Sample records for organic waste material

  1. Sustainable Materials Management (SMM) WasteWise Data

    EPA Pesticide Factsheets

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  2. Method for catalytic destruction of organic materials

    DOEpatents

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1997-01-01

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250.degree. C. to 500.degree. C. and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials.

  3. Method for catalytic destruction of organic materials

    DOEpatents

    Sealock, L.J. Jr.; Baker, E.G.; Elliott, D.C.

    1997-05-20

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250 to 500 C and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials. 7 figs.

  4. Thermal and chemical remediation of mixed waste

    DOEpatents

    Nelson, P.A.; Swift, W.M.

    1994-08-09

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500 C by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO[sub 3]. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed. 3 figs.

  5. Thermal and chemical remediation of mixed waste

    DOEpatents

    Nelson, Paul A.; Swift, William M.

    1994-01-01

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500.degree. C. by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO.sub.3. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed.

  6. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    PubMed

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.

  7. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  8. National markets for organic waste-derived fertilizers and soil amendments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, T.J.; Pierzynski, G.M.; Pepperman, R.E.

    1995-12-31

    The last decade has seen enormous growth in the U.S. in the recycling of organic waste materials like sewage sludge, manures, yard waste, solid waste and various industrial wastes. This has been prompted by real or perceived shortages of landfill capacity, state and federal regulations favoring beneficial use of organic wastes, and public support for recycling. Use of fertilizers and soil amendments derived from these wastes has been stimulated by favorable supply-side economics, a shift to organic/sustainable agriculture, and water quality concerns that favor slow-release nutrient sources. This paper summarizes the properties and beneficial use attributes of the various wastesmore » and their derived products, markets for these materials, and constraints/strategies for market penetration.« less

  9. The participation of community-based organizations on waste management in the city municipal of Medan

    NASA Astrophysics Data System (ADS)

    Trimurni, Februati; Dayana

    2018-03-01

    Waste is currently main problem experienced by cities all over the world. The waste has brought negative impacts on public health, environment, development and social of the cities. However, there must be solutions to overcome the piles of waste in case the individual citizens or community-based organization wisely deal with the problem. In the municipal area of Medan in the Province of North Sumatra, there is sort of organization established by community-based organization (CBO) so-called Bank Sampah or Waste Bank which is placed as a flatform for the member to do business of waste materials by collecting them from households around, sorting the materials into waste categories and ended up by purchasing and selling them to make some money. The organization is not merely a flatform for doing a business of waste materials yet the media for other social activities and efforts of reaching social and family welfare. The study is conducted in some sites of such organization activities in the city, and there are some observations of how the community run the business and in the same time arranging other social activities. The study tries to portray the activities and analyzes the means and the significancy of the CBO on reducing waste problems in the city.

  10. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution.

    PubMed

    Han, Shenjie; Sun, Qingfeng; Zheng, Huanhuan; Li, Jingpeng; Jin, Chunde

    2016-01-20

    Carbon-based aerogel fabricated from waste biomass is a potential absorbent material for solving organic pollution. Herein, the lightweight, hydrophobic and porous carbon aerogels (CAs) have been synthesized through freezing-drying and post-pyrolysis by using waste newspaper as the only raw materials. The as-prepared CAs exhibited a low density of 18.5 mg cm(-3) and excellent hydrophobicity with a water contact angle of 132° and selective absorption for organic reagents. The absorption capacity of CA for organic compounds can be 29-51 times its own weight. Moreover, three methods (e.g., squeezing, combustion, and distillation) can be employed to recycle CA and harvest organic pollutants. Combined with waste biomass as raw materials, green and facile fabrication process, excellent hydrophobicity and oleophilicity, CA used as an absorbent material has great potential in application of organic pollutant solvents absorption and environmental protection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOEpatents

    Weaver, P.F.; Pinching Maness.

    1993-10-05

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

  12. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOEpatents

    Weaver, Paul F.; Maness, Pin-Ching

    1993-01-01

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

  13. Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.

    PubMed

    Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger

    2011-01-01

    Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1995-01-01

    A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  15. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, Dennis F.

    1997-01-01

    A process for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  16. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1997-09-02

    A process is described for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process is also disclosed. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile. 1 fig.

  17. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review.

    PubMed

    Väisänen, Taneli; Haapala, Antti; Lappalainen, Reijo; Tomppo, Laura

    2016-08-01

    Natural fiber-polymer composites (NFPCs) are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residues from the industrial and agricultural processes are still underutilized as low-value energy sources. Organic materials are commonly disposed of or subjected to the traditional waste management methods, such as landfilling, composting or anaerobic digestion. The use of organic waste and residue materials in NFPCs represents an ecologically friendly and a substantially higher value alternative. This is a comprehensive review examining how organic waste and residues could be utilized in the future as reinforcements or additives for NFPCs from the perspective of the recently reported work in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Methane production by attached film

    DOEpatents

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  19. Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, Robert O.; Aulich, Ted R.

    1997-12-31

    Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less

  20. 40 CFR 63.4510 - What notifications must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...

  1. 40 CFR 63.4510 - What notifications must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...

  2. 40 CFR 63.4510 - What notifications must I submit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...

  3. 40 CFR 63.4510 - What notifications must I submit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...

  4. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  5. Photoconversion of organic materials into single-cell protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, P.F.

    A process is described for converting organic materials (such as biomass wastes) into sterile, high-grade bacterial protein suitable for use an animal feed or human food supplements. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide, hydrogen and nitrogen products, followed by photosynthetic bacterial assimilation of the gases into cell material, which can be high as 65% protein. The process is ideally suited for waste recycling and for food production under zero-gravity or extra-terrestrial conditions.

  6. Photoconversion of organic materials into single-cell protein

    DOEpatents

    Weaver, Paul F.

    2001-01-01

    A process is described for converting organic materials (such as biomass wastes) into sterile, high-grade bacterial protein suitable for use an animal feed or human food supplements. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide, hydrogen and nitrogen products, followed by photosynthetic bacterial assimilation of the gases into cell material, which can be as high as 65% protein. The process is ideally suited for waste recycling and for food production under zero-gravity or extra-terrestrial conditions.

  7. Research on Recycling Mixed Wastes Based on Fiberglass and Organic Resins

    NASA Astrophysics Data System (ADS)

    Platon, M. A.; Ştef, M.; Popa, C.; Tiuc, A. E.; Nemeş, O.

    2018-06-01

    In recycling, according to principles of Directive 2008/98/EC of the European Parliament and of the Council on waste, research is upheld for achieving innovative technologies for reuse and keep as long it is possible, in economic chain, a waste. The aim of this research is to study and test a new composite material based on fiberglass waste mixed with organic resins with large application in the industry but not limited to this. Fiberglass is a material widely used for reinforcement of composite materials. As waste, fiberglass was less studied for ways to be reused. Filling fiberglass mixed with organic resins as PMMA and epoxy resins possess proper physical features for thermoforming. Three mixes are studied: fiberglass with PMMA, fiberglass with PMMA and rubber granules or sawdust. Samples will be tested for to define the mechanical and chemical behavior to have a complete description of the material. Analyzing the results can be concluded that mixes are suitable for board production, with improved features, compared with equivalent products on the market.

  8. Anaerobic digestion of organic solid poultry slaughterhouse waste--a review.

    PubMed

    Salminen, E; Rintala, J

    2002-05-01

    This work reviews the potential of anaerobic digestion for material recovery and energy production from poultry slaughtering by-products and wastes. First, we describe and quantify organic solid by-products and wastes produced in poultry farming and poultry slaughterhouses and discuss their recovery and disposal options. Then we review certain fundamental aspects of anaerobic digestion considered important for the digestion of solid slaughterhouse wastes. Finally, we present an overview of the future potential and current experience of the anaerobic digestion treatment of these materials.

  9. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste.

    PubMed

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-04-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties in relation to BMP, protein content, lipids, lignocellulose biofibres and easily degradable carbohydrates (carbohydrates other than lignocellulose biofibres). The three components in lignocellulose biofibres, i.e. lignin, cellulose and hemicellulose, were differentiated, and theoretical BMP (TBMP) and material degradability (BMP from laboratory incubation tests divided by TBMP) were expressed. Moreover, the degradability of lignocellulose biofibres (the share of volatile lignocellulose biofibre solids degraded in laboratory incubation tests) was calculated. Finally, BMP for average SSOHW composition in Denmark (untreated) was calculated, and the BMP contribution of the individual material fractions was then evaluated. Material fractions of the two general waste types, defined as "food waste" and "fibre-rich waste," were found to be anaerobically degradable with considerable BMP. Material degradability of material fractions such as vegetation waste, moulded fibres, animal straw, dirty paper and dirty cardboard, however, was constrained by lignin content. BMP for overall SSOHW (untreated) was 404 mL CH4 per g VS, which might increase if the relative content of material fractions, such as animal and vegetable food waste, kitchen tissue and dirty paper in the waste, becomes larger. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  11. Material Utilization of Organic Residues.

    PubMed

    Peinemann, Jan Christoph; Pleissner, Daniel

    2018-02-01

    Each year, 1.3 billion tons of food waste is generated globally. This waste traces back to industrial and agricultural producers, bakeries, restaurants, and households. Furthermore, lignocellulosic materials, including grass clippings, leaves, bushes, shrubs, and woods, appear in large amounts. Depending on the region, organic waste is either composted, burned directly, or converted into biogas. All of the options set aside the fact that organic residues are valuable resources containing carbohydrates, lipids, proteins, and phosphorus. Firstly, it is clear that avoidance of organic residues is imperative. However, the residues that accumulate nonetheless should be utilized by material means before energy production is targeted. This review presents different processes for the microbial utilization of organic residues towards compounds that are of great importance for the bioeconomy. The focus thereby is on the challenges coming along with downstream processing when the utilization of organic residues is carried out decentralized. Furthermore, a future process for producing lactic acid from organic residues is sketched.

  12. RCRA Sustainable Materials Management Information

    EPA Pesticide Factsheets

    This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia

  13. Estimation of PCB content in agricultural soils associated with long-term fertilization with organic waste.

    PubMed

    Antolín-Rodríguez, Juan M; Sánchez-Báscones, Mercedes; Martín-Ramos, Pablo; Bravo-Sánchez, Carmen T; Martín-Gil, Jesús

    2016-06-01

    Polychlorinated biphenyl (PCB) pollution related to the use of organic waste as fertilizers in agricultural soils is a cause of major concern. In the study presented herein, PCB concentration was studied through a field trial conducted in two agricultural soils in the province of Palencia (Spain) over a 4-year period, assessing the impact of irrigation and of different types of organic waste materials. The amounts of organic waste added to the soil were calculated according to the nitrogen needs of the crop, and the concentration of PCBs was determined before and after the application of the organic waste. The resulting persistence of the total PCB content in the agricultural soils, compared with the PCB concentration in the original soils, ranged from 27% to 90%, with the lowest value corresponding to irrigated soils treated with municipal solid waste compost (MSWC) and the highest value to non-irrigated soils treated with composted sewage sludge (CSS). An estimate of the PCB content in agricultural soils after the application of organic waste materials until year 2050 was obtained, resulting in a value below 5 ng·g(-1), considered a background value for soils in sites far away from potential pollution sources.

  14. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Astrophysics Data System (ADS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO 2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis, 1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project.

  15. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Technical Reports Server (NTRS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.

  16. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses.

    PubMed

    Peterson, B V; Hummerick, M; Roberts, M S; Krumins, V; Kish, A L; Garland, J L; Maxwell, S; Mills, A

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.

  17. Molten salt oxidation: a versatile and promising technology for the destruction of organic-containing wastes.

    PubMed

    Yao, Zhitong; Li, Jinhui; Zhao, Xiangyang

    2011-08-01

    Molten salt oxidation (MSO), a robust thermal but non-flame process, has the inherent capability of destroying organic constituents in wastes, while retaining inorganic and radioactive materials in situ. It has been considered as an alternative to incineration and may be a solution to many waste disposal problems. The present review first describes the history and development of MSO, as well as design and engineering details, and then focuses on reaction mechanisms and its potential applications in various wastes, including hazardous wastes, medical wastes, mixed wastes, and energetic materials. Finally, the current status of and prospects for the MSO process and directions for future research are considered. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. 40 CFR 63.4710 - What notifications must I submit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating, one thinner, and one... is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...

  19. 40 CFR 63.4710 - What notifications must I submit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating, one thinner, and one... is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...

  20. 40 CFR 63.4710 - What notifications must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating, one thinner, and one... is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...

  1. 76 FR 44093 - Definition of Solid Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...) 325199 All Other Basic Organic Chemical Manufacturing; (5) 325211 Plastics Material and Resin... 1056). In its most recent opinion dealing with the definition of solid waste, Safe Food and Fertilizer... excludes from the definition of solid waste hazardous secondary materials used to make zinc fertilizers...

  2. [Co-composting high moisture vegetable waste and flower waste in a sequential fed operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-11-01

    Co-composting of high moisture vegetable wastes (celery and cabbage) and flower wastes (carnation) were studied in a sequential fed bed. The preliminary materials of composting were celery and carnation wastes. The sequential fed materials of composting were cabbage wastes and were fed every 4 days. Moisture content of mixture materials was between 60% and 70%. Composting was done in an aerobic static bed of composting based temperature feedback and control via aeration rate regulation. Aeration was ended when temperature of the pile was about 40 degrees C. Changes of composting of temperature, aeration rate, water content, organic matter, ash, pH, volume, NH4(+)-N, and NO3(-)-N were studied. Results show that co-composting of high moisture vegetable wastes and flower wastes, in a sequential fed aerobic static bed based temperature feedback and control via aeration rate regulation, can stabilize organic matter and removal water rapidly. The sequential fed operation are effective to overcome the difficult which traditional composting cannot applied successfully where high moisture vegetable wastes in more excess of flower wastes, such as Dianchi coastal.

  3. Characterization of Crew Refuse Returned from Shuttle Missions with Permanent Gas, Volatile Organic Compound, and Microbial Analyses

    NASA Astrophysics Data System (ADS)

    Peterson, B.; Hummerick, M.; Roberts, M.; Krummins, V.; Kish, A.; Garland, J.; Maxwell, S.; Mills, A.

    In addition to the mass and energy costs associated with bioregenerative systems for advanced life support, the storage and processing of waste on spacecraft requires both atmospheric and biological management. Risks to crew health may arise from the presence of potential human pathogens in waste or from decay processes during waste storage and/or processing. This study reports on the permanent gas, trace volatile organic and microbiological analyses of crew refuse returned from shuttle missions STS-105, 109 and 110. The research objective is to characterize the biological stability of the waste stream, to assess the risks associated with its storage, and to provide baseline measures for the evaluation of waste processing technologies. Microbiological samples were collected from packaging material, food waste, bathroom waste, and bulk liquid collected from the volume F waste container. The number of culturable bacteria and total bacteria were determined by plating on R2A media and by Acridine Orange direct count, respectively. Samples of the trash were analyzed for the presence of fecal and total coliforms and other human-associated bacteria. Dry and ash weights were determined to estimate both water and organic content of the materials. The aerobic and anaerobic bio-stability of stored waste was determined by on-line monitoring of CO2 and by laboratory analysis of off-gas samples for hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA method TO15 with gas chromatography/mass spectrometry and by gas chromatography with selective detectors . This study establishes a baseline measure of waste composition, labile organics, and microbial load for this material.

  4. Comparison of mass balance, energy consumption and cost of composting facilities for different types of organic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Huijun; Matsuto, Toshihiko, E-mail: matsuto@eng.hokudai.ac.jp

    2011-03-15

    Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities. The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in themore » compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.« less

  5. Development studies of a novel wet oxidation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.W.; Dhooge, P.M.

    1995-10-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. The objective of this project is to develop a novel catalytic wet oxidation process for the treatment of multi-component wastes. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials.

  6. 40 CFR 257.3-8 - Safety.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... application and compaction of soil or other suitable material over disposed solid waste at the end of each... disease vectors' access to the waste. (7) Putrescible wastes means solid waste which contains organic...

  7. 40 CFR 257.3-8 - Safety.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... application and compaction of soil or other suitable material over disposed solid waste at the end of each... disease vectors' access to the waste. (7) Putrescible wastes means solid waste which contains organic...

  8. 40 CFR 257.3-8 - Safety.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... application and compaction of soil or other suitable material over disposed solid waste at the end of each... disease vectors' access to the waste. (7) Putrescible wastes means solid waste which contains organic...

  9. 40 CFR 257.3-8 - Safety.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... application and compaction of soil or other suitable material over disposed solid waste at the end of each... disease vectors' access to the waste. (7) Putrescible wastes means solid waste which contains organic...

  10. 40 CFR 257.3-8 - Safety.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... application and compaction of soil or other suitable material over disposed solid waste at the end of each... disease vectors' access to the waste. (7) Putrescible wastes means solid waste which contains organic...

  11. Solidification of radioactive waste resins using cement mixed with organic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laili, Zalina, E-mail: liena@nm.gov.my; Waste and Environmental Technology Division, Malaysian Nuclear Agency; Yasir, Muhamad Samudi

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  12. 40 CFR 63.4720 - What reports must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; and if applicable, the calculation used to determine mass of organic HAP in waste materials according... determine mass of organic HAP in waste materials according to § 63.4751(e)(4); the calculation of the total... certification or audit. (vi) The date and time that each CPMS was inoperative, except for zero (low-level) and...

  13. A STUDY OF THE FEASIBILITY OF UTILIZING SOLID WASTES FOR BUILDING MATERIALS. PHASE III AND IV SUMMARY REPORTS

    EPA Science Inventory

    This report summarizes work to develop building materials containing inorganic and organic wastes and wastes-derived products. Attempts were made to produce full-scale products and qualify them for structural applications. Particle board panels were made of peanut hulls and wood ...

  14. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes.

    PubMed

    Pagliano, Giorgia; Ventorino, Valeria; Panico, Antonio; Pepe, Olimpia

    2017-01-01

    Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic waste can be used to produce biopolymers, such as biohydrogen and biogas, through different microbial processes. In fact, different bacterial strains can synthesize biopolymers to convert waste materials into valuable intracellular (e.g., polyhydroxyalkanoates) and extracellular (e.g., exopolysaccharides) bioproducts, which are useful for biochemical production. In particular, large numbers of bacteria, including Alcaligenes eutrophus , Alcaligenes latus , Azotobacter vinelandii , Azotobacter chroococcum , Azotobacter beijerincki , methylotrophs, Pseudomonas spp., Bacillus spp., Rhizobium spp., Nocardia spp., and recombinant Escherichia coli , have been successfully used to produce polyhydroxyalkanoates on an industrial scale from different types of organic by-products. Therefore, the development of high-performance microbial strains and the use of by-products and waste as substrates could reasonably make the production costs of biodegradable polymers comparable to those required by petrochemical-derived plastics and promote their use. Many studies have reported use of the same organic substrates as alternative energy sources to produce biogas and biohydrogen through anaerobic digestion as well as dark and photofermentation processes under anaerobic conditions. Therefore, concurrently obtaining bioenergy and biopolymers at a reasonable cost through an integrated system is becoming feasible using by-products and waste as organic carbon sources. An overview of the suitable substrates and microbial strains used in low-cost polyhydroxyalkanoates for biohydrogen and biogas production is given. The possibility of creating a unique integrated system is discussed because it represents a new approach for simultaneously producing energy and biopolymers for the plastic industry using by-products and waste as organic carbon sources.

  15. Method for recovering materials from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  16. Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery.

    PubMed

    Hansen, Trine Lund; Jansen, Jes la Cour; Davidsson, Asa; Christensen, Thomas Højlund

    2007-01-01

    Source-sorted municipal organic waste collected from different dwelling types in five Danish cities and pre-treated at three different plants was sampled and characterized several times during one year to investigate the origin of any differences in composition of the pre-treated waste introduced by city, pre-treatment technology, dwelling type or annual season. The investigated pre-treatment technologies were screw press, disc screen and shredder+magnet. The average quantity of pre-treated organic waste (biomass) produced from the incoming waste varied between the investigated pre-treatment technologies: 59%, 66% and 98% wet weight, respectively (41%, 34% and 2% reject, respectively). The pre-treatment technologies showed differences with respect to distribution of the chemical components in the waste between the biomass and the rejected material (reject), especially for dry matter, ash, collection bag material (plastic or paper) and easily degradable organic matter. Furthermore, the particle size of the biomass was related to the pre-treatment technology. The content of plastic in the biomass depended both on the actual collection bag material used in the system and the pre-treatment technology. The sampled reject consisted mostly of organic matter. For cities using plastic bags for the source-separated organic waste, the expected content of plastic in the reject was up to 10% wet weight (in some cases up to 20%). Batch tests for methane potential of the biomass samples showed only minor variations caused by the factors city, pre-treatment technology, dwelling type and season when based on the VS content of the waste (overall average 459STPm(3)/tVS). The amount of methane generated from 1t of collected waste was therefore mainly determined by the efficiency of the chosen pre-treatment technology described by the mass distribution of the incoming waste between biomass and reject.

  17. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.

    PubMed

    Colazo, Ana-Belén; Sánchez, Antoni; Font, Xavier; Colón, Joan

    2015-09-01

    Anaerobic digestion of source separated organic fraction of municipal solid waste is an increasing waste valorization alternative instead of incineration or landfilling of untreated biodegradable wastes. Nevertheless, a significant portion of biodegradable wastes entering the plant is lost in pre-treatments and post-treatments of anaerobic digestion facilities together with other improper materials such as plastics, paper, textile materials and metals. The rejected materials lost in these stages have two main implications: (i) less organic material enters to digesters and, as a consequence, there is a loss of biogas production and (ii) the rejected materials end up in landfills or incinerators contributing to environmental impacts such as global warming or eutrophication. The main goals of this study are (i) to estimate potential losses of biogas in the rejected solid materials generated during the pre- and post-treatments of two full-scale anaerobic digestion facilities and (ii) to evaluate the environmental burdens associated to the final disposal (landfill or incineration) of these rejected materials by means of Life Cycle Assessment. This study shows that there is a lost of potential biogas production, ranging from 8% to 15%, due to the loss of organic matter during pre-treatment stages in anaerobic digestion facilities. From an environmental point of view, the Life Cycle Assessment shows that the incineration scenario is the most favorable alternative for eight out of nine impact categories compared with the landfill scenario. The studied impact categories are Climate Change, Fossil depletion, Freshwater eutrophication, Marine eutrophication, Ozone depletion, Particulate matter formation, Photochemical oxidant formation, Terrestrial acidification and Water depletion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    PubMed

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".

  19. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates.

    PubMed

    Diener, Stefan; Zurbrügg, Christian; Tockner, Klement

    2009-09-01

    Larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), are voracious feeders of organic material and may thus be used in simple engineered systems to reduce organic waste in low- and middle-income countries. Controlled feeding experiments with standard fodder were conducted to assess the optimum amount of organic waste to be added to a CORS system (Conversion of Organic Refuse by Saprophages). A daily feeding rate of 100 mg chicken feed (60% moisture content) per larva resulted in an optimum trade-off between material reduction efficiency (41.8%, SE 0.61) and biomass production (prepupal dry weight: 48.0 mg, SE 2.0). Applied to market waste and human faeces, this corresponds to a potential daily feeding capacity of 3-5 kg/m(2) and 6.5 kg/m(2), respectively. In addition, H. illucens prepupae quality was assessed to determine their suitability to substitute fishmeal in animal feed production. The chitin-corrected crude protein content ranged from 28.2 to 42.5%, depending on the amount of food provided to the larvae. Based on our study, a waste processing unit could yield a daily prepupal biomass of 145 g (dry mass) per m(2). We conclude that larvae of the black soldier fly are potentially capable of converting large amounts of organic waste into protein-rich biomass to substitute fishmeal, thereby contributing to sustainable aquaculture.

  20. Thermal and chemical remediation of mixed wastes

    DOEpatents

    Nelson, Paul A.; Swift, William M.

    1997-01-01

    A process for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500.degree. C. with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO.sub.2 gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO.sub.2 gas from the particulate-free oxidation product. The CO.sub.2 absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described.

  1. Redistribution of elements between wastes and organic-bearing material in the dispersion train of gold-bearing sulfide tailings: Part I. Geochemistry and mineralogy.

    PubMed

    Saryg-Ool, B Yu; Myagkaya, I N; Kirichenko, I S; Gustaytis, M A; Shuvaeva, O V; Zhmodik, S M; Lazareva, E V

    2017-03-01

    Migration and redistribution of elements during prolonged interaction of cyanide wastes with the underlying natural organic-bearing material have been studied in two ~40cm deep cores that sample primary ores and their weathering profile (wastes I and II, respectively) in the dispersion train of gold-bearing sulfide tailings in Siberia. Analytical results of SR-XRF, whole-rock XRF, AAS, CHNS, and SEM measurements of core samples show high K, Sr, Ti, and Fe enrichments and correlation of P 2 O 5 and Mn with LOI and C org . Organic material interlayered or mixed with the wastes accumulates Cu, Zn, Se, Cd, Ag, Au, and Hg. The peat that contacts wastes II bears up to 3wt.% Zn, 1000g/t Se, 100g/t Cd, and 8000g/t Hg. New phases of Zn and Hg sulfides and Hg selenides occur as abundant sheaths over bacterial cells suggesting microbial mediation in sorption of elements. Organic-bearing material in the cores contains 10-30g/t Au in 2-5cm thick intervals, both within and outside the intervals rich in sulfides and selenides. Most of gold is invisible but reaches 345g/t and forms 50nm to 1.5μm Au 0 particles in a thin 2-3cm interval of organic remnants mixed with wastes I. Vertical and lateral infiltration of AMD waters in peat and oxidative dissolution of wastes within the dispersion train of the Ursk tailings lead to redistribution of elements and their accumulation by combined physical (material's permeability, direction AMD), chemical (complexing, sorption by organic matter and Fe(III) hydroxides) and biochemical (metabolism of sulfate-reducing bacteria) processes. The accumulated elements form secondary sulfates, and Hg and Zn selenides. The results provide insights into accumulation of elements in the early history of coal and black shale deposits and have implications for remediation of polluted areas and for secondary enrichment technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The organic agricultural waste as a basic source of biohydrogen production

    NASA Astrophysics Data System (ADS)

    Sriwuryandari, Lies; Priantoro, E. Agung; Sintawardani, Neni; Astuti, J. Tri; Nilawati, Dewi; Putri, A. Mauliva Hada; Mamat, Sentana, Suharwadji; Sembiring, T.

    2016-02-01

    Biohydrogen production research was carried out using raw materials of agricultural organic waste that was obtained from markets around the Bandung city. The organic part, which consisted of agricultural waste material, mainly fruit and vegetable waste, was crushed and milled using blender. The sludge that produced from milling process was then used as a substrate for mixed culture microorganism as a raw material to produce biohydrogen. As much as 1.2 kg.day-1 of sludge (4% of total solid) was fed into bioreactor that had a capacity of 30L. Experiment was done under anaerobic fermentation using bacteria mixture culture that maintained at pH in the range of 5.6-6.5 and temperature of 25-30oC on semi-continuous mode. Parameters of analysis include pH, temperature, total solid (TS), organic total solid (OTS), total gas production, and hydrogen gas production. The results showed that from 4% of substrate resulted 897.86 L of total gas, which contained 660.74 L (73.59%) of hydrogen gas. The rate of hydrogen production in this study was 11,063 mol.L-1.h-1.

  3. Anode materials for electrochemical waste destruction

    NASA Technical Reports Server (NTRS)

    Molton, Peter M.; Clarke, Clayton

    1990-01-01

    Electrochemical Oxidation (ECO) offers promise as a low-temperature, atmospheric pressure method for safe destruction of hazardous organic chemical wastes in water. Anode materials tend to suffer corrosion in the intensely oxidizing environment of the ECO cell. There is a need for cheaper, more resistant materials. In this experiment, a system is described for testing anode materials, with examples of several common anodes such as stainless steel, graphite, and platinized titanium. The ECO system is simple and safe to operate and the experiment can easily be expanded in scope to study the effects of different solutions, temperatures, and organic materials.

  4. Fires at storage sites of organic materials, waste fuels and recyclables.

    PubMed

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  5. Biogas from bio-waste-potential for an ecological waste and energy management in resort hotels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinbach, D.; Schultheis, A.

    1996-12-31

    This paper gives an overview about waste management in holiday resorts. The objective is to determine the composition of waste and the specific waste quantities per guest. This data represents the basis for planning recycling measures and corresponding treatment facilities. The sorting analyses show the great potential of organic material suitable for biological treatment. Because of the characteristics (water content, structure) of these organic materials, composting is not as suitable as fermentation. Fermentation tests with hotel bio-waste turned out a much higher rate of biogas compared with communal bio-waste. Until now, biogas as a possibility of regenerative energy, has notmore » been taken into consideration for big hotels or holiday resorts. Using biogas as an additional source of energy and the fermentation products as fertilizer would be a further step to an ecologically beneficial tourism.« less

  6. Validation of Microtox as a first screening tool for waste classification.

    PubMed

    Weltens, R; Deprez, K; Michiels, L

    2014-12-01

    The Waste Framework Directive (WFD; 2008/98/EG) describes how waste materials are to be classified as hazardous or not. For complex waste materials chemical analyses are often not conclusive and the WFD provides the possibility to assess the hazardous properties by testing on the waste materials directly. As a methodology WFD refers to the protocols described in the CLP regulation (regulation on Classification, Labeling and Packaging of chemicals) but the toxicity tests on mammals are not acceptable for waste materials. The DISCRISET project was initiated to investigate the suitability of alternative toxicity tests that are already in use in pharmaceutical applications, for the toxicological hazard assessment of complex waste materials. Results indicated that Microtox was a good candidate as a first screening test in a tiered approached hazard assessment. This is now further validated in the present study. The toxic responses measured in Microtox were compared to biological responses in other bioassays for both organic and inorganic fractions of the wastes. Both fractions contribute to the toxic load of waste samples. Results show that the Microtox test is indeed a good and practical screening tool for the organic fraction. A screening threshold (ST) of 5 geq/l as the EC50 value in Microtox is proposed as this ST allows to recognize highly toxic samples in the screening test. The data presented here show that the Microtox toxicity response at this ST is not only predictive for acute toxicity in other organisms but also for sub lethal toxic effects of the organic fraction. This limit value has to be further validated. For the inorganic fraction no specific biotest can be recommended as a screening test, but the use of direct toxicity assessment is also preferable for this fraction as metal speciation is an important issue to define the toxic load of elutriate fractions. A battery of 3 tests (Microtox, Daphnia and Algae) for direct toxicity assessment of this fraction is recommended in literature, but including tests for mechanistic toxicity might be useful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Methane generation from waste materials

    DOEpatents

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  8. Thermal and chemical remediation of mixed wastes

    DOEpatents

    Nelson, P.A.; Swift, W.M.

    1997-12-16

    A process is described for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500 C with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO{sub 2} gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO{sub 2} gas from the particulate-free oxidation product. The CO{sub 2} absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described. 8 figs.

  9. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Science.gov Websites

    -derived natural gas, renewable natural gas-which is produced from decaying organic materials-must be on organic materials. Alternatively, renewable natural gas (RNG), also known as biomethane, is produced from organic materials-such as waste from landfills and livestock-through anaerobic digestion. RNG

  10. [Organic waste treatment by earthworm vermicomposting and larvae bioconversion: review and perspective].

    PubMed

    Zhang, Zhi-jian; Liu, Meng; Zhu, Jun

    2013-05-01

    There is a growing attention on the environmental pollution and loss of potential regeneration of resources due to the poor handling of organic wastes, while earthworm vermicomposting and larvae bioconversion are well-known as two promising biotechnologies for sustainable wastes treatments, where earthworms or housefly larvae are employed to convert the organic wastes into humus like material, together with value-added worm product. Taken earthworm ( Eisenia foetida) and housefly larvae ( Musca domestica) as model species, this work illustrates fundamental definition and principle, operational process, technical mechanism, main factors, and bio-chemical features of organisms of these two technologies. Integrated with the physical and biochemical mechanisms, processes of biomass conversion, intestinal digestion, enzyme degradation and microflora decomposition are comprehensively reviewed on waste treatments with purposes of waste reduction, value-addition, and stabilization.

  11. ENGINEERING BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANICS AND INORGANICS

    EPA Science Inventory

    Solidification refers to techniques that encapsulate hazardous waste into a solid material of high structural integrity. Encapsulation involves either fine waste particles (microencapsulation) or a large block or container of wastes (macroencapsulation). Stabilization refe...

  12. Medical waste treatment and decontamination system

    DOEpatents

    Wicks, George G.; Schulz, Rebecca L.; Clark, David E.

    2001-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  13. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  14. Method for destroying hazardous organics and other combustible materials in a subcritical/supercritical reactor

    DOEpatents

    Janikowski, Stuart K.

    2000-01-01

    A waste destruction method using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.

  15. Perspectives of flax processing wastes in building materials production

    NASA Astrophysics Data System (ADS)

    Smirnova, Olga

    2017-01-01

    The paper discusses the possibility of using the flax boons for thermal insulation materials. The solution for systematization of materials based on flax boon is suggested. It based on the principle of building materials production using the flax waste with different types of binders. The purpose of the research is to obtain heat-insulating materials with different structure based on agricultural production waste - flax boon, mineral and organic binders. The composition and properties of organic filler - flax boons - are defined using infrared spectroscopy and standard techniques. Using the method of multivariate analysis the optimal ratio of flax boons and binders in production of pressed, porous and granular materials are determined. The effect of particles size distribution of flax boons on the strength of samples with the different composition is studied. As a result, the optimized compositions of pressed, porous and granular materials based on flax boons are obtained. Data on the physical and mechanical properties of these materials are given in the paper.

  16. Wet Oxidation as a Waste Treatment Method in Closed Systems

    NASA Technical Reports Server (NTRS)

    Onisko, B. L.; Wydeven, T.

    1982-01-01

    The chemistry of the wet oxidation process was investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life support system. Hydroponically grown lettuce plants were used as a model plant waste, and oxygen gas was used as an oxidant. Organic nitrogen content was decreased 88-100%, depending on feed material. Production of ammonia and nitrogen gas accounted for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life support systems are discussed.

