMed

    Songsamoe, Sumethee; Matan, Narumol; Matan, Nirundorn

    2016-03-01

    The aims of this study were to develop absorbent material from a water hyacinth root containing bergamot oil and to improve its antifungal activity by using ultraviolet C (UV-C) against the growth of A. flavus on the brown rice. Process optimization was studied by the immersion of a water hyacinth root into a water and bergamot oil (300, 500 and 700 μl ml(-1)). The root (absorbent material) was dried at 50, 70, and 90 °C for 10 min. Then, ultraviolet C (UV-C) was used for enhancing the antifungal activity of bergamot oil for 10, 15, and 20 min. The shelf-life of the brown rice with the absorbent after incubation at 25 ° C with 100 % RH for 12 weeks was also investigated. A microscope and a Fourier transform infrared spectroscopy (FTIR) were used to find out possible mode of action. Results indicated that the absorbent material produced from the water hyacinth root containing bergamot oil at 500 μl ml(-1) in the water solution, dried at 70 ° C and UV for 15 min showed the highest antifungal activity in a vapor phase against A. flavus on the brown rice. A microscopy investigation confirmed that the water hyacinth root could absorb bergamot oil from an outside water solution into root cells. Limonene in vapor phase was shown to be a stronger inhibitor than essential oil after UV-C radiation and should be the key factor in boosting bergamot oil antifungal activity. A vapor phase of bergamot oil could be released and inhibit natural mold on the surface of the brown rice for up to 12 weeks; without the absorbent, mold covered the brown rice in only 4 weeks.

  16. Liquid Chromatographic Analysis of Hydraulic Fluids.

    DTIC Science & Technology

    1979-11-01

    chemical mixtures of a petroleum- or nonpetroleum-base stock component formulated with various additives which may be present in trace amounts or...absorb UV radiation near the monitoring wavelength may swamp the detector signal and therefore should be avoided in 1JV detection. The recorder trace of...Also, organic phosphites , thiophosphates, and sulfides are used to inhibit oxidative catalysis by metal ions. The oxidation inhibitor in 6083D-0 is BPC

  17. Seasonal and air mass trajectory effects on dissolved organic matter of bulk deposition at a coastal town in south-western Europe.

    PubMed

    Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C

    2013-01-01

    Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV-visible and three-dimensional excitation-emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV(250 nm)) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.

  18. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme

    PubMed Central

    Rutowski, R.L; Macedonia, J.M; Morehouse, N; Taylor-Taft, L

    2005-01-01

    Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight. PMID:16191648

  19. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme.

    PubMed

    Rutowski, R L; Macedonia, J M; Morehouse, N; Taylor-Taft, L

    2005-11-07

    Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight.

  20. Suitability of Organic Matter Surrogates to Predict Trihalomethane Formation in Drinking Water Sources

    PubMed Central

    Pifer, Ashley D.; Fairey, Julian L.

    2014-01-01

    Abstract Broadly applicable disinfection by-product (DBP) precursor surrogate parameters could be leveraged at drinking water treatment plants (DWTPs) to curb formation of regulated DBPs, such as trihalomethanes (THMs). In this study, dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UV254), fluorescence excitation/emission wavelength pairs (IEx/Em), and the maximum fluorescence intensities (FMAX) of components from parallel factor (PARAFAC) analysis were evaluated as total THM formation potential (TTHMFP) precursor surrogate parameters. A diverse set of source waters from eleven DWTPs located within watersheds underlain by six different soil orders were coagulated with alum at pH 6, 7, and 8, resulting in 44 sample waters. DOC, UV254, IEx/Em, and FMAX values were measured to characterize dissolved organic matter in raw and treated waters and THMs were quantified following formation potential tests with free chlorine. For the 44 sample waters, the linear TTHMFP correlation with UV254 was stronger (r2=0.89) than I240/562 (r2=0.81, the strongest surrogate parameter from excitation/emission matrix pair picking), FMAX from a humic/fulvic acid-like PARAFAC component (r2=0.78), and DOC (r2=0.75). Results indicate that UV254 was the most accurate TTHMFP precursor surrogate parameter assessed for a diverse group of raw and alum-coagulated waters. PMID:24669183

  1. Sulfur and Sulfuric Acid Microphysics in the Venus Atmosphere: Implications for the Unknown UV Absorber

    NASA Astrophysics Data System (ADS)

    Gao, P.; Carlson, R. W.; Robinson, T. D.; Crisp, D.; Lyons, J. R.; Yung, Y. L.

    2016-12-01

    A mystery that has continued to plague our sister planet, Venus, for nearly a century is the nature of the brightness contrasts observed crisscrossing its disk in near-ultraviolet wavelength images. These contrasts - specifically the dark regions - have been attributed to the actions of an unknown UV absorber, knowing the identity of which is integral to understanding the Venus atmosphere due to the high rates of mesospheric heating attributed to the absorption of solar UV. One possible candidate for the UV absorber is polysulfur, which form from polymerization of elemental sulfur arising from SO2 photolysis at the Venus cloud tops under low O2 conditions. In this work we investigate the microphysics of condensed polysulfur and its interaction with the sulfuric acid clouds. We consider the "gumdrop model", where sulfur is allowed to condense onto sulfuric acid cloud particles. We explore the possibility that S2 vapor may condense faster than its loss to gas phase reactions that produce higher allotropes, leading to solid state polymerization to S8. This process may explain the ephemeral and variable nature of the UV absorption.

  2. Application of portable online LED UV fluorescence sensor to predict the degradation of dissolved organic matter and trace organic contaminants during ozonation.

    PubMed

    Li, Wen-Tao; Majewsky, Marius; Abbt-Braun, Gudrun; Horn, Harald; Jin, Jing; Li, Qiang; Zhou, Qing; Li, Ai-Min

    2016-09-15

    This work aims to correlate signals of LED UV/fluorescence sensor with the degradation of dissolved organic matter (DOM) and trace-level organic contaminants (TOrCs) during ozonation process. Six sets of bench-scale ozonation kinetic experiments incorporated with three different water matrices and 14 TOrCs of different reactivity (group I ∼ V) were conducted. Calibrated by tryptophan and humic substances standards and verified by the lab benchtop spectroscopy, the newly developed portable/online LED sensor, which measures the UV280 absorbance, protein-like and humic-like fluorescence simultaneously, was feasible to monitor chromophores and fluorophores with good sensitivity and accuracy. The liquid chromatography with organic carbon detector combined with 2D synchronous correlation analysis further demonstrated how the DOM components of large molecular weight were transformed into small moieties as a function of the decrease of humic-like fluorescence. For TOrCs, their removal rates were well correlated with the decrease of the LED UV/fluorescence signals, and their elimination patterns were mainly determined by their reactivity with O3 and hydroxyl radicals. At approximately 50% reduction of humic-like fluorescence almost complete oxidation of TOrCs of group I and II was reached, a similar removal percentage (25-75%) of TOrCs of group III and IV, and a poor removal percentage (<25%) of group V. This study might contribute to the smart control of advanced oxidation processes for the water and wastewater treatment in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. High speed fabrication of absorbance-enhanced micro-nanostructures on nickel surface using hundred-nanosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Fu, Jinxiang; Zhang, Jingyuan; Liang, Hao; Wang, Yibo; Zhang, Zhiyan; Liu, Yannan; Lin, Xuechun

    2017-01-01

    We report the generation of micro-nanostructures on nickel surface using a pulsed laser with pulse duration of 100/200 ns. The blacken nickel, which is covered with dense broccoli-like clusters having strong light trapping capacity covering broad spectrum (200-2000 nm), can be produced at a high laser scanning speed up to 100 mm/s. The absorbance of the blacken nickel can be over 98% in the UV, more than 97% in the visible, and over 90% in the near IR. In addition, by treating the nickel surface with two crossing scans of the laser, highly organized and shape-controllable periodic arrays of hump-craters can be fabricated.

  4. Effects of Solar Ultraviolet Radiation on the Potential Efficiency of Photosystem II in Leaves of Tropical Plants1

    PubMed Central

    Krause, G. Heinrich; Schmude, Claudia; Garden, Hermann; Koroleva, Olga Y.; Winter, Klaus

    1999-01-01

    The effects of solar ultraviolet (UV)-B and UV-A radiation on the potential efficiency of photosystem II (PSII) in leaves of tropical plants were investigated in Panama (9°N). Shade-grown tree seedlings or detached sun leaves from the outer crown of mature trees were exposed for short periods (up to 75 min) to direct sunlight filtered through plastic or glass filters that absorbed either UV-B or UV-A+B radiation, or transmitted the complete solar spectrum. Persistent changes in potential PSII efficiency were monitored by means of the dark-adapted ratio of variable to maximum chlorophyll a fluorescence. In leaves of shade-grown tree seedlings, exposure to the complete solar spectrum resulted in a strong decrease in potential PSII efficiency, probably involving protein damage. A substantially smaller decline in the dark-adapted ratio of variable to maximum chlorophyll a fluorescence was observed when UV-B irradiation was excluded. The loss in PSII efficiency was further reduced by excluding both UV-B and UV-A light. The photoinactivation of PSII was reversible under shade conditions, but restoration of nearly full activity required at least 10 d. Repeated exposure to direct sunlight induced an increase in the pool size of xanthophyll cycle pigments and in the content of UV-absorbing vacuolar compounds. In sun leaves of mature trees, which contained high levels of UV-absorbing compounds, effects of UV-B on PSII efficiency were observed in several cases and varied with developmental age and acclimation state of the leaves. The results show that natural UV-B and UV-A radiation in the tropics may significantly contribute to photoinhibition of PSII during sun exposure in situ, particularly in shade leaves exposed to full sunlight. PMID:10594122

  5. Reduction of ultraviolet transmission through cotton T-shirt fabrics with low ultraviolet protection by various laundering methods and dyeing: clinical implications.

    PubMed

    Wang, S Q; Kopf, A W; Marx, J; Bogdan, A; Polsky, D; Bart, R S

    2001-05-01

    The public has long been instructed to wear protective clothing against ultraviolet (UV) damage. Our purpose was to determine the UV protection factor (UPF) of two cotton fabrics used in the manufacture of summer T-shirts and to explore methods that could improve the UPF of these fabrics. Each of the two types of white cotton fabrics (cotton T-shirt and mercerized cotton print cloth) used in this study was divided into 4 treatment groups: (1) water-only (machine washed with water), (2) detergent-only (washed with detergent), (3) detergent-UV absorber (washed with detergent and a UV absorber), and (4) dyes (dyed fabrics). Ultraviolet transmission through the fabrics was measured with a spectrophotometer before and after laundry and dyeing treatments. Based on UV transmission through these fabrics, the UPF values were calculated. Before any treatments, the mean UPFs were 4.94 for the T-shirt fabric and 3.13 for the print cloth. There was greater UVA (320-400 nm) than UVB (280-320 nm) transmission through these fabrics. After 5 washings with water alone and with detergent alone, UPF increased by 51% and 17%, respectively, for the cotton T-shirt fabric. Washing the T-shirt fabrics with detergent plus the UV-absorbing agent increased the UPF by 407% after 5 treatments. Dyeing the fabric blue or yellow increased the UPF by 544% and 212%, respectively. Similar changes in UPFs were observed for the print cloth fabric. The two cotton fabrics used in this study offered limited protection against UV radiation as determined by spectrophotometric analysis. Laundering with detergent and water improves UPF slightly by causing fabric shrinkage. Dyeing fabrics or adding a UV-absorbing agent during laundering substantially reduces UV transmission and increases UPF. More UVA is transmitted through the fabrics than UVB.

  6. Estimated ultraviolet radiation doses in wetlands in six national parks

    USGS Publications Warehouse

    Diamond, S.A.; Trenham, P.C.; Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Stark, L.; Bradford, D.; Corn, P.S.; Czarnowski, K.; Brooks, P.D.; Fagre, D.B.; Breen, B.; Dentenbeck, N.E.; Tonnessen, K.

    2005-01-01

    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.

  7. Changes in ultraviolet-B and visible optical properties and absorbing pigment concentrations in pecan leaves during a growing season

    Treesearch

    Yadong Qi; Shuju Bai; Gordon M. Heisler

    2003-01-01

    UV-B (280-320 nm) and visible (400-760 nm) spectral reflectance, transmittance, and absorptance; chlorophyll content; UV-B absorbing compound concentration; and leaf thickness were measured for pecan (Carya illinoensis) leaves over a growing season (April-October). Leaf samples were collected monthly from a pecan plantation located on the Southern...

  8. Coupling Reagent for UV/vis Absorbing Azobenzene-Based Quantitative Analysis of the Extent of Functional Group Immobilization on Silica.

    PubMed

    Choi, Ra-Young; Lee, Chang-Hee; Jun, Chul-Ho

    2018-05-18

    A methallylsilane coupling reagent, containing both a N-hydroxysuccinimidyl(NHS)-ester group and a UV/vis absorbing azobenzene linker undergoes acid-catalyzed immobilization on silica. Analysis of the UV/vis absorption band associated with the azobenzene group in the adduct enables facile quantitative determination of the extent of loading of the NHS groups. Reaction of NHS-groups on the silica surface with amine groups of GOx and rhodamine can be employed to generate enzyme or dye-immobilized silica for quantitative analysis.

  9. Phenylalanine Is Required to Promote Specific Developmental Responses and Prevents Cellular Damage in Response to Ultraviolet Light in Soybean (Glycine max) during the Seed-to-Seedling Transition

    PubMed Central

    Sullivan, Joe H.; Muhammad, DurreShahwar; Warpeha, Katherine M.

    2014-01-01

    UV-radiation elicits a suite of developmental (photomorphogenic) and protective responses in plants, but responses early post-germination have received little attention, particularly in intensively bred plants of economic importance. We examined germination, hypocotyl elongation, leaf pubescence and subcellular responses of germinating and/or etiolated soybean (Glycine max (L.) Merr.) seedlings in response to treatment with discrete wavelengths of UV-A or UV-B radiation. We demonstrate differential responses of germinating/young soybean seedlings to a range of UV wavelengths that indicate unique signal transduction mechanisms regulate UV-initiated responses. We have investigated how phenylalanine, a key substrate in the phenylpropanoid pathway, may be involved in these responses. Pubescence may be a key location for phenylalanine-derived protective compounds, as UV-B irradiation increased pubescence and accumulation of UV-absorbing compounds within primary leaf pubescence, visualized by microscopy and absorbance spectra. Mass spectrometry analysis of pubescence indicated that sinapic esters accumulate in the UV-irradiated hairs compared to unirradiated primary leaf tissue. Deleterious effects of some UV-B wavelengths on germination and seedling responses were reduced or entirely prevented by inclusion of phenylalanine in the growth media. Key effects of phenylalanine were not duplicated by tyrosine or tryptophan or sucrose, nor is the specificity of response due to the absorbance of phenylalanine itself. These results suggest that in the seed-to-seedling transition, phenylalanine may be a limiting factor in the development of initial mechanisms of UV protection in the developing leaf. PMID:25549094

  10. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O 3 and α-pinene + NO x + O 3 systems in the presence ofmore » neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O 3 + NO 3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O 3 and α-pinene + NO x + O 3 systems do not form light-absorbing SOA under typical atmospheric conditions.« less

  11. Photophysical properties of hexyl diethylaminohydroxybenzoylbenzoate (Uvinul A Plus), a UV-A absorber.

    PubMed

    Shamoto, Yuta; Yagi, Mikio; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Kikuchi, Azusa

    2017-09-13

    Hexyl diethylaminohydroxybenzoylbenzoate (DHHB, Uvinul A Plus) is a photostable UV-A absorber. The photophysical properties of DHHB have been studied by obtaining the transient absorption, total emission, phosphorescence and electron paramagnetic resonance spectra. DHHB exhibits an intense phosphorescence in a hydrogen-bonding solvent (e.g., ethanol) at 77 K, whereas it is weakly phosphorescent in a non-hydrogen-bonding solvent (e.g., 3-methylpentane). The triplet-triplet absorption and EPR spectra for the lowest excited triplet state of DHHB were observed in ethanol, while they were not observed in 3-methylpentane. These results are explained by the proposal that in the benzophenone derivatives possessing an intramolecular hydrogen bond, intramolecular proton transfer is an efficient mechanism of the very fast radiationless decay from the excited singlet state. The energy level of the lowest excited triplet state of DHHB is higher than those of the most widely used UV-B absorbers, octyl methoxycinnamate (OMC) and octocrylene (OCR). DHHB may act as a triplet energy donor for OMC and OCR in the mixtures of UV-A and UV-B absorbers. The bimolecular rate constant for the quenching of singlet oxygen by DHHB was determined by measuring the near-IR phosphorescence of singlet oxygen. The photophysical properties of diethylaminohydroxybenzoylbenzoic acid (DHBA) have been studied for comparison. It is a closely related building block to assist in interpreting the observed data.

  12. A three-dimensional spatial mapping approach to quantify fine-scale heterogeneity among leaves within canopies1

    PubMed Central

    Wingfield, Jenna L.; Ruane, Lauren G.; Patterson, Joshua D.

    2017-01-01

    Premise of the study: The three-dimensional structure of tree canopies creates environmental heterogeneity, which can differentially influence the chemistry, morphology, physiology, and/or phenology of leaves. Previous studies that subdivide canopy leaves into broad categories (i.e., “upper/lower”) fail to capture the differences in microenvironments experienced by leaves throughout the three-dimensional space of a canopy. Methods: We use a three-dimensional spatial mapping approach based on spherical polar coordinates to examine the fine-scale spatial distributions of photosynthetically active radiation (PAR) and the concentration of ultraviolet (UV)-absorbing compounds (A300) among leaves within the canopies of black mangroves (Avicennia germinans). Results: Linear regressions revealed that interior leaves received less PAR and produced fewer UV-absorbing compounds than leaves on the exterior of the canopy. By allocating more UV-absorbing compounds to the leaves on the exterior of the canopy, black mangroves may be maximizing UV-protection while minimizing biosynthesis of UV-absorbing compounds. Discussion: Three-dimensional spatial mapping provides an inexpensive and portable method to detect fine-scale differences in environmental and biological traits within canopies. We used it to understand the relationship between PAR and A300, but the same approach can also be used to identify traits associated with the spatial distribution of herbivores, pollinators, and pathogens. PMID:29188145

  13. The cuticle modulates ultraviolet reflectance of avian eggshells

    PubMed Central

    Fecheyr-Lippens, Daphne C.; Igic, Branislav; D'Alba, Liliana; Hanley, Daniel; Verdes, Aida; Holford, Mande; Waterhouse, Geoffrey I. N.; Grim, Tomas; Hauber, Mark E.; Shawkey, Matthew D.

    2015-01-01

    ABSTRACT Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour. PMID:25964661

  14. Synthesis and characterization of Zn-Ti layered double hydroxide intercalated with cinnamic acid for cosmetic application

    NASA Astrophysics Data System (ADS)

    Li, Yong; Tang, Liping; Ma, Xinxu; Wang, Xinrui; Zhou, Wei; Bai, Dongsheng

    2017-08-01

    The use of sunscreen is recently growing and their efficacy and safety must be taken into account since they are applied on the skin frequently. In this work, an organic ultraviolet (UV) ray absorbent, cinnamic acid (CA) was intercalated into Zn-Ti layered double hydroxide (LDH) by anion-exchange reaction. ZnTi-CA-LDH, a new type of host-guest UV-blocking material has been synthesized. Detailed structural and surface morphology of ZnTi-CA-LDH were characterized by XRD, FT-IR, SEM and TEM. ZnTi-CA-LDH exhibits a superior UV blocking ability compared to pure CA and ZnTi-CO3-LDH. The thermal stability of the intercalated ZnTi-CA-LDH was investigated by TG-DTA, which showed that the thermostability of CA was markedly enhanced after intercalation into ZnTi-CO3-LDH. The EPR data showed greatly decreased photocatalytic activity compared to common inorganic UV blocking agents TiO2 and ZnO. Furthermore, the sample was formulated in a sunscreen cream to study the matrix protective effect towards UV rays.

  15. Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets

    NASA Astrophysics Data System (ADS)

    Arney, Giada N.; Meadows, Victoria S.; Domagal-Goldman, Shawn D.; Deming, Drake; Robinson, Tyler D.; Tovar, Guadalupe; Wolf, Eric T.; Schwieterman, Edward

    2017-02-01

    Hazes are common in known planetary atmospheres, and geochemical evidence suggests that early Earth occasionally supported an organic haze with significant environmental and spectral consequences. The UV spectrum of the parent star drives organic haze formation through methane photochemistry. We use a 1D photochemical-climate model to examine production of fractal organic haze on Archean Earth-analogs in the habitable zones of several stellar types: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), ɛ Eridani (K2V), and σ Boötis (F2V). For Archean-like atmospheres, planets orbiting stars with the highest UV fluxes do not form haze because of the formation of photochemical oxygen radicals that destroy haze precursors. Organic hazes impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized around M dwarfs, whose energy is emitted at wavelengths where organic hazes are relatively transparent. We generate spectra to test the detectability of haze. For 10 transits of a planet orbiting GJ 876 observed by the James Webb Space Telescope, haze makes gaseous absorption features at wavelengths < 2.5 μm 2-10σ shallower than a haze-free planet, and methane and carbon dioxide are detectable at >5σ. A haze absorption feature can be detected at 5σ near 6.3 μm, but a higher signal-to-noise ratio is needed to distinguish haze from adjacent absorbers. For direct imaging of a planet at 10 pc using a coronagraphic 10 m class ultraviolet-visible-near-infrared telescope, a UV-blue haze absorption feature would be strongly detectable at >12σ in 200 hr.

  16. Efficacy and durability of ultraviolet tints in CR-39 ophthalmic lenses.

    PubMed

    Lee, D Y; Brown, W L; Trachimowicz, R

    1997-11-01

    Ocular protection from solar ultraviolet (UV) radiation has been emphasized in recent years as a result of the thinning of the ozone layer in the atmosphere. The purpose of this study was to evaluate the absorptive properties of UV tints in CR-39 lenses. We used a spectrophotometer to measure the UV transmittance of three groups of UV tinted CR-39 lenses, including (1) lenses tinted by local optical laboratories: (2) lenses tinted by us, using commercially available dyes: and (3) stock UV lenses that have UV absorptive molecules throughout the lens. We also tested the durability of these tints to daily washing/drying by measuring their UV transmittance characteristics at 3, 6, and 12 months. All the tested lenses absorbed all of the UV-B and at least 99% of UV-A. The durability of these UV tints when exposed to daily washing/drying was excellent: all lenses continued to absorb all of the UV-B and at least 99% of UV-A after 1 year. These data suggest that UV tinted CR-39 lenses provide protection against UV radiation that meets the ANSI Z80.3-1996 Standard for non-prescription sunglasses and fashion eyewear. Furthermore, normal daily washing/drying for 1 year does not cause a significant decrease in the protective effect of the UV tint.

  17. Improved automation of dissolved organic carbon sampling for organic-rich surface waters.

    PubMed

    Grayson, Richard P; Holden, Joseph

    2016-02-01

    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry.

    PubMed

    Mašić, Alma; Santos, Ana T L; Etter, Bastian; Udert, Kai M; Villez, Kris

    2015-11-15

    Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Bromine incorporation into five DBP classes upon chlorination of water with extremely low SUVA values.

    PubMed

    Hong, Huachang; Yan, Xiaoqing; Song, Xuhui; Qin, Yanyan; Sun, Hongjie; Lin, Hongjun; Chen, Jianrong; Liang, Yan

    2017-07-15

    The main objective of this study was to assess the effects of disinfection conditions on bromine incorporation into disinfection by-products (DBPs) during chlorination of water with low specific UV absorbance (SUVA). Five classes of DBPs were included: trihalomethanes (THMs), dihaloacetic acids (di-HAAs), trihaloacetic acids (tri-HAAs), dihaloacetonitriles (DHANs) and trihalonitromethanes (THNMs). Results showed that the bromine utilization in DBPs formation was positive related with reaction time, pH and temperature. On the other hand, the bromine substitution factors (BSFs) of DBPs were generally increased with pH (except tri-HAAs) and bromide concentration, but decreased with the reaction time, temperature and chlorine dose. Moreover, the BSFs values varied with DBP classes with the ranking being as following: THNMs≫DHANs≫tri-HAAs>THM≈di-HAAs. These results were mostly similar with the references, yet the pH effect on BSFs as well as the rank of BSFs for different DBP classes may differ with the specific UV absorbance of organic matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment.

    PubMed

    Pradhan, Shovana; Fan, Linhua; Roddick, Felicity A

    2015-10-01

    Reverse osmosis (RO) concentrate (ROC) streams generated from RO-based municipal wastewater reclamation processes pose potential health and environmental risks on their disposal to confined water bodies such as bays. A UV/H2O2 advanced oxidation process followed by a biological activated carbon (BAC) treatment was evaluated at lab-scale for the removal of organic and nutrient content from a highly saline ROC (TDS 16 g L(-1), EC 23.5 mS cm(-1)) for its safe disposal to the receiving environment. Over the 230-day operation of the UV/H2O2-BAC process, the colour and UV absorbance (254 nm) of the ROC were reduced to well below those of the influent to the reclamation process. The concentrations of DOC and total nitrogen (TN) were reduced by approximately 60% at an empty bed contact time (EBCT) of 60 min. The reduction in ammonia nitrogen by the BAC remained high under all conditions tested (>90%). Further investigation confirmed that the presence of residual peroxide in the UV/H2O2 treated ROC was beneficial for DOC removal, but markedly inhibited the activities of the nitrifying bacteria (i.e., nitrite oxidising bacteria) in the BAC system and hence compromised total nitrogen removal. This work demonstrated that the BAC treatment could be acclimated to the very high salinity environment, and could be used as a robust method for the removal of organic matter and nitrogen from the pre-oxidised ROC under optimised conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Optoelectronic devices incorporating fluoropolymer compositions for protection

    DOEpatents

    Chen, Xuming; Chum, Pak-Wing S.; Howard, Kevin E.; Lopez, Leonardo C.; Sumner, William C.; Wu, Shaofu

    2015-12-22

    The fluoropolymer compositions of the present invention generally incorporate ingredients comprising one or more fluoropolymers, an ultraviolet light protection component (hereinafter UV protection component), and optionally one or more additional ingredients if desired. The UV protection component includes a combination of at least one hindered tertiary amine (HTA) compound having a certain structure and a weight average molecular weight of at least 1000. This tertiary amine is used in combination with at least one organic, UV light absorbing compound (UVLA compound) having a weight average molecular weight greater than 500. When the HTA compound and the UVLA compound are selected according to principles of the present invention, the UV protection component provides fluoropolymer compositions with significantly improved weatherability characteristics for protecting underlying materials, features, structures, components, and/or the like. In particular, fluoropolymer compositions incorporating the UV protection component of the present invention have unexpectedly improved ability to resist blackening, coloration, or other de gradation that may be caused by UV exposure. As a consequence, devices protected by these compositions would be expected to have dramatically improved service life. The compositions have a wide range of uses but are particularly useful for forming protective layers in optoelectronic devices.

  2. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.

    PubMed

    Baek, Seung-Wook; Shim, Jae-Hyoung; Seung, Hyun-Min; Lee, Gon-Sub; Hong, Jin-Pyo; Lee, Kwang-Sup; Park, Jea-Gun

    2014-11-07

    Silicon solar cells mainly absorb visible light, although the sun emits ultraviolet (UV), visible, and infrared light. Because the surface reflectance of a textured surface with SiNX film on a silicon solar cell in the UV wavelength region (250-450 nm) is higher than ∼27%, silicon solar-cells cannot effectively convert UV light into photo-voltaic power. We implemented the concept of energy-down-shift using CdSe/ZnS core/shell quantum-dots (QDs) on p-type silicon solar-cells to absorb more UV light. CdSe/ZnS core/shell QDs demonstrated clear evidence of energy-down-shift, which absorbed UV light and emitted green-light photoluminescence signals at a wavelength of 542 nm. The implementation of 0.2 wt% (8.8 nm QDs layer) green-light emitting CdSe/ZnS core/shell QDs reduced the surface reflectance of the textured surface with SiNX film on a silicon solar-cell from 27% to 15% and enhanced the external quantum efficiency (EQE) of silicon solar-cells to around 30% in the UV wavelength region, thereby enhancing the power conversion efficiency (PCE) for p-type silicon solar-cells by 5.5%.

  3. Forecasting of UV-Vis absorbance time series using artificial neural networks combined with principal component analysis.

    PubMed

    Plazas-Nossa, Leonardo; Hofer, Thomas; Gruber, Günter; Torres, Andres

    2017-02-01

    This work proposes a methodology for the forecasting of online water quality data provided by UV-Vis spectrometry. Therefore, a combination of principal component analysis (PCA) to reduce the dimensionality of a data set and artificial neural networks (ANNs) for forecasting purposes was used. The results obtained were compared with those obtained by using discrete Fourier transform (DFT). The proposed methodology was applied to four absorbance time series data sets composed by a total number of 5705 UV-Vis spectra. Absolute percentage errors obtained by applying the proposed PCA/ANN methodology vary between 10% and 13% for all four study sites. In general terms, the results obtained were hardly generalizable, as they appeared to be highly dependent on specific dynamics of the water system; however, some trends can be outlined. PCA/ANN methodology gives better results than PCA/DFT forecasting procedure by using a specific spectra range for the following conditions: (i) for Salitre wastewater treatment plant (WWTP) (first hour) and Graz West R05 (first 18 min), from the last part of UV range to all visible range; (ii) for Gibraltar pumping station (first 6 min) for all UV-Vis absorbance spectra; and (iii) for San Fernando WWTP (first 24 min) for all of UV range to middle part of visible range.

  4. Inhibitory Effect of Solar Radiation on Amino Acid Uptake in Chesapeake Bay Bacteria

    PubMed Central

    Bailey, Carmela A.; Neihof, Rex A.; Tabor, Paul S.

    1983-01-01

    The effect of solar radiation on a natural bacterial population from the Chesapeake Bay was evaluated from measured changes in numbers of organisms engaged in amino acid uptake. From July through May, freshly collected water samples were exposed in quartz containers to 3.5 h of total sunlight both with and without UV-absorbing filters. Water samples were subsequently incubated with tritiated amino acids, and the uptake-active bacteria were assayed by microauto-radiography-epifluorescence microscopy. The survival index, defined as the fraction of the uptake-active population that remained active after the exposure to sunlight, ranged from 0.93 to 0.20. Decreased survival was correlated with increased solar intensity. The inhibition of amino acid uptake was attributed not only to the UV-B component of the solar spectrum (280 to 320 nm), but also to longer UV and visible wavelengths. PMID:16346351

  5. Inhibitory effect of solar radiation on amino Acid uptake in chesapeake bay bacteria.

    PubMed

    Bailey, C A; Neihof, R A; Tabor, P S

    1983-07-01

    The effect of solar radiation on a natural bacterial population from the Chesapeake Bay was evaluated from measured changes in numbers of organisms engaged in amino acid uptake. From July through May, freshly collected water samples were exposed in quartz containers to 3.5 h of total sunlight both with and without UV-absorbing filters. Water samples were subsequently incubated with tritiated amino acids, and the uptake-active bacteria were assayed by microauto-radiography-epifluorescence microscopy. The survival index, defined as the fraction of the uptake-active population that remained active after the exposure to sunlight, ranged from 0.93 to 0.20. Decreased survival was correlated with increased solar intensity. The inhibition of amino acid uptake was attributed not only to the UV-B component of the solar spectrum (280 to 320 nm), but also to longer UV and visible wavelengths.

  6. Rapid laser fabrication of microlens array using colorless liquid photopolymer for AMOLED devices

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Ryul; Jeong, Han-Wook; Lee, Kong-Soo; Yi, Junsin; Yoo, Jae-Chern; Cho, Myung-Woo; Cho, Sung-Hak; Choi, Byoungdeog

    2011-01-01

    Microlens array (MLA) is microfabricated using Ultra Violet (UV) laser for display device applications. A colorless liquid photopolymer, Norland Optical Adhesive (NOA) 60, is spin-coated and pre-cured via UV light for completing the laser process. The laser energy controlled by a galvano scanner is radiated on the surface of the NOA 60. A rapid thermal volume expansion inside the material creates microlens array when the Gaussian laser energy is absorbed. The fabrication process conditions for various shapes and densities of MLA using a non-contact surface profiler are investigated. Furthermore, we analyze the optical and display characteristics for the Organic Light Emitting Diode (OLED) devices. Optimized condition furnishes the OLED with the enhancement of light emission by 15%. We show that UV laser technique, which is installed with NOA 60 MLA layer, is eligible for improving the performance of the next generation display devices.

  7. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I. Evidence for Dust in the UV Absorbers

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Crenshaw, D. M.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K.; George, I. M.; Turner, T. J.; Yaqoob, T.; Dunn, J. P.

    2002-12-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, obtained with the Space Telescope Imaging Spectrograph at high spectral resolution (λ /Δ λ = 30,000 - 46,000), simultaneously with Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner high-ionization narrow-line region (NLR). Assuming the NLR is fully covered, we find nonunity covering factors in the cores of several components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous C IV and N V columns for component 1 (at -1040 km s-1), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim (based on nonsimultaneous observations of N V and C IV). We find that dust-free models of the absorbers severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include dust (and thereby heavily deplete carbon) are successful in matching all of the observed ionic columns, and result in substantially lower ionization parameters and total column densities compared to dust-free models. Interestingly, these models yield the exact amount of dust needed to produce the observed reddening of the inner NLR, assuming a Galactic dust to gas ratio. The models produce little O VII and O VIII, indicating that none of the dusty UV absorbers is associated with a classic X-ray warm absorber.

  8. Effects of iron on optical properties of dissolved organic matter.

    PubMed

    Poulin, Brett A; Ryan, Joseph N; Aiken, George R

    2014-09-02

    Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV-vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV-vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV-vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation-emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.

  9. Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye.

    PubMed

    Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra

    2011-07-01

    Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process.

  10. Optical properties and aging of light-absorbing secondary organic aerosol

    DOE PAGES

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; ...

    2016-10-14

    The light-absorbing organic aerosol (OA) commonly referred to as “brown carbon” (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NO x concentrations, photolysis time, and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NO x concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NO x conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  11. Two chemically distinct light-absorbing pools of urban organic aerosols: A comprehensive multidimensional analysis of trends.

    PubMed

    Paula, Andreia S; Matos, João T V; Duarte, Regina M B O; Duarte, Armando C

    2016-02-01

    The chemical and light-absorption dynamics of organic aerosols (OAs), a master variable in the atmosphere, have yet to be resolved. This study uses a comprehensive multidimensional analysis approach for exploiting simultaneously the compositional changes over a molecular size continuum and associated light-absorption (ultraviolet absorbance and fluorescence) properties of two chemically distinct pools of urban OAs chromophores. Up to 45% of aerosol organic carbon (OC) is soluble in water and consists of a complex mixture of fluorescent and UV-absorbing constituents, with diverse relative abundances, hydrophobic, and molecular weight (Mw) characteristics between warm and cold periods. In contrast, the refractory alkaline-soluble OC pool (up to 18%) is represented along a similar Mw and light-absorption continuum throughout the different seasons. Results suggest that these alkaline-soluble chromophores may actually originate from primary OAs sources in the urban site. This work shows that the comprehensive multidimensional analysis method is a powerful and complementary tool for the characterization of OAs fractions. The great diversity in the chemical composition and optical properties of OAs chromophores, including both water-soluble and alkaline-soluble OC, may be an important contribution to explain the contrasting photo-reactivity and atmospheric behavior of OAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The contribution of mycosporine-like amino acids, chromophoric dissolved organic matter and particles to the UV protection of sea-ice organisms in the Baltic Sea.

    PubMed

    Piiparinen, Jonna; Enberg, Sara; Rintala, Janne-Markus; Sommaruga, Ruben; Majaneva, Markus; Autio, Riitta; Vähätalo, Anssi V

    2015-05-01

    The effects of ultraviolet radiation (UVR) on the synthesis of mycosporine-like amino acids (MAAs) in sea-ice communities and on the other UV-absorption properties of sea ice were studied in a three-week long in situ experiment in the Gulf of Finland, Baltic Sea in March 2011. The untreated snow-covered ice and two snow-free ice treatments, one exposed to wavelengths > 400 nm (PAR) and the other to full solar spectrum (PAR + UVR), were analysed for MAAs and absorption coefficients of dissolved (aCDOM) and particulate (ap) fractions, the latter being further divided into non-algal (anap) and algal (aph) components. Our results showed that the diatom and dinoflagellate dominated sea-ice algal community responded to UVR down to 25-30 cm depth by increasing their MAA : chlorophyll-a ratio and by extending the composition of MAA pool from shinorine and palythine to porphyra-334 and an unknown compound with absorption peaks at ca. 335 and 360 nm. MAAs were the dominant absorbing components in algae in the top 10 cm of ice, and their contribution to total absorption became even more pronounced under UVR exposure. In addition to MAAs, the high absorption by chromophoric dissolved organic matter (CDOM) and by deposited atmospheric particles provided UV-protection for sea-ice organisms in the exposed ice. Efficient UV-protection will especially be of importance under the predicted future climate conditions with more frequent snow-free conditions.

  13. Defined UV protection by apparel textiles.

    PubMed

    Hoffmann, K; Laperre, J; Avermaete, A; Altmeyer, P; Gambichler, T

    2001-08-01

    This article was written to update information on test methods and standards for determining the UV protection of apparel textiles and on factors affecting UV protective properties of fabrics, from dermatological and textile technological viewpoints. Articles from dermatological and textile technological journals published from 1990 to 2001 were identified from MEDLINE, Excerpta Medica/EMBASE, World Textiles, and Textile Technology Digest. Peer-reviewed dermatological articles, textile technological research articles, and normative publications were selected. Independent data extraction was performed by several observers. Spectrophotometry is the preferred method for determining UV protection factor of textile materials. Various textile qualities affect the UV protection factor of a finished garment; important elements are the fabric porosity, type, color, weight, and thickness. The application of UV absorbers in the yarns significantly improves the UV protection factor of a garment. With wear and use, several factors can alter the UV protective properties of a textile, including stretch, wetness, and degradation due to laundering. Standards in the field exist in Australia and Great Britain, and organizations such as the European Standardization Commission in Europe and the American Association of Textile Chemists and Colorists and the American Society for Testing and Materials in the United States are also establishing standards for the determination and labeling of sun protective clothing. Various textile qualities and conditions of wear and use affect UV protective properties of apparel textiles. The use of UV blocking fabrics can provide excellent protection against the hazards of sunlight; this is especially true for garments manufactured as UV protective clothing.

  14. Biophysical Characterization of an Bifunctional Iron Regulating Enzyme

    DTIC Science & Technology

    2002-05-01

    of the direct assay 29 Citrate, cis- aconitate and d- isocitrate all absorb light in the UV-Vis region, a fact which was confirmed...experimentally using a Hewlard-Packard 8452 Diode UV-Vis Diode Array Spectrophotometer. The maximum absorbance of cis- aconitate was determined to be 240 nm...and isocitrate was 212 nm. The preponderance of cis- aconitate concentration versus the formation of isocitrate concentration made tracking a

  15. UV-Vis Ratiometric Resonance Synchronous Spectroscopy for Determination of Nanoparticle and Molecular Optical Cross Sections.

    PubMed

    Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-01

    Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.

  16. Organic Aerosols in the Presence of CO{sub 2} in the Early Earth and Exoplanets: UV–Vis Refractive Indices of Oxidized Tholins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavilan, Lisseth; Carrasco, Nathalie; Vettier, Ludovic

    In this experimental study we investigate the role of atmospheric CO{sub 2} on the optical properties of organic photochemical aerosols. To this end, we add CO{sub 2} to a N{sub 2}:CH{sub 4} gas mixture used in a plasma typically used for Titan studies. We produce organic thin films (tholins) in plasmas where the CO{sub 2}/CH{sub 4} ratio is increased from 0 to 4. We measure these films via spectrometric ellipsometry and apply a Tauc–Lorentz model, used for optically transparent materials, to obtain the thickness of the thin film, its optical band gap, and the refractive indices in the UV–visible (270–600more » nm). All samples present a significant absorption band in the UV. According to the Tauc–Lorentz model, as the CO{sub 2}/CH{sub 4} ratio is quadrupled, the position of the UV band is shifted from ∼177 nm to 264 nm while its strength is quadrupled. Consequently, we infer that oxidized organic aerosols absorb more efficiently at longer UV wavelengths than reduced aerosols. Our laboratory wavelength-tabulated UV–vis refractive indices provide new constraints to atmospheric models of the early Earth and Earth-like exoplanets including photochemical hazes formed under increasingly oxidizing conditions.« less

  17. Distribution and nature of UV absorbers on Trition's surface

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1995-01-01

    Substantial evidence suggests that a UV (ultraviolet) Spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAM's exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SAM material. We hope to determine if UV-SAM's on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAM's has been determined, further constraints on their composition can be made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on Voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.

  18. Distribution and nature of UV absorbers on Triton's surface

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1995-01-01

    Substantial evidence suggests that a UV spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAMs exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SaM material. We hope to determine if UV-SAMs on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAMs has been determined, further constraints on their composition cable made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.

  19. Distribution and nature of UV absorbers on Triton's surface

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1994-01-01

    Substantial evidence suggests that a UV Spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAM's exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SAM material. We hope to determine if UV-SAM's on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAM's has been determined, further constraints on their composition can be made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on Voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.

  20. Generation of soluble microbial products by bio-activated carbon filter during drinking water advanced treatment and its influence on spectral characteristics.

    PubMed

    Shen, Hong; Chen, Xin; Zhang, Dong; Chen, Hong-Bin

    2016-11-01

    In order to improve our understanding of bio-activated carbon (BAC) filter, the water quality of influent and effluent treated with BAC in a drinking water treatment plant (DWTP) of Shanghai during 2015 was valued. Combining the results from UV254, SUVA254, dissolved organic carbon (DOC) and scanning electron microscopic (SEM), it is found that performance of BAC treatment will be affected by characteristics of activated carbon (AC), which is relevant to the type of activated carbon (including shape and operating time) in this study. Fluorescence excitation-emission matrix (FEEM) shows that the humification index (HIX) and index of recent autochthonous contribution (BIX) is a reliable indicator to descript the variation of dissolved organic matter (DOM) during BAC process. The pattern of variation in BIX and HIX implies that soluble microbial products (SMPs) are formed and humic-like substances are removed during BAC treatment, which is also confirmed by the change of peaks of FEEM in BAC effluent. Large, positive correlations between SUVA254 and disinfection by-products formation potential yield (DBPFP yield) demonstrate that UV-absorbing DOM is directly related to the generation of DBPs. Poor correlations of HIX with DBPFP suggest that non-humic substances with UV-absorbing properties play an important role in the generation of DBPs in water with low SUVA254. Finally, strong but negative correlations between BIX and DBPFP suggest that vigorous microbial metabolism of BAC results in a decrease in DBPFP. However, the DBPFP yield will be enhanced for the generation of SMPs by BAC, especially in summer. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Optical properties of algogenic organic matter within the growth period of Chlorella sp. and predicting their disinfection by-product formation.

    PubMed

    Hua, Lap-Cuong; Lin, Jr-Lin; Syue, Ming-Yang; Huang, Chihpin; Chen, Pei-Chung

    2018-04-15

    Algogenic organic matter (AOM) in eutrophic waters is a well-known precursor to disinfection by-product (DBP) formation in drinking water. This purpose of this study is (i) to characterize the optical properties of AOM origins, including intra- (IOM) and extra-cellular organic matter (EOM), derived from Chlorella sp. growth as precursors to two major carbonaceous DBPs (C-DBPs), trihalomethanes (THMs) and haloacetic acids (HAAs) and (ii) to correlate these optical properties with THM and HAA formation potential (FP) in order to predict DBP formation. The results show that both EOM and IOM had low UV 254 and UV 280 absorbance during their entire growth phase. While IOM chiefly comprised of aromatic proteins and soluble microbial products-like substances (80% of average fluorescent intensity-AFI), EOM spectra were rich in humic- and fulvic-like substances (60% AFI). However, its chemical nature likely differed from terrestrial humics. In DBPFP tests, IOM was a higher-yielding precursor of THMs and HAAs compared to EOM, regardless its growth status. Consequently, C-DBPFP of IOM was always higher than EOM during four growth phases. Results from DBP tests also showed insignificant variation of EOM-derived THMFP and HAAFP during the algal growth phase, while the algal growth status strongly influenced the yields of IOM-derived THMFP and HAAFP. From correlation analysis, our results showed no correlation between UV absorbance with THMFP and HAAFP. Conversely, the regional AFI showed a good correlation with HAAFP and C-DBPFP. Predicting models based on AFI for the formation of HAAs and C-DBPs consequently yielded great predictability for laboratory AOM-containing water samples, with a coefficient of determination R 2 =0.879, p<0.01 and R 2 =0.846, p<0.01. This study indicates a promising application of fluorescent spectra for predicting DBPs derived from algae-rich water sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid.