  17. Wet oxidation as a waste treatment in closed systems

    NASA Technical Reports Server (NTRS)

    Onisko, B. L.; Wydeven, T.

    1981-01-01

    The chemistry of the wet oxidation process has been investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life-support system. Hydroponically grown lettuce plants were used as a model plant waste and oxygen gas was used as oxidant. Organic nitrogen content was decreased 88-100% depending on feed material. Production of ammonia and nitrogen gas account for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life-support systems are discussed.

  18. Development of a novel wet oxidation process for hazardous and mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.

    1994-12-31

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process usesmore » a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described.« less

  19. A solid waste audit and directions for waste reduction at the University of British Columbia, Canada.

    PubMed

    Felder, M A; Petrell, R J; Duff, S J

    2001-08-01

    A novel design for a solid waste audit was developed and applied to the University of British Columbia, Canada, in 1998. This audit was designed to determine the characteristics of the residual solid waste generated by the campus and provide directions for waste reduction. The methodology was constructed to address complications in solid waste sampling, including spatial and temporal variation in waste, extrapolation from the study area, and study validation. Accounting for spatial effects decreased the variation in calculating total waste loads. Additionally, collecting information on user flow provided a means to decrease daily variation in solid waste and allow extrapolation over time and space. The total annual waste estimated from the experimental design was compared to documented values and was found to differ by -18%. The majority of this discrepancy was likely attributable to the unauthorised disposal of construction and demolition waste. Several options were proposed to address waste minimisation goals. These included: enhancing the current recycling program, source reduction of plastic materials, and/or diverting organic material to composting (maximum diversion: approximately 320, approximately 270, and approximately 1510 t yr(-1), respectively). The greatest diversion by weight would be accomplished through the diversion of organic material, as it was estimated to comprise 70% of the projected waste stream. The audit methodology designed is most appropriate for facilities/regions that have a separate collection system for seasonal wastes and have a means for tracking user flow.

  20. Effects of Organic and Waste-Derived Fertilizers on Yield, Nitrogen and Glucosinolate Contents, and Sensory Quality of Broccoli (Brassica oleracea L. var. italica).

    PubMed

    Øvsthus, Ingunn; Breland, Tor Arvid; Hagen, Sidsel Fiskaa; Brandt, Kirsten; Wold, Anne-Berit; Bengtsson, Gunnar B; Seljåsen, Randi

    2015-12-23

    Organic vegetable production attempts to pursue multiple goals concerning influence on environment, production resources, and human health. In areas with limited availability of animal manure, there is a need for considering various off-farm nutrient resources for such production. Different organic and waste-derived fertilizer materials were used for broccoli production at two latitudes (58° and 67°) in Norway during two years. The fertilizer materials were applied at two rates of total N (80 and 170 kg ha(-1)) and compared with mineral fertilizer (170 kg ha(-1)) and no fertilizer. Broccoli yield was strongly influenced by fertilizer materials (algae meal < unfertilized control < sheep manure < extruded shrimp shell < anaerobically digested food waste < mineral fertilizer). Yield, but not glucosinolate content, was linearly correlated with estimated potentially plant-available N. However, extruded shrimp shell and mineral NPK fertilizer gave higher glucosinolate contents than sheep manure and no fertilizer. Sensory attributes were less affected by fertilizer material and plant-available N.

  1. [Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].

    PubMed

    González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo

    2015-01-01

    The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Sustainable Materials Management Challenge Data

    EPA Pesticide Factsheets

    Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle we can find new opportunities to reduce environmental impacts, conserve resources, and reduce costs. There are multiple challenge programs available as part of the SMM program, including the Food Recovery Challenge, the Electronics Challenge, the Federal Green Challenge, and the WasteWise program. As part of EPA's Food Recovery Challenge, organizations pledge to improve their sustainable food management practices and report their results. The SMM Electronics Challenge encourages electronics manufacturers, brand owners and retailers to strive to send 100 percent of the used electronics they collect from the public, businesses and within their own organizations to third-party certified electronics refurbishers and recyclers. The Federal Green Challenge, a national effort under the EPA??s Sustainable Materials Management Program, challenges EPA and other federal agencies throughout the country to lead by example in reducing the federal government's environmental impact. EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustaina

  3. Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview.

    PubMed

    Vavilin, V A; Fernandez, B; Palatsi, J; Flotats, X

    2008-01-01

    The applicability of different kinetics to the hydrolysis of particulate organic material in anaerobic digestion is discussed. Hydrolysis has traditionally been modelled according to the first-order kinetics. For complex substrate, the first-order kinetics should be modified in order to take into account hardly degradable material. It has been shown that models in which hydrolysis is coupled to the growth of hydrolytic bacteria work well at high or at fluctuant organic loading. In particular, the surface-related two-phase and the Contois models showed good fits to experimental data from a wide range of organic waste. Both models tend to the first-order kinetics at a high biomass-to-waste ratio and, for this reason, they can be considered as more general models. Examples on different inhibition processes that might affect the degradation of solid waste are reported. Acetogenesis or methanogenesis might be the rate-limiting stages in complex waste. In such cases, stimulation of hydrolysis (mechanically, chemically or biologically) may lead to a further inhibition of these stages, which ultimately affects hydrolysis as well. Since the hydrolysis process is characterized by surface and transport phenomena, new developments in spatially distributed models are considered fundamental to provide new insights in this complex process.

  4. En masse pyrolysis of flexible printed circuit board wastes quantitatively yielding environmental resources.

    PubMed

    Kim, Jang Won; Lee, Albert S; Yu, Seunggun; Han, Jeong Whan

    2018-01-15

    This paper reports the recycling of flexible printed circuit board (FPCB) waste through carbonization of polyimide by dual pyrolysis processes. The organic matter was recovered as pyrolyzed oil at low temperatures, while valuable metals and polyimide-derived carbon were effectively recovered through secondary high temperature pyrolysis. The major component of organics extracted from FPCB waste comprised of epoxy resins were identified as pyrolysis oils containing bisphenol-A. The valuable metals (Cu, Ni, Ag, Sn, Au, Pd) in waste FPCB were recovered as granular shape and quantitatively analyzed via ICP-OES. In attempt to produce carbonaceous material with increased degree of graphitization at low heat-treatment conditions, the catalytic effect of transition metals within FPCB waste was investigated for the efficient carbonization of polyimide films. The morphology of the carbon powder was observed by scanning electron microscopy and graphitic carbonization was investigated with X-ray analysis. The protocols outlined in this study may allow for propitious opportunities to salvage both organic and inorganic materials from FPCB waste products for a sustainable future. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Life cycle assessment for optimising the level of separated collection in integrated MSW management systems.

    PubMed

    Rigamonti, L; Grosso, M; Giugliano, M

    2009-02-01

    This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection that lead to the most favourable energetic and environmental results; this method allows identification of an optimum configuration of the MSW management system. The results show that the optimum level of source-separated collection is about 60%, when all the materials are recovered with high efficiency; it decreases to about 50%, when the 60% level is reached as a result of a very high recovery efficiency for organic fractions at the expense of the packaging materials, or when this implies an appreciable reduction of the quality of collected materials. The optimum MSW management system is thus characterized by source-separated collection levels as included in the above indicated range, with subsequent recycling of the separated materials and energy recovery of the residual waste in a large-scale incinerator operating in combined heat and power mode.

  6. The influence of composition and final pyrolysis temperature variations on global kinetics of combustion of segregated municipal solid waste

    NASA Astrophysics Data System (ADS)

    Pranoto; Himawanto, D. A.; Arifin, N. A.

    2017-04-01

    The combustion of segregated municipal solid waste (MSW) and the resulted char from the pyrolysis process were investigated in this research. The segregated MSW that was collected and used can be divided into organic and inorganic waste materials. The organic materials were bamboo and banana leaves and the inorganic materials were Styrofoam and snack wrappings. The composition ratio of the waste was based on the percentage of weight of each sample. The thermal behaviour of the segregated MSW was investigated by thermo gravimetric analysis. For the pyrolysis process the prepared samples of 200gram were heated from ambient temperature until a variance of final pyrolysis temperature of 550°C, 650°C and 750°C at a constant heating rate of 25°C/min. It was found that the highest activation energy of the raw materials is achieved from sample CC1 (Char with 100% inorganic materials). The activation energy of the raw materials is relatively lower than that of the char. The higher the final pyrolysis temperature, the lower the calorific value of char. The calorific value gradually increases with the amount of inorganic materials.

  7. Method for the capture and storage of waste

    DOEpatents

    None

    2017-01-24

    Systems and methods for capturing waste are disclosed. The systems and methods provide for a high level of confinement and long term stability. The systems and methods include adsorbing waste into a metal-organic framework (MOF), and applying pressure to the MOF material's framework to crystallize or make amorphous the MOF material thereby changing the MOF's pore structure and sorption characteristics without collapsing the MOF framework.

  8. Report: Potential environmental impact of exempt site materials - a case study of bituminous road planings and waste soils.

    PubMed

    Bark, Marjorie; Bland, Michael; Grimes, Sue

    2009-09-01

    The use of waste materials for ecological benefit, agricultural improvement or as part of construction works are often exempt from waste management control in order to maximize the reuse of material that would otherwise be disposed of to landfill. It is important, however, to determine whether there is potential for such waste to cause environmental harm in the context of the basis for granting exemptions under the relevant framework objective to ensure that waste is recovered or disposed of without risk to water, air, soil, plants or animals. The potential for environmental harm was investigated by leaching studies on two wastes commonly found at exempt sites: bituminous road planings and waste soils. For bituminous road planings, the organic components of the waste were identified by their solubility in organic solvents but these components would have low environmental impact in terms of bioavailability. Leaching studies of the heavy metals copper, lead and zinc, into the environment, under specific conditions and particularly those modelling acid rain and landfill leachate conditions showed that, except for copper, the amounts leached fell within Waste Acceptance Criteria compliance limits for defining waste as inert waste. The fact that the amount of copper leached was greater than the Waste Acceptance Criteria level suggests that either additional testing of wastes regarded as exempt should be carried out to ensure that they are in analytical compliance or that legislation should allow for the potential benefits of reuse to supersede deviations from analytical compliance.

  9. Organic Separation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less

  10. Resource recovery of organic sludge as refuse derived fuel by fry-drying process.

    PubMed

    Chang, Fang-Chih; Ko, Chun-Han; Wu, Jun-Yi; Wang, H Paul; Chen, Wei-Sheng

    2013-08-01

    The organic sludge and waste oil were collected from the industries of thin film transistor liquid crystal display and the recycled cooking oil. The mixing ratio of waste cooking oil and organic sludge, fry-drying temperatures, fry-drying time, and the characteristics of the organic sludge pellet grain were investigated. After the fry-drying process, the moisture content of the organic sludge pellet grain was lower than 5% within 25 min and waste cooking oil was absorbed on the dry solid. The fry-drying organic sludge pellet grain was easy to handle and odor free. Additionally, it had a higher calorific value than the derived fuel standards and could be processed into organic sludge derived fuels. Thus, the granulation and fry-drying processes of organic sludge with waste cooking oil not only improves the calorific value of organic sludge and becomes more valuable for energy recovery, but also achieves waste material disposal and cost reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. 40 CFR 268.3 - Dilution prohibited as a substitute for treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) The waste consists of organic, debris-like materials (e.g., wood, paper, plastic, or cloth... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.3 Dilution prohibited as a... restricted waste or the residual from treatment of a restricted waste as a substitute for adequate treatment...

  12. 40 CFR 268.3 - Dilution prohibited as a substitute for treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) The waste consists of organic, debris-like materials (e.g., wood, paper, plastic, or cloth... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.3 Dilution prohibited as a... restricted waste or the residual from treatment of a restricted waste as a substitute for adequate treatment...

  13. Evaluating the Air Quality, Climate & Economic Impacts of Biogas Management Technologies

    EPA Science Inventory

    Anaerobic digestion is a natural biological process in which microorganisms break down organic materials in the absence of oxygen. When anaerobic microbes metabolize organic waste – i.e., the carbon-based remains of plants, animals and their waste products, e.g. animal manu...

  14. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    2000-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  15. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1998-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300.degree.-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000.degree.-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  16. Method for recovering metals from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1998-12-01

    A method is described for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800 C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000--1,550 C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification. 2 figs.

  17. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    PubMed

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  18. Complete utilization of spent coffee to biodiesel, bio-oil and biochar

    USDA-ARS?s Scientific Manuscript database

    Energy production from renewable or waste biomass/material is a more attractive alternative compared to conventional feedstocks, such as corn and soybean. The objective of this study is to maximize utilization of any waste organic carbon material to produce renewable energy. This study presents tota...

  19. System and method for the capture and storage of waste

    DOEpatents

    Nenoff, Tina M.; Sava Gallis, Dorina Florentina; Chapman, Karena; Chupas, Peter

    2015-10-20

    The present disclosure is directed to systems and methods that absorb waste into a metal-organic framework (MOF), and applying pressure to the MOF material's framework to crystallize or make amorphous the MOF material thereby changing the MOF's pore structure and sorption characteristics without collapsing the MOF framework.

  20. Evaluating the Air Quality, Climate and Economic Impacts of Biogas Management Technologies

    EPA Science Inventory

    Anaerobic digestion is a natural biological process in which microorganisms break down organic materials in the absence of oxygen. When anaerobic microbes metabolize organic waste – i.e., the carbon-based remains of plants, animals and their waste products, e.g. animal manure, se...

  1. Evaluation of a new pulping technology for pre-treating source-separated organic household waste prior to anaerobic digestion.

    PubMed

    Naroznova, Irina; Møller, Jacob; Larsen, Bjarne; Scheutz, Charlotte

    2016-04-01

    A new technology for pre-treating source-separated organic household waste prior to anaerobic digestion was assessed, and its performance was compared to existing alternative pre-treatment technologies. This pre-treatment technology is based on waste pulping with water, using a specially developed screw mechanism. The pre-treatment technology rejects more than 95% (wet weight) of non-biodegradable impurities in waste collected from households and generates biopulp ready for anaerobic digestion. Overall, 84-99% of biodegradable material (on a dry weight basis) in the waste was recovered in the biopulp. The biochemical methane potential for the biopulp was 469 ± 7 mL CH4/g ash-free mass. Moreover, all Danish and European Union requirements regarding the content of hazardous substances in biomass intended for land application were fulfilled. Compared to other pre-treatment alternatives, the screw-pulping technology showed higher biodegradable material recovery, lower electricity consumption and comparable water consumption. The higher material recovery achieved with the technology was associated with greater transfer of nutrients (N and P), carbon (total and biogenic) but also heavy metals (except Pb) to the produced biomass. The data generated in this study could be used for the environmental assessment of the technology and thus help in selecting the best pre-treatment technology for source separated organic household waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures

    DOEpatents

    Stoner, Daphne L.; Tien, Albert J.

    1995-01-01

    A method and process for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate).

  3. Impacts of policy and market incentives for solid waste recycling in Dhaka, Bangladesh.

    PubMed

    Matter, Anne; Ahsan, Mehedi; Marbach, Michelle; Zurbrügg, Christian

    2015-05-01

    Solid waste mismanagement in Dhaka, Bangladesh, illustrates a well-known market failure which can be summarized as: waste is a resource in the wrong place. Inorganic materials such as plastic or paper can be used to feed the demand for recycled materials in the industrial sector. Organic materials can be converted and used in the nutrient-starved agricultural sector which is currently heavily depending on chemical fertilizers. They are also a feedstock to generate renewable energy in the form of biogas for this energy-starved country relying on diminishing natural gas reserves and increasing import of coal. Reality however does not capitalize on this potential; instead the waste is a burden for municipal authorities who spend large portions of their budgets attempting to transport it out of the city for discharge into landfills. The major part of these materials still remains uncollected in the residential areas and is discarded indiscriminately in open spaces, polluting the residents' living environment including water, soil and air resources, in the city and beyond. Bangladeshi authorities have, to some extent, recognized this market failure and have developed policies to encourage the development of waste recycling activities. It is also important to note that this market failure is only partial: a large, mostly informal recycling sector has developed in Bangladesh, focusing on inorganic recyclables of market value. The fact that this sector remains largely informal means that these actors perceive significant barriers to formalization. Comparatively, the organic waste recycling sector is less driven by market mechanisms. Competition from chemical fertilizers and fossil fuels is fierce and hinders the development of market opportunities for compost and renewable energy. Nevertheless commercial production of compost and biogas from organic municipal waste is formalized and benefiting from policy incentives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Physico-chemical characterisation of material fractions in residual and source-segregated household waste in Denmark.

    PubMed

    Götze, R; Pivnenko, K; Boldrin, A; Scheutz, C; Astrup, T Fruergaard

    2016-08-01

    Physico-chemical waste composition data are paramount for the assessment and planning of waste management systems. However, the applicability of data is limited by the regional, temporal and technical scope of waste characterisation studies. As Danish and European legislation aims for higher recycling rates evaluation of source-segregation and recycling chains gain importance. This paper provides a consistent up-to-date dataset for 74 physico-chemical parameters in 49 material fractions from residual and 24 material fractions from source-segregated Danish household waste. Significant differences in the physico-chemical properties of residual and source-segregated waste fractions were found for many parameters related to organic matter, but also for elements of environmental concern. Considerable differences in potentially toxic metal concentrations between the individual recyclable fractions within one material type were observed. This indicates that careful planning and performance evaluation of recycling schemes are important to ensure a high quality of collected recyclables. Rare earth elements (REE) were quantified in all waste fractions analysed, with the highest concentrations of REE found in fractions with high content of mineral raw materials, soil materials and dust. The observed REE concentrations represent the background concentration level in non-hazardous waste materials that may serve as a reference point for future investigations related to hazardous waste management. The detailed dataset provided here can be used for assessments of waste management solutions in Denmark and for the evaluation of the quality of recyclable materials in waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Wealth generation through recycling of material for reuse

    NASA Astrophysics Data System (ADS)

    Chukwudum, Okechukw John; Patience I., E.

    2018-06-01

    Management of solid waste needs appropriate technology, which is economically affordable, socially accepted and environmentally friendly. The public needs to be sensitized on the potential wealth that their inorganic and organic wastes contain. The paper deals with the idea of recycling as a means of solid waste treatment and explores. In developing countries, where standards are often lower and raw materials very expensive, there is a wider scope for use of recycled material. The range of products varies from building materials to shoes, home to office equipment, sewage pipe to beauty aids. Recyclingand reuse issues overlap a range of disciplines.

  6. Need for improvements in physical pretreatment of source-separated household food waste.

    PubMed

    Bernstad, A; Malmquist, L; Truedsson, C; la Cour Jansen, J

    2013-03-01

    The aim of the present study was to investigate the efficiency in physical pretreatment processes of source-separated solid organic household waste. The investigation of seventeen Swedish full-scale pretreatment facilities, currently receiving separately collected food waste from household for subsequent anaerobic digestion, shows that problems with the quality of produced biomass and high maintenance costs are common. Four full-scale physical pretreatment plants, three using screwpress technology and one using dispergation technology, were compared in relation to resource efficiency, losses of nitrogen and potential methane production from biodegradable matter as well as the ratio of unwanted materials in produced biomass intended for wet anaerobic digestion. Refuse generated in the processes represent 13-39% of TS in incoming wet waste. The methane yield from these fractions corresponds to 14-36Nm(3)/ton separately collected solid organic household waste. Also, 13-32% of N-tot in incoming food waste is found in refuse. Losses of both biodegradable material and nutrients were larger in the three facilities using screwpress technology compared to the facility using dispersion technology.(1) Thus, there are large potentials for increase of both the methane yield and nutrient recovery from separately collected solid organic household waste through increased efficiency in facilities for physical pretreatment. Improved pretreatment processes could thereby increase the overall environmental benefits from anaerobic digestion as a treatment alternative for solid organic household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  8. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  9. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  10. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  11. Catalytic wet-oxidation of human wastes produced in space: the effects of temperature elevation.

    PubMed

    Takeda, N; Takahashi, Y

    1992-01-01

    The filtrate of non-catalytical wet-oxidation sewage sludge was wet-oxidized again at 290 degrees C and 300 degrees C with a Ru-Rh catalyst. At each temperature, repeated batch tests were carried out. Both oxidation and denitrification efficiency of organic matter in the raw material were studied. In the 16 times batch tests at 300 degrees C, high and stable oxidation occurred. 98.0% of organic carbon in the raw material was oxidized and 98.3% of organic nitrogen was denitrified. At 290 degrees C, though high and stable denitrification occurred, oxidation did not occur highly and stably. A catalytic wet-oxidation system studied at 300 degrees C will be useful as a waste management system for a human life support system, where almost all food is resupplied from the earth. This system can prevent organic waste accumulation in the life support system.

  12. Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes.

    PubMed

    Komilis, Dimitrios; Evangelou, Alexandros; Giannakis, Georgios; Lymperis, Constantinos

    2012-03-01

    In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C(32)NH(55)O(16). Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Impacts of policy and market incentives for solid waste recycling in Dhaka, Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matter, Anne; Swisscontact: Swiss Foundation for Technical Cooperation, South Asian Regional Office, House No. 19, Road No. 11, Baridhara, Dhaka 1212; Ahsan, Mehedi

    Highlights: • Bangladesh’s industry and population are growing rapidly, producing more urban waste. • Recycling reduces the solid waste management burden of Municipalities. • A wide array of informal and formal actors is involved in collection and recycling. • Demand for recycled materials and renewable energy creates market incentives. • Policy incentives exist, but they only reach the formal industry. - Abstract: Solid waste mismanagement in Dhaka, Bangladesh, illustrates a well-known market failure which can be summarized as: waste is a resource in the wrong place. Inorganic materials such as plastic or paper can be used to feed the demandmore » for recycled materials in the industrial sector. Organic materials can be converted and used in the nutrient-starved agricultural sector which is currently heavily depending on chemical fertilizers. They are also a feedstock to generate renewable energy in the form of biogas for this energy-starved country relying on diminishing natural gas reserves and increasing import of coal. Reality however does not capitalize on this potential; instead the waste is a burden for municipal authorities who spend large portions of their budgets attempting to transport it out of the city for discharge into landfills. The major part of these materials still remains uncollected in the residential areas and is discarded indiscriminately in open spaces, polluting the residents’ living environment including water, soil and air resources, in the city and beyond. Bangladeshi authorities have, to some extent, recognized this market failure and have developed policies to encourage the development of waste recycling activities. It is also important to note that this market failure is only partial: a large, mostly informal recycling sector has developed in Bangladesh, focusing on inorganic recyclables of market value. The fact that this sector remains largely informal means that these actors perceive significant barriers to formalization. Comparatively, the organic waste recycling sector is less driven by market mechanisms. Competition from chemical fertilizers and fossil fuels is fierce and hinders the development of market opportunities for compost and renewable energy. Nevertheless commercial production of compost and biogas from organic municipal waste is formalized and benefiting from policy incentives.« less

  14. Performance characterization of water recovery and water quality from chemical/organic waste products

    NASA Technical Reports Server (NTRS)

    Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.

    1989-01-01

    The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.

  15. Preliminary Design of Industrial Symbiosis of Smes Using Material Flow Cost Accounting (MFCA) Method

    NASA Astrophysics Data System (ADS)

    Astuti, Rahayu Siwi Dwi; Astuti, Arieyanti Dwi; Hadiyanto

    2018-02-01

    Industrial symbiosis is a collaboration of several industries to share their necessities such material, energy, technology as well as waste management. As a part of industrial ecology, in principle, this system attempts to emulate ecosystem where waste of an organism is being used by another organism, therefore there is no waste in the nature. This system becomes an effort to optimize resources (material and energy) as well as minimize waste. Considerable, in a symbiosis incure material and energy flows among industries. Material and energy in an industry are known as cost carriers, thus flow analysis in this system can be conducted in perspective of material, energy and cost, or called as material flow cost accounting (MFCA) that is an economic and ecological appraisal approach. Previous researches shown that MFCA implementation could be used to evaluate an industry's environmental-related efficiency as well as in planning, business control and decision making. Moreover, the MFCA has been extended to assess environmental performance of SMEs Cluster or industrial symbiosis in SMEs Cluster, even to make preliminary design of an industrial symbiosis base on a major industry. This paper describes the use of MFCA to asses performance of SMEs industrial symbiosis and to improve the performance.

  16. 40 CFR 63.3511 - What reports must I submit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicable, the calculation used to determine mass of organic HAP in waste materials according to § 63.3531(e... in waste materials according to § 63.3531(e)(3); the calculation of the total volume of coating... CPMS certification or audit. (vi) The date and time that each CPMS was inoperative, except for zero...

  17. 40 CFR 63.3511 - What reports must I submit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applicable, the calculation used to determine mass of organic HAP in waste materials according to § 63.3531(e... in waste materials according to § 63.3531(e)(3); the calculation of the total volume of coating... CPMS certification or audit. (vi) The date and time that each CPMS was inoperative, except for zero...

  18. A LABORATORY STUDY TO INVESTIGATE GASEOUS EMISSIONS AND SOLIDS DECOMPOSITION DURING COMPOSTING OF MUNICIPAL SOLID WASTE

    EPA Science Inventory

    The report gives results of a materials flow analysis performed for composting municipal solid waste (MSW) and specific biodegradable organic components of MSW. (NOTE: This work is part of an overall U.S. EPA project providing cost, energy, and materials flow information on diffe...

  19. Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors.

    PubMed

    Chen, Zhenyang; Niu, Bo; Zhang, Lingen; Xu, Zhenming

    2018-01-15

    Recycling rare metal tantalum from waste tantalum capacitors (WTCs) is significant to alleviate the shortage of tantalum resource. However, environmental problems will be caused if the organic materials from WTCs are improperly disposed. This study presented a promising vacuum pyrolysis technology to recycle the organic materials from WTCs. The organics removal rate could reach 94.32wt% according to TG results. The optimal parameters were determined as 425°C, 50Pa and 30min on the basis of response surface methodology (RSM). The oil yield and residual rate was 18.09wt% and 74.94wt%, respectively. All pyrolysis products can be recycled through a reasonable route. Besides, to deeply understand the pyrolysis process, the pyrolysis mechanism was also proposed based on the product and free radical theory. This paper provides an efficient process for recycling the organic material from WTCs, which can facilitate the following tantalum recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Anaerobic Digestion.

    PubMed

    Liebetrau, Jan; Sträuber, Heike; Kretzschmar, Jörg; Denysenko, Velina; Nelles, Michael

    2017-04-09

    The term anaerobic digestion usually refers to the microbial conversion of organic material to biogas, which mainly consists of methane and carbon dioxide. The technical application of the naturally-occurring process is used to provide a renewable energy carrier and - as the substrate is often waste material - to reduce the organic matter content of the substrate prior to disposal.Applications can be found in sewage sludge treatment, the treatment of industrial and municipal solid wastes and wastewaters (including landfill gas utilization), and the conversion of agricultural residues and energy crops.For biorefinery concepts, the anaerobic digestion (AD) process is, on the one hand, an option to treat organic residues from other production processes. Concomitant effects are the reduction of organic carbon within the treated substance, the conversion of nitrogen and sulfur components, and the production of an energy-rich gas - the biogas. On the other hand, the multistep conversion of complex organic material offers the possibility of interrupting the conversion chain and locking out intermediates for utilization as basic material within the chemical industry.

  1. Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures

    DOEpatents

    Stoner, D.L.; Tien, A.J.

    1995-09-26

    A method and process are disclosed for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate). 6 figs.

  2. Investigation of some process parameters using microwave plasma technology for the treatment of radioactive waste

    NASA Astrophysics Data System (ADS)

    Trnovcevic, J.; Schneider, F.; Scherer, U. W.

    2017-02-01

    The production of nuclear energy and the application of other nuclear technologies produce large volumes of low- and intermediate-level radioactive wastes. To investigate a novel means of treating such wastes, plasma is investigated for its efficacy. Plasma treatment promises to simultaneously treat all waste types without any previous sorting or pre-treatment. Microwave-driven plasma torches have the advantage of high-energy efficiency and low-electrode wear. In small-scale experiments, several design variations of an open plasma oven were assembled in order to investigate constraints caused by the materials and oven geometry. The experimental set-up was modified several times in order to test the design characteristics and the variation of plasma-specific proprieties related to the radioactive waste treatment and in order to find a suitable solution with the minimum complexity that allows a representative reproducibility of the results obtained. A plasma torch controlled by a 2.45 GHz microwave signal of up to 200 W was used, employing air as the primary plasma gas with a flow rate of ∼2 L/min. Different organic and inorganic materials in different shapes and sizes were treated besides a standardized mixture resembling mixed wastes from nuclear plants. The results prove that the chosen microwave plasma torch is suitable for a combined combustion and melting of organic and in-organic materials. Investigation of the specimen size to be treated is influential in this process: the power is still too low to melt larger samples, but the temperature is sufficient to treat all kinds of material. When glass particles are added, materials melt together to form an amorphous substance, proving the possibility to vitrify material with this plasma torch. By optimization of the oven configuration, the time needed to combust 25 g of standard sample was reduced by ∼50%. Typical energy efficiencies were found in the range of 8-20% for melting of metal chipping, and ∼90% for melting of zinc powder.

  3. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    PubMed Central

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO. PMID:25586328

  4. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO.

  5. Increased biogas production in a wastewater treatment plant by anaerobic co-digestion of fruit and vegetable waste and sewer sludge - a full scale study.

    PubMed

    Park, Nathan D; Thring, Ronald W; Garton, Randy P; Rutherford, Michael P; Helle, Steve S

    2011-01-01

    Anaerobic digestion is a well established technology for the reduction of organic matter and stabilization of wastewater. Biogas, a mixture of methane and carbon dioxide, is produced as a useful by-product of the process. Current solid waste management at the city of Prince George is focused on disposal of waste and not on energy recovery. Co-digestion of fresh fruit and vegetable waste with sewer sludge can improve biogas yield by increasing the load of biodegradable material. A six week full-scale project co-digesting almost 15,000 kg of supermarket waste was completed. Average daily biogas production was found to be significantly higher than in previous years. Digester operation remained stable over the course of the study as indicated by the consistently low volatile acids-to-alkalinity ratio. Undigested organic material was visible in centrifuged sludge suggesting that the waste should have been added to the primary digester to prevent short circuiting and to increase the hydraulic retention time of the freshly added waste.

  6. Method of preparing a high heating value fuel product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, R.; Fan, L.T.

    1989-10-24

    This patent describes a method of preparing a high heating value fuel product. The method comprising the steps of: blending a high heating value waste material with a cellulosic material; mixing an organic reagent to the blended mixture of the waste material and the cellulosic material, the organic reagent being a mixture having a 4-15 weight percent of a chemical selected from the group consisting of: triethylene, glycol, diethylene glycol, and glycerin propylene glycol; introducing a pozzolanic agent to the blended mixture for controlling the rate of solidification; and forming the blended mixture into a form suitable for handling. Alsomore » described is the same method with the mixture of the organic reagent further comprising: a 20-32 weight percent calcium chloride solution. Another method of preparing a fuel product is also described.« less

  7. Prospects of effective microorganisms technology in wastes treatment in Egypt.

    PubMed

    Shalaby, Emad A

    2011-06-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future.

  8. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  9. Applications of polymeric smart materials to environmental problems.

    PubMed Central

    Gray, H N; Bergbreiter, D E

    1997-01-01

    New methods for the reduction and remediation of hazardous wastes like carcinogenic organic solvents, toxic materials, and nuclear contamination are vital to environmental health. Procedures for effective waste reduction, detection, and removal are important components of any such methods. Toward this end, polymeric smart materials are finding useful applications. Polymer-bound smart catalysts are useful in waste minimization, catalyst recovery, and catalyst reuse. Polymeric smart coatings have been developed that are capable of both detecting and removing hazardous nuclear contaminants. Such applications of smart materials involving catalysis chemistry, sensor chemistry, and chemistry relevant to decontamination methodology are especially applicable to environmental problems. PMID:9114277

  10. No time to waste organic waste: Nanosizing converts remains of food processing into refined materials.

    PubMed

    Griffin, Sharoon; Sarfraz, Muhammad; Farida, Verda; Nasim, Muhammad Jawad; Ebokaiwe, Azubuike P; Keck, Cornelia M; Jacob, Claus

    2018-03-15

    Modern food processing results in considerable amounts of side-products, such as grape seeds, walnut shells, spent coffee grounds, and harvested tomato plants. These materials are still rich in valuable and biologically active substances and therefore of interest from the perspective of waste management and "up-cycling". In contrast to traditional, often time consuming and low-value uses, such as vermicomposting and anaerobic digestion, the complete conversion into nanosuspensions unlocks considerable potentials of and new applications for such already spent organic materials without the need of extraction and without producing any additional waste. In this study, nanosuspensions were produced using a sequence of milling and homogenization methods, including High Speed Stirring (HSS) and High Pressure Homogenization (HPH) which reduced the size of the particles to 200-400 nm. The resulting nanosuspensions demonstrated nematicidal and antimicrobial activity and their antioxidant activities exceeded the ones of the bulk materials. In the future, this simple nanosizing approach may fulfil several important objectives, such as reducing and turning readily available waste into new value and eventually closing a crucial cycle of agricultural products returning to their fields - with a resounding ecological impact in the fields of medicine, agriculture, cosmetics and fermentation. Moreover, up-cycling via nanosizing adds an economical promise of increased value to residue-free waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Development studies of a novel wet oxidation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.W.; Dhooge, P.M.

    1995-12-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. There is a need for non-combustion processes with a wide application range to treat the large majority of these waste forms. The non-combustion process should also be safe, effective, cost-competitive, permit-able, and preferrably mobile. This paper describes the DETOX processmore » of organic waste oxidation.« less

  12. Supercritical waste oxidation of aqueous wastes

    NASA Technical Reports Server (NTRS)

    Modell, M.

    1986-01-01

    For aqueous wastes containing 1 to 20 wt% organics, supercritical water oxidation is less costly than controlled incineration or activated carbon treatment and far more efficient than wet oxidation. Above the critical temperature (374 C) and pressure (218 atm) of water, organic materials and gases are completely miscible with water. In supercritical water oxidation, organics, air and water are brought together in a mixture at 250 atm and temperatures above 400 C. Organic oxidation is initiated spontaneously at these conditions. The heat of combustion is released within the fluid and results in a rise in temperature 600 to 650 C. Under these conditions, organics are destroyed rapidly with efficiencies in excess of 99.999%. Heteroatoms are oxidized to acids, which can be precipitated out as salts by adding a base to the feed. Examples are given for process configurations to treat aqueous wastes with 10 and 2 wt% organics.

  13. Assesment of hydraulics properties of technosoil constructed with waste material using Beerkan infiltration

    NASA Astrophysics Data System (ADS)

    Yilmaz, Deniz; Peyneau, Pierre-Emmanuel; Beaudet, Laure; Cannavo, Patrice; Sere, Geoffroy

    2017-04-01

    For the characterization of hydraulics soils functions, in situ infiltration experiments are commonly used. The BEST method based on the infiltration through a single ring is well suited for soils containing coarse material. Technosols built from Civil engineering waste material such as brick waste, concrete waste, track ballast and demolition rubble wastes contain large part of coarse material. In this work, different materials made of civil engineering wastes mixed with organic wastes are tested for greening applications in an urban environment using in situ lysimeters. Beerkan infiltrations experiments were performed on these technosols. Experimental data are used to estimate hydraulics properties through the BEST method. The results shows from a hydraulic point of view that studied technosols can achieve the role of urban soil for greening application. Five combinations of artefacts were tested either as "growing material" (one combination) or "structural material" (4 combinations) - as support for traffic. Structural materials consisted in 27 wt.% earth material, 60 wt.% mineral coarse material and 3 wt.% organic material. These constructed technosols were studied in situ using lysimeters under two contrasted climatic conditions in two sites in France (Angers, in northwestern France and Homécourt, in northeastern France). Constructed technosols exhibited high porosities (31-48 vol% for structural materials, 70 vol% for the growing material). The dry bulk density of the growing material is estimated to 0.66 kg/m3 and 1.59 kg/m3 for structural material. The particle size distribution analysis, involving manual sieving (> 2 mm) and complemented by a grain size analysis (< 2 mm) were used as described in the BEST method (2006) for the estimation of the shape parameter n of hydraulics functions (Van-Genuchten -Mualem, 1980). This n parameter was estimated to 2.23 for growing materials and 2.29 for structural materials. Beerkan infiltrations experiments data were inversed using the BEST method, the results exhibited high saturated hydraulic conductivities 10.7 cm/h for structural materials and 14,8 cm/h for the growing material. Beerkan infiltration experiements are well suited for assesment of hydraulic properties of technosol constructed with civil engineering wastes. According to the estimated hydraulics functions, the studied technosols can be classified between a sand and a loam soil. It shows that these materials can achieve the role of alternative to the consumption of natural arable earth for urban greening applications such as gardens, parks and trees lines.

  14. 40 CFR 63.4720 - What reports must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAP in waste materials according to § 63.4751(e)(4). You do not need to submit background data... applicable, the calculation used to determine mass of organic HAP in waste materials according to § 63.4751(e... inoperative, except for zero (low-level) and high-level checks. (vii) The date, time, and duration that each...

  15. SYSTEMS APPROACH TO RECOVERY AND REUSE OF ORGANIC MATERIAL FLOWS IN SANTA BARBARA COUNTY TO EXTRACT MAXIMUM VALUE AND ELIMINATE WASTE

    EPA Science Inventory

    The goal of the project is to calculate the net social, environmental, and economic benefits of a systems approach to organic waste and resource management in Santa Barbara County. To calculate these benefits, a comparative method was chosen of the proposed desi...

  16. 40 CFR 63.3510 - What notifications must I submit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating and for one thinner. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating... density is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...

  17. 40 CFR 63.3510 - What notifications must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating and for one thinner. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating... density is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...

  18. 40 CFR 63.3510 - What notifications must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating and for one thinner. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating... density is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...

  19. 40 CFR 63.3510 - What notifications must I submit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating and for one thinner. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating... density is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...

  20. 40 CFR 63.4120 - What reports must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... organic HAP in waste materials according to § 63.4151(e)(4). You do not need to submit background data... § 63.4151 and, if applicable, the calculation used to determine the mass of organic HAP in waste... CPMS was inoperative, except for zero (low-level) and high-level checks. (7) The date, time, and...

  1. 40 CFR 63.4120 - What reports must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... organic HAP in waste materials according to § 63.4151(e)(4). You do not need to submit background data... § 63.4151 and, if applicable, the calculation used to determine the mass of organic HAP in waste... CPMS was inoperative, except for zero (low-level) and high-level checks. (7) The date, time, and...

  2. Organizing. MAS-108. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This module is part of a set of management and supervisor training (MAST) materials developed by the Department of Energy for the Waste Isolation Division. Its stated purpose is to enable trainees to organize work activities efficiently and effectively. The first section of the module is an introduction that includes a terminal objective and…

  3. Preparation of biochar from sewage sludge

    NASA Astrophysics Data System (ADS)

    Nieto, Aurora; María Méndez, Ana; Gascó, Gabriel

    2013-04-01

    Biomass waste materials appropriate for biochar production include crop residues (both field residues and processing residues such as nut shells, fruit pits, bagasse, etc), as well as yard, food and forestry wastes, and animal manures. Biochar can and should be made from biomass waste materials and must not contain unacceptable levels of toxins such as heavy metals which can be found in sewage sludge and industrial or landfill waste. Making biochar from biomass waste materials should create no competition for land with any other land use option—such as food production or leaving the land in its pristine state. Large amounts of agricultural, municipal and forestry biomass are currently burned or left to decompose and release CO2 and methane back into the atmosphere. They also can pollute local ground and surface waters—a large issue for livestock wastes. Using these materials to make biochar not only removes them from a pollution cycle, but biochar can be obtained as a by-product of producing energy from this biomass. Sewage sludge is a by-product from wastewater treatment plants, and contains significant amounts of heavy metals, organic toxins and pathogenic microorganisms, which are considered to be harmful to the environment and all living organisms. Agricultural use, land filling and incineration are commonly used as disposal methods. It was, however, reported that sewage sludge applications in agriculture gives rise to an accumulation of harmful components (heavy metals and organic compounds) in soil. For this reason, pyrolysis can be considered as a promising technique to treat the sewage sludge including the production of fuels. The objective of this work is to study the advantages of the biochar prepared from sewage sludge.

  4. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.

    PubMed

    Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  5. Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

    NASA Astrophysics Data System (ADS)

    Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.

    2017-12-01

    The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.

  6. Evaluation of final waste forms and recommendations for baseline alternatives to group and glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidatemore » alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining candidates, those of glass-ceramics (devitrified matrices) represent the best compromise for meeting the probable stricter disposal requirements in the future.« less

  7. Development of a novel wet oxidation process for hazardous and mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.

    1994-11-01

    This article describes and evaluates the DETOX{sup sm} process for processing of mixed wastes. Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides, often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The DETOX{sup sm} process, patented by Delphi Research, uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. Included are the following subject areas: project description (phases I-IV); results of all phases; and future work. 5 figs., 1 tab.

  8. Agriculture: Nutrient Management and Fertilizer

    EPA Pesticide Factsheets

    Fertilizers and soil amendments can be derived from raw materials, composts and other organic matter, and wastes, such as sewage sludge and certain industrial wastes. Overuse of fertilizers can result in contamination of surface water and groundwater.

  9. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes,more » non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.« less

  10. Heavy Metals in Water Percolating Through Soil Fertilized with Biodegradable Waste Materials.

    PubMed

    Wierzbowska, Jadwiga; Sienkiewicz, Stanisław; Krzebietke, Sławomir; Bowszys, Teresa

    The influence of manure and composts on the leaching of heavy metals from soil was evaluated in a model lysimeter experiment under controlled conditions. Soil samples were collected from experimental fields, from 0- to 90-cm layers retaining the layout of the soil profile layers, after the second crop rotation cycle with the following plant species: potatoes, spring barley, winter rapeseed, and winter wheat. During the field experiment, 20 t DM/ha of manure, municipal sewage sludge composted with straw (SSCS), composted sewage sludge (SSC), dried granular sewage sludge (DGSS), "Dano" compost made from non-segregated municipal waste (CMMW), and compost made from municipal green waste (CUGW) was applied, i.e., 10 t DM/ha per crop rotation cycle. The concentrations (μg/dm 3 ) of heavy metals in the leachate were as follows: Cd (3.6-11.5) < Mn (4.8-15.4) < Cu (13.4-35.5) < Zn (27.5-48.0) < Cr (36.7-96.5) < Ni (24.4-165.8) < Pb (113.8-187.7). Soil fertilization with organic waste materials did not contaminate the percolating water with manganese or zinc, whereas the concentrations of the other metals increased to the levels characteristic of unsatisfactory water quality and poor water quality classes. The copper and nickel content of percolating water depended on the concentration of those metals introduced into the soil with organic waste materials. The concentrations of Cd in the leachate increased, whereas the concentrations of Cu and Ni decreased with increasing organic C content of organic fertilizers. The widening of the C/N ratio contributed to Mn leaching. The concentrations of Pb, Cr, and Mn in the percolating water were positively correlated with the organic C content of soil.

  11. Waste to energy--key element for sustainable waste management.

    PubMed

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murto, Marika, E-mail: marika.murto@biotek.lu.se; Björnsson, Lovisa, E-mail: lovisa.bjornsson@miljo.lth.se; Environmental and Energy Systems Studies, Lund University, P.O. Box 118, SE-221 00 Lund

    2013-05-15

    Highlights: ► A novel approach for biogas production from a waste fraction that today is incinerated. ► Biogas production is possible in spite of the impurities of the waste. ► Tracer studies are applied in a novel way. ► Structural material is needed to improve the flow pattern of the waste. ► We provide a solution to biological treatment for the complex waste fraction. - Abstract: At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a drymore » fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m{sup 3}/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane.« less

  13. Preparation of sustainable photocatalytic materials through the valorization of industrial wastes.

    PubMed

    Sugrañez, Rafael; Cruz-Yusta, Manuel; Mármol, Isabel; Morales, Julián; Sánchez, Luis

    2013-12-01

    A new value-added material was developed from wastes to aim for appropriate waste management and sustainable development. This paper reports the valorization of industrial sandblasting operation wastes (SOWs) as new photocatalytic materials. This waste is composed of Fe2 O3 (60.7 %), SiO2 (29.1 %), and Al2 O3 (3.9 %) as the main components. The high presence of iron oxides was used to develop photocatalytic properties through their thermal transformation into α-Fe2 O3 . The new product, SOW-T, exhibited a good behavior towards the photochemical degradation of organic dyes. The preparation of advanced photocatalytic materials that exhibit self-cleaning and depolluting properties was possible by the inclusion of SOW-T and TiO2 in a cement-based mortar. The synergy observed between both materials enhanced their photocatalytic action. To the best of our knowledge, this is the first report that describes the use of transformed wastes based on iron oxide for the photochemical oxidation of NOx gases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Molecular composition of recycled organic wastes, as determined by solid-state 13C NMR and elemental analyses.

    PubMed

    Eldridge, S M; Chen, C R; Xu, Z H; Nelson, P N; Boyd, S E; Meszaros, I; Chan, K Y

    2013-11-01

    Using solid state (13)C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction.

    PubMed

    Di Maria, Francesco; Benavoli, Manuel; Zoppitelli, Mirco

    2008-01-01

    Waste management is of the utmost importance for many countries and especially for highly developed ones due to its implications on society. In particular, proper treatment before disposal of the solid urban waste organic fraction is one of the main issues that is addressed in waste management. In fact, the organic fraction is particularly reactive and if disposed in sanitary landfills without previous adequate treatment, a large amount of dangerous and polluting gaseous, liquid and solid substances can be produced. Some waste treatment processes can also present an opportunity to produce other by-products like energy, recycled materials and other products with both economic and environmental benefits. In this paper, the aerobic treatment of the organic fraction of solid urban waste, performed in a biocell plant with the possibility of recovering heat for civil or industrial needs, was examined from the thermodynamic point of view. A theoretical model was proposed both for the biological process of the organic fraction, as well as for the heat recovery system. The most significant results are represented and discussed.

  16. Electromagnetic mixed waste processing system for asbestos decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.; Vaux, W.; Ulerich, N.

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less

  17. Evaluating the Air Quality, Climate and Economic Impacts of ...

    EPA Pesticide Factsheets

    Anaerobic digestion is a natural biological process in which microorganisms break down organic materials in the absence of oxygen. When anaerobic microbes metabolize organic waste – i.e., the carbon-based remains of plants, animals and their waste products, e.g. animal manure, sewage sludge and food waste – they produce biogas. Biogas consists mainly of methane and carbon dioxide and can be used as a renewable energy fuel in a variety of applications. The impacts of biogas generation and utilization processes differ, depending on the source material (e.g., sewage, manure, food processing waste, municipal solid waste) and end uses (e.g., on-site electricity generation, conversion to a vehicle fuel, injection into the natural gas pipeline, etc.). Organic waste managers and regulators alike lack sufficient information about the overall environmental and economic performance of available biogas management technologies. A more complete understanding of the environmental and economic performance of biogas-to-energy technologies will assist state and local governments, regulators, and potential project developers in identifying geographically appropriate and cost-effective biogas management options.The backdrop for this research was California. The state has unique air quality challenges due to the combination of meteorology and topography, population growth and the pollution burden associated with mobile sources. However, with the strengthening of National Ambient

  18. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions.

    PubMed

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-12-01

    This study compared the environmental profiles of anaerobic digestion (AD) and incineration, in relation to global warming potential (GWP), for treating individual material fractions that may occur in source-separated organic household waste (SSOHW). Different framework conditions representative for the European Union member countries were considered. For AD, biogas utilisation with a biogas engine was considered and two potential situations investigated - biogas combustion with (1) combined heat and power production (CHP) and (2) electricity production only. For incineration, four technology options currently available in Europe were covered: (1) an average incinerator with CHP production, (2) an average incinerator with mainly electricity production, (3) an average incinerator with mainly heat production and (4) a state-of-the art incinerator with CHP working at high energy recovery efficiencies. The study was performed using a life cycle assessment in its consequential approach. Furthermore, the role of waste-sorting guidelines (defined by the material fractions allowed for SSOHW) in relation to GWP of treating overall SSOHW with AD was investigated. A case-study of treating 1tonne of SSOHW under framework conditions in Denmark was conducted. Under the given assumptions, vegetable food waste was the only material fraction which was always better for AD compared to incineration. For animal food waste, kitchen tissue, vegetation waste and dirty paper, AD utilisation was better unless it was compared to a highly efficient incinerator. Material fractions such as moulded fibres and dirty cardboard were attractive for AD, albeit only when AD with CHP and incineration with mainly heat production were compared. Animal straw, in contrast, was always better to incinerate. Considering the total amounts of individual material fractions in waste generated within households in Denmark, food waste (both animal and vegetable derived) and kitchen tissue are the main material fractions allowing GWP mitigation with AD when it is compared to incineration. The inclusion of other material fractions in SSOHW sorting guidelines may be considered of less importance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Corrosion assessment of refractory materials for high temperature waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-11-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosionmore » coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.« less

  20. The Self-Reducing Pellet Production from Organic Household Waste

    NASA Astrophysics Data System (ADS)

    Nogueira, Alberto; Takano, Cyro; Mourão, Marcelo; Pillihuaman, Adolfo

    The organic household waste has a growing disposal problem, requiring costly disposal systems. It is necessary to find new applications for these materials; one could be the steelmaking raw material production. In this paper is studied the development of self-reducing pellets from the organic waste pyrolysis, where is generated carbon and condensable and non-condensable volatiles. Non-condensable volatiles were burned and condensable volatiles were recovered. The resulting tar was mixed with iron ore, coal powder and flux (CaO), to then be pelletized together. Compression, falls and tumbler tests were conducted to characterize the pellets before and after heat treatment and reduction processes. The reduction curve and their physical and morphological characterization were measured. The results were as was expected, the fluidized coal create sufficient adhesion that pellets earned resistance with an equivalent resistance of common pellets, showing a good feasibility of this process.

  1. Plant growth in amended molybdenum mine waste rock.

    PubMed

    Burney, Owen T; Redente, Edward F; Lambert, Charles E

    2017-04-01

    This greenhouse study examined the use of organic and inorganic soil amendments in waste rock material from the former Questa Molybdenum Mine in northern New Mexico to promote beneficial soil properties. Waste rock material was amended with 11 soil amendment treatments that included municipal composted biosolids, Biosol®, inorganic fertilizer, and two controls (pure waste rock and sand). Elymus trachycaulus and Robinia neomexicana growth performance and plant chemistry were assessed across all treatments over a period of 99 and 141 days, respectively. Even though waste rock material had more than 200 times the molybdenum concentration of native soils, adverse effects were not observed for either species. The two main limiting factors in this study were soil nutritional status and soil water retention. The biosolid amendment was found to provide the greatest buffer against these limiting factors due to significant increases in both nutrition and soil water retention. As a result, both species responded with the highest levels of biomass production and the least amount of required water demands. Use of organic amendments such as biosolids, even though short lived in the soil, may provide plants the necessary growth stimulus to become more resilient to the harsh conditions found on many mine reclamation sites.

  2. Community Anaerobic Digester: Powered by Students and Driving Practical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond Hall, Joan; O'Leary, Mary

    The Vermont Tech Community Anaerobic Digester (VTCAD) was conceived and funded by a partnership of educational, agricultural, waste management and environmental groups to create a living laboratory demonstrating the value of recycling nutrients, renewable energy and agricultural co-products from organic wastes. VTCAD was constructed on the Randolph Center, Vermont campus of Vermont Tech, a public college offering engineering technology, agricultural, renewable energy education and workforce training. With funding from the U.S. Department of Energy (DOE), the Vermont State Colleges and others, construction was completed in early 2014 and the facility has been operational since April 2014. At full power, VTCADmore » uses 16,000 gallons of manure and organic residuals to produce 8,880 kilowatt hours (kWh) of electricity per day, ‘waste’ heat that will be used to heat four campus buildings, bedding material for the college dairy herds and recycled nutrients used as crop fertilizer. VTCAD uses a mixture of manure from co-managed farms and organic residuals collected from the community. Feedstock materials include brewery residuals, the glycerol by-product of biodiesel production from waste cooking oil, grease trap waste, and waste paper and, soon, locally collected pre- and post-consumer food residuals.« less

  3. 40 CFR 63.4920 - What reports must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... organic HAP in waste materials sent or designated for shipment to a hazardous waste treatment, storage... certification or audit. (ix) The date and time that each CPMS was inoperative, except for zero (low-level) and...

  4. 40 CFR 63.4920 - What reports must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... organic HAP in waste materials sent or designated for shipment to a hazardous waste treatment, storage... certification or audit. (ix) The date and time that each CPMS was inoperative, except for zero (low-level) and...

  5. Prospects of effective microorganisms technology in wastes treatment in Egypt

    PubMed Central

    Shalaby, Emad A

    2011-01-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future. PMID:23569767

  6. Production and degradation of polyhydroxyalkanoates in waste environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Choi, J.

    1999-06-01

    Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic conditions. In the followingmore » aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms.« less

  7. Modelling for environmental assessment of municipal solid waste landfills (part II: biodegradation).

    PubMed

    Garcia de Cortázar, Amaya Lobo; Lantarón, Javier Herrero; Fernández, Oscar Montero; Monzón, Iñaki Tejero; Lamia, Maria Fantelli

    2002-12-01

    The biodegradation module of a simulation program for municipal solid waste landfills (MODUELO) was developed. The biodegradation module carries out the balance of organic material starting with the results of the hydrologic simulation and the waste composition. It simulates the biologic reactions of hydrolysis of solids and the gasification of the dissolved biodegradable material. The results of this module are: organic matter (COD, BOD and elemental components such as carbon, hydrogen, nitrogen, oxygen, sulfur and ash), ammonium nitrogen generated with the gas and transported by the leachates and the potential rates of methane and carbon dioxide generation. The model was calibrated by using the general tendency curves of the pollutants recorded in municipal solid waste landfills, fitting the first part of them to available landfill data. Although the results show some agreement, further work is being done to make MODUELO a useful tool for real landfill simulation.

  8. Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter

    DOEpatents

    Case, F.N.; Ketchen, E.E.

    1975-10-14

    A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid.

  9. Material for electrodes of low temperature plasma generators

    DOEpatents

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich

    2008-12-09

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  10. Material for electrodes of low temperature plasma generators

    DOEpatents

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich; Shiryaev, Vasili Nikolaevich

    2010-03-02

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron:3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  11. A novel process for preparing fireproofing materials from various industrial wastes.

    PubMed

    Su, Yi; Wang, Lei; Zhang, Fu-Shen

    2018-05-09

    In the current study, the possibility of incorporating various industrial wastes into fireproofing materials was investigated. It was found that the newly developed materials showed excellent air sealing and fireproofing performance, with air permeability coefficients 3 to 4 orders of magnitude smaller than traditional fire prevention materials. The influence of different parameters on the air permeability was investigated, and the air sealing mechanisms were clarified through microstructure analysis. In addition, the workability and mechanical properties of the fireproofing materials for practical application in coal mine were studied. The new materials derived from industrial wastes had a compact and monolithic structure, and the excellent air tightness could be attributed to the pozzolanic activity of the industrial wastes and the film-forming property of organic polymers. Among the industrial wastes examined, a special coal fly ash with high pozzolanic activity and little free calcium oxide derived the best product with air permeability coefficient, tensile strength and breaking elongation of 4.17 × 10 -8  m 2 /s, 2.14 MPa and 48.90%, respectively. This study provides an economical, environmentally friendly and promising approach for industrial wastes recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Vermicomposting as manure management strategy for urban small-holder animal farms – Kampala case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalander, Cecilia Helena, E-mail: cecilia.lalander@slu.se; Komakech, Allan John; Department of Agricultural & Bio-systems Engineering, Makerere University, Kampala

    Highlights: • Poor manure management can increase burden of disease and environmental impact. • A low-maintenance vermicompost reactor was set-up in Kampala, Uganda. • High material reduction (45.9%) and waste-to-biomass conversion (3.6% on a TS basis). • Five year return on investment of 275% of system in Uganda. • Technically and economically viable system for improved urban manure management. - Abstract: Inadequate organic waste management can contribute to the spread of diseases and have negative impacts on the environment. Vermicomposting organic waste could have dual beneficial effects by generating an economically viable animal feed protein in the form of wormmore » biomass, while alleviating the negative effects of poor organic waste management. In this study, a low-maintenance vermicomposting system was evaluated as manure and food waste management system for small-holder farmers. A vermicomposting system using the earthworm species Eudrilus eugeniae and treating cow manure and food waste was set up in Kampala, Uganda, and monitored for 172 days. The material degradation and protein production rates were evaluated after 63 days and at the end of the experiment. The material reduction was 45.9% and the waste-to-biomass conversion rate was 3.5% in the vermicomposting process on a total solids basis. A possible increase in the conversion rate could be achieved by increasing the frequency of worm harvesting. Vermicomposting was found to be a viable manure management method in small-scale urban animal agriculture; the return of investment was calculated to be 280% for treating the manure of a 450 kg cow. The vermicompost was not sanitised, although hygiene quality could be improved by introducing a post-stabilisation step in which no fresh material is added. The value of the animal feed protein generated in the process can act as an incentive to improve current manure management strategies.« less

  13. AUDIT MATERIALS FOR SEMIVOLATILE ORGANIC MEASUREMENTS DURING HAZARDOUS WASTE TRIAL BURNS

    EPA Science Inventory

    Two new performance audit materials utilizing different sorbents have neen developed to assess the overall accuracy and precision of the sampling, desorption, and analysis of semivolatile organic compounds by EPA, SW 846 Method 0010 (i.e., the Modified Method 5 sampling train). h...

  14. Cultivating Composting Culture Activities among Citizens and Its Beneficial to Prolong the Landfill Lifespan

    NASA Astrophysics Data System (ADS)

    Azura Zakarya, Irnis; Azri Jamial, Khairul; Mat Tanda, Norazlinda

    2018-03-01

    Currently, the Ministry of Housing and Local Government manage solid waste in Malaysia, with the participation of the private sector. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Material valorisation of food waste usually conducted by biological processes such as composting. Compost, an organic amendment, is the final product of the composting process. These processes are efficient, low cost and environmentally friendly alternative for managing food waste and are used extensively worldwide. Therefore, organic solid waste management practices program for the communities in Perlis was conducted. The main objective of this program was to instilling environment awareness especially among Perlis citizens. This study was investigated the impact of food waste or kitchen waste composting to the citizens in Perlis State and the beneficial of compost fertilizer to our environment especially in plant growth. Composting method was taught to the food premises owner, individuals, teachers, and students and their responses to the composting practices were then summarized. In future, we can prolong our landfill lifespan by practicing organic waste composting and can preserving our environment.

  15. Effects of biodrying process on municipal solid waste properties.

    PubMed

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    PubMed

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of the raw materials and mixing ratio of composted wastes on the dynamic of organic matter stabilization and nitrogen availability in composts of Sub-Saharan Africa.

    PubMed

    Kaboré, Théodore Wind-Tinbnoma; Houot, Sabine; Hien, Edmond; Zombré, Prosper; Hien, Victor; Masse, Dominique

    2010-02-01

    The effect of raw materials and their proportions in initial mixtures on organic matter (OM) stabilization and nitrogen (N) availability during pit composting in Sub-Saharan Africa was assessed using biochemical fractionation and laboratory incubations to characterize composts sampled throughout the composting process. Stabilization of OM occurred more rapidly in mixtures with slaughter-house wastes, it was progressive in mixture with household refuses while tree leaves compost remained unstable. Carbon mineralization from compost samples was positively correlated to water soluble and hemicellulose-like organic fractions. Mixtures containing large proportions of household refuses reached the highest stability and total N but available N remained weak. Slaughter-house wastes in the initial mixtures made possible to reach good OM stabilization and the largest N availability. The nature of initial mixing influenced composting parameters, OM stabilization and N availability. It is suggested mixing household refuses and slaughter-house wastes with tree leaves to reach better amending and fertilizer qualities of composts.

  18. ENGINEERING BULLETIN: IN SITU VITRIFICATION TREATMENT

    EPA Science Inventory

    In situ vitrification (ISV) uses electrical power to heat and melt soil, sludge, mine tailings, buried wastes, and sediments contaminated with organic, inorganic, and metal-bearing hazardous wastes. The molten material cools to form a hard, monolithic, chemically inert, stable...

  19. Electrical and electronic waste: a global environmental problem.

    PubMed

    Ramesh Babu, Balakrishnan; Parande, Anand Kuber; Ahmed Basha, Chiya

    2007-08-01

    The production of electrical and electronic equipment (EEE) is one of the fastest growing global manufacturing activities. This development has resulted in an increase of waste electric and electronic equipment (WEEE). Rapid economic growth, coupled with urbanization and growing demand for consumer goods, has increased both the consumption of EEE and the production of WEEE, which can be a source of hazardous wastes that pose a risk to the environment and to sustainable economic growth. To address potential environmental problems that could stem from improper management of WEEE, many countries and organizations have drafted national legislation to improve the reuse, recycling and other forms of material recovery from WEEE to reduce the amount and types of materials disposed in landfills. Recycling of waste electric and electronic equipment is important not only to reduce the amount of waste requiring treatment, but also to promote the recovery of valuable materials. EEE is diverse and complex with respect to the materials and components used and waste streams from the manufacturing processes. Characterization of these wastes is of paramount importance for developing a cost-effective and environmentally sound recycling system. This paper offers an overview of electrical and e-waste recycling, including a description of how it is generated and classified, strategies and technologies for recovering materials, and new scientific developments related to these activities. Finally, the e-waste recycling industry in India is also discussed.

  20. 9 CFR 3.11 - Cleaning, sanitization, housekeeping, and pest control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... prevent an excessive accumulation of feces and food waste, to prevent soiling of the dogs or cats... mechanical cage washer; or (iii) Washing all soiled surfaces with appropriate detergent solutions and... a thorough cleaning of the surfaces to remove organic material, so as to remove all organic material...

  1. 9 CFR 3.11 - Cleaning, sanitization, housekeeping, and pest control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... prevent an excessive accumulation of feces and food waste, to prevent soiling of the dogs or cats... mechanical cage washer; or (iii) Washing all soiled surfaces with appropriate detergent solutions and... a thorough cleaning of the surfaces to remove organic material, so as to remove all organic material...

  2. 9 CFR 3.11 - Cleaning, sanitization, housekeeping, and pest control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... prevent an excessive accumulation of feces and food waste, to prevent soiling of the dogs or cats... mechanical cage washer; or (iii) Washing all soiled surfaces with appropriate detergent solutions and... a thorough cleaning of the surfaces to remove organic material, so as to remove all organic material...

  3. Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: a review.

    PubMed

    Mupambwa, Hupenyu Allan; Mnkeni, Pearson Nyari Stephano

    2018-04-01

    Vermicomposting is a bio-oxidative process that involves the action of mainly epigeic earthworm species and different micro-organisms to accelerate the biodegradation and stabilization of organic materials. There has been a growing realization that the process of vermicomposting can be used to greatly improve the fertilizer value of different organic materials, thus, creating an opportunity for their enhanced use as organic fertilizers in agriculture. The link between earthworms and micro-organisms creates a window of opportunity to optimize the vermi-degradation process for effective waste biodegradation, stabilization, and nutrient mineralization. In this review, we look at up-to-date research work that has been done on vermicomposting with the intention of highlighting research gaps on how further research can optimize vermi-degradation. Though several researchers have studied the vermicomposting process, critical parameters that drive this earthworm-microbe-driven process which are C/N and C/P ratios; substrate biodegradation fraction, earthworm species, and stocking density have yet to be adequately optimized. This review highlights that optimizing the vermicomposting process of composts amended with nutrient-rich inorganic materials such as fly ash and rock phosphate and inoculated with microbial inoculants can enable the development of commercially acceptable organic fertilizers, thus, improving their utilization in agriculture.

  4. Electrochemical processing of solid waste

    NASA Technical Reports Server (NTRS)

    Bockris, J. OM.; Hitchens, G. D.; Kaba, L.

    1988-01-01

    The investigation into electrolysis as a means of waste treatment and recycling on manned space missions is described. The electrochemical reactions of an artificial fecal waste mixture was examined. Waste electrolysis experiments were performed in a single compartment reactor, on platinum electrodes, to determine conditions likely to maximize the efficiency of oxidation of fecal waste material to CO2. The maximum current efficiencies for artificial fecal waste electrolysis to CO2 was found to be around 50 percent in the test apparatus. Experiments involving fecal waste oxidation on platinum indicates that electrodes with a higher overvoltage for oxygen evolution such as lead dioxide will give a larger effective potential range for organic oxidation reactions. An electrochemical packed column reactor was constructed with lead dioxide as electrode material. Preliminary experiments were performed using a packed-bed reactor and continuous flow techniques showing this system may be effective in complete oxidation of fecal material. The addition of redox mediator Ce(3+)/Ce(4+) enhances the oxidation process of biomass components. Scientific literature relevant to biomass and fecal waste electrolysis were reviewed.

  5. Modeling the economics of landfilling organic processing waste streams

    NASA Astrophysics Data System (ADS)

    Rosentrater, Kurt A.

    2005-11-01

    As manufacturing industries become more cognizant of the ecological effects that their firms have on the surrounding environment, their waste streams are increasingly becoming viewed not only as materials in need of disposal, but also as resources that can be reused, recycled, or reprocessed into valuable products. Within the food processing sector are many examples of various liquid, sludge, and solid biological and organic waste streams that require remediation. Alternative disposal methods for food and other bio-organic manufacturing waste streams are increasingly being investigated. Direct shipping, blending, extrusion, pelleting, and drying are commonly used to produce finished human food, animal feed, industrial products, and components ready for further manufacture. Landfilling, the traditional approach to waste remediation, however, should not be dismissed entirely. It does provide a baseline to which all other recycling and reprocessing options should be compared. This paper discusses the implementation of a computer model designed to examine the economics of landfilling bio-organic processing waste streams. Not only are these results applicable to food processing operations, but any industrial or manufacturing firm would benefit from examining the trends discussed here.

  6. Comprehensive review of geosynthetic clay liner and compacted clay liner

    NASA Astrophysics Data System (ADS)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine-grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  7. Healthcare waste generation and management practice in government health centers of Addis Ababa, Ethiopia.

    PubMed

    Tadesse, Menelik Legesse; Kumie, Abera

    2014-11-25

    Healthcare wastes are hazardous organic and inorganic wastes. The waste disposal management in Addis Ababa city is seen unscientific manner. The waste management practice in the health facilities are poor and need improvement. This study will help different organizations, stakeholders and policy makers to correct and improve the existing situation of healthcare waste legislation and enforcement and training of staff in the healthcare facilities in Addis Ababa. The study aimed to assess the existing generation and management practice of healthcare waste in selected government health centers of Addis Ababa. The cross-sectional study was conducted to quantify waste generation rate and evaluate its management system. The study area was Addis Ababa. The sample size was determined by simple random sampling technique, the sampling procedure involved 10 sub-cities of Addis Ababa. Data were collected using both waste collecting and measuring equipment and check list. The Data was entered by EPI INFO version 6.04d and analyzed by and SPSS for WINDOW version15. The mean (±SD) healthcare waste generation rate was 9.61 ± 3.28 kg/day of which (38%) 3.64 ± 1.45 kg/day was general or non-hazardous waste and (62%) 5.97 ± 2.31 kg/day was hazardous. The mean healthcare waste generation rate between health centers was a significant different with Kurskal-Wallis test (χ2 = 21.83, p-value = 0.009). All health centers used safety boxes for collection of sharp wastes and all health centers used plastic buckets without lid for collection and transportation of healthcare waste. Pre treatment of infectious wastes was not practiced by any of the health centers. All health centers used incinerators and had placenta pit for disposal of pathological waste however only seven out of ten pits had proper covering material. Segregation of wastes at point of generation with appropriate collection materials and pre- treatment of infectious waste before disposal should be practiced. Training should be given to healthcare workers and waste handlers. Incinerators must be constructed in a manner that facilitates complete combustion and the lining of placenta pit should be constructed in water tight material.