    PubMed

    Gümüş, Dilek; Akbal, Feryal

    2017-05-01

    This study compares ozonation (O 3 ), iron coated zeolite catalyzed ozonation (ICZ-O 3 ) and granular activated carbon catalyzed ozonation (GAC-O 3 ) for removal of humic acid from an aqueous solution. The results were evaluated by the removal of DOC that specifies organic matter, UV 254 absorbance, SUVA (Specific Ultraviolet Absorbance at 254 nm) and absorbance at 436 nm. When ozonation was used alone, DOC removal was 21.4% at an ozone concentration of 10 mg/L, pH 6.50 and oxidation time of 60 min. The results showed that the use of ICZ or GAC as a catalyst increased the decomposition of humic acid compared to ozonation alone. DOC removal efficiencies were 62% and 48.1% at pH 6.5, at a catalyst loading of 0.75 g/L, and oxidation time of 60 min for ICZ and GAC, respectively. The oxidation experiments were also carried out using <100 kDa and <50 kDa molecular size fractions of humic acid in the presence of ICZ or GAC. Catalytic ozonation also yielded better DOC and UV 254 reduction in both <50 kDa and <100 kDa fractions of HA compared to ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    PubMed

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.

  4. [Study on optical characteristics of chromophoric dissolved organic matter (CDOM) in rainwater by fluorescence excitation-emission matrix and absorbance spectroscopy].

    PubMed

    Cheng, Yuan-yue; Guo, Wei-dong; Long, Ai-min; Chen, Shao-yong

    2010-09-01

    The optical characteristics of chromophoric dissolved organic matter (CDOM) were determined in rain samples collected in Xiamen Island, during a rainy season in 2007, using fluorescence excitation-emission matrix spectroscopy associated with UV-Vis absorbance spectra. Results showed that the absorbance spectra of CDOM in rain samples decreased exponentially with wavelength. The absorbance coefficient at 300 nm [a(300)] ranged from 0.27 to 3.45 m(-1), which would be used as an index of CDOM abundance, and the mean value was 1.08 m(-1). The content of earlier stage of precipitation events was higher than that of later stage of precipitation events, which implied that anthropogenic sources or atmospheric pollution or air mass types were important contributors to CDOM levels in precipitation. EEMs spectra showed 4 types of fluorescence signals (2 humic-like fluorescence peaks and 2 protein-like fluorescence peaks) in rainwater samples, and there were significant positive correlations of peak A with C and peak B with S, showing their same sources or some relationship of the two humic-like substance and the two protein-like substance. The strong positive correlations of the two humic-like fluorescence peaks with a(300), suggested that the chromophores responsible for absorbance might be the same as fluorophores responsible for fluorescence. Results showed that the presence of highly absorbing and fluorescing CDOM in rainwater is of significant importance in atmospheric chemistry and might play a previously unrecognized role in the wavelength dependent spectral attenuation of solar radiation by atmospheric waters.

  5. Laser micromachining of optical devices

    NASA Astrophysics Data System (ADS)

    Kopitkovas, Giedrius; Lippert, Thomas; David, Christian; Sulcas, Rokas; Hobley, Jonathan; Wokaun, Alexander J.; Gobrecht, Jens

    2004-10-01

    The combination of a gray tone phase mask with a laser assisted wet etching process was applied to fabricate complex microstructures in UV transparent dielectric materials. This one-step method allows the generation of arrays of plano-convex and Fresnel micro-lenses using a conventional XeCl excimer laser and an absorbing liquid, which is in contact with the UV transparent material. An array of plano-convex micro-lenses was tested as beam homogenizer for a high power XeCl excimer and ps Nd:YAG laser. The roughness of the etched features varies from several μm to 10 nm, depending on the laser fluence and concentration of the dye in the organic liquid. The etching process can be divided into several etching mechanisms which vary with laser fluence.

  6. Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during winter time.

    PubMed

    Mohr, Claudia; Lopez-Hilfiker, Felipe D; Zotter, Peter; Prévôt, André S H; Xu, Lu; Ng, Nga L; Herndon, Scott C; Williams, Leah R; Franklin, Jonathan P; Zahniser, Mark S; Worsnop, Douglas R; Knighton, W Berk; Aiken, Allison C; Gorkowski, Kyle J; Dubey, Manvendra K; Allan, James D; Thornton, Joel A

    2013-06-18

    We show for the first time quantitative online measurements of five nitrated phenol (NP) compounds in ambient air (nitrophenol C6H5NO3, methylnitrophenol C7H7NO3, nitrocatechol C6H5NO4, methylnitrocatechol C7H7NO4, and dinitrophenol C6H4N2O5) measured with a micro-orifice volatilization impactor (MOVI) high-resolution chemical ionization mass spectrometer in Detling, United Kingdom during January-February, 2012. NPs absorb radiation in the near-ultraviolet (UV) range of the electromagnetic spectrum and thus are potential components of poorly characterized light-absorbing organic matter ("brown carbon") which can affect the climate and air quality. Total NP concentrations varied between less than 1 and 98 ng m(-3), with a mean value of 20 ng m(-3). We conclude that NPs measured in Detling have a significant contribution from biomass burning with an estimated emission factor of 0.2 ng (ppb CO)(-1). Particle light absorption measurements by a seven-wavelength aethalometer in the near-UV (370 nm) and literature values of molecular absorption cross sections are used to estimate the contribution of NP to wood burning brown carbon UV light absorption. We show that these five NPs are potentially important contributors to absorption at 370 nm measured by an aethalometer and account for 4 ± 2% of UV light absorption by brown carbon. They can thus affect atmospheric radiative transfer and photochemistry and with that climate and air quality.

  7. Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Meadows, Victoria; Domagal-Goldman, Shawn; Deming, Drake; Robinson, Tyler D.; Tovar, Guadalupe; Wolf, Eric; Schwieterman, Edward

    2016-10-01

    Hazes are common in planetary atmospheres, and geochemical evidence suggests early Earth occasionally supported an organic haze. The formation of organic hazes is initiated by methane photochemistry sensitive to the host star UV spectrum. Because methane can be produced by a variety of biological and geological processes, organic-rich terrestrial planets with hazes may be common in the galaxy. We use a 1D photochemical-climate model to examine the production of fractal organic haze on Archean Earthlike planets orbiting several different stars: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), a modeled quiescent M dwarf (M3.5V), ɛ Eridani (K2V), and σ Boötis (F2V). For the planetary atmospheric compositions used, planets orbiting stars with the highest or lowest UV fluxes do not form haze. Low UV-stars are unable to drive the photochemistry needed for haze formation. High UV stars generate photochemical oxygen radicals that halt haze production. Organic hazes can impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized for hazy M dwarf planets whose incident stellar radiation arrives at wavelengths where organic hazes are largely transparent. We generate synthetic planetary spectra to test the detectability of haze. For 10 transits of an Archean-analog planet orbiting GJ 876 observed by the James Webb Space Telescope, gaseous absorption features at wavelengths < 2.5μm are 2-10σ shallower in the presence of a haze compared to a clear-sky planet, and methane and carbon dioxide are detectable at >5σ assuming photon-limited noise levels. An absorption feature from the haze can be detected at the 5σ level near 6.3μm, but higher signal-to-noise would be needed to uniquely distinguish haze from other absorbers in this spectral region. For direct imaging of a planet at 10 parsecs using a coronagraphic 10-meter class ultraviolet-visible-near infrared telescope, a UV-blue haze absorption feature would be strongly detectable at >12σ in 200 hours. Although haze is often considered a feature that conceals planetary features, organic haze can indicate a geologically active planet - and therefore a potentially habitable one - and possibly even reveal the presence of life.

  8. Simultaneous X-ray and Far-Ultraviolet Spectra of AGN with ASCA and HUT

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We obtained ASCA spectra of the Seyfert 1 galaxy NGC 3516 in March 1995. Simultaneous far-UV observations were obtained with the Hopkins Ultraviolet Telescope on the Astro-2 shuttle mission. The ASCA spectrum shows a lightly absorbed power law of energy index 0.78. The low energy absorbing column is significantly less than previously seen. Prominent 0 VII and 0 VIII absorption edges are visible, but, consistent with the much lower total absorbing column, no Fe K absorption edge is detectable. A weak, narrow Fe K(alpha) emission line from cold material is present as well as a broad Fe K(alpha) line. These features are similar to those reported in other Seyfert 1 galaxies. A single warm absorber model provides only an imperfect description of the low energy absorption. In addition to a highly ionized absorber with ionization parameter U = 1.66 and a total column density of 1.4 x 10(exp 22)/sq cm, adding a lower ionization absorber with U = 0.32 and a total column of 6.9 x 10(exp 21)/sq cm significantly improves the fit. The contribution of resonant line scattering to our warm absorber models limits the Doppler parameter to less than 160 km/s at 90% confidence. Turbulence at the sound speed of the photoionized gas provides the best fit. None of the warm absorber models fit to the X-ray spectrum can match the observed equivalent widths of all the UV absorption lines. Accounting for the X-ray and UV absorption simultaneously requires an absorbing region with a broad range of ionization parameters and column densities.

  9. Effect of Aerosols on Surface Radiation and Air Quality in the Central American Region Estimated Using Satellite UV Instruments

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Torres, O.; Krotkov, N. A.

    2007-05-01

    Solar radiation reaching the Earth's surface is reduced by both aerosol scattering and aerosol absorption. Over many parts of the world the latter effect can be as large or larger than the former effect, and small changes in the aerosol single scattering albedo can either cancel the former effect or enhance it. In addition, absorbing aerosols embedded in clouds can greatly reduce the amount of radiation reaching the surface by multiple scattering. Though the potential climatic effects of absorbing aerosols have received considerable attention lately, their effect on surface UV, photosynthesis, and photochemistry can be equally important for our environment and may affect human health and agricultural productivity. Absorption of all aerosols commonly found in the Earth's atmosphere becomes larger in the UV and blue wavelengths and has a relatively strong wavelength dependence. This is particularly true of mineral dust and organic aerosols. However, these effects have been very difficult to estimate on a global basis since the satellite instruments that operate in the visible are primarily sensitive to aerosol scattering. A notable exception is the UV Aerosol Index (AI), first produced using NASA's Nimbus-7 TOMS data. AI provides a direct measure of the effect of aerosol absorption on the backscattered UV radiation in both clear and cloudy conditions, as well as over snow/ice. Although many types of aerosols produce a distinct color cast in the visible images, and aerosols absorption over clouds and snow/ice could, in principle be detected from their color, so far this technique has worked well only in the UV. In this talk we will discuss what we have learned from the long-term record of AI produced from TOMS and Aura/OMI about the possible role of aerosols on surface radiation and air quality in the Central American region.

  10. Ultraviolet Satellite Measurements of Volcanic Ash. Chapter 12

    NASA Technical Reports Server (NTRS)

    Carn, S. A.; Krotkov, N. A.

    2016-01-01

    Ultraviolet (UV) remote sensing of volcanic ash and other absorbing aerosols from space began with the launch of the first Total Ozone Mapping Spectrometer (TOMS) instrument in 1978. Subsequent UV satellite missions (TOMS, GOME, SCIAMACHY, OMI, GOME-2, OMPS) have extended UV ash measurements to the present, generating a unique multidecadal record. A UV Aerosol Index (UVAI) based on two near-UV wavelengths, equally applicable to multispectral (TOMS, DSCOVR) or hyperspectral (GOME, SCIAMACHY, OMI, GOME-2, OMPS) instruments, has been used to derive a unique absorbing aerosol climatology across multiple UV satellite missions. Advantages of UV ash measurements relative to infrared (IR) techniques include the ability to detect ash at any altitude (assuming no clouds), above clouds, and over bright surfaces, where visible and IR techniques may fail. Disadvantages include the daytime-only restriction and nonspecificity to silicate ash, since UV measurements are sensitive to any UV-absorbing aerosol, including smoke, desert dust, and pollution. However, simultaneous retrieval of sulfur dioxide (SO2) abundance and UVAI provides robust discrimination of volcanic clouds. Although the UVAI is only semiquantitative, it has proved successful at detecting and tracking volcanic ash clouds from many volcanic eruptions since 1978. NASA A-Train measurements since 2006 (eg, CALIOP) have provided much improved constraints on volcanic ash altitude, and also permit identification of aerosol type through sensor synergy. Quantitative UV retrievals of ash optical depth, effective particle size, and ash column mass are possible and require assumptions of ash refractive index, particle size distribution, and ash layer altitude. The lack of extensive ash refractive index data in the UV-visible and the effects of ash particle shape on retrievals introduce significant uncertainty in the retrieved parameters, although limited validation against IR ash retrievals has been successful. In this contribution, we review UV ash detection and retrieval techniques and provide examples of volcanic eruptions detected in the approx. 37 year data record.

  11. Assessment of organic pollution of an industrial river by synchronous fluorescence and UV-vis spectroscopy: the Fensch River (NE France).

    PubMed

    Assaad, Aziz; Pontvianne, Steve; Pons, Marie-Noëlle

    2017-05-01

    To rapidly monitor the surface water quality in terms of organic pollution of an industrial river undergoing restoration, optical methods (UV-visible spectrometry and fluorescence) were applied in parallel to classical physical-chemical analyses. UV-visible spectra were analyzed using the maximum of the second derivative at 225 nm (related to nitrates), specific absorbance at 254 nm (SUVA 254 ), and the spectral slope between 275 and 295 nm (S 275-295 ) (related to the aromaticity and molecular weight of dissolved organic carbon). The synchronous fluorescence spectra (wavelength difference = 50 nm) exhibited a high variability in the composition of dissolved organic material between the upstream and downstream sections and also versus time. The principal components analysis of the entire set of synchronous fluorescence spectra helped to define three river sections with different pollution characteristics. Spectral decomposition was applied to the two most upstream sections: five fluorophores, classical in rivers impacted by domestic sewage and related to protein-like (λ ex  = 280 nm) and humic-like fluorescence (M-type with λ ex  ≈ 305-310 nm and C-type with λ ex  ≥ 335 nm), were identified. The irregular shape of the synchronous fluorescence spectra in the most downstream section is likely due to organic pollutants of industrial origin; however, their variability and the complexity of the spectra did not allow the further elucidation of their nature.

  12. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns.

    PubMed

    Papiorek, S; Junker, R R; Alves-Dos-Santos, I; Melo, G A R; Amaral-Neto, L P; Sazima, M; Wolowski, M; Freitas, L; Lunau, K

    2016-01-01

    Colour is one of the most obvious advertisements of flowers, and occurs in a huge diversity among the angiosperms. Flower colour is responsible for attraction from a distance, whereas contrasting colour patterns within flowers aid orientation of flower visitors after approaching the flowers. Due to the striking differences in colour vision systems and neural processing across animal taxa, flower colours evoke specific behavioural responses by different flower visitors. We tested whether and how yellow flowers differ in their spectral reflectance depending on the main pollinator. We focused on bees and birds and examined whether the presence or absence of the widespread UV reflectance pattern of yellow flowers predicts the main pollinator. Most bee-pollinated flowers displayed a pattern with UV-absorbing centres and UV-reflecting peripheries, whereas the majority of bird-pollinated flowers are entirely UV- absorbing. In choice experiments we found that bees did not show consistent preferences for any colour or pattern types. However, all tested bee species made their first antennal contact preferably at the UV-absorbing area of the artificial flower, irrespective of its spatial position within the flower. The appearance of UV patterns within flowers is the main difference in spectral reflectance between yellow bee- and bird-pollinated flowers, and affects the foraging behaviour of flower visitors. The results support the hypothesis that flower colours and the visual capabilities of their efficient pollinators are adapted to each other. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. UV-blocking potential of oils and juices.

    PubMed

    Gause, S; Chauhan, A

    2016-08-01

    Sunscreens are commonly used to protect the body from damage caused by UV light. Some components of organic sunscreens have been shown to pass through the skin during wear which could raise toxicity concerns for these compounds. This study explores the potential for oils and fruit and vegetable juices to be substitutes for these compounds. The absorptivity of various oils (canola oil, citronella oil, coconut oil, olive oil, soya bean oil, vitamin E, as well as aloe vera) and fruit and vegetable juices (acerola, beet, grape, orange carrot, purple carrot and raspberry) was measured in vitro. The mean absorptivity was compared with FDA-approved UV absorbers to gauge the potential of the natural products. The most promising candidates were incorporated into formulations, and the UV transmittance of a 20-μm-thick film of the formulation was measured. The formulations were also imaged by light microscopy and scanning electron microscopy. The absorptivity of oils was at least two orders of magnitude lower compared to the commercial UV blockers. The fruit juice powders were more effective at UV blocking but still showed an order of magnitude lower absorptivity compared to commercial UV blockers. The UV blocking from most natural oils is insufficient to obtain a significant UV protection. Formulations containing 50wt% purple carrot showed good UV-blocking capabilities and represent a promising ingredient for sunscreen and cosmetic applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. Leaf expansion and development of photosynthetic capacity and pigments in Liquidambar Styraciflua (Hamamelidaceae)-effects of UV-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillenburg, L.R.; Sullivan, J.H.; Teramura, A.H.

    1995-07-01

    In order to perform their functions as photosynthetic organs, leaves must cope with excess heat and potentially damaging ultraviolet radiation. Possible increases in the UV-B portion of the solar spectrum may place an additional burden on leaves, and this could be particularly important for young expanding leaves with poorly developed UV-B defense mechanisms. We evaluated the effects of supplemental UV-B radiation on leaf expansion and the development of photosynthetic capacity and pigments in sweetgum (Liquidambar styraciflua L.) seedlings. Seedlings were grown in the field under either ambient or ambient plus 3 or 5.0 kJ of biologically effective supplemental UV-B radiation.more » Although final leaf size was unaffected, the rate of leaf elongation and accumulation of leaf area was slower in leaves exposed to the lower supplemental UV-B irradiance. In contrast, chlorophyll accumulation and the development of photosynthetic capacity was more rapid in plants exposed to the higher, compared to the lower supplemental UV-B irradiance. The accumulation of anthocyanins and other putative flavonoids or UV-absorbing compounds was scarcely affected by exposure to supplemental UV-B radiation. These results suggest that the UV-B portion of the solar spectrum may, in the absence of gross affects on biomass, exert subtle influences on leaf ontogeny and the development of photosynthetic pigments and capacity in sweetgum. 44 refs., 6 figs.« less

  15. Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property.

    PubMed

    Xie, Siyuan; Zhao, Jianfeng; Zhang, Bowu; Wang, Ziqiang; Ma, Hongjuan; Yu, Chuhong; Yu, Ming; Li, Linfan; Li, Jingye

    2015-08-19

    Herein, we first reported a facile strategy to prepare functional Poly(vinyl alcohol) (PVA) hybrid film with well ultraviolet (UV) shielding property and visible light transmittance using graphene oxide nanosheets as UV-absorber. The absorbance of ultraviolet light at 300 nm can be up to 97.5%, while the transmittance of visible light at 500 nm keeps 40% plus. This hybrid film can protect protein from UVA light induced photosensitive damage, remarkably.

  16. New Dimensions for Manufacturing: A UK Strategy for Nanotechnology

    DTIC Science & Technology

    2002-06-01

    market sun-block creams based on nanoparticles that absorb UV light lasers, modulators and amplifiers for telecommunications computer...the spectrum in sunlight. Which is why these particles could appeal to people who make sunscreen or cosmetics. Nanoparticles can absorb much more UV ...company has its sights on one of today’s hot subjects, counterfeiting , which costs the UK more than £6 billion a year. NanoCo is working with a major

  17. Tuning stable and unstable aggregates of gallic acid capped gold nanoparticles using Mg2+ as coordinating agent.

    PubMed

    Kim, Dae-Young; Shinde, Surendra; Ghodake, Gajanan

    2017-05-15

    High reducibility of gallic acid allows synthesis of small sized monodisperse gold nanoparticles (GNPs) at ambient temperature (25°C). Mg 2+ rapidly interacts with the gallic acid ligands and suppresses the dispersion of GNPs therefore, causing a decrease in UV-vis absorbance intensity, and color change from red to blue. Thus, the colorimetric response of GNPs with Mg 2+ was investigated by observing temporal quenching of UV-vis absorbance and precise tuning of fractal growth of GNP aggregates. Moreover, Mg 2+ at concentrations as low as 200ppb can be detected using gallic acid ligand-mediated coordination chemistry which results quenching in UV-vis absorbance proportional to the exposure time. This gallic acid-based colorimetric sensor shown a great potential for the selective detection of pathologically important electrolyte Mg 2+ without any interference from other cations Ca 2+ and K + . Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The near-UV absorber OSSO and its isomers.

    PubMed

    Wu, Zhuang; Wan, Huabin; Xu, Jian; Lu, Bo; Lu, Yan; Eckhardt, André K; Schreiner, Peter R; Xie, Changjian; Guo, Hua; Zeng, Xiaoqing

    2018-05-01

    Disulfur dioxide, OSSO, has been proposed as the enigmatic "near-UV absorber" in the yellowish atmosphere of Venus. However, the fundamentally important spectroscopic properties and photochemistry of OSSO are scarcely documented. By either condensing gaseous SO or 266 laser photolysis of an S2O2 complex in Ar or N2 at 15 K, syn-OSSO, anti-OSSO, and cyclic OS([double bond, length as m-dash]O)S were identified by IR and UV/Vis spectroscopy for the first time. The observed absorptions (λmax) for OSSO at 517 and 390 nm coincide with the near-UV absorption (320-400 nm) found in the Venus clouds by photometric measurements with the Pioneer Venus orbiter. Subsequent UV light irradiation (365 nm) depletes syn-OSSO and anti-OSSO and yields a fourth isomer, syn-OSOS, with concomitant dissociation into SO2 and elemental sulfur.

  19. Photocurable acrylic composition, and U.V. curing with development of U.V. absorber

    DOEpatents

    McKoy, Vincent B.; Gupta, Amitava

    1992-01-01

    In-situ development of an ultraviolet absorber is provided by a compound such as a hydroxy-phenyl-triazole containing a group which protects the absorber during actinically activated polymerization by light at first frequency. After polymerization the protective group is removed by actinic reaction at a second frequency lower than the first frequency. The protective group is formed by replacing the hydrogen of the hydroxyl group with an acyl group containing 1 to 3 carbon atoms or an acryloxy group of the formula: ##STR1## where R.sup.1 is either an alkyl containing 1 to 6 carbon atoms or --CH.dbd.CH.sub.2.

  20. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  1. Brown carbon formation by aqueous-phase carbonyl compound reactions with amines and ammonium sulfate.

    PubMed

    Powelson, Michelle H; Espelien, Brenna M; Hawkins, Lelia N; Galloway, Melissa M; De Haan, David O

    2014-01-21

    Reactions between small water-soluble carbonyl compounds, ammonium sulfate (AS), and/or amines were evaluated for their ability to form light-absorbing species in aqueous aerosol. Aerosol chemistry was simulated with bulk phase reactions at pH 4, 275 K, initial concentrations of 0.05 to 0.25 M, and UV-vis and fluorescence spectroscopy monitoring. Glycolaldehyde-glycine mixtures produced the most intense absorbance. In carbonyl compound reactions with AS, methylamine, or AS/glycine mixtures, product absorbance followed the order methylglyoxal > glyoxal > glycolaldehyde > hydroxyacetone. Absorbance extended into the visible, with a wavelength dependence fit by absorption Ångstrom coefficients (Å(abs)) of 2 to 11, overlapping the Å(abs) range of atmospheric, water-soluble brown carbon. Many reaction products absorbing between 300 and 400 nm were strongly fluorescent. On a per mole basis, amines are much more effective than AS at producing brown carbon. In addition, methylglyoxal and glyoxal produced more light-absorbing products in reactions with a 5:1 AS-glycine mixture than with AS or glycine alone, illustrating the importance of both organic and inorganic nitrogen in brown carbon formation. Through comparison to biomass burning aerosol, we place an upper limit on the contribution of these aqueous carbonyl-AS-amine reactions of ≤ 10% of global light absorption by brown carbon.

  2. Intraocular and crystalline lens protection from ultraviolet damage.

    PubMed

    Sliney, David H

    2011-07-01

    Although the risks of excess solar ultraviolet (UV) exposure of the skin are well recognized, the need for eye protection is frequently overlooked, or when sunglasses are also recommended, specific guidance is wrong or is not explained. Guidance from the World Health Organization at its InterSun webpage advises people to wear "wrap-around" sunglasses under many conditions. The objective of this study was to examine the need for UV filtration in prescription lenses, contact lenses, and sunglasses. The geometry of UV exposure of both eyes, solar position, ground reflection, pupil size, and lid opening were studied. Because an accurate determination of cumulative ocular exposure is difficult, the cornea itself can serve as a biologic dosimeter, because photokeratitis is not experienced on a daily basis but does under certain ground-surface and sunlight conditions. From a knowledge of the UV-threshold dose required to produce photokeratitis, we have an upper level of routine ocular exposure to ambient UV. From ambient UV measurements and observed photokeratitis, the upper limits of UV exposure of the crystalline lens or an intraocular lens implant are estimated. The risk of excess UV exposure of the germinative cells of the lens is greatest from the side. Sunglasses can actually increase UV exposure of the germinative region of the crystalline lens and the corneal limbus by disabling the eyes' natural protective mechanisms of lid closure and pupil constriction! The level of UV-A risk is difficult to define. Proper UV-absorbing contact lenses offer the best mode for filtering needless exposure of UV radiation of the lens and limbus.

  3. UV/PAR radiation and DOM properties in surface coastal waters of the Canadian shelf of the Beaufort Sea during summer 2009

    NASA Astrophysics Data System (ADS)

    Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.

    2013-04-01

    Surface waters from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV (ultraviolet) radiation and PAR (photosynthetically active radiation) diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of both UV and PAR solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. While the Mackenzie input is the main driver of CDOM dynamics in low salinity waters, locally, primary production can create significant increases in CDOM. Extrapolating CDOM to DOC relationships, we estimate that ∼16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. The discharges of DOC and its chromophoric subset (CDOM) by the Mackenzie River during the MALINA cruise are estimated as ∼0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence excitation/emission matrix spectroscopy (EEMS) and parallel factor (PARAFAC) analysis. Our results showed an aquatic dissolved organic matter (DOM) component (C1), probably produced in the numerous lakes of the watershed, that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta Sector. This aquatic DOM could partially explain the high CDOM spectral slopes observed in the Beaufort Sea.

  4. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    NASA Astrophysics Data System (ADS)

    Azad, Uday Pratap; Ganesan, Vellaichamy; Pal, Manas

    2011-09-01

    Gold nanoparticles (Au NPs) in three different silica based sol-gel matrixes with and without surfactants are prepared. They are characterized by UV-vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol-gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200-280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5-15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  5. Monitoring Time-Dependent Formation of Oligomers and Brown Carbon in Reactions of Glycolaldehyde, Methylglyoxal, and Amines

    NASA Astrophysics Data System (ADS)

    Espelien, B.; Galloway, M. M.; De Haan, D. O.

    2012-12-01

    Authors: Brenna Espelien, Melissa Galloway, and David De Haan The brown carbon components of atmospheric aerosol exhibit strong UV absorbance with a featureless 'tail' that extends into the visible range. Recent work has shown that brown carbon (or HULIS) is formed at least in part by aqueous-phase chemical reactions in the atmosphere. Reactions between aldehydes (such as glycolaldehyde and methylglyoxal) and amines create brown products that have similar light-absorbing spectra as HULIS extracted from atmospheric aerosol. However, the structures of these products have not been well-characterized. Bulk-phase reactions were monitored using LCMS and UV-Vis spectroscopy over a period of 2-3 weeks to see what products formed, whether oligomerization is occurring, and how this correlates with the development of absorbance peaks in the visible range. UV-Vis data shows that these reactions generally take several days to reach maximum absorbance in the visible range. For the glycolaldehyde/glycine reaction, the appearance of a strong absorber at about 400 nm correlated with the appearance of high-mass products at m/z 227, 363, 393, and 431. Additional reactions between aldehydes and amines that quickly produce brown products are being studied. We suggest that imine oligomers are major products of these reactions.

  6. Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient?

    PubMed

    Barthod, Sandrine; Cerovic, Zoran; Epron, Daniel

    2007-01-01

    The present study assesses light-induced variations in phenolic compounds in leaves of saplings of two co-occurring temperate species (Acer platanoides L., and Fraxinus excelsior L.) along a light gradient using a new non-invasive optical method (Dualex). The Dualex-derived UV absorbance of leaf epidermis (the sum of the adaxial and abaxial faces, AUV) increased significantly with increasing light in both species. AUV values were correlated with absorbance of the leaf extract at 305 nm and 375 nm (A305 and A375) in both species with similar slopes for both species. However, a large difference in intercept was observed between the two species when A305 was regressed against AUV. Similarly, AUV values were well correlated with the amount of phenolics in the leaf extracts assessed by the Folin-Ciocalteu method, but slopes were significantly different for the two species. Thus, the UV-A epidermal transmittance, despite being a reliable indicator of the UV-screening capacity of the leaf epidermis, cannot be used for any quantitative estimate of UV-B screening capacity or of energetic requirement for leaf construction without a species-specific calibration.

  7. Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties.

    PubMed

    Hambardzumyan, Arayik; Foulon, Laurence; Chabbert, Brigitte; Aguié-Béghin, Véronique

    2012-12-10

    Novel nanocomposite coatings composed of cellulose nanocrystals (CNCs) and lignin (either synthetic or fractionated from spruce and corn stalks) were prepared without chemical modification or functionalization (via covalent attachment) of one of the two biopolymers. The spectroscopic properties of these coatings were investigated by UV-visible spectrophotometry and spectroscopic ellipsometry. When using the appropriate weight ratio of CNC/lignin (R), these nanocomposite systems exhibited high-performance optical properties, high transmittance in the visible spectrum, and high blocking in the UV spectrum. Atomic force microscopy analysis demonstrated that these coatings were smooth and homogeneous, with visible dispersed lignin nodules in a cellulosic matrix. It was also demonstrated that the introduction of nanoparticles into the medium increases the weight ratio and the CNC-specific surface area, which allows better dispersion of the lignin molecules throughout the solid film. Consequently, the larger molecular expansion of these aromatic polymers on the surface of the cellulosic nanoparticles dislocates the π-π aromatic aggregates, which increases the extinction coefficient and decreases the transmittance in the UV region. These nanocomposite coatings were optically transparent at visible wavelengths.

  8. Direct Retrieval of Sulfur Dioxide Amount and Altitude from Spaceborne Hyperspectral UV Measurements: Theory and Application

    NASA Technical Reports Server (NTRS)

    Yang, Kau; Liu, Xiong; Bhartia, Pawan K.; Krotkov, Nickolay A.; Carn, Simon A.; Hughes, Eric J.; Krueger, Arlin J.; Spurr, Robert D.; Trahan, Samuel G.

    2010-01-01

    We describe the physical processes by which a vertically localized absorber perturbs the top-of-atmosphere solar backscattered ultraviolet (UV) radiance. The distinct spectral responses to perturbations of an absorber in its column amount and layer altitude provide the basis for a practical satellite retrieval technique, the Extended Iterative Spectral Fitting (EISF) algorithm, for the simultaneous retrieval of these quantities of a SO2 plume. In addition, the EISF retrieval provides an improved UV aerosol index for quantifying the spectral contrast of apparent scene reflectance at the bottom of atmosphere bounded by the surface and/or cloud; hence it can be used for detection of the presence or absence of UV absorbing aerosols. We study the performance and characterize the uncertainties of the EISF algorithm using synthetic backscattered UV radiances, retrievals from which can be compared with those used in the simulation. Our findings indicate that the presence of aerosols (both absorbing and nonabsorbing) does not cause large errors in EISF retrievals under most observing conditions when they are located below the SO2 plume. The EISF retrievals assuming a homogeneous field of view can provide accurate column amounts for inhomogeneous scenes, but they always underestimate the plume altitudes. The EISF algorithm reduces systematic errors present in existing linear retrieval algorithms that use prescribed SO2 plume heights. Applying the EISF algorithm to Ozone Monitoring Instrument satellite observations of the recent Kasatochi volcanic eruption, we demonstrate the successful retrieval of effective plume altitude of volcanic SO2, and we also show the improvement in accuracy in the corresponding SO2 columns.

  9. Effect of a constructed wetland on disinfection byproducts: Removal processes and production of precursors

    USGS Publications Warehouse

    Rostad, C.E.; Martin, B.S.; Barber, L.B.; Leenheer, J.A.; Daniel, S.R.

    2000-01-01

    The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (TH M), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (THM), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.

  10. Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids.

    PubMed

    Barnes, Paul W; Tobler, Mark A; Keefover-Ring, Ken; Flint, Stephan D; Barkley, Anne E; Ryel, Ronald J; Lindroth, Richard L

    2016-01-01

    The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments. © 2015 John Wiley & Sons Ltd.

  11. Analysis of Poly-β-Hydroxybutyrate in Rhizobium japonicum Bacteroids by Ion-Exclusion High-Pressure Liquid Chromatography and UV Detection †

    PubMed Central

    Karr, Dale B.; Waters, James K.; Emerich, David W.

    1983-01-01

    Ion-exclusion high-pressure liquid chromatography (HPLC) was used to measure poly-β-hydroxybutyrate (PHB) in Rhizobium japonicum bacteroids. The products in the acid digest of PHB-containing material were fractionated by HPLC on Aminex HPX-87H ion-exclusion resin for organic acid analysis. Crotonic acid formed from PHB during acid digestion was detected by its intense absorbance at 210 nm. The Aminex-HPLC method provides a rapid and simple chromatographic technique for routine analysis of organic acids. Results of PHB analysis by Aminex-HPLC were confirmed by gas chromatography and spectrophotometric analysis. PMID:16346443

  12. Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.

    PubMed

    Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J

    2008-06-01

    Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.; Glick, S.H.; Czanderna, A.W.

    Results from extensive studies of the commercial ethylene vinyl acetate (EVA) formulations show that the UV absorber and curing-generated UV-excitable, {alpha},{beta}-unsaturated carbonyl chromophores facilitate the EVA discoloration, which is further enhanced by curing-generated acetic acid and probably residual peroxide curing agent also. Formation and concentration of the UV-excitable chromophores are substantially promoted by the antioxidant, Naugard P. The discoloration rate is greater under higher UV light intensity and temperatures. Heating in the dark at elevated temperatures (e.g., 85&hthinsp;{degree}C) in the air for {approximately}200 days only results in light yellowing. The discoloration reactions compete with photobleaching reactions, which destroy curing-generated chromophoresmore » and result in non-discoloring of EVA. By using better performance stabilizers to minimize the curing-generated UV-excitable chromophores, a new fast curing agent, and no UV absorber, the NREL-developed EVA formulations show a superior photothermal stability against browning to the commercial counterparts. Alternatively, the discoloration rate of the commercial EVA pottants can be considerably reduced by using UV-filtering glass superstrates that largely inhibit the UV-induced photooxidation reactions, or completely eliminated by using air-permeable polymer superstrate films that enable photobleaching reactions. {copyright} {ital 1999 American Institute of Physics.}« less

  14. Response of Two Plant Species to Two Ultraviolet-B Radiation Regimes

    NASA Technical Reports Server (NTRS)

    Levy, Daniel L.; Skiles, J. W.; Peterson, David (Technical Monitor)

    1996-01-01

    The depleted stratospheric ozone layer has been directly linked to increased levels of ultraviolet radiation at the earth's surface. It is important to understand what effect this will have on plants. We tested the hypothesis that in response to increased UV-B radiation (280-320 man), soybean (Glycine max Merrill) and alfalfa (Mercado Saliva L.) would produce higher concentrations of flavonoids than plants screened from UV-B. Soybean and alfalfa plants were grown successively in a growth chamber that provided UV-B radiation intensities 45% above summer field levels. A wooden frame was used to suspend mylar-D film over one group of plants and mono-acetate film over another group. Mylar is opaque in the 280-316 nm range, and acetate absorbs most radiation from 280-290 nm and then reduces intensities in the 290-320 nm range by roughly 15%. Leaf chlorophyll concentration was determined with a Minolta SPAD-502 chlorophyll meter; the BRAD meter was calibrated with N,N- extractions. Flavonoids were extracted with an acidified methanol/water solution. Soybean grown under the acetate treatment showed 26% smaller internodal lengths and higher concentrations of flavonoids compared to plants grown under mylar. Significant results for alfalfa included 22% greater leaf flavonoid concentration under acetate, 14% greater leaf chlorophyll concentration under mylar, and 32% greater above-ground biomass under mylar. We found that increased UV-B radiation leads to increased production of UV-B absorbing compounds (i.e. flavonoids) in soybean and alfalfa leaves. This suggests that a protective mechanism in these plants is triggered by UV-B. In response, flavonoids are produced that absorb UV-B, and consequently decrease potentially damaging effects to the plants. In addition, we hypothesize that this flavonoid protection mechanism saturates at certain UV-B intensities.

  15. Application of UV and Fluorescence Indices for Assessing the Performance of Ozonation Process: Towards Smart Water Treatment

    NASA Astrophysics Data System (ADS)

    Li, Wen-Tao; Abbt-Braun, Gudrun; Dodd, Michael; Korshin, Gregory; Li, Ai-Min

    2017-04-01

    The UV absorbance and fluorescence indices were comprehensively studied as surrogate indicators for assessing the degradation of dissolved organic matter (DOM), the formation of bromate and biodegradable dissolved organic carbon (BDOC) and the elimination of trace organic contaminants (TOrCs) during the ozonation of surface water and wastewater effluent. Spectroscopic monitoring was carried out using benchtop UV/Vis and fluorescence spectrophotometers and a newly developed miniature LED UV/fluorescence sensor capable of rapidly measuring UVA280 and protein-like and humic-like fluorescence. With the increase of O3/DOC mass ratio, the plots of BDOC formation were characterized three phases of initial lag, transition slope and final plateau. With the decrease of UV absorbance and fluorescence, BDOC concentrations initially increased slowly and then rose more noticeably. Inflection points in plots of BDOC versus changes of spectroscopic indicators were close to 35-45% loss of UVA254 or UVA280 and 75-85% loss of humic-like fluorescence. According to the data from size exclusion chromatography (SEC) with organic carbon detection and 2D synchronous correlation analyses, DOM fractions assigned to operationally defined large biopolymers (apparent molecular weight, AMW>20 kDa) and medium AMW humic substances (AMW 5.5-20 kDa) were transformed into medium-size building blocks (AMW 3-5.5 kDa) and other smaller AMW species (AMW<3 kDa) associated with BDOC at increasing O3/DOC ratios. Appreciable bromate formation was observed only after the values of UVA254, UVA280 and humic-like fluorescence in O3-treated samples were decreased by 45-55%, 50-60% and 86-92% relative to their respective initial levels. No significant differences in plots of bromate concentrations versus decreases of humic-like fluorescence were observed for surface water and wastewater effluent samples. This was in contrast with the plots of bromate concentration versus UVA254 and UVA280 which exhibited sensitivity to varying initial bromide concentrations in the investigated water matrixes. For TOrCs, their removal rates were well correlated with the decrease of the LED UV/fluorescence signals, and their elimination patterns were mainly determined by their reactivity with O3 and hydroxyl radicals. At approximately 50 % reduction of humic-like fluorescence almost complete oxidation of TOrCs of group I (e.g. carbamazepine) and II (e.g. gemfibrozil) was reached, a similar removal percentage (25-75 %) of TOrCs of group III (e.g. DEET) and IV (e.g. atrazine), and a poor removal percentage (< 25%) of group V (e.g. TCPP). In another way, 90% reduction of humic-like fluorescence could reach the sufficient elimination of most TOrCs. These results suggest that measurements of humic-like fluorescence can provide a useful supplement to UVA indices for characterization of ozonation processes.

  16. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  17. The green hydrothermal synthesis of nanostructured Cu2ZnSnSe4 as solar cell material and study of their structural, optical and morphological properties

    NASA Astrophysics Data System (ADS)

    Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.

    2017-12-01

    Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.

  18. Influences of mass Chlorophyll-a blends using P3HT:PCBM for efficiency of organic solar cells

    NASA Astrophysics Data System (ADS)

    Lestari, E.; Supriyanto, A.; Iriani, Y.; Ramelan, A. H.; Nurosyid, F.

    2017-02-01

    Organic solar cells have been made using the material poly (3-hexylthiophene)(P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and Chlorophyll-a with blend metods. Active layer of P3HT:PCBM:Chlorophyll-a are deposited using spin coating with rotary speed of 2500 rpm for 10 seconds and subsequently heated at 1000C for 10 min. Mass of chlorophyll-a are 0.1 mg, 0.2 mg, and 0.3 mg. Thin layers are characterized by UV-Visible Spectrometer Lamda 25 for optical properties and Keithley 2602 for electrical properties. From the UV-Vis showed that absorbance of P3HT:PCBM:Chlorophyll-a are 400-614nm and 620-700 nm. Efficiency of P3HT:PCBM:Chlorophyll-a for mass chlorophyll 0.1 mg, 0.2 mg, and 0.3 mg are 2.68 x 10-2 %, 3.93 x 10-2 %, and 8.79 x 10-2 % respectively.

  19. Light-absorbing oligomer formation in secondary organic aerosol from reactive uptake of isoprene epoxydiols.

    PubMed

    Lin, Ying-Hsuan; Budisulistiorini, Sri Hapsari; Chu, Kevin; Siejack, Richard A; Zhang, Haofei; Riva, Matthieu; Zhang, Zhenfa; Gold, Avram; Kautzman, Kathryn E; Surratt, Jason D

    2014-10-21

    Secondary organic aerosol (SOA) produced from reactive uptake and multiphase chemistry of isoprene epoxydiols (IEPOX) has been found to contribute substantially (upward of 33%) to the fine organic aerosol mass over the Southeastern U.S. Brown carbon (BrC) in rural areas of this region has been linked to secondary sources in the summer when the influence of biomass burning is low. We demonstrate the formation of light-absorbing (290 < λ < 700 nm) SOA constituents from reactive uptake of trans-β-IEPOX onto preexisting sulfate aerosols as a potential source of secondary BrC. IEPOX-derived BrC generated in controlled chamber experiments under dry, acidic conditions has an average mass absorption coefficient of ∼ 300 cm(2) g(-1). Chemical analyses of SOA constituents using UV-visible spectroscopy and high-resolution mass spectrometry indicate the presence of highly unsaturated oligomeric species with molecular weights separated by mass units of 100 (C5H8O2) and 82 (C5H6O) coincident with the observations of enhanced light absorption, suggesting such oligomers as chromophores, and potentially explaining one source of humic-like substances (HULIS) ubiquitously present in atmospheric aerosol. Similar light-absorbing oligomers were identified in fine aerosol collected in the rural Southeastern U.S., supporting their atmospheric relevance and revealing a previously unrecognized source of oligomers derived from isoprene that contributes to ambient fine aerosol mass.

  20. Temporal variation in epidermal flavonoids due to altered solar UV radiation is moderated by the leaf position in Betula pendula.

    PubMed

    Morales, Luis O; Tegelberg, Riitta; Brosché, Mikael; Lindfors, Anders; Siipola, Sari; Aphalo, Pedro J

    2011-11-01

    The physiological mechanisms controlling plant responses to dynamic changes in ambient solar ultraviolet (UV) radiation are not fully understood: this information is important to further comprehend plant adaptation to their natural habitats. We used the fluorimeter Dualex to estimate in vivo the epidermal flavonoid contents by measuring epidermal UV absorbance (A(375) ) in Betula pendula Roth (silver birch) leaves of different ages under altered UV. Seedlings were grown in a greenhouse for 15 days without UV and transferred outdoors under three UV treatments (UV-0, UV-A and UV-A+B) created by three types of plastic film. After 7 and 13 days, Dualex measurements were taken at adaxial and abaxial epidermis of the first three leaves (L1, L2 and L3) of the seedlings. After 14 days, some of the seedlings were reciprocally swapped amongst the treatments to study the accumulation of epidermal flavonoids in the youngest unfolded leaves (L3) during leaf expansion under changing solar UV environments. A(375) of the leaves responded differently to the UV treatment depending on their position. UV-B increased the A(375) in the leaves independently of leaf position. L3 quickly adjusted A(375) in their epidermis according to the UV they received and these adjustments were affected by previous UV exposure. The initial absence of UV-A+B or UV-A, followed by exposure to UV-A+B, particularly enhanced leaf A(375) . Silver birch leaves modulate their protective pigments in response to changes in the UV environment during their expansion, and their previous UV exposure history affects the epidermal-absorbance achieved during later UV exposure. Copyright © Physiologia Plantarum 2011.

  1. DSCOVR_EPIC_L2_AER_01

    Atmospheric Science Data Center

    2018-04-23

    DSCOVR_EPIC_L2_AER_01 The Aerosol UV product provides aerosol and UV products in three tiers. Tier 1 products include Absorbing Aerosol Index (AAI) and above-cloud-aerosol optical depth (ACAOD). Tier 2 ...

  2. A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, S.; Chen, T.W.; Boeger, P.

    1988-12-01

    A new ultraviolet (UV)-A/B absorbing pigment with maxima at 312 and 330 nanometers from the cosmopolitan terrestrial cyanobacterium Nostoc commune is described. The pigment is found in high amounts (up to 10% of dry weight) in colonies grown under solar UV radiation but only in low concentrations in laboratory cultures illuminated by artificial light without UV. Its experimental induction by UV as well as its capacity to efficiently protect Nostoc against UV radiation is reported.