  8. Bio-inspired organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Irimia-Vladu, Mihai; Troshin, Pavel A.; Schwabegger, Günther; Bodea, Marius; Schwödiauer, Reinhard; Fergus, Jeffrey W.; Razumov, Vladimir; Bauer, Siegfried; Sariciftci, Niyazi Serdar

    2010-08-01

    Two major concerns in the world nowadays are the plastic consumption and waste. Because to the economic growth and the incessant demand of plastics in developing countries, plastics consumption is projected to increase by a factor of two to three during the actual decade1. As an intuitive example, the amount of municipal solid waste (estimated per person per year) averages ~440 kg for China, ~550 kg for the European Union and ~790 kg for the United States, with almost 50% of the waste being electronic products and plastics1,2. Green technology based on biodegradable/compostable materials is perceived as an ultimate goal for solving waste problems. Currently there are numerous efforts for producing compostable plastic materials for applications in daily life products, such as plastic bags and disposable dishware. When such low-end products are fabricated with compostable materials, electronics included in such goods should be also based on materials that are easily compostable.

  9. Development of Alternative Technetium Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerwinski, Kenneth

    2013-09-13

    The UREX+1 process is under consideration for the separation of transuranic elements from spent nuclear fuel. The first steps of this process extract the fission product technicium-99 ({sup 99}Tc) into an organic phase containing tributylphosphate together with uranium. Treatment of this stream requires the separation of Tc from U and placement into a suitable waste storage form. A potential candidate waste form involves immobilizing the Tc as an alloy with either excess metallic zirconium or stainless steel. Although Tc-Zr alloys seem to be promising waste forms, alternative materials must be investigated. Innovative studies related to the synthesis and behavior ofmore » a different class of Tc materials will increase the scientific knowledge related to development of Tc waste forms. These studies will also provide a better understanding of the behavior of {sup 99}Tc in repository conditions. A literature survey has selected promising alternative waste forms for further study: technetium metallic alloys, nitrides, oxides, sulfides, and pertechnetate salts. The goals of this project are to 1) synthesize and structurally characterize relevant technetium materials that may be considered as waste forms, 2) investigate material behavior in solution under different conditions of temperature, electrochemical potential, and radiation, and 3) predict the long-term behavior of these materials.« less

  10. Occurrence of sweet refuse at disposal sites: rainwater retention capacity and potential breeding opportunities for Aedes aegypti.

    PubMed

    Dieng, Hamady; Satho, Tomomitsu; Meli, Nur Khairatun Khadijah Binti; Abang, Fatimah; Nolasco-Hipolito, Cirilo; Hakim, Hafijah; Miake, Fumio; Zuharah, Wan Fatma; Kassim, Nur Faeza A; Ab Majid, Abdul Hafiz; Morales Vargas, Ronald E; Morales, Noppawan P; Noweg, Gabriel Tonga

    2018-05-01

    Nectar is the staple diet of adult mosquitoes in the wild, but its availability is inconsistent and can be affected by rainfall. In urban centers, Aedes vectors commonly use man-made containers as their major habitat; however, they can colonize any items replenished by rainfall. Garbage output has increased significantly in recent years, at a time when collection frequency is reducing. Such garbage usually includes organic components, some of which are sweet and can be fed upon by other animals or become can containers for rainwater. Despite evidence that Aedes larvae can thrive in containers comprised of organic waste material, which can be produced by rodents gnawing on fruits or vegetables, and that adults can survive on sweet waste fluids, the capacity of organic waste materials to accumulate rainwater and act as egg deposition sites has not been examined. It is also unknown for how long sweet extracts can sustain the life of adult vectors. Here, we investigated the abundance of sweet leftovers at garbage sites and the rainwater retention capacity of some organic materials through a field survey and laboratory bioassays. We also examined whether sweet waste fluids impact egg hatching success and longevity of Aedes aegypti. The results of this study indicated that sweet products with leftovers are highly prevalent in garbage. When exposed to rain, food items (BAFrc, banana fruit resembling container; and BSPrc, boiled sweet potato resembling container) and the packaging of sweet foods (SMIc, sweetened condensed milk can) retained water. When provided an opportunity to oviposit in cups containing BAF extract (BAFex), BSP extract (BSPex), and SMI extract (SMIex), eggs were deposited in all media. Egg maturation in the BAFex environment resulted in similar larval eclosion success to that resulting from embryo development in a water milieu. Adults maintained on sweet waste extracts had long lifespans, although shorter than that of their sugar solution (SUS)-fed counterparts. Taken together, these results indicated that sweet waste materials are useful to dengue mosquitoes, acting both as oviposition sites and energy sources.

  11. THE SOURCES, FATE AND HAZARDS OF MUTAGENS IN SURFACE WATERS

    EPA Science Inventory

    A variety of industrial, domestic and agricultural wastes are discharged into rivers, lakes, streams, and estuaries. In some instances, these wastes contain substances that are capable I of permanently altering the genetic material of exposed organisms (i.e., they are mutagens). ...

  12. MINIMIZATION OF TRANSIENT EMISSIONS FROM ROTARY KILN INCINERATORS

    EPA Science Inventory

    Transient emissions of organics can occur from rotary kiln incinerators when drums containing liquid wastes bound on sorbents are introduced in a batch-wise fashion. Physical processes controlling the release of waste from the sorbent material are greatly affected by the rotation...

  13. Inventory of heavy metal content in organic waste applied as fertilizer in agriculture: evaluating the risk of transfer into the food chain.

    PubMed

    Lopes, Carla; Herva, Marta; Franco-Uría, Amaya; Roca, Enrique

    2011-07-01

    In this work, an environmental risk assessment of reusing organic waste of differing origins and raw materials as agricultural fertilizers was carried out. An inventory of the heavy metal content in different organic wastes (i.e., compost, sludge, or manure) from more than 80 studies at different locations worldwide is presented. The risk analysis was developed by considering the heavy metal (primarily Cd, Cu, Ni, Pb, and Zn) concentrations in different organic residues to assess their potential environmental accumulation and biotransfer to the food chain and humans. A multi-compartment model was used to estimate the fate and distribution of metals in different environmental compartments, and a multi-pathway model was used to predict human exposure. The obtained hazard index for each waste was concerning in many cases, especially in the sludge samples that yielded an average value of 0.64. Among the metals, Zn was the main contributor to total risk in all organic wastes due to its high concentration in the residues and high biotransfer potential. Other more toxic metals, like Cd or Pb, represented a negligible contribution. These results suggest that the Zn content in organic waste should be reduced or more heavily regulated to guarantee the safe management and reuse of waste residues according to the current policies promoted by the European Union.

  14. Waste to energy – key element for sustainable waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together withmore » prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.« less

  15. 40 CFR 63.4910 - What notifications must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii... mass of organic HAP contained in the waste materials for which you are claiming an allowance in...

  16. 40 CFR 63.4910 - What notifications must I submit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii... mass of organic HAP contained in the waste materials for which you are claiming an allowance in...

  17. 40 CFR 63.4910 - What notifications must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii... mass of organic HAP contained in the waste materials for which you are claiming an allowance in...

  18. 40 CFR 437.30 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to that portion of the discharge of wastewater from a CWT facility that results from the treatment of, or recovery of organic material from, both organic wastes received from off-site and other CWT...

  19. 40 CFR 437.30 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to that portion of the discharge of wastewater from a CWT facility that results from the treatment of, or recovery of organic material from, both organic wastes received from off-site and other CWT...

  20. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.

    1986-02-28

    The present invention relates to a method of solubilizing lead, in the form of lead oxide, found in industrial wastes, before these wastes are dumped into the environment. The lead is solubilized by dissolving the lead oxide in the wastes through contact with an anaerobic bacterial culture containing the bacterium ATCC No. 53464. The solubilized lead can then be removed from the wastes by chemical separation. It could also be removed by extending the contact period with the bacterial culture. As the culture grows, the solubilized lead is removed from the wastes by bioaccumulation by the microorganism or by immobilization by a polymer-like material produced by the microorganism. At this point, the lead is then removed from the wastes when the waste material is separated from the bacterial culture. If desired, the bacterial culture could be digested at this point to yield relatively pure lead for further industrial use.

  1. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application.

    PubMed

    Fernández, José M; Plaza, César; Polo, Alfredo; Plante, Alain F

    2012-01-01

    The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO(2) respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Optimization of waste combinations during in-vessel composting of agricultural waste.

    PubMed

    Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh

    2017-01-01

    In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.

  3. DC graphite arc furnace, a simple system to reduce mixed waste volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less

  4. Use of industrial waste for the manufacturing of sustainable building materials.

    PubMed

    Sugrañez, Rafael; Cruz-Yusta, Manuel; Mármol, Isabel; Martín, Francisco; Morales, Julián; Sánchez, Luis

    2012-04-01

    Presently, appropriate waste management is one of the main requisites for sustainable development; this task is tackled by the material construction industry. The work described herein is focused on the valorization of granite waste through incorporation, as a filler-functional admixture, into cement-based mortar formulations. The main components of the waste are SiO(2) (62.1 %), Al(2)O(3) (13.2 %), Fe(2)O(3) (10.1 %), and CaO (4.6 %). The presence of iron oxides is used to develop the photocatalytic properties of the waste. Following heating at 700 °C, α-Fe(2)O(3) forms in the waste. The inclusion of the heated sample as a filler admixture in a cement-based mortar is possible. Moreover, this sample exhibits a moderate ability in the photodegradation of organic dye solutions. Also, the plastering mortars, in which the heated samples have been used, show self-cleaning properties. The preparation of sustainable building materials is demonstrated through the adequate reuse of the granite waste. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2014-12-16

    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.

  6. WASTE TIRES ON THE ISLAND OF DOMINICA: SURVEY AND SOLUTIONS

    EPA Science Inventory

    Phase I of LFL-Dominica was highly successful, resulting in a completed national tire inventory and Material Flow Analysis, a waste tire feasibility study, expansion of the project to include organic gardens, identification and screening of three sites for potential LFL implem...

  7. 40 CFR 437.30 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subpart applies to that portion of the discharge of wastewater from a CWT facility that results from the treatment of, or recovery of organic material from, both organic wastes received from off-site and other CWT...

  8. 40 CFR 437.30 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart applies to that portion of the discharge of wastewater from a CWT facility that results from the treatment of, or recovery of organic material from, both organic wastes received from off-site and other CWT...

  9. 40 CFR 437.30 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subpart applies to that portion of the discharge of wastewater from a CWT facility that results from the treatment of, or recovery of organic material from, both organic wastes received from off-site and other CWT...

  10. Assessing and monitoring the effects of filter material amendments on the biophysicochemical properties during composting of solid winery waste under open field and varying climatic conditions.

    PubMed

    Mtimkulu, Y; Meyer, A H; Mulidzi, A R; Shange, P L; Nchu, F

    2017-01-01

    Waste management in winery and distillery industries faces numerous disposal challenges as large volumes of both liquid and solid waste by-products are generated yearly during cellar practices. Composting has been suggested as a feasible option to beneficiate solid organic waste. This incentivized the quest for efficient composting protocols to be put in place. The objective of this study was to experiment with different composting strategies for spent winery solid waste. Compost materials consisting of chopped pruning grape stalks, skins, seed and spent wine filter material consisting of a mixture of organic and inorganic expend ingredients were mixed in compost heaps. The filter material component varied (in percentage) among five treatments: T1 (40%) lined, T2 (20%) lined, T3 (0%) lined, T4 (40%) ground material, lined and T5 (40%) unlined. Composting was allowed to proceed under open field conditions over 12months, from autumn to summer. Indicators such as temperature, moisture, enzyme activities, microbial counts, pH, and C/N ratio, were recorded. Generally, season (df=3, 16, P<0.05) had significant effects (df=1, 3, P<0.05) on heap temperature and moisture in all treatments. Similarly, microorganisms (actinobacteria and heterotrophs) varied significantly in all treatments in response to seasonal change (df=3, 16; P<0.05). Enzyme activities fluctuated in accordance with seasonal factors and compost maturity stages, with phosphatases, esterases, amino-peptidases, proteases and glycosyl-hydrolases being most prominent. Compared to treatments T2 and T3, compost treatments with higher percentage waste filter materials (T1, T4 and T5) had higher N (16,100-21,300mg/kg), P (1500-2300mg/kg), K (19,800-28,200mg/kg), neutral pH, and lower C/N ratios (13:1-10:1), which were also comparable with commercially produced composts. Filter materials therefore, appears to be a vital ingredient for composting of winery solid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater

    PubMed Central

    Regmi, Chhabilal; Joshi, Bhupendra; Ray, Schindra K.; Gyawali, Gobinda; Pandey, Ramesh P.

    2018-01-01

    Several photocatalytic nanoparticles are synthesized and studied for potential application for the degradation of organic and biological wastes. Although these materials degrade organic compounds by advance oxidation process, the exact mechanisms of microbial decontamination remains partially known. Understanding the real mechanisms of these materials for microbial cell death and growth inhibition helps to fabricate more efficient semiconductor photocatalyst for large-scale decontamination of environmental wastewater or industries and hospitals/biomedical labs generating highly pathogenic bacteria and toxic molecules containing liquid waste by designing a reactor. Recent studies on microbial decontamination by photocatalytic nanoparticles and their possible mechanisms of action is highlighted with examples in this mini review. PMID:29541632

  12. Consecutive anaerobic-aerobic treatment of the organic fraction of municipal solid waste and lignocellulosic materials in laboratory-scale landfill-bioreactors.

    PubMed

    Pellera, Frantseska-Maria; Pasparakis, Emmanouil; Gidarakos, Evangelos

    2016-10-01

    The scope of this study is to evaluate the use of laboratory-scale landfill-bioreactors, operated consecutively under anaerobic and aerobic conditions, for the combined treatment of the organic fraction of municipal solid waste (OFMSW) with two different co-substrates of lignocellulosic nature, namely green waste (GW) and dried olive pomace (DOP). According to the results such a system would represent a promising option for eventual larger scale applications. Similar variation patterns among bioreactors indicate a relatively defined sequence of processes. Initially operating the systems under anaerobic conditions would allow energetic exploitation of the substrates, while the implementation of a leachate treatment system ultimately aiming at nutrient recovery, especially during the anaerobic phase, could be a profitable option for the whole system, due to the high organic load that characterizes this effluent. In order to improve the overall effectiveness of such a system, measures towards enhancing methane contents of produced biogas, such as substrate pretreatment, should be investigated. Moreover, the subsequent aerobic phase should have the goal of stabilizing the residual materials and finally obtain an end material eventually suitable for other purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A novel strategy for producing compost with enhanced biopesticide properties through solid-state fermentation of biowaste and inoculation with Bacillus thuringiensis.

    PubMed

    Ballardo, Cindy; Barrena, Raquel; Artola, Adriana; Sánchez, Antoni

    2017-12-01

    In the framework of a circular economy, organic solid wastes are considered to be resources useful for obtaining value-added products. Among other potential uses, biodegradable wastes from agricultural, industrial, and domestic sources are being studied to obtain biopesticides through solid-state fermentation (SSF), mainly at the laboratory scale. The suitability of biowaste (source-selected organic fraction of municipal solid waste) for use as a substrate for Bacillus thuringiensis (Bt) growth under non-sterile conditions in a 10 L SSF reactor was determined in this study. An operational strategy for setting up a semi-continuous process yielding a stabilised organic compost-like material enriched with Bt suitable for use as a soil amendment was developed. Concentrations of 1.7·10 7 -2.2·10 7 and 1.3·10 7 -2.1·10 7  CFU g -1 DM for Bt viable cells and spores, respectively, were obtained in the final material. As the results confirmed, Bt-enriched compost-like material with potential biopesticide properties can be produced from non-sterile biowaste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. On-Line Learning Modules For Waste Treatment, Waste Disposal and Waste Recycling

    NASA Astrophysics Data System (ADS)

    O'Callaghan, Paul; Soos, Lubomir; Brokes, Peter

    2011-12-01

    This contribution is devoted to the development of an advanced vocational education and training system for professionals working in (or intending to enter) the waste management industry realized through the Leonardo project WASTRE. The consortium of the Project WASTRE includes 3 well known Technical Universities in Central Europe (TU Vienna, CVUT Prague and STU Bratislava). The project implements new didactical tools from projects EDUET, ELEVATE, RESNET and MENUET developed by MultiMedia SunShine, headed by Prof. Paul Callaghan for this education and training system. This system will be tested within courses organized by at least 3 institutions of vocational education and training: the Technical and vocational secondary school Tlmace, CHEWCON Humenne and the Union of Chambers of Craftsmen and Tradesmen of ESKISEHIR. The faculty of Mechanical Engineering (FME) of STU will coordinate the project WASTRE and will participate in the preparation of e-learning materials, organization of the courses and in the design of syllabuses, curricula, assessment and evaluation methods for the courses, the testing of developed learning materials, evaluating experiences from a pilot course and developing the e-learning materials according to the needs of end-users.

  15. Potential of solid waste utilization as source of refuse derived fuel (RDF) energy (case study at temporary solid waste disposal site in West Jakarta)

    NASA Astrophysics Data System (ADS)

    Indrawati, D.; Lindu, M.; Denita, P.

    2018-01-01

    This study aims to measure the volume of solid waste generated as well asits density, composition, and characteristics, to analyze the potential of waste in TPS to become RDF materials and to analyze the best composition mixture of RDF materials. The results show that the average of solid waste generation in TPS reaches 40.80 m3/day, with the largest percentage of its share is the organic waste component of 77.9%, while the smallest amount of its share is metal and rubber of 0.1%. The average water content and ash content of solid waste at the TPS is 27.7% and 6.4% respectively, while the average calorific potential value is 728.71 kcal/kg. The results of solid waste characteristics comparison at three TPS indicate thatTPS Tanjung Duren has the greatest waste potential to be processed into RDF materials with a calorific value of 893.73 kcal/kg, water content level of 24.6%, andlow ash content of 6.11%. This research has also shown that the best composition for RDF composite materials is rubber, wood, and textile mixtureexposed to outdoor drying conditions because it produced low water content and low ash content of 10.8% and 9.6%, thus optimizedthe calorific value of 4,372.896 kcal/kg.

  16. Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water.

    PubMed

    Boyer, Treavor H; Persaud, Amar; Banerjee, Poulomi; Palomino, Pedro

    2011-10-15

    Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Study of Selected Composites Copper Concentrate-Plastic Waste Using Thermal Analysis

    NASA Astrophysics Data System (ADS)

    Szyszka, Danuta

    2017-12-01

    The paper presents thermal analysis of selected composites (copper concentrate, plastic waste) in two stages. The first stage consisted in thermogravimetric analysis and differential thermal analysis on the applied plastic waste and copper concentrate, and subsequently, a comparative study has been carried out on products obtained, constituting composites of those materials. As a result of analyses, it was found that up to ca. 400 °C composites show high thermal stability, whereas above that temperature, a thermal decomposition of the composite occurs, resulting in emissions of organic compounds, i.e. hydrocarbon compounds and organic oxygenate derivatives.

  18. Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.

    2000-10-17

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.

  19. Recycling Study Guide.

    ERIC Educational Resources Information Center

    Hallowell, Anne; And Others

    This study guide was designed to help teachers and students understand the problems surrounding solid wastes. It includes an overview of solid waste and recycling, a glossary, suggested activities and a list of resource publications, audiovisual materials and organizations. There are 19 activity suggestions included in this guide designed for use…

  20. 40 CFR 63.4710 - What notifications must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...). You do not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating... and the mass of organic HAP contained in the waste materials for which you are claiming an allowance...

  1. Microwave-assisted synthesis of organics and nanomaterials

    EPA Science Inventory

    Microwave-assisted chemistry techniques and greener reaction media are dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This presentation summarizes author’s own experience in developing MW-assisted chemical proces...

  2. Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor.

    PubMed

    Vanderberg-Twary, L; Steenhoudt, K; Travis, B J; Hanners, J L; Foreman, T M; Brainard, J R

    1997-07-05

    Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials.

  3. Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling.

    PubMed

    Hidaka, Taira; Wang, Feng; Tsumori, Jun

    2015-09-01

    Anaerobic co-digestion of sewage sludge and other organic wastes, such as kitchen garbage, food waste, and agricultural waste, at a wastewater treatment plant (WWTP) is a promising method for both energy and material recovery. Substrate characteristics and the anaerobic digestion performance of sewage sludge and various organic wastes were compared using experiments and modeling. Co-digestion improved the value of digested sewage sludge as a fertilizer. The relationship between total and soluble elemental concentrations was correlated with the periodic table: most Na and K (alkali metals) were soluble, and around 20-40% of Mg and around 10-20% of Ca (alkaline earth metals) were soluble. The ratio of biodegradable chemical oxygen demand of organic wastes was 65-90%. The methane conversion ratio and methane production rate under mesophilic conditions were evaluated using a simplified mathematical model. There was reasonably close agreement between the model simulations and the experimental results in terms of methane production and nitrogen concentration. These results provide valuable information and indicate that the model can be used as a pre-evaluation tool to facilitate the introduction of co-digestion at WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Developing an institutional strategy for transporting defense transuranic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, J.V.; Kresny, H.S.

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key tomore » the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.« less

  5. Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil.

    PubMed

    de la Fuente, C; Clemente, R; Bernal, M P

    2008-06-01

    Degradation of organic matter from olive mill waste and changes in the heavy metal fractionation of a metal-contaminated calcareous soil were studied in a laboratory experiment, in which the olive mill waste was mixed with the soil and then incubated under aerobic conditions. The soil was calcareous (15% CaCO(3)) with high Zn and Pb concentrations (2058 and 2947 mg kg(-1), respectively). The organic amendment was applied at a rate equivalent to 20 g kg(-1) soil, and unamended soil was run as a control. To discern if changes in metal solubility were due to the acidic character of the waste, elemental sulphur was applied to soil as a non-organic acidifying material. The S(0) rates used were 3.14, 4.71 and 6.28 g kg(-1). The mineralisation of total organic-C (TOC) from the waste reached 14.8% of the original TOC concentration after 56 days of incubation. The CO(2)-C produced from S(0)-treated soils showed the carbonate destruction by the H(2)SO(4) formed through S(0) oxidation. The organic waste increased EDTA-extractable Zn and Pb concentrations and CaCl(2)-extractable Mn levels in soil after two days of incubation. The changes in metal availability with time indicated that the oxidation of phenols from the waste reduced Mn (IV) oxides, releasing Zn and Pb associated with this mineral phase. Organic waste addition did not decrease soil pH; the acidifying effect of S(0) did not change metal fractionation in the soil.

  6. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  7. Energy Department Selects Partners...

    Science.gov Websites

    agricultural and forest wastes and other types of biomass. Six partnerships totaling $1 million in cost shared industrial chemical. Feedstocks are organic material, such as agricultural wastes or crops grown specifically are developed. Agricultural residues, such as corn stover, are the most likely candidates to help meet

  8. Evaluation of alternative nonflame technologies for destruction of hazardous organic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwinkendorf, W.E.; Musgrave, B.C.; Drake, R.N.

    1997-04-01

    The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associatedmore » contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.« less

  9. Microwave-assisted 'greener' synthesis of organics and nanomaterials

    EPA Science Inventory

    Microwave selective heating techniques in conjunction with greener reaction media are dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This presentation summarizes author’s own experience in developing MW-assisted ...

  10. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials.

    PubMed

    Dang, Yan; Sun, Dezhi; Woodard, Trevor L; Wang, Li-Ying; Nevin, Kelly P; Holmes, Dawn E

    2017-08-01

    Growth of bacterial and archaeal species capable of interspecies electron exchange was stimulated by addition of conductive materials (carbon cloth or granular activated carbon (GAC)) to anaerobic digesters treating dog food (a substitute for the dry-organic fraction of municipal solid waste (OFMSW)). Methane production (772-1428mmol vs <80mmol), volatile solids removal (78%-81% vs 54%-64%) and COD removal efficiencies (∼80% vs 20%-30%) were all significantly higher in reactors amended with GAC or carbon cloth than controls. OFMSW degradation was also significantly accelerated and VFA concentrations were substantially lower in reactors amended with conductive materials. These results suggest that both conductive materials (carbon cloth and GAC) can promote conversion of OFMSW to methane even in the presence of extremely high VFA concentrations (∼500mM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Detox{sup SM} wet oxidation system studies for engineering scale up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, D.T.; Moslander, J.E.; Zigmond, J.A.

    1995-12-31

    Catalyzed wet oxidation utilizing iron(III) has been shown to have promise for treating many hazardous and mixed wastes. The reaction occurs at the surface of contact between an aqueous iron(III) solution and organic material. Studies with liquid- and vapor-phase organic waste surrogates have established reaction kinetics and the limits of reaction rate based on organic concentration and iron(III) diffusion. Continuing engineering studies have concentrated on reaction vessel agitator and solids feed configurations, an improved bench scale reflux condenser and reflux condenser calculations, sparging of organic compounds from the process condensate water, filtration of solids from the process solution, and flammabilitymore » limits for volatile organic compounds in the headspace of the reaction vessel under the reaction conditions. Detailed engineering design and fabrication of a demonstration unit for treatment of mixed waste is in progress.« less

  12. Influence of feedstock on the copper removal capacity of waste-derived biochars.

    PubMed

    Arán, Diego; Antelo, Juan; Fiol, Sarah; Macías, Felipe

    2016-07-01

    Biochar samples were generated by low temperature pyrolysis of different types of waste. The physicochemical characteristics of the different types of biochar affected the copper retention capacity, by determining the main mechanism involved. The capacity of the biochar to retain copper present in solution depended on the size of the inorganic fraction and varied in the following order: rice biochar>chicken manure biochar>olive mill waste biochar>acacia biochar>eucalyptus biochar>corn cob biochar. The distribution of copper between the forms bound to solid biochar, dissolved organic matter and free organic matter in solution also depended on the starting material. However, the effect of pH on the adsorption capacity was independent of the nature of the starting material, and the copper retention of all types of biochar increased with pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households.

    PubMed

    Murto, Marika; Björnsson, Lovisa; Rosqvist, Håkan; Bohn, Irene

    2013-05-01

    At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a dry fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m3/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. [Environmental toxicity of waste foundry sand].

    PubMed

    Zhang, Hai-Feng; Wang, Yu-Jue; Wang, Jin-Lin; Huang, Tian-You; Xiong, Ying

    2013-03-01

    The metal leaching characteristics and volatile organic compounds (VOCs) of five different types of waste foundry sands were analyzed with the toxicity characteristic leaching procedure (TCLP) and head space-gas chromatography (HS-GC). Microtox and soil dehydrogenase activity (DHA) tests were then used to evaluate the bio-effects of these waste sands. The results showed that due to the different metals poured and casting materials used to make the sand molds, there was significant difference among the five waste foundry sands in the compositions and concentrations of metal and organic pollutants. The concentrations of Fe in the leachates of iron and steel casting waste foundry sand exceeded the maximal allowable concentrations specified in the National Standard of Drinking Water Quality, whereas the As concentration in the leachate of aluminum casting waste foundry sand exceeded the standard. The five waste foundry sands had quite different compositions and levels of VOCs, which resulted in different levels of inhibition effects on the luminescent bacteria (30% and 95%). Additionally, the soil DHA tests suggested that metal pollutants in waste foundry sands may inhibit the soil microbial activity, whereas organics in the sands may slightly promote the microbial activity. The results of this study indicated that the waste foundry sands may pose considerable threat to the environment when improperly disposed.

  15. FY16 Annual Accomplishments - Waste Form Development and Performance: Evaluation Of Ceramic Waste Forms - Comparison Of Hot Isostatic Pressed And Melt Processed Fabrication Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J.; Dandeneau, C.

    FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL, simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performancemore » and properties.« less

  16. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Jose M., E-mail: joseman@sas.upenn.edu; Plaza, Cesar; Polo, Alfredo

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and providesmore » a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO{sub 2} respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.« less

  17. In Situ Biological Treatment Test at Kelly Air Force Base. Volume 2. Field Test Results and Cost Model.

    DTIC Science & Technology

    1987-07-01

    degradation of organic contaminants. In situ treatment affects contaminants sorbed to soil as well as dissolved in groundwater. It is potentially ...indigenous soil micro - organisms to multiply and degrade the waste material. Exxon’s Baytown refinery has been disposing of oily wastes by land farming...Group (ERG). Chemical analyses performed on soil samples included priority pollutant volatile and metal compounds, total hydrocarbons (alkanes), oil and

  18. Navigation and vessel inspection circular No. 3-94. International maritime organization code for the safe carriage of irradiated nuclear fuel, plutonium and high-level radioactive wastes in flasks on board ships (IMO resolution a.748(18)). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-05-26

    The Circular calls the attention of Coast Guard field units, marine surveyors, shippers and carriers of nuclear materials to the International Maritime Organization (IMO) Code for the Safe Carriage of Irradiated Nuclear Fuel, Plutonium and High-Level Radioactive Wastes in Flasks on Board Ships (IMO Resolution A.748(18)).

  19. Comparative lifecycle assessment of alternatives for waste management in Rio de Janeiro - Investigating the influence of an attributional or consequential approach.

    PubMed

    Bernstad Saraiva, A; Souza, R G; Valle, R A B

    2017-10-01

    The environmental impacts from three management alternatives for organic fraction of municipal solid waste were compared using lifecycle assessment methodology. The alternatives (sanitary landfill, selective collection of organic waste for anaerobic digestion and anaerobic digestion after post-separation of organic waste) were modelled applying an attributional as well as consequential approach, in parallel with the aim of identifying if and how these approaches can affect results and conclusions. The marginal processes identified in the consequential modelling were in general associated with higher environmental impacts than average processes modelled with an attributional approach. As all investigated waste management alternatives result in net-substitution of energy and in some cases also materials, the consequential modelling resulted in lower absolute environmental impacts in five of the seven environmental impact categories assessed in the study. In three of these, the chosen modelling approach can alter the hierarchy between compared waste management alternatives. This indicates a risk of underestimating potential benefits from efficient energy recovery from waste when applying attributional modelling in contexts in which electricity provision historically has been dominated by technologies presenting rather low environmental impacts, but where projections point at increasing impacts from electricity provision in coming years. Thus, in the present case study, the chosen approach affects both absolute and relative results from the comparison. However, results were largely related to the processes identified as affected by investigated changes, and not merely the chosen modelling approach. The processes actually affected by future choices between different waste management alternatives are intrinsically uncertain. The study demonstrates the benefits of applying different assumptions regarding the processes affected by investigated choices - both for provision of energy and materials substituted by waste management processes in consequential LCA modelling, in order to present outcomes that are relevant as decision support within the waste management sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Land Application of Wastes: An Educational Program. Organic Matter - Module 17, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module sketches out the impact of sewage organic matter on soils. For convenience, that organic matter is separated into the readily decomposable compounds and the more resistant material (volatile suspended solids, refractory organics, and sludges). The fates of those organics are reviewed along with loading rates and recommended soil…

  1. Gypsum and organic matter distribution in a mixed construction and demolition waste sorting process and their possible removal from outputs.

    PubMed

    Montero, A; Tojo, Y; Matsuo, T; Matsuto, T; Yamada, M; Asakura, H; Ono, Y

    2010-03-15

    With insufficient source separation, construction and demolition (C&D) waste becomes a mixed material that is difficult to recycle. Treatment of mixed C&D waste generates residue that contains gypsum and organic matter and poses a risk of H(2)S formation in landfills. Therefore, removing gypsum and organic matter from the residue is vital. This study investigated the distribution of gypsum and organic matter in a sorting process. Heavy liquid separation was used to determine the density ranges in which gypsum and organic matter were most concentrated. The fine residue that was separated before shredding accounted for 27.9% of the waste mass and contained the greatest quantity of gypsum; therefore, most of the gypsum (52.4%) was distributed in this fraction. When this fine fraction was subjected to heavy liquid separation, 93% of the gypsum was concentrated in the density range of 1.59-2.28, which contained 24% of the total waste mass. Therefore, removing this density range after segregating fine particles should reduce the amount of gypsum sent to landfills. Organic matter tends to float as density increases; nevertheless, separation at 1.0 density could be more efficient. (c) 2009 Elsevier B.V. All rights reserved.

  2. Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment.

    PubMed

    Hirata, Mizuho; Kawasaki, Naohito; Nakamura, Takeo; Matsumoto, Kazuoki; Kabayama, Mineaki; Tamura, Takamichi; Tanada, Seiki

    2002-10-01

    Organic wastes have been burned for reclamation. However, they have to be recycled and reused for industrial sustainable development. Carbonaceous materials were produced from coffee grounds by microwave treatment. There are many phenolic hydroxyl and carboxyl groups on the surface of carbonaceous materials. The base consumption of the carbonaceous materials was larger than that of the commercially activated carbon. The carbonaceous materials produced from coffee grounds were applied to the adsorbates for the removal of basic dyes (methylene blue and gentian violet) in wastewater. This result indicated that the adsorption of dyes depended upon the surface polar groups on the carbonaceous materials. Moreover, the Freundlich constants of isotherms for the adsorption of methylene blue and gentian violet onto the carbonaceous materials produced from coffee grounds were greater than those for adsorption onto activated carbon or ceramic activated carbon. The interaction was greatest between the surface or porosity of the carbonaceous materials and methylene blue and gentian violet. The microwave treatment would be useful for the carbonization of organic wastes to save energy.

  3. Challenges and opportunities associated with waste management in India

    PubMed Central

    Kumar, Sunil; Smith, Stephen R.; Fowler, Geoff; Velis, Costas; Kumar, S. Jyoti; Arya, Shashi; Rena; Kumar, Rakesh

    2017-01-01

    India faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Current systems in India cannot cope with the volumes of waste generated by an increasing urban population, and this impacts on the environment and public health. The challenges and barriers are significant, but so are the opportunities. This paper reports on an international seminar on ‘Sustainable solid waste management for cities: opportunities in South Asian Association for Regional Cooperation (SAARC) countries’ organized by the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute and the Royal Society. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. The potential for energy generation from landfill via methane extraction or thermal treatment is a major opportunity, but a key barrier is the shortage of qualified engineers and environmental professionals with the experience to deliver improved waste management systems in India. PMID:28405362

  4. Impact of vent pipe diameter on characteristics of waste degradation in semi-aerobic bioreactor landfill.

    PubMed

    Jiang, Guobin; Liu, Dan; Chen, Weiming; Ye, Zhicheng; Liu, Hong; Li, Qibin

    2017-10-01

    The evolution mechanism of a vent pipe diameter on a waste-stabilization process in semi-aerobic bioreactor landfills was analyzed from the organic-matter concentration, biodegradability, spectral characteristics of dissolved organic matter, correlations and principal-component analysis. Waste samples were collected at different distances from the vent pipe and from different landfill layers in semi-aerobic bioreactor landfills with different vent pipe diameters. An increase in vent pipe diameter favored waste degradation. Waste degradation in landfills can be promoted slightly when the vent pipe diameter increases from 25 to 50 mm. It could be promoted significantly when the vent pipe diameter was increased to 75 mm. The vent pipe diameter is important in waste degradation in the middle layer of landfills. The dissolved organic matter in the waste is composed mainly of long-wave humus (humin), short-wave humus (fulvic acid) and tryptophan. The humification levels of the waste that was located at the center of vent pipes with 25-, 50- and 75-mm diameters were 2.2682, 4.0520 and 7.6419 Raman units, respectively. The appropriate vent pipe diameter for semi-aerobic bioreactor landfills with an 800-mm diameter was 75 mm. The effect of different vent pipe diameters on the degree of waste stabilization is reflected by two main components. Component 1 is related mainly to the content of fulvic acid, biologically degradable material and organic matter. Component 2 is related mainly to the content of tryptophan and humin from the higher vascular plants.

  5. Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste.

    PubMed

    Nguyen, Trinh T X; Tomberlin, Jeffery K; Vanlaerhoven, Sherah

    2015-04-01

    Accumulation of organic wastes, especially in livestock facilities, can be a potential pollution issue. The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), can consume a wide range of organic material and has the potential to be used in waste management. In addition, the prepupae stage of this insect can be harvested and used as a valuable nutritious feed for animal livestock. Five waste types with a wide range of organic source matter were specifically chosen to evaluate the consumption and reduction ability of black soldier fly larvae. H. illucens was able to reduce all waste types examined: 1) control poultry feed, 2) pig liver, 3) pig manure, 4) kitchen waste, 5) fruits and vegetables, and 6) rendered fish. Kitchen waste had the greatest mean rate of reduction (consumption by black soldier fly) per day and produced the longest and heaviest black soldier flies. Larvae reared on liver, manure, fruits and vegetables, and fish were approximately the same length and weight as larvae fed the control feed, although some diets produced larvae with a higher nutritional content. The black soldier fly has the ability to consume and reduce organic waste and be utilized as valuable animal feed. Exploration of the potential use of black soldier flies as an agent for waste management on a large-scale system should continue. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corvellec, Herve, E-mail: herve.corvellec@ism.lu.se; Bramryd, Torleif

    Highlights: Black-Right-Pointing-Pointer Swedish municipally owned waste management companies are active on political, material, technical, and commercial markets. Black-Right-Pointing-Pointer These markets differ in kind and their demands follow different logics. Black-Right-Pointing-Pointer These markets affect the public service, processing, and marketing of Swedish waste management. Black-Right-Pointing-Pointer Articulating these markets is a strategic challenge for Swedish municipally owned waste management. - Abstract: This paper describes how the business model of two leading Swedish municipally owned solid waste management companies exposes them to four different but related markets: a political market in which their legitimacy as an organization is determined; a waste-as-material market thatmore » determines their access to waste as a process input; a technical market in which these companies choose what waste processing technique to use; and a commercial market in which they market their products. Each of these markets has a logic of its own. Managing these logics and articulating the interrelationships between these markets is a key strategic challenge for these companies.« less

  7. Sustainable Materials Management (SMM) Food Recovery Challenge (FRC) Data

    EPA Pesticide Factsheets

    As part of EPA's Food Recovery Challenge (FRC), organizations pledge to improve their sustainable food management practices and report their results. The FRC is part of EPA's Sustainable Materials Management Program (SMM). SMM seeks to reduce the environmental impact of materials through their entire life cycle. This includes how they are extracted, manufactured, distributed, used, reused, recycled, and disposed. Organizations are encouraged to follow the Food Recovery Hierarchy (https://www.epa.gov/sustainable-management-food/food-recovery-hierarchy) to prioritize their actions to prevent and divert wasted food. Each tier of the Food Recovery Hierarchy focuses on different management strategies for your wasted food. The program started in 2011 and the first data were made available in 2012. The FRC is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle we can find new opportunities to reduce environmental impacts, conserve resources, and reduce costs. There are multiple challenge programs available as part of the SMM program, including the Food Recovery Challenge, the Electronics Challenge, the Federal Green Challenge, and the WasteWise program.

  8. A novel bioconversion for value-added products from food waste using Musca domestica.

    PubMed

    Niu, Yi; Zheng, Dong; Yao, Binghua; Cai, Zizhe; Zhao, Zhimin; Wu, Shengqing; Cong, Peiqing; Yang, Depo

    2017-03-01

    Food waste, as a major part of the municipal solid waste has been generated increasingly worldwide. Efficient and feasible utilization of this waste material for productivity process is significant for both economical and environmental reasons. In the present study, Musca domestica larva was used as the carrier to conduct a bioconversion with food waste to get the value-added maggot protein, oil and organic fertilizers. Methods of adult flies rearing, culture medium adjuvant selection, maggot culture conditions, stocking density and the valorization of the waste have been explored. From the experimental results, every 1000g culture mediums (700g food waste and 300g adjuvant) could be disposed by 1.5g M. domestica eggs under proper culture conditions after emergence in just 4days, 42.95±0.25% of which had been consumed and the culture medium residues could be used as good organic fertilizers, accompanying with the food waste consumption, ∼53.08g dried maggots that contained 57.06±2.19% protein and 15.07±2.03% oil had been produced. The maggot protein for its outstanding pharmacological activities is regarded as a good raw material in the field of medicine and animal feeding. Meanwhile, the maggot oil represents a potential alternative feedstock for biodiesel production. In our study, the maggot biodiesel was obtained after the procedure of transesterification reaction with methanol and the productivity was 87.71%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Biotransformation of an uncured composite material

    NASA Technical Reports Server (NTRS)

    Welsh, Clement J.; Glass, Michael J.; Cheslack, Brian; Pryor, Robert; Tran, Duan K.; Bowers-Irons, Gail

    1994-01-01

    The feasibility of biologically degrading prepreg wastes was studied. The work was conducted with the intention of obtaining baseline data that would facilitate the achievement of two long-range goals. These goals are: (1) the biological remediation of the hazardous components in the prepreg wastes, and (2) providing the potential for recycling the prepreg waste fibers. The experiments examined a prepreg that employs an bismaleimide resin system. Initial results demonstrated an obvious deterioration of the prepreg material when incubated with several bacterial strains. The most active cultures were identified as a mixture of 'Bacillus cereus' and 'Pseudomonas sp'. Gas chromatography analyses revealed seven primary compounds in the resin mixture. Biotransformation studies, using the complete prepreg material, demonstrated on obvious loss of all seven organic compounds. Gas chromatography-mass spectrometry analyses resulted in structure assignments for the two primary components of the resin. Both were analogs of Bisphenol A; one being bismaleimide, and the other being Bisphenol A containing a diglycidyl moiety. The 'diglycidyl analog' was purified using thin-layer chromatography and the biotransformation of this compound (at 27 ug/ml bacterial culture) was monitored. After a seven-day incubation, approximately 40% of the organic compound was biotransformed. These results demonstrate the biotransformation of the prepreg resin and indicate that biological remediation of the prepreg wastes is feasible.

  10. Toward zero waste events: Reducing contamination in waste streams with volunteer assistance.

    PubMed

    Zelenika, Ivana; Moreau, Tara; Zhao, Jiaying

    2018-06-01

    Public festivals and events generate a tremendous amount of waste, especially when they involve food and drink. To reduce contamination across waste streams, we evaluated three types of interventions at a public event. In a randomized control trial, we examined the impact of volunteer staff assistance, bin tops, and sample 3D items with bin tops, on the amount of contamination and the weight of the organics, recyclable containers, paper, and garbage bins at a public event. The event was the annual Apple Festival held at the University of British Columbia, which was attended by around 10,000 visitors. We found that contamination was the lowest in the volunteer staff condition among all conditions. Specifically, volunteer staff reduced contamination by 96.1% on average in the organics bin, 96.9% in the recyclable containers bin, 97.0% in the paper bin, and 84.9% in the garbage bin. Our interventions did not influence the weight of the materials in the bins. This finding highlights the impact of volunteers on reducing contamination in waste streams at events, and provides suggestions and implications for waste management for event organizers to minimize contamination in all waste streams to achieve zero waste goals. Copyright © 2018. Published by Elsevier Ltd.

  11. Resource management performance in Bahrain: a systematic analysis of municipal waste management, secondary material flows and organizational aspects.

    PubMed

    Al Sabbagh, Maram K; Velis, Costas A; Wilson, David C; Cheeseman, Christopher R

    2012-08-01

    This paper presents a detailed review of municipal solid waste (MSW) and resource management in Bahrain, using the recently developed UN-Habitat city profile methodology. Performance indicators involve quantitative assessment of waste collection and sweeping, controlled disposal, materials recovery and financial sustainability together with qualitative assessment of user and provider inclusivity and institutional coherence. MSW management performance in Bahrain is compared with data for 20 other cities. The system in Bahrain is at an intermediate stage of development. A waste/material flow diagram allows visualization of the MSW system and quantifies all inputs and outputs, with the vast majority of MSW deposited in a controlled, but not engineered landfill. International comparative analysis shows that recycling and material recovery rates in Bahrain (8% wt. for domestic waste, of which 3% wt. due to informal sector) are generally lower than other cities, whereas waste quantities and generation rates at 1.1 kg capita(-1) day(-1)) are relatively high. The organic fraction (60% wt.) is comparable to that in middle- and low-income cities (50-80% wt.), although on the basis of gross domestic product Bahrain is classified as a high-income city, for which the average is generally less than 30% wt. Inclusivity in waste governance is at a medium stage as not all waste system stakeholders are considered in decision-making. While the system now appears to be financially stable, key pending issues are cost-effectiveness, improving the standards of disposal and deployment of extensive materials recovery/recycling services.

  12. Vitrification of waste

    DOEpatents

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  13. Identification of locally available structural material as co-substrate for organic waste composting in Tamil Nadu, India.

    PubMed

    Springer, C; Heldt, N

    2016-06-01

    Owing to the lack in structural strength while composting certain kinds of organic wastes, 11 co-substrates were tested that are generally locally available in rural areas of northern Tamil Nadu, India. In addition to the classical composting parameters such as carbon/nitrogen ratio, moisture content, dry matter and organic dry matter, a compression test was conducted to evaluate the structural strength and the suitability as bulking agent for composting processes. Additionally, with respect to the climatic conditions in India, the water holding capacity was also evaluated. © The Author(s) 2016.

  14. Codigestion of manure and organic wastes in centralized biogas plants: status and future trends.

    PubMed

    Angelidaki, I; Ellegaard, L

    2003-01-01

    Centralized biogas plants in Denmark codigest mainly manure, together with other organic waste such as industrial organic waste, source sorted household waste, and sewage sludge. Today 22 large-scale centralized biogas plants are in operation in Denmark, and in 2001 they treated approx 1.2 million tons of manure as well as approx 300,000 of organic industrial waste. Besides the centralized biogas plants there are a large number of smaller farm-scale plants. The long-term energy plan objective is a 10-fold increase of the 1998 level of biogas production by the year 2020. This will help to achieve a target of 12-14% of the national energy consumption being provided by renewable energy by the year 2005 and 33% by the year 2030. A major part of this increase is expected to come from new centralized biogas plants. The annual potential for biogas production from biomass resources available in Denmark is estimated to be approx 30 Peta Joule (PJ). Manure comprises about 80% of this potential. Special emphasis has been paid to establishing good sanitation and pathogen reduction of the digested material, to avoid risk of spreading pathogens when applying the digested manure as fertilizer to agricultural soils.

  15. Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects.

    PubMed

    Cecchi, Franco; Cavinato, Cristina

    2015-05-01

    Scientific and industrial experiences, together with economical and policies changes of last 30 years, bring anaerobic digestion among the most environmental friendly and economically advantageous technologies for organic waste treatment and management in Europe. In this short review, the role of anaerobic digestion of organic wastes is discussed, considering the opportunity of a territorial friendly approach, without barriers, where different organic wastes are co-treated. This objective can be achieved through two proposed strategies: one is the anaerobic digestion applied as a service for the agricultural and farming sector; the other as a service for citizen (biowaste, diapers and wastewater treatment integration). The union of these two strategies is an environmental- and territorial-friendly process that aims to produce renewable energy and fertiliser material, with a low greenhouse gas emission and nutrients recovery. The advantage of forthcoming application of anaerobic digestion of organic wastes, even for added value bioproducts production and new energy carriers, are finally discussed. Among several advantages of anaerobic digestion, the role of the environmental controller was evaluated, considering the ability of minimising the impacts exploiting the biochemical equilibrium and sensitivity as a quality assurance for digestate. © The Author(s) 2015.

  16. A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y. Y.

    1976-01-01

    The anticipated depletion of our resources of natural gas and petroleum in a few decades has caused a search for renewable sources of fuel. Among the possibilities is the chemical conversion of waste and grown organic matter into gaseous or liquid fuels. The overall feasibility of such a system is considered from the technical, economic, and social viewpoints. Although there are a number of difficult problems to overcome, this preliminary study indicates that this option could provide between 4 and 10 percent of the U.S. energy needs. Estimated costs of fuels derived from grown organic material are appreciably higher than today's market price for fossil fuel. The cost of fuel derived from waste organics is competitive with fossil fuel prices. Economic and social reasons will prohibit the allocation of good food producing land to fuel crop production.

  17. Utilization and management of organic wastes in Chinese agriculture: past, present and perspectives.

    PubMed

    Ju, Xiaotang; Zhang, Fusuo; Bao, Xuemei; Römheld, V; Roelcke, M

    2005-09-01

    Recycling and composting of organic materials such as animal waste, crop residues and green manures has a long tradition in China. In the past, the application of organic manures guaranteed a high return of organic materials and plant mineral nutrients and thus maintained soil fertility and crop yield. As a result of rapid economic development coupled with the increasing urbanization and labour costs, the recycling rate of organic materials in Chinese agriculture has dramatically declined during the last two decades, in particular in the more developed eastern and southeastern provinces of China. Improper handling and storage of the organic wastes is causing severe air and water pollution. Because farmers are using increasing amounts of mineral fertilizer, only 47% of the cropland is still receiving organic manure, which accounted for 18% of N, 28% of P and 75% of K in the total nutrient input in 2000. Nowadays, the average proportion of nutrients (N+P+K) supplemented by organic manure in Chinese cropland is only 35% of the total amount of nutrients from both inorganic and organic sources. In China, one of the major causes is the increasing de-coupling of animal and plant production. This is occurring at a time when "re-coupling" is partly being considered in Western countries as a means to improve soil fertility and reduce pollution from animal husbandry. Re-coupling of modern animal and plant production is urgently needed in China. A comprehensive plan to develop intensive animal husbandry while taking into account the environmental impact of liquid and gaseous emissions and the nutrient requirements of the crops as well as the organic carbon requirements of the soil are absolutely necessary. As a consequence of a stronger consideration of ecological aspects in agriculture, a range of environmental standards has been issued and various legal initiatives are being taken in China. Their enforcement should be strictly monitored.

  18. Utilization and management of organic wastes in Chinese agriculture: past, present and perspectives.

    PubMed

    Ju, Xiaotang; Zhang, Fusuo; Bao, Xuemei; Römheld, V; Roelcke, M

    2005-12-01

    Recycling and composting of organic materials such as animal waste, crop residues and green manures has a long tradition in China. In the past, the application of organic manures guaranteed a high return of organic materials and plant mineral nutrients and thus maintained soil fertility and crop yield. As a result of rapid economic development coupled with the increasing urbanization and labour costs, the recycling rate of organic materials in Chinese agriculture has dramatically declined during the last two decades, in particular in the more developed eastern and southeastern provinces of China. Improper handling and storage of the organic wastes is causing severe air and water pollution. Because farmers are using increasing amounts of mineral fertilizer, only 47% of the cropland is still receiving organic manure, which accounted for 18% of N, 28% of P and 75% of K in the total nutrient input in 2000. Nowadays, the average proportion of nutrients (N+P+K) supplemented by organic manure in Chinese cropland is only 35% of the total amount of nutrients from both inorganic and organic sources. In China, one of the major causes is the increasing de-coupling of animal and plant production. This is occurring at a time when "re-coupling" is partly being considered in Western countries as a means to improve soil fertility and reduce pollution from animal husbandry. Re-coupling of modern animal and plant production is urgently needed in China. A comprehensive plan to develop intensive animal husbandry while taking into account the environmental impact of liquid and gaseous emissions and the nutrient requirements of the crops as well as the organic carbon requirements of the soil are absolutely necessary. As a consequence of a stronger consideration of ecological aspects in agriculture, a range of environmental standards has been issued and various legal initiatives are being taken in China. Their enforcement should be strictly monitored.

  19. Processing liquid organic wastes at the NNL Preston laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppersthwaite, Duncan; Greenwood, Howard; Docrat, Tahera

    2013-07-01

    Organic compounds of various kinds have been used in the nuclear industry for numerous duties in uranium chemical, metal and ceramic processing plants. In the course of the various operations undertaken, these organic compounds have become contaminated with uranic material, either accidentally or as an inevitable part of the process. Typically, the chemical/physical form and/or concentration of the uranic content of the organics has prevented disposal. In order to address the issue of contaminated liquid organic wastes, the National Nuclear Laboratory (NNL) has developed a suite of treatments designed to recover uranium and to render the waste suitable for disposal.more » The developed processes are operated at industrial scale via the NNL Preston Laboratory Residue Processing Plant. The Oil Waste Leaching (OWL) Process is a fully industrialised process used for the treatment of contaminated oils with approximately 200 tonnes of uranium contaminated oil being treated to date. The process was originally developed for the treatment of contaminated tributyl phosphate and odourless kerosene which had been adsorbed onto sawdust. However, over the years, the OWL process has been refined for a range of oils including 'water emulsifiable' cutting oils, lubricating oils, hydraulic oils/fluids and 'Fomblin' (fully fluorinated) oils. Chemically, the OWL process has proved capable of treating solvents as well as oils but the highly volatile/flammable nature of many solvents has required additional precautions compared with those required for oil treatment. These additional precautions led to the development of the Solvent Treatment Advanced Rig (STAR), an installation operated under an inert atmosphere. STAR is a small 'module' (100 dm{sup 3} volume) which allows the treatment of both water miscible and immiscible solvents. This paper discusses the challenges associated with the treatment of liquid organic wastes and the process developments which have allowed a wide range of materials to be successfully treated. (authors)« less

  20. Sulfate and organic matter concentration in relation to hydrogen sulfide generation at inert solid waste landfill site - Limit value for gypsum.

    PubMed

    Asakura, Hiroshi

    2015-09-01

    In order to suggest a limit value for gypsum (CaSO4) for the suppression of hydrogen sulfide (H2S) generation at an inert solid waste landfill site, the relationship between raw material (SO4 and organic matter) for H2S generation and generated H2S concentration, and the balance of raw material (SO4) and product (H2S) considering generation and outflow were investigated. SO4 concentration should be less than approximately 100mg-SO4/L in order to suppress H2S generation to below 2000ppm. Total organic carbon (TOC) concentration should be less than approximately 200mg-C/L assuming a high SO4 concentration. The limit value for SO4 in the ground is 60mg-SO4/kg with 0.011wt% as gypsum dihydrate, i.e., approximately 1/10 of the limit value in inert waste as defined by the EU Council Decision (560mg-SO4/kg-waste). The limit value for SO4 in inert waste as defined by the EU Council Decision is high and TOC is strictly excluded. The cumulative amount of SO4 outflow through the liquid phase is much larger than that through the gas phase. SO4 concentration in pore water decreases with time, reaching half the initial concentration around day 100. SO4 reduction by rainfall can be expected in the long term. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Synchrotron-based X-Ray Spectroscopy Studies for Redox-based Remediation of Lead, Zinc, and Cadmium in Mine Waste Materials.

    PubMed

    Karna, Ranju R; Hettiarachchi, Ganga M; Newville, Matthew; Sun, ChengJun; Ma, Qing

    2016-11-01

    Several studies have examined the effect of submergence on the mobility of metals present in mine waste materials. This study examines the effect of organic carbon (OC) and sulfur (S) additions and submergence time on redox-induced biogeochemical transformations of lead (Pb), zinc (Zn), and cadmium (Cd) present in mine waste materials collected from the Tri-State mining district located in southeastern Kansas, southwestern Missouri, and northeastern Oklahoma. A completely randomized design, with a two-way treatment structure, was used for conducting a series of column experiments. Two replicates were used for each treatment combination. Effluent samples were collected at several time points, and soil samples were collected at the end of each column experiment. Because these samples are highly heterogeneous, we used a variety of synchrotron-based techniques to identify Pb, Zn, and Cd speciation at both micro- and bulk-scale. Spectroscopic analysis results from the study revealed that the addition of OC, with and without S, promoted metal-sulfide formation, whereas metal carbonates dominated in the nonamended flooded materials and in mine waste materials only amended with S. Therefore, the synergistic effect of OC and S may be more promising for managing mine waste materials disposed of in flooded subsidence mine pits instead of individual S or OC treatments. The mechanistic understanding gained in this study is also relevant for remediation of waste materials using natural or constructed wetland systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Enhancement of anaerobic biodegradability of flower stem wastes with vegetable wastes by co-hydrolysis.

    PubMed

    Zhang, Bo; He, Pinjing; Lü, Fan; Shao, Liming

    2008-01-01

    The vegetable wastes and flower stems were co-digested to evaluate the anaerobic hydrolysis performance of difficultly biodegradable organic wastes by introducing readily biodegradable organic wastes. The experiments were carried out in batches. When the vegetable wastes were mixed with the flower stems at the dry weight ratio of 1 to 13, the overall hydrolysis rate increased by 8%, 12%, and 2% according to the carbon, nitrogen, and total solid (TS) conversion rate, respectively. While the dry weight ratio was designed as 1 to 3, there was a respective rise of 5%, 15%, and 4% in the conversion rate of carbon, nitrogen, and TS. The enhancement of anaerobic hydrolysis from the mixed vegetable wastes and flower stems can be attributed to the formation of volatile fatty acids (VFA) and nutrient supplement like nitrogen content. The maximum VFA concentration can achieve 1.7 g/L owing to the rapid acidification of vegetable wastes, loosing the structure of lignocellulose materials. The statistic bivariate analysis revealed that the hydrolysis performance was significantly related to the physical and biochemical compositions of the feeding substrate. Especially, the soluble carbon concentration in the liquid was significantly positively correlated to the concentration of nitrogen and hemicellulose, and negatively correlated to the concentration of carbon and lignocellulose in the feeding substrate, suggesting that the regulation and control of feedstock can have an important influence on the anaerobic hydrolysis of organic wastes.

  3. Use of Biochar from the Pyrolysis of Waste Organic Material as a Soil Amendment

    USDA-ARS?s Scientific Manuscript database

    Biochar is a charcoal-like material produced by the thermochemical pyrolysis of biomass materials. It is being considered as a potentially significant means of storing carbon for long periods to mitigate greenhouse gases. Much of the interest comes from studies of Amazonian soils that appear to have...

  4. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The paper reports on a study to evaluate organic combustion by-product emissions while feeding varying amounts of bromine (Br) and chlorine (Cl) into a pilot-scale incinerator burning surrogate waste materials. (NOTE: Adding brominated organic compounds to a pilot-scale incinerat...

  5. Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials.

    PubMed

    Dang, Yan; Holmes, Dawn E; Zhao, Zhiqiang; Woodard, Trevor L; Zhang, Yaobin; Sun, Dezhi; Wang, Li-Ying; Nevin, Kelly P; Lovley, Derek R

    2016-11-01

    The aim of this work was to study the methanogenic metabolism of dog food, a food waste surrogate, in laboratory-scale reactors with different carbon-based conductive materials. Carbon cloth, carbon felt, and granular activated carbon all permitted higher organic loading rates and promoted faster recovery of soured reactors than the control reactors. Microbial community analysis revealed that specific and substantial enrichments of Sporanaerobacter and Methanosarcina were present on the carbon cloth surface. These results, and the known ability of Sporanaerobacter species to transfer electrons to elemental sulfur, suggest that Sporanaerobacter species can participate in direct interspecies electron transfer with Methanosarcina species when carbon cloth is available as an electron transfer mediator. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Current Concepts and Future Directions of CELSS

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Bredt, J.

    1985-01-01

    Bioregenerative life support systems for use in space were studied. Concepts of such systems include the use of higher plants and/or microalgae as sources of food, potable water and oxygen, and as sinks for carbon dioxide and metabolic wastes. Recycling of materials within the system will require processing of food organism and crew wastes using microbiological and/or physical chemical techniques. The dynamics of material flow within the system will require monitoring, control, stabilization and maintenance imposed by computers. Studies included higher plant and algal physiology, environmental responses, and control; flight experiments for testing responses of organisms to weightlessness and increased radiation levels; and development of ground based facilities for the study of recycling within a bioregenerative life support system.

  7. Effect of organic fertilizers prepared from organic waste materials on the production of antibacterial volatile organic compounds by two biocontrol Bacillus amyloliquefaciens strains.

    PubMed

    Raza, Waseem; Wei, Zhong; Ling, Ning; Huang, Qiwei; Shen, Qirong

    2016-06-10

    Three organic fertilizers made of different animal and plant waste materials (BOFs) were evaluated for their effects on the production of antibacterial volatile organic compounds (VOCs) by two Bacillus amyloliquefaciens strains SQR-9 and T-5 against the tomato wilt pathogen Ralstonia solanacearum (RS). Both strains could produce VOCs that inhibited the growth and virulence traits of RS; however, in the presence of BOFs, the production of antibacterial VOCs was significantly increased. The maximum inhibition of growth and virulence traits of RS by VOCs of T-5 and SQR-9 was determined at 1.5% BOF2 and 2% BOF3, respectively. In case of strain T-5, 2-nonanone, nonanal, xylene, benzothiazole, and butylated hydroxy toluene and in case of strain SQR-9, 2-nonanone, nonanal, xylene and 2-undecanone were the main antibacterial VOCs whose production was increased in the presence of BOFs. The results of this study reveal another significance of using organic fertilizers to improve the antagonistic activity of biocontrol agents against phytopathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Task 1.6 - mixed waste. Topical report, April 1, 1994--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    For fifty years, the United States was involved in a nuclear arms race of immense proportions. During the majority of this period, the push was always to design new weapons, produce more weapons, and increase the size of the arsenal, maintaining an advantage over the opposition in order to protect U.S. interests. Now that the {open_quotes}Cold War{close_quotes} is over, we are faced with the imposing tasks of dismantling, cleaning up, and remediating the wide variety of problems created by this arms race. An overview of the current status of the total remediation effort within the DOE is presented in themore » DOE publication {open_quotes}ENVIRONMENTAL MANAGEMENT 1995{close_quotes} (EM 1995). Not all radioactive waste is the same though; therefore, a system was devised to categorize the different types of radioactive waste. These categories are as follows: spent fuel; high-level waste; transuranic waste; low-level waste; mixed waste; and uranium-mill tailings. Mixed waste is defined to be material contaminated with any of these categories of radioactive material plus an organic or heavy metal component. However, for this discussion, {open_quotes}mixed waste{close_quote} will pertain only to low-level mixed waste which consists of low-level radioactive waste mixed with organic solvents and or heavy metals. The area of {open_quotes}mixed-waste characterization, treatment, and disposal{close_quotes} is listed on page 6 of the EM 1995 publication as one of five focus areas for technological development, and while no more important than the others, it has become an area of critical concern for DOE. Lacking adequate technologies for treatment and disposal, the DOE stockpiled large quantities of mixed waste during the 1970s and 1980s. Legislative changes and the need for regulatory compliance have now made it expedient to develop methods of achieving final disposition for this stockpiled mixed waste.« less

  9. 40 CFR 63.4520 - What reports must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste materials according to § 63.4551(e)(4). You do not need to submit background data supporting these... of § 63.4551; and, if applicable, the calculation used to determine mass of organic HAP in waste... each CPMS was inoperative, except for zero (low-level) and high-level checks. (vii) The date, time, and...

  10. 40 CFR 63.3920 - What reports must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste materials according to § 63.3951(e)(4). You do not need to submit background data supporting these... of § 63.3951; and, if applicable, the calculation used to determine mass of organic HAP in waste... each CPMS was inoperative, except for zero (low-level) and high-level checks. (vii) The date, time, and...

  11. 40 CFR 63.3920 - What reports must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste materials according to § 63.3951(e)(4). You do not need to submit background data supporting these... of § 63.3951; and, if applicable, the calculation used to determine mass of organic HAP in waste... each CPMS was inoperative, except for zero (low-level) and high-level checks. (vii) The date, time, and...

  12. Experimental research of solid waste drying in the process of thermal processing

    NASA Astrophysics Data System (ADS)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  13. Rapid estimation of organic nitrogen in oil shale waste waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting themore » sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a« less

  14. Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) technology of mercury removal and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xiangdong; Liu, Jun; Fryxell, G.E.

    1997-09-01

    This paper explains the technology developed to produce Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) for mercury removal from aqueous wastewater and from organic wastes. The characteristics of SAMMS materials, including physical characteristics and mercury loading, and its application for mercury removal and stabilization are discussed. Binding kinetics and binding speciations are reported. Preliminary cost estimates are provided for producing SAMMS materials and for mercury removal from wastewater. The characteristics of SAMMS in mercury separation were studied at PNNL using simulated aqueous tank wastes and actual tritiated pump oil wastes from Savannah River Site; preliminary results are outlined. 47 refs., 16more » figs., 16 tabs.« less

  15. 32 CFR 229.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... capable of providing scientific or humanistic understandings of past human behavior, cultural adaptation... materials; (v) Organic waste (including, but not limited to, vegetal and animal remains, coprolites); (vi...

  16. 32 CFR 229.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... capable of providing scientific or humanistic understandings of past human behavior, cultural adaptation... materials; (v) Organic waste (including, but not limited to, vegetal and animal remains, coprolites); (vi...

  17. 32 CFR 229.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capable of providing scientific or humanistic understandings of past human behavior, cultural adaptation... materials; (v) Organic waste (including, but not limited to, vegetal and animal remains, coprolites); (vi...

  18. Fungal fermentation on anaerobic digestate for lipid-based biofuel production.

    PubMed

    Zhong, Yuan; Liu, Zhiguo; Isaguirre, Christine; Liu, Yan; Liao, Wei

    2016-01-01

    Anaerobic digestate is the effluent from anaerobic digestion of organic wastes. It contains a significant amount of nutrients and lignocellulosic materials, even though anaerobic digestion consumed a large portion of organic matters in the wastes. Utilizing the nutrients and lignocellulosic materials in the digestate is critical to significantly improve efficiency of anaerobic digestion technology and generate value-added chemical and fuel products from the organic wastes. Therefore, this study focused on developing an integrated process that uses biogas energy to power fungal fermentation and converts remaining carbon sources, nutrients, and water in the digestate into biofuel precursor-lipid. The process contains two unit operations of anaerobic digestion and digestate utilization. The digestate utilization includes alkali treatment of the mixture feed of solid and liquid digestates, enzymatic hydrolysis for mono-sugar release, overliming detoxification, and fungal fermentation for lipid accumulation. The experimental results conclude that 5 h and 30 °C were the preferred conditions for the overliming detoxification regarding lipid accumulation of the following fungal cultivation. The repeated-batch fungal fermentation enhanced lipid accumulation, which led to a final lipid concentration of 3.16 g/L on the digestate with 10% dry matter. The mass and energy balance analysis further indicates that the digestate had enough water for the process uses and the biogas energy was able to balance the needs of individual unit operations. A fresh-water-free and energy-positive process of lipid production from anaerobic digestate was achieved by integrating anaerobic digestion and fungal fermentation. The integration addresses the issues that both biofuel industry and waste management encounter-high water and energy demand of biofuel precursor production and few digestate utilization approaches of organic waste treatment.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinmaz, Esra; Demir, Ibrahim

    Over the past decades, uncontrolled population growth and rapid urbanization and industrialization have resulted in environmental problems in Corlu Town, Turkey. One of the most important problems is solid waste due to inadequate management practices. Nowadays, increasing public awareness of the environment compels local authorities to define and to adopt new solutions for waste management. This paper presents a general overview of current solid waste management practices in Corlu Town and principles of the recommended municipal solid waste (MSW) management system. In Corlu, 170 tonnes of municipal solid waste are generated each day, or 1.150 kg per capita per day.more » Approximately one-half of the municipal solid waste generated is organic material and 30% of the MSW consists of recyclable materials. The recommended system deals with maximizing recycling and minimizing landfilling of municipal solid waste, and consists of separation at source, collection, sorting, recycling, composting and sanitary landfilling. This study also analyzed the recommended system with respect to feasibility and economics. To evaluate whether the suggested system is cost effective or not, the operating cost of the recommended system and market prices of recyclable materials were compared, and the results show that the recommended system will reduce required landfill volume up to 27% of compared to the present situation. The profit of the recommended system is estimated to be about 80 million US dollars.« less

  20. Development studies for a novel wet oxidation process. Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-07-01

    DETOX{sup SM} is a catalyzed wet oxidation process which destroys organic materials in an acidic water solution of iron at 373 to 473 K. The solution can be used repeatedly to destroy great amounts of organic materials. Since the process is conducted in a contained vessel, air emissions from the process can be well controlled. The solution is also capable of dissolving and concentrating many heavy and radioactive metals for eventual stabilization and disposal. The Phase 2 effort for this project is site selection and engineering design for a DETOX demonstration unit. Site selection was made using a set ofmore » site selection criteria and evaluation factors. A survey of mixed wastes at DOE sites was conducted using the Interim Mixed Waste Inventory Report. Sites with likely suitable waste types were identified. Potential demonstration sites were ranked based on waste types, interest, regulatory needs, scheduling, ability to provide support, and available facilities. Engineering design for the demonstration unit is in progress and is being performed by Jacobs Applied Technology. The engineering design proceeded through preliminary process flow diagrams (PFDs), calculation of mass and energy balances for representative waste types, process and instrumentation diagrams (P and IDs), preparation of component specifications, and a firm cost estimate for fabrication of the demonstration unit.« less

  1. Contributions of pyrogenic materials on the accumulation of soil organic matter

    USDA-ARS?s Scientific Manuscript database

    Soil amendment of charcoal co-product (HHVdb as high as coal) from thermochemical waste biomass-to-energy conversion (slow/fast pyrolysis and gasification) has received considerable interests for both contaminated and agricultural lands. Biochar amendment not only increases soil organic carbon cont...