  3. Venus upper clouds and the UV-absorber from MESSENGER/MASCS observations

    NASA Astrophysics Data System (ADS)

    Perez-Hoyos, Santiago; Sanchez-Lavega, Agustin; Garcia Munoz, Antonio; Irwin, Patrick; Peralta, Javier; Holsclaw, Greg; McClintock, William

    2014-11-01

    In June 2007, the MESSENGER spacecraft performed its second Venus flyby on its route to Mercury. The spacecraft’s MASCS instrument (VIRS channel) acquired numerous spectra of the sunlight reflected from the equatorial region of the planet at wavelengths from the near ultraviolet (300nm) to the near infrared (1450 nm). In this work we present an analysis of the data and their spectral and spatial variability following the mission footprint on the Venus disk. In order to reproduce the observed reflectivity and obtain information on the upper clouds and the unknown UV absorber, we use the NEMESIS retrieval code, including SO2 , CO2 and H2O absorption together with absorption and scattering by mode-1, -2 and -3 cloud particles. This spectral range provides sensitivity to the uppermost cloud levels, above 60 km. Vertical profiles of the mode-1 and mode-2 particles have been retrieved along the equatorial region of Venus, with average retrieved sounding levels of 70 +/- 2 km at 1 micron, in good agreement with previous investigations. This spectral range is also very interesting because of the existence of a mysterious absorber in the blue and UV side of the reflected spectra, whose origin remains as one of the key questions about the Venus atmosphere. Here we report a comparison with some of the previously proposed absorbers: (1) sulfur-related compounds (amorphous and liquid sulfur, S3, S4, S8, S2O); (2) chlorine related species (Cl2, FeCl3); (3) organics (C3O2, Croconic acid). Preliminary results show that the first group provides better fits to the data, although combinations of the proposed agents might be required in order to produce better results. Acknowledgements: This work was supported by the Spanish MICIIN projects AYA2009- 10701, AYA2012-38897-C02-01, and AYA2012-36666 with FEDER support, PRICIT-S2009/ESP-1496, Grupos Gobierno Vasco IT765-13, and UPV/EHU UFI11/55. S.P.-H. acknowledges support from the Jose Castillejo Program funded by Ministerio de Educación, Cultura y Deporte, Programa Nacional de Movilidad de Recursos Humanos del Plan Nacional de I-D+i 2008-2011.

  4. Rare earth and zinc layered hydroxide salts intercalated with the 2-aminobenzoate anion as organic luminescent sensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cursino, Ana Cristina Trindade, E-mail: anacursino@ufpr.br; Rives, Vicente, E-mail: vrives@usal.es; Arizaga, Gregorio Guadalupe Carbajal, E-mail: gregoriocarbajal@yahoo.com.mx

    2015-10-15

    Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The UV absorption ability was improved after intercalation/grafting in relation to that shown by the parent material. - Highlights: • Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide were synthesized. • Intercalated nitrate anions were exchanged by 2-aminobenzoate. • In all the 2-aminobenzoate containing compounds, the grafting reaction was detected. • The UV absorption ability was improved after the exchange reactions. • Rare earth hydroxide salts are potential matrixes to produce luminescentmore » materials. - Abstract: Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The obtained compounds were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) and ultraviolet visible (UV–vis) spectroscopies, fluorescence measurements and thermal analysis (TGA/DTA). The results from FTIR spectroscopy suggest a direct coordination of 2-aminobenzoate to the metal cations of the inorganic layered structure. The organic derivative products from the intercalation reactions absorb a broader range of UV-light in relation to that shown by the parent material; the photoluminescence measurements present a strong violet, blue and green luminescence under UV-light excitation for layered compounds with, Zn, Y and Tb, respectively. Rare earth hydroxide salts (RE-LHS) are potential alternative matrices for the immobilization of organic species to produce luminescent materials.« less

  5. [Experimental research of turbidity influence on water quality monitoring of COD in UV-visible spectroscopy].

    PubMed

    Tang, Bin; Wei, Biao; Wu, De-Cao; Mi, De-Ling; Zhao, Jing-Xiao; Feng, Peng; Jiang, Shang-Hai; Mao, Ben-Jiang

    2014-11-01

    Eliminating turbidity is a direct effect spectroscopy detection of COD key technical problems. This stems from the UV-visible spectroscopy detected key quality parameters depend on an accurate and effective analysis of water quality parameters analytical model, and turbidity is an important parameter that affects the modeling. In this paper, we selected formazine turbidity solution and standard solution of potassium hydrogen phthalate to study the turbidity affect of UV--visible absorption spectroscopy detection of COD, at the characteristics wavelength of 245, 300, 360 and 560 nm wavelength point several characteristics with the turbidity change in absorbance method of least squares curve fitting, thus analyzes the variation of absorbance with turbidity. The results show, In the ultraviolet range of 240 to 380 nm, as the turbidity caused by particle produces compounds to the organics, it is relatively complicated to test the turbidity affections on the water Ultraviolet spectra; in the visible region of 380 to 780 nm, the turbidity of the spectrum weakens with wavelength increases. Based on this, this paper we study the multiplicative scatter correction method affected by the turbidity of the water sample spectra calibration test, this method can correct water samples spectral affected by turbidity. After treatment, by comparing the spectra before, the results showed that the turbidity caused by wavelength baseline shift points have been effectively corrected, and features in the ultraviolet region has not diminished. Then we make multiplicative scatter correction for the three selected UV liquid-visible absorption spectroscopy, experimental results shows that on the premise of saving the characteristic of the Ultraviolet-Visible absorption spectrum of water samples, which not only improve the quality of COD spectroscopy detection SNR, but also for providing an efficient data conditioning regimen for establishing an accurate of the chemical measurement methods.

  6. The Photodegradation of Ibuprofen and Dissolved Organic Matter in Lake Superior and St. Louis River Water

    PubMed Central

    Moynan, Angela B.

    2012-01-01

    Abstract Ibuprofen can enter bodies of water via waste water treatment. The question was what effect does photodegradation have on ibuprofen and dissolved organic matter (DOM) in Lake Superior (oligiotrophic) and St. Louis (tannic stained) River water? Ibuprofen concentrations of 15,000, 30,000, and 60,000 μg/L were made from lake, river, and distilled water, as well as additional distilled concentrations of 7,500 and 120,000 μg/L. Half of the eighty-four trial cups were placed in an ultraviolet light cabinet and half of the set were placed in a dark cabinet for three days. After the exposure period, a UV-Vis was performed to measure change in molar mass and the summed absorbance of colored dissolved organic matter (CDOM). It appears that ibuprofen decreases in molar mass after exposure to light in distilled and lake water with 15,000 μg/L of ibuprofen. Surprisingly, the molar mass of DOM in river water increases after UV exposure. Possibly, this occurred because the river water has such a high molar mass of DOM and was not filtered. Microbial biomass could also have contributed to this increase. Ibuprofen entering bodies of water via the waste water treatment system appears to be affected by UV light exposure, but in different ways. PMID:23244688

  7. Photodegradation of the antimicrobial triclocarban in aqueous systems under ultraviolet radiation.

    PubMed

    Ding, Shi-Ling; Wang, Xi-Kui; Jiang, Wen-Qiang; Meng, Xia; Zhao, Ru-Song; Wang, Chen; Wang, Xia

    2013-05-01

    This work aimed to investigate the effectiveness of ultraviolet (UV) radiation on the degradation of the antimicrobial triclocarban (TCC). We investigated the effects of several operational parameters, including solution pH, initial TCC concentration, photocatalyst TiO₂ loading, presence of natural organic matter, and most common anions in surface waters (e.g., bicarbonate, nitrate, and sulfate). The results showed that UV radiation was very effective for TCC photodegradation and that the photolysis followed pseudo-first-order kinetics. The TCC photolysis rate was pH dependent and favored at high pH. A higher TCC photolysis rate was observed by direct photolysis than TiO₂ photocatalysis. The presence of the inorganic ions bicarbonate, nitrate, and sulfate hindered TCC photolysis. Negative effects on TCC photolysis were also observed by the addition of humic acid due to competitive UV absorbance. The main degradation products of TCC were tentatively identified by gas chromatograph with mass spectrometer, and a possible degradation pathway of TCC was also proposed.

  8. Sulfur, ultraviolet radiation, and the early evolution of life

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Zahnle, K. J.; Pinto, J. P.; Young, A. T.

    1989-01-01

    The present biosphere is shielded from harmful solar near ultraviolet (UV) radiation by atmospheric ozone. It is suggested that elemental sulfur vapor could have played a similar role in an anoxic, ozone-free, primitive atmosphere. Sulfur vapor would have been produced photochemically from volcanogenic SO2 and H2S. It is composed of ring molecules, primarily S8, that absorb strongly throughout the near UV, yet are expected to be relatively stable against photolysis and chemical attack. It is also insoluble in water and would thus have been immune to rainout or surface deposition over the oceans. Since the concentration of S8 in the primitive atmosphere would have been limited by its saturation vapor pressure, surface temperatures of 45 C or higher, corresponding to carbon dioxide partial pressures exceeding 2 bars, are required to sustain an effective UV screen. A warm, sulfur-rich, primitive atmosphere is consistent with inferences drawn from molecular phylogeny, which suggest that some of the earliest organisms were thermophilic bacteria that metabolized elemental sulfur.

  9. A Matter of Contrast: Yellow Flower Colour Constrains Style Length in Crocus species.

    PubMed

    Lunau, Klaus; Konzmann, Sabine; Bossems, Jessica; Harpke, Doerte

    2016-01-01

    Most flowers display distinct colour patterns comprising two different areas. The peripheral large-area component of floral colour patterns attracts flower visitors from some distance and the central small-area component guides flower visitors towards landing sites. Whereas the peripheral colour is largely variable among species, the central colour, produced mostly by anthers and pollen or pollen mimicking floral guides, is predominantly yellow and UV-absorbing. This holds also for yellow flowers that regularly display a UV bull's eye pattern. Here we show that yellow-flowering Crocus species are a noticeable exception, since yellow-flowering Crocus species-being entirely UV-absorbing-exhibit low colour contrast between yellow reproductive organs and yellow tepals. The elongated yellow or orange-yellow style of Crocus flowers is a stamen-mimicking structure promoting cross-pollination by facilitating flower visitors' contact with the apical stigma before the flower visitors are touching the anthers. Since Crocus species possess either yellow, violet or white tepals, the colour contrast between the stamen-mimicking style and the tepals varies among species. In this study comprising 106 Crocus species, it was tested whether the style length of Crocus flowers is dependent on the corolla colour. The results show that members of the genus Crocus with yellow tepals have evolved independently up to twelve times in the genus Crocus and that yellow-flowering Crocus species possess shorter styles as compared to violet- and white-flowering ones. The manipulation of flower visitors by anther-mimicking elongated styles in Crocus flowers is discussed.

  10. Characterization of visual pigments, oil droplets, lens and cornea in the whooping crane Grus americana

    PubMed Central

    Porter, Megan L.; Kingston, Alexandra C. N.; McCready, Robert; Cameron, Evan G.; Hofmann, Christopher M.; Suarez, Lauren; Olsen, Glenn H.; Cronin, Thomas W.; Robinson, Phyllis R.

    2014-01-01

    Vision has been investigated in many species of birds, but few studies have considered the visual systems of large birds and the particular implications of large eyes and long-life spans on visual system capabilities. To address these issues we investigated the visual system of the whooping crane Grus americana (Gruiformes, Gruidae), which is one of only two North American crane species. It is a large, long-lived bird in which UV sensitivity might be reduced by chromatic aberration and entrance of UV radiation into the eye could be detrimental to retinal tissues. To investigate the whooping crane visual system we used microspectrophotometry to determine the absorbance spectra of retinal oil droplets and to investigate whether the ocular media (i.e. the lens and cornea) absorb UV radiation. In vitro expression and reconstitution was used to determine the absorbance spectra of rod and cone visual pigments. The rod visual pigments had wavelengths of peak absorbance (λmax) at 500 nm, whereas the cone visual pigment λmax values were determined to be 404 nm (SWS1), 450 nm (SWS2), 499 nm (RH2) and 561 nm (LWS), similar to other characterized bird visual pigment absorbance values. The oil droplet cut-off wavelength (λcut) values similarly fell within ranges recorded in other avian species: 576 nm (R-type), 522 nm (Y-type), 506 nm (P-type) and 448 nm (C-type). We confirm that G. americana has a violet-sensitive visual system; however, as a consequence of the λmax of the SWS1 visual pigment (404 nm), it might also have some UV sensitivity. PMID:25267845

  11. Dual-wavelength recording, a simple algorithm to eliminate interferences due to UV-absorbing substances in capillary electrophoresis.

    PubMed

    Seaux, Liesbeth; Van Houcke, Sofie; Dumoulin, Els; Fiers, Tom; Lecocq, Elke; Delanghe, Joris R

    2014-08-01

    Analytical interferences have been described due to the presence of various exogenous UV-absorbing substances in serum. Iodine-based X-ray contrast agents and various antibiotics have been reported to interfere with interpretation of serum protein pherograms, resulting in false diagnosis of paraproteinemia. In the present study, we have explored the possibility of measuring UV absorbance at two distinct wavelengths (210 and 246 nm) to distinguish between true and false paraproteins on a Helena V8 clinical electrophoresis instrument. This study demonstrates that most substances potentially interfering with serum protein electrophoresis show UV-absorption spectra that are distinct from those of serum proteins. Scanning at 246 nm allows detection of all described interfering agents. Comparing pherograms recorded at both wavelengths (210 and 246 nm) enables to distinguish paraproteins from UV-absorbing substances. In case of a true paraprotein, the peak with an electrophoretic mobility in the gamma-region decreases, whereas the X-ray contrast media and antibiotics show an increased absorption when compared to the basic setting (210 nm). The finding of iodine-containing contrast media interfering with serum protein electrophoresis is not uncommon. In a clinical series, interference induced by contrast media was reported in 54 cases (of 13 237 analyses), corresponding with a prevalence of 0.4%. In the same series, 1631 true paraproteins (12.3%) were detected. Implementation of the proposed algorithm may significantly improve the interpretation of routine electrophoresis results. However, attention should still be paid to possible interference due to presence of atypical proteins fractions (e.g., tumor markers, C3). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Factors that affect the EVA encapsulant discoloration rate upon accelerated exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.

    1994-12-31

    Several factors that may affect the net discoloration rate of the ethylene-vinyl acetate (EVA) copolymer encapsulants used in crystalline-Si photovoltaic (c-Si PV) modules upon accelerated exposure have been investigated by employing UV-visible spectrophotometry, spectrocolorimetry, and fluorescence analysis. A number of laminated films, including the two typical EVA formulations, A9918 and 15295, were studied. The results indicate that the rate of EVA discoloration is affected by the (1) curing agent and curing conditions; (2) presence and concentration of curing-generated, UV-excitable chromophores; (3) UV light intensity; (4) loss rate of the UV absorber, Cyasorb UV 531; (5) lamination; (6) film thickness; andmore » (7) photobleaching rate due to the diffusion of air into the laminated films. In general, the loss rate of the UV absorber and the rate of discoloration from light yellow to brown follow a sigmoidal pattern. A reasonable correlation for net changes in transmittance at 420 nm, yellowness index, and fluorescence peak area (or intensity) ratio is obtained as the extent of EVA discoloration progressed.« less

  13. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  14. UV/PAR radiations and DOM properties in surface coastal waters of the Canadian shelf of the Beaufort Sea during summer 2009

    NASA Astrophysics Data System (ADS)

    Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.

    2012-11-01

    Water masses from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV and PAR diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Even with relatively low mean daily solar radiation incident on the sea surface (0.12 ± 0.03, 8.46 ± 1.64 and 18.09 ± 4.20 kJ m-2 for UV-B (305 nm), UV-A (380 nm) and PAR, respectively), we report significant light penetration with 10% irradiance depths (Z10% (λ)) reaching 9.5 m for 340 nm (UV-A) radiation in the Eastern sector and 4.5 m in the Mackenzie River influenced area (Western sector). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of UV solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. Extrapolating CDOM to DOC relationships, we estimate that ~ 16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. DOC and CDOM discharges by the Mackenzie River during the MALINA Cruise are estimated as ~ 0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence Excitation/Emission Matrix Spectroscopy (EEMS) and PARAFAC analysis. Our results showed an in-situ biological component (C1) that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta sector, whereas the protein-like (C3) component dominated in the saltiest waters of the North East sector.

  15. Antioxidant content and ultraviolet absorption characteristics of human tears.

    PubMed

    Choy, Camus Kar Man; Cho, Pauline; Benzie, Iris F F

    2011-04-01

    Dry eye syndrome is a common age-related disorder, and decreased antioxidant/ultraviolet (UV) radiation protection in tears may be part of the cause. This study aimed to compare the tear antioxidant content and flow rate in young and older adults. The total antioxidant content and UV absorbing properties of various commercially available ophthalmic solutions used to alleviate dry eye symptoms were also examined. Minimally stimulated tears were collected from 120 healthy Chinese adults with no ocular pathology. Two age groups were studied: 19 to 29 years (n = 58) and 50 to 75 years (n = 62). Tear samples from each subject and 13 ophthalmic solutions were analyzed for total antioxidant content (as the Ferric Reducing/Antioxidant Power value). Tear flow rates were estimated from time taken to collect a fixed volume of tear fluid. UV absorbance spectra of pooled fresh reflex tear fluid and the ophthalmic solutions were determined. Results showed that the antioxidant content of minimally stimulated tears from older subjects (398 ± 160 μmol/l) was not significantly lower than that of younger subjects (348 ± 159 μmol/l; p = 0.0915). However, there was a significant difference in the tear flow rates between the two groups (p < 0.0001), with the younger group having three to four fold higher flow rate. None of the commercial preparations tested had detectable antioxidant content, and none showed the UV absorption characteristics of natural reflex tears. The effect of low flow rate on the dynamic antioxidant supply to the corneal surface indicates that older subjects have poorer overall defense against photooxidative and other oxidative processes. This could predispose older persons to corneal stress and development of dry eye syndrome. The commercially available artificial tears tested lack both the antioxidant content and UV absorbing characteristics of natural tears. Artificial tears formulations that help restore natural antioxidant and UV absorbing properties to the tear film of the aging eye may help prevent or improve dry eye symptoms and promote ocular health.

  16. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides

    PubMed Central

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-01-01

    ABSTRACT Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect visitation rates and pollinator preference. PMID:24585774

  17. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides.

    PubMed

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-03-15

    Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect visitation rates and pollinator preference.

  18. Penetration of UV-A, UV-B, blue, and red light into leaf tissues of pecan measured by a fiber optic microprobe system

    NASA Astrophysics Data System (ADS)

    Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.

    2003-11-01

    The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.

  19. Radiation Sensitivity of Soluble Polysilane Derivatives: Science and Applications

    DTIC Science & Technology

    1988-08-01

    sigma bonded, all substituted silane polymers absorb strongly in the UV-visible region. Their absorption spectra depend to some extent on the nature...of the substituents. In this regard alkyl substituted, atatic, amphorous materials absorb from 300-325 nm with sterically bulky groups producing a...cases, the polysilane is the primary absorber of the incident radiation. Interestingly, when 3, which absorbs at -400 inm, was incorporated into a film

  20. Photodegradation of dissolved organic matter in ice under solar irradiation.

    PubMed

    Xue, Shuang; Wang, Chao; Zhang, Zhaohong; Song, Youtao; Liu, Qiang

    2016-02-01

    The photodegradation behavior of dissolved organic matter (DOM) with different origins in ice under solar irradiation was investigated. Exposure to sunlight at 2.7 × 10(5) J m(-2) resulted in dissolved organic carbon (DOC) reductions of 22.1-36.5% in ice. The naturally occurring DOM had higher photodegradation potentials than the wastewater-derived DOM in ice. Ultraviolet (UV)-absorbing compounds in DOM, regardless of DOM origin, had much higher photodegradation potentials than gross DOC in ice. The susceptibility of UV-absorbing compounds with natural origin to sunlight exposure in ice was higher than those derived from wastewater. Trihalomethane (THM) precursors were more susceptible to photochemical reactions than gross DOC and haloacetic acid (HAA) precursors in ice. THM precursors in naturally occurring DOM were more photoreactive than those in wastewater-derived DOM in ice, while the photoreactivity of HAA precursors in ice was independent of DOM origin. In ice, the photoreactivity of humic-like fluorescent materials, regardless of DOM origin, was higher than that of gross DOC and protein-like fluorescent materials. DOC reductions caused by sunlight irradiation were found to be negatively correlated to DOC levels, and positively correlated to the aromaticity of DOM. The photodegradation of both wastewater-derived and naturally occurring DOM in ice was significantly facilitated at both acid and alkaline pH, as compared to neutral pH. The photodegradation of DOM in ice, regardless of the origin, was facilitated by nitrate ion [Formula: see text] , nitrite ion [Formula: see text] , ferric ion (Fe(3+)) and ferrous ion (Fe(2+)), and on the other hand, was inhibited by chloridion ion (Cl(-)) and copper ion (Cu(2+)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Antagonizing Effects and Mechanisms of Afzelin against UVB-Induced Cell Damage

    PubMed Central

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Kim, Jang-Hyun; Kim, Eui-Gyun; Lee, Jongsung; Park, Deokhoon

    2013-01-01

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human keratinocytes, resulting in skin inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effects of UV irradiation is essential. Therefore, in this study, we investigated the protective effects of afzelin, one of the flavonoids, against UV irradiation in human keratinocytes and epidermal equivalent models. Spectrophotometric measurements revealed that the afzelin extinction maxima were in the UVB and UVA range, and UV transmission below 376 nm was <10%, indicating UV-absorbing activity of afzelin. In the phototoxicity assay using the 3T3 NRU phototoxicity test (3T3-NRU-PT), afzelin presented a tendency to no phototoxic potential. In addition, in order to investigate cellular functions of afzelin itself, cells were treated with afzelin after UVB irradiation. In human keratinocyte, afzelin effectively inhibited the UVB-mediated increase in lipid peroxidation and the formation of cyclobutane pyrimidine dimers. Afzelin also inhibited UVB-induced cell death in human keratinocytes by inhibiting intrinsic apoptotic signaling. Furthermore, afzelin showed inhibitory effects on UVB-induced release of pro-inflammatory mediators such as interleukin-6, tumor necrosis factor-α, and prostaglandin-E2 in human keratinocytes by interfering with the p38 kinase pathway. Using an epidermal equivalent model exposed to UVB radiation, anti-apoptotic activity of afzelin was also confirmed together with a photoprotective effect at the morphological level. Taken together, our results suggest that afzelin has several cellular activities such as DNA-protective, antioxidant, and anti-inflammatory as well as UV-absorbing activity and may protect human skin from UVB-induced damage by a combination of UV-absorbing and cellular activities. PMID:23626759

  2. Definition and dynamic control of a continuous chromatography process independent of cell culture titer and impurities.

    PubMed

    Chmielowski, Rebecca A; Mathiasson, Linda; Blom, Hans; Go, Daniel; Ehring, Hanno; Khan, Heera; Li, Hong; Cutler, Collette; Lacki, Karol; Tugcu, Nihal; Roush, David

    2017-12-01

    Advances in cell culture technology have enabled the production of antibody titers upwards of 30g/L. These highly productive cell culture systems can potentially lead to productivity bottlenecks in downstream purification due to lower column loadings, especially in the primary capture chromatography step. Alternative chromatography solutions to help remedy this bottleneck include the utilization of continuous processing systems such as periodic counter-current chromatography (PCC). Recent studies have provided methods to optimize and improve the design of PCC for cell culture titers up to about 3g/L. This paper defines a continuous loading strategy for PCC that is independent of cell culture background and encompasses cell culture titers up to about 31g/L. Initial experimentation showed a challenge with determining a difference in change in UV280nm signal (ie. ΔUV) between cell culture feed and monoclonal antibody (mAb) concentration. Further investigation revealed UV280nm absorbance of the cell culture feedstock without antibody was outside of the linear range of detection for a given cell pathlength. Additional experimentation showed the difference in ΔUV for various cell culture feeds can be either theoretically predicted by Beer's Law given a known absorbance of the media background and impurities or experimentally determined using various UV280nm cell pathlengths. Based on these results, a 0.35mm pathlength at UV280nm was chosen for dynamic control to overcome the background signal. The pore diffusion model showed good agreement with the experimental frontal analysis data, which resulted in definition of a ΔUV setpoint range between 20 and 70% for 3C-PCC experiments. Product quality of the elution pools was acceptable between various cell culture feeds and titers up to about 41g/L. Results indicated the following ΔUV setpoints to achieve robust dynamic control and maintain 3C-PCC yield: ∼20-45% for titers greater than 10g/L depending on UV absorbance of the HCCF and ∼45-70% for titers of up to 10g/L independent of UV absorbance of the HCCF. The strategy and results presented in this paper show column loading in a continuous chromatography step can be dynamically controlled independent of the cell culture feedstock and titer, and allow for enhanced process control built into the downstream continuous operations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arney, Giada N.; Meadows, Victoria S.; Tovar, Guadalupe

    Hazes are common in known planetary atmospheres, and geochemical evidence suggests that early Earth occasionally supported an organic haze with significant environmental and spectral consequences. The UV spectrum of the parent star drives organic haze formation through methane photochemistry. We use a 1D photochemical-climate model to examine production of fractal organic haze on Archean Earth-analogs in the habitable zones of several stellar types: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), ϵ Eridani (K2V), and σ Boötis (F2V). For Archean-like atmospheres, planets orbiting stars with the highest UV fluxes do not form haze because of the formationmore » of photochemical oxygen radicals that destroy haze precursors. Organic hazes impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized around M dwarfs, whose energy is emitted at wavelengths where organic hazes are relatively transparent. We generate spectra to test the detectability of haze. For 10 transits of a planet orbiting GJ 876 observed by the James Webb Space Telescope , haze makes gaseous absorption features at wavelengths < 2.5 μ m 2–10 σ shallower than a haze-free planet, and methane and carbon dioxide are detectable at >5 σ . A haze absorption feature can be detected at 5 σ near 6.3 μ m, but a higher signal-to-noise ratio is needed to distinguish haze from adjacent absorbers. For direct imaging of a planet at 10 pc using a coronagraphic 10 m class ultraviolet–visible–near-infrared telescope, a UV–blue haze absorption feature would be strongly detectable at >12 σ in 200 hr.« less

  4. Opsin cDNA sequences of a UV and green rhodopsin of the satyrine butterfly Bicyclus anynana.

    PubMed

    Vanhoutte, K J A; Eggen, B J L; Janssen, J J M; Stavenga, D G

    2002-11-01

    The cDNAs of an ultraviolet (UV) and long-wavelength (LW) (green) absorbing rhodopsin of the bush brown Bicyclus anynana were partially identified. The UV sequence, encoding 377 amino acids, is 76-79% identical to the UV sequences of the papilionids Papilio glaucus and Papilio xuthus and the moth Manduca sexta. A dendrogram derived from aligning the amino acid sequences reveals an equidistant position of Bicyclus between Papilio and Manduca. The sequence of the green opsin cDNA fragment, which encodes 242 amino acids, represents six of the seven transmembrane regions. At the amino acid level, this fragment is more than 80% identical to the corresponding LW opsin sequences of Dryas, Heliconius, Papilio (rhodopsin 2) and Manduca. Whereas three LW absorbing rhodopsins were identified in the papilionid butterflies, only one green opsin was found in B. anynana.

  5. Process Analyzer

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The ChemScan UV-6100 is a spectrometry system originally developed by Biotronics Technologies, Inc. under a Small Business Innovation Research (SBIR) contract. It is marketed to the water and wastewater treatment industries, replacing "grab sampling" with on-line data collection. It analyzes the light absorbance characteristics of a water sample, simultaneously detects hundreds of individual wavelengths absorbed by chemical substances in a process solution, and quantifies the information. Spectral data is then processed by ChemScan analyzer and compared with calibration files in the system's memory in order to calculate concentrations of chemical substances that cause UV light absorbance in specific patterns. Monitored substances can be analyzed for quality and quantity. Applications include detection of a variety of substances, and the information provided enables an operator to control a process more efficiently.

  6. Integration of biofiltration and advanced oxidation processes for tertiary treatment of an oil refinery wastewater aiming at water reuse.

    PubMed

    Nogueira, A A; Bassin, J P; Cerqueira, A C; Dezotti, M

    2016-05-01

    The combination of biological and chemical oxidation processes is an interesting approach to remove ready, poor, and non-biodegradable compounds from complex industrial wastewaters. In this study, biofiltration followed by H2O2/UV oxidation (or microfiltration) and final reverse osmosis (RO) step was employed for tertiary treatment of an oil refinery wastewater. Biofiltration alone allowed obtaining total organic carbon (TOC), chemical oxygen demand (COD), UV absorbance at 254 nm (UV254), ammonium, and turbidity removal of around 46, 46, 23, 50, and 61 %, respectively. After the combined biological-chemical oxidation treatment, TOC and UV254 removal amounted to 88 and 79 %, respectively. Whereas, the treatment performance achieved with different UV lamp powers (55 and 95 W) and therefore distinct irradiance levels (26.8 and 46.3 mW/cm(2), respectively) were very similar and TOC and UV254 removal rates were highly affected by the applied C/H2O2 ratio. Silt density index (SDI) was effectively reduced by H2O2/UV oxidation, favoring further RO application. C/H2O2 ratio of 1:4, 55 W UV lamp, and 20-min oxidation reaction corresponded to the experimental condition which provided the best cost/benefit ratio for TOC, UV254, and SDI reduction from the biofilter effluent. The array of treatment processes proposed in this study has shown to be adequate for tertiary treatment of the oil refinery wastewater, ensuring the mitigation of membrane fouling problems and producing a final effluent which is suitable for reuse applications.

  7. Uvmas: Venus Ultraviolet-visual Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Bellucci, G.; Zasova, L.; Altieri, F.; Formisano, V.; Ignatiev, N.; Moroz, V.

    We present the concept of an instrument for remote sensing of Venus from a planetary orbiter. The main characteristics of the instrument are the following: A~é· Spectral range: 0.190 A~é­ 0.490 A~éµm A~é· Spectral resolution: 0.4 nm (/= 500 at 0.2 A~éµ m) A~é· Angular resolution: 0.4 mrad at max A~é· Spatial resolution: 200 meters at 500 Km A~é· Field of view = 5.7A~é° A~é· S/N: 70 at 0.2 A~éµ m at 1 sec exp time given albedo = 0.03. The scientific objectives are the following: Dynamic investigation (0.2 5 µm). Mapping facility will allow the tracking of the UV features and will define the velocities in the atmosphere near the cloud top level. Detailed mapping of velocities of UV features at high spatial resolution, their variation with latitude, altitude and local time will advance our knowledge in understanding the puzzles of Venus dynamics like how and what mechanism drives the Venus atmospheric mass from equator to pole against temperature gradient and what is the mechanism supporting the zonal superrotation. What is the polar vortex organization, at what latitudes there is the descending branch of the Hadley cell. SO2 and SO in the range 0.232 µm. In this spectral range the SO2 and SO bands are observed. They present unresolved features with 10 Å width. Vertical profiles of these components may be obtained above the cloud and below the upper cloud boundary. Vertical, horizontal, local time and temporal variation will be obtained. This allows to create a photochemical model of the atmosphere above the clouds, and to understand a mechanism of cloud aerosol formation. "Unknown" UV- absorber, in the range 0.3 5 µm. It absorbs 50 % of the solar energy deposited on Venus. It exists only in the upper clouds. It is not known if it is in gaseous phase or included in the aerosol particles. This absorber is not homogeneously distributed and is responsible for the UV atmospheric contrast from 0.32­0.5 µm; it correlates with SO2 absorption. Many candidates were proposed for the "unknown" absorber. Some of them are sulfur, S2O, 1% solution of FeCl3 in H2SO4. Spectral and mapping facilities will allow to advance the problem.

  8. Chiral monolithic absorbent constructed by optically active helical-substituted polyacetylene and graphene oxide: preparation and chiral absorption capacity.

    PubMed

    Li, Weifei; Wang, Bo; Yang, Wantai; Deng, Jianping

    2015-02-01

    Chiral monolithic absorbent is successfully constructed for the first time by using optically active helical-substituted polyacetylene and graphene oxide (GO). The preparative strategy is facile and straightforward, in which chiral-substituted acetylene monomer (Ma), cross-linker (Mb), and alkynylated GO (Mc) undergo copolymerization to form the desired monolithic absorbent in quantitative yield. The resulting monoliths are characterized by circular dichroism, UV-vis absorption, scanning electron microscopy (SEM), FT-IR, Raman, energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), XPS, and thermogravimetric analysis (TGA) techniques. The polymer chains derived from Ma form chiral helical structures and thus provide optical activity to the monoliths, while GO sheets contribute to the formation of porous structures. The porous structure enables the monolithic absorbents to demonstrate a large swelling ratio in organic solvents, and more remarkably, the helical polymer chains provide optical activity and further enantio-differentiating absorption ability. The present study establishes an efficient and versatile methodology for preparing novel functional materials, in particular monolithic chiral materials based on substituted polyacetylene and GO. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Photoprotective effects of methoxycinnamidopropyl polysilsesquioxane.

    PubMed

    Choi, Dae-Kyoung; Jung, Taek Kyu; Lim, Tae-Yeon; Kim, Tae-Heung; Kim, Young Baek; Lee, Jeung-Hoon; Yoon, Kyung-Sup; Yoon, Tae-Jin

    2011-01-01

    A new sunscreen ingredient, methoxycinnamidopropyl polysilsesquioxane (MCP-PSQ), which contains an UV-absorbing p-methoxycinnamoyl group, has been developed synthetically and evaluated using in vitro and in vivo approaches. Previous studies revealed that MCP-PSQ has a raising or boosting effect on the sun protection factor (SPF) of other sunscreen agents. In this study, we demonstrated that MCP-PSQ, an organic/inorganic hybrid compound, has photoprotective effects for human fibroblasts, and for hairless mouse and human skin. MCP-PSQ increases cell viability and suppresses the expression of p53 protein in fibroblasts after UV exposure. In addition, the numbers of sunburn cells and mast cells are reduced by topical application of MCP-PSQ on hairless mouse skin after UV irradiation. A 10% MCP-PSQ cream has higher and similar effects on SPF values for human skin compared to 5% titanium dioxide (TiO(2)) and 5% ethylhexyl methoxycinnamate (EHMC), respectively. The SPF value obtained using the MCP-PSQ cream did not drop after UV irradiation of the cream itself. However, higher dose of UV irradiation is required to guarantee the stability or photostability of the formulation. Further, there were no side effects such as erythema, edema, itch or tingling, suggesting that MCP-PSQ is a good sunscreen agent. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  10. Impacts of Brown Carbon from Biomass Burning on Surface UV and Ozone Photochemistry in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Mok, Jungbin; Krotkov, Nickolay A.; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F.; Li, Zhangqing; Dickerson, Russell R.; hide

    2016-01-01

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or brown carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305368nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18 and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17, 15, and 14, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

  11. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin.

    PubMed

    Mok, Jungbin; Krotkov, Nickolay A; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F; Li, Zhanqing; Dickerson, Russell R; Stenchikov, Georgiy L; Osipov, Sergey; Ren, Xinrong

    2016-11-11

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or "brown" carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305-368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO 2 , and RO 2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

  12. Use of a heated graphite scrubber as a means of reducing interferences in UV-absorbance measurements of atmospheric ozone

    NASA Astrophysics Data System (ADS)

    Turnipseed, Andrew A.; Andersen, Peter C.; Williford, Craig J.; Ennis, Christine A.; Birks, John W.

    2017-06-01

    A new solid-phase scrubber for use in conventional ozone (O3) photometers was investigated as a means of reducing interferences from other UV-absorbing species and water vapor. It was found that when heated to 100-130 °C, a tubular graphite scrubber efficiently removed up to 500 ppb ozone and ozone monitors using the heated graphite scrubber were found to be less susceptible to interferences from water vapor, mercury vapor, and aromatic volatile organic compounds (VOCs) compared to conventional metal oxide scrubbers. Ambient measurements from a graphite scrubber-equipped photometer and a co-located Federal equivalent method (FEM) ozone analyzer showed excellent agreement over 38 days of measurements and indicated no loss in the scrubber's ability to remove ozone when operated at 130 °C. The use of a heated graphite scrubber was found to reduce the interference from mercury vapor to ≤ 3 % of that obtained using a packed-bed Hopcalite scrubber. For a series of substituted aromatic compounds (ranging in volatility and absorption cross section at 253.7 nm), the graphite scrubber was observed to consistently exhibit reduced levels of interference, typically by factors of 2.5 to 20 less than with Hopcalite. Conventional solid-phase scrubbers also exhibited complex VOC adsorption and desorption characteristics that were dependent upon the relative humidity (RH), volatility of the VOC, and the available surface area of the scrubber. This complex behavior involving humidity is avoided by use of a heated graphite scrubber. These results suggest that heated graphite scrubbers could be substituted in most ozone photometers as a means of reducing interferences from other UV-absorbing species found in the atmosphere. This could be particularly important in ozone monitoring for compliance with the United States (U.S.) Clean Air Act or for use in VOC-rich environments such as in smog chambers and monitoring indoor air quality.

  13. Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection.

    PubMed

    O'Daniels, Sean T; Kesler, Dylan C; Mihail, Jeanne D; Webb, Elisabeth B; Werner, Scott J

    2017-05-15

    Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms. Published by Elsevier Inc.

  14. Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection

    USGS Publications Warehouse

    O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.

    2017-01-01

    Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2 m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2 m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.

  15. UV dichroic coatings on metallic reflectors

    NASA Astrophysics Data System (ADS)

    Raghunath, C.; Babu, N. J.; chandran, K. M.

    2008-05-01

    The work presented here explains the design and deposition process of dichroic coating on metallic reflectors developed for UV curing systems. Special designs are adopted to achieve the spectral band and optimized to suit to the requirements. A mirror, which reflects the UV radiation (220 - 400 nm) and absorbs visible and infrared radiation (400 - 2000nm), is described in detail.

  16. Optical, Physical and Chemical Properties of Tar Balls Observed During the Yosemite Aerosol Characterization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, Jenny L.; Malm, W. C.; Laskin, Alexander

    2005-11-09

    The Yosemite Aerosol Characterization Study of summer 2002 (YACS) occurred during an active fire season in the western U. S., and provided an opportunity to investigate many unresolved issues related to the radiative effects of biomass burning aerosols. Single particle analysis was performed on field collected aerosol samples using an array of electron microscopy techniques. Amorphous carbon spheres, or “tar balls”, were present in samples collected during episodes of high particle light scattering coefficients that occurred during the peak of a smoke/haze event. The highest concentrations of light-absorbing carbon from a dual-wavelength aethalometer (λ = 370 and 880 nm) occurredmore » during periods when the particles were predominantly tar balls, indicating they do absorb light in the UV and near-IR range of the solar spectrum. Closure experiments of mass concentrations and light scattering coefficients during periods dominated by tar balls did not require any distinct assumptions of organic carbon molecular weight correction factors, density, or refractive index compared to periods dominated by other types of organic carbon aerosols. Measurements of the hygroscopic behavior of tar balls using an environmental SEM indicate that tar balls do not exhibit deliquescence, but do uptake some water at high (~83 %) relative humidity. The ability of tar balls to efficiently scatter and absorb light, and to absorb water has important implications for their role in regional haze and climate fence.« less

  17. Evaluating Activated Carbon Adsorption of Dissolved Organic Matter and Micropollutants Using Fluorescence Spectroscopy.

    PubMed

    Shimabuku, Kyle K; Kennedy, Anthony M; Mulhern, Riley E; Summers, R Scott

    2017-03-07

    Dissolved organic matter (DOM) negatively impacts granular activated carbon (GAC) adsorption of micropollutants and is a disinfection byproduct precursor. DOM from surface waters, wastewater effluent, and 1 kDa size fractions were adsorbed by GAC and characterized using fluorescence spectroscopy, UV-absorption, and size exclusion chromatography (SEC). Fluorescing DOM was preferentially adsorbed relative to UV-absorbing DOM. Humic-like fluorescence (peaks A and C) was selectively adsorbed relative to polyphenol-like fluorescence (peaks T and B) potentially due to size exclusion effects. In the surface waters and size fractions, peak C was preferentially removed relative to peak A, whereas the reverse was found in wastewater effluent, indicating that humic-like fluorescence is associated with different compounds depending on DOM source. Based on specific UV-absorption (SUVA), aromatic DOM was preferentially adsorbed. The fluorescence index (FI), if interpreted as an indicator of aromaticity, indicated the opposite but exhibited a strong relationship with average molecular weight, suggesting that FI might be a better indicator of DOM size than aromaticity. The influence of DOM intermolecular interactions on adsorption were minimal based on SEC analysis. Fluorescence parameters captured the impact of DOM size on the fouling of 2-methylisoborneol and warfarin adsorption and correlated with direct competition and pore blockage indicators.

  18. Photodegradation of an azo dye of the textile industry.

    PubMed

    Cisneros, Rosario López; Espinoza, Abel Gutarra; Litter, Marta I

    2002-07-01

    An advanced oxidation treatment, UV/H2O2, was applied to an azo dye, Hispamin Black CA, widely used in the Peruvian textile industry. Rates of color removal and degradation of the dye have been evaluated. A strongly absorbing solution was completely decolorized after 35 min of treatment, and after 60 min an 82% reduction of the total organic carbon (TOC) was obtained. It has been found that the degradation rate increased until an optimum value, beyond which the reagent exerted an inhibitory effect. The degradation rate was also function of pH.

  19. Characterization of potassium dichromate solutions for spectrophotometercalibration

    NASA Astrophysics Data System (ADS)

    Conceição, F. C.; Silva, E. M.; Gomes, J. F. S.; Borges, P. P.

    2018-03-01

    Spectrophotometric analysis in the ultraviolet (UV) region is used in the determination of several quantitative and qualitative parameters. For ensuring reliability of the analyses performed on the spectrophotometers, verification / calibration of the equipment must be performed periodically using certified reference materials (CRMs). This work presents the characterization stage needed for producing this CRM. The property value characterized was the absorbance for the wavelengths in the UV spectral regions. This CRM will contribute to guarantee the accuracy and linearity of the absorbance scale to the spectrophotometers, through which analytical measurement results will be provided with metrological traceability.

  20. The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L.

    PubMed

    Golob, Aleksandra; Kavčič, Jan; Stibilj, Vekoslava; Gaberščik, Alenka; Vogel-Mikuš, Katarina; Germ, Mateja

    2017-02-01

    UV radiation as an evolutionarily important environmental factor, significantly affects plants traits and alters the effects of other environmental factors. Single and combined effects of ambient UV radiation, its exclusion, and Se foliar treatments on Si concentrations and production of Si phytoliths in wheat (Triticum aestivum L.) cv. 'Reska' were studied. The effects of these treatments on growth parameters of the plants, structural and biochemical traits of the leaves, and interactions of the leaves with light, as Si incrustation is the first barrier to light at the leaf surface were also examined. Under ambient UV radiation and foliar treatment with 10mgL -1 sodium selenate solution, there was a trade-off between the plant investment in primary and secondary metabolism, as the production of UV-absorbing compounds was enhanced while photosynthetic pigment levels were reduced. Independent of Se treatment, ambient UV radiation lowered respiratory potential, Ca concentration, and leaf thickness, and increased Si concentration, Si phytoliths formation, and cuticle thickness. The Se treatment has little effect on plant traits and biomass production but it increased Se concentrations in the plants by >100-fold, independent of UV radiation. In combination with UV radiation Se strengthen the protection of plants against stress by increasing the amount of UV absorbing compounds, light reflectance and transmittance. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Reduction of precursors of chlorination by-products in drinking water using fluidized-bed biofilm reactor at low temperature.

    PubMed

    Xie, Shu-Guang; Wen, Dong-Hui; Shi, Dong-Wen; Tang, Xiao-Yan

    2006-10-01

    To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofilm reactor (FBBR). Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254), trihalomethane (THM) formation potential (THMFP), haloacetic acid (HAA) formation potential (HAAFP), and ammonia in FBBR were evaluated in detail. Results The reduction of TOC or UV254 was low, on average 12.6% and 4.7%, respectively, while the reduction of THMFP and HAAFP was significant. The reduction of ammonia was 30%-40% even below 3 degrees C, however, it could quickly rise to over 50% above 3degrees C. Conclusions The FBBR effectively reduces CBPs and ammonia in drinking water even at low temperature and seems to be a very promising and competitive drinking water reactor for polluted surface source waters, especially in China.

  2. Glyoxal-methylglyoxal cross-reactions in secondary organic aerosol formation.

    PubMed

    Schwier, Allison N; Sareen, Neha; Mitroo, Dhruv; Shapiro, Erica L; McNeill, V Faye

    2010-08-15

    Glyoxal (G) and methylglyoxal (MG) are potentially important secondary organic aerosol (SOA) precursors. Previous studies of SOA formation by G and MG have focused on either species separately; however, G and MG typically coexist in the atmosphere. We studied the formation of secondary organic material in aqueous aerosol mimic mixtures containing G and MG with ammonium sulfate. We characterized the formation of light-absorbing products using UV-vis spectrophotometry. We found that absorption at 280 nm can be described well using models for the formation of light-absorbing products by G and MG in parallel. Pendant drop tensiometry measurements showed that surface tension depression by G and MG in these solutions can be modeled as a linear combination of the effects of G and MG alone. Product species were identified using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol CIMS). Peaks consistent with G-MG cross-reaction products were observed, accounting for a significant fraction of detected product mass, but most peaks could be attributed to self-reaction. We conclude that cross-reactions contribute to SOA mass from uptake of G and MG, but they are not required to accurately model the effects of this process on aerosol surface tension or light absorption.