  2. MICROWAVE-ASSISTED EXTRACTION OF ORGANIC COMPOUNDS FROM STANDARD REFERENCE SOILS AND SEDIMENTS

    EPA Science Inventory

    As part of an ongoing evaluation of new sample preparation techniques by the U.S. Environmental Protection Agency (EPA), especially those that minimize waste solvents, microwave-assisted extraction (MAE) of organic compounds from solid materials (or "matrices") was evaluated. Six...

  3. Bioremediation of Acidic and Metalliferous Drainage (AMD) through organic carbon amendment by municipal sewage and green waste.

    PubMed

    McCullough, Clint D; Lund, Mark A

    2011-10-01

    Pit lakes (abandoned flooded mine pits) represent a potentially valuable water resource in hot arid regions. However, pit lake water is often characterised by low pH with high dissolved metal concentrations resulting from Acidic and Metalliferous Drainage (AMD). Addition of organic matter to pit lakes to enhance microbial sulphate reduction is a potential cost effective remediation strategy. However, cost and availability of suitable organic substrates are often limiting. Nevertheless, large quantities of sewage and green waste (organic garden waste) are often available at mine sites from nearby service towns. We treated AMD pit lake water (pH 2.4) from tropical, North Queensland, Australia, with primary-treated sewage sludge, green waste, and a mixture of sewage and green waste (1:1) in a controlled microcosm experiment (4.5 L). Treatments were assessed at two different rates of organic loading of 16:1 and 32:1 pit water:organic matter by mass. Combined green waste and sewage treatment was the optimal treatment with water pH increased to 5.5 in only 145 days with decreases of dissolved metal concentrations. Results indicated that green waste was a key component in the pH increase and concomitant heavy metal removal. Water quality remediation was primarily due to microbially-mediated sulphate reduction. The net result of this process was removal of sulphate and metal solutes to sediment mainly as monosulfides. During the treatment process NH(3) and H(2)S gases were produced, albeit at below concentrations of concern. Total coliforms were abundant in all green waste-treatments, however, faecal coliforms were absent from all treatments. This study demonstrates addition of low-grade organic materials has promise for bioremediation of acidic waters and warrants further experimental investigation into feasibility at higher scales of application such as pit lakes. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  4. Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes

    PubMed Central

    Oltean, Viorica-Alina; Renault, Stéven; Valvo, Mario; Brandell, Daniel

    2016-01-01

    In this review, we summarize research efforts to realize Na-based organic materials for novel battery chemistries. Na is a more abundant element than Li, thereby contributing to less costly materials with limited to no geopolitical constraints while organic electrode materials harvested from biomass resources provide the possibility of achieving renewable battery components with low environmental impact during processing and recycling. Together, this can form the basis for truly sustainable electrochemical energy storage. We explore the efforts made on electrode materials of organic salts, primarily carbonyl compounds but also Schiff bases, unsaturated compounds, nitroxides and polymers. Moreover, sodiated carbonaceous materials derived from biomasses and waste products are surveyed. As a conclusion to the review, some shortcomings of the currently investigated materials are highlighted together with the major limitations for future development in this field. Finally, routes to move forward in this direction are suggested. PMID:28773272

  5. Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes.

    PubMed

    Oltean, Viorica-Alina; Renault, Stéven; Valvo, Mario; Brandell, Daniel

    2016-03-01

    In this review, we summarize research efforts to realize Na-based organic materials for novel battery chemistries. Na is a more abundant element than Li, thereby contributing to less costly materials with limited to no geopolitical constraints while organic electrode materials harvested from biomass resources provide the possibility of achieving renewable battery components with low environmental impact during processing and recycling. Together, this can form the basis for truly sustainable electrochemical energy storage. We explore the efforts made on electrode materials of organic salts, primarily carbonyl compounds but also Schiff bases, unsaturated compounds, nitroxides and polymers. Moreover, sodiated carbonaceous materials derived from biomasses and waste products are surveyed. As a conclusion to the review, some shortcomings of the currently investigated materials are highlighted together with the major limitations for future development in this field. Finally, routes to move forward in this direction are suggested.

  6. Investigations of biological processes in Austrian MBT plants.

    PubMed

    Tintner, J; Smidt, E; Böhm, K; Binner, E

    2010-10-01

    Mechanical biological treatment (MBT) of municipal solid waste (MSW) has become an important technology in waste management during the last decade. The paper compiles investigations of mechanical biological processes in Austrian MBT plants. Samples from all plants representing different stages of degradation were included in this study. The range of the relevant parameters characterizing the materials and their behavior, e.g. total organic carbon, total nitrogen, respiration activity and gas generation sum, was determined. The evolution of total carbon and nitrogen containing compounds was compared and related to process operation. The respiration activity decreases in most of the plants by about 90% of the initial values whereas the ammonium release is still ongoing at the end of the biological treatment. If the biogenic waste fraction is not separated, it favors humification in MBT materials that is not observed to such extent in MSW. The amount of organic carbon is about 15% dry matter at the end of the biological treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Development of Technology and Installation for Biohydrogen Production

    NASA Astrophysics Data System (ADS)

    Pridvizhkin, S. V.; Vyguzova, M. A.; Bazhenov, O. V.

    2017-11-01

    The article discusses the method for hydrogen production and the device this method application. The relevance of the use of renewable fuels and the positive impact of renewable energy on the environment and the economy is also considered. The presented technology relates to a method for hydrogen production from organic materials subject to anaerobic fermentation, such as the components of solid municipal waste, sewage sludge and agricultural enterprises wastes, sewage waste. The aim of the research is to develop an effective eco-friendly technology for hydrogen producing within an industrial project To achieve the goal, the following issues have been addressed in the course of the study: - development of the process schemes for hydrogen producing from organic materials; - development of the technology for hydrogen producing; - optimization of a biogas plant with the aim of hydrogen producing at one of the fermentation stages; - approbation of the research results. The article is recommended for engineers and innovators working on the renewable energy development issues.

  8. [Substantiation of a complex of radiation-hygienic approaches to the management of very low-level waste].

    PubMed

    Korenkov, I P; Lashchenova, T N; Shandala, N K

    2015-01-01

    In the article there are presented materials on radiation-hygienic approaches to the treatment of very low level radioactive waste (VLLW) and industrial waste containing radionuclides. There is done detailed information on radiation-hygienic principles and criteria for the assurance ofradiation safety in the collection, transportation, storage and processing of VLLW as a category of radioactive waste.. Particular attention is paid to the problem of designing VLLW landfill site choice, system of radiation monitoring in operation and decommissioning of the landfill. There are presented data about the criteria for the release of VLLW buried at the site, from regulatory control. Also there are considered in detail the radiation-hygienic requirements for radiation safety of industrial waste containing radionuclides for which there is assumed unlimited and limited use of solid materials in economic activity, based on the requirements ofthe revised Basic Sanitary Rules for Radiation Safety - 99/2010. There are considered basic requirements for the organization of industrial waste landfill. As an example, there-are presented the hygiene requirements for industrial waste management and results of waste categorization in Northern Federal Enterprise for Radioactive Waste Management.

  9. 36 CFR 6.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Waste Landfills at 40 CFR 258.60 and 258.61. Compostible materials means organic substances that decay... water, air, soils, geological features, including subsurface strata, the natural processes and...

  10. 36 CFR 6.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waste Landfills at 40 CFR 258.60 and 258.61. Compostible materials means organic substances that decay... water, air, soils, geological features, including subsurface strata, the natural processes and...

  11. 36 CFR 6.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Waste Landfills at 40 CFR 258.60 and 258.61. Compostible materials means organic substances that decay... water, air, soils, geological features, including subsurface strata, the natural processes and...

  12. Vitrification of waste

    DOEpatents

    Wicks, George G.

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  13. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure.

    PubMed

    Murto, M; Björnsson, L; Mattiasson, B

    2004-02-01

    The performance of an anaerobic digestion process is much dependent on the type and the composition of the material to be digested. The effects on the degradation process of co-digesting different types of waste were examined in two laboratory-scale studies. In the first investigation, sewage sludge was co-digested with industrial waste from potato processing. The co-digestion resulted in a low buffered system and when the fraction of starch-rich waste was increased, the result was a more sensitive process, with process overload occurring at a lower organic loading rate (OLR). In the second investigation, pig manure, slaughterhouse waste, vegetable waste and various kinds of industrial waste were digested. This resulted in a highly buffered system as the manure contributed to high amounts of ammonia. However, it is important to note that ammonia might be toxic to the micro-organisms. Although the conversion of volatile fatty acids was incomplete the processes worked well with high gas yields, 0.8-1.0 m3 kg(-1) VS.

  14. Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds.

    PubMed

    Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A

    2004-10-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (<220 degrees C BP, >1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.

  15. Research on solid waste management system: to improve existing situation in Corlu Town of Turkey.

    PubMed

    Tinmaz, Esra; Demir, Ibrahim

    2006-01-01

    Over the past decades, uncontrolled population growth and rapid urbanization and industrialization have resulted in environmental problems in Corlu Town, Turkey. One of the most important problems is solid waste due to inadequate management practices. Nowadays, increasing public awareness of the environment compels local authorities to define and to adopt new solutions for waste management. This paper presents a general overview of current solid waste management practices in Corlu Town and principles of the recommended municipal solid waste (MSW) management system. In Corlu, 170 tonnes of municipal solid waste are generated each day, or 1.150 kg per capita per day. Approximately one-half of the municipal solid waste generated is organic material and 30% of the MSW consists of recyclable materials. The recommended system deals with maximizing recycling and minimizing landfilling of municipal solid waste, and consists of separation at source, collection, sorting, recycling, composting and sanitary landfilling. This study also analyzed the recommended system with respect to feasibility and economics. To evaluate whether the suggested system is cost effective or not, the operating cost of the recommended system and market prices of recyclable materials were compared, and the results show that the recommended system will reduce required landfill volume up to 27% of compared to the present situation. The profit of the recommended system is estimated to be about 80 million US dollars.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consonni, Stefano, E-mail: stefano.consonni@polimi.it; Giugliano, Michele; Massarutto, Antonio

    Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW)more » in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.« less

  17. Modelling of composting process of different organic waste at pilot scale: Biodegradability and odor emissions.

    PubMed

    Gutiérrez, M C; Siles, J A; Diz, J; Chica, A F; Martín, M A

    2017-01-01

    The composting process of six different compostable substrates and one of these with the addition of bacterial inoculums carried out in a dynamic respirometer was evaluated. Despite the heterogeneity of the compostable substrates, cumulative oxygen demand (OD, mgO 2 kgVS) was fitted adequately to an exponential regression growing until reaching a maximum in all cases. According to the kinetic constant of the reaction (K) values obtained, the wastes that degraded more slowly were those containing lignocellulosic material (green wastes) or less biodegradable wastes (sewage sludge). The odor emissions generated during the composting processes were also fitted in all cases to a Gaussian regression with R 2 values within the range 0.8-0.9. The model was validated representing real odor concentration near the maximum value against predicted odor concentration of each substrate, (R 2 =0.9314; 95% prediction interval). The variables of maximum odor concentration (ou E /m 3 ) and the time (h) at which the maximum was reached were also evaluated statistically using ANOVA and a post-hoc Tukey test taking the substrate as a factor, which allowed homogeneous groups to be obtained according to one or both of these variables. The maximum oxygen consumption rate or organic matter degradation during composting was directly related to the maximum odor emission generation rate (R 2 =0.9024, 95% confidence interval) when only the organic wastes with a low content in lignocellulosic materials and no inoculated waste (HRIO) were considered. Finally, the composting of OFMSW would produce a higher odor impact than the other substrates if this process was carried out without odor control or open systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Environmental assessment of applicability of mineral-organic composite for landfill area rehabilitation

    NASA Astrophysics Data System (ADS)

    Mizerna, Kamila; Król, Anna; Mróz, Adrian

    2017-10-01

    This paper undertakes an assessment of the impact of a mineral-organic composite on the environment as well as the potential for its application for land rehabilitation purposes. The analysis involves the release of the leachable contaminations from the material subjected to testing. This material was formed by a composite manufactured on the basis of communal bottom ash and stabilized sewage sludge. The sludge resulting from wastewater treatment was subjected to stabilization and dehydration in waste pounds at the phase of pre-watering until 20% of dry mass is obtained. Subsequently, they were mixed with bottom ash, which was obtained from selective waste collection, in a 1:1 mass ratio. The analysis involved the leaching of inorganic contaminants in the form of heavy metals, sulphates (VI), chlorides, and fluorides as well as organic compounds in the form of organic carbon solution under the effect of leachant with a various level of pH. The analysed components were characterized by various leaching behaviour depending on the leachant pH. On the basis of the results, it was able to assess the potential hazard posed by the examined material on the environment as a consequence of its application for landfill area rehabilitation.

  19. 43 CFR 7.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of past human behavior, cultural adaptation, and related topics through the application of scientific... human-made or natural materials; (v) Organic waste (including, but not limited to, vegetal and animal...

  20. 43 CFR 7.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of past human behavior, cultural adaptation, and related topics through the application of scientific... human-made or natural materials; (v) Organic waste (including, but not limited to, vegetal and animal...

  1. 43 CFR 7.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of past human behavior, cultural adaptation, and related topics through the application of scientific... human-made or natural materials; (v) Organic waste (including, but not limited to, vegetal and animal...

  2. Cost effective waste management through composting in Africa.

    PubMed

    Couth, R; Trois, C

    2012-12-01

    Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Purification of liquid products of cotton wipes biotransformation with the aid of Trichoderma viridae in orbital flight

    NASA Astrophysics Data System (ADS)

    Viacheslav, Ilyin; Korshunov, Denis

    Recovery of various organic wastes in space flight is an actual problem of modern astronautics and future interplanetary missions. Currently, organic waste are incinerated in the dense layers of the Earth's atmosphere in cargo containers. However, this method of anthropogenic waste treatment is not environmentally compatible with future interplanetary missions, and is not suitable due to planetary quarantine requirements. Furthermore, the maintaining of a closed ecosystem in spaceship is considered as one of the main ways of ensuring the food and air crew in the long term fully autonomous space expedition. Such isolated ecosystem is not conceivable without biotransformation of organic waste. In this regard, currently new ways of recycling organic waste are currently developed. The most promising method is a method for processing organic waste using thermophilic anaerobic microbial communities.However, the products of anaerobic fermentation of solid organic materials contain significant amounts of organic impurities, which often give them sour pH. This presents a significant problem because it does not allow to use this fluid as process water without pretreatment. Fermentation products - alcohols, volatile fatty acids other carbonaceous substances must be withdrawn.One way to solve this problem may be the use of microorganisms biodestructors for recycling organic impurities in the products of anaerobic biodegradation Under the proposed approach, the metabolic products (having acidic pH) of primary biotransformation of solid organic materials are used as media for the cultivation of fungi. Thus, cellulosic wastes are recycled in two successive stages. The aim of this work was to test the effectiveness of post-treatment liquid products of biodegradation of hygienic cotton wipes (common type of waste on the ISS) by the fungus Trichoderma viridae under orbital flight. The study was conducted onboard biosatellite Bion -M1, where was placed a bioreactor, designed to carry out the fermentation in space flight. For aerobic post-treatment of substrates remaining after biodegradation of cotton wipe there was selected a strain of the fungus Trihoderma viridae, able to grow at a slightly acid environment , and to bring the pH to neutral values. Bioreactor working volume of 40 ml, where 20 ml of liquid subjected to post-treatment was placed. Strain Trihoderma viridae, isolated from ISS environment, showed steady growth in terms identical to those of pre- cultivation. Efficiency of purification was assessed using the method of gas chromatography-mass spectrometry comparing the amount and concentration of the volatile organic compounds in the samples. It turned out that the number of compounds detected in the flight sample almost halved compared to the original sample obtained after biodegradation gauze anaerobic bacteria. The total concentration of volatile impurities dropped 6 times. Thus, despite the limited resource of oxygen, due to lack of aeration in the bioreactor strain Trihoderma viridae demonstrated the ability to perform aerobic purification of substrate obtained after anaerobic biodegradation of cotton wipes under orbital flight.

  4. Materials with Adsorptive Properties from Agricultural By-Products

    USDA-ARS?s Scientific Manuscript database

    This presentation will summarize the use of agricultural by-products (e.g., animal manure and plant waste) as starting materials to adsorb environmental contaminants such as mercury from air, ammonia from air, metal ions from water, and chlorinated organics from water. The results show that the mat...

  5. A novel multiple batch extraction test to assess contaminant mobilization from porous waste materials

    NASA Astrophysics Data System (ADS)

    Iden, S. C.; Durner, W.; Delay, M.; Frimmel, F. H.

    2009-04-01

    Contaminated porous materials, like soils, dredged sediments or waste materials must be tested before they can be used as filling materials in order to minimize the risk of groundwater pollution. We applied a multiple batch extraction test at varying liquid-to-solid (L/S) ratios to a demolition waste material and a municipal waste incineration product and investigated the release of chloride, sulphate, sodium, copper, chromium and dissolved organic carbon from both waste materials. The liquid phase test concentrations were used to estimate parameters of a relatively simple mass balance model accounting for equilibrium partitioning. The model parameters were estimated within a Bayesian framework by applying an efficient MCMC sampler and the uncertainties of the model parameters and model predictions were quantified. We tested isotherms of the linear, Freundlich and Langmuir type and selected the optimal isotherm model by use of the Deviance Information Criterion (DIC). Both the excellent fit to the experimental data and a comparison between the model-predicted and independently measured concentrations at the L/S ratios of 0.25 and 0.5 L/kg demonstrate the applicability of the model for almost all studied substances and both waste materials. We conclude that batch extraction tests at varying L/S ratios provide, at moderate experimental cost, a powerful complement to established test designs like column leaching or single batch extraction tests. The method constitutes an important tool in risk assessments, because concentrations at soil water contents representative for the field situation can be predicted from easier-to-obtain test concentrations at larger L/S ratios. This helps to circumvent the experimental difficulties of the soil saturation extract and eliminates the need to apply statistical approaches to predict such representative concentrations which have been shown to suffer dramatically from poor correlations.

  6. Two-fold sustainability – Adobe with sawdust as partial sand replacement

    NASA Astrophysics Data System (ADS)

    Jokhio, Gul A.; Syed Mohsin, Sharifah M.; Gul, Yasmeen

    2018-04-01

    Adobe is a material that is economic, environment friendly, and provides better indoor air quality. The material required for the preparation of adobe include clay, sand, and sometimes straw or other organic materials. These materials do not require industrial processing or transportation, however, sand mining has been recently posing a threat to the environment. Therefore, to enhance the existing sustainability of adobe, sand can be partially or fully replaced by other waste materials. This approach will not only solve the problem of excessive sand mining, it will also address the issue of waste management. Sawdust is one such waste material that can be used to partially replace sand in Adobe. This paper presents the results of compressive and flexural test carried out on Adobe samples with partial sand replacement by sawdust. The results show that about 4% sand replacement by volume produces higher compressive strength, whereas the flexural strength reduces with the use of sawdust. However, since flexural strength is not a critical property for adobe, it is concluded that replacing sand with sawdust by about 4% of volume will be beneficial.

  7. Reconnaissance of Organic Wastewater Compounds at a Concentrated Swine Feeding Operation in the North Carolina Coastal Plain, 2008

    USGS Publications Warehouse

    Harden, Stephen L.

    2009-01-01

    Water-quality and hydrologic data were collected during 2008 to examine the occurrence of organic wastewater compounds at a concentrated swine feeding operation located in the North Carolina Coastal Plain. Continuous groundwater level and stream-stage data were collected at one monitoring well and one stream site, respectively, throughout 2008. One round of environmental and quality-control samples was collected in September 2008 following a period of below-normal precipitation and when swine waste was not being applied to the spray fields. Samples were collected at one lagoon site, seven shallow groundwater sites, and one surface-water site for analysis of 111 organic wastewater compounds, including household, industrial, and agricultural-use compounds, sterols, pharmaceutical compounds, hormones, and antibiotics. Analytical data for environmental samples collected during the study provide preliminary information on the occurrence of organic wastewater compounds in the lagoon-waste source material, groundwater beneath fields that receive spray applications of the lagoon wastes, and surface water in the tributary adjacent to the site. Overall, 28 organic wastewater compounds were detected in the collected samples, including 11 household, industrial, and agricultural-use compounds; 3 sterols; 2 pharmaceutical compounds; 5 hormones; and 7 antibiotics. The lagoon sample had the greatest number (20) and highest concentrations of compounds compared to groundwater and surface-water samples. The antibiotic lincomycin had the maximum detected concentration (393 micrograms per liter) in the lagoon sample. Of the 11 compounds identified in the groundwater and surface-water samples, all with reported concentrations less than 1 microgram per liter, only lincomycin identified in groundwater at 1 well and 3-methyl-1H-indole and indole identified in surface water at 1 site also were identified in the lagoon waste material.

  8. Applicability of Perinereis aibuhitensis Grube for fish waste removal from fish cages in Sanggou Bay, P. R. China

    NASA Astrophysics Data System (ADS)

    Fang, Jinghui; Jiang, Zengjie; Jansen, Henrice M.; Hu, Fawen; Fang, Jianguang; Liu, Yi; Gao, Yaping; Du, Meirong

    2017-04-01

    The present study investigated the applicability of integrated polychaete-fish culture for fish waste removal to offset negative impact induced by organic benthic enrichment. A field study demonstrated that deposition rate was significantly higher underneath the fish farm than that in control area. The material settling under the farm was characterized by a high amount of fish feces (45%) and uneaten feed (27%). Both feeding rate (FR) and apparent digestibility rate (ADR) increased with decreasing body weight, as was indicated by significantly a higher rate observed for the groups containing smaller individuals in a lab study. The nutrient in fresh deposited material (De) was higher than that in sediments collected under the farm (Se), resulting in lower feces production but higher apparent digestibility rate for the De group as feeding rate was similar. Consequently, higher nutrient removal efficiency was observed in the De group. A mass balance approach indicated that approximately 400-500 individuals m-2 is required for removing all waste materials deposited underneath the fish farm, whereas abundance can be lower (about 300-350 individuals m-2) when only the fish waste needs to be removed. The results showed that a significant amount of waste had been accumulated in the fish cages in Sanggou Bay. The integration of fish with P. aibuhitensis seems promising for preventing organic pollution in the sediment and therefore is an effective strategy for mitigating negative effect of fish farms. Thus such integration can become a new IMTA (integrated multi-trophic aquaculture) model in Sanggou Bay.

  9. Treatment of copper industry waste and production of sintered glass-ceramic.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  10. Evaluation of the Efficiency of Selective Collection in a Small Town on the State of Rio Grande do Sul - Brazil

    NASA Astrophysics Data System (ADS)

    Schneider, V. E.; Poletto, M.; Peresin, D.; Carra, S. H. Z.; Vanni, D.

    2017-07-01

    With the increase of population concentration in urban areas, there is an increase in the solid waste generation, which demands the search for alternatives and solutions for the environmentally correct destination of these. In this context, this work presents an evaluation on the forms of organic and selective domestic waste collection and the potential for the recyclability of the waste destined to the same, based on the physical characterization and gravimetric composition of the solid wastes generated in the town of Antônio Prado, located in the state of Rio Grande do Sul, Brazil, between 2014 and 2016. It is observed that the population has significant information regarding the correct disposal of waste in the selective collection, since 60% of the waste destined to the same is effectively recyclable. Plastic (24.8%), paper (10.9%), glass (8.8%) and cardboard (8.4%) are the most representative materials in recycled waste samples in the urban area. The importance of continuity and improvement of environmental education programs is essential, due to the evolution in the quantity and complexity of products and materials currently manufactured, and to the method of mechanized waste collection used by the municipality.

  11. Monitoring and Testing the Parts Cleaning Stations, Abrasive Blasting Cabinets, and Paint Booths

    NASA Technical Reports Server (NTRS)

    Jordan, Tracee M.

    2004-01-01

    I have the opportunity to work in the Environmental Management Office (EMO) this summer. One of the EMO's tasks is to make sure the Environmental Management System is implemented to the entire Glenn Research Center (GRC). The Environmental Management System (EMS) is a policy or plan that is oriented toward minimizing an organization's impact to the environment. Our EMS includes the reduction of solid waste regeneration and the reduction of hazardous material use, waste, and pollution. With the Waste Management Team's (WMT) help, the EMS can be implemented throughout the NASA Glenn Research Center. The WMT is responsible for the disposal and managing of waste throughout the GRC. They are also responsible for the management of all chemical waste in the facility. My responsibility is to support the waste management team by performing an inventory on parts cleaning stations, abrasive cabinets, and paint booths through out the entire facility. These booths/stations are used throughout the center and they need to be monitored and tested for hazardous waste and material. My job is to visit each of these booths/stations, take samples of the waste, and analyze the samples.

  12. Evaluation of environmental impacts from municipal solid waste management in the municipality of Aarhus, Denmark (EASEWASTE).

    PubMed

    Kirkeby, Janus T; Birgisdottir, Harpa; Hansen, Trine Lund; Christensen, Thomas H; Bhander, Gurbakhash Singh; Hauschild, Michael

    2006-02-01

    A new computer based life cycle assessment model (EASEWASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASEWASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.

  13. Impact of pedagogical method on Brazilian dental students' waste management practice.

    PubMed

    Victorelli, Gabriela; Flório, Flávia Martão; Ramacciato, Juliana Cama; Motta, Rogério Heládio Lopes; de Souza Fonseca Silva, Almenara

    2014-11-01

    The purpose of this study was to conduct a qualitative analysis of waste management practices among a group of Brazilian dental students (n=64) before and after implementing two different pedagogical methods: 1) the students attended a two-hour lecture based on World Health Organization standards; and 2) the students applied the lessons learned in an organized group setting aimed toward raising their awareness about socioenvironmental issues related to waste. All eligible students participated, and the students' learning was evaluated through their answers to a series of essay questions, which were quantitatively measured. Afterwards, the impact of the pedagogical approaches was compared by means of qualitative categorization of wastes generated in clinical activities. Waste categorization was performed for a period of eight consecutive days, both before and thirty days after the pedagogical strategies. In the written evaluation, 80 to 90 percent of the students' answers were correct. The qualitative assessment revealed a high frequency of incorrect waste disposal with a significant increase of incorrect disposal inside general and infectious waste containers (p<0.05). Although the students' theoretical learning improved, it was not enough to change behaviors established by cultural values or to encourage the students to adequately segregate and package waste material.

  14. Evaluation of benefits and risks associated with the agricultural use of organic wastes of pharmaceutical origin.

    PubMed

    Cucina, Mirko; Tacconi, Chiara; Ricci, Anna; Pezzolla, Daniela; Sordi, Simone; Zadra, Claudia; Gigliotti, Giovanni

    2018-02-01

    Industrial fermentations for the production of pharmaceuticals generate large volumes of wastewater that can be biologically treated to recover plant nutrients through the application of pharmaceutical-derived wastes to the soil. Nevertheless, benefits and risks associated with their recovery are still unexplored. Thus, the aim of the present work was to characterize three potential organic residues (sludge, anaerobic digestate and compost) derived from the wastewater generated by the daptomycin production process. The main parameters evaluated were the physico-chemical properties, potential contaminants (heavy metals, pathogens and daptomycin residues), organic matter stabilization and the potential toxicity towards soil microorganisms and plants. The results showed that all the studied materials were characterized by high concentrations of plant macronutrients (N, P and K), making them suitable for agricultural reuse. Heavy metal contents and pathogens were under the limits established by European and Italian legislations, avoiding the risk of soil contamination. The compost showed the highest organic matter stabilization within the studied materials, whereas the sludge and the anaerobic digestate were characterized by large amounts of labile organic compounds. Although the pharmaceutical-derived fertilizers did not negatively affect the soil microorganisms, as demonstrated by the enzymatic activities, the sludge and the anaerobic digestate caused a moderate and strong phytotoxicity, respectively. The compost showed no toxic effect towards plant development and, moreover, it positively affected the germination and growth in lettuce and barley. The results obtained in the present study demonstrate that the valorization of pharmaceutical-derived materials through composting permits their agricultural reuse and also represents a suitable strategy to move towards a zero-waste production process for daptomycin. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass

    DOE PAGES

    Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.; ...

    2016-09-05

    Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased from 58% to 73% and 67% to 73%, respectively.« less

  16. Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.

    Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased from 58% to 73% and 67% to 73%, respectively.« less

  17. A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y.-Y.

    1976-01-01

    An estimate is obtained of the yearly supply of organic material for conversion to fuels, the energy potential is evaluated, and the fermentation and pyrolysis conversion processes are discussed. An investigation is conducted of the estimated cost of fuel from organics and the conclusions of an overall evaluation are presented. It is found that climate, land availability and economics of agricultural production and marketing, food demand, fertilizer shortage, and water availability combine to cast doubts on the feasibility of producing grown organic matter for fuel, in competition with food, feed, or fiber. Less controversial is the utilization of agricultural, industrial, and domestic waste as a conversion feedstock. The evaluation of a demonstration size system is recommended.

  18. DETOX{sup SM} catalyzed wet oxidation as a highly suitable pretreatment for vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.W.; Dhooge, P.M.; Goldblatt, S.D.

    1995-11-01

    A catalyzed wet oxidation process has been developed which uses ferric iron in an acidic water solution to oxidize organic compounds in the presence of platinum ion and/or ruthenium ion catalysts. The process is capable of oxidizing a wide range of organic compounds to carbon dioxide and water with great efficiency. The process has been tested in the bench-scale with many different types of organics. Conceptual engineering for application of the process to treatment of liquid and solid organic waste materials has been followed by engineering design for a demonstration unit. Fabrication of the unit and demonstration on hazardous andmore » mixed wastes at two Department of Energy sites is planned in 1995 through 1997.« less

  19. Agricultural By-Products Turned into Important Materials with Adsorptive Properties

    USDA-ARS?s Scientific Manuscript database

    This presentation will summarize the use of agricultural by-products (e.g., animal manure and plant waste) as starting materials to adsorb environmental contaminants such as mercury from air, ammonia from air, metal ions from water, and chlorinated organics from water. The results show that the mat...

  20. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of Materials Safety Bulletins Archive September 2016 - Hazardous Waste [PDF] July 2016 - When Should You Report - Include Safety Training in On-The-Job Training [PDF] July 2009 - Eye Injury from Corrosive Organic Solvent

  1. 40 CFR 63.3094 - What work practice standards must I meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... closed containers. (2) The risk of spills of organic-HAP-containing coatings, thinners, cleaning... materials, and waste materials must be conveyed from one location to another in closed containers or pipes... alternative. (A) Use of solvent-moistened wipes. (B) Keeping solvent containers closed when not in use. (C...

  2. 40 CFR 63.3094 - What work practice standards must I meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... closed containers. (2) The risk of spills of organic-HAP-containing coatings, thinners, cleaning... materials, and waste materials must be conveyed from one location to another in closed containers or pipes... alternative. (A) Use of solvent-moistened wipes. (B) Keeping solvent containers closed when not in use. (C...

  3. 40 CFR 63.3094 - What work practice standards must I meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... closed containers. (2) The risk of spills of organic-HAP-containing coatings, thinners, cleaning... materials, and waste materials must be conveyed from one location to another in closed containers or pipes... alternative. (A) Use of solvent-moistened wipes. (B) Keeping solvent containers closed when not in use. (C...

  4. 40 CFR 63.3094 - What work practice standards must I meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... closed containers. (2) The risk of spills of organic-HAP-containing coatings, thinners, cleaning... materials, and waste materials must be conveyed from one location to another in closed containers or pipes... alternative. (A) Use of solvent-moistened wipes. (B) Keeping solvent containers closed when not in use. (C...

  5. 75 FR 11010 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Oregon Chub...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ..., silty and organic substrate, and considerable aquatic vegetative cover for hiding and spawning (Pearsons..., and cadmium; human and animal waste products; pesticides; nitrogen and phosphorous fertilizers; and... substrates are typically composed of silty and organic material. In winter months, Oregon chub of various...

  6. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... paragraph (q) of this section. (3) Definitions—Buddy system means a system of organizing employees into work... other employee in the work group. The purpose of the buddy system is to provide rapid assistance to... water-borne vessel. Hazardous materials response (HAZMAT) team means an organized group of employees...

  7. E-waste scenario in India, its management and implications.

    PubMed

    Wath, Sushant B; Dutt, P S; Chakrabarti, T

    2011-01-01

    Electronic waste or E-waste comprises of old, end-of-life electronic appliances such as computers, laptops, TVs, DVD players, refrigerators, freezers, mobile phones, MP3 players, etc., which have been disposed of by their original users. E-waste contains many hazardous constituents that may negatively impact the environment and affect human health if not properly managed. Various organizations, bodies, and governments of many countries have adopted and/or developed the environmentally sound options and strategies for E-waste management to tackle the ever growing threat of E-waste to the environment and human health. This paper presents E-waste composition, categorization, Global and Indian E-waste scenarios, prospects of recoverable, recyclable, and hazardous materials found in the E-waste, Best Available Practices, recycling, and recovery processes followed, and their environmental and occupational hazards. Based on the discussion, various challenges for E-waste management particularly in India are delineated, and needed policy interventions were discussed.

  8. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison.