  3. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems

    USGS Publications Warehouse

    Kellerman, Anne M.; Guillemette, François; Podgorski, David C.; Aiken, George R.; Butler, Kenna D.; Spencer, Robert G. M.

    2018-01-01

    The link between composition and reactivity of dissolved organic matter (DOM) is central to understanding the role aquatic systems play in the global carbon cycle; yet, unifying concepts driving molecular composition have yet to be established. We characterized 37 DOM isolates from diverse aquatic ecosystems, including their stable and radiocarbon isotopes (δ13C-dissolved organic carbon (DOC) and Δ14C-DOC), optical properties (absorbance and fluorescence), and molecular composition (ultrahigh resolution mass spectrometry). Isolates encompassed end-members of allochthonous and autochthonous DOM from sites across the United States, the Pacific Ocean, and Antarctic lakes. Modern Δ14C-DOC and optical properties reflecting increased aromaticity, such as carbon specific UV absorbance at 254 nm (SUVA254), were directly related to polyphenolic and polycyclic aromatic compounds, whereas enriched δ13C-DOC and optical properties reflecting autochthonous end-members were positively correlated to more aliphatic compounds. Furthermore, the two sets of autochthonous end-members (Pacific Ocean and Antarctic lakes) exhibited distinct molecular composition due to differences in extent of degradation. Across all sites and end-members studied, we find a consistent shift in composition with aging, highlighting the persistence of certain biomolecules concurrent with degradation time.

  4. Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.

    2014-12-01

    Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally <2, indicating low aromatic content. Parallel factor analysis (PARAFAC) of CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.

  5. The X-ray and ultraviolet absorbing outflow in 3C 351

    NASA Astrophysics Data System (ADS)

    Mathur, Smita; Wilkes, Belinda; Elvis, Martin; Fiore, Fabrizio

    1994-10-01

    3C 351 (z = 0.371), and X-ray-'quiet' quasar, is one of the few quasars showing signs of a 'warm absorber' in its X-ray spectrum; i.e., partially ionized absorbing material in the line of sight whose opacity depends on its ionization structure. The main feature in the X-ray spectrum is a K-edge due to O VII or O VIII. 3C 351 also shows unusually strong, blueshifted, associated, absorption lines in the ultraviolet (Bahcall et al. 1993) including O VI (lambda lambda 1031, 1037). This high ionization state strongly suggests an identification with the X-ray absorber and a site within the active nucleus. In this paper we demonstrate that the X-ray and UV absorption is due to the same material. This is the first confirmed UV/X-ray absorber. Physical conditions of the absorber are determined through the combination of constraints derived from both the X-ray and UV analysis. This highly ionized, outflowing, low-density, high-column density absorber situated outside the broad emission line region (BELR) is a previously unknown component of nuclear material. We rule out the identification of the absorber with a BELR cloud as the physical conditions in the two regions are inconsistent with one another. The effect of the X-ray quietness and IR upturn in the 3C 351 continuum on the BELR is also investigated. The strengths of the high-ionization lines of C IV lambda-1549 and O VI lambda-1034 with respect to Lyman-alpha are systematically lower (up to a factor of 10) in the material ionized by the 3C 351 continuum as compared to those produced by the 'standard' quasar continuum, the strongest effect being on the strength of O VI lambda-1034. We find that for a 3C 351-like continuum, C III) lambda-1909 ceases to be a density indicator.

  6. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy

    PubMed Central

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D.

    2015-01-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10−12 [μm2], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. PMID:25480828

  8. A Fe(II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe(II)/PMS ratio and neutral pH: The mechanisms.

    PubMed

    Ling, Li; Zhang, Dapeng; Fan, Chihhao; Shang, Chii

    2017-11-01

    A novel Fe(II)/citrate/UV/PMS process for degrading a model micropollutant, carbamazepine (CBZ), at a low Fe(II)/PMS ratio and neutral pH has been proposed in this study, and the mechanisms of radical generation in the system was explored. With a UV dose of 302.4 mJ/cm 2 , an initial pH of 7, and CBZ, PMS, Fe(II) and citrate at initial concentrations of 10, 100, 12 and 26 μM, respectively, the CBZ degradation efficiency reached 71% in 20 min in the Fe(II)/citrate/UV/PMS process, which was 4.7 times higher than that in either the citrate/UV/PMS or Fe(II)/citrate/PMS process. The enhanced CBZ degradation in the Fe(II)/citrate/UV/PMS process was mainly attributed to the continuous activation of PMS by the UV-catalyzed regenerated Fe(II) from a Fe(III)-citrate complex, [Fe 3 O(cit) 3 H 3 ] 2- , which not only maintained Fe(III) soluble at neutral pH, but also increased 6.6 and 2.6 times of its molar absorbance and quantum yield as compared to those of ionic Fe(III), respectively. In the Fe(II)/citrate/UV/PMS process, the SO 4 •- produced from the fast reaction between PMS and the initially-added Fe(II) contributed 11% of CBZ degradation. The PMS activation by the UV radiation and regenerated Fe(II) contributed additional 14% and 46% of CBZ removal, respectively. The low iron and citrate doses and the fast radical generation at neutral pH make the Fe(II)/citrate/UV/PMS process suitable for degrading recalcitrant organic compounds in potable water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Photostabilizing Effect of Grape Seed Extract on Three Common Sunscreen Absorbers.

    PubMed

    Martincigh, Bice S; Ollengo, Moses A

    2016-11-01

    The photostabilizing ability of grape seed extract on three common sunscreen absorbers, 2-ethylhexyl-p-methoxycinnamate (EHMC), benzophenone-3 (BP3) and tert-butylmethoxy dibenzoylmethane (BMDBM), was investigated. Samples were exposed to simulated solar radiation and monitored by spectrophotometric and chromatographic methods. The chemical composition of the grape seed extract was determined by GC-MS and HPLC-MS, and the major secondary metabolites were found to be epicatechin and catechin. Exposure of the extract to UV radiation increased the UV absorption capacity of the extract. All sunscreens showed an improved photostability in the extract. The inherent photo-instability of BMDBM when exposed to UV radiation was almost eliminated in the presence of grape seed extract. A mixture of all three sunscreens in the extract showed very high photostability and a red shift covering the entire UVB and UVA regions, thereby improving the broad-spectrum protection. The incorporation of grape seed extract in sunscreen and other cosmetic formulations for topical application boosts photoprotection by stabilizing the UV filters and enhancing broad-spectrum coverage. This in turn helps in reducing the amounts of absorbers and other additives incorporated in a sunscreen product and consequently lowers the risk of an unprecedented buildup of photoproducts whose toxicities are currently unknown. © 2016 The American Society of Photobiology.

  10. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues.

    PubMed

    Hibbert, Sarah A; Watson, Rachel E B; Gibbs, Neil K; Costello, Patrick; Baldock, Clair; Weiss, Anthony S; Griffiths, Christopher E M; Sherratt, Michael J

    2015-08-01

    Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths) here we hypothesised that UV chromophore (Cys, Trp and Tyr) content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm(2)) of solar UVR (95% UVA, 5% UVB). We show that: i) purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins undergo solar simulated radiation (SSR)-induced aggregation and/or decomposition and ii) exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and β- and γ-crystallins) are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR exposure as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues

    PubMed Central

    Hibbert, Sarah A.; Watson, Rachel E.B.; Gibbs, Neil K.; Costello, Patrick; Baldock, Clair; Weiss, Anthony S.; Griffiths, Christopher E.M.; Sherratt, Michael J.

    2015-01-01

    Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths) here we hypothesised that UV chromophore (Cys, Trp and Tyr) content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm2) of solar UVR (95% UVA, 5% UVB). We show that: i) purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins undergo solar simulated radiation (SSR)-induced aggregation and/or decomposition and ii) exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and β- and γ-crystallins) are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR exposure as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage. PMID:25911998

  12. Ultraviolet filters in stomatopod crustaceans: diversity, ecology and evolution.

    PubMed

    Bok, Michael J; Porter, Megan L; Cronin, Thomas W

    2015-07-01

    Stomatopod crustaceans employ unique ultraviolet (UV) optical filters in order to tune the spectral sensitivities of their UV-sensitive photoreceptors. In the stomatopod species Neogonodactylus oerstedii, we previously found four filter types, produced by five distinct mycosporine-like amino acid pigments in the crystalline cones of their specialized midband ommatidial facets. This UV-spectral tuning array produces receptors with at least six distinct spectral sensitivities, despite expressing only two visual pigments. Here, we present a broad survey of these UV filters across the stomatopod order, examining their spectral absorption properties in 21 species from seven families in four superfamilies. We found that UV filters are present in three of the four superfamilies, and evolutionary character reconstruction implies that at least one class of UV filter was present in the ancestor of all modern stomatopods. Additionally, postlarval stomatopods were observed to produce the UV filters simultaneously alongside development of the adult eye. The absorbance properties of the filters are consistent within a species; however, between species we found a great deal of diversity, both in the number of filters and in their spectral absorbance characteristics. This diversity correlates with the habitat depth ranges of these species, suggesting that species living in shallow, UV-rich environments may tune their UV spectral sensitivities more aggressively. We also found additional, previously unrecognized UV filter types in the crystalline cones of the peripheral eye regions of some species, indicating the possibility for even greater stomatopod visual complexity than previously thought. © 2015. Published by The Company of Biologists Ltd.

  13. Examining the effect of altered redox conditions on deep soil organic matter stability

    NASA Astrophysics Data System (ADS)

    Gabriel, C.; Kellman, L. M.; Ziegler, S. E.

    2013-12-01

    Since subsoil horizons contribute significantly to terrestrial carbon (C) budgets, understanding the influence of disturbances such as forest harvesting on subsoil C stability is critical. Clearcut harvesting leads to changes in the soil physico-chemical environment, including altering redox conditions arising from changes in soil hydrology that increase soil saturation, soil temperature, and pH. These physico-chemical changes have the potential to alter the adsorption of soil organic matter (SOM) to minerals, particularly at depth where SOM is primarily associated with mineral phases. The objective of this study was to determine the effect of differing redox states (aerobic vs. anaerobic) and temperature upon SOM stability of forested soils representative of the Acadian Forest Region of Eastern North America. Composite soil samples through depth (0-10, 10-20, 20-35, and 35-50 cm) from a mature red spruce forest (110 years) were incubated under optimum (aerobic) or saturated (anaerobic) conditions for 1 or 4 months at two temperatures (5 and 15 C). Following incubation, soil leachate was analyzed for dissolved organic carbon (DOC), and UV-vis absorbance in order to determine soil C losses and its optical character. Specific UV-vis absorbance SUVA (254 nm) and spectral slope ratios were calculated in order to assess the composition of chromophoric dissolved organic matter (CDOM). Preliminary results from the 1 month incubation indicate that under anaerobic conditions, all depths released DOC with a higher SUVA than under aerobic conditions, with the largest change observed in the 0-10 cm depth increment. Soil incubated at 5 C produced leachate with significantly less DOC and with a lower absorbance compared to 15 C under both redox conditions. These results suggest that both temperature and redox state are important in determining the aromaticity of DOC released from soils. Spectral slope ratios revealed that a greater proportion of CDOM of lower molecular weight (MW) compounds were released from deep mineral podzolic soils when saturated (high SUVA, low spectral slope), while higher MW CDOM were released from shallow soil strata (low SUVA, high spectral slope). This is consistent with research that indicates plant-derived SOM and microbial products each dominate in shallow and deep mineral soils, respectively. These preliminary results suggest that alterations to the redox state of a forested podzolic soil may have the potential to alter the mobilization of SOM, its composition and associated soil carbon stores.

  14. Comments on a Method to Measure Sucralose Using UV Photodegradation Followed by UV Spectrophotometry.

    PubMed

    Fang, Te; Andrews, Susan A; Hofmann, Ron

    2017-05-01

    A simple and quick method to measure sucralose in aqueous solution at concentrations in the order of 0.1-1.2 g·L-1 proposed by Idris et al. uses UV irradiation prior to UV spectrophotometry. The photolysis of sucralose forms a photoactive compound characterized by maximum absorbance at approximately 270 nm. The conditions required for sucralose photolysis, however, had not been completely reported. In this work, the procedure described by Idris et al. was replicated using a low-pressure UV lamp to irradiate sucralose samples with a wider range of initial concentrations (0.04-10 g·L-1) with known fluences. It was determined that care must be taken to ensure that the same fluence is applied for both calibration and measurement steps because the absorbance of the sucralose photolysis product is a function of the applied fluence. The way the samples are irradiated also has an impact on the results in that the method exhibits a greater linear range if an apparatus is used that maximizes the fluence rate (e.g., by placing samples closer to the UV source or using a higher-intensity lamp).

  15. Effects of solar UV-B radiation on aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position phytoplankton will be exposed to solar ultraviolet radiation. This radiation has been shown to affect growth, photosynthesis, nitrogen incorporation and enzyme activity. Other targets of solar UV irradiation are proteins and pigments involved in photosynthesis. Whether or not screening pigments can be induced in phytoplankton to effectively shield the organisms from excessive UV irradiation needs to be determined. Macroalgae show a distinct pattern of vertical distribution in their habitat. They have developed mechanisms to regulate their photosynthetic activity to adapt to the changing light regime and protect themselves from excessive radiation. A broad survey was carried out to understand photosynthesis in aquatic ecosystems and the different adaptation strategies to solar radiation of ecologically important species of green, red and brown algae from the North Sea, Baltic Sea, Mediterranean, Atlantic, polar and tropical oceans. Photoinhibition was quantified by oxygen exchange and by PAM (pulse amplitude modulated) fluorescence measurements based on transient changes of chlorophyll fluorescence.

  16. 403 nm cavity ring-down measurements of brown carbon aerosol

    NASA Astrophysics Data System (ADS)

    Kwon, D.; Grassian, V. H.; Kleiber, P.; Young, M. A.

    2017-12-01

    Atmospheric aerosol influences Earth's climate by absorbing and scattering incoming solar radiation and outgoing terrestrial radiation. One class of secondary organic aerosol (SOA), called brown carbon (BrC), has attracted attention for its wavelength dependent light absorbing properties with absorption coefficients that generally increase from the visible (Vis) to ultraviolet (UV) regions. Here we report results from our investigation of the optical properties of BrC aerosol products from the aqueous phase reaction of ammonium sulfate (AS) with methylglyoxal (MG) using cavity ring-down spectroscopy (CRDS) at 403 nm wavelength. We have measured the optical constants of BrC SOA from the AS/MG reaction as a function of reaction time. Under dry flow conditions, we observed no apparent variation in the BrC refractive index with aging over the course of 22 days. The retrieved BrC optical constants are similar to those of AS with n = 1.52 for the real component. Despite significant UV absorption observed from the bulk BrC solution, the imaginary index value at 403 nm is below our minimum detection limit which puts an upper bound of k as 0.03. These observations are in agreement with results from our recent studies of the light scattering properties of this BrC aerosol.

  17. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.

    PubMed

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-03-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  18. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    PubMed Central

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-01-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst. PMID:26938568

  19. Characterisation of dissolved organic matter in stormwater using high-performance size exclusion chromatography.

    PubMed

    Huang, Huiping; Chow, Christopher W K; Jin, Bo

    2016-04-01

    Understanding the complexity of dissolved organic matter (DOM) in stormwater has drawn a lot of interest, since DOM from stormwater causes not only environmental impacts, but also worsens downstream aquatic quality associated with water supply and treatability. This study introduced and employed high-performance size exclusion chromatography (HPSEC) coupled with an ultraviolet-visible (UV-vis) diode array detector to assess changes in stormwater-associated DOM characteristics. Stormwater DOM was also analysed in relation to storm event characteristics, water quality and spectroscopic analysis. Statistical tools were used to determine the correlations within DOM and water quality measurements. Results showed that dissolved organic carbon (DOC) and UV absorbance at 254 nm (UV254) as conventional DOM parameters were found to be correlated well to the changes in stormwater quality during each of the three storm events studied. Both detector wavelengths (210 and 254 nm) and their ratio (A210/A254) were found to provide additional information on the physiochemical properties of stormwater-associated DOM. This study indicated that A210/A254 is an important parameter which could be used to estimate the DOM proportions of functional groups and conjugated carbon species. This study provided also an understanding of stormwater quality constituents through assessing variability and sensitivity for various parameters, and the additional information of rainfall characteristics on runoff quality data for a better understanding of parameter correlations and influences. Copyright © 2015. Published by Elsevier B.V.

  20. Effect of humic substance photodegradation on bacterial growth and respiration in lake water

    USGS Publications Warehouse

    Anesio, A.M.; Graneli, W.; Aiken, G.R.; Kieber, D.J.; Mopper, K.

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-??m-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H 2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ???18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ???10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  1. Sunlight-induced changes in chromophores and fluorophores of wastewater-derived organic matter in receiving waters--the role of salinity.

    PubMed

    Yang, Xiaofang; Meng, Fangang; Huang, Guocheng; Sun, Li; Lin, Zheng

    2014-10-01

    Wastewater-derived organic matter (WOM) is an important constituent of discharge to urban rivers and is suspected of altering the naturally occurring dissolved organic matter (DOM) in water systems. This study investigated sunlight-induced changes in chromophores and fluorophores of WOM with different salinities (S = 0, 10, 20 and 30) that were collected from two wastewater treatment plants (WWTP-A and WWTP-B). The results showed that exposure to sunlight for 5.3 × 10(5) J/m(2) caused significant decreases in UV254-absorbing WOM (45-59% loss) compared to gross dissolved organic carbon (<15% loss). An increase in salinity accelerated the overall photo-degradation rates of the UV254-absorbing chromophores from both WOM and natural DOM. In addition, irradiated WOM at a higher salinity had a larger molecular size than that at a lower salinity. However, natural DOM did not display such behavior. Parallel factor analysis of the excitation-emission matrix determined the presence of two humic-like components (C1 and C2) and two protein-like components (C3 and C4). All the components in WOM followed second-order kinetics, except for the C4 component in WWTP-A, which fit zero-order photoreaction kinetics. The photo-degradation of the C1 component in both WWTPs appeared to be independent of salinity; however, the photo-degradation rates of the C2 and C3 components in both WWTPs and C4 in WWTP-B increased significantly with increasing salinity. In comparison, the photo-degradation of the C1 component was significantly facilitated by increased salinity in natural DOM, fitting first-order photoreaction kinetics. As such, the current knowledge concerning the photo-degradation of naturally occurring DOM cannot be extrapolated for the understanding of WOM photo-degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum

    NASA Astrophysics Data System (ADS)

    Michaelian, K.; Simeonov, A.

    2015-08-01

    The driving force behind the origin and evolution of life has been the thermodynamic imperative of increasing the entropy production of the biosphere through increasing the global solar photon dissipation rate. In the upper atmosphere of today, oxygen and ozone derived from life processes are performing the short-wavelength UV-C and UV-B dissipation. On Earth's surface, water and organic pigments in water facilitate the near-UV and visible photon dissipation. The first organic pigments probably formed, absorbed, and dissipated at those photochemically active wavelengths in the UV-C and UV-B that could have reached Earth's surface during the Archean. Proliferation of these pigments can be understood as an autocatalytic photochemical process obeying non-equilibrium thermodynamic directives related to increasing solar photon dissipation rate. Under these directives, organic pigments would have evolved over time to increase the global photon dissipation rate by (1) increasing the ratio of their effective photon cross sections to their physical size, (2) decreasing their electronic excited state lifetimes, (3) quenching radiative de-excitation channels (e.g., fluorescence), (4) covering ever more completely the prevailing solar spectrum, and (5) proliferating and dispersing to cover an ever greater surface area of Earth. From knowledge of the evolution of the spectrum of G-type stars, and considering the most probable history of the transparency of Earth's atmosphere, we construct the most probable Earth surface solar spectrum as a function of time and compare this with the history of molecular absorption maxima obtained from the available data in the literature. This comparison supports the conjecture that many fundamental molecules of life are pigments which arose, proliferated, and co-evolved as a response to dissipating the solar spectrum, supports the thermodynamic dissipation theory for the origin of life, constrains models for Earth's early atmosphere, and sheds some new light on the origin of photosynthesis.

  3. Impacts of long-term enhanced UV-B radiation on bryophytes in two sub-Arctic heathland sites of contrasting water availability.

    PubMed

    Arróniz-Crespo, M; Gwynn-Jones, D; Callaghan, T V; Núñez-Olivera, E; Martínez-Abaigar, J; Horton, P; Phoenix, G K

    2011-09-01

    Anthropogenic depletion of stratospheric ozone in Arctic latitudes has resulted in an increase of ultraviolet-B radiation (UV-B) reaching the biosphere. UV-B exposure is known to reduce above-ground biomass and plant height, to increase DNA damage and cause accumulation of UV-absorbing compounds in polar plants. However, many studies on Arctic mosses tended to be inconclusive. The importance of different water availability in influencing UV-B impacts on lower plants in the Arctic has been poorly explored and might partially explain the observed wide variation of responses, given the importance of water in controlling bryophyte physiology. This study aimed to assess the long-term responses of three common sub-Arctic bryophytes to enhanced UV-B radiation (+UV-B) and to elucidate the influence of water supply on those responses. Responses of three sub-Arctic bryophytes (the mosses Hylocomium splendens and Polytrichum commune and the liverwort Barbilophozia lycopodioides) to +UV-B for 15 and 13 years were studied in two field experiments using lamps for UV-B enhancement with identical design and located in neighbouring areas with contrasting water availability (naturally mesic and drier sites). Responses evaluated included bryophyte abundance, growth, sporophyte production and sclerophylly; cellular protection by accumulation of UV-absorbing compounds, β-carotene, xanthophylls and development of non-photochemical quenching (NPQ); and impacts on photosynthesis performance by maximum quantum yield (F(v) /F(m)) and electron transport rate (ETR) through photosystem II (PSII) and chlorophyll concentrations. Responses were species specific: H. splendens responded most to +UV-B, with reduction in both annual growth (-22 %) and sporophyte production (-44 %), together with increased β-carotene, violaxanthin, total chlorophyll and NPQ, and decreased zeaxanthin and de-epoxidation of the xanthophyll cycle pool (DES). Barbilophozia lycopodioides responded less to +UV-B, showing increased β-carotene and sclerophylly and decreased UV-absorbing compounds. Polytrichum commune only showed small morphogenetic changes. No effect of UV-B on bryophyte cover was observed. Water availability had profound effects on bryophyte ecophysiology, and plants showed, in general, lower growth and ETR, together with a higher photoprotection in the drier site. Water availability also influenced bryophyte responses to +UV-B and, in particular, responses were less detectable in the drier site. Impacts of UV-B exposure on Arctic bryophytes were significant, in contrast to modest or absent UV-B effects measured in previous studies. The impacts were more easily detectable in species with high plasticity such as H. splendens and less obvious, or more subtle, under drier conditions. Species biology and water supply greatly influences the impact of UV-B on at least some Arctic bryophytes and could contribute to the wide variation of responses observed previously.

  4. Protection of Nomex from Ultraviolet Degradation

    DTIC Science & Technology

    1977-03-01

    absorbs UV radiation beginning at approximately 390 nano- meters (nm) and extending into the near UV with a peak at approximately 360 nm. This absorption is...the region near 290 nm [ 5 ]. Sunlight is much richer in radiation at 360 nm than at 290 nm and this fact undoubt- edly accounts for the much greater...function as UV screening agents. The absorption spectrum of Nomex in the near UV and visible region which is responsible for Nomex photodegra- dation is

  5. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.

    PubMed

    Singh, Jaswant; Singh, Rudra P

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.

  6. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica

    PubMed Central

    Singh, Jaswant; Singh, Rudra P.

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased. PMID:24748743

  7. EFFECTS OF SUSPENDED SEDIMENTS ON PHOTOLYSIS RATES OF DISSOLVED POLLUTANTS

    EPA Science Inventory

    Data are presented concerning the effects of suspended sediments upon photolysis rates of dissolved ultraviolet (u.v.) absorbing pollutants. The malachite green leucocyanide actinometer was found to be a convenient and sensitive device for measurement of solar u.v. radiation (abo...

  8. Sensitivity of multiangle photo-polarimetry to absorbing aerosol vertical layering and properties: Quantifying measurement uncertainties for ACE requirements

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Davis, A. B.; Natraj, V.; Diner, D. J.; Tanelli, S.; Martonchik, J. V.; JPl Team

    2011-12-01

    The impact of tropospheric aerosols on climate can vary greatly based upon relatively small variations in aerosol properties, such as composition, shape and size distributions, as well as vertical layering. Multi-angle polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol radiative forcing on climate. The central concern of this work is the assessment of the effects of absorbing aerosol properties under measurement uncertainties achievable for future generation multi-angle, polarimetric imaging instruments under ACE mission requirements. As guidelines, the on-orbit performance of MISR for multi-angle intensity measurements and the reported polarization sensitivities of a MSPI prototype were adopted. In particular, we will focus on sensitivities to absorbing aerosol layering and observation-constrained refractive indices (resulting in various single scattering albedos (SSA)) of both spherical and non-spherical absorbing aerosol types. We conducted modeling experiments to determine how the measured Stokes vector elements are affected in UV-NIR range by the vertical distribution, mixing and layering of smoke and dust aerosols, and aerosol SSA under the assumption of a black and polarizing ocean surfaces. We use a vector successive-orders-of-scattering (SOS) and VLIDORT transfer codes that show excellent agreement. Based on our sensitivity studies we will demonstrate advantages and disadvantages of wavelength selection in UV-NIR range to access absorbing aerosol properties. Polarized UV channels do not show particular advantage for absorbing aerosol property characterization due to dominating molecular signal. Polarimetric SSA sensitivity is small, however needed to be considered in the future polarimetric retrievals under ACE-defined uncertainty.

  9. Sunlight and Vitamin D

    PubMed Central

    Wacker, Matthias; Holick, Michael F.

    2013-01-01

    Vitamin D is the sunshine vitamin that has been produced on this earth for more than 500 million years. During exposure to sunlight 7-dehydrocholesterol in the skin absorbs UV B radiation and is converted to previtamin D3 which in turn isomerizes into vitamin D3. Previtamin D3 and vitamin D3 also absorb UV B radiation and are converted into a variety of photoproducts some of which have unique biologic properties. Sun induced vitamin D synthesis is greatly influenced by season, time of day, latitude, altitude, air pollution, skin pigmentation, sunscreen use, passing through glass and plastic, and aging. Vitamin D is metabolized sequentially in the liver and kidneys into 25-hydroxyvitamin D which is a major circulating form and 1,25-dihydroxyvitamin D which is the biologically active form respectively. 1,25-dihydroxyvitamin D plays an important role in regulating calcium and phosphate metabolism for maintenance of metabolic functions and for skeletal health. Most cells and organs in the body have a vitamin D receptor and many cells and organs are able to produce 1,25-dihydroxyvitamin D. As a result 1,25-dihydroxyvitamin D influences a large number of biologic pathways which may help explain association studies relating vitamin D deficiency and living at higher latitudes with increased risk for many chronic diseases including autoimmune diseases, some cancers, cardiovascular disease, infectious disease, schizophrenia and type 2 diabetes. A three-part strategy of increasing food fortification programs with vitamin D, sensible sun exposure recommendations and encouraging ingestion of a vitamin D supplement when needed should be implemented to prevent global vitamin D deficiency and its negative health consequences. PMID:24494042

  10. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production.

    PubMed

    Lavonen, E E; Kothawala, D N; Tranvik, L J; Gonsior, M; Schmitt-Kopplin, P; Köhler, S J

    2015-11-15

    Absorbance, 3D fluorescence and ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) were used to explain patterns in the removal of chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) at the molecular level during drinking water production at four large drinking water treatment plants in Sweden. When dissolved organic carbon (DOC) removal was low, shifts in the dissolved organic matter (DOM) composition could not be detected with commonly used DOC-normalized parameters (e.g. specific UV254 absorbance - SUVA), but was clearly observed by using differential absorbance and fluorescence or ESI-FT-ICR-MS. In addition, we took a novel approach by identifying how optical parameters were correlated to the elemental composition of DOM by using rank correlation to connect optical properties to chemical formulas assigned to mass peaks from FT-ICR-MS analyses. Coagulation treatment selectively removed FDOM at longer emission wavelengths (450-600 nm), which significantly correlated with chemical formulas containing oxidized carbon (average carbon oxidation state ≥ 0), low hydrogen to carbon ratios (H/C: average ± SD = 0.83 ± 0.13), and abundant oxygen-containing functional groups (O/C = 0.62 ± 0.10). Slow sand filtration was less efficient in removing DOM, yet selectively targeted FDOM at shorter emission wavelengths (between 300 and 450 nm), which commonly represents algal rather than terrestrial sources. This shorter wavelength FDOM correlated with chemical formulas containing reduced carbon (average carbon oxidation state ≤ 0), with relatively few carbon-carbon double bonds (H/C = 1.32 ± 0.16) and less oxygen per carbon (O/C = 0.43 ± 0.10) than those removed during coagulation. By coupling optical approaches with FT-ICR-MS to characterize DOM, we were for the first time able to confirm the molecular composition of absorbing and fluorescing DOM selectively targeted during drinking water treatment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. The reactivity of natural organic matter to disinfection by-products formation and its relation to specific ultraviolet absorbance.

    PubMed

    Kitis, M; Karanfil, T; Kilduff, J E; Wigton, A

    2001-01-01

    Five natural waters with a broad range of DOC concentrations were fractionated using various coal- and wood-based granular activated carbons (GAC) and alum coagulation. Adsorption and alum coagulation fractionated NOM solutions by preferentially removing components having high specific ultraviolet absorbance (SUVA). UV absorbing fractions of NOM were found to be the major contributors to DBP formation. SUVA appears to be an accurate predictor of reactivity with chlorine in terms of DBP yield; however, it was also found that low-SUVA components of NOM have higher bromine incorporation. SUVA has promise as a parameter for on-line monitoring and control of DBP formation in practical applications; however, the effects of bromide concentration may also need to be considered. Understanding how reactivity is correlated to SUVA may allow utilities to optimize the degree of treatment required to comply with DBP regulations. The reactive components that require removal, and the degree of treatment necessary to accomplish this removal, may be directly obtained from the relationship between SUVA removal and the degree of treatment (e.g., alum dose).

  12. Photochemical stability of UV-screening transparent acrylic copolymers of 2-(2-hydroxy-5-vinylphenyl)-2H-benzotriazole

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Scott, G. W.; Kliger, D.; Vogl, O.

    1983-01-01

    The mechanism of photodegradation of certain hydroxyphenyl benzotriazole based ultraviolet absorbers has been investigated and a new polymerizable ultraviolet absorber in this group has been synthesized. The photoreactivity is entirely confined at the surface of polymethylmethacrylate films containing the ultraviolet absorbers as pendant groups. A mechanism involving sensitized photooxidation has been proposed to interpret the data.

  13. Mask fabrication process

    DOEpatents

    Cardinale, Gregory F.

    2000-01-01

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  14. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2014-09-01

    Flat samples from various PMMA formulations subjected to accelerated laboratory weathering in an "Atlas Xenotest Alpha +" weathering device operating at 3 Sun irradiance remain transparent after 6.48GJ/m2 radiant exposure (300 - 400nm). Transmittance is reduced and yellowness index increases. However, the amount of change depends largely on the PMMA formulation. Higher UV absorber concentrations lead to smaller changes in optical properties. Based on a model of CPV efficiency for a particular power train, relative losses of efficiency are between 1 and 28%. Performance regarding these properties can be linked to the UV absorber type and concentrations used.

  15. Simultaneous Ultraviolet and X-Ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I. Physical Conditions in the Ultraviolet Absorbers

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.; Turner, T. J.; Yaqoob, T.

    2003-09-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-Ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2-1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km s-1) and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectroscopic Explorer and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with proposal 9279.

  16. The impact of solar UV radiation on the early biosphere

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    2007-08-01

    Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation sensing mechanisms; (ii) application of external shielding, such as covering by mud, sand or rock material; (iii) development of intrinsic UV screening pigments, such as tanning, inductive flavonoid production of plants, intracellular mycosporin production in cyanobacteria, (iv) accumulation of antioxidants and quenching substances. However, if UV damage has been induced - in spite of all avoidance efforts, organisms may restore their functionality by numerous repair processes. Repair pathways of a rich diversity and functional universality include (i) direct repair with the reversal of photochemical abnormalities, e.g. in the DNA; (ii) recombination repair removing the UV-induced abnormality by homologous recombination; and (iii) excision repair, where the section of the DNA strand containing the abnormality is removed and a repair patch is synthesized using the intact strand as a template. In addition to efficient repair systems for radiation-induced DNA injury, life has developed a variety of defense mechanisms, such as the increase in the production of stress proteins and the activation of the immune defence system. Some of these capacities have certainly already been evolved in the early biosphere, when it was exposed to the extended UV-spectrum of the sun. Only since the early Proterozoic, due to a rapid rise in the atmospheric oxygen concentration and consequently a photochemical built up of the stratospheric ozone layer, a more moderate UV radiation climate prevailed with wavelengths shorter than 295 nm being effectively cut off.

  17. Dimethyl sulfoxide inactivates the anticancer effect of cisplatin against human myelogenous leukemia cell lines in in vitro assays

    PubMed Central

    Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph

    2015-01-01

    Objectives: To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Materials and methods: Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. Results: 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Conclusion: Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs. PMID:26069372

  18. Dimethyl sulfoxide inactivates the anticancer effect of cisplatin against human myelogenous leukemia cell lines in in vitro assays.

    PubMed

    Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph

    2015-01-01

    To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs.

  19. Space environmental effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1987-01-01

    Polymeric materials that may be exposed on spacecraft to the hostile environment beyond Earth's atmosphere were subjected to atomic oxygen, electron bombardment, and ultraviolet radiation in terrestrial experiments. Evidence is presented for the utility of an inexpensive asher for determining the relative susceptibility of organic polymers to atomic oxygen. Kapton, Ultem, P1700 polysulfone, and m-CBB/BIS-A (a specially formulated polymer prepared at NASA Langley) all eroded at high rates, just as was observed in shuttle experiments. Films of Ultem, P1700 polysulfone, and m-CBB/BIS-A were irradiated with 85 keV electrons. The UV/VIS absorbance of Ultem was found to decay with time after irradiation, indicating free radical decay. The tensile properties of Ultem began to change only after it had been exposed to 100 Mrads. The effects of dose rate, temperature, and simultaneous vs. sequential electron and UV irradiation were also studied.

  20. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  1. Improving UV protection by clothing--recent developments.

    PubMed

    Osterwalder, Uli; Rohwer, Hauke

    2002-01-01

    The assessment of UV transmittance of clothing and the determination of the UV protection factor (UPF) are now well established and the influencing factors such as type of fiber, color, and fabric construction are known. Quick and reliable instruments to measure UV transmittance are crucial. Besides expensive scientific laboratory instruments, a low-cost UV meter is now available for this purpose. The questions arise as to what can be done about a given garment and whether there are ways to improve textiles by the consumer. The many opportunities to improve UV protection of clothing along the textile chain of manufacturing are discussed. The latest possibility for improving the UV-protective properties of clothing is now available at the fabric care stage in every household. A UV absorber can be brought into contact with a fabric during the wash or rinse cycle of a laundry operation. The high UV transmittance of 30% of a thin, bleached cotton swatch in the dry state (UPF 3), can be reduced tenfold to about 3% (UPF >30) in ten washes cycles. This is more than the effect achieved by dyestuffs. The detergent should contain about 0.1-0.3% of the special UV absorber. The same effect can be achieved as early as after one wash cycle with a higher concentration provided by a special laundry additive. Yet another form of application is via rinse cycle fabric conditioner. To make these new types of improvement of fabrics visible the Skin Cancer Foundation now provides the possibility for laundry products to qualify for the "Seal of Recommendation".

  2. Solar absorption by elemental and brown carbon determined from spectral observations.

    PubMed

    Bahadur, Ranjit; Praveen, Puppala S; Xu, Yangyang; Ramanathan, V

    2012-10-23

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols (TC) and is typically dominated by soot-like elemental carbon (EC). However, organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC), which is typically not represented in climate models. We propose an observationally based analytical method for rigorously partitioning measured absorption aerosol optical depths (AAOD) and single scattering albedo (SSA) among EC and BrC, using multiwavelength measurements of total (EC, OC, and dust) absorption. EC is found to be strongly absorbing (SSA of 0.38) whereas the BrC SSA varies globally between 0.77 and 0.85. The method is applied to the California region. We find TC (EC + BrC) contributes 81% of the total absorption at 675 nm and 84% at 440 nm. The BrC absorption at 440 nm is about 40% of the EC, whereas at 675 nm it is less than 10% of EC. We find an enhanced absorption due to OC in the summer months and in southern California (related to forest fires and secondary OC). The fractions and trends are broadly consistent with aerosol chemical-transport models as well as with regional emission inventories, implying that we have obtained a representative estimate for BrC absorption. The results demonstrate that current climate models that treat OC as nonabsorbing are underestimating the total warming effect of carbonaceous aerosols by neglecting part of the atmospheric heating, particularly over biomass-burning regions that emit BrC.

  3. The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS).

    PubMed

    Dinar, E; Riziq, A Abo; Spindler, C; Erlick, C; Kiss, G; Rudich, Y

    2008-01-01

    Atmospheric aerosols absorb and reflect solar radiation causing surface cooling and heating of the atmosphere. The interaction between aerosols and radiation depends on their complex index of refraction, which is related to the particles' chemical composition. The contribution of light absorbing organic compounds, such as HUmic-LIke Substances (HULIS) to aerosol scattering and absorption is among the largest uncertainties in assessing the direct effect of aerosols on climate. Using a Cavity Ring Down Aerosol Spectrometer (CRD-AS), the complex index of refraction of aerosols containing HULIS extracted from pollution, smoke, and rural continental aerosols, and molecular weight-fractionated fulvic acid was measured at 390 nm and 532 nm. The imaginary part of the refractive index (absorption) substantially increases towards the UV range with increasing molecular weight and aromaticity. At both wavelengths, HULIS extracted from pollution and smoke particles absorb more than HULIS from the rural aerosol. Sensitivity calculations for a pollution-type aerosol containing ammonium sulfate, organic carbon (HULIS), and soot suggests that accounting for absorption by HULIS leads in most cases to a significant decrease in the single scattering albedo and to a significant increase in aerosol radiative forcing efficiency, towards more atmospheric absorption and heating. This indicates that HULIS in biomass smoke and pollution aerosols, in addition to black carbon, can contribute significantly to light absorption in the ultraviolet and visible spectral regions.

  4. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin

    PubMed Central

    Mok, Jungbin; Krotkov, Nickolay A.; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F.; Li, Zhanqing; Dickerson, Russell R.; Stenchikov, Georgiy L.; Osipov, Sergey; Ren, Xinrong

    2016-01-01

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or “brown” carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305–368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning. PMID:27833145

  5. Fabrication and characterization of high mobility spin-coated zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Singh, Shaivalini; Chakrabarti, P.

    2012-10-01

    A ZnO based thin film transistor (TFT) with bottom-gate configuration and SiO2 as insulating layer has been fabricated and characterized. The ZnO thin film was prepared by spin coating the sol-gel solution on the p-type Si wafers. The optical and structural properties of ZnO films were investigated using UV measurements and scanning electron microscope (SEM). The result of UV-visible study confirms that the films have a good absorbance in UV region and relatively low absorbance in the visible region. The TFT exhibited an off-current of 2.5×10-7 A. The values of field effect channel mobility and on/off current ratio extracted for the device, measured 11 cm2/V.s and ~102 respectively. The value of threshold voltage was found to be 1.3 V.

  6. UV absorption control of thin film growth

    DOEpatents

    Biefeld, Robert M.; Hebner, Gregory A.; Killeen, Kevin P.; Zuhoski, Steven P.

    1991-01-01

    A system for monitoring and controlling the rate of growth of thin films in an atmosphere of reactant gases measures the UV absorbance of the atmosphere and calculates the partial pressure of the gases. The flow of reactant gases is controlled in response to the partial pressure.

  7. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zucchi, Sara; Bluethgen, Nancy; University of Basel, Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, CH-4056 Basel

    Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. Inmore » eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.« less

  8. Development of new polysilsesquioxane spherical particles as stabilized active ingredients for sunscreens

    NASA Astrophysics Data System (ADS)

    Tolbert, Stephanie Helene

    Healthy skin is a sign of positive self-worth, attractiveness and vitality. Compromises to this are frequently caused by extended periods of recreation in the sun and in turn exposure to the harmful effects of UV radiation. To maintain strength and integrity, protection of the skin is paramount. This can be achieved by implementing skin-care products which contain sunscreen active ingredients that provide UV protection. Unfortunately, photo-degradation, toxicity, and photo-allergies limit the effectiveness of present day sunscreen ingredients. Currently, this is moderated by physically embedding within inert silica particles, but leaching of the active ingredient can occur, thereby negating protective efforts. Alternatively, this research details the preparation and investigation of bridged silsesquioxane analogues of commercial ingredients which can be chemically grafted to the silica matrix. Studies with bridged salicylate particles detail facile preparation, minimized leaching, and enhanced UV stability over physically encapsulated and pendant salicylate counterparts. In terms of UVB protective ability, the highest maintenance of sun protection factor (SPF) after extended UV exposure was achieved with bridged incorporation, and has been attributed to corollary UV stability. Additionally, bridged salicylate particles can be classified as broad-spectrum, and rate from moderate to good in terms of UVA protective ability. Particles incorporated with a bridged curcuminoid silsesquioxane were also prepared and displayed comparable results. As such, an attractive method for sunscreen isolation and stabilization has been developed to eliminate the problems associated with current sunscreens, all while maintaining the established UV absorbance profiles of the parent compound. To appreciate the technology utilized in this research, a thorough understanding of sol-gel science as it pertains to hybrid organic/silica particles, including methods of organic fragment incorporation and insight on the effect of incorporation method on ingredient leaching and UV stability, is vital. This was afforded by analysis of hybrid fluorescent dansyl particles, prepared by both O/W microemulsion polymerization and a modified Stober process, which detailed that covalent entrapment of bridged dansyl silsesquioxane is the incorporation method of choice to ensure minimized leaching and enhanced UV stability. As such, use of this method can provide exciting applications in fields where stability and retainment of the embedded ingredient is paramount for efficacy.

  9. Photoactivated UVR8-COP1 Module Determines Photomorphogenic UV-B Signaling Output in Arabidopsis

    PubMed Central

    Ouyang, Xinhao; Chen, Liangbi; Deng, Xing Wang

    2014-01-01

    In Arabidopsis, ultraviolet (UV)-B-induced photomorphogenesis is initiated by a unique photoreceptor UV RESISTANCE LOCUS 8 (UVR8) which utilizes its tryptophan residues as internal chromophore to sense UV-B. As a result of UV-B light perception, the UVR8 homodimer shaped by its arginine residues undergoes a conformational switch of monomerization. Then UVR8 associates with the CONSTITUTIVELY PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA (COP1-SPA) core complex(es) that is released from the CULLIN 4-DAMAGED DNA BINDING PROTEIN 1 (CUL4-DDB1) E3 apparatus. This association, in turn, causes COP1 to convert from a repressor to a promoter of photomorphogenesis. It is not fully understood, however, regarding the biological significance of light-absorbing and dimer-stabilizing residues for UVR8 activity in photomorphogenic UV-B signaling. Here, we take advantage of transgenic UVR8 variants to demonstrate that two light-absorbing tryptophans, W233 and W285, and two dimer-stabilizing arginines, R286 and R338, play pivotal roles in UV-B-induced photomorphogenesis. Mutation of each residue results in alterations in UV-B light perception, UVR8 monomerization and UVR8-COP1 association in response to photomorphogenic UV-B. We also identify and functionally characterize two constitutively active UVR8 variants, UVR8W285A and UVR8R338A, whose photobiological activities are enhanced by the repression of CUL4, a negative regulator in this pathway. Based on our molecular and biochemical evidence, we propose that the UVR8-COP1 affinity in plants critically determines the photomorphogenic UV-B signal transduction coupling with UVR8-mediated UV-B light perception. PMID:24651064

  10. Photochemical Cycling of Humic-Like Substances in Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Rincon, A. G.; Guzman, M. I.; Hoffmann, M. R.; Colussi, A. J.

    2007-12-01

    Colored, humic-like substances (HULIS) arising from the biodegradation of organic detritus are widespread in natural surface waters, where they ultimately undergo solar photolysis into small alpha-dicarbonylic species, such as glyoxal, glyoxylic and pyruvic acids. Diversely generated and chemically dissimilar HULIS are also found in the atmospheric aerosol. How are significant levels of colored HULIS produced and sustained in the concentrated aerosol phase under intense solar irradiation? Here, this issue is tackled by investigating the solar photolysis of aqueous pyruvic acid (PA) solutions at concentrations representative of the atmospheric aerosol using UV-absorption, high resolution electrospray mass, and nuclear magnetic resonance spectrometries. Under such conditions, PA is not photodegraded but yields polyfunctional polymers, whose mass and UV-absorption spectra remain unaffected after 3, 8 and 22 h photolysis. Unless diluted, these polymers undergo condensation/polymerization in the post-photolysis period into mass < 700 Da species that absorb in the visible, and are bleached upon resuming irradiation. The re- photolyzed solutions recover the mass and UV-absorption spectra of first photolyzed solutions. Whereas initial pH has no effect on the mechanism of reaction, ammonium bisulfate, a major component of the aerosol, markedly influences these processes. These findings suggest that the chemical identity and concentration levels of complex organic substances in the aerosol are the result of dynamic photochemical processing in the condensed phase.

  11. Teaching UV-Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer

    ERIC Educational Resources Information Center

    Grasse, Elise K.; Torcasio, Morgan H.; Smith, Adam W.

    2016-01-01

    Visible absorbance spectroscopy is a widely used tool in chemical, biochemical, and medical laboratories. The theory and methods of absorbance spectroscopy are typically introduced in upper division undergraduate chemistry courses, but could be introduced earlier with the right curriculum and instrumentation. A major challenge in teaching…

  12. 'invisible' DOM in hourly-resolved headwater river records from Northern Amazonia

    NASA Astrophysics Data System (ADS)

    Pereira, R.; Bovolo, C.; Spencer, R. G.; Hernes, P. J.; Tipping, E.; Vieth-Hillebrand, A.; Chappell, N.; Lewis-Franklin, A.; Parkin, G.; Wagner, T.

    2012-12-01

    Global river networks annually process ~3 billion tonnes of organic carbon but only ~17% reaches the ocean. These estimates suggest rivers are not mere transportation pipes but biogeochemical reactors. Inland waters are therefore fundamental to the understanding of carbon and nutrient interactions between land and ocean. Within these global estimates, tropical rivers contribute ~two-thirds of the global dissolved organic matter flux to the ocean. Recent studies suggest that up to 50% of the CO2 outgassed from tropical rivers is derived from terrestrial organic matter and that the terrestrial-aquatic interface in river headwaters are hotspots of biochemical activity. However, to date, most tropical riverine studies focus on the main river stem or mouth and therefore the dynamics of tropical headwater organic matter cycling within the global carbon cycle are unknown. We present a geochemical and hydrological time-series (sub-hourly resolution) of river water DOC concentration, source and composition from a pristine lowland rainforest headwater of the Burro Burro River, a tributary of the Essequibo River, the 3rd largest river in S. America. We show that during and after a rainstorm event, DOC concentrations increase an order of magnitude (10 to 114mg/L) in less than 30 mins, far exceeding the entire seasonal DOC range measured in 2010 and 2011 (17-28mg/L). The source (δ13C-DOC) of DOC during the rainstorm event changes from microbial/aquatic (-21.9‰ to -25.7‰) at low/intermediate DOC concentration to C3 vegetation supply (-26.8‰ to -30.3‰) during peak DOC flushing. First radiocarbon data shows that riverine DOC is relatively young (106.8-110.9 %modern), however, tropical soils suggest a potential for organic matter to be preserved (360-1200 BP). The fundamental relationship between DOC and coloured dissolved organic matter (CDOM), measured as UV absorbance (SUVA254), holds only for low riverine DOC concentrations with proportionally high lignin contribution, whereas high levels in DOC are not explained by humic substances. Size exclusion chromatography confirms that the DOM pool is divided into two main fractions, humic substances and 'invisible' DOM, or 'iDOM'. The latter group includes non UV-absorbing organic compounds of mono- and oligosaccharides, alcohols, aldehydes, ketones and amino sugars. Our new records from Guyana show that whilst lignin phenols are present and closely track the UV absorbance (R2 = 0.97), it is iDOM that dominates the total DOC pool at peak concentrations (up to 84%). Notably, iDOM is still found in the main Burro Burro River (20-40%), indicating that iDOM has some potential to survive transport downstream. The results suggest that DOC could be significantly underestimated in tropical systems due to the observed decoupling of DOC, water colour (CDOM) and river flux related to large amounts of iDOM entering the river during rainstorm events and wet seasons. Furthermore, given that headwaters represent roughly 50-85% of the total area of tropical river catchments, it is likely that iDOM is a significant component of the terrestrial carbon and nutrient cycles. It is therefore necessary to conduct further field studies that will produce high resolution (temporal and spatial) geochemical records from a large number of tropical systems to better quantify the role of tropical inland waters in carbon and nutrient cycling.

  13. The X-ray Absorber in the X-ray Transient NLS1 WPVS 007

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk

    This proposal is for a funding request for an approved XMM-Newton observations of the X-ray transient Narrow-Line Seyfert 1 galaxy WPVS 007. The request is for 4 month of salary for the PI for one year in order to do the data analysis, publish the results, and attend an international AGN meeting. XMM will observe WPVS 007 in June 2010 simultaneously with HST, Chandra, and Swift. The goal is to establish a tight connection between the UV broad absorption line troughs found in FUSE observations and the strong partial covering absorber feature found by Swift. WPVS 007 showed a dramatic transformation into a Broad Absorption line QSO like AGN between a 1996 HST observation and a 2003 FUSE observation. Several Swift monitoring observations have suggested that the absorber may have started to disappear. Therefore it is crucial for our HST COS UV spectroscopy to know what the status of the X-ray absorber is. The XMM observation will provide a well-exposed X-ray spectrum even if WPVS 007 will be in a low flux state. This spectrum will enable us to put constraints on the absorption column density and covering fraction of the partial covering absorber.

  14. Evaluation of Soyscreen in an Oil-based Formulation for UV Protection of Beauveria bassiana Conidia

    USDA-ARS?s Scientific Manuscript database

    SoyScreen oil was studied as a formulation ingredient to protect Beauveria bassiana (Balsamo) Vuillemin conidia from UV degradation. Feruloylated soy glycerides, referred to as SoyScreen oil, are biobased ultraviolet-absorbing molecules made by combining molecules of soybean oil with ferulic acid. ...

  15. Nanophotonic Hot Electron Solar-Blind Ultraviolet Detectors with a Metal-Oxide-Semiconductor Structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyuan

    Solar-blind ultraviolet detection refers to photon detection specifically in the wavelength range of 200 nm to 320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. In this thesis, we design and fabricate a nanophotonic metal-oxide-semiconductor device for solar-blind UV detection. Instead of using semiconductors as the active absorber, we use metal Sn nano- grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO 2 interfacial barrier, thereby generating photocurrent between metal and semiconductor region upon UV excitation. The large metal/oxide interfacial energy barrier enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, 85% UV absorption and hot electron excitation can be achieved within the mean free path of 20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. Various fabrication techniques have been developed for preparing nano gratings. For nominally 20 nm-thick deposited Sn, the self- formed pseudo-periodic nanostructure help achieve 75% UV absorption from lambda=200 nm to 300 nm. With another layer of nominally 20 nm-thick Sn, similar UV absorption is maintained while conductivity is improved, which is beneficial for overall device efficiency. The Sn/SiO2/Si MOS devices show good solar-blind character while achieving 13% internal quantum efficiency for 260 nm UV with only 20 nm-thick Sn and some devices demonstrate much higher (even >100%) internal quantum efficiency. While a more accurate estimation of device effective area is needed for proving our calculation, these results indeed show a great potential for this type of hot-electron-based photodetectors and for Sn nanostructure as an effective UV absorber. The simple geometry of the self- assembled Sn nano-gratings and MOS structure make this novel type of device easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices.

  16. Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US

    NASA Astrophysics Data System (ADS)

    Devi, J. Jai; Bergin, Michael H.; Mckenzie, Michael; Schauer, James J.; Weber, Rodney J.

    2016-07-01

    Measurements of wavelength dependent aerosol light absorption coefficients were carried out as part of the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013 to determine the contribution of light absorbing organic carbon (BrC) to total aerosol light absorption in a rural location (Centreville, AL) and an urban area (Atlanta, GA). The light absorption coefficients in the near UV and visible wavelengths were measured for both ambient air, as well as ambient air heated in a thermal denuder to 200 °C to remove the semi-volatile organic compounds. Atlanta measurements show dominance of semi-volatile brown carbon with an average absorption angstrom exponent (AAE) of 1.4 before heating and about 1.0 after heating. In urban Atlanta, a decrease of about ∼35% in the light absorption coefficient at 370 nm after heating indicates that light absorbing organic compounds are a substantial fraction of the light absorption budget. Furthermore, a considerable increase in the fraction of light absorption by the semi-volatile aerosol occurs during the daytime, likely linked with photochemistry. Measurements at rural Centerville, on the other hand, do not show any major change in AAE with values before and after heating of 0.99 and 0.98, respectively. Overall the results suggest that photochemical aged urban emissions result in the presence of light absorbing BrC, while at rural locations which are dominated by aged aerosol and local biogenic emissions (based on measurements of Angstrom exponents) BrC does not significantly contribute to light absorption.

  17. UV-induced Melanin Chemiexcitation: A New Mode of Melanoma Pathogenesis.

    PubMed

    Brash, Douglas E

    2016-06-01

    Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPDs), DNA photoproducts usually created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. Surprisingly, we found that, in melanocytes, CPDs were generated for hours after UVA or UVB exposure. These "dark CPDs" constituted the majority of CPDs in cultured human and murine melanocytes and in mouse skin, and they were most prominent in skin containing pheomelanin, the melanin responsible for blonde and red hair. The mechanism was also a surprise. Dark cyclobutane pyrimidine dimers (CPDs) arise when ultraviolet (UV)-induced superoxide and nitric oxide combine to form peroxynitrite, one of the few biological molecules capable of exciting an electron. This process, termed "chemiexcitation," is the source of bioluminescence in lower organisms. Excitation occurred in fragments of melanin, creating a quantum triplet state that had the energy of a UV photon but which induced CPDs by radiationless energy transfer to DNA. UVA and peroxynitrite also solubilized melanin and permeabilized the nuclear membrane, allowing melanin to enter. Melanin is evidently carcinogenic as well as protective. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin. © The Author(s) 2016.

  18. Effects of solar UV-B radiation on aquatic ecosystems.

    PubMed

    Hader, D P

    2000-01-01

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position phytoplankton will be exposed to solar ultraviolet radiation. This radiation has been shown to affect growth, photosynthesis, nitrogen incorporation and enzyme activity. Other targets of solar UV irradiation are proteins and pigments involved in photosynthesis. Whether or not screening pigments can be induced in phytoplankton to effectively shield the organisms from excessive UV irradiation needs to be determined. Macroalgae show a distinct pattern of vertical distribution in their habitat. They have developed mechanisms to regulate their photosynthetic activity to adapt to the changing light regime and protect themselves from excessive radiation. A broad survey was carried out to understand photosynthesis in aquatic ecosystems and the different adaptation strategies to solar radiation of ecologically important species of green, red and brown algae from the North Sea, Baltic Sea, Mediterranean, Atlantic, polar and tropical oceans. Photoinhibition was quantified by oxygen exchange and by PAM (pulse amplitude modulated) fluorescence measurements based on transient changes of chlorophyll fluorescence. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.

  19. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites.

    PubMed

    Lee, Eunkyung; Shon, Ho Kyong; Cho, Jaeweon

    2014-07-15

    Overall photodegradation of pharmaceuticals, personal care products (PPCPs) and pharmaceutical metabolites were investigated in order to evaluate their photochemical fate in aquatic environments in various natural organic matter (NOM) enriched solutions. Tested PPCPs exhibited different rates of loss during direct and indirect photolysis. Here, only ultraviolet (UV) light source was used for direct photolysis and UV together with (3)DOM(*)for indirect photolysis. Diclofenac and sulfamethoxazole were susceptible to photodegradation, whereas carbamazepine, caffeine, paraxanthine and tri(2-chloroethyl) phosphate (TCEP) showed low levels of photodegradation rate, reflecting their conservative photoreactivity. During indirect photodegradation, in contrast to the hydrophilic autochthonous NOM, allochthonous NOM with relatively high molecular weight (MW), specific ultraviolet absorbance (SUVA) and hydrophobicity (e.g., Suwannee River humic acid (SRHA)) revealed to significantly inhibit the photolysis of target micropollutants. The presence of Typha wetland NOM enhanced the indirect photolysis of well-known conservative micopollutants (carbamazepine and paraxanthine). And atenolol, carbamazepine, glimepiride, and N-acetyl-sulfamethoxazole were found to be sensitive to the triplet excited state of dissolved organic matter ((3)DOM(*)) with Typha wetland NOM under deoxygenated condition. This suggests that photolysis in constructed wetlands connected to the wastewater treatment plant can enhance the degradation of some anthropogenic micropollutants by the interaction with (3)DOM(*) in wetlands. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Light-Induced Conversion of Chemical Permeability to Enhance Electron and Molecular Transfer in Nanoscale Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balgley, Renata; de Ruiter, Graham; Evmenenko, Guennadi

    In this paper, we demonstrate how photochemically enhancing the permeability of metal–organic assemblies results in a significant enhancement of the electrochemical activity of metal complexes located within the assembly. The molecular assemblies consist of different layers of redox-active metal complexes ([M(mbpy-py)3][PF6]2; M = Ru or Os) that are separated by redox-inactive spacers consisting of 1,4-bis[2-(4-pyridyl)ethenyl]benzene (BPEB) and PdCl2 of variable thicknesses (0–13.4 nm). UV-irradiation (λ = 254 nm) of our assemblies induces a photochemical reaction in the redox-inactive spacer increasing the permeability of the assembly. The observed increase was evident by trapping organic (nBu4NBF4) and inorganic (NiCl2) salts inside themore » assemblies, and by evaluating the electrochemical response of quinones absorbed inside the molecular assemblies before and after UV irradiation. The increase in permeability is reflected by higher currents and a change in the directionality of electron transfer, i.e., from mono- to bidirectional, between the redox-active metal complexes and the electrode surface. The supramolecular structure of the assemblies dominates the overall electron transfer properties and overrules possible electron transfer mediated by the extensive π-conjugation of its individual organic components.« less

  1. Phototoxic potential of undispersed and dispersed fresh and weathered Macondo crude oils to Gulf of Mexico Marine Organisms.

    PubMed

    Finch, Bryson E; Marzooghi, Solmaz; Di Toro, Dominic M; Stubblefield, William A

    2017-10-01

    Crude oils contain a mixture of hydrocarbons, including phototoxic polycyclic aromatic hydrocarbons (PAHs) that have the ability to absorb ultraviolet (UV) light. Absorption of UV light by PAHs can substantially increase their toxicity to marine organisms. The objective of the present study was to examine the potential for phototoxicity of fresh and naturally weathered Macondo crude oils alone and in combination with the dispersant Corexit 9500 to mysid shrimp (Americamysis bahia), inland silverside (Menidia beryllina), sheepshead minnow (Cyprinodon variegatus), and Gulf killifish (Fundulus grandis). Acute toxicity tests were conducted using combinations of natural or artificial sunlight and low-energy water-accommodated fractions (WAFs) of fresh and weathered Macondo crude oils collected from the Gulf of Mexico. Studies were also conducted to compare the phototoxicity resulting from natural and artificial sunlight. Fresh Macondo crude oil was more phototoxic than weathered crude oils, both in the presence and in the absence of UV light. Differences in toxicity between fresh and weathered crude oils were likely attributed to lighter-ringed PAHs in fresh crude oils. Phototoxic PAHs were relatively resistant to weathering compared with lighter-ringed PAHs. The addition of Corexit 9500 to crude oil increased toxicity compared with tests with crude oil alone, by increasing phototoxic PAH concentrations in WAFs. Macondo crude oils had the potential to be phototoxic to Gulf of Mexico marine organisms if specific light conditions and PAH concentrations were present during the Deepwater Horizon oil spill. Environ Toxicol Chem 2017;36:2640-2650. © 2017 SETAC. © 2017 SETAC.

  2. Method for outlier detection: a tool to assess the consistency between laboratory data and ultraviolet-visible absorbance spectra in wastewater samples.

    PubMed

    Zamora, D; Torres, A

    2014-01-01

    Reliable estimations of the evolution of water quality parameters by using in situ technologies make it possible to follow the operation of a wastewater treatment plant (WWTP), as well as improving the understanding and control of the operation, especially in the detection of disturbances. However, ultraviolet (UV)-Vis sensors have to be calibrated by means of a local fingerprint laboratory reference concentration-value data-set. The detection of outliers in these data-sets is therefore important. This paper presents a method for detecting outliers in UV-Vis absorbances coupled to water quality reference laboratory concentrations for samples used for calibration purposes. Application to samples from the influent of the San Fernando WWTP (Medellín, Colombia) is shown. After the removal of outliers, improvements in the predictability of the influent concentrations using absorbance spectra were found.

  3. Photochemistry of iron citrates initiated by UV-VIS light

    NASA Astrophysics Data System (ADS)

    Corral Arroyo, Pablo; Dou, Jing; Alpert, Peter; Krieger, Ulrich; Ammann, Markus

    2017-04-01

    Aerosol aging refers to the multitude of physical and chemical transformation atmospheric particles undergo, which play an important role in the impact of aerosols on climate, air quality and health. Aging processes may be started by chromophores, which act as photocatalysts that induce the oxidation of non-absorbing molecules [1]. Iron (Fe(III)) carboxylate complexes absorb light below about 500 nm, which is followed by ligand to metal charge transfer (LMCT) resulting in the reduction of iron to Fe(II) and oxidation of the carboxylate ligands, a process that represents an important sink of organic acids in the troposphere [2]. Our goal is to investigate how these photochemical processes contribute to the change of chemical and physical properties of the aerosol particles. To achieve this scope, we carry out coated wall flow tube experiments, exposing films with iron citrate to UV light, which will give information about the radical and LVOC production (connecting the CWFT to a Chemiluminescent Detector or PTR-TOF-MS respectively). From extracting and analyzing the films after irradiation with UV light, we obtain a profile of low-volatility products evolving from the photochemistry of iron citrates. By Scanning Transmission X-Ray Microspectroscopy (STXM) we analyze changes in the C K-edge and Fe L-edge in particles loaded with iron citrate upon exposure to light and follow their chemical and structural evolution upon photochemical oxidation in situ to investigate the degradation kinetics under varying environmental conditions. [1] George G., Ammann M., D'Anna B., Donaldson D. J., Nizkorodov S. A., Heterogeneous photochemistry in the Atmosphere, Chem. Rev., 2015, 115 (10), pp 4218-4258 [2] Weller, C., Horn, S., and Herrmann, H.: Photolysis of Fe(III) carboxylate complexes: Fe(II) quantum yields and reaction mechanisms, Photochemistry and Photobiology A: Chemistry, 268, 24-36, 2013.

  4. What Do We Know about DOM Chemical Composition Based on Its Optical Properties?

    NASA Astrophysics Data System (ADS)

    Aiken, G.

    2016-02-01

    Dissolved organic matter (DOM) optical measurements (UV-Vis light absorbance and fluorescence) provide useful information related to DOM composition and reactivity, and can serve as proxies for DOM concentration and the concentrations of some metals, such as mercury. While these measurements are useful for a range of objectives, they only measure aromatic molecules that absorb UV-Vis light and a smaller subset of these molecules that fluoresce. They provide no information about the substantial fraction of DOM that is non-chromophoric. Based on chromatographic fractionation on XAD resins, DOM optical properties measured on whole water samples strongly correlate with both the concentration and composition of the hydrophobic acid (HPOA) fraction of the DOM. In this presentation the results of DOM optical measurements, DOM fractionation analyses, and 13C-nuclear magnetic resonance (NMR) and ultrahigh-resolution mass spectrometry (FTICR_MS) of HPOA fractions obtained from a wide range a natural waters will be presented to examine the relationships between DOM optical properties and DOM chemical composition. The HPOA fractions within and between rivers exhibit a wide range of optical behaviors reflective of sources and transformations compared to other DOM fractions. While, 13C-NMR and FTICR-MS analyses generally show greater relative concentrations of aromatic molecules for those samples with strong optical signals, they also indicate that the HPOA fractions are mostly composed of a large number of non-chromophoric molecules, such as carbohydrates carboxyl-rich alicyclic molecules (CRAM), and other aliphatic molecules, all of which have implications regarding DOM reactivity, biolability, sources, and age. The utility and short-comings of employing optical data for assessing sources and transformations of DOM in natural waters will be examined using case studies involving organic matter in the Yukon River Basin and riverine export of DOM to the Gulf of Maine.

  5. Sunlight and Vitamin D: A global perspective for health.

    PubMed

    Wacker, Matthias; Holick, Michael F

    2013-01-01

    Vitamin D is the sunshine vitamin that has been produced on this earth for more than 500 million years. During exposure to sunlight 7-dehydrocholesterol in the skin absorbs UV B radiation and is converted to previtamin D3 which in turn isomerizes into vitamin D3. Previtamin D3 and vitamin D3 also absorb UV B radiation and are converted into a variety of photoproducts some of which have unique biologic properties. Sun induced vitamin D synthesis is greatly influenced by season, time of day, latitude, altitude, air pollution, skin pigmentation, sunscreen use, passing through glass and plastic, and aging. Vitamin D is metabolized sequentially in the liver and kidneys into 25-hydroxyvitamin D which is a major circulating form and 1,25-dihydroxyvitamin D which is the biologically active form respectively. 1,25-dihydroxyvitamin D plays an important role in regulating calcium and phosphate metabolism for maintenance of metabolic functions and for skeletal health. Most cells and organs in the body have a vitamin D receptor and many cells and organs are able to produce 1,25-dihydroxyvitamin D. As a result 1,25-dihydroxyvitamin D influences a large number of biologic pathways which may help explain association studies relating vitamin D deficiency and living at higher latitudes with increased risk for many chronic diseases including autoimmune diseases, some cancers, cardiovascular disease, infectious disease, schizophrenia and type 2 diabetes. A three-part strategy of increasing food fortification programs with vitamin D, sensible sun exposure recommendations and encouraging ingestion of a vitamin D supplement when needed should be implemented to prevent global vitamin D deficiency and its negative health consequences.

  6. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon.

    PubMed

    Altmann, Johannes; Massa, Lukas; Sperlich, Alexander; Gnirss, Regina; Jekel, Martin

    2016-05-01

    This study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal. Furthermore, active PAC dosing control according to differential UVA254 measurements was implemented and tested. While precise removal predictions based on real-time measurements were not accurate for all OMPs, UVA254-controlled dynamic PAC dosing was capable of achieving stable OMP removals. UVA254 can serve as an effective surrogate parameter for OMP removal in technical PAC applications. Even though the applicability as control parameter to adjust PAC dosing to water quality changes might be limited to applications with fast response between PAC adjustment and adsorptive removal (e.g. direct filtration), UVA254 measurements can also be used to monitor the adsorption efficiency in more complex PAC applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An investigation of the use of cerium and polyhedral oligomeric silsesquioxanes for the protection of polymeric epoxy compounds in the low Earth orbit environment

    NASA Astrophysics Data System (ADS)

    Piness, Jessica Miriam

    Low Earth orbit presents many hazards for composites including atomic oxygen, UV radiation, thermal cycling, micrometeoroids, and high energy protons. Atomic oxygen and vacuum ultraviolet radiation are of concern for space-bound polymeric materials as they degrade the polymers used as matrices for carbon fiber composites, which are used in satellites and space vehicles due to their high strength to weight ratios. Epoxy-amine thermosets comprise a common class of matrix due to processability and good thermal attributes. Polyhedral oligomeric silsesquioxanes (POSS) have shown the ability to reduce erosion in polyimides, polyurethanes, and other polymers when exposed to atomic oxygen. The POSS particle is composed of a SiO1.5 cage from which up to eight organic pendant groups are attached at the silicon corners of the cage. POSS reduced atomic oxygen impact on polymers by a process known as glassification wherein the organic pendants are removed from the cage upon atomic oxygen exposure and then the cage rearranges to a passive silica network. In addition, POSS shows good UV absorbance in the UVb and UVc ranges and POSS can aid dispersion of titanium dioxide in a nanocomposite. In this work, Chapter I focuses on hazards in low Earth orbit, strategies for protecting organic material in orbit, and the capabilities of POSS. Chapter II details the experimental practices used in this work. Chapter III focuses on work to induce POSS phase separation and layering at the surface of an epoxy-amine thermoset. Generally, POSS is dispersed throughout a nanocomposite, and in the process of erosion by atomic oxygen, some polymer mass loss is lost before enough POSS is exposed to begin glassification. Locating POSS at a surface of composite could possibly reduce this mass loss and the objective of this research was to investigate the formation of POSS-rich surfaces. Three POSS derivatives with different pendant groups were chosen. The POSS derivatives had a range of miscibilities with the epoxy-amine matrix. A sedimented layer of the most incompatible POSS moiety was observed at the bottom of bars at the highest loading level of 5 wt% POSS. It was concluded that POSS could form a sedimented layer in this epoxy during cure. Epoxy amine materials containing POSS derivatives were tested by exposure to atomic oxygen at NASA Glenn Research Center with each POSS derivative present in separate samples at 2.5 wt% loading levels. Mass loss did not decrease against an unfilled control and glassification was not observed, leading to the conclusion that POSS could not be effectively concentrated at a surface to reduce degradation given the methods used. Taking this into account, the study transitioned into seeking ways to integrate highly UV absorbent cerium compounds with POSS. This part of the study is reported in Chapter IV. It was anticipated that POSS with a polar pendant group would interact through intermolecular forces with cerium (IV) oxide and produce a suspension that could be cured at the surface of polymers. However, in every experiment, the cerium (IV) oxide was not dispersed. However, a homogeneous dispersion of a cerium-containing compound was achieved by combining trisilanol phenyl POSS with cerium (III) nitrate hexahydrate. NMR and mass spectrometry showed that the mixture of Cerium nitrate and trisilanol phenyl POSS did not result in the formation of a chemical compound but FTIR studies indicated the presence of hydrogen bonding between the POSS silanols and cerium-associated water. The resulting material was termed "CePOSS". CePOSS was more UV absorbent in the UVc region than POSS or other cerium compounds as measured by solution UV-vis spectroscopy. In addition, CePOSS could be mixed into a POSS-epoxy coating, after pre-blending with poly(ethylene glycol) POSS, to produce films that were essentially opaque in the UV region below a wavelength of about 300 nm, and transparent in the visible region above 300 nm. The discovery of a 'window of transparency' in the visible region is significant in view of the fact that the epoxy-amine polymers, sans the POSS and cerium additives, were opaque across the entire UV/ visible range. The investigation of the UV transmittance and glassification response of these CePOSS-POSS-epoxy films is described in Chapter V. UV transmittance of the POSS-epoxy coating was predicted to decrease below 275 nm with the presence of CePOSS given the solution UV-vis spectroscopy results. However, there was no difference seen in transmittance between coatings with and without CePOSS below 275 nm. The transparent region above 300 nm was seen in all samples with any type of POSS. In addition, UV/ozone exposure was completed on epoxy, POSS-epoxy, and CePOSS-POSS-epoxy coatings to examine the effect of cerium on POSS glassification. Oxidation was achieved even in the presence of CePOSS as verified by x-ray photoelectron spectroscopy, scanning electron microscopy, and contact angle. Finally, UV transmittance was done on pre and post exposed materials.

  8. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    NASA Astrophysics Data System (ADS)

    Rathod, T. D.; Sahu, S. K.; Tiwari, M.; Pandit, G. G.

    2016-12-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g-1 and 17.84±6.45 W g-1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67-90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV-visible spectrum.

  9. A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo

    2016-01-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  10. Variable X-Ray Absorption in the Mini-BAL QSO PG 1126-041

    NASA Technical Reports Server (NTRS)

    Giustini, M.; Cappi, M.; Chartas, G.; Dadina, M.; Eracleous, M.; Ponti, G.; Proga, D.; Tombesi, F.; Vignali, C.; Palumbo, G. G. C.

    2011-01-01

    Context. X-ray studies of AGN with powerful nuclear winds are important to constrain the physics of the inner accretion/ejection flow around SMBH, and to understand the impact of such winds on the AGN environment. Aims. Our main scientific goal is to constrain the properties of a variable outflowing absorber that is thought to be launched near the SMBH of the mini-BAL QSO PG 1126-041 using a multi-epoch observational campaign performed with XMM-Newton. Methods. We performed temporally resolved X-ray spectroscopy and simultaneous UV and X-ray photometry on the most complete set of observations and on the deepest X-ray exposure of a mini-BAL QSO to date. Results. We found complex X-ray spectral variability on time scales of both months and hours, best reproduced by means of variable massive ionized absorbers along the line of sight. As a consequence, the observed optical-to-X-ray spectral index is found to be variable with time. In the highest signal-to-noise observation we detected highly ionized X-ray absorbing material outflowing much faster (u(sub X) approx. 16 500 km/s) than the UV absorbing one (u(sub uv) approx. 5,000 km/s). This highly ionized absorber is found to be variable on very short (a few kiloseconds) time scales. Conclusions. Our findings are qualitatively consistent with line driven accretion disk winds scenarios. Our observations have opened the time-resolved X-ray spectral analysis field for mini-BAL QSOs; only with future deep studies will we be able to map the dynamics of the inner flow and understand the physics of AGN winds and their impact on the environment.

  11. Small scale variability of transport and composition of dissolved organic matter in the subsoil

    NASA Astrophysics Data System (ADS)

    Leinemann, T.; Mikutta, R.; Kalbitz, K.; Guggenberger, G.

    2016-12-01

    Dissolved organic matter (DOM) is the most mobile fraction of carbon in the soil and connects the carbon-rich topsoil with the subsoil where translocated OM may get stabilized. The water flux in soil is highly heterogeneous, both temporarily and spatially. We, therefore, hypothesize that at high flow velocities, DOM can bypass possible mineral binding sites and microorganisms, thus leading to less degraded DOM under high flow velocities. To address this question, we investigated water and DOM fluxes in situ using segmented suction plates (4 x 4 segments on 24 x 24 cm) installed into three soil observatories at three depths (10 cm, 50 cm, and 150 cm) in a Dystric Cambisol under Beech (Fagus sylvatica) near Hannover, Germany. To follow the transport of carbon from the litter layer through the soil, an in situ 13C-labelling experiment has been conducted in January 2015. Concentration of dissolved organic carbon (DOC) and DOM composition was analyzed using high temperature combustion and photometric methods. The amount of transported DOC decreased by ca. 80 % from 10 to 50 cm depth and by 40 % from 50 to 150 cm depth. Different flow patterns existed at the centimeter scale, which were stable over time for individual suction plate segments. The specific UV280 nm absorbance of DOM decreased with increasing soil depth. This indicates a selective loss of aromatic compounds. The influence of different flow regimes on the DOM quality became apparent in the subsoil samples (>50 cm depth) showing a correlation of increasing UV280 nm absorbance with increasing water flux. The 13C-labelling experiment showed that after 10 month just 0.3 % of the DOC in 150 cm depth was derived from fresh litter. The transport of leaf litter carbon seemed to be controlled by the flow regime as the DO13C ratio and the water flux correlated positively. This can be an indication for the importance of preferential flow on carbon transport to the subsoil.

  12. Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation.

    PubMed

    Krause, G Heinrich; Jahns, Peter; Virgo, Aurelio; García, Milton; Aranda, Jorge; Wellmann, Eckard; Winter, Klaus

    2007-10-01

    Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a decline in photosynthetic competence when suddenly exposed to near-ambient UV-B levels, but exhibited pronounced acclimative responses.

  13. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1978-01-01

    Observations of nonequilibrium phenomena on the Saturn satellite Titan indicate the occurrence of organic chemical evolution. Greenhouse and thermal inversion models of Titan's atmosphere provide environmental constraints within which various pathways for organic chemical synthesis are assessed. Experimental results and theoretical modeling studies suggest that the organic chemistry of the satellite may be dominated by two atmospheric processes: energetic-particle bombardment and photochemistry. Reactions initiated in various levels of the atmosphere by cosmic ray, Saturn wind, and solar wind particle bombardment of a CH4 - N2 atmospheric mixture can account for the C2-hydrocarbons, the UV-visible-absorbing stratospheric haze, and the reddish color of the satellite. Photochemical reactions of CH4 can also account for the presence of C2-hydrocarbons. In the lower Titan atmosphere, photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. Hot H-atom reactions initiated by photo-dissociation of NH3 can couple the chemical reactions of NH3 and CH4 and produce organic matter.

  14. Parabens and Sunscreens in the Environment: Determination by HPLC-ESI-MS/MS and GC-MS and Calculation of Phototoxicity

    EPA Science Inventory

    Ultraviolet (UV)-absorbing chemicals are widely used in cosmetics, sunscreens, and plastics to block UV radiation from the sun. Parabens are preservatives and are used extensively in cosmetics, pharmaceuticals, and foods to prevent microbial growth and preserve a product’s inte...

  15. Visualizing Organic Textures and Biosignatures: Analysis of the Deep Biosphere, Meteorites, and Mars

    NASA Astrophysics Data System (ADS)

    Bhartia, R.

    2017-12-01

    Understanding life in the subsurface offers a unique understanding of how we can search for potential biosignatures on Mars. The spatial distri- bution of communities in this nutrient limited envi- ronment can be co-located with mineral facies, associ- ated to morphological features, or bound to zones of high potential energy. Comparing these organic textures to abotically driven processes in meteorites, when coupled to characterization of the organic con- tent, spatial relationships to mineralogical and ele- mental textures, and morphology will aid in our under- standing of the likely provenance of organics on Mars. Often we approach biosignatures detection with an earth-centric perspective where we assume that extant or ancient life leaves behind visible indicators; either as pigments used to absorb energy from the sun/radiation, protectant from UV radiation, or as veri- gated mineral facies that may persist in the rock rec- ord. Our analysis of subsurface life, a region that is decoupled from the photozone (decoupled from photo- synthesis) and/or exists in a nutrient limited environ- ment, has shown that we need to capitalize on a wider range of the electromagnetic spectrum over multiple spatial scales to understand where microbial life may exist, how they make a living, and how/if their signa- tures will persist geological time. Similar to the approach of the NAI Life Under- ground program, the Mars 2020 project includes a suite of instruments operating over the meter to micrometer scale that will observe the surface (and near subsur- face) of Mars from gamma rays to the IR - a range where minerals and organics reflect, absorb, and vi- brate. More specifically, the combined capabilities of both SHERLOC (a deep UV Raman/fluorescence spectrometer) and PIXL (an X-ray fluorescence spectrometer), spatial maps of organics minerals and elements will be correlated to morphology and textures to assess potential biosignatures. We present here our results of a spectral pipeline developed under the NAI Life Underground program which integrates organic, mineral, and elemental anal- yses over multiple scales on samples from the deep biosphere and meteorites. We will use these to describe a method to assess patterns that could result from me- teoritic in-fall, abiotic processes, or potential biosigna- tures on the surface of Mars.

  16. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy.

    PubMed

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D

    2015-05-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10(-12) [μm(2)], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  17. DEVELOP NEW TOTAL ORGANIC CARBON/SPECIFIC UV ...

    EPA Pesticide Factsheets

    The purpose of this project is to provide a total organic carbon (TOC)/specific ultraviolet absorbance (SUVA) method that will be used by the Office of Ground Water and Drinking Water (OGWDW) to support monitoring requirements of the Stage 2 Disinfectant/Disinfection By-products (D/DBP) Rule. The Stage 2 Rule requires that enhanced water treatment be used if the source water is high in aquatic organic matter prior to the application of a disinfectant. Disinfectants (chlorine, ozone, etc.) are used in the production of drinking water in order to reduce the risk of microbial disease. These disinfectants react with the organic material that is naturally present in the source water to form disinfection by-products (DBPs). Exposure to some of these by-products may pose a long term health risk. The number and nature of DBPs make it impossible to fully characterize all of the by-products formed during the treatment of drinking water and it is more cost effective to reduce formation of DBPs than to remove them from the water after they are formed. Two measurements (TOC and SUVA) are believed to be predictive of the amount of by-products that can be formed during the disinfection of drinking water and are considered to be surrogates for DBP precursors. SUVA is calculated as the ultraviolet absorption at 254nm (UV254) in cm-1 divided by the mg/L dissolved organic carbon (DOC) concentration (measured after filtration of the water through a 0.45um pore-diameter filte

  18. Simultaneous separation and identification of oligomeric procyanidins and anthocyanin-derived pigments in raw red wine by HPLC-UV-ESI-MSn.

    PubMed

    Pati, S; Losito, I; Gambacorta, G; La Notte, E; Palmisano, F; Zambonin, P G

    2006-07-01

    Samples of raw red wine (Primitivo di Manduria, Apulia, Southern Italy) were analysed without any pre-treatment (except 1:2 dilution with water) using HPLC with detection based on UV absorbance and Electrospray Ionisation Sequential Mass Spectrometry (ESI-MSn, with n = 1-3) in a series configuration. In particular, absorbance at 520 nm was monitored for UV detection in order to identify pigments responsible for wine colour. On the other hand, two subsequent stages of MS detection based on positive ions were adopted. The first consisted of an explorative MS acquisition, aimed at the individuation of the m/z ratios for positively charged compounds; the second was based on fragmentation of the detected ions within an ion trap analyser, followed by MS/MS and, if required, MS3 acquisitions. The synergy between UV detection and MSn analysis led to the identification of 41 pigments, which can be classified into five groups: grape anthocyanins, pyranoanthocyanins, vinyl-linked anthocyanin-flavanol pigments, ethyl-bridged anthocyanin-flavanol pigments and flavanol-anthocyanin compounds. Many isomeric and oligomeric structures were found within each group. A further class of compounds, not absorbing in the visible spectrum, could be also characterised by ESI-MSn and corresponded to B-type procyanidins, i.e. proanthocyanidins arising from C4-->C8/C4-->C6 couplings between catechin or epicatechin units. In particular, oligomeric structures (from dimers to pentamers), often present with several isomers, were identified and their fragmentation patterns clarified.

  19. Using ultraviolet absorbance and color to assess pharmaceutical oxidation during ozonation of wastewater.

    PubMed

    Wert, Eric C; Rosario-Ortiz, Fernando L; Snyder, Shane A

    2009-07-01

    The reduction of ultraviolet (UV) absorbance at 254 nm (UV254) and true color were identified as appropriate surrogates to assess the oxidation of six pharmaceuticals (i.e., carbamazepine, meprobamate, dilantin, primidone, atenolol, and iopromide) during ozonation of wastewater. Three tertiary-treated wastewaters were evaluated during oxidation with ozone (O3) and O3 coupled with hydrogen peroxide (O3/H2O2). The correlation between pharmaceutical oxidation and removal of UV254 was dependent upon the reactivity of each specific compound toward ozone, as measured by the second-order rate constant (k'(O3)). Oxidation of compounds with k'(O3) > 10(3) M(-1) s(-1) correlated well (R2 > 0.73) with UV254 reduction between 0-50%. Oxidation of compounds with apparent k'(O3) < 10 M(-1) s(-1) resulted primarily from hydroxyl radicals and correlated well (R2 > 0.80) with the UV254 reduction of 15-85%. The removal of true color also correlated well (R2 > 0.85) with the oxidation of pharmaceuticals during the ozonation of two wastewaters. These correlations demonstrate that UV254 reduction and true color removal may be used as surrogates to evaluate pharmaceutical oxidation in the presence or absence of dissolved ozone residual during advanced wastewater treatment with O3 or O3/H2O2. The use of online UV254 measurements would allow wastewater utilities to optimize the ozone dose required to meet their specific treatment objectives.

  20. Studies on the performance of TiO{sub 2} thin films as protective layer to chlorophyll in Ocimum tenuiflorum L from UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malliga, P.; Selvi, B. Karunai; Pandiarajan, J.

    Thin films of TiO{sub 2} were prepared on glass substrates using sol-gel dip coating technique. The films with 10 coatings were prepared and annealed at temperatures 350°C, 450°C and 550°C for 1 hour in muffle furnace. The annealed films were characterized by X – Ray diffraction (XRD), UV – Visible, AFM, Field Effect Scanning Electron Microscopy (FESEM) and EDAX studies. Chlorophyll has many health benefits due to its structural similarity to human blood and its good chelating ability. It has antimutagenic and anticarcinogenic properties. UV light impairs photosynthesis and reduces size, productivity, and quality in many of the crop plantmore » species. Increased exposure of UV light reduces chlorophyll contents a, b and total content in plants. Titanium Dioxide (TiO{sub 2}) is a wide band gap semiconductor and efficient light harvester. TiO{sub 2} has strong UltraViolet (UV) light absorbing capability. Here, we have studied the performance of TiO{sub 2} thin films as a protective layer to the chlorophyll contents present in medicinal plant, tulsi (Ocimum tenuiflorum L) from UV radiation. The study reveals that crystallite size increases, transmittance decreases and chlorophyll contents increases with increase in annealing temperature. This study showed that TiO{sub 2} thin films are good absorber of UV light and protect the chlorophyll contents a, b and total content in medicinal plants.« less

  1. Preparation of Nanoporous TiO2 for Dye-Sensitized Solar Cell (DSSC) Using Various Dyes

    NASA Astrophysics Data System (ADS)

    Yuliarto, Brian; Fanani, Fahiem; Fuadi, M. Kasyful; Nugraha

    2010-10-01

    This article reports the development of organic dyes as an attempt to reduce material costs of Dye-Sensitized Solar Cell (DSSC). Indonesia, a country with variety and considerable number of botanical resources, is suitable to perform the research. Indonesian black rice, curcuma, papaya leaf, and the combination were chosen as organic dyes source. Dyes were extracted using organic solvent and adsorbed on mesoporous Titanium Dioxide (TiO2) which has been optimized in our laboratory. The best dyes light absorbance and performance obtained from papaya leaf as chlorophyll dyes that gives two peaks at 432 nm and 664 nm from UV-Vis Spectrophotometry and performance under 100 mW/cm2 Xenon light solar simulator gives VOC = 0.566 Volt, JSC = 0.24 mA/cm2, Fill Factor = 0.33, and efficiency of energy conversion 0,045%.

  2. Filter-based measurements of UV-vis mass absorption cross sections of organic carbon aerosol from residential biomass combustion: Preliminary findings and sources of uncertainty

    NASA Astrophysics Data System (ADS)

    Pandey, Apoorva; Pervez, Shamsh; Chakrabarty, Rajan K.

    2016-10-01

    Combustion of solid biomass fuels is a major source of household energy in developing nations. Black (BC) and organic carbon (OC) aerosols are the major PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) pollutants co-emitted during burning of these fuels. While the optical nature of BC is well characterized, very little is known about the properties of light-absorbing OC (LAOC). Here, we report our preliminary findings on the mass-based optical properties of LAOC emitted from the combustion of four commonly used solid biomass fuels - fuel-wood, agricultural residue, dung-cake, and mixed - in traditional Indian cookstoves. As part of a pilot field study conducted in central India, PM2.5 samples were collected on Teflon filters and analyzed for their absorbance spectra in the 300-900 nm wavelengths at 1 nm resolution using a UV-Visible spectrophotometer equipped with an integrating sphere. The mean mass absorption cross-sections (MAC) of the emitted PM2.5 and OC, at 550 nm, were 0.8 and 0.2 m2 g-1, respectively, each with a factor of ~2.3 uncertainty. The mean absorption Ångström exponent (AǺE) values for PM2.5 were 3±1 between 350 and 550 nm, and 1.2±0.1 between 550 and 880 nm. In the 350-550 nm range, OC had an AǺE of 6.3±1.8. The emitted OC mass, which was on average 25 times of the BC mass, contributed over 50% of the aerosol absorbance at wavelengths smaller than 450 nm. The overall OC contribution to visible solar light (300-900 nm) absorption by the emitted particles was 26-45%. Our results highlight the need to comprehensively and accurately address: (i) the climatic impacts of light absorption by OC from cookstove emissions, and (ii) the uncertainties and biases associated with variability in biomass fuel types and combustion conditions, and filter-based measurement artifacts during determination of MAC values.

  3. Possible impacts of ozone depletion on trophic interactions and biogenic vertical carbon flux in the Southern Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchant, H.J.; Davidson, A.

    1992-03-01

    Among the most productive region of the Southern Ocean is the marginal ice edge zone that trails the retreating ice edge in spring and early summer. The timing of this near-surface phytoplankton bloom coincides with seasonal stratospheric ozone depletion when UV irradiance is reportedly as high as in mid-summer. Recent investigations indicate that antarctic marine phytoplankton are presently UV stressed. The extent to which increasing UV radiation diminishes the ability of phytoplankton to fix C02 and/or leads to changes in their species composition is equivocal. The colonial stage in the life cycle of the alga Phaeocystis pouchetii is one ofmore » the major components of the bloom. The authors have found that this alga produces extracellular products which are strongly UV-B absorbing. When exposed to increasing levels of UV-B radiation, survival of antarctic colonial Phaeocystis was significantly greater than colonies of this species from temperate waters and of the single-celled stage of its life cycle which produces no UV-B-absorbing compounds. Phaeocystis is apparently a minor dietary component of Antarctic krill, Euphausia superba, and its nutritional value to crustacea is reportedly low. Phytoplankton, principally diatoms, together with fecal pellets and molted exoskeletons of grazers contribute most of the particulate carbon flux from the euphotic zone to deep water.« less

  4. Persistence, temporal and spatial profiles of ultraviolet absorbents and phenolic personal care products in riverine and estuarine sediment of the Pearl River catchment, China.