    PubMed

    Hulshof, Andrea H M; Blowes, David W; Gould, W Douglas

    2006-05-01

    Reactive treatment layers, containing labile organic carbon, were evaluated to determine their ability to promote sulfate reduction and metal sulfide precipitation within a tailings impoundment, thereby treating tailings effluent prior to discharge. Organic carbon materials, including woodchips and pulp waste, were mixed with the upper meter of tailings in two separate test cells, a third control cell contained only tailings. In the woodchip cell sulfate reduction rates were 500 mg L-1a-1, (5.2 mmol L-1a-1) this was coupled with the gradual removal of 350 mg L-1 Zn (5.4 mmol L-1). Decreased delta13CDIC values from -3 per thousand to as low as -12 per thousand indicated that sulfate reduction was coupled with organic carbon oxidation. In the pulp waste cell the most dramatic change was observed near the interface between the pulp waste amended tailings and the underlying undisturbed tailings. Sulfate reduction rates were 5000 mg L-1a-1 (52 mmol L-1a-1), Fe concentrations decreased by 80-99.5% (148 mmol L-1) and Zn was consistently <5 mg L-1. Rates of sulfate reduction and metal removal decreased as the pore water migrated upward into the shallower tailings. Increased rates of sulfate reduction in the pulp waste cell were consistent with decreased delta13CDIC values, to as low as -22 per thousand, and increased populations of sulfate reducing bacteria. Lower concentrations of the nutrients, phosphorus, organic carbon and nitrogen in the woodchip material contribute to the lower sulfate reduction rates observed in the woodchip cell.

  9. Nitrogen conservation in simulated food waste aerobic composting process with different Mg and P salt mixtures.

    PubMed

    Li, Yu; Su, Bensheng; Liu, Jianlin; Du, Xianyuan; Huang, Guohe

    2011-07-01

    To assess the effects of three types of Mg and P salt mixtures (potassium phosphate [K3PO4]/magnesium sulfate [MgSO4], potassium dihydrogen phosphate [K2HPO4]/MgSO4, KH2PO4/MgSO4) on the conservation of N and the biodegradation of organic materials in an aerobic food waste composting process, batch experiments were undertaken in four reactors (each with an effective volume of 30 L). The synthetic food waste was composted of potatoes, rice, carrots, leaves, meat, soybeans, and seed soil, and the ratio of C and N was 17:1. Runs R1-R3 were conducted with the addition of K3PO4/ MgSO4, K2HPO4/MgSO4, and KH2PO4/MgSO4 mixtures, respectively; run R0 was a blank performed without the addition of Mg and P salts. After composting for 25 days, the degrees of degradation of the organic materials in runs R0-R3 were 53.87, 62.58, 59.14, and 49.13%, respectively. X-ray diffraction indicated that struvite crystals were formed in runs R1-R3 but not in run R0; the gaseous ammonia nitrogen (NH3-N) losses in runs R0-R3 were 21.2, 32.8, 12.6, and 3.5% of the initial total N, respectively. Of the tested Mg/P salt mixtures, the K2HPO4/ MgSO4 system provided the best combination of conservation of N and biodegradation of organic materials in this food waste composting process.

  10. Influence of Planetary Protection Guidelines on Waste Management Operations

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  11. Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

    1993-09-01

    An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: tomore » determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.« less

  12. Biosorption of Cr(VI) and As(V) at high concentrations by organic and inorganic wastes

    NASA Astrophysics Data System (ADS)

    María Rivas Pérez, Ivana; Paradelo Núñez, Remigio; Nóvoa Muñoz, Juan Carlos; Arias Estévez, Manuel; José Fernández Sanjurjo, María; Álvarez Rodríguez, Esperanza; Núñez Delgado, Avelino

    2016-04-01

    The potential reutilization of several wastes as biosorbents for As(V) and Cr(VI) has been assessed in batch-type experiments. The materials studied were one inorganic: mussel shell, and three organic: pine bark, oak ash and hemp waste. Batch experiments were performed in order to determine the removal capacity of the wastes under conditions of high As(V) and Cr(VI) loads. For this, 3 g of each waste material were added with 30 mL NaNO3 0.01 M dissolutions containing 0, 0.5, 1.5, 3 and 6 mmol As(V) L-1 or Cr(VI) L-1, prepared from analytical grade Na2HAsO4 or K2Cr2O7. The resulting suspensions were shaken for 24 h, centrifuged and filtered. Once each batch experiment corresponding to the sorption trials ended, each individual sample was added with 30 mL of NaNO3 0.01 M to desorb As(V) or Cr(VI), shaken for 24 h, centrifuged and filtered as in the sorption trials. Oak ash showed high sorption (>76%) and low desorption (<7%) for As(V), which was lower on mussel shell (<31%), hemp waste (<16%) and pine bark (<9.9%). In turn, pine bark showed the highest Cr(VI) sorption (>98%) with very low desorption (<0.5%), followed by oak ash (27% sorption), and hemp waste and mussel shell, that presented very low Cr(VI) sorption (<10%). Sorption data for both elements were better described by the Freundlich than by the Langmuir model. The variable results obtained for the removal of the two anionic contaminants for a given sorbent suggest that different mechanisms govern removal from the solution in each case. In summary, oak ash would be an efficient sorbent material for As(V), but not for Cr(VI), while pine bark would be the best sorbent for Cr(VI) removal.

  13. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.

    PubMed

    Poggi-Varaldo, Héctor M; Munoz-Paez, Karla M; Escamilla-Alvarado, Carlos; Robledo-Narváez, Paula N; Ponce-Noyola, M Teresa; Calva-Calva, Graciano; Ríos-Leal, Elvira; Galíndez-Mayer, Juvencio; Estrada-Vázquez, Carlos; Ortega-Clemente, Alfredo; Rinderknecht-Seijas, Noemí F

    2014-05-01

    Biohydrogen is a sustainable form of energy as it can be produced from organic waste through fermentation processes involving dark fermentation and photofermentation. Very often biohydrogen is included as a part of biorefinery approaches, which reclaim organic wastes that are abundant sources of renewable and low cost substrate that can be efficiently fermented by microorganisms. The aim of this work was to critically assess selected bioenergy alternatives from organic solid waste, such as biohydrogen and bioelectricity, to evaluate their relative advantages and disadvantages in the context of biorefineries, and finally to indicate the trends for future research and development. Biorefining is the sustainable processing of biomass into a spectrum of marketable products, which means: energy, materials, chemicals, food and feed. Dark fermentation of organic wastes could be the beach-head of complete biorefineries that generate biohydrogen as a first step and could significantly influence the future of solid waste management. Series systems show a better efficiency than one-stage process regarding substrate conversion to hydrogen and bioenergy. The dark fermentation also produces fermented by-products (fatty acids and solvents), so there is an opportunity for further combining with other processes that yield more bioenergy. Photoheterotrophic fermentation is one of them: photosynthetic heterotrophs, such as non-sulfur purple bacteria, can thrive on the simple organic substances produced in dark fermentation and light, to give more H2. Effluents from photoheterotrophic fermentation and digestates can be processed in microbial fuel cells for bioelectricity production and methanogenic digestion for methane generation, thus integrating a diverse block of bioenergies. Several digestates from bioenergies could be used for bioproducts generation, such as cellulolytic enzymes and saccharification processes, leading to ethanol fermentation (another bioenergy), thus completing the inverse cascade. Finally, biohydrogen, biomethane and bioelectricity could contribute to significant improvements for solid organic waste management in agricultural regions, as well as in urban areas.

  14. Municipal solid waste management in India: From waste disposal to recovery of resources?

    PubMed

    Narayana, Tapan

    2009-03-01

    Unlike that of western countries, the solid waste of Asian cities is often comprised of 70-80% organic matter, dirt and dust. Composting is considered to be the best option to deal with the waste generated. Composting helps reduce the waste transported to and disposed of in landfills. During the course of the research, the author learned that several developing countries established large-scale composting plants that eventually failed for various reasons. The main flaw that led to the unsuccessful establishment of the plants was the lack of application of simple scientific methods to select the material to be composted. Landfills have also been widely unsuccessful in countries like India because the landfill sites have a very limited time frame of usage. The population of the developing countries is another factor that detrimentally impacts the function of landfill sites. As the population keeps increasing, the garbage quantity also increases, which, in turn, exhausts the landfill sites. Landfills are also becoming increasingly expensive because of the rising costs of construction and operation. Incineration, which can greatly reduce the amount of incoming municipal solid waste, is the second most common method for disposal in developed countries. However, incinerator ash may contain hazardous materials including heavy metals and organic compounds such as dioxins, etc. Recycling plays a large role in solid waste management, especially in cities in developing countries. None of the three methods mentioned here are free from problems. The aim of this study is thus to compare the three methods, keeping in mind the costs that would be incurred by the respective governments, and identify the most economical and best option possible to combat the waste disposal problem.

  15. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  16. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  17. Energy content of municipal solid waste bales.

    PubMed

    Ozbay, Ismail; Durmusoglu, Ertan

    2013-07-01

    Baling technology is a preferred method for temporary storage of municipal solid waste (MSW) prior to final disposal. If incineration is intended for final disposal of the bales, the energy content of the baled MSW gains importance. In this study, nine cylindrical bales containing a mix of different waste materials were constructed and several parameters, including total carbon (TC), total organic carbon (TOC), total Kjeldahl nitrogen, moisture content, loss on ignition, gross calorific value and net calorific value (NCV) were determined before the baling and at the end of 10 months of storage. In addition, the relationships between the waste materials and the energy contents of the bales were investigated by the bivariate correlation analyses. At the end, linear regression models were developed in order to forecast the decrease of energy content during storage. While the NCVs of the waste materials before the baling ranged between 6.2 and 23.7 MJ kg(-1) dry basis, they ranged from 1.0 to 16.4 MJ kg(-1) dry basis at the end of the storage period. Moreover, food wastes exhibited the highest negative correlation with NCVs, whereas plastics have significant positive correlation with both NCVs and TCs. Similarly, TOCs and carbon/nitrogen ratios decreased with the increase in food amounts inside the bales. In addition, textile, wood and yard wastes increase the energy content of the bales slightly over the storage period.

  18. Municipal Development of Anaerobic Digestion/ Combined Heat and Power in Massachusetts

    NASA Astrophysics Data System (ADS)

    Pike, Brenda

    With a commercial food waste ban going into effect in Massachusetts in October 2014, businesses, institutions, and municipalities are considering alternatives to landfills and incinerators for organic waste. Anaerobic digestion is one such alternative. Similar to composting, but in an environment devoid of oxygen, anaerobic digestion produces byproducts such as methane (which can be burned for heat or electricity) and liquid or solid digestate (which can be used as fertilizer, cattle bedding, and more). Thus, disposal of food waste and other organic materials can become a source of revenue rather than just an expense. Municipalities interested in developing anaerobic digestion/combined heat and power (AD/CHP) facilities have the benefit of desirable options for sites, such as landfill gas facilities and wastewater treatment plants, and potential feedstocks in source-separated residential or municipal food waste or wastewater. This thesis examines the opportunities and challenges for municipal development of AD/CHP facilities in Massachusetts.

  19. Waste rock revegetation: Evaluation of nutrient and biological amendments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meikle, T.W.; Lu, S.; Barta, J.P.

    1999-07-01

    Lack of salvaged topsoil for the reclamation of historical waste rock piles is a common problem in the arid Great Basin region. Utilization of amended waste rock as a growth media could reduce further disturbance resulting from topsoil harvest, minimize hauling costs, and potentially allow for the use of a higher quality material for plant growth. Getchell Gold Corporation initiated a study in 1995 to determine the suitability of waste rock substrates to support plant growth following application of nutrient and biological amendments. Three nutrient amendments and a biological seed treatment were evaluation for use in establishing vegetative cover onmore » three distinct waste rock substrates. Completely randomized blocks were placed on the three substrates. Treatments included organic fertilizers (Biosol and Gro-Power), a mineral fertilizer (16-20-0), and Azospirillum bacterial inoculant, plus controls. The seed mix consisted of Agropyron riparium, Agropyron spicatum, Elymus cinereus, Poa secunda, and Sitanion hystrix. Canopy and ground cover were monitored for three growing seasons. Conclusions from the study are: (1) two of the three substrates supported plant growth following amendment with organic fertilizers; (2) organic fertilizers increased cover substantially over the mineral fertilizer; and (3) Azospirillum had no effect on canopy cover.« less

  20. Production of poly(hydroxybutyrate-hydroxyvalerate) from waste organics by the two-stage process: focus on the intermediate volatile fatty acids.

    PubMed

    Shen, Liang; Hu, Hongyou; Ji, Hongfang; Cai, Jiyuan; He, Ning; Li, Qingbiao; Wang, Yuanpeng

    2014-08-01

    The two-stage process, coupling volatile fatty acids (VFAs) fermentation and poly(hydroxybutyrate-hydroxyvalerate) (P(HB/HV)) biosynthesis, was investigated for five waste organic materials. The overall conversion efficiencies were glycerol>starch>molasses>waste sludge>protein, meanwhile the maximum P(HB/HV) (1.674 g/L) was obtained from waste starch. Altering the waste type brought more effects on VFAs composition other than the yield in the first stage, which in turn greatly changed the yield in the second stage. Further study showed that even-number carbon VFAs (or odd-number ones) had a good positive linear relationship with P(HB/HV) content of HB (or HV). Additionally, VFA producing microbiota was analyzed by pyrosequencing methods for five wastes, which indicated that specific species (e.g., Lactobacillus for protein; Ethanoligenens for starch; Ruminococcus and Limnobacter for glycerol) were dominant in the community for VFAs production. Potential competition among acidogenic bacteria specially involved to produce some VFA was proposed as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation.

    PubMed

    Ayalon, O; Avnimelech, Y; Shechter, M

    2001-05-01

    The increased concern about environmental problems caused by inadequate waste management, as well as the concern about global warming, promotes actions toward a sustainable management of the organic fraction of the waste. Landfills, the most common means to dispose of municipal solid waste (MSW), lead to the conversion of the organic waste to biogas, containing about 50% methane, a very active greenhouse gas (GHG). One unit of methane has a global warming potential of 21 computed for a 100-year horizon or 56 computed for 20 years. The waste sector in Israel contributes 13% of total greenhouse gases (GHG) emissions for a time horizon of 100 years (for a time horizon of 20 years, the waste sector contribution equals to more than 25% of total GHG emissions). The ultimate goal is to minimize the amount of methane (CH4) by converting it to CO2. This can be achieved by physicochemical means (e.g., landfill gas flare, incineration) or by biological processes (e.g., composting, anaerobic digestion). Since the waste in Israel has a high organic material content, it was found that the most cost-effective means to treat the degradable organic components is by aerobic composting (investment of less than US$ 10 to reduce emission of one ton CO2 equivalent per year). Another benefit of this technology is the ability to implement it within a short period. The suggested approach, which should be implemented especially in developing countries, could reduce a significant amount of GHG at relatively low cost and short time. The development of a national policy for proper waste treatment can be a significant means to abate GHG emissions in the short term, enabling a gain in time to develop other means for the long run. In addition, the use of CO2 quotas will credit the waste sector and will promote profitable proper waste management.

  2. Biodegradation and flushing of MBT wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqui, A.A., E-mail: aasiddiqui.cv@amu.ac.in; Richards, D.J.; Powrie, W.

    Highlights: • Stabilization was achieved for MBT wastes of different degrees of pretreatment. • About 92% reduction in the gas generation compared with raw MSW. • Pretreatment resulted in reduced TOC, nitrogen and heavy metals in leachate. • A large proportion of carbon and nitrogen remained in the waste material. - Abstract: Mechanical–biological treatment (MBT) processes are increasingly being adopted as a means of diverting biodegradable municipal waste (BMW) from landfill, for example to comply with the EU Landfill Directive. However, there is considerable uncertainty concerning the residual pollution potential of such wastes. This paper presents the results of laboratorymore » experiments on two different MBT waste residues, carried out to investigate the remaining potential for the generation of greenhouse gases and the flushing of contaminants from these materials when landfilled. The potential for gas generation was found to be between 8% and 20% of that for raw MSW. Pretreatment of the waste reduced the potential for the release of organic carbon, ammoniacal nitrogen, and heavy metal contents into the leachate; and reduced the residual carbon remaining in the waste after final degradation from ∼320 g/kg dry matter for raw MSW to between 183 and 195 g/kg dry matter for the MBT wastes.« less

  3. The Chinese import ban and its impact on global plastic waste trade

    PubMed Central

    Wang, Shunli

    2018-01-01

    The rapid growth of the use and disposal of plastic materials has proved to be a challenge for solid waste management systems with impacts on our environment and ocean. While recycling and the circular economy have been touted as potential solutions, upward of half of the plastic waste intended for recycling has been exported to hundreds of countries around the world. China, which has imported a cumulative 45% of plastic waste since 1992, recently implemented a new policy banning the importation of most plastic waste, begging the question of where the plastic waste will go now. We use commodity trade data for mass and value, region, and income level to illustrate that higher-income countries in the Organization for Economic Cooperation have been exporting plastic waste (70% in 2016) to lower-income countries in the East Asia and Pacific for decades. An estimated 111 million metric tons of plastic waste will be displaced with the new Chinese policy by 2030. As 89% of historical exports consist of polymer groups often used in single-use plastic food packaging (polyethylene, polypropylene, and polyethylene terephthalate), bold global ideas and actions for reducing quantities of nonrecyclable materials, redesigning products, and funding domestic plastic waste management are needed. PMID:29938223

  4. DECO FRECASE (drywall eco-friendly from eggshell and cane bagasse) as an innovation of eco-friendly interior construction

    NASA Astrophysics Data System (ADS)

    Imron, M. A.; Ahkam, D. N. I.; Hidayat, A. W.

    2017-12-01

    The number of factories and home industries, both upper and lower middle class certainly adds waste generated, resulting in environmental pollution. The development of buildings is one of the largest contributors to global warming. For that, it takes technological innovations that lead to the criteria of green building. The application of green material is important aspects of environmentally friendly development, the selection of materials on the green material criteria of both roles should be applied continuously in order to realize the environmental sustainability of the material. Utilization Waste eggshell and bagasse which is a community waste, has the potential to become innovative environmentally friendly building materials. The eggshell is composed of 94% calcium carbonate, 1% magnesium carbonate, 1% calcium phosphate, and 4% organic material, especially protein, while the bagasse has a high content of silica (SiO2). In this study, the compounds are used as raw material for making alternative drywall in the form of DECO FRECASE. DECO FRECASE is an innovation of environmentally friendly building materials as an interior wall construction. Through DECO FRECASE, it is expected that building material innovation in Indonesia can be improved and of course environmental problems can be minimized by utilizing it as raw material for building construction.

  5. Recovery of 238PuO2 by Molten Salt Oxidation Processing of 238PuO2 Contaminated Combustibles (Part II)

    NASA Astrophysics Data System (ADS)

    Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.; VanPelt, C. E.; Reimus, M. A.; Spengler, D.; Matonic, J.; Garcia, L.; Rios, E.; Sandoval, F.; Herman, D.; Hart, R.; Ewing, B.; Lovato, M.; Romero, J. P.

    2005-02-01

    Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt as the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium.

  6. Recovery of 238PuO2 by Molten Salt Oxidation Processing of 238PuO2 Contaminated Combustibles (Part II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.

    2005-02-06

    Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt asmore » the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium.« less

  7. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.

    PubMed

    Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F

    2013-01-01

    In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Potential Environmental Benefits from Blending Biosolids with Other Organic Amendments before Application to Land.

    PubMed

    Paramashivam, Dharini; Dickinson, Nicholas M; Clough, Timothy J; Horswell, Jacqui; Robinson, Brett H

    2017-05-01

    Biosolids disposal to landfill or through incineration is wasteful of a resource that is rich in organic matter and plant nutrients. Land application can improve soil fertility and enhance crop production but may result in excessive nitrate N (NO-N) leaching and residual contamination from pathogens, heavy metals, and xenobiotics. This paper evaluates evidence that these concerns can be reduced significantly by blending biosolids with organic materials to reduce the environmental impact of biosolids application to soils. It appears feasible to combine organic waste streams for use as a resource to build or amend degraded soils. Sawdust and partially pyrolyzed biochars provide an opportunity to reduce the environmental impact of biosolids application, with studies showing reductions of NO-N leaching of 40 to 80%. However, other organic amendments including lignite coal waste may result in excessive NO-N leaching. Field trials combining biosolids and biochars for rehabilitation of degraded forest and ecological restoration are recommended. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Don't waste waterweeds

    NASA Technical Reports Server (NTRS)

    Wolverton, B.; Mcdonald, R. C.

    1976-01-01

    Experiments carried out at the NASA National Space Technology Laboratories indicate that water hyacinths can absorb organic chemicals, heavy metals, nutrients, and other materials from waste water while producing large quantities of biomass, which can be used to produce a gas containing 60-80% methane. When grown in sewage free of toxic materials, the biomass can be used as a potential source of fertilizer or animal feed supplements. The use of hot water from nuclear power plants to grow water hyacinths during the winter months is particularly attractive, since the hyacinths could act as an added safety filtration system for the removal of radioactive elements.

  10. Electrochemical incineration of wastes

    NASA Technical Reports Server (NTRS)

    Kaba, L.; Hitchens, G. D.; Bockris, J. O'M.

    1989-01-01

    A low temperature electrolysis process has been developed for the treatment of solid waste material and urine. Experiments are described in which organic materials are oxidized directly at the surface of an electrode. Also, hypochlorite is generated electrochemically from chloride component of urine. Hypochlorite can act as a strong oxidizing agent in solution. The oxidation takes place at 30-60 C and the gaseous products from the anodic reaction are carbon dioxide, nitrogen, oxygen. Hydrogen is formed at the cathode. Carbon monoxide, and nitrogen oxides and methane were not detected in the off gases. Chlorine was evolved at the anode in relatively low amounts.

  11. Geologic and hydrologic data collected during 1976-1983 at the Sheffield low-level radioactive waste disposal site and adjacent areas, Sheffield, Illinois

    USGS Publications Warehouse

    Foster, J.B.; Garklavs, George; Mackey, G.W.

    1984-01-01

    Hydrogeologic studies were conducted at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976-84. Data in this report include water levels in wells, lake stages, inorganic, organic, and radiometric chemical analyses of ground and surface water, hydraulic conductivities of glacial materials, grain-size distribution, clay and carbonate mineralogy, and cation exchange capacities of the glacial materials. Also included are results of petrographic analyses, physical measurements of wells, stratigraphy and lithology of cores collected from test wells, and horizontal coordinates of wells.

  12. Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents

    DOEpatents

    Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.

    2017-03-21

    A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.

  13. Alternative oxidation technologies for organic mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borduin, L.C.; Fewell, T.

    1998-07-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development ormore » are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less

  14. User's Manual for CoEAT Tool

    EPA Pesticide Factsheets

    The Co-EAT users manual is designed to help the anaerobic digestion system operators evaluate the costs and benefits of accepting and processing wasted food, fats, oils and greases (FOG) or other organic materials.

  15. Gallup, NM, CARE Grant Success Story

    EPA Pesticide Factsheets

    A CARE Grant, Level II award, was made to Gallup, NM to focus on cleaning up the waste stream, reuse and recycling of materials, and reclaiming land for these purposes through outreach, education and organization.

  16. 40 CFR 355.61 - How are key words in this part defined?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste when mixed or commingled with bedding, compost, feed, soil and other typical materials found with... aqueous or organic solutions, slurries, viscous solutions, suspensions, emulsions, or pastes. State means...

  17. 40 CFR 355.61 - How are key words in this part defined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste when mixed or commingled with bedding, compost, feed, soil and other typical materials found with... aqueous or organic solutions, slurries, viscous solutions, suspensions, emulsions, or pastes. State means...

  18. 40 CFR 63.4910 - What notifications must I submit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., accuracy, and completeness of the report. Such certifications must also comply with the requirements of 40... need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one... mass of organic HAP contained in the waste materials for which you are claiming an allowance in...

  19. Pilot scale high solids anaerobic digestion of steam autoclaved municipal solid waste (MSW) pulp

    USDA-ARS?s Scientific Manuscript database

    Steam autoclaving is an efficient method for the separation and recovery of nearly all organics from MSW, yet a reliable alternative outlet for the large volume of organics produced has not yet been successfully demonstrated. The material produced by the autoclave contains a high concentration of s...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covey, S.K.

    As this century comes to a close, landfills are being opened, closed and mined for resources; commercial businesses and manufacturers are under pressure to be responsible both environmentally and economically. The timing is right for individuals and organizations to start listening to each other and working cooperatively for a greater good. In 1996, an ad hoc group of state government agencies, private business, not-for-profits and educational institutions met to discuss the potential for a materials exchange in Ohio. The Ohio Materials Exchange (OMEX) exists today from the cooperation and funding form the Ohio Environmental Education Fund (OEEF), The Association ofmore » Ohio Recyclers (AOR) in cooperation with Waste Alternatives, Inc., The Ohio Environmental Protection Agency (OhEPA) (Division of Solid and Infectious Waste Management and the Office of Pollution Prevention), The Ohio Department of Natural Resources (Division of Recycling and Litter Prevention) and the Ohio Department of Development (ODOD) (Office of Energy Efficiency OEE). In addition, private business, solid waste management districts and individual organizations who use the exchange actively help guide and market the program. The author was employed with the ODOD-OEE and a member of the planning team. A materials exchange allows companies to trade, sell or give away unwanted materials to one another and use it as raw material for manufacturing or reuse in its existing form (Table 1.). Materials exchanges were both out of necessity in World War II but are continuing due to foresight. (EPA 1994) The exchange of raw product, rejects or waste can reduce waste and save energy. Not only do recycled materials often use less energy to produce the product, the trading may save hauling or disposal costs, that could then be diverted to purchase new, more efficient equipment. The materials available or wanted are collected into lists. These lists may take the form of catalogs, fax-back systems, Internet or computer or index cards with a rolodex and a phone. A form is filled out requesting contact information. From that point, the arrangements are made between the trading partners. Often the exchange host will attempt to find out if a successful trade has been made. All liability issues are usually assumed by the trading partners and not the exchange service. This paper includes references for further reading concerning the history and impact of local, regional and national exchanges.« less

  1. Microwave remediation of electronic circuitry waste and the resulting gaseous emissions

    NASA Astrophysics Data System (ADS)

    Schulz, Rebecca L.

    The global community has become increasingly dependent on computer and electronic technology. As a result, society is faced with an increasing amount of obsolete equipment and electronic circuitry waste. Electronic waste is generally disposed of in landfills. While convenient, this action causes a substantial loss of finite resources and poses an environmental threat as the circuit board components breakdown and are exposed to the elements. Hazardous compounds such as lead, mercury and cadmium may leach from the circuitry and find their way into the groundwater supply. For this dissertation, a microwave waste remediation system was developed. The system was designed to remove the organic components from a wide variety of electronic circuitry. Upon additional heating of the resulting ash material in an industrial microwave, a glass and metal product can be recovered. Analysis of the metal reveals the presence of precious metals (gold, silver) that can be sold to provide a return on investment. a glass and metal product can be recovered. Analysis of the metal reveals the presence of precious metals (gold, silver) that can be sold to provide a return on investment. Gaseous organic compounds that were generated as a result of organic removal were treated in a microwave off gas system that effectively reduced the concentration of the products emitted by several orders of magnitude, and in some cases completely destroying the waste gas. Upon further heating in an industrial microwave, a glass and metal product were recovered. In order to better understand the effects of processing parameters on the efficiency of the off-gas system, a parametric study was developed. The study tested the microwave system at 3 flow rates (10, 30, and 50 ft 3/min) and three temperatures (400, 700 and 1000°C. In order to test the effects of microwave energy, the experiments were repeated using a conventional furnace. While microwave energy is widely used, the mechanisms of interaction with materials is not well understood. In an effort to better understand how microwaves couple with materials, a newly developed molecular orbital model was investigated. The model proposed an interaction mechanism associated with the development of coupled oscillators upon application of microwave energy. The model was used to model several of the waste gases that appear in the waste stream. Results from experimentation support the data generated thus far.

  2. Charge transfer between biogenic jarosite derived Fe3+and TiO2 enhances visible light photocatalytic activity of TiO2.

    PubMed

    Chowdhury, Mahabubur; Shoko, Sipiwe; Cummings, Fransciuos; Fester, Veruscha; Ojumu, Tunde Victor

    2017-04-01

    In this work, we have shown that mining waste derived Fe 3+ can be used to enhance the photocatalytic activity of TiO 2 . This will allow us to harness a waste product from the mines, and utilize it to enhance TiO 2 photocatalytic waste water treatment efficiency. An organic linker mediated route was utilized to create a composite of TiO 2 and biogenic jarosite. Evidence of FeOTi bonding in the TiO 2 /jarosite composite was apparent from the FTIR, EFTEM, EELS and ELNEFS analysis. The as prepared material showed enhanced photocatalytic activity compared to pristine TiO 2 , biogenic jarosite and mechanically mixed sample of jarosite and TiO 2 under both simulated and natural solar irradiation. The prepared material can reduce the electrical energy consumption by 4 times compared to pristine P25 for degradation of organic pollutant in water. The material also showed good recyclability. Results obtained from sedimentation experiments showed that the larger sized jarosite material provided the surface to TiO 2 nanoparticles, which increases the settling rate of the materials. This allowed simple and efficient recovery of the catalyst from the reaction system after completion of photocatalysis. Enhanced photocatalytic activity of the composite material was due to effective charge transfer between TiO 2 and jarosite derived Fe 3+ as was shown from the EELS and ELNEFS. Generation of OH was supported by photoluminesence (PL) experiments. Copyright © 2016. Published by Elsevier B.V.

  3. An overview on characterization, utilization and leachate analysis of biomedical waste incinerator ash.

    PubMed

    Rajor, Anita; Xaxa, Monika; Mehta, Ratika; Kunal

    2012-10-15

    Solid waste management is one of the major global environmental issues, as there is continuous increase in industrial globalization and generation of waste. Solid wastes encompass the heterogeneous mass of throwaways from the urban community as well as the homogeneous accumulations of agricultural, industrial and mineral wastes. Biomedical waste pose a significant impact on health and environment. A proper waste management system should be required to dispose hazardous biomedical waste and incineration should be the best available technology to reduce the volume of this hazardous waste. The incineration process destroys pathogens and reduces the waste volume and weight but leaves a solid material called biomedical waste ash as residue which increases the levels of heavy metals, inorganic salts and organic compounds in the environment. Disposal of biomedical waste ash in landfill may cause contamination of groundwater as metals are not destroyed during incineration. The limited space and the high cost for land disposal led to the development of recycling technologies and the reuse of ash in different systems. In order to minimize leaching of its hazardous components into the environment several studies confirmed the successful utilization of biomedical waste ash in agriculture and construction sector. This paper presents the overview on the beneficial use of ash in agriculture and construction materials and its leachate characteristics. This review also stressed on the need to further evaluate the leachate studies of the ashes and slag for their proper disposal and utilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. From the promotion of biodiversity to the Recovery of organic waste

    NASA Astrophysics Data System (ADS)

    Jammoukh, Mustapha; Mansouri, Khalifa; Salhi, Bachir

    2018-05-01

    This article presents an empirical research to classify a new renewable resource material, as opposed to eco-composites, it has been neglected by the materials specialist. This classification is based on the typology of elastic behavior demonstrated by tensile tests. In addition, some identifying criterions of the usefulness of this material were examined. To justify the relevance of this classification, curves from the extension of tests focusing on the virgin material, illustrate significant results of the review. Obtained from waste, having a significant recycling possibilities and potential from renewable resources, bio-mechanically characterized loads will be injected into polymeric materials of different categories. All in the perspective of promoting changes in thermomechanical properties, whether static or dynamic; such as resistance to corrosion, heat, wear… They result in functional changes such as security, relief, coatings and stability…

  5. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels.

    PubMed

    Ma, En; Xu, Zhenming

    2013-12-15

    In this study, a technology process including vacuum pyrolysis and vacuum chlorinated separation was proposed to convert waste liquid crystal display (LCD) panels into useful resources using self-design apparatuses. The suitable pyrolysis temperature and pressure are determined as 300°C and 50 Pa at first. The organic parts of the panels were converted to oil (79.10 wt%) and gas (2.93 wt%). Then the technology of separating indium was optimized by central composite design (CCD) under response surface methodology (RSM). The results indicated the indium recovery ratio was 99.97% when the particle size is less than 0.16 mm, the weight percentage of NH4Cl to glass powder is 50 wt% and temperature is 450°C. The research results show that the organic materials, indium and glass of LCD panel can be recovered during the recovery process efficiently and eco-friendly. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. FTIR-PAS: a powerful tool for characterising the chemical composition and predicting the labile C fraction of various organic waste products.

    PubMed

    Bekiaris, Georgios; Bruun, Sander; Peltre, Clément; Houot, Sabine; Jensen, Lars S

    2015-05-01

    Fourier transform infrared (FT-IR) spectroscopy has been used for several years as a fast, low-cost, reliable technique for characterising a large variety of materials. However, the strong influence of sample particle size and the inability to measure the absorption of very dark and opaque samples have made FTIR unsuitable for many waste materials. FTIR-photoacoustic spectroscopy (FTIR-PAS) can eliminate some of the shortcomings of traditional FTIR caused by scattering effects and reflection issues, and recent advances in PAS technology have made commercial instruments available. In this study, FTIR-PAS was used to characterise a wide range of organic waste products and predict their labile carbon fraction, which is normally determined from time-consuming assays. FTIR-PAS was found to be capable of predicting the labile fraction of carbon as efficiently as near infrared spectroscopy (NIR) and furthermore of identifying the compounds that are correlated with the predicted parameter, thus facilitating a more mechanistic interpretation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ma, Dongzhuo; Zhu, Baodong; Cao, Bo; Wang, Jian; Zhang, Jianwei

    2017-11-01

    The novel hydrogel based on waste corn stalk was synthetized by aqueous solution polymerization technique with functional monomers in the presence of organic montmorillonite (OMMT) under ultrasonic. In this study, batch adsorption experiments were carried out to research the effect of initial dye concentration, the dosage of hydrogel, stirring speed, contact time and temperature on the adsorption of methylene blue (MB) dye. The adsorption process was best described by the pseudo-second-order kinetic model, which confirmed that it should be a chemical process. Furthermore, we ascertained the rate controlling step by establishing the intraparticle diffusion model and the liquid film diffusion model. The adsorption and synthesis mechanisms were vividly depicted in our work as well. Structural and morphological characterizations by virtue of FTIR, FESEM, and Biomicroscope supported the relationship between the adsorption performance and material's microstructure. This research is a valuable contribution for the environmental protection, which not only converts waste corn stalks into functional materials, but improves the removal of organic dye from sewage water.