    PubMed

    Peng, Xianzhi; Xiong, Songsong; Ou, Weihui; Wang, Zhifang; Tan, Jianhua; Jin, Jiabin; Tang, Caiming; Liu, Jun; Fan, Yujuan

    2017-02-05

    A variety of personal care products have been classified as emerging contaminants (ECs). Occurrence, fate, spatial and vertical profiles of 13 ultraviolet absorbents, triclocarban (TCC) and its dechlorinated products, triclosan (TCS), 2-phenylphenol and parabens were investigated in riverine and estuarine sediment of the Pearl River catchment, China. Bisphenol A (BPA), a widely applied plasticizer, was also investigated. The ECs were widely present in the bed sediment. TCC was the most abundant with a maximum concentration of 332ngg -1 dry weight. The other prominent ECs included BPA, TCS, octocrylene, and benzotriazole UV stabilizers UV326 and UV328. Treated wastewater effluent was the major source of the ECs in the riverine sediment. TCC, BPA, TCS, methyparaben, UV531, UV326, and UV328 were also detected throughout the estuarine sediment cores, indicating their persistence in the sediment. Temporal trends of the ECs in the sediment cores reflected a combined effect of industrial development, population growth, human life quality improvement, and waste treatment capacity in the Pearl River Delta over the last decades. TCC dechlorination products were frequently detected in the bed sediment with higher levels near treated effluent outlets but only occasionally observed in the sediment cores, suggesting insignificant in-situ TCC dechlorination in the sediment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effects of wavelength and water quality on photodegradation of N-Nitrosodimethylamine (NDMA).

    PubMed

    Sakai, Hiroshi; Takamatsu, Tatsuro; Kosaka, Koji; Kamiko, Naoyuki; Takizawa, Satoshi

    2012-10-01

    N-Nitrosodimethylamine (NDMA) is a potent carcinogen that yields a cancer risk of 10(-6) at concentrations as low as 0.7 ng L(-1). Tentative guideline values are set at 3 ng L(-1) in California, USA; 9 ng L(-1) in Ontario, Canada; 40 ng L(-1) nationwide in Canada; and 100 ng L(-1) by the World Health Organization. NDMA is a great concern in treating reclaimed water as well as drinking water. UV degradation can be considered effective degradation method. A 1-log reduction of NDMA is achieved by 1000 mJ cm(-2) of a 254-nm low pressure (LP) mercury UV lamp. However, a higher degradation efficiency than that provided by LP lamps is desired in practical treatment. In this study, the effects of wavelength and water quality were investigated to achieve higher degradation efficiency. The effects of wavelength were examined by comparing three UV lamps: a 222-nm Kr Cl Excimer UV lamp, a 254-nm LP mercury UV lamp, and a 230- to 270-nm filtered medium pressure (FMP) mercury UV lamp. The 222-nm lamp and FMP lamp achieved 4 times and 2.8 times higher degradation efficiency, respectively, than the conventional 254-nm LP lamp. Effects on water quality were also simulated by using absorption spectrum data of nitrate solutions and process water from a drinking-water treatment plant. In the simulation, the 222-nm lamp was affected by UV-absorbing compounds in the water, whereas the FMP lamp showed more stable degradation efficiency. Appropriate use of these three types of lamps could enhance the efficiency of degradation of NDMA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Topically Applied Carvedilol Attenuates Solar Ultraviolet Radiation Induced Skin Carcinogenesis.

    PubMed

    Huang, Kevin M; Liang, Sherry; Yeung, Steven; Oiyemhonlan, Etuajie; Cleveland, Kristan H; Parsa, Cyrus; Orlando, Robert; Meyskens, Frank L; Andresen, Bradley T; Huang, Ying

    2017-10-01

    In previous studies, the β-blocker carvedilol inhibited EGF-induced epidermal cell transformation and chemical carcinogen-induced mouse skin hyperplasia. As exposure to ultraviolet (UV) radiation leads to skin cancer, the present study examined whether carvedilol can prevent UV-induced carcinogenesis. Carvedilol absorbs UV like a sunscreen; thus, to separate pharmacological from sunscreen effects, 4-hydroxycarbazole (4-OHC), which absorbs UV to the same degree as carvedilol, served as control. JB6 P + cells, an established epidermal model for studying tumor promotion, were used for evaluating the effect of carvedilol on UV-induced neoplastic transformation. Both carvedilol and 4-OHC (1 μmol/L) blocked transformation induced by chronic UV (15 mJ/cm 2 ) exposure for 8 weeks. However, EGF-mediated transformation was inhibited by only carvedilol but not by 4-OHC. Carvedilol (1 and 5 μmol/L), but not 4-OHC, attenuated UV-induced AP-1 and NF-κB luciferase reporter activity, suggesting a potential anti-inflammatory activity. In a single-dose UV (200 mJ/cm 2 )-induced skin inflammation mouse model, carvedilol (10 μmol/L), applied topically after UV exposure, reduced skin hyperplasia and the levels of cyclobutane pyrimidine dimers, IL1β, IL6, and COX-2 in skin. In SKH-1 mice exposed to gradually increasing levels of UV (50-150 mJ/cm 2 ) three times a week for 25 weeks, topical administration of carvedilol (10 μmol/L) after UV exposure increased tumor latency compared with control (week 18 vs. 15), decreased incidence and multiplicity of squamous cell carcinomas, while 4-OHC had no effect. These data suggest that carvedilol has a novel chemopreventive activity and topical carvedilol following UV exposure may be repurposed for preventing skin inflammation and cancer. Cancer Prev Res; 10(10); 598-606. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Evaluation of the relationship between bulk organic precursors and disinfection byproduct formation for advanced oxidation processes.

    PubMed

    Mayer, Brooke K; Daugherty, Erin; Abbaszadegan, Morteza

    2015-02-01

    Advanced oxidation processes (AOPs) are gaining traction as they offer mineralization potential rather than transferring contaminants between media. However, AOPs operated with limited energy and/or chemical inputs can exacerbate disinfection byproduct (DBP) formation, even as precursors such as dissolved organic carbon, UV254, and specific UV absorbance (SUVA) decrease. This study examined the relationship between DBP precursors and formation using TiO2 photocatalysis experiments, external AOP and non-AOP data, and predictive DBP models. The top-performing indicator, SUVA, generally correlated positively with trihalomethanes and haloacetic acids, but limited-energy photocatalysis yielded contrasting negative correlations. The accuracy of predicted DBP values from models based on bulk parameters was generally poor, regardless of use and extent of AOP treatment and type of source water. Though performance improved for scenarios bounded by conditions used in model development, only 0.5% of the model/dataset pairings satisfied all measured parameter boundary conditions, thereby introducing skepticism toward model usefulness. Study findings suggest that caution should be employed when using bulk indicators and/or models as a metric for AOP mitigation of DBP formation potential, particularly for limited-energy/chemical inputs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Assessment of capabilities of multiangle imaging photo-polarimetry for atmospheric correction in presence of absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F. C.; Diner, D. J.

    2015-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach described by Dubovik et al., 2006. A vector Markov Chain radiative transfer code including bio-optical models was used to evaluate TOA and water leaving radiances.

  9. Combinatorial preparation and characterization of thin-film multilayer electro-optical devices.

    PubMed

    Neuber, Christian; Bäte, Markus; Thelakkat, Mukundan; Schmidt, Hans-Werner; Hänsel, Helmut; Zettl, Heiko; Krausch, Georg

    2007-07-01

    In this article we present a setup for the combinatorial vapor deposition of thin-film multilayer devices as well as methods for the fast and efficient analytic screening of the libraries obtained. The preparation setup is based on a commercially available evaporation chamber equipped with various evaporation sources for both organic and metallic materials. The combinatorial approach is realized by the combination of a rotation stage for the substrate, a five-mask sampler, and an additional mask whose position can be deliberately varied along one axis during the evaporation process. The latter is used to evaporate linear as well as step gradients by continuous or stepwise movement of a shutter mask. The mask sampler allows to define the sectors of the library and to evaporate more complex structures, e.g., an electrode layout. Finally, the simultaneous evaporation of two or more materials enables us to produce layers of varying composition ratio in general and doped materials, in particular. For the control of the evaporation process we have developed an automation software, which is particularly helpful for complex library designs and which grants excellent repeatability of experiments. Efficient and fast characterization of the obtained libraries is realized by (i) a purely optical setup and (ii) an electro-optical setup. (i) The UV/vis reader FLASHScan 530 permits to map out the UV/vis absorbance or fluorescence of the whole library. The UV/vis absorbance is primarily used to determine layer thicknesses and to confirm thickness uniformity across larger regions. The fluorescence measurements are used to determine the composition of layers containing fluorescent dyes. (ii) For a detailed short- and long-term electro-optical analysis we have developed an automated measurement system, which allows the characterization of 8x8 optoelectronic devices and to study their degradation behavior. Both solar cells and organic light-emitting diodes can be tested. Finally, we have developed a data analysis software to extract characteristic values from the huge amount of data and with this facilitate the finding of systematic dependencies.

  10. Effect of Solar Ultraviolet-B Radiation during Springtime Ozone Depletion on Photosynthesis and Biomass Production of Antarctic Vascular Plants1

    PubMed Central

    Xiong, Fusheng S.; Day, Thomas A.

    2001-01-01

    We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O2 evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations. PMID:11161031

  11. Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants.

    PubMed

    Xiong, F S; Day, T A

    2001-02-01

    We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O(2) evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations.

  12. Simultaneous Solid Phase Extraction and Derivatization of Aliphatic Primary Amines Prior to Separation and UV-Absorbance Detection

    PubMed Central

    Felhofer, Jessica L.; Scida, Karen; Penick, Mark; Willis, Peter A.; Garcia, Carlos D.

    2013-01-01

    To overcome the problem of poor sensitivity of capillary electrophoresis-UV absorbance for the detection of aliphatic amines, a solid phase extraction and derivatization scheme was developed. This work demonstrates successful coupling of amines to a chromophore immobilized on a solid phase and subsequent cleavage and analysis. Although the analysis of many types of amines is relevant for myriad applications, this paper focuses on the derivatization and separation of amines with environmental relevance. This work aims to provide the foundations for future developments of an integrated sample preparation microreactor capable of performing simultaneous derivatization, preconcentration, and sample cleanup for sensitive analysis of primary amines. PMID:24054648

  13. Assessment of silicone as support to investigate the transformation routes of organic chemicals under environmental conditions and UV exposure. Application to selected fungicides.

    PubMed

    Rodríguez-Cabo, T; Rodríguez, I; Ramil, M; Cela, R

    2013-05-01

    The suitability of bulk silicone as support to follow the degradation of chemical compounds under environmental conditions and UV radiation is illustrated selecting three fungicides (fenhexamid, FEN; triadimenol, TRI and difenoconazole, DIF) as model compounds. These precursor species were first absorbed in silicone supports (10 mm length × 2 mm i.d. and 0.5 mm thickness) and then kept outdoors for several days (up to 2 months) or exposed to UV radiation (254 nm), from a low pressure mercury lamp, in the laboratory. Degradation of precursor fungicides and by-products formation was followed by liquid chromatography (LC) quadrupole time-of-flight (QTOF) mass spectrometry (MS), after desorption of silicone supports using 0.5 mL of acetonitrile. Half-lives (t(1/2)) measured under UV exposure varied from 5 to 100 min. As regards environmental conditions, the most stable fungicide was DIF, degraded by just 15 % after 2 months; whereas, t(1/2) values of 30 and 83 h were calculated for FEN during summer and autumn, respectively. Supports contained by-products arising from precursor species through de-chlorination, cleavage, hydroxylation, intra-molecular cyclation and oligomerization reactions. Most of them have been previously identified in soil surface, vegetable leaves and water after application of fungicides in agriculture fields. The low cost of silicone tubes (ca. 0.4 Euros), added to their excellent chemical stability and capability to retain precursor species and their by-products, make them ideal supports to follow the transformation routes of organic compounds under environmental and simulated conditions, even for relatively stable species with t(1/2) in the range of weeks or months.

  14. Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater.

    PubMed

    Manenti, Diego R; Soares, Petrick A; Silva, Tânia F C V; Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Boaventura, Rui A R; Vilar, Vítor J P

    2015-01-01

    The performance of different solar-driven advanced oxidation processes (AOPs), such as TiO2/UV, TiO2/H2O2/UV, and Fe(2+)/H2O2/UV-visible in the treatment of a real textile effluent using a pilot plant with compound parabolic collectors (CPCs), was investigated. The influence of the main photo-Fenton reaction variables such as iron concentration (20-100 mg Fe(2+) L(-1)), pH (2.4-4.5), temperature (10-50 °C), and irradiance (22-68 WUV m(-2)) was evaluated in a lab-scale prototype using artificial solar radiation. The real textile wastewater presented a beige color, with a maximum absorbance peak at 641 nm, alkaline pH (8.1), moderate organic content (dissolved organic carbon (DOC) = 129 mg C L(-1) and chemical oxygen demand (COD) = 496 mg O2 L(-1)), and high conductivity mainly associated to the high concentration of chloride (1.1 g Cl(-) L(-1)), sulfate (0.4 g SO 4 (2 -) L(- 1)), and sodium (1.2 g Na(+) L(-1)) ions. Although all the processes tested contributed to complete decolorization and effective mineralization, the most efficient process was the solar photo-Fenton with an optimum catalyst concentration of 60 mg Fe(2+) L(-1), leading to 70 % mineralization (DOCfinal = 41 mg C L(-1); CODfinal < 150 mg O2 L(-1)) at pH 3.6, requiring a UV energy dose of 3.5 kJUV L(-1) (t 30 W = 22.4 min; [Formula: see text]; [Formula: see text]) and consuming 18.5 mM of H2O2.

  15. Methylglyoxal induced glycation and aggregation of human serum albumin: Biochemical and biophysical approach.

    PubMed

    Ahmed, Azaj; Shamsi, Anas; Khan, Mohd Shahnawaz; Husain, Fohad Mabood; Bano, Bilqees

    2018-07-01

    Serum protein glycation and formation of advanced glycation end products (AGEs) correlates with many diseases viz. diabetes signifying the importance of studying the glycation pattern of serum proteins. In our present study, methylglyoxal was investigated for its effect on the structure of human serum albumin (HSA); exploring the formation of AGEs and aggregates of HSA. The analytical tools employed includes intrinsic and extrinsic fluorescence, UV spectroscopy, far UV circular dichroism, Thioflavin T fluorescence, congo red binding, polyacrylamide gel electrophoresis (PAGE). UV and fluorescence spectroscopy revealed the structural transition of native HSA evident by new peaks and increased absorbance in UV spectra and quenched fluorescence in the presence of MG. Far UV CD spectroscopy revealed MG induced secondary structural alteration evident by reduced α-helical content. AGEs formation was confirmed by AGEs specific fluorescence. Increased ThT fluorescence and CR absorbance of 10mM MG incubated HSA suggests that glycated HSA results in the formation of aggregates of HSA. SEM and TEM were reported to have an insight of these aggregates. Molecular docking was also utilized to see site specific interaction of MG-HSA. This study is clinically significant as HSA is a clinically relevant protein which plays a crucial role in many diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Thermally-Resilient, Broadband Optical Absorber from UV-to-IR Derived from Carbon Nanostructures and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Coles, James B. (Inventor)

    2015-01-01

    A monolithic optical absorber and methods of making same. The monolithic optical absorber uses an array of mutually aligned carbon nanotubes that are grown using a PECVD growth process and a structure that includes a conductive substrate, a refractory template layer and a nucleation layer. Monolithic optical absorbers made according to the described structure and method exhibit high absorptivity, high site densities (greater than 10.sup.9 nanotubes/cm.sup.2), very low reflectivity (below 1%), and high thermal stability in air (up to at least 400.degree. C.). The PECVD process allows the application of such absorbers in a wide variety of end uses.

  17. UV-B effect on constituents of Azolla caroliniana.

    PubMed

    Ibrahim, Mohamed M; Mostafa, Eazaz M

    2007-01-01

    Changes in growth and ultrastructure of Azolla caroliniana in response to elevated UV-B radiation were investigated. Exposure of plants to UV-B radiation for 1, 8, 16, 24 and 48 h exhibited a significant decrease in biomass and relative growth rate. This decrease resulted in an increase in doubling time over the control. Also, Chl a and b contents were significantly decreased especially after 16 h. The reduction was accompanied by a decrease in 5-aminolaevulinic acid content (precursor of chlorophyll). On the other hand, contents of carotenoid and UV-absorbing phenolic compounds (flavonoids and anthocyanins) were increased.

  18. Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA.

    PubMed

    Fox, P; Narayanaswamy, K; Genz, A; Drewes, J E

    2001-01-01

    Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant (NWWRP) were evaluated by sampling a network of groundwater monitoring wells located within the reclaimed water plume. The Mesa Northwest Water Reclamation Plant has used soil aquifer treatment (SAT) since it began operation in 1990 and the recovery of reclaimed water from the impacted groundwater has been minimal. Groundwater samples obtained represent travel times from several days to greater than five years. Samples were analyzed for a wide range of organic and inorganic constituents. Sulfate was used as a tracer to estimate travel times and define reclaimed water plume movement. Dissolved organic carbon concentrations were reduced to approximately 1 mg/L after 12 to 24 months of soil aquifer treatment with an applied DOC concentration from the NWWRP of 5 to 7 mg/L. The specific ultraviolet absorbance (SUVA) increased during initial soil aquifer treatment on a time-scale of days and then decreased as longer term soil aquifer treatment removed UV absorbing compounds. The trihalomethane formation potential (THMFP) was a function of the dissolved organic carbon concentration and ranged from 50 to 65 micrograms THMFP/mg DOC. Analysis of trace organics revealed that the majority of trace organics were removed as DOC was removed with the exception of organic iodine. The majority of nitrogen was applied as nitrate-nitrogen and the reclaimed water plume had lower nitrate-nitrogen concentrations as compared to the background groundwater. The average dissolved organic carbon concentrations in the reclaimed water plume were less than 50% of the drinking water dissolved organic concentrations from which the reclaimed water originated.

  19. Effect of reactive monomer on PS-b-P2VP film with UV irradiation

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Shin, D. M.

    2012-03-01

    Poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) lamellar film which is hydrophobic block hydrophilic polyelectrolyte block polymer of 52 kg/mol -b- 57 kg/mol and PS-b-P2VP film with reactive monomer (RM257) were prepared for photonic gel films. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic part of PS-b-P2VP. We reported about the influence of reactive monomer on those photonic gel films. Added reactive monomer photonic gel film had higher absorbance than pure photonic gel films. And band gaps of the lamellar films shifted by the time of UV light irradiation. That Photonic gel films were measured with the UV spectrophotometer. As a result the photonic gel film with reactive monomer had more clear color. The lamellar films were swollen by DI water, Ethyl alcohol (aq) and calcium carbonate solution. Since the domain spacing of dried photonic gel films were not showing any color in visible wavelength. The band gap of the lamellar films were drastically shifted to longer wavelength swollen by calcium carbonate solution (absorbance peak 565nm-->617nm). And the lamellar films were shifted to shorter wave length swollen by ethanol (absorbance peak 565nm-->497nm). So each Photonic gel film showed different color.

  20. Prediction of the Ultraviolet-Visible Absorption Spectra of Polycyclic Aromatic Hydrocarbons (Dibenzo and Naphtho) Derivatives of Fluoranthene.

    PubMed

    Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara

    2017-06-01

    The annellation theory method has been used to predict the locations of maximum absorbance (LMA) of the ultraviolet-visible (UV-Vis) spectral bands in the group of polycyclic aromatic hydrocarbons (PAHs) C 24 H 14 (dibenzo and naphtho) derivatives of fluoranthene (DBNFl). In this group of 21 PAHs, ten PAHs present a sextet migration pattern with four or more benzenoid rings that is potentially related to a high molecular reactivity and high mutagenic conduct. This is the first time that the locations of maximum absorbance in the UV-Vis spectra of naphth[1,2- a]aceanthrylene, dibenz[ a,l]aceanthrylene, indeno[1,2,3- de]naphthacene, naphtho[1,2- j]fluoranthene, naphth[2,1- e]acephenanthrylene, naphth[2,1- a]aceanthrylene, dibenz[ a,j]aceanthrylene, naphth[1,2- e]acephenanthrylene, and naphtho[2,1- j]fluoranthene have been predicted. Also, this represents the first report about the application of the annellation theory for the calculation of the locations of maximum absorbance in the UV-Vis spectra of PAHs with five-membered rings. Furthermore, this study constitutes the premier investigation beyond the pure benzenoid classical approach toward the establishment of a generalized annellation theory that will encompass not only homocyclic benzenoid and non-benzenoid PAHs, but also heterocyclic compounds.

  1. Synthesis, Spectra, and Theoretical Investigations of 1,3,5-Triazines Compounds as Ultraviolet Rays Absorber Based on Time-Dependent Density Functional Calculations and three-Dimensional Quantitative Structure-Property Relationship.

    PubMed

    Wang, Xueding; Xu, Yilian; Yang, Lu; Lu, Xiang; Zou, Hao; Yang, Weiqing; Zhang, Yuanyuan; Li, Zicheng; Ma, Menglin

    2018-03-01

    A series of 1,3,5-triazines were synthesized and their UV absorption properties were tested. The computational chemistry methods were used to construct quantitative structure-property relationship (QSPR), which was used to computer aided design of new 1,3,5-triazines ultraviolet rays absorber compounds. The experimental UV absorption data are in good agreement with those predicted data using the Time-dependent density functional theory (TD-DFT) [B3LYP/6-311 + G(d,p)]. A suitable forecasting model (R > 0.8, P < 0.0001) was revealed. Predictive three-dimensional quantitative structure-property relationship (3D-QSPR) model was established using multifit molecular alignment rule of Sybyl program, which conclusion is consistent with the TD-DFT calculation. The exceptional photostability mechanism of such ultraviolet rays absorber compounds was studied and confirmed as principally banked upon their ability to undergo excited-state deactivation via an ultrafast excited-state proton transfer (ESIPT). The intramolecular hydrogen bond (IMHB) of 1,3,5-triazines compounds is the basis for the excited state proton transfer, which was explored by IR spectroscopy, UV spectra, structural and energetic aspects of different conformers and frontier molecular orbitals analysis.

  2. Optical absorption in recycled waste plastic polyethylene

    NASA Astrophysics Data System (ADS)

    Aji, M. P.; Rahmawati, I.; Priyanto, A.; Karunawan, J.; Wati, A. L.; Aryani, N. P.; Susanto; Wibowo, E.; Sulhadi

    2018-03-01

    We investigated the optical properties of UV spectrum absorption in recycled waste plastic from polyethylene polymer type. Waste plastic polyethylene showed an optical spectrum absorption after it’s recycling process. Spectrum absorption is determined using spectrophotometer UV-Nir Ocean Optics type USB 4000. Recycling method has been processed using heating treatment around the melting point temperature of the polyethylene polymer that are 200°C, 220°C, 240°C, 260°C, and 280°C. In addition, the recycling process was carried out with time variations as well, which are 1h, 1.5h, 2h, and 2.5h. The result of this experiment shows that recycled waste plastic polyethylene has a spectrum absorption in the ∼ 340-550 nm wavelength range. The absorbance spectrum obtained from UV light which is absorbed in the orbital n → π* and the orbital π → π*. This process indicates the existence of electron transition phenomena. This mechanism is affected by the temperature and the heating time where the intensity of absorption increases and widens with the increase of temperature and heating time. Furthermore this study resulted that the higher temperature affected the enhancement of the band gap energy of waste plastic polyethylene. These results show that recycled waste plastic polyethylene has a huge potential to be absorber materials for solar cell.

  3. PARAFAC Modeling of Irradiation- and Oxidation-Induced Changes in Fluorescent Dissolved Organic Matter Extracted from Poultry Litter.

    PubMed

    Mangalgiri, Kiranmayi P; Timko, Stephen A; Gonsior, Michael; Blaney, Lee

    2017-07-18

    Parallel factor analysis (PARAFAC) applied to fluorescence excitation emission matrices (EEMs) allows quantitative assessment of the composition of fluorescent dissolved organic matter (DOM). In this study, we fit a four-component EEM-PARAFAC model to characterize DOM extracted from poultry litter. The data set included fluorescence EEMs from 291 untreated, irradiated (253.7 nm, 310-410 nm), and oxidized (UV-H 2 O 2 , ozone) poultry litter extracts. The four components were identified as microbial humic-, terrestrial humic-, tyrosine-, and tryptophan-like fluorescent signatures. The Tucker's congruence coefficients for components from the global (i.e., aggregated sample set) model and local (i.e., single poultry litter source) models were greater than 0.99, suggesting that the global EEM-PARAFAC model may be suitable to study poultry litter DOM from individual sources. In general, the transformation trends of the four fluorescence components were comparable for all poultry litter sources tested. For irradiation at 253.7 nm, ozonation, and UV-H 2 O 2 advanced oxidation, transformation of the humic-like components was slower than that of the tryptophan-like component. The opposite trend was observed for irradiation at 310-410 nm, due to differences in UV absorbance properties of components. Compared to the other EEM-PARAFAC components, the tyrosine-like component was fairly recalcitrant in irradiation and oxidation processes. This novel application of EEM-PARAFAC modeling provides insight into the composition and fate of agricultural DOM in natural and engineered systems.

  4. Characteristics and DBP formation of dissolved organic matter from leachates of fresh and aged leaf litter.

    PubMed

    Jian, Qianyun; Boyer, Treavor H; Yang, Xiuhong; Xia, Beicheng; Yang, Xin

    2016-06-01

    Dissolved organic matter (DOM) was leached from leaves of two trees commonly grown in subtropical regions, Pinus elliottii (commonly known as slash pine) and Schima superba (S. superba), and its degradation pattern and potential for forming disinfection byproducts (DBPs) were evaluated. The leaves were exposed in the field for up to one year before leaching. The DOM leached from slash pine litter contained on average 10.4 mg of dissolved organic carbon (DOC) per gram of dry weight; for S. superba the average was 37.2 mg-DOC/g-dry weight. Ultraviolet and visible light absorbance, fluorescence, and molecular weight analysis indicated that more aromatic/humic and higher molecular weight compounds are formed as leaf litter ages. A 4-component parallel factor analysis of the fluorescence data showed that the intensity of peaks related with protein-like components decreased gradually during biodegradation, while that of peaks attributed to humic-acid-like components increased continuously. Fresh slash pine leachates formed on average 40.0 μg of trihalomethane (THM) per milligram of DOC, while S. superba leachates formed 45.6 μg. THM formation showed peak values of 55.7 μg/mg DOC for slash pine and 74.9 μg/mg DOC for S. superba after 8 months of aging. The formation of haloacetonitrile (HAN) and trichloronitromethane (TCNM) increased with increasing leaf age, while chloral hydrate (CH) formation did not show such a trend. Specific UV absorbance showed some positive correlation with DBPs, but humic-acid-like and protein-like absorbance peaks correlated with CH and TCNM yields in only some leaf samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Component Identification in Multi-Chemical Mixtures With Swept-Wavelength Resonant-Raman Spectroscopy

    DTIC Science & Technology

    2011-03-18

    efficiency of the OPO, but ranges from up to 15 mW on target in the UV to 50 mW in the visible. This ability to illuminate a target with a broad...been back illuminated and coated for enhanced UV response. The run file which automates the collection process uses several input parameters to...analyzed by a Agilent spectrophotometer to determine absorbance characteristics of the liquid. The remaining mixture was then placed into a standard UV

  6. Problems in Assessment of the UV Penetration into Natural Waters from Space-based Measurements

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander P.; Herman, Jay; Krotkov, Nickolay A.; Kahru, Mati; Mitchell, B. Greg; Hsu, Christina; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Satellite instruments currently provide global maps of surface UV (ultraviolet) irradiance by combining backscattered radiance data with radiative transfer models. The models are often limited by uncertainties in physical input parameters of the atmosphere and surface. Global mapping of the underwater UV irradiance creates further challenges for the models. The uncertainties in physical input parameters become more serious because of the presence of absorbing and scattering quantities caused by biological processes within the oceans. In this paper we summarize the problems encountered in the assessment of the underwater UV irradiance from space-based measurements, and propose approaches to resolve the problems. We have developed a radiative transfer scheme for computation of the UV irradiance in the atmosphere-ocean system. The scheme makes use of input parameters derived from satellite instruments such as TOMS (Total Ozone Mapping Spectrometer) and SeaWiFS (Sea-viewing Wide Field-of-view Sensor). The major problem in assessment of the surface UV irradiance is to accurately quantify the effects of clouds. Unlike the standard TOMS UV algorithm, we use the cloud fraction products available from SeaWiFS and MODIS (Moderate Resolution Imaging Spectrometer) to calculate instantaneous surface flux at the ocean surface. Daily UV doses can be calculated by assuming a model of constant cloudiness throughout the day. Both SeaWiFS and MODIS provide some estimates of seawater optical properties in the visible. To calculate the underwater UV flux the seawater optical properties must be extrapolated down to shorter wavelengths. Currently, the problem of accurate extrapolation of visible data down to the UV spectral range is not solved completely, and there are few available measurements. The major difficulty is insufficient correlation between photosynthetic and photoprotective pigments of phytoplankton absorbing in the visible and UV respectively. We propose to empirically parameterize seawater absorption in the UV on a basis of available data sets of bio-optical measurements from a variety of ocean waters. Another problem is the lack of reliable data on pure seawater absorption in the UV. Laboratory measurements of the UV absorption of both pure water and pure seawater are required.

  7. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    PubMed Central

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  8. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  9. Photocatalytic hydrogen evolution of palladium nanoparticles decorated black TiO2 calcined in argon atmosphere

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Hsiao, Kai-Chi; Chang, Yin-Hsuan; Chan, Shun-Hsiang

    2018-02-01

    Black TiO2 nanoparticles (BTN) was prepared by sol-gel derived precursor calcined in an argon atmosphere. The synthesized BTN with trivalent titanium ion, structural defect, and oxygen vacancy shows a remarkably high absorbance in the visible light spectrum. BTN thus behaves a higher visible-active nanoreactor than white TiO2 nanoparticles (WTN) in the aqueous solution for organic pollutant degradation. Moreover, palladium decoration on the BTN surface (Pd-BTN) demonstrates a fascinating clean energy application. The obtained Pd-BTN fulfills a satisfied green material demand in the photocatalytic hydrogen production application. Pd-BTN calcined at 400 °C (Pd-BTN-400) shows the high photocatalytic hydrogen generation rate of 5200 μmol/g h under UV-A irradiation and 9300 μmol/g h under UV-B irradiation, respectively. The well-developed material, Pd-BTN-400, could be one of the best solutions in the concern of clean energy and water-purification with regard to the continuous environmental issue.

  10. Theoretical Calculation of the Uv-Vis Spectral Band Locations of Pahs with Unknown Syntheses Procedures and Prospective Carcinogenic Activity

    NASA Astrophysics Data System (ADS)

    Ona-Ruales, Jorge Oswaldo; Ruiz-Morales, Yosadara

    2017-06-01

    Annellation Theory and ZINDO/S semiempirical calculations have been used for the calculation of the locations of maximum absorbance (LMA) of the Ultraviolet-Visible (UV-Vis) of 31 C_{34}H_{16} PAHs (molecular mass 424 Da) with unknown protocols of synthesis. The presence of benzo[a]pyrene bay-like regions and dibenzo[a,l]pyrene fjord-like regions in several of the structures that could be linked to an enhancement of the biological behavior and carcinogenic activity stresses the importance of C_{34}H_{16} PAHs in fields like molecular biology and cancer research. In addition, the occurrence of large PAHs in oil asphaltenes exemplifies the importance of these calculations for the characterization of complex systems. The C_{34}H_{16} PAH group is the largest molecular mass group of organic compounds analyzed so far following the Annellation Theory and ZINDO/S methodology. Future analysis using the same approach will provide evidence regarding the LMA of other high molecular mass PAHs.

  11. N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers.

    PubMed

    Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg; Snyder, Shane A

    2016-02-01

    N-Nitrosodimethylamine (NDMA) formation by ozonation was investigated in the effluents of four different wastewater treatment plants destined for alternative reuse. Very high levels of NDMA formation were observed in wastewaters from treatment plants non operating with biological nitrogen removal. Selected experiments showed that hydroxyl radical did not have a significant role in NDMA formation during ozonation of wastewater. Furthermore, ozonation of three different polymers used for water treatment, including polyDADMAC, anionic polyacrylamide, and cationic polyacrylamide, spiked in wastewater did not increase the NDMA formation. Effluent organic matter (EfOM) likely reduced the availability of ozone in water able to react with polymers and quenched the produced ·OH radicals which limited polymer degradation and subsequent NDMA production. Excellent correlations were observed between NDMA formation, UV absorbance at 254 nm, and total fluorescence reduction. These data provide evidence that UV and fluorescence surrogates could be used for monitoring and/or controlling NDMA formation during ozonation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Trans-cis molecular photoswitching in interstellar space

    NASA Astrophysics Data System (ADS)

    Cuadrado, S.; Goicoechea, J. R.; Roncero, O.; Aguado, A.; Tercero, B.; Cernicharo, J.

    2016-11-01

    As many organic molecules, formic acid (HCOOH) has two conformers (trans and cis). The energy barrier to internal conversion from trans to cis is much higher than the thermal energy available in molecular clouds. Thus, only the most stable conformer (trans) is expected to exist in detectable amounts. We report the first interstellar detection of cis-HCOOH. Its presence in ultraviolet (UV) irradiated gas exclusively (the Orion Bar photodissociation region), with a low trans-to-cis abundance ratio of 2.8 ± 1.0, supports a photoswitching mechanism: a given conformer absorbs a stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we specifically study with ab initio quantum calculations, was not considered in Space before but likely induces structural changes of a variety of interstellar molecules submitted to UV radiation. This paper makes use of observations obtained with the IRAM-30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  13. A depleted ozone layer absorbs less UV-B, cooling the ozone layer, increasing the amount of UV-B observed to reach Earth, heating air by dissociating tropospheric and ground-level ozone, and heating oceans very efficiently by penetrating tens of meters into the mixed layer. UV-B is 48 times more energetic ("hotter") than IR absorbed by greenhouse gases

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2017-12-01

    This new insight into the physics of radiation shows why changes in stratospheric ozone are observed to cause changes in global temperature. By 1970, manufactured CFC gases and ozone depletion began increasing. By 1993, increases in CFCs stopped as mandated by the Montreal Protocol. By 1995, increases in ozone depletion stopped. By 1998, increases in temperature stopped until 2014. Ozone is also depleted by halogen gases emitted from major basaltic lava flows, the largest of which, since 1783, occurred at Bardarbunga in Iceland in 2014, causing 2015 and 2016 to be the hottest years on record. Throughout Earth history, the largest basaltic lava flows were contemporaneous with periods of greatest warming and greatest levels of mass extinctions. Planck's empirical law shows that temperature of matter results from oscillation of all the bonds holding matter together. The higher the temperature, the higher the frequencies and amplitudes of oscillation. Thus, radiation from a nearby hotter body will make the absorbing body hotter than radiation from a cooler body. According to the Planck-Einstein relation, thermal energy (E) in matter and in radiation equals frequency of oscillation (ν) times the Planck constant (h), E=hν—the energy of a frictionless atomic oscillator. Since frequency is observed to be a very broad continuum extending from radio signals through visible light to gamma rays, thermal energy (E=hν) must also be a very broad continuum. Thermal flux cannot be represented properly by a single number of watts per square meter, as commonly assumed throughout the physical sciences, because all frequencies coexist and the number of watts increases with frequency. Thus, UV-B solar radiation is 48 times more energetic than IR terrestrial radiation absorbed by greenhouse gases and can make the absorbing body 48 times hotter. UV-B causes sunburn; no amount of IR can cause sunburn. Furthermore, in a basic experiment, I show that air containing more than 23 times normal concentrations of CO2, shows minimal warming compared to normal air when exposed to the same IR radiation. Dobson (1929) reported the close correlation between regions of high and low ozone concentrations and weather. Variation in ozone levels are closely associated with changes in the Multivariate ENSO Index and other atmospheric and oceanic oscillations.

  14. Effects of maternal and lactational exposure to 2-hydroxy-4-methoxybenzone on development and reproductive organs in male and female rat offspring

    PubMed Central

    Nakamura, Noriko; Inselman, Amy L.; White, Gene A.; Chang, Ching-Wei; Trbojevich, Raul A.; Sepehr, Estatira; Voris, Kristie L.; Patton, Ralph E.; Bryant, Matthew S.; Harrouk, Wafa; McIntyre, Barry; Foster, Paul M.; Hansen, Deborah K.

    2015-01-01

    BACKGROUND 2-hydroxy-4-methoxybenzophenone (HMB) is an ultraviolet (UV)-absorbing compound used in many cosmetic products as a UV-protecting agent and in plastics for preventing UV-induced photodecomposition. HMB has been detected in over 95% of randomly collected human urine samples from adults and from premature infants, and it may have estrogenic potential. METHODS To determine the effects of maternal and lactational exposure to HMB on development and reproductive organs of offspring, time-mated female Harlan Sprague-Dawley rats were dosed with 0, 1,000, 3,000, 10,000, 25,000, or 50,000 ppm HMB (7-8 per group) added to chow from gestation day 6 until weaning on postnatal day (PND) 23. RESULTS AND CONCLUSION Exposure to HMB was associated with reduced body and organ weights in female and male offspring. No significant differences were observed in the number of implantation sites/litter, mean resorptions/litter, % litters with resorptions, number and weights of live fetuses, or sex ratios between the control and HMB dose groups. Normalized anogenital distance in male pups at PND 23 was decreased in the highest dose group. Spermatocyte development was impaired in testes of male offspring in the highest dose group. In females, follicular development was delayed in the highest dose group. However, by evaluating levels of the compound in rat serum, the doses at which adverse events occurred are much higher than usual human exposure levels. Thus, exposure to less than 10,000 ppm HMB does not appear to be associated with adverse effects on the reproductive system in rats. PMID:25707689

  15. DNA damage and repair in plants under ultraviolet and ionizing radiations.

    PubMed

    Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH(•)) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.

  16. Secondary brown carbon - Formation of light-absorbing compounds in atmospheric particulates from selected dicarbonyls and amines

    NASA Astrophysics Data System (ADS)

    Kampf, Christopher; Filippi, Alexander; Hoffmann, Thorsten

    2015-04-01

    One of the main open questions regarding organic compounds in atmospheric chemistry today is related to the formation of optically-active compounds and the occurrence of so called brown carbon (Andreae and Gelencsér, 2006). While organic compounds in ambient fine particles for decades have been assumed to not absorb solar radiation, thus resulting in a net cooling effect on climate (IPCC, 2007), it is now generally accepted that a continuum of light-absorbing carbonaceous species is present in fine aerosols (Pöschl, 2003). In this study, light-absorbing compounds from reactions between dicarbonyl compounds, i.e., glyoxal, methylglyoxal, acetylacetone, 2,3-butanedione, 2,5-hexanedione, and glutaraldehyde, and amine species, i.e., ammonia and glycine, were investigated at atmospherically relevant concentrations in bulk solution experiments mimicking atmospheric particulates. Product analyses were performed using UV/Vis spectrophotometry and (ultra) high performance liquid chromatography coupled to diode array detection and ion trap mass spectrometry (HPLC-DAD-ESI-MS/MS), as well as ultra-high resolution (Orbitrap) mass spectrometry (UHPLC-ESI-HRMS/MS). We demonstrate that light-absorbing compounds are formed from a variety of atmospherically relevant dicarbonyls via particle phase reactions with amine nucleophiles. Single dicarbonyl and mixed dicarbonyl experiments were performed and products were analyzed. The reaction products are suggested to be cyclic nitrogen containing compounds such as imidazoles or dihydropyridines as well as open chain compounds resulting from aldol condensation reactions. Further, the reactive turnover was found to be higher at increasing pH values. The aforementioned processes may be of higher relevance in regions with high aerosol pH, e.g., resulting from high ammonia emissions as for example in northern India (Clarisse et al., 2009). References Andreae, M.O., and Gelencsér, A. (2006): Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6, 3131-3148. Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., and Coheur, P.F. (2009): Global ammonia distribution derived from infrared satellite observations. Nature Geoscience, 2, 479-483. Pöschl, U. (2003): Aerosol particle analysis: challanges and progress. Analytical and Bioanalytical Chemistry, 375, 30-32.

  17. Brown carbon formation from ketoaldehydes of biogenic monoterpenest.

    PubMed

    Nguyen, Tran B; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2013-01-01

    Sources and chemical composition of brown carbon are poorly understood, and even less is known about the mechanisms of its atmospheric transformations. This work presents molecular-level investigations of the reactive compound ketolimononaldehyde (KLA, C9H14O3), a second-generation ozonolysis product of limonene (C10H16), as a potent brown carbon precursor in secondary organic aerosol (SOA) through its reactions with reduced nitrogen compounds, such as ammonium ion (NH4+), ammonia, and amino acids. The reactions of synthesized and purified KLA with NH4+ and glycine resulted in the formation of chromophores nearly identical in spectral properties and formation rates to those found in similarly-aged limonene/O3 SOA. Similar chemical reaction processes of limononaldehyde (LA, C10H16O2) and pinonaldehyde (PA, C10H16O2), the first-generation ozonolysis products of limonene and alpha-pinene, respectively, were also studied, but the resulting products did not exhibit the light absorption properties of brown carbon, suggesting that the unique molecular structure of KLA produces visible-light-absorbing compounds. The KLA/NH4+ and KLA/GLY reactions produce water-soluble, hydrolysis-resilient chromophores with high mass absorption coefficients (MAC = 2000-4000 cm2 g(-1)) at lambda - 500 nm, precisely at the maximum of the solar emission spectrum. Liquid chromatography was used to isolate the light-absorbing fraction, and UV-Vis, FTIR, NMR and high-resolution mass spectrometry (HR-MS) techniques were used to investigate the structures and chemical properties of the light-absorbing compounds. The KLA browning reaction generates a diverse mixture of light-absorbing compounds, with the majority of the observable products containing 1-4 units of KLA and 0-2 nitrogen atoms. Based on the HR-MS product distribution, conjugated aldol condensates, secondary imines (Schiff bases), and N-heterocycles like pyrroles may contribute in varying degree to the light-absorbing properties of the KLA brown carbon. The results of this study demonstrate the high degree of selectivity of organic compound structures on the light-absorbing properties of SOA.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tran B.; Laskin, Alexander; Laskin, Julia

    Sources and chemical composition of the brown carbon are poorly understood, and even less is known about the mechanisms of its atmospheric transformations. This work presents molecular level investigation of the reactive compound ketolimononaldehyde (KLA, C9H14O3), a second generation ozonolysis product of limonene (C10H16), as a potent brown carbon precursor in secondary organic aerosol (SOA) through its reactions with reduced nitrogen compounds such as ammonium ion (NH4+), ammonia, and amino acids. The reactions of synthesized and purified KLA with NH4+ and glycine resulted in the formation of chromophores nearly identical in spectral properties and formation rates to those found inmore » similarly-aged limonene/O3 SOA. Similar chemical reaction processes of limononaldehyde (LA, C10H16O2) and pinonaldehyde (PA, C10H16O2), the first-generation ozonolysis products in the oxidation of limonene and α-pinene, respectively, were also studied, but the resulting products did not exhibit light absorption properties of brown carbon, suggesting that the unique molecular structure of KLA produces visible-light-absorbing compounds. The KLA/NH4+ and KLA/GLY reactions produce water-soluble, hydrolysis-resilient chromophores with high mass absorption coefficients (MAC = 2000-4000 cm2 g-1) at λ ~ 500 nm, precisely at the maximum of the solar emission spectrum. Liquid chromatography was used to isolate the light-absorbing fraction, and UV-Vis, FTIR, NMR and high-resolution mass spectrometry (HR-MS) techniques were used to investigate the structures and chemical properties of the light-absorbing compounds. The KLA browning reaction generates a diverse mixture of light-absorbing compounds, with the majority of the observable products containing 1-4 units of KLA and 0-2 nitrogen atoms. Based on the HR-MS product distribution, conjugated aldol condensates, secondary imines (Schiff bases), and N-heterocycles like pyrroles may contribute in varying degree to the light-absorbing properties of the KLA brown carbon. Results of this study demonstrate the high degree of selectivity and the effect a specific organic compound on the light-absorbing properties of SOA.« less

  19. Single column comprehensive analysis of pharmaceutical preparations using dual-injection mixed-mode (ion-exchange and reversed-phase) and hydrophilic interaction liquid chromatography.

    PubMed

    Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett

    2013-12-01

    The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Nanosecond laser-induced back side wet etching of fused silica with a copper-based absorber liquid

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Zehnder, Sarah; Ehrhardt, Martin; Frost, Frank; Zimmer, Klaus; Schwaller, Patrick

    2014-03-01

    Cost-efficient machining of dielectric surfaces with high-precision and low-roughness for industrial applications is still challenging if using laser-patterning processes. Laser induced back side wet etching (LIBWE) using UV laser pulses with liquid heavy metals or aromatic hydrocarbons as absorber allows the fabrication of well-defined, nm precise, free-form surfaces with low surface roughness, e.g., needed for optical applications. The copper-sulphatebased absorber CuSO4/K-Na-Tartrate/NaOH/formaldehyde in water is used for laser-induced deposition of copper. If this absorber can also be used as precursor for laser-induced ablation, promising industrial applications combining surface structuring and deposition within the same setup could be possible. The etching results applying a KrF excimer (248 nm, 25 ns) and a Nd:YAG (1064 nm, 20 ns) laser are compared. The topography of the etched surfaces were analyzed by scanning electron microscopy (SEM), white light interferometry (WLI) as well as laser scanning microscopy (LSM). The chemical composition of the irradiated surface was studied by energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). For the discussion of the etching mechanism the laser-induced heating was simulated with finite element method (FEM). The results indicate that the UV and IR radiation allows micro structuring of fused silica with the copper-based absorber where the etching process can be explained by the laser-induced formation of a copper-based absorber layer.

  1. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: a novel strategy for pathogenic bacteria biosensing.

    PubMed

    Abdelhamid, Hani Nasser; Khan, M Shahnawaz; Wu, Hui-Fen

    2014-05-01

    The design, preparation and performance for novel UV-light absorbing (room-temperature) ionic liquid matrices (UV-RTILMs) for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) were reported. A series of UV-RTILMs was prepared by ultrasonication of equimolar of acid (mefenamic acid) and bases (aniline (ANI), pyridine (Pyr), dimethyl aniline (DMANI) and 2-methyl picoline (2-P)). The UV-RTILMs have not only significant absorbance at the desired wavelength (337 nm of the N2 Laser), but also have available protons that can easily undergo proton transfer reactions to ionize the target molecules. The novel UV-RTILMs have the ability to ionize different and wide classes of compounds such as drugs, carbohydrate, and amino acids. The new UV-RTILMs series have been successfully and selectively applied for biosensing the lysates of pathogenic bacteria in the presence of the cell macromolecules. A new strategy for biosensing pathogens was presented via sensing the pathogens lysate in the cell suspension. The new materials can effectively detect the bacterial toxins without separation or any pretreatment. They offered excellent ionization of labile oligosaccharides with protonated peaks. They could significantly enhance the analyte signals, produce homogeneous spotting, reducing spot-to-spot variation, excellent vacuum stability, higher ion peak intensity, and wide application possibility. The physical parameters such as molar refractivity, molar volume, parachor, surface tension, density and polarizability were calculated and tabulated. The new UV-RTILMs could offer excellent reproducibility and great repeatability and they are promising matrices for wide applications on MALDI-MS. Copyright © 2014. Published by Elsevier B.V.

  2. Quantitation of underivatized branched-chain amino acids in sport nutritional supplements by capillary electrophoresis with direct or indirect UV absorbance detection.

    PubMed

    Qiu, Jun; Wang, Jinhao; Xu, Zhongqi; Liu, Huiqing; Ren, Jie

    2017-01-01

    The branched-chain amino acids (BCAAs) including leucine (Leu), isoleucine (Ile) and valine (Val) play a pivotal role in the human body. Herein, we developed capillary electrophoresis (CE) coupled with conventional UV detector to quantify underivatized BCAAs in two kinds of sport nutritional supplements. For direct UV detection at 195 nm, the BCAAs (Leu, two enantiomers of Ile and Val) were separated in a background electrolyte (BGE) consisting of 40.0 mmol/L sodium tetraborate, and 40.0 mmol/L β-cyclodextrin (β-CD) at pH 10.2. In addition, the indirect UV detection at 264 nm was achieved in a BGE of 2.0 mmol/L Na2HPO4, 10.0 mmol/L p-aminosalicylic acid (PAS) as UV absorbing probe, and 40.0 mmol/L β-CD at pH 12.2. The β-CD significantly benefited the isomeric separation of Leu, L- and D-Ile. The optimal conditions allowed the LODs (limit of detections) of direct and indirect UV absorption detection to be tens μmol/L level, which was comparable to the reported CE inline derivatization method. The RSDs (relative standard deviations) of migration time and peak area were less than 0.91% and 3.66% (n = 6). Finally, CE with indirect UV detection method was applied for the quantitation of BCAAs in two commercial sport nutritional supplements, and good recovery and precision were obtained. Such simple CE method without tedious derivatization process is feasible of quality control and efficacy evaluation of the supplemental proteins.

  3. Immuno-magnetic beads-based extraction-capillary zone electrophoresis-deep UV laser-induced fluorescence analysis of erythropoietin.

    PubMed

    Wang, Heye; Dou, Peng; Lü, Chenchen; Liu, Zhen

    2012-07-13

    Erythropoietin (EPO) is an important glycoprotein hormone. Recombinant human EPO (rhEPO) is an important therapeutic drug and can be also used as doping reagent in sports. The analysis of EPO glycoforms in pharmaceutical and sports areas greatly challenges analytical scientists from several aspects, among which sensitive detection and effective and facile sample preparation are two essential issues. Herein, we investigated new possibilities for these two aspects. Deep UV laser-induced fluorescence detection (deep UV-LIF) was established to detect the intrinsic fluorescence of EPO while an immuno-magnetic beads-based extraction (IMBE) was developed to specifically extract EPO glycoforms. Combined with capillary zone electrophoresis (CZE), CZE-deep UV-LIF allows high resolution glycoform profiling with improved sensitivity. The detection sensitivity was improved by one order of magnitude as compared with UV absorbance detection. An additional advantage is that the original glycoform distribution can be completely preserved because no fluorescent labeling is needed. By combining IMBE with CZE-deep UV-LIF, the overall detection sensitivity was 1.5 × 10⁻⁸ mol/L, which was enhanced by two orders of magnitude relative to conventional CZE with UV absorbance detection. It is applicable to the analysis of pharmaceutical preparations of EPO, but the sensitivity is insufficient for the anti-doping analysis of EPO in blood and urine. IMBE can be straightforward and effective approach for sample preparation. However, antibodies with high specificity were the key for application to urine samples because some urinary proteins can severely interfere the immuno-extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Quantitation of underivatized branched-chain amino acids in sport nutritional supplements by capillary electrophoresis with direct or indirect UV absorbance detection

    PubMed Central

    Liu, Huiqing; Ren, Jie

    2017-01-01

    The branched-chain amino acids (BCAAs) including leucine (Leu), isoleucine (Ile) and valine (Val) play a pivotal role in the human body. Herein, we developed capillary electrophoresis (CE) coupled with conventional UV detector to quantify underivatized BCAAs in two kinds of sport nutritional supplements. For direct UV detection at 195 nm, the BCAAs (Leu, two enantiomers of Ile and Val) were separated in a background electrolyte (BGE) consisting of 40.0 mmol/L sodium tetraborate, and 40.0 mmol/L β-cyclodextrin (β-CD) at pH 10.2. In addition, the indirect UV detection at 264 nm was achieved in a BGE of 2.0 mmol/L Na2HPO4, 10.0 mmol/L p-aminosalicylic acid (PAS) as UV absorbing probe, and 40.0 mmol/L β-CD at pH 12.2. The β-CD significantly benefited the isomeric separation of Leu, L- and D-Ile. The optimal conditions allowed the LODs (limit of detections) of direct and indirect UV absorption detection to be tens μmol/L level, which was comparable to the reported CE inline derivatization method. The RSDs (relative standard deviations) of migration time and peak area were less than 0.91% and 3.66% (n = 6). Finally, CE with indirect UV detection method was applied for the quantitation of BCAAs in two commercial sport nutritional supplements, and good recovery and precision were obtained. Such simple CE method without tedious derivatization process is feasible of quality control and efficacy evaluation of the supplemental proteins. PMID:28640882

  5. Mass Loss from the Nuclei of Active Galaxies

    NASA Technical Reports Server (NTRS)

    Crenshaw, Michael; Kraemer, Steven B.; George, Ian M.

    2003-01-01

    Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .

  6. Performance of dye sensitized solar cells (DSSC) using Syngonium Podophyllum Schott as natural dye and counter electrode

    NASA Astrophysics Data System (ADS)

    Oktariza, Lingga Ghufira; Yuliarto, Brian; Suyatman

    2018-05-01

    The extraction of chlorophyll pigment of Syngonium podophyllum Schott leaves which is used as natural dyes in this DSSC devices. The use of dye from nature with its simple production process is very effective to reduce DSSC production cost. Besides being used as a natural dye, chlorophyll can also be used as an alternative counter electrode. Chlorophyll that is used as a counter electrode has been through chemical activation and carbonization processes. The characterization were done using Uv-Vis, Cyclic Voltametry and DSSC device under solar simulator. Characterization of chlorophyll absorbance using UV-Vis has resulted in typical absorbance peak at visible light wavelength of 447 nm and 666 nm. The Tauc equation analysis of the Uv-Vis characterization showed 1.91 eV energy gap of chlorophyll. Chlorophyll carbonized dye is used as an alternative to Pt counter electrode. Carbonized chlorophyll dye resulted in lower conversion efficiency of 0.308% with HSE electrolyte.

  7. Combined "dual" absorption and fluorescence smartphone spectrometers.

    PubMed

    Arafat Hossain, Md; Canning, John; Ast, Sandra; Cook, Kevin; Rutledge, Peter J; Jamalipour, Abbas

    2015-04-15

    A combined "dual" absorption and fluorescence smartphone spectrometer is demonstrated. The optical sources used in the system are the white flash LED of the smartphone and an orthogonally positioned and interchangeable UV (λex=370  nm) and blue (λex=450  nm) LED. The dispersive element is a low-cost, nano-imprinted diffraction grating coated with Au. Detection over a 300 nm span with 0.42 nm/pixel resolution was carried out with the camera CMOS chip. By integrating the blue and UV excitation sources into the white LED circuitry, the entire system is self-contained within a 3D printed case and powered from the smartphone battery; the design can be scaled to add further excitation sources. Using a customized app, acquisition of absorption and fluorescence spectra are demonstrated using a blue-absorbing and green-emitting pH-sensitive amino-naphthalimide-based fluorescent probe and a UV-absorbing and blue-emitting Zn2+-sensitive fluoro-ionophore.

  8. Size and resin fractionations of dissolved organic matter and trihalomethane precursors from four typical source waters in China.

    PubMed

    Wei, Qunshan; Wang, Dongsheng; Wei, Qia; Qiao, Chunguang; Shi, Baoyou; Tang, Hongxiao

    2008-06-01

    Dissolved organic matter (DOM) and its potential to form disinfection by-products (DBPs) during drinking water treatment raise challenges to water quality control. Understanding both chemical and physical characteristics of DOM in source waters is key to better water treatment. In this study, the DOM from four typical source waters in China was fractionated by XAD resin adsorption (RA) and ultrafiltration (UF) techniques. The trihalomethane formation potential (THMFP) of all fractions in the DOM were investigated to reveal the major THM precursors. The fraction distributions of DOM could be related to their geographical origins in a certain extent. The dominant chemical fraction as THM precursors in the DOM from south waters (East-Lake reservoir in Shenzhen and Peal rivers in Guangzhou) was hydrophobic acid (HoA). The size fraction with molecular weight (MW) <1 kDa in both south waters had the highest THMFP. The results of cluster analysis showed that the parameters of fractions including DOC percentage (DOC%), UV254%, SUVA254 (specific UV254 absorbance) and THMFP were better for representing the differences of DOM from the studied waters than specific THMFP (STHMFP). The weak correlation between SUVA254 and STHMFP for either size or XAD fractions suggests that whether SUVA254 can be used as an indicator for the reactivity of THM formation is highly dependent on the nature of organic matter.

  9. Photoadaptation and protection against active forms of oxygen in the symbiotic procaryote Prochloron sp. and its ascidian host

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesser, M.P.; Stochaj, W.R.

    1990-06-01

    Superoxide dismutase, ascorbate, peroxidase, and catalase activities were studied in the symbiotic photosynthetic procaryote Prochloron sp. and its ascidian host Lissoclinum patella. The protein-specific activities of these antioxidant enzymes in the Prochloron sp. and L. patella collected at different depths from the Great Barrier Reef, Australia, were directly proportional to irradiance, whereas the pigment concentrations in the Prochloron sp. were inversely proportional to irradiance. The presence of a cyanide-sensitive superoxide dismutase, presumably a Cu-An metalloprotein, in the Prochloron sp. extends the possible phylogenetic distribution of this protein. The concentration of UV-absorbing mycosporine-like amino acids in inversely proportional to irradiance inmore » both the host and symbiont, suggesting that these compounds may not provide sufficient protection against UV radiation in high-irradiance environments. The significant differences in the specific activities of these antioxidant enzymes, cellular photosynthetic pigment concentrations, and UV-absorbing compounds from high- and low-irradiance habitats constitute an adaptive response to different photic environments. These photoadaptive responses are essential to prevent inhibition of photosynthesis by high fluxes of visible and UV radiation.« less

  10. Mycosporine-Like Amino Acids: Relevant Secondary Metabolites. Chemical and Ecological Aspects

    PubMed Central

    Carreto, Jose I.; Carignan, Mario O.

    2011-01-01

    Taxonomically diverse marine, freshwater and terrestrial organisms have evolved the capacity to synthesize, accumulate and metabolize a variety of UV-absorbing substances called mycosporine-like amino acids (MAAs) as part of an overall strategy to diminish the direct and indirect damaging effects of environmental ultraviolet radiation (UVR). Whereas the enzymatic machinery to synthesize MAAs was probably inherited from cyanobacteria ancestors via the endosymbionts hypothesis, metazoans lack this biochemical pathway, but can acquire and metabolize these compounds by trophic transference, symbiotic or bacterial association. In this review we describe the structure and physicochemical properties of MAAs, including the recently discovered compounds and the modern methods used for their isolation and identification, updating previous reviews. On this basis, we review the metabolism and distribution of this unique class of metabolites among marine organism. PMID:21556168

  11. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    PubMed

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.

  12. A flavonoid from Brassica rapa flower as the UV-absorbing nectar guide.

    PubMed

    Sasaki, Katsunori; Takahashi, Takashi

    2002-10-01

    The corolla of Brassica rapa has an UV-absorbing zone in its center, known as the nectar guide for attracting pollinating insects. The pigment which plays the role of the nectar guide was isolated from the petals and identified to be isorhamnetin 3,7-O-di-beta-D-glucopyranoside on the basis of MS and NMR spectroscopic data. The D-, L-configurations of the sugar moieties were determined by the fluorometric HPLC method. In plants raised in open field, there was a 13-fold higher content of the compound in the basal parts of the petals compared with the apical parts. This difference in flavonoid content is presumed to contribute to the visual attractiveness of B. rapa flowers to insect pollinators.

  13. Micromolecular modeling

    NASA Technical Reports Server (NTRS)

    Guillet, J. E.

    1984-01-01

    A reaction kinetics based model of the photodegradation process, which measures all important rate constants, and a computerized model capable of predicting the photodegradation rate and failure modes of a 30 year period, were developed. It is shown that the computerized photodegradation model for polyethylene correctly predicts failure of ELVAX 15 and cross linked ELVAX 150 on outdoor exposure. It is indicated that cross linking ethylene vinyl acetate (EVA) does not significantly change its degradation rate. It is shown that the effect of the stabilizer package is approximately equivalent on both polymers. The computerized model indicates that peroxide decomposers and UV absorbers are the most effective stabilizers. It is found that a combination of UV absorbers and a hindered amine light stabilizer (HALS) is the most effective stabilizer system.

  14. [Results after planned extracapsular cataract extraction with the Klöti stripper and implantation of UV light-absorbent Simcoe lenses with a 10-degree loop tilt].

    PubMed

    Gnad, H D; Skorpik, C; Paroussis, P

    1985-08-09

    Planned ECCE remains a valuable alternative to phacoemulsification due to its protection of the endothelial cells of the cornea. In contrast to the most commonly used infusion-aspiration systems, Kloeti's vitreous stripper provides, in addition, an excellent cutting mechanism enabling the removal of hard parts of the parenchyma or capsular remnants. The aspheric shaped UV light absorbing Simcoe lenses with a 10 grade loop angle used as lens replacement over the past 2 years in 300 cases did not cause any noteworthy complications. In 94% of cases a visual acuity of at least 0.5 was achieved; no case of cystoid macular edema has been observed so far.

  15. Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique

    NASA Astrophysics Data System (ADS)

    Isnaeni; Rahmawati, I.; Intan, R.; Zakaria, M.

    2018-03-01

    Carbon dots are new type of fluorescent nanoparticle that can be synthesis easily from natural sources. We have synthesized carbon dots from ginger and galangal herbs using microwave technique and studied their optical properties. We synthesized colloidal carbon dots in water solvent by varying microwave processing time. UV-Vis absorbance, photoluminescence, time-resolved photoluminescence, and transmission electron microscope were utilized to study properties of carbon dots. We found that microwave processing time significantly affect optical properties of synthesized carbon dots. UV-Vis absorbance spectra and time-resolved photoluminescence results show that luminescent of carbon dots is dominated by recombination process from n-π* surface energy level. With further development, these carbon dots are potential for several applications.

  16. Changes in the quality of river water before, during and after a major flood event associated with a La Niña cycle and treatment for drinking purposes.

    PubMed

    Murshed, Mohamad Fared; Aslam, Zeeshan; Lewis, Rosmala; Chow, Christopher; Wang, Dongsheng; Drikas, Mary; van Leeuwen, John

    2014-10-01

    The treatment of organics present in the lower reaches of a major river system (the Murray-Darling Basin, Australia) before (March-July 2010), during (December 2010-May 2011) and after (April-December 2012) a major flood period was investigated. The flood period (over 6months) occurred during an intense La Niña cycle, leading to rapid and high increases in river flows and organic loads in the river water. Dissolved organic carbon (DOC) increased (2-3 times) to high concentrations (up to 16mg/L) and was found to correlate with river flow rates. The treatability of organics was studied using conventional jar tests with alum and an enhanced coagulation model (mEnCo©). Predicted mean alum dose rates (per mg DOC) were higher before (9.1mg alum/mg DOC) and after (8.5mg alum/mg DOC) than during the flood event (8.0mg alum/mg DOC), indicating differences in the character of the organics in raw waters. To assess the character of natural organic matter present in raw and treated waters, high performance size exclusion chromatography with UV and fluorescence detectors were used. During the flood period, high molecular weight UV absorbing compounds (>2kDa) were mostly detected in waters collected, but were not evident in waters collected before and afterwards. The relative abundances of humic-like and protein-like compounds during and following the flood period were also investigated and found to be of a higher molecular weight during the flood period. The treatability of the organics was found to vary over the three climate conditions investigated. Copyright © 2014. Published by Elsevier B.V.

  17. Gene Expression Profiling in Response to Ultraviolet Radiation in Maize Genotypes with Varying Flavonoid Content1[w

    PubMed Central

    Casati, Paula; Walbot, Virginia

    2003-01-01

    Microarray hybridization was used to assess acclimation responses to four UV regimes by near isogenic maize (Zea mays) lines varying in flavonoid content. We found that 355 of the 2,500 cDNAs tested were regulated by UV radiation in at least one genotype. Among these, 232 transcripts are assigned putative functions, whereas 123 encode unknown proteins. UV-B increased expression of stress response and ribosomal protein genes, whereas photosynthesis-associated genes were down-regulated; lines lacking UV-absorbing pigments had more dramatic responses than did lines with these pigments, confirming the shielding role of these compounds. Sunlight filtered to remove UV-B or UV-B plus UV-A resulted in significant expression changes in many genes not previously associated with UV responses. Some pathways regulated by UV radiation are shared with defense, salt, and oxidative stresses; however, UV-B radiation can activate additional pathways not shared with other stresses. PMID:12913132

  18. Detection and characterization of uranium-humic complexes during 1D transport studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesher, Emily K.; Honeyman, Bruce D.; Ranville, James F.

    2013-05-01

    The speciation and transport of uranium (VI) through porous media is highly dependent on solution conditions, the presence of complexing ligands, and the nature of the porous media. The dependency on many variables makes prediction of U transport in bench-scale experiments and in the field difficult. In particular, the identification of colloidal U phases poses a technical challenge. Transport of U in the presence and absence of natural organic matter (Suwannee River humic acid, SRHA) through silica sand and hematite coated silica sand was tested at pH 4 and 5 using static columns, where flow is controlled by gravity andmore » residence time between advective pore volume exchanges can be strictly controlled. The column effluents were characterized by traditional techniques including ICPMS quantification of total [U] and [Fe], TOC analysis of [DOC], and pH analysis, and also by non-traditional techniques: flow field flow fractionation with online ICPMS detection (FlFFF-ICPMS) and specific UV absorbance (SUVA) characterization of effluent fractions. Key results include that the transport of U through the columns was enhanced by pre-equilibration with SRHA, and previously deposited U was remobilized by the addition of SRHA. The advanced techniques yielded important insights on the mechanisms of transport: FlFFF-ICPMS identified a U-SRHA complex as the mobile U species and directly quantified relative amounts of the complex, while specific UV absorbance (SUVA) measurements indicated a composition-based fractionation onto the porous media.« less

  19. Photostability effect of silica nanoparticles encapsulated fluorescence dye

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-12-01

    Fluorescence dyes are based on small organic molecules have become of interest in chemical biology and widely used for cell and intracellular imaging. However, fluorescence dyes have limitations such as photo bleaching, poor photochemical stability and has a short Stokes shift. It is less valuable for long-term cell tracking strategies and has very short lifetime. In order to overcome the problems, dye-incorporated nanomaterials become of interest. Nanomaterials encapsulation provides a protection layer around the fluorescence dye which improves the stability of fluorescence dye. In this study, silica nanoparticles encapsulated with 1,1%-dioctadecyl-3,3,3%,3%-tetramethylindocarbocyanine perchlorate (Dil) was successfully synthesised by using micelle entrapment method to investigate the effect of encapsulation of nanoparticles towards the properties of fluorescent dye. The synthesised nanoparticles (SiDil) was characterised by particle size analyser, Transmission Electron Microscopy (TEM), UV-Vis spectrometer and Fluorescent spectrometer. Observation using TEM showed spherical shape of nanoparticles with 53 nm diameter. Monodispersed and well nanoparticles distribution was confirmed by low polydispersity index of 0.063 obtained by particle size analyser. Furthermore, the photoluminescence properties of the SiDil were evaluated and compared with bare Dil dye. Both SiDil and bare Dil was radiated under 200 W of Halogen lamp for 60 minutes and the absorbance intensity was measured using UV-Vis spectrometer. The result showed more stable absorbance intensity for SiDil compared to bare Dil dye, which indicated that Si nanoparticles encapsulation improved the photostability property.

  20. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  1. Probing the Physical Properties and Origins of Ultra-fast Outflows in AGN

    NASA Astrophysics Data System (ADS)

    Kraemer, Steven B.; Tombesi, Francesco; Bottorff, Mark

    2017-01-01

    Approximately half of Type 1 AGN possess intrinsic absorption and high resolution UV and X-ray spectroscopy have revealed that the absorbing gas is radially outflowing, with velocities of 100s to 1000s km/sec. X-ray ("warm") absorbers, originally revealed by the presence of bound-free edges of O~VII and O~VIII, are more highly ionized than their UV counterparts, and photo-ionization modeling studies have determined that they have ionization parameters of logU ~ -1 to 1. Recently, muchmore highly ionized gas, with logU > 2, has been detected in XMM-Newton spectra, as evidenced by absorption lines from H- and He-like Fe. Some of these absorbers, ``Ultra Fast Outlows (UFOs)'', have radial velocities up to 0.2c. We have undertaken a detailed photo-ionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the UFOs are completely Compton-cooled, unlike the non-UFOS. Both types are too highly ionized to be radiatively accelerated, hence they are more likely driven via Magneto-Hydrodynamic processes. Their large column densities and velocity gradients are consistent with flows along magnetic streamlines emanating from accretion disks. Open questions include: the temporal stability of the UFOs, the apparent lack of non-UFOs in UFO sources, and their relationship to warm absorbers.

  2. Evaluation of advanced oxidation processes for water and wastewater treatment - A critical review.

    PubMed

    Miklos, David B; Remy, Christian; Jekel, Martin; Linden, Karl G; Drewes, Jörg E; Hübner, Uwe

    2018-03-22

    This study provides an overview of established processes as well as recent progress in emerging technologies for advanced oxidation processes (AOPs). In addition to a discussion of major reaction mechanisms and formation of by-products, data on energy efficiency were collected in an extensive analysis of studies reported in the peer-reviewed literature enabling a critical comparison of various established and emerging AOPs based on electrical energy per order (E EO ) values. Despite strong variations within reviewed E EO values, significant differences could be observed between three groups of AOPs: (1) O 3 (often considered as AOP-like process), O 3 /H 2 O 2 , O 3 /UV, UV/H 2 O 2 , UV/persulfate, UV/chlorine, and electron beam represent median E EO values of <1 kWh/m 3 , while median energy consumption by (2) photo-Fenton, plasma, and electrolytic AOPs were significantly higher (E EO values in the range of 1-100 kWh/m 3 ). (3) UV-based photocatalysis, ultrasound, and microwave-based AOPs are characterized by median values of >100 kWh/m 3 and were therefore considered as not (yet) energy efficient AOPs. Specific evaluation of 147 data points for the UV/H 2 O 2 process revealed strong effects of operational conditions on reported E EO values. Besides water type and quality, a major influence was observed for process capacity (lab-vs. pilot-vs. full-scale applications) and, in case of UV-based processes, of the lamp type. However, due to the contribution of other factors, correlation of E EO values with specific water quality parameters such as UV absorbance and dissolved organic carbon were not substantial. Also, correlations between E EO and compound reactivity with OH-radicals were not significant (photolytically active compounds were not considered). Based on these findings, recommendations regarding the use of the E EO concept, including the upscaling of laboratory results, were derived. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Screening and monitoring microbial xenobiotics' biodegradation by rapid, inexpensive and easy to perform microplate UV-absorbance measurements.

    PubMed

    Herzog, Bastian; Lemmer, Hilde; Horn, Harald; Müller, Elisabeth

    2014-02-22

    Evaluation of xenobiotics biodegradation potential, shown here for benzotriazoles (corrosion inhibitors) and sulfamethoxazole (sulfonamide antibiotic) by microbial communities and/or pure cultures normally requires time intensive and money consuming LC/GC methods that are, in case of laboratory setups, not always needed. The usage of high concentrations to apply a high selective pressure on the microbial communities/pure cultures in laboratory setups, a simple UV-absorbance measurement (UV-AM) was developed and validated for screening a large number of setups, requiring almost no preparation and significantly less time and money compared to LC/GC methods. This rapid and easy to use method was evaluated by comparing its measured values to LC-UV and GC-MS/MS results. Furthermore, its application for monitoring and screening unknown activated sludge communities (ASC) and mixed pure cultures has been tested and approved to detect biodegradation of benzotriazole (BTri), 4- and 5-tolyltriazole (4-TTri, 5-TTri) as well as SMX. In laboratory setups, xenobiotics concentrations above 1.0 mg L(-1) without any enrichment or preparation could be detected after optimization of the method. As UV-AM does not require much preparatory work and can be conducted in 96 or even 384 well plate formats, the number of possible parallel setups and screening efficiency was significantly increased while analytic and laboratory costs were reduced to a minimum.

  4. Microclimatic variation in UV perception and related disparity in tropane and quinolizidine alkaloid composition of Atropa acuminata, Lupinus polyphyllus and Hyoscyamus niger.

    PubMed

    Jan, Sumira; Kamili, Azra N; Parray, Javid A; Bedi, Yashbir S; Ahmad, Parvaiz

    2016-08-01

    The aim of current research was to evaluate the physiological adjustment in three medicinal herbs viz., Atropa acuminata, Lupinus polyphyllus and Hyoscyamus niger to the winter period characterised by intense UV flux in Kashmir valley across the North Western Himalaya. Quinolizidine (QA) and tropane alkaloid (TA) concentrations were analysed in these herbs thriving at two different altitudes via GC-MS and correlated by PCA analysis. This study investigated the hypothesis that UV reflectance and absorbance at low temperatures are directly related to disparity in alkaloid accumulation. Among QAs in L. polyphyllus, ammodendrine and lupanine accumulated at higher concentration and exhibited significant variation of 186.36% and 95.91% in ammodendrine and lupanine respectively in both sites. Tetrahydrohombifoline displayed non-significant variation of about 9.60% irrespective of sites. Among tropane alkaloid (TA), hyoscyamine was recorded as the most abundant constituent irrespective of the plant and site while apotropine accumulated in lesser quantity in A. acuminata than H. niger. However, apotropine demonstrated significant variation of 175% among both sites. The final concentration of quinolizidine (QA) and tropane alkaloid (TA) reflects the interplay between reflectance and absorbance of UV radiation response field. These findings suggest that spectral response of UV light contributes directly to alkaloid biosynthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Screening and monitoring microbial xenobiotics’ biodegradation by rapid, inexpensive and easy to perform microplate UV-absorbance measurements

    PubMed Central

    2014-01-01

    Background Evaluation of xenobiotics biodegradation potential, shown here for benzotriazoles (corrosion inhibitors) and sulfamethoxazole (sulfonamide antibiotic) by microbial communities and/or pure cultures normally requires time intensive and money consuming LC/GC methods that are, in case of laboratory setups, not always needed. Results The usage of high concentrations to apply a high selective pressure on the microbial communities/pure cultures in laboratory setups, a simple UV-absorbance measurement (UV-AM) was developed and validated for screening a large number of setups, requiring almost no preparation and significantly less time and money compared to LC/GC methods. This rapid and easy to use method was evaluated by comparing its measured values to LC-UV and GC-MS/MS results. Furthermore, its application for monitoring and screening unknown activated sludge communities (ASC) and mixed pure cultures has been tested and approved to detect biodegradation of benzotriazole (BTri), 4- and 5-tolyltriazole (4-TTri, 5-TTri) as well as SMX. Conclusions In laboratory setups, xenobiotics concentrations above 1.0 mg L-1 without any enrichment or preparation could be detected after optimization of the method. As UV-AM does not require much preparatory work and can be conducted in 96 or even 384 well plate formats, the number of possible parallel setups and screening efficiency was significantly increased while analytic and laboratory costs were reduced to a minimum. PMID:24558966

  6. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to comparemore » internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.« less

  7. UV-induced changes in antioxidant capacities of selected carotenoids toward lecithin in aqueous solution

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Dragan; Markovic, Dejan

    2008-01-01

    Antioxidant action of four selected carotenoids (two carotenes, β-carotene and lycopene, and two xanthophylls, lutein and neoxanthin) on UV-induced lecithin lipid peroxidation in aqueous solution has been studied by thiobarbituric acid (TBA) test. TBA test is based on absorbance measurements of complex formed between malondialdehyde, secondary product of lipid peroxidation and thiobarbituric acid, at 532 nm. The antioxidant capacities of investigated carotenoids appeared to be strongly affected by UV-action. High energy input of the involved UV-photons plays major governing role, though a certain impact of the carotenoid structures cannot be neglected. The results suggest a minor remained contribution of selected carotenoids to prevention of lecithin peroxidation in the studied system as a result of UV-irradiation.

  8. Ultraviolet and X-ray Variability of the Seyfert 1.5 Galaxy Markarian 817

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Danforth, Charles; Vasudevan, Ranjan; Brandt, W. N.; Scott, Jennifer; Froning, Cynthia; Keeney, Brian; Shull, J. Michael; Penton, Steve; Mushotzky, Richard; Schneider, Donald P.; Arav, Nahum

    2011-02-01

    We present an investigation of the ultraviolet and X-ray spectra of the Seyfert 1.5 galaxy Markarian 817. The ultraviolet analysis includes two recent observations taken with the Cosmic Origins Spectrograph (COS) in 2009 August and December, as well as archival spectra from the International Ultraviolet Explorer and the Hubble Space Telescope. Twelve Lyα absorption features are detected in the 1997 Goddard High Resolution Spectrograph (GHRS) and 2009 COS spectra—of these, four are associated with high-velocity clouds in the interstellar medium, four are at low significance, and the remaining four are intrinsic features, which vary between the GHRS and COS observations. The strongest intrinsic absorber in the 1997 spectrum has a systemic velocity of ~-4250 km s-1. The corresponding feature in the COS data is five times weaker than the GHRS absorber. The three additional weak (equivalent width from 13 to 54 mÅ) intrinsic Lyα absorbers are at systemic velocities of -4100 km s-1, -3550 km s-1, and -2600 km s-1. However, intrinsic absorption troughs from highly ionized C IV and N V are not detected in the COS observations. No ionized absorption signatures are detected in the ~14 ks XMM-Newton EPIC spectra. The factor of five change in the intrinsic Lyα absorber is most likely due to bulk motions in the absorber, since there is no drastic change in the UV luminosity of the source from the GHRS to the COS observations. In a study of the variability of Mrk 817, we find that the X-ray luminosity varies by a factor of ~40 over 20 years, while the UV continuum/emission lines vary by at most a factor of ~2.3 over 30 years. The variability of the X-ray luminosity is strongly correlated with the X-ray power-law index, but no correlation is found with the simultaneous optical/UV photometry.

  9. Protective Role of Comfrey Leave Extracts on UV-induced Zebrafish Fin Damage

    PubMed Central

    Cheng, Chien-Chung; Chou, Chi-Yuan; Chang, Yao-Chin; Wang, Hsuan-Wen; Wen, Chi-Chung; Chen, Yau-Hung

    2014-01-01

    In zebrafish, UV exposure leads to fin malformation phenotypes including fin reduction or absence. The present study evaluated UV-protective activities of comfrey leaves extracts in a zebrafish model by recording fin morphological changes. Chemopreventive effects of comfrey leave extracts were evaluated using Kaplan-Meier analysis and Cox proportional hazards regression. The results showed that (1) the mean times of return to normal fin in the UV+comfrey (50 and 100 ppm) groups were 3.43 and 2.86 days and were quicker compared with that in the UV only group (4.21 days); (2) zebrafish fins in the UV+comfrey (50 and 100 ppm) groups were 2.05 and 3.25 times more likely to return to normal than those in the UV only group; and (3) comfrey leave extracts had UV-absorbance abilities and significantly reduced ROS production in UV-exposed zebrafish embryos, which may attenuate UV-mediated apoptosis. In conclusion, comfrey leaves extracts may have the potential to be developed as UV-protective agents to protect zebrafish embryos from UV-induced damage. PMID:25352712

  10. NIR absorbing diferrocene-containing meso-cyano-BODIPY with a UV-Vis-NIR spectrum remarkably close to that of magnesium tetracyanotetraferrocenyltetraazaporphyrin.

    PubMed

    Didukh, Natalia O; Zatsikha, Yuriy V; Rohde, Gregory T; Blesener, Tanner S; Yakubovskyi, Viktor P; Kovtun, Yuriy P; Nemykin, Victor N

    2016-10-04

    Diferrocene-containing meso-cyano-BODIPY (4) was prepared by the direct cyanation/oxidation reaction of symmetric BODIPY 1 followed by Knoevenagel condensation with ferrocenealdehyde. Ferrocene-containing BODIPY 4 was characterized by a variety of spectroscopic, electrochemical, and theoretical methods and its UV-Vis-NIR spectrum has a striking similarity with a UV-Vis-NIR spectrum of the previously reported magnesium 2(3),7(8),12(13),17(18)-tetracyano-3(2),8(7),13(12),18(17)-tetraferrocenyl-5,10,15,20-tetraazaporphyrin.

  11. Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio.

    PubMed

    Zivcak, Marek; Brückova, Klaudia; Sytar, Oksana; Brestic, Marian; Olsovska, Katarina; Allakhverdiev, Suleyman I

    2017-06-01

    Environmentally induced variation and the genotypic differences in flavonoid and phenolic content in lettuce can be reliably detected using the appropriate parameters derived from the records of rapid non-invasive fluorescence technique. The chlorophyll fluorescence excitation ratio method was designed as a rapid and non-invasive tool to estimate the content of UV-absorbing phenolic compounds in plants. Using this technique, we have assessed the dynamics of accumulation of flavonoids related to developmental changes and environmental effects. Moreover, we have tested appropriateness of the method to identify the genotypic differences and fluctuations in total phenolics and flavonoid content in lettuce. Six green and two red genotypes of lettuce (Lactuca sativa L.) grown in pots were exposed to two different environments for 50 days: direct sunlight (UV-exposed) and greenhouse conditions (low UV). The indices based on the measurements of chlorophyll fluorescence after red, green and UV excitation indicated increase of the content of UV-absorbing compounds and anthocyanins in the epidermis of lettuce leaves. In similar, the biochemical analyses performed at the end of the experiment confirmed significantly higher total phenolic and flavonoid content in lettuce plants exposed to direct sun compared to greenhouse conditions and in red compared to green genotypes. As the correlation between the standard fluorescence indices and the biochemical records was negatively influenced by the presence of red genotypes, we proposed the use of a new parameter named Modified Flavonoid Index (MFI) taking into an account both absorbance changes due to flavonol and anthocyanin content, for which the correlation with flavonoid and phenolic content was relatively good. Thus, our results confirmed that the fluorescence excitation ratio method is useful for identifying the major differences in phenolic and flavonoid content in lettuce plants and it can be used for high-throughput pre-screening and phenotyping of leafy vegetables in research and breeding applications towards improvement of vegetable health effects.

  12. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOEpatents

    Jorgensen, G. J.; Gee, R.

    2006-01-24

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  13. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  14. Isolation of Purines and Pyrimidines from the Murchison Meteorite Using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.

    2004-01-01

    The origin of life on Earth, and possibly on other planets such as Mars, would have required the presence of liquid water and a continuous supply of prebiotic organic compounds. The exogenous delivery of organic matter by asteroids, comets, and carbonaceous meteorites could have contributed to the early Earth s prebiotic inventory by seeding the planet with biologically important organic compounds. A wide variety of prebiotic organic compounds have previously been detected in the Murchison CM type carbonaceous chondrite including amino acids, purines and pyrimidines. These compounds dominate terrestrial biochemistry and are integral components of proteins, DNA and RNA. Several purines including adenine, guanine, hypoxanthine, and xanthine, as well as the pyrimidine uracil, have previously been detected in water or formic acid extracts of Murchison using ion-exclusion chromatography and ultraviolet spectroscopy. However, even after purification of these extracts, the accurate identification and quantification of nucleobases is difficult due to interfering UV absorbing compounds. In order to reduce these effects, we have developed an extraction technique using sublimation to isolate purines and pyrimidines from other non-volatile organic compounds in Murchison acid extracts.

  15. STIS Observations of the Intrinsic UV Absorption in the Dwarf Seyfert Nucleus of NGC 4395

    NASA Astrophysics Data System (ADS)

    Kraemer, Steven

    2002-07-01

    The Sd IV dwarf galaxy NGC 4395 is one of the nearest {d 4.2 Mpc} and least luminous {L_bol 10^41 ergs s^-1} examples of Seyfert 1 galaxies. Furthermore, it is the only known example of an active nucleus within a bulgeless, extreme late-type galaxy. This unique object possesses all of the classic Seyfert 1 properties in miniature, including broad and narrow emission lines and highly variable X-ray emission, presumably powered by a small {few x 10^4 M_odot} black hole. Furthermore, we have discovered evidence for blueshifted, intrinsic absorption lines in the UV {C IV LambdaLambda1548.2, 1550.8}, while X-ray spectra show the presence of bound-free edges from O VII and O VIII. We propose HST/STIS echelle observations to determine the properties {ionization states, column densities, velocity coverages, covering factors} of the intrinsic UV absorbers in NGC 4395. Due to the high covering factor of its narrow-line emission, NGC 4395 offers the best case for testing the connection between the absorbers and the narrow-line region {NLR}. Furthermore, an empirical comparison of its absorption properties with those in higher luminosity active galactic nuclei {AGN} will provide valuable constraints on dynamical models of the absorbers, which make predictions that are strongly dependent on luminosity and/or central black hole mass.

  16. Tryptophan-to-Tryptophan Energy Transfer in UV-B photoreceptor UVR8

    NASA Astrophysics Data System (ADS)

    Li, Xiankun; Zhong, Dongping

    UVR8 (UV RESISTANCE LOCUS 8) protein is a UV-B photoreceptor in high plants. UVR8 is a homodimer that dissociates into monomers upon UV-B irradiation (280 nm to 315 nm), which triggers various protective mechanisms against UV damages. Uniquely, UVR8 does not contain any external chromophores and utilizes the UV-absorbing natural amino acid tryptophan (Trp) to perceive UV-B. Each UVR8 monomer has 14 tryptophan residues. However, only 2 epicenter Trp (W285 W233) are critical to the light induced dimer-to-monomer transformation. Here, we revealed, using site-directed mutagenesis and spectroscopy, a striking energy flow network, in which other tryptophan chromophores serve as antenna to transfer excitation energy to epicenter Trp, greatly enhancing UVR8 light-harvesting efficiency. Furthermore, Trp-to-Trp energy transfer rates were measured and agree well with theoretical values.

  17. Design of a Hole Trapping Ligand

    DOE PAGES

    La Croix, Andrew D.; O’Hara, Andrew; Reid, Kemar R.; ...

    2017-01-18

    A new ligand that covalently attaches to the surface of colloidal CdSe/ CdS nanorods and can simultaneously chelate a molecular metal center is described. The dithiocarbamate$-$bipyridine ligand system facilitates hole transfer through energetic overlap at the inorganic$-$organic interface and conjugation through the organic ligand to a chelated metal center. Density functional theory calculations show that the coordination of the free ligand to a CdS surface causes the formation of two hybridized molecular states that lie in the band gap of CdS. The further chelation of Fe(II) to the bipyridine moiety causes the presence of seven midgap states. Hole transfer frommore » the CdS valence band to the midgap states is dipole allowed and occurs at a faster rate than what is experimentally known for the CdSe/CdS band-edge radiative recombination. In the case of the ligand bound with iron, a two-step process emerges that places the hole on the iron, again at rates much faster than band gap recombination. The system was experimentally assembled and characterized via UV$-$vis absorbance spectroscopy, fluorescence spectroscopy, time-resolved photoluminescence spectroscopy, and energy dispersive X-ray spectroscopy. Lastly, theoretically predicted red shifts in absorbance were observed experimentally, as well as the expected quench in photoluminescence and lifetimes in time-resolved photoluminescence« less

  18. Characterization of dissolved organic matter during reactive transport: A column experiment with spectroscopic detection

    NASA Astrophysics Data System (ADS)

    Vazquez, A.; Hernández, S.; Rasmussen, C.; Chorover, J.

    2010-12-01

    Al and Fe oxy-hydroxide minerals have been implicated in dissolved organic matter (DOM) stabilization. DOM solutions from a Pinus ponderosa forest floor (PPDOM) were used to irrigate polypropylene columns, 3.2 cm long by 0.9 cm diameter (total volume 2.0 cm3), that were packed with quartz sand (QS), gibbsite-quartz sand (Al-QS), and goethite-quartz sand (Fe-QS) mixtures. To investigate the mobilization and fractionation of DOM during reactive transport, effluent solutions were characterized by UV-Vis absorbance and excitation-emission matrix (EEM) fluorescence spectroscopies. Magnitude of PPDOM sorption followed the trend Al-QS > Fe-QS > QS during the initial transport. Effluent pH values suggest that ligand exchange is a primary mechanism for PPDOM sorption onto oxy-hydroxide minerals. Low molar absorptivity values were observed in effluent solutions of early pore volumes, indicating preferential mobilization of compounds with low aromatic character. Compounds traditionally characterized by EEM spectroscopy as being more highly humified were favorably absorbed onto the gibbsite and goethite surfaces. Humification index values (HIX) were also correlated with DOM aromaticity. HIX results suggest that the presence of low mass fractions of oxy-hydroxide minerals affect the preferential uptake of high molar mass constituents of PPDOM during reactive transport.

  19. Design of a Hole Trapping Ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Croix, Andrew D.; O’Hara, Andrew; Reid, Kemar R.

    A new ligand that covalently attaches to the surface of colloidal CdSe/ CdS nanorods and can simultaneously chelate a molecular metal center is described. The dithiocarbamate$-$bipyridine ligand system facilitates hole transfer through energetic overlap at the inorganic$-$organic interface and conjugation through the organic ligand to a chelated metal center. Density functional theory calculations show that the coordination of the free ligand to a CdS surface causes the formation of two hybridized molecular states that lie in the band gap of CdS. The further chelation of Fe(II) to the bipyridine moiety causes the presence of seven midgap states. Hole transfer frommore » the CdS valence band to the midgap states is dipole allowed and occurs at a faster rate than what is experimentally known for the CdSe/CdS band-edge radiative recombination. In the case of the ligand bound with iron, a two-step process emerges that places the hole on the iron, again at rates much faster than band gap recombination. The system was experimentally assembled and characterized via UV$-$vis absorbance spectroscopy, fluorescence spectroscopy, time-resolved photoluminescence spectroscopy, and energy dispersive X-ray spectroscopy. Lastly, theoretically predicted red shifts in absorbance were observed experimentally, as well as the expected quench in photoluminescence and lifetimes in time-resolved photoluminescence« less

  20. UV-radiation-induced electron emission by hormones. Hypothesis for specific communication mechanisms

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola

    2009-11-01

    The highlights of recently observed electron emission from electronically excited sexual hormones (17β-estradiol, progesterone, testosterone) and the phytohormone genistein in polar media are briefly reviewed. The electron yield, Q(e aq-), dependence from substrate concentration, hormone structure, polarity of solvent, absorbed energy and temperature are discussed. The hormones reactivity with e aq- and efficiency in electron transfer ensure them the ability to communicate with other biological systems in an organism. A hypothesis is presented for the explanation of the mechanisms of the distinct recognition of signals transmitted by electrons, originating from different types of hormones to receiving centres. Biological consequences of the electron emission in respect to cancer are mentioned.

  1. Preliminary Method for Direct Quantification of Colistin Methanesulfonate by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    PubMed Central

    Niece, Krista L.

    2015-01-01

    Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). PMID:26124160

  2. Investigation of nitrogen transformations in a southern California constructed wastewater treatment wetland

    USGS Publications Warehouse

    Sartoris, J.J.; Thullen, J.S.; Barber, L.B.; Salas, D.E.

    2000-01-01

    A 9.9-ha combined habitat and wastewater treatment demonstration wetland was constructed and planted in the summer of 1994, at Eastern Municipal Water District’s (EMWD) Hemet/San Jacinto Regional Water Reclamation Facility (RWRF) in southern California. From January 1996 through September 1997, the marsh–pond–marsh wetland system was operated to polish an average of 3785 m3 d−1 (1×106 gal day−1) of secondary-treated effluent from the RWRF. Nitrogen removal was a major objective of this wetland treatment. Weekly inflow/outflow water quality monitoring of the wetland was supplemented with biannual, 45-station synoptic surveys within the system to determine internal distribution patterns of the nitrogen species (total ammonia, nitrite, nitrate, and organic nitrogen), total organic carbon (TOC), and ultraviolet absorbance at 254 nm (UV254). Synoptic surveys were carried out during May 22 and September 17, 1996, and May 6 and September 25, 1997 and the results were mapped using the ARC/INFO processing package and inverse distance weighted mathematical techniques. Distribution patterns of the various nitrogen species, TOC, and UV254 within the wetland indicate that the nitrogen dynamics of the system are influenced both by variations in treatment plant loading, and, increasingly, by the degree of coverage and maturity of the emergent vegetation.

  3. Optical properties and molecular diversity of dissolved organic matter in the Bering Strait and Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Gonsior, Michael; Luek, Jenna; Schmitt-Kopplin, Philippe; Grebmeier, Jacqueline M.; Cooper, Lee W.

    2017-10-01

    Changes in the molecular composition of dissolved organic matter (DOM) and its light absorbing chromophoric component (CDOM) are of particular interest in the Arctic region because of climate change effects that lead to warmer sea surface temperatures and longer exposure to sunlight. We used continuous UV-vis (UV-vis) spectroscopy, excitation emission matrix fluorescence and ultrahigh resolution mass spectrometry during a transect from the Aleutian Islands in the Bering Sea to the Chukchi Sea ice edge through Bering Strait to determine the variability of DOM and CDOM. These data were combined with discrete sampling for stable oxygen isotopes of seawater, in order to evaluate the contributions of melted sea ice versus runoff to the DOM and CDOM components. This study demonstrated that high geographical resolution of optical properties in conjunction with stable oxygen ratios and non-targeted ultrahigh resolution mass spectrometry was able to distinguish between different DOM sources in the Arctic, including identification of labile DOM sources in Bering Strait associated with high algal blooms and sampling locations influenced by terrestrially-derived DOM, such as the terrestrial DOM signal originating from Arctic rivers and dirty/anchor sea ice. Results of this study also revealed the overall variability and chemodiversity of Arctic DOM present in the Bering and Chukchi Seas.

  4. Biochemical Detection and Identification False Alarm Rate Dependence on Wavelength Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Bhartia, R.; Hug, W. F.; Sala, E. C.; Sijapati, K.; Lane, A. L.; Reid, R. D.; Conrad, P. G.

    2006-01-01

    Most organic and many inorganic materials absorb strongly in specific wavelength ranges in the deep UV between about 220nm and 300nm. Excitation within these absorption bands results in native fluorescence emission. Each compound or composite material, such as a bacterial spore, has a unique excitation-emission fingerprint that can be used to provide information about the material. The sensitivity and specificity with which these materials can be detected and identified depends on the excitation wavelength and the number and location of observation wavelengths.We will present data on our deep ultraviolet Targeted Ultraviolet Chemical Sensors that demonstrate the sensitivity and specificity of the sensors. In particular, we will demonstrate the ability to quantitatively differentiate a wide range of biochemical agent targets against a wide range of background materials. We will describe the relationship between spectral resolution and specificity in target identification, as well as simple, fast, algorithms to identify materials.Hand-held, battery operated instruments using a deep UV laser and multi-band detection have been developed and deployed on missions to the Antarctic, the Arctic, and the deep ocean with the capability of detecting a single bacterial spore and to differentiate a wide range of organic and biological compounds.

  5. Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content.

    PubMed

    Zheng, Wei; Lü, Fan; Bolyard, Stephanie C; Shao, Liming; Reinhart, Debra R; He, Pinjing

    2015-02-01

    To understand the applicability of the termination indicators for landfill municipal solid waste (MSW) with low initial lignin content, four different accelerated landfill stabilization techniques were applied to anaerobic landfilled waste, including anaerobic flushing with water, anaerobic flushing with Fenton-treated leachate, and aerobic flushing with Fenton-treated and UV/H2O2-treated leachate. Termination indicators, including total organic carbon (TOC), ammonia-N (NH4(+)-N), the ratio of UV absorbance at 254 nm to TOC concentration (SUVA254), fluorescence spectra of leachate, methane production, oxygen consumption, lignocellulose content, and humus-like content were evaluated. Results suggest that oxygen consumption related indicators used as a termination indicator for low-lignin-content MSW were more sensitive than methane consumption related indicators. Aeration increased humic acid (HA) and (HA+FA)/HyI content by 2.9 and 1.7 times compared to the anaerobically stabilized low-lignin-content MSW. On the other hand, both the fulvic acid (FA) and hydrophilic (HyI) fractions remained constant regardless of stabilization technique. The target value developed for low-lignin-content MSW was quite different than developed countries mainly due to low residual biodegradable organic carbon content in stabilized low-lignin-content MSW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.

    PubMed

    Zhai, Hongyan; He, Xizhen; Zhang, Yan; Du, Tingting; Adeleye, Adeyemi S; Li, Yao

    2017-08-01

    This study investigated the potential formation of disinfection byproducts (DBPs) during chlorination and chloramination of 20 water samples collected from different points of Yuqiao reservoir in Tianjin, China. The concentrations of dissolved organic matter and ammonia decreased downstream the reservoir, while the specific UV absorbance (SUVA: the ratio of UV 254 to dissolved organic carbon) increased [from 0.67 L/(mg*m) upstream to 3.58 L/(mg*m) downstream]. The raw water quality played an important role in the formation of DBPs. During chlorination, haloacetic acids (HAAs) were the major DBPs formed in most of the water samples, followed by trihalomethanes (THMs). CHCl 3 and CHCl 2 Br were the major THM species, while trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were the major HAA species. Chloramination, on the other hand, generally resulted in lower concentrations of THMs (CHCl 3 ), HAAs (TCAA and DCAA), and haloacetonitriles (HANs). All the species of DBPs formed had positive correlations with the SUVA values, and HANs had the highest one (R 2  = 0.8). The correlation coefficients between the analogous DBP yields and the SUVA values in chlorinated samples were close to those in chloraminated samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Distinct Distribution of Purines in CM and CR Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Stern, Jennifer C.; Glavin, Daniel P.; Smith, Karen E.; Martin, Mildred G.; Dworkin, Jason P.

    2010-01-01

    Carbonaceous meteorites contain a diverse suite of organic molecules and delivered pre biotic organic compounds, including purines and pyrimidines, to the early Earth (and other planetary bodies), seeding it with the ingredients likely required for the first genetic material. We have investigated the distribution of nucleobases in six different CM and CR type carbonaceous chondrites, including fivc Antarctic meteorites never before analyzed for nucleobases. We employed a traditional formic acid extraction protocol and a recently developed solid phase extraction method to isolate nucleobases. We analyzed these extracts by high performance liquid chromatography with UV absorbance detection and tandem mass spectrometry (HPLC-UV -MS/MS) targeting the five canonical RNAIDNA bases and hypoxanthine and xanthine. We detected parts-per-billion levels of nucleobases in both CM and CR meteorites. The relative abundances of the purines found in Antarctic CM and CR meteorites were clearly distinct from each other suggesting that these compounds are not terrestrial contaminants. One likely source of these purines is formation by HCN oligomerization (with other small molecules) during aqueous alteration inside the meteorite parent body. The detection of the purines adenine (A), guanine (0), hypoxanthine (HX), and xanthine (X) in carbonaceous meteorites indicates that these compounds should have been available on the early Earth prior to the origin of the first genetic material.

  8. Pretreatment of a primary and secondary sludge blend at different thermal hydrolysis temperatures: Impacts on anaerobic digestion, dewatering and filtrate characteristics.

    PubMed

    Higgins, Matthew J; Beightol, Steven; Mandahar, Ushma; Suzuki, Ryu; Xiao, Steven; Lu, Hung-Wei; Le, Trung; Mah, Joshua; Pathak, Bipin; DeClippeleir, Haydee; Novak, John T; Al-Omari, Ahmed; Murthy, Sudhir N

    2017-10-01

    A study was performed to evaluate the effect of thermal hydrolysis pretreatment (THP) temperature on subsequent digestion performance and operation, as well as downstream parameters such as dewatering and cake quality. A blend of primary and secondary solids from the Blue Plains treatment plant in Washington, DC was dewatered to about 16% total solids (TS), and thermally hydrolyzed at five different temperatures 130, 140, 150, 160, 170 °C. The thermally hydrolyzed solids were then fed to five separate, 10 L laboratory digesters using the same feed concentration, 10.5% TS and a solids retention time (SRT) of 15 days. The digesters were operated over a six month period to achieve steady state conditions. The higher thermal hydrolysis temperatures generally improved the solids reduction and methane yields by about 5-6% over the temperature range. The increased temperature reduced viscosity of the solids and increased the cake solids after dewatering. The dissolved organic nitrogen and UV absorbance generally increased at the higher THP temperatures. Overall, operating at a higher temperature improved performance with a tradeoff of higher dissolved organic nitrogen and UV adsorbing materials in the return liquor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Comparison of ultraviolet absorbance and NO-chemiluminescence for ozone measurement in wildfire plumes at the Mount Bachelor Observatory

    NASA Astrophysics Data System (ADS)

    Gao, Honglian; Jaffe, Daniel A.

    2017-10-01

    The goal of this paper is to evaluate the accuracy of the commonly used ozone (O3) instrument (the ultraviolet (UV) photometer) against a Federal Reference Method (Nitric Oxide -chemiluminescence) for ozone measurement in wildfire smoke plumes. We carried out simultaneous ozone measurement with two UV O3 photometers and one nitric oxide-chemiluminescence (NO-CL) ozone detectors during wildfire season (Aug. 1-Sept. 30) in 2015 at the Mount Bachelor Observatory (MBO, 2763 m above mean sea level, Oregon, USA). The UV O3 shows good agreement and excellent correlation to NO-CL O3, with linear regression slopes close to unity and R2 of 0.92 for 1-h average data and R2 of 0.93 for O3 daily maximum 8-h average (MDA8). During this two-month period we identified 35 wildfire events. Ozone enhancements in those wildfire plumes measured by NO-CL O3 and UV O3 monitors also show good agreement and excellent linear correlation, with a slope and R2 of 1.03 and 0.86 for O3 enhancements (ΔO3) and 1.00 and 0.98 for carbon monoxide (CO)-normalized ozone enhancement ratios (ΔO3/ΔCO), respectively. Overall, the UV O3 was found to have a positive bias of 4.7 ± 2.8 ppbv compared to the NO-CL O3. The O3 bias between NO-CL O3 and UV O3 is independent of wildfire plume tracers such as CO, particulate matter (PM1), aerosol scattering, and ultrafine particles. The results demonstrate that the UV O3 absorbance method is reliable, even in highly concentrated wildfire plumes.

  10. Combined Effects of UVR and Temperature on the Survival of Crab Larvae (Zoea I) from Patagonia: The Role of UV-Absorbing Compounds

    PubMed Central

    Hernández Moresino, Rodrigo D.; Helbling, E. Walter

    2010-01-01

    The aim of our study was to assess the combined impact of UVR (280–400 nm) and temperature on the first larval stage (Zoea I) of three crab species from the Patagonian coast: Cyrtograpsus altimanus, C. angulatus, and Leucippa pentagona. We determined the survival response of newly hatched Zoea I after being exposed for 8–10 h under a solar simulator (Hönle SOL 1200) at 15 and 20 °C. There was no mortality due to Photosynthetic Active Radiation (PAR, 400–700 nm) or ultraviolet-A radiation (UV-A, 315–400 nm), and all the observed mortality was due to ultraviolet-B radiation (UV-B, 280–315 nm). The data of larval mortality relative to exposure time was best fit using a sigmoid curve. Based on this curve, a threshold (Th) and the lethal dose for 50% mortality (LD50) were determined for each species. Based on the Th and LD50, C. altimanus was found to be the most resistant species, while L. pentagona was found to be the most sensitive to UV-B. For both species of Cyrtograpsus, mortality was significantly lower at 20 °C than at 15 °C; however, no significant differences between the two temperature treatments were found in L. pentagona. Bioaccumulation of UV-absorbing compounds in the gonads and larvae of C. altimanus, and to a lesser extent in C. angulatus, might have contributed for counteracting the impact of UV-B. However, most of the resilience to UV-B observed with the increase in temperature might be due to an increase in metabolic activity caused by a repair mechanism mediated by enzymes. PMID:20559492

  11. A Global, Decadal, Quantitative Record of Absorbing Aerosols above Cloud Using OMI's Near-UV Observations

    NASA Astrophysics Data System (ADS)

    Torres, O.; Jethva, H. T.; Ahn, C.

    2016-12-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes of the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over dark surface, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing (warming) at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud directly depends on the aerosol loading, microphysical and optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. Physically based on the strong `color ratio' effect in the near-UV caused by the spectral absorption of aerosols above cloud, the algorithm, formally named as OMACA, retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. Here, we present the algorithm architecture and results from an 11-year global record (2005-2015) including global climatology of frequency of occurrence and ACAOD. The theoretical uncertainty analysis and planned validation activities using measurements from upcoming field campaigns are also discussed.

  12. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    PubMed Central

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  13. Characterizing the discoloration of EBT3 films in solar UV A+B measurement using red LED

    NASA Astrophysics Data System (ADS)

    Omar, Ahmad Fairuz; Osman, Ummi Shuhada; Tan, Kok Chooi

    2017-09-01

    This research article proposes an alternative method to measure the discoloration or the color changes of EBT3 films due to exposure by solar ultraviolet (UV A+B) dose. Common methods to measure the color changes of EBT3 are through imaging technique measured by flatbed scanner and through absorbance spectroscopy measured by visible spectrometer. The research presented in this article measure the color changes of EBT3 through simplified optical system using the combination of light emitting diode (LED) as the light source and photodiode as the detector. In this research, 50 pieces of Gafchromic EBT3 films were prepared with the dimension of 3 cm x 2 cm. Color of the films changed from light green to dark green based on the total accumulated UV dose (mJ/cm2) by each film that depends on the duration of exposure, irradiance level (mW/cm2) and condition of the sky. The exposed films were then taken to the laboratory for its color measurement using absorbance spectroscopy technique and using newly developed simplified optical instrument using LED-photodiode. Results from spectroscopy technique indicate that wavelength within red region exhibit better response in term of linearity and responsivity towards the colors of EBT3 films. Wavelength of 626 nm was then selected as the peak emission wavelength for LED-photodiode absorbance system. UV dose measurement using LEDphotodiode system produced good result with coefficient of determination, R2 of 0.97 and root mean square of error, RMSE of 431.82 mJ/cm2 while comparatively, similar wavelength but analyzed from spectroscopy dataset produced R2 of 0.988 and RMSE of 268.94 mJ/cm2.

  14. Fish mucus versus parasitic gnathiid isopods as sources of energy and sunscreens for a cleaner fish

    NASA Astrophysics Data System (ADS)

    Eckes, Maxi; Dove, Sophie; Siebeck, Ulrike E.; Grutter, Alexandra S.

    2015-09-01

    The cleaning behaviour of the bluestreak cleaner wrasse Labroides dimidiatus is extensively used as a model system for understanding cooperation. It feeds mainly on blood-sucking gnathiid isopods and also on the epidermal mucus of client fish; the nutritional quality of these foods, however, is unknown. The epidermal mucus of reef fish contains ultraviolet (UV)-absorbing compounds (mycosporine-like amino acids, MAAs), which are only obtained via the diet; nevertheless, while La. dimidiatus has high amounts of MAAs in its mucus, their source is unknown. Therefore, the energetic value (calories and protein estimated using carbon and nitrogen) and MAA level in gnathiids and mucus from several clients [parrotfishes, wrasses (Labridae), and a snapper (Lutjanidae)] were determined. The energetic value of mucus and gnathiids varied among fishes. Overall, carbon, nitrogen, calories, and protein per dry weight were higher in the mucus of most client species compared to gnathiids. Thus, depending on the client species, mucus may be energetically more advantageous for cleaner wrasse to feed on than gnathiids. UV absorbance, a confirmed proxy for MAA levels, indicated high MAA levels in mucus, whereas gnathiids had no detectable MAAs. This suggests that La. dimidiatus obtain MAAs from mucus but not from gnathiids. Hence, in addition to energy, the mucus of some clients also provides La. dimidiatus with the added bonus of UV-absorbing compounds. This may explain why cleaner fish prefer to feed on mucus over gnathiid isopods. The likely costs and benefits to clients of the removal of UV protecting mucus and parasitic gnathiids, respectively, and the variation in benefits gained by cleaner fish from feeding on these foods may explain some variation in cooperation levels in cleaning interactions.

  15. Simultaneous fabrication of a microcavity absorber-emitter on a Ni-W alloy film

    NASA Astrophysics Data System (ADS)

    Nashun; Kagimoto, Masahiro; Iwami, Kentaro; Umeda, Norihiro

    2017-10-01

    A process for the simultaneous fabrication of microcavity structures on both sides of a film was proposed and demonstrated to develop a free-standing-type integrated absorber-emitter for use in solar thermophotovoltaic power generation systems. The absorber-emitter-integrated film comprised a heat-resistant Ni-W alloy deposited by electroplating. A two-step silicon mould was fabricated using deep reactive-ion etching and electron beam lithography. Cavity arrays with different unit sizes were successfully fabricated on both sides of the film; these arrays are suitable for use as a solar spectrum absorber and an infrared-selective emitter. Their emissivity spectra were characterised through UV-vis-NIR and Fourier transform infrared spectroscopy.

  16. The role of annealing temperature variation on ZnO nanorods array deposited on TiO2 seed layer

    NASA Astrophysics Data System (ADS)

    Asib, N. A. M.; Aadila, A.; Afaah, A. N.; Rusop, M.; Khusaimi, Z.

    2018-05-01

    Seed layer of Titanium dioxide (TiO2) by sol-gel spin coating technique were coated on glass substrate to grow Zinc oxide nanorods (ZNR) by solution-immersion method. The fabricated ZNR were annealed at various temperatures ranged from 400 to 600° C. FESEM images revealed that smaller ZNR were densely grown at optimum temperature of 450 and 500°C. Meanwhile, for all samples a dominant (0 0 2) diffraction peak of ZNR recorded by XRD patterns was at 34.4° which corresponding to hexagonal ZNR with a wurtzite structure. UV-Vis absorbance spectra showed the maximum absorption properties at UV region were detected at 450 and 500°C. The samples also showed high absorbance values at visible region.

  17. Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth.

    PubMed

    Westall, Frances; de Ronde, Cornel E J; Southam, Gordon; Grassineau, Nathalie; Colas, Maggy; Cockell, Charles; Lammer, Helmut

    2006-10-29

    Modelling suggests that the UV radiation environment of the early Earth, with DNA weighted irradiances of about three orders of magnitude greater than those at present, was hostile to life forms at the surface, unless they lived in specific protected habitats. However, we present empirical evidence that challenges this commonly held view. We describe a well-developed microbial mat that formed on the surface of volcanic littoral sediments in an evaporitic environment in a 3.5-3.3Ga-old formation from the Barberton greenstone belt. Using a multiscale, multidisciplinary approach designed to strongly test the biogenicity of potential microbial structures, we show that the mat was constructed under flowing water by 0.25 microm filaments that produced copious quantities of extracellular polymeric substances, representing probably anoxygenic photosynthesizers. Associated with the mat is a small colony of rods-vibroids that probably represent sulphur-reducing bacteria. An embedded suite of evaporite minerals and desiccation cracks in the surface of the mat demonstrates that it was periodically exposed to the air in an evaporitic environment. We conclude that DNA-damaging UV radiation fluxes at the surface of the Earth at this period must either have been low (absorbed by CO2, H2O, a thin organic haze from photo-dissociated CH4, or SO2 from volcanic outgassing; scattered by volcanic, and periodically, meteorite dust, as well as by the upper layers of the microbial mat) and/or that the micro-organisms exhibited efficient gene repair/survival strategies.

  18. Hydrologic Controls on In-Stream Optical Dissolved Organic Matter Characteristics in an Old-Growth Forest of the Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Lee, B. S.

    2015-12-01

    Dissolved organic matter (DOM) is a critical component of the carbon cycle linking terrestrial and aquatic ecosystems, yet DOM composition representative of DOM sources at headwater catchments in the western U.S is poorly understood. This study examined the effect of forest management history and hydrologic patterns on DOM chemistry at nine experimental watersheds located in the H.J. Andrews Long Term Ecological Research Experimental Forest of the Oregon Cascades. Stream water samples representing a three-week composite of each watershed were collected between May 2013 and February 2015 (32 events). DOM chemistry was characterized by examining UV and fluorescent properties of stream samples. Specific UV absorbance at 254 nm (SUVA254; Weishaar et al. 2003), generally indicative of aromaticity, showed the lowest value at the high elevation clear-cut site (watershed 6, 1,030 m) and the highest value at the low elevation clear-cut site (watershed 10, 680 m) throughout the study period. DOM fluorescent components, identified by this study using a multivariate statistical model, Parallel Factor Analysis (PARAFAC), did not differ significantly among experimental watersheds with varying forest management history. However, a protein-like DOM component exhibited temporal variations. Correlation analysis between the protein-like DOM and hydrologic patterns indicate that stream water during dry seasons come from protein-rich groundwater sources. This study shows UV and fluorescent spectroscopy DOM characterization is a viable finger printing method to detect DOM sources in pristine headwater streams at the western Cascades of Oregon where characterization of the stream water source with low DOC and DON concentrations is difficult.

  19. Potential of herbs in skin protection from ultraviolet radiation

    PubMed Central

    Korać, Radava R.; Khambholja, Kapil M.

    2011-01-01

    Herbs have been used in medicines and cosmetics from centuries. Their potential to treat different skin diseases, to adorn and improve the skin appearance is well-known. As ultraviolet (UV) radiation can cause sunburns, wrinkles, lower immunity against infections, premature aging, and cancer, there is permanent need for protection from UV radiation and prevention from their side effects. Herbs and herbal preparations have a high potential due to their antioxidant activity, primarily. Antioxidants such as vitamins (vitamin C, vitamin E), flavonoids, and phenolic acids play the main role in fighting against free radical species that are the main cause of numerous negative skin changes. Although isolated plant compounds have a high potential in protection of the skin, whole herbs extracts showed better potential due to their complex composition. Many studies showed that green and black tea (polyphenols) ameliorate adverse skin reactions following UV exposure. The gel from aloe is believed to stimulate skin and assist in new cell growth. Spectrophotometer testing indicates that as a concentrated extract of Krameria triandra it absorbs 25 to 30% of the amount of UV radiation typically absorbed by octyl methoxycinnamate. Sesame oil resists 30% of UV rays, while coconut, peanut, olive, and cottonseed oils block out about 20%. A “sclerojuglonic” compound which is forming from naphthoquinone and keratin is the reaction product that provides UV protection. Traditional use of plant in medication or beautification is the basis for researches and making new trends in cosmetics. This review covers all essential aspects of potential of herbs as radioprotective agents and its future prospects. PMID:22279374

  20. Partitioning of the pesticide trifluralin between dissolved organic matter and water using automated SPME-GC/MS.

    PubMed

    Caupos, Emilie; Touffet, Arnaud; Mazellier, Patrick; Croue, Jean-Philippe

    2015-03-01

    Solid-phase microextraction (SPME) was used to determine the equilibrium association constant for a pesticide, trifluralin (TFR), with dissolved organic matter (DOM). After optimization of the SPME method for the analysis of TFR, partition coefficients (K DOM) with three different sources of DOM were determined in buffered solutions at pH 7. Commercial humic acids and DOM fractions isolated from two surface waters were used. The values of log K DOM varied from 4.3 to 5.8, depending on the nature of the organic material. A good correlation was established between log K DOM and DOM properties (as measured with the H/O atomic ratio and UV absorbance), in agreement with literature data. This is consistent with the effect of polarity and aromaticity for governing DOM-pollutant associations, regardless of the origin of DOM. This association phenomenon is relevant to better understand the behavior of pesticides in the environment since it controls part of pesticide leaching and fate in aquatic systems.

  1. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  2. A partial eclipse of the heart: the absorbed X-ray low state in Mrk 1048

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Schartel, N.; Komossa, S.; Grupe, D.; Santos-Lleó, M.; Fabian, A. C.; Mathur, S.

    2014-11-01

    We present two new XMM-Newton observations of an unprecedented low-flux state in the Seyfert 1 Mrk 1048 (NGC 985), taken in 2013. The X-ray flux below 1 keV drops by a factor of 4-5, whereas the spectrum above 5 keV is essentially unchanged. This points towards an absorption origin for the low state, and we confirm this with spectral fitting, finding that the spectral differences can be well modelled by the addition of a partial covering neutral absorber, with a column density of ˜3 × 1022 cm-2 and a covering fraction of ˜0.6. The optical and UV fluxes are not affected, and indeed are marginally brighter in the more recent observations, suggesting that only the inner regions of the disc are affected by the absorption event. This indicates either that the absorption is due to a cloud passing over the inner disc, obscuring the X-ray source but leaving the outer disc untouched, or that the absorber is dust-free so the UV continuum is unaffected. We use arguments based on the duration of the event and the physical properties of the absorber to constrain its size and location, and conclude that it is most likely a small cloud at ˜1018 cm from the source.

  3. Quantification of Material Fluorescence and Light Scattering Cross Sections Using Ratiometric Bandwidth-Varied Polarized Resonance Synchronous Spectroscopy.

    PubMed

    Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao

    2018-05-25

    Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.

  4. Concentration of organic compounds in natural waters with solid-phase dispersion based on advesicle modified silica prior to liquid chromatography.

    PubMed

    Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P

    2005-12-02

    The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.

  5. [Effect of ultraviolet radiation on ALDH1 expression in human lens epithelial cells].

    PubMed

    Shi, Jingming; Jia, Songbai; Chen, Xuan; Tang, Luosheng

    2012-06-01

    To determine the apoptosis-inducing effect of ultraviolet light (UV) on human lens epithelial cell (HLEC) and to explore the involvement of changes in ALDH1 folowing UV radiation. HLEC was exposed to the same UV light source and was subsequently divided into 6 groups according to UV radiation time of 0 (control group), 5, 10, 15, and 30 min. Apoptosis was detected by AO/EB staining. Changes of ALDH1 in HLEC were detected by immunohistochemical staining and Western blot. The intensity of immunohistochemical staining and the rate of positive cells decreased with increase of UV time (P<0.05). The rate of positive ALDH1 cells was negatively correlated with the rate of apoptosis (r= -0.92, P<0.05). Western blot showed the integrated absorbance values significantly decreased with the increase of UV time (P<0.05). ALDH1 in HLEC decreases with an increase of UV exposure, which may be related to UV induced apoptosis of HLEC.

  6. Bis-ureidoquinoline as a selective fluoride anion sensor through hydrogen-bond interactions.

    PubMed

    Jo, Yunhee; Chidalla, Nagesh; Cho, Dong-Gyu

    2014-10-03

    Bis-ureidoquinoline shows a characteristic UV-vis absorbance and turn-on fluorescence changes in the presence of the fluoride anion. Such selective changes probably originate from the hydrogen-bond interactions, as shown by the (1)H NMR titration and DFT calculations. Bis-ureidoquinoline can be used as a fluoride-selective sensor for the detection of fluoride anions under illumination from a laboratory hand-held UV lamp.

  7. Characterization Of Dissolved Organic Mattter In The Florida Keys Ecosystem

    NASA Astrophysics Data System (ADS)

    Adams, D. G.; Shank, G. C.

    2009-12-01

    Over the past few decades, Scleractinian coral populations in the Florida Keys have increasingly experienced mortality due to bleaching events as well as microbial mediated illnesses such as black band and white band disease. Such pathologies seem to be most correlated with elevated sea surface temperatures, increased UV exposures, and shifts in the microbial community living on the coral itself. Recent studies indicate that corals’ exposure to UV in the Florida Keys is primarily controlled by the concentration of CDOM (Chromophoric Dissolved Organic Matter) in the water column. Further, microbial community alterations may be linked to changes in concentration and chemical composition of the larger DOM (Dissolved Organic Matter) pool. Our research characterized the spatial and temporal properties of DOM in Florida Bay and along the Keys ecosystems using DOC analyses, in-situ water column optical measurements, and spectral analyses including absorbance and fluorescence measurements. We analyzed DOM characteristics along transects running from the mouth of the Shark River at the southwest base of the Everglades, through Florida Bay, and along near-shore Keys coastal waters. Two 12 hour time-series samplings were also performed at the Seven-Mile Bridge, the primary Florida Bay discharge channel to the lower Keys region. Photo-bleaching experiments showed that the chemical characteristics of the DOM pool are altered by exposure to solar radiation. Results also show that DOC (~0.8-5.8 mg C/L) and CDOM (~0.5-16.5 absorbance coefficient at 305nm) concentrations exhibit seasonal fluctuations in our study region. EEM analyses suggest seasonal transitions between primarily marine (summer) and terrestrial (winter) sources along the Keys. We are currently combining EEM-PARAFAC analysis with in-situ optical measurements to model changes in the spectral properties of DOM in the water column. Additionally, we are using stable δ13C isotopic analysis to further characterize DOM sources. Information generated by our study will provide a valuable data set for better understanding DOM bio-geochemical dynamics along the Florida Keys ecosystem and information for future studies linking DOM and the coral community.

  8. The budget of biologically active ultraviolet radiation in the earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Lubin, Dan

    1988-01-01

    This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

  9. Quantitative analysis by UV-Vis absorption spectroscopy of amino groups attached to the surface of carbon-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Saraswati, T. E.; Astuti, A. R.; Rismana, N.

    2018-03-01

    Carbon-based nanoparticles must be modified due to their wide array of applications, especially when they are used as biomaterials. After modifying, quantitative analysis of the functional group is essential to evaluate a number of the available functional groups applied for further functionalization. In this study, we modified the carbon-based nanoparticles by amino group using submerged arc discharge in different liquids. The attached amino groups were then characterised and quantified by UV-Vis spectroscopy. This amino group functionalization was also confirmed by Fourier transform infrared (FTIR) spectra. The FTIR spectra of amine-modified nanoparticles show the definitive absorption peaks of N—H amine, C—H, C=O, C—N and Fe—O at 3418.97; 3000–2850 1700–1600 1400–1100 and 480-550 cm-1, respectively. The amine groups have different performance signals between the amine-modified and unmodified nanoparticles. The FTIR spectra results were correlated with the UV-Vis absorption spectroscopy method using acidic methyl orange. The UV-Vis absorption spectroscopy shows that the absorbance of methyl orange represented to amino groups number was 1.3 times higher when the pH of the solution was increased. The absorbance intensity was then used to estimate the quantity of amine groups attached.

  10. Enhancement of the Ultraviolet Photoresponsivity of Al-doped ZnO Thin Films Prepared by using the Sol-gel Spin-coating Method

    NASA Astrophysics Data System (ADS)

    Lee, Wookbin; Leem, Jae-Young

    2018-03-01

    We report the structural, morphological, optical, and ultraviolet (UV) photoresponse properties of Al-doped ZnO (AZO) thin films prepared on silicon substrates with different Al doping concentrations by using the sol-gel spin-coating method. An analysis of the X-ray diffraction patterns of the AZO thin films revealed that the average grain size decreased and the c-axis lattice constant increased with Al content. The field-emission scanning electron microscopy images showed that with Al doping, the grain size decreased, but the film density increased with increasing Al doping concentration from 0% to 3%. These results indicate that the surface area of the film increased with increasing Al doping. The absorbance spectra revealed that the UV absorbance of the AZO thin films increased with increasing Al doping concentration and that the absorption onset shifted towards lower energies. The photoluminescence spectra revealed that with increasing Al doping, the intensity of the visible emission greatly decreased and the visible emission peak shifted forward lower energy (a red shift). The UV sensor based on the AZO thin films exhibited a higher responsivity than that based on the undoped ZnO thin film. Therefore, this study provides a facile method for improving the photoresponsivity of UV sensors.

  11. Impact of nanostructured thin ZnO film in ultraviolet protection

    PubMed Central

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field. PMID:28096668

  12. Impact of nanostructured thin ZnO film in ultraviolet protection.

    PubMed

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field.

  13. The effect of water uptake on the mechanical properties of low-k organosilicate glass

    NASA Astrophysics Data System (ADS)

    Guo, X.; Jakes, J. E.; Nichols, M. T.; Banna, S.; Nishi, Y.; Shohet, J. L.

    2013-08-01

    Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of-line integration and circuit reliability. The influence of absorbed water on the mechanical properties of plasma-enhanced chemical-vapor-deposited organosilicate glasses (SiCOH) was investigated with nanoindentation. The roles of physisorbed (α-bonded) and chemisorbed (β-bonded) water were examined separately through annealing at different temperatures. Nanoindentation measurements were performed on dehydrated organosilicate glass during exposure to varying humidity conditions. The elastic modulus and hardness for as-deposited SiCOH are intimately linked to the nature and concentration of the absorbed water in the dielectric. Under mild-annealing conditions, the water-related film mechanical property changes were shown to be reversible. The mechanical properties of UV-cured SiCOH were also shown to depend on absorbed water, but to a lesser extent because UV curing depopulates the hydrophilic chemical groups in SiCOH. High-load indentation tests showed that in-diffusion of water in the film/substrate interface can degrade the hardness of SiCOH/Si film stacks significantly, while not significantly changing the elastic modulus.

  14. Mycosporine-Like Amino Acids from Coral Dinoflagellates▿

    PubMed Central

    Rosic, Nedeljka N.; Dove, Sophie

    2011-01-01

    Coral reefs are one of the most important marine ecosystems, providing habitat for approximately a quarter of all marine organisms. Within the foundation of this ecosystem, reef-building corals form mutualistic symbioses with unicellular photosynthetic dinoflagellates of the genus Symbiodinium. Exposure to UV radiation (UVR) (280 to 400 nm) especially when combined with thermal stress has been recognized as an important abiotic factor leading to the loss of algal symbionts from coral tissue and/or a reduction in their pigment concentration and coral bleaching. UVR may damage biological macromolecules, increase the level of mutagenesis in cells, and destabilize the symbiosis between the coral host and their dinoflagellate symbionts. In nature, corals and other marine organisms are protected from harmful UVR through several important photoprotective mechanisms that include the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). MAAs are small (<400-Da), colorless, water-soluble compounds made of a cyclohexenone or cyclohexenimine chromophore that is bound to an amino acid residue or its imino alcohol. These secondary metabolites are natural biological sunscreens characterized by a maximum absorbance in the UVA and UVB ranges of 310 to 362 nm. In addition to their photoprotective role, MAAs act as antioxidants scavenging reactive oxygen species (ROS) and suppressing singlet oxygen-induced damage. It has been proposed that MAAs are synthesized during the first part of the shikimate pathway, and recently, it has been suggested that they are synthesized in the pentose phosphate pathway. The shikimate pathway is not found in animals, but in plants and microbes, it connects the metabolism of carbohydrates to the biosynthesis of aromatic compounds. However, both the complete enzymatic pathway of MAA synthesis and the extent of their regulation by environmental conditions are not known. This minireview discusses the current knowledge of MAA synthesis, illustrates the diversity of MAA functions, and opens new perspectives for future applications of MAAs in biotechnology. PMID:22003012

  15. Mycosporine-like amino acids from coral dinoflagellates.

    PubMed

    Rosic, Nedeljka N; Dove, Sophie

    2011-12-01

    Coral reefs are one of the most important marine ecosystems, providing habitat for approximately a quarter of all marine organisms. Within the foundation of this ecosystem, reef-building corals form mutualistic symbioses with unicellular photosynthetic dinoflagellates of the genus Symbiodinium. Exposure to UV radiation (UVR) (280 to 400 nm) especially when combined with thermal stress has been recognized as an important abiotic factor leading to the loss of algal symbionts from coral tissue and/or a reduction in their pigment concentration and coral bleaching. UVR may damage biological macromolecules, increase the level of mutagenesis in cells, and destabilize the symbiosis between the coral host and their dinoflagellate symbionts. In nature, corals and other marine organisms are protected from harmful UVR through several important photoprotective mechanisms that include the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). MAAs are small (<400-Da), colorless, water-soluble compounds made of a cyclohexenone or cyclohexenimine chromophore that is bound to an amino acid residue or its imino alcohol. These secondary metabolites are natural biological sunscreens characterized by a maximum absorbance in the UVA and UVB ranges of 310 to 362 nm. In addition to their photoprotective role, MAAs act as antioxidants scavenging reactive oxygen species (ROS) and suppressing singlet oxygen-induced damage. It has been proposed that MAAs are synthesized during the first part of the shikimate pathway, and recently, it has been suggested that they are synthesized in the pentose phosphate pathway. The shikimate pathway is not found in animals, but in plants and microbes, it connects the metabolism of carbohydrates to the biosynthesis of aromatic compounds. However, both the complete enzymatic pathway of MAA synthesis and the extent of their regulation by environmental conditions are not known. This minireview discusses the current knowledge of MAA synthesis, illustrates the diversity of MAA functions, and opens new perspectives for future applications of MAAs in biotechnology.

  16. Discovery of an H I-rich Gas Reservoir in the Outskirts of SZ-effect-selected Clusters

    NASA Astrophysics Data System (ADS)

    Muzahid, Sowgat; Charlton, Jane; Nagai, Daisuke; Schaye, Joop; Srianand, Raghunathan

    2017-09-01

    We report on the detection of three strong H I absorbers originating in the outskirts (I.e., impact parameter, {ρ }{cl} ≈ (1.6-4.7)r 500) of three massive ({M}500˜ 3× {10}14 M ⊙) clusters of galaxies at redshift {z}{cl}≈ 0.46, in the Hubble Space Telescope Cosmic Origins Spectrograph (HST/COS) spectra of three background UV-bright quasars. These clusters were discovered by the 2500 deg2 South Pole Telescope Sunyaev-Zel’dovich (SZ) effect survey. All three COS spectra show a partial Lyman limit absorber with N(H I) > 1016.5 cm-2 near the photometric redshifts (| {{Δ }}z/(1+z)| ≈ 0.03) of the clusters. The compound probability of the random occurrence of all three absorbers is <0.02%, indicating that the absorbers are most likely related to the targeted clusters. We find that the outskirts of these SZ-selected clusters are remarkably rich in cool gas compared to existing observations of other clusters in the literature. The effective Doppler parameters of the Lyman series lines, obtained using a single-cloud curve-of-growth (COG) analysis, suggest a nonthermal/turbulent velocity of a few×10 km s-1 in the absorbing gas. We emphasize the need for uniform galaxy surveys around these fields and for more UV observations of quasar-cluster pairs in general in order to improve the statistics and gain further insights into the unexplored territory of the largest collapsed cosmic structures.

  17. Mechanical Properties of the Surface Material of Comet 67P/Churyumov-Gerasimenko Measured By the Casse Instrument Onboard the Philae Lander

    NASA Astrophysics Data System (ADS)

    Knapmeyer, M.; Fischer, H. H.; Seidensticker, K. J.; Arnold, W.; Faber, C.; Möhlmann, D.; Thiel, K.

    2014-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach described by Dubovik et al., 2006. A vector Markov Chain radiative transfer code including bio-optical models was used to evaluate TOA and water leaving radiances.

  18. The Effect of UV-B Radiation on Dissolved Organic Matter and Nitrogen Biogeochemistry in Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Suddick, E. C.; Uher, G.; Woodward, M.; Upstill-Goddard, R. C.

    2006-12-01

    Peatlands are globally important reservoirs of carbon and represent important freshwater catchments in many regions. These waters generally contain high levels of dissolved organic matter (DOM), which contains a significant fraction of chromophoric, dissolved organic material (CDOM). CDOM is primarily responsible for light attenuation in these waters and affects a variety of biogeochemically relevant photo-processes including the formation of climatically active trace gases such as CO2, CO, COS and the release of essential plant micro-nutrients such as ammonium. Significant increases in DOM concentrations have been observed in various peatland waters over recent years, associated with increases in temperatures linked to global climate change. UV-B fluxes have also been projected to increase in the future as a consequence of stratospheric ozone depletion. Enhanced UV-B radiation can affect the balance between the biological processes that produce DOM and the chemical and microbial processes that degrade it. This infers that the rate of photochemical release of nutrients such as ammonium (photo-ammonification) is also likely to increase with increasing incident UV-B radiation. Samples of freshwater, riverine and marine, filtered (0.2 ìM) water were exposed to short-term natural and solar simulated irradiation which reduced their absorbance at 350 nm (a350) and total fluorescence intensity within the UV and visible regions and also produced changes in fluorescence excitation-emission matrix (EEM) measurements, such as the hypsochromic shift of peak A towards shorter wavelengths. Samples were taken from a variety of aqueous environments predominantly from Northern Scotland peatland freshwater catchments but also from the River Tyne, North East England and from the Iberian Coast, Atlantic Ocean, covering the a350 range 0.3 to 50 m-1. The photo-chemical release of ammonium from aquatic dissolved organic matter (DOM) was also concurrent with the photo-bleaching of DOM optical properties. Photochemical ammonium release was observed in all samples irradiated between four and ten hours, where either linear production or a three step production process was observed with release rates ranging from 0.001 to 3.57 ìM l-1 h-1. Preliminary data indicate that ammonium photo-production is independent of dissolved oxygen and we discuss implications of these findings with regard to the possible mechanism of ammonium photo-production. Photo-chemically induced nitrogen release indicates a new biologically labile source of nitrogen and can impact severely upon the biogeochemistry and nutrient limitation of aquatic environments.

  19. Correlation between the structure modification and conductivity of 3 MeV Si ion-irradiated polyimide

    NASA Astrophysics Data System (ADS)

    Sun, Youmei; Zhu, Zhiyong; Li, Changlin

    2002-05-01

    The surface modification of the polyimide (PI/Kapton) films was carried out by 3 MeV Si + implantation to fluences ranging from 1×10 12 to 1.25×10 15 ions/cm 2. Fourier transform infrared (FTIR), Raman and ultraviolet/visible (UV/Vis) spectroscopes were employed to investigate the chemical degradation of function groups in the irradiated layer. FTIR results show that the absorbance of typical function group decreases exponentially as a function of fluence. The damage cross-section of typical bonds of PI was evaluated from the FTIR spectra. Raman analysis shows the absorbed dose for destruction of all function groups is above 218 MGy. The red shifting of the absorption edge from UV to visible reveals the band gap closing which results from increase of the cluster size. The production efficiency of the chromophores was discussed according to UV/Vis analysis. Irradiation dramatically enhances the electrical conductivity and the sheet resistivity in our experiment descends nearly 10 orders of magnitude compared with its intrinsic value.

  20. Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols.

    PubMed

    Thomas, Daniel A; Coggon, Matthew M; Lignell, Hanna; Schilling, Katherine A; Zhang, Xuan; Schwantes, Rebecca H; Flagan, Richard C; Seinfeld, John H; Beauchamp, J L

    2016-11-15

    The complexation of iron(III) with oxalic acid in aqueous solution yields a strongly absorbing chromophore that undergoes efficient photodissociation to give iron(II) and the carbon dioxide anion radical. Importantly, iron(III) oxalate complexes absorb near-UV radiation (λ > 350 nm), providing a potentially powerful source of oxidants in aqueous tropospheric chemistry. Although this photochemical system has been studied extensively, the mechanistic details associated with its role in the oxidation of dissolved organic matter within aqueous aerosol remain largely unknown. This study utilizes glycolaldehyde as a model organic species to examine the oxidation pathways and evolution of organic aerosol initiated by the photodissociation of aqueous iron(III) oxalate complexes. Hanging droplets (radius 1 mm) containing iron(III), oxalic acid, glycolaldehyde, and ammonium sulfate (pH ∼3) are exposed to irradiation at 365 nm and sampled at discrete time points utilizing field-induced droplet ionization mass spectrometry (FIDI-MS). Glycolaldehyde is found to undergo rapid oxidation to form glyoxal, glycolic acid, and glyoxylic acid, but the formation of high molecular weight oligomers is not observed. For comparison, particle-phase experiments conducted in a laboratory chamber explore the reactive uptake of gas-phase glycolaldehyde onto aqueous seed aerosol containing iron and oxalic acid. The presence of iron oxalate in seed aerosol is found to inhibit aerosol growth. These results suggest that photodissociation of iron(III) oxalate can lead to the formation of volatile oxidation products in tropospheric aqueous aerosols.

Top