  8. Pulsed atmospheric fluidized bed combustor apparatus

    DOEpatents

    Mansour, Momtaz N.

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  9. Biogeochemical Investigations to Evaluate the Performance of the Waste Isolation Pilot Plant (WIPP) (Invited)

    NASA Astrophysics Data System (ADS)

    Gillow, J. B.

    2009-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy facility located in southeastern New Mexico, approximately 655 m (2150 ft.) below ground surface in a bedded salt, Permian evaporite formation. This mined geologic repository has been receiving transuranic (TRU) waste from defense-related and environmental-management activities since March 1999. TRU waste contains alpha-emitting transuranic nuclides with half-lives greater than twenty years at concentrations greater than 100 nCi/gram. These actinide-contaminated wastes were generated from nuclear-weapons production and related processing activities. They include various organics, adsorbed liquids, sludges, cellulosics, plastics, rubber, and a variety of metals and cemented materials. An extensive set of investigations were performed to establish the basis for TRU waste disposal at WIPP and to support initial certification from the U.S. Environmental Protection Agency. A significant element of the conceptual geochemical model for WIPP is the microbiologically-driven reactions leading to biodegradation of organic constituents in TRU wastes, as well as interactions with actinides present in the waste. This presentation will discuss the biogeochemical investigations that were performed to evaluate microbiological activity at WIPP, including studies of gas generation due to biodegradation of cellulose, plastic, and rubber materials and actinide-microbe interactions leading to changes in actinide chemical speciation. Highlights of this work are discussed here. Cellulose biodegradation in salt-brine systems results in the generation of carbon dioxide and hydrogen, and aqueous fermentation products (low molecular weight organic acids). Hypersaline brine can limit the range of microbial metabolic pathways, due to the energetic stresses of maintaining osmotic balance compatible with metabolic processes. Methanogenesis yields the lowest free energy per mole of carbon and as such is often not detected in microorganisms that thrive in salt-brine environments (halophilic bacteria). However, laboratory tests performed over a period of 10 years demonstrated the production of methane gas from cellulose metabolism. Studies of actinide-microbe interactions revealed the bioaccumulation of uranium in phosphate-rich intracellular granules. These studies advanced the understanding of the metabolism of bacteria in salt-brine systems and the influence of halophilic microbiological activity on WIPP geochemistry.

  10. Composition and leaching of construction and demolition waste: inorganic elements and organic compounds.

    PubMed

    Butera, Stefania; Christensen, Thomas H; Astrup, Thomas F

    2014-07-15

    Thirty-three samples of construction and demolition waste collected at 11 recycling facilities in Denmark were characterised in terms of total content and leaching of inorganic elements and presence of the persistent organic pollutants PCBs and PAHs. Samples included (i) "clean" (i.e. unmixed) concrete waste, (ii) mixed masonry and concrete, (iii) asphalt and (iv) freshly cast concrete cores; both old and newly generated construction and demolition waste was included. PCBs and PAHs were detected in all samples, generally in non-critical concentrations. Overall, PAHs were comparable to background levels in urban environments. "Old" and "new" concrete samples indicated different PCB congener profiles and the presence of PCB even in new concrete suggested that background levels in raw materials may be an issue. Significant variability in total content of trace elements, even more pronounced for leaching, was observed indicating that the number of analysed samples may be critical in relation to decisions regarding management and utilisation of the materials. Higher leaching of chromium, sulphate and chloride were observed for masonry-containing and partly carbonated samples, indicating that source segregation and management practices may be important. Generally, leaching was in compliance with available leaching limits, except for selenium, and in some cases chromium, sulphate and antimony. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    NASA Astrophysics Data System (ADS)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  12. A process for complete biodegradation of shrimp waste by a novel marine isolate Paenibacillus sp. AD with simultaneous production of chitinase and chitin oligosaccharides.

    PubMed

    Kumar, Aditya; Kumar, Deepak; George, Nancy; Sharma, Prince; Gupta, Naveen

    2018-04-01

    Disposal of chitinaceous waste is a major problem of seafood industry. Most of the known chitinolytic organisms have been studied with respect to pure chitin as substrate. Use of these organisms for degradation of seafood waste has not been explored much. In present study a marine bacterium capable of proficiently degrading shrimp waste with co-production of value added products like chitinase and chitin oligosaccharides was isolated from seafood waste dumping sites. On 16s rRNA and biochemical analysis bacterium was found to be a novel species of genus Paenibacillus.Under optimized condition complete shrimp waste degradation (99%) was achieved along with chitinase yield of 20.01 IUml -1 . SEM and FTIR showed the structural changes and breakage of bonds typical to that of chitin, which indicated that this process can be used for the degradation of other chitinaceous material also. Thin layer chromatography revealed the presence of chitin oligosaccharides of various degree of polymerization in the hydrolysate. Complete degradation of shrimp waste by Paenibacillus sp. AD makes it a potential candidate for the bioremediation of seafood waste at large scale. Concomitant production of chitinase and chitin oligosaccharides further makes the process economical and commercially viable. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Toxicity of electronic waste leachates to Daphnia magna: screening and toxicity identification evaluation of different products, components, and materials.

    PubMed

    Lithner, Delilah; Halling, Maja; Dave, Göran

    2012-05-01

    Electronic waste has become one of the fastest growing waste problems in the world. It contains both toxic metals and toxic organics. The aim of this study was to (1) investigate to what extent toxicants can leach from different electronic products, components, and materials into water and (2) identify which group of toxicants (metals or hydrophobic organics) that is causing toxicity. Components from five discarded electronic products (cell phone, computer, phone modem, keyboard, and computer mouse) were leached in deionised water for 3 days at 23°C in concentrations of 25 g/l for metal components, 50 g/l for mixed-material components, and 100 g/l for plastic components. The water phase was tested for acute toxicity to Daphnia magna. Eighteen of 68 leachates showed toxicity (with immobility of D. magna ≥ 50% after 48 h) and came from metal or mixed-material components. The 8 most toxic leachates, with 48 h EC(50)s ranging from 0.4 to 20 g/l, came from 2 circuit sheets (key board), integrated drive electronics (IDE) cable clips (computer), metal studs (computer), a circuit board (computer mouse), a cord (phone modem), mixed parts (cell phone), and a circuit board (key board). All 5 electronic products were represented among them. Toxicity identification evaluations (with C18 and CM resins filtrations and ethylenediaminetetraacetic acid addition) indicated that metals caused the toxicity in the majority of the most toxic leachates. Overall, this study has shown that electronic waste can leach toxic compounds also during short-term leaching with pure water.

  14. Aloe vera in active and passive regions of electronic devices towards a sustainable development

    NASA Astrophysics Data System (ADS)

    Lim, Zhe Xi; Sreenivasan, Sasidharan; Wong, Yew Hoong; Cheong, Kuan Yew

    2017-07-01

    The increasing awareness towards sustainable development of electronics has driven the search for natural bio-organic materials in place of conventional electronic materials. The concept of using natural bio-organic materials in electronics provides not only an effective solution to address global electronic waste crisis, but also a compelling template for sustainable electronics manufacturing. This paper attempts to provide an overview of using Aloe vera gel as a natural bio-organic material for various electronic applications. Important concepts such as responses of living Aloe vera plant towards electrical stimuli and demonstrations of Aloe vera films as passive and active regions of electronic devices are highlighted in chronological order. The biodegradability and biocompatibility of Aloe vera can bring the world a step closer towards the ultimate goal of sustainable development of electronic devices from "all-natural" materials.

  15. Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste.

    PubMed

    Mahto, Ashesh; Gupta, Rajeev; Ghara, Krishna Kanta; Srivastava, Divesh N; Maiti, Pratyush; D, Kalpana; Rivera, Paul-Zavala; Meena, R; Nataraj, S K

    2017-10-15

    This study aims at developing supercapacitor materials from sugar and distillery industry wastes, thereby mediating waste disposal problem through reuse. In a two-step process, biomethanated spent wash (BMSW) was acid treated to produce solid waste sludge and waste water with significantly reduced total organic carbon (TOC) and biological oxygen demand (BOD) content. Further, waste sludge was directly calcined in presence of activating agent ZnCl 2 in inert atmosphere resulting in high surface area (730-900m 2 g -1 ) carbon of unique hexagonal morphology. Present technique resulted in achieving two-faceted target of liquid-solid waste remediation and production of high-performance carbon material. The resulted high surface area carbon was tested in both three and two electrode systems. Electrochemical tests viz. cyclic voltammetry, galvanostatic charge-discharge and impedance measurement were carried out in aqueous KOH electrolyte yielding specific capacitance as high as 120Fg -1 , whereas all solid supercapacitor devised using PVA/H 3 PO 4 polyelectrolyte showed stable capacitance of 105Fg -1 at 0.2Ag -1 . The presence of transition metal particles and hetero-atoms on carbon surface were confirmed by XPS, EDX and TEM analysis which enhanced the conductivity and imparted pseudocapacitance to some extent into the working electrode. The present study successfully demonstrated production of high-performance electrode material from dirtiest wastewater making process green, sustainable and economically viable. Copyright © 2017. Published by Elsevier B.V.

  16. Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland

    NASA Astrophysics Data System (ADS)

    Misz-Kennan, Magdalena

    2010-01-01

    Self-heating and self-combustion are currently taking place in some coal waste dumps in the Upper Silesian Coal Basin, Poland, e.g. the dumps at Rymer Cones, Starzykowiec, and the Marcel Coal Mine, all in the Rybnik area. These dumps are of similar age and self-heating and combustion have been occurring in all three for many years. The tools of organic petrography (maceral composition, rank, etc.), gas chromatography-mass spectrometry, and proximate and ultimate analysis are used to investigate the wastes. Organic matter occurs in quantities up to 85 vol.%, typically a few to several vol.%, in the wastes. All three maceral groups (vitrinite, liptinite, and inertinite) are present as unaltered and variously-altered constituents associated with newly-formed petrographic components (bitumen expulsions, pyrolytic carbon). The predominant maceral group is vitrinite with alterations reflected in the presence of irregular cracks, oxidation rims and, rarely, devolatilisation pores. In altered wastes, paler grey-vitrinite and/or coke dominates. The lack of plasticity, the presence of paler-coloured particles, isotropic massive coke, dispersed coked organic matter, and expulsions of bitumens all indicate that heating was slow and extended over a long time. Macerals belonging to other groups are present in unaltered form or with colours paler than the colours of the parent macerals. Based on the relative contents of organic compounds, the most important groups of these identified in the wastes are n-alkanes, acyclic isoprenoids, hopanes, polycyclic aromatic hydrocarbons (PAHs) and their derivatives, phenol and its derivatives. These compounds occur in all wastes except those most highly altered where they were probably destroyed by high temperatures. These compounds were generated mainly from liptinite-group macerals. Driven by evaporation and leaching, they migrated within and out of the dump. Their presence in some wastes in which microscopically visible organic matter is lacking suggests that they originated elsewhere and subsequently migrated through the dump piles. During their migration, the compounds fractionated, were adsorbed on minerals and/or interacted. The absence of alkenes, and of other unsaturated organic compounds, may reflect primary diagenetic processes that occurred in coals and coal shales during burial and/or organic matter type. Their absence may also be a consequence of heating that lasted many years, hydropyrolysis, and/or the participation of minerals in the reactions occurring within the dumps. The wastes contain compounds typical of organic matter of unaltered kerogen III type and the products of pyrolytic processes, and mixtures of both. In some wastes, organic compounds are completely absent having been destroyed by severe heating. The distributions of n-alkanes in many samples are typical of pyrolysates. In some wastes, narrow n-alkane distributions reflect their generation over small temperature ranges. In others, wider distributions point to greater temperature ranges. Other wastes contain n-alkane distributions typical of unaltered coal and high pristane content or mixtures of pyrolysates and unaltered waste material. The wastes also contain significant amounts of final αβ hopanes. Polycyclic aromatic hydrocarbons are represented only by two- to five-ring compounds as is typical of the thermal alteration of hard coal. Correlations between the degree of organic matter alteration and the relative contents of individual PAHs and hopanes and geochemical indicators of thermal alteration are generally poor. The properties of the organic matter (its composition and rank), temperature fluctuations within the dumps, migration of organic compounds and mineral involvement are probably responsible for this. The processes taking place in coal waste dumps undergoing self-heating and self-combustion are complicated; they are very difficult to estimate and define. The methods of organic petrology and geochemistry give complementary data allowing the processes to be described. However, each of the dumps investigated represents a separate challenge to be surmounted in any regional attempt to delineate the regional environmental impact of these waste dumps.

  17. Current EU-27 technical potential of organic waste streams for biogas and energy production.

    PubMed

    Lorenz, Helge; Fischer, Peter; Schumacher, Britt; Adler, Philipp

    2013-11-01

    Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment - especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a "best-practice-scenario" for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Influence assessment of a lab-scale ripening process on the quality of mechanically-biologically treated MSW for possible recovery.

    PubMed

    Di Lonardo, Maria Chiara; Binner, Erwin; Lombardi, Francesco

    2015-09-01

    In this study, the influence of an additional ripening process on the quality of mechanically-biologically treated MSW was evaluated in the prospective of recovering the end material, rather than landfilling. The biostabilised waste (BSW) coming from one of the MBT plants of Rome was therefore subjected to a ripening process in slightly aerated lab test cells. An in-depth investigation on the biological reactivity was performed by means of different types of tests (aerobic and anaerobic biological tests, as well as FT-IR spectroscopy method). A physical-chemical characterisation of waste samples progressively taken during the ripening phase was carried out, as well. In addition, the ripened BSW quality was assessed by comparing the characteristics of a compost sampled at the composting plant of Rome which treat source segregated organic wastes. Results showed that the additional ripening process allowed to obtain a better quality of the biostabilised waste, by achieving a much higher biological stability compared to BSW as-received and similar to that of the tested compost. An important finding was the lower heavy metals (Co, Cr, Cu, Ni, Pb and Zn) release in water phase at the end of the ripening compared to the as-received BSW, showing that metals were mainly bound to solid organic matter. As a result, the ripened waste, though not usable in agriculture as found for the compost sample, proved anyhow to be potentially suitable for land reclamation purposes, such as in landfills as cover material or mixed with degraded and contaminated soil for organic matter and nutrients supply and for metals recovery, respectively. In conclusion the study highlights the need to extend and optimise the biological treatment in the MBT facilities and opens the possibility to recover the output waste instead of landfilling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Humic Substances in Organic Wastes and their Effects on Amended Soils

    NASA Astrophysics Data System (ADS)

    Senesi, N.; Ciavatta, C.; Plaza, C.

    2009-04-01

    Soil humic substances (HS) are universally recognized to play a major role in a wide number of agronomic and environmental processes. For example, soil HS are able to bind mineral particles together, thus promoting a good soil structure, constitute an important source of nutrients for plants and microorganisms, contribute largely to the acid-base buffering capacity of soils, and exert a marked control on the biological availability, physico-chemical behavior, and environmental fate of toxic metal ions and xenobiotics. For these reasons, the knowledge of the short- and long-term effects of organic amendments on the status, quality, and reactivity of indigenous soil HS is of paramount importance. The objective of this presentation is to provide an overview of the chemical and physico-chemical data available in the literature for the evaluation of the effects of organic wastes of various origin and nature used as soil amendments on the composition, structure, and chemical reactivity of native soil HS. In general, HS-like components of organic wastes are typically characterized by a relatively larger presence of aliphatic, amide, and polysaccharide structures, simple structural components of wide molecular heterogeneity, smaller contents of oxygen, acidic functional groups, and organic free radicals, and smaller degrees of aromatic ring polycondensation, polymerization, and humification than native soil HS. Further, with respect to native soil HS, HS-like fractions from organic wastes generally exhibit smaller binding capacities and affinities for metal ions and organic xenobiotics. Appropriate treatment processes of raw organic wastes able to produce environmentally safe and agronomically efficient soil amendments, such as composting, yield HS-like fractions characterized by chemical and physico-chemical features that approach those of native soil HS. In general, aliphatic, polysaccharide, and lignin structures and S- and N-containing groups of the HS-like fractions of organic wastes can be partially incorporated into native soil HS determining modifications at various extents of their composition, structure, and chemistry. The changes occurred in amended soil HS are more evident when untreated organic materials are used. However, with increasing time after land application, the effects observed become less and less apparent with a clear trend to approach the molecular properties typical of native soil HS.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couth, R.; Trois, C., E-mail: troisc@ukzn.ac.za

    Highlights: Black-Right-Pointing-Pointer The financial/social/institutional sustainability of waste management in Africa is analysed. Black-Right-Pointing-Pointer This note is a compendium of a study on the potential for GHG control via improved zero waste in Africa. Black-Right-Pointing-Pointer This study provides the framework for Local Authorities for realizing sustained GHG reductions. - Abstract: Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resultingmore » gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.« less

  1. Evaluation of available data on the geohydrology, soil chemistry, and ground-water chemistry of Gas Works Park and surrounding region, Seattle, Washington

    USGS Publications Warehouse

    Sabol, M.A.; Turney, G.L.; Ryals, G.N.

    1988-01-01

    Gas Works Park, in Seattle, Washington, is located at the site of an abandon gasification plant on Lake Union. Wastes deposited during 50 years of plant operations (1906-1956) have extended the shore line 100 ft and left the park soil contaminated with a number of hazardous material. Soil contaminants include polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls, pesticides, volatile organic compounds, cyanide, and metals. PAHs and metals have been detected in Lake Union sediments. Maximum total PAH concentrations exceeded 100 million micrograms/kilogram in some places in the soils of the park at 6-inch depths and in some lake sediments. Other contaminants present are much lower in concentrations. The park is on glacial drift overlain by gasification waste materials and clean fill. Waste materials include sand and gravels, mixed with lampblack, oil, bricks, and other industrial wastes. Groundwater flows through the soils and waste toward Lake Union. Vertical groundwater movement is uncertain, but is assumed to be upward near Lake Union. Concentrations of most soil contaminants are probably low in the groundwater and in Lake Union due to the low solubilities and high sorptive characteristics of these contaminants. However, no water quality data are available to confirm this premise. (USGS)

  2. Conditioning sulfidic mine waste for growth of Agrostis capillaris--impact on solution chemistry.

    PubMed

    Sjöberg, Viktor; Karlsson, Stefan; Grandin, Anna; Allard, Bert

    2014-01-01

    Contamination of the environment due to mining and mineral processing is an urgent problem worldwide. It is often desirable to establish a grass cover on old mine waste since it significantly decreases the production of leachates. To obtain sustainable growth, it is often necessary to improve several properties of the waste such as water-holding capacity, nutrient status, and toxicity. This can be done by addition of organic materials such as wood residues, e.g., compost. In this study, we focus on the solution chemistry of the leachates when a substrate containing historic sulfidic mine waste mixed with 30 % (volume) bark compost is overgrown by Agrostis capillaris. The pot experiments also included other growth-promoting additives (alkaline material, mycorrhiza, and metabolizable carbon) to examine whether a more sustainable growth could be obtained. Significant changes in the plant growth and in the leachates composition were observed during 8 weeks of growth. It was concluded that in this time span, the growth of A. capillaris did not affect the composition of the leachates from the pots. Instead, the composition of the leachates was determined by interactions between the bark compost and the mine waste. Best growth of A. capillaris was obtained when alkaline material and mycorrhiza or metabolizable carbon was added to the substrate.

  3. Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties

    NASA Astrophysics Data System (ADS)

    Deeb, M.; Grimaldi, M.; Lerch, T. Z.; Pando, A.; Gigon, A.; Blouin, M.

    2015-12-01

    Constructed Technosols provide an opportunity to recycle urban waste, and are an alternative to the uptake of topsoil from the countryside. Despite potential problems of erosion, compaction or water holding capacity, their physical properties and the resulting water regulation services are poorly documented. In a laboratory experiment, excavated deep horizons of soils and green waste compost (GWC) were mixed at six levels of GWC (from 0 to 50 %). Each mixture was set up in the presence/absence of plants and/or earthworms, in a full factorial design (n = 96). After 21 weeks, hydrostructural properties of constructed Technosols were characterized by soil shrinkage curves. Organisms explained the variance of hydrostructural characteristics (19 %) a little better than parent-material composition (14 %). The interaction between the effects of organisms and parent-material composition explained the variance far better (39 %) than each single factor. To summarize, compost and plants played a positive role in increasing available water in macropores and micropores; plants were extending the positive effect of compost up to 40 and 50 % GWC. Earthworms affected the void ratio for mixtures from 0 to 30 % GWC and available water in micropores, not in macropores. Earthworms also acted synergistically with plants by increasing their root biomass and the resulting positive effects on available water in macropores. Organisms and their interaction with parent materials thus positively affected the hydro-structural properties of constructed Technosols, with potential positive consequences on resistance to drought or compaction. Considering organisms when creating Technosols could be a promising approach to improve their fertility.

  4. Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium.

    PubMed

    Zahra, Sahebnazar; Abbas, Shojaosadati Seyed; Mahsa, Mohammad-Taheri; Mohsen, Nosrati

    2010-03-01

    In this study, biodegradation of low-density polyethylene (LDPE) by isolated landfill-source fungi was evaluated in a controlled solid waste medium. The fungi, including Aspergillus fumigatus, Aspergillus terreus and Fusarium solani, were isolated from samples taken from an aerobic aged municipal landfill in Tehran. These fungi could degrade LDPE via the formation of a biofilm in a submerged medium. In the sterilized solid waste medium, LPDE films were buried for 100 days in a 1-L flask containing 400 g sterile solid waste raw materials at 28 degrees C. Each fungus was added to a separate flask. The moisture content and pH of the media were maintained at the optimal levels for each fungus. Photo-oxidation (25 days under UV-irradiation) was used as a pretreatment of the LDPE samples. The progress of the process was monitored by measurement of total organic carbon (TOC), pH, temperature and moisture. The results obtained from monitoring the process using isolated fungi under sterile conditions indicate that these fungi are able to grow in solid waste medium. The results of FT-IR and SEM analyses show that A. terreus and A. fumigatus, despite the availability of other organic carbon of materials, could utilize LDPE as carbon source. While there has been much research in the field of LDPE biodegradation under solid conditions, this is the first report of degradation of LDPE by A. fumigatus. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahra, Sahebnazar; Abbas, Shojaosadati Seyed, E-mail: sa_shoja@modares.ac.i; Mahsa, Mohammad-Taheri

    In this study, biodegradation of low-density polyethylene (LDPE) by isolated landfill-source fungi was evaluated in a controlled solid waste medium. The fungi, including Aspergillus fumigatus, Aspergillus terreus and Fusarium solani, were isolated from samples taken from an aerobic aged municipal landfill in Tehran. These fungi could degrade LDPE via the formation of a biofilm in a submerged medium. In the sterilized solid waste medium, LPDE films were buried for 100 days in a 1-L flask containing 400 g sterile solid waste raw materials at 28 deg. C. Each fungus was added to a separate flask. The moisture content and pHmore » of the media were maintained at the optimal levels for each fungus. Photo-oxidation (25 days under UV-irradiation) was used as a pretreatment of the LDPE samples. The progress of the process was monitored by measurement of total organic carbon (TOC), pH, temperature and moisture. The results obtained from monitoring the process using isolated fungi under sterile conditions indicate that these fungi are able to grow in solid waste medium. The results of FT-IR and SEM analyses show that A. terreus and A. fumigatus, despite the availability of other organic carbon of materials, could utilize LDPE as carbon source. While there has been much research in the field of LDPE biodegradation under solid conditions, this is the first report of degradation of LDPE by A. fumigatus.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crolley, R.; Thompson, M.

    There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges andmore » in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.« less

  7. Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Micale, Caterina; Morettini, Emanuela

    2015-10-15

    Highlights: • LCA analysis of two option for residual waste management. • Exploitation of mechanical physical sorting facility for extracting recyclable from RMSW. • Processing the mechanically sorted organic fraction in bioreactor landfill. • Sensitivity analysis demonstrate high influence for impact assessment of substitution ratio for recycle materials. - Abstract: Starting from an existing waste management district without thermal treatment facilities, two different management scenarios for residual waste were compared by life cycle assessment (LCA). The adoption of a bioreactor landfill for managing the mechanically sorted organic fraction instead of bio-stabilization led to reduction of global warming and fresh watermore » eutrophication by 50% and 10%, respectively. Extraction of recyclables from residual waste led to avoided emissions for particulate matter, acidification and resource depletion impact categories. Marginal energy and the amount of energy recovered from landfill gas marginally affected the LCA results. On the contrary the quality of the recyclables extracted can significantly modify the eco profile of the management schemes.« less

  8. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons

    EPA Science Inventory

    Polycyclic Aromatic Hydrocarbons (PAHs) are products of incomplete combustion of organic materials; sources are, thus, widespread,including cigarette smoke, municipal waste incineration, wood stove emissions, coal conversion, energy production form fossil fuels, and automobile an...

  9. GUIDE TO CLEANER TECHNOLOGIES: ORGANIC COATING REMOVAL

    EPA Science Inventory

    A cleaner technology is a source reduction or recycle method |applied to eliminate or significantly reduce hazardous waste generation. Source reduction includes product changes and source control. Source control can be further characterized as input material changes, technology...

  10. ETS: DEVELOPMENT OF A PHOTOTHERMAL DETOXIFICATION UNIT

    EPA Science Inventory

    There has long been interest in utilizing photochemical methods for destroying hazardous organic materials. Unfortunately, the direct application of classic, low temperature photochemical processes to hazardous waste detoxification is often too slow to be practical for wide spre...

  11. New technology for recyclingmaterials from oily cold rollingmill sludge

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Meng, Ling; Liu, Yang

    2013-12-01

    Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of "hydrometallurgical treatment + hydrothermal synthesis" was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, effective, and economical technology offers a new way to recycle oily CRM sludge.

  12. Waste Minimization Program. Air Force Plant 3.

    DTIC Science & Technology

    1986-02-01

    8217 . PC - ((B’S % S SULFIDES A lHNLC * ., F SHIPPING INFORMATION CHARACTERISTICS DO T HAZARDOUS MATERIAL’ [,YES ONO REACTIVITY k NONE E] PYROPHORIC l...an iron catalyst to oxidize organics. Treated paint stripping V waste would then be discharged to the IWG system for further treatment. Through this...McDonnell Douglas using a Nsolution of sodium hydroxide, sodium sulfide and triethanolamine. When the milling bath becomes depleted, it is collected

  13. Effect of storage conditions on the calorific value of municipal solid waste.

    PubMed

    Nzioka, Antony Mutua; Hwang, Hyeon-Uk; Kim, Myung-Gyun; Yan, Cao Zheng; Lee, Chang-Soo; Kim, Young-Ju

    2017-08-01

    Storage conditions are considered to be an important factor as far as waste material characteristics are concerned. This experimental investigation was conducted using municipal solid waste (MSW) with a high moisture content and varying composition of organic waste. The objective of this study was to understand the effect of storage conditions and temperature on the moisture content and calorific value of the waste. Samples were subjected to two different storage conditions and investigated at specified temperatures. The composition of sample materials investigated was varied for each storage condition and temperature respectively. Gross calorific value was determined experimentally while net calorific value was calculated using empirical formulas proposed by other researchers. Results showed minimal changes in moisture content as well as in gross and net calorific values when the samples were subjected to sealed storage conditions. Moisture content reduced due to the ventilation process and the rate of moisture removal increased with a rise in storage temperature. As expected, rate of moisture removal had a positive effect on gross and net calorific values. Net calorific values also increased at varying rates with a simultaneous decrease in moisture content. Experimental investigation showed the effectiveness of ventilation in improving the combustion characteristics of the waste.

  14. Low temperature ozone oxidation of solid waste surrogates

    NASA Astrophysics Data System (ADS)

    Nabity, James A.; Lee, Jeffrey M.

    2015-09-01

    Solid waste management presents a significant challenge to human spaceflight and especially, long-term missions beyond Earth orbit. A six-month mission will generate over 300 kg of solid wastes per crewmember that must be dealt with to eliminate the need for storage and prevent it from becoming a biological hazard to the crew. There are several methods for the treatment of wastes that include oxidation via ozone, incineration, microbial oxidation or pyrolysis and physical methods such as microwave drying and compaction. In recent years, a low temperature oxidation process using ozonated water has been developed for the chemical conversion of organic wastes to CO2 and H2O. Experiments were conducted to evaluate the rate and effectiveness with which ozone oxidized several different waste materials. Increasing the surface area by chopping or shredding the solids into small pieces more than doubled the rate of oxidation. A greater flow of ozone and agitation of the ozonated water system also increased processing rates. Of the materials investigated, plastics have proven the most difficult to oxidize. The processing of plastics above the glass transition temperatures caused the plastics to clump together which reduced the exposed surface area, while processing at lower temperatures reduced surface reaction kinetics.

  15. Generation and management of waste electric vehicle batteries in China.

    PubMed

    Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen

    2017-09-01

    With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.

  16. Plant growth response in experimental soilless mixes prepared from coal combustion products and organic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardhan, S.; Watson, M.; Dick, W.A.

    2008-07-15

    Large quantities of organic materials such as animal manures, yard trimmings, and biosolids are produced each year. Beneficial use options for them are often limited, and composting has been proposed as a way to better manage these organic materials. Similarly, burning of coal created 125 million tons of coal combustion products (CCP) in the United States in 2006. An estimated 53 million tons of CCP were reused, whereas the remainder was deposited in landfills. By combining CCP and composted organic materials (COM), we were able to create soilless plant growth mixes with physicochemical conditions that can support excellent plant growth.more » An additional benefit is the conservation of natural raw materials, such as peat, which is generally used for making soilless mixes. Experimental mixes were formulated by combining CCP and COM at ratios ranging from 2:8 to 8:2 (vol/vol), respectively. Water content at saturation for the created mixes was 63% to 72%, whereas for the commercial control, it was 77%. pH values for the best performing mixes ranged between 5.9 and 6.8. Electrical conductivity and concentrations of required plant nutrient were also within plant growth recommendations for container media. Significantly (P < 0.0001) higher plant biomass growth (7%-130%) was observed in the experimental mixes compared with a commercial mix. No additional fertilizers were provided during the experiment, and reduced fertilization costs can thus accrue as an added benefit to the grower. In summary, combining CCP and COM, derived from source materials often viewed as wastes, can create highly productive plant growth mixes.« less

  17. Mathematical modeling of olive mill waste composting process.

    PubMed

    Vasiliadou, Ioanna A; Muktadirul Bari Chowdhury, Abu Khayer Md; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Pavlou, Stavros; Vayenas, Dimitrios V

    2015-09-01

    The present study aimed at developing an integrated mathematical model for the composting process of olive mill waste. The multi-component model was developed to simulate the composting of three-phase olive mill solid waste with olive leaves and different materials as bulking agents. The modeling system included heat transfer, organic substrate degradation, oxygen consumption, carbon dioxide production, water content change, and biological processes. First-order kinetics were used to describe the hydrolysis of insoluble organic matter, followed by formation of biomass. Microbial biomass growth was modeled with a double-substrate limitation by hydrolyzed available organic substrate and oxygen using Monod kinetics. The inhibitory factors of temperature and moisture content were included in the system. The production and consumption of nitrogen and phosphorous were also included in the model. In order to evaluate the kinetic parameters, and to validate the model, six pilot-scale composting experiments in controlled laboratory conditions were used. Low values of hydrolysis rates were observed (0.002841/d) coinciding with the high cellulose and lignin content of the composting materials used. Model simulations were in good agreement with the experimental results. Sensitivity analysis was performed and the modeling efficiency was determined to further evaluate the model predictions. Results revealed that oxygen simulations were more sensitive on the input parameters of the model compared to those of water, temperature and insoluble organic matter. Finally, the Nash and Sutcliff index (E), showed that the experimental data of insoluble organic matter (E>0.909) and temperature (E>0.678) were better simulated than those of water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste.

    PubMed

    Sharma, Kavita; Mahato, Neelima; Nile, Shivraj Hariram; Lee, Eul Tal; Lee, Yong Rok

    2016-08-10

    Onion (Allium cepa L.) is one of the most commonly cultivated crops across the globe, and its production is increasing every year due to increasing consumer demand. Simultaneously, huge amounts of waste are produced from different parts of the onion, which ultimately affect the environment in various ways. Hence, proper usage as well as disposal of this waste is important from the environmental aspect. This review summarizes various usage methods of onion waste material, and processes involved to achieve maximum benefits. Processing industries produce the largest amount of onion waste. Other sources are storage systems, domestic usage and cultivation fields. Particular emphasis has been given to the methods used for better extraction and usage of onion waste under specific topics: viz. organic synthesis, production of biogas, absorbent for pollutants and value added products.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr.

    Recently, carbonaceous materials including activated carbon were proven to be effective catalysts for hazardous waste gasification in supercritical water. Using coconut shell activated carbon catalyst, complete decomposition of industrial organic wastes including methanol and acetic acid was achieved. During this process, the total mass of the activated carbon catalyst changes by two competing processes: a decrease in weight via gasification of the carbon by supercritical water, or an increase in weight by deposition of carbonaceous materials generated by incomplete gasification of the biomass feedstocks. The deposition of carbonaceous materials does not occur when complete gasification is realized. Gasification of themore » activated carbon in supercritical water is often favored, resulting in changes in the quality and quantity of the catalyst. To thoroughly understand the hazardous waste decomposition process, a more complete understanding of the behavior of activated carbon in pure supercritical water is needed. The gasification rate of carbon by water vapor at subcritical pressures was studied in relation to coal gasification and generating activated carbon.« less

  20. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review.

    PubMed

    Hung, Chun-Hsiung; Chang, Yi-Tang; Chang, Yu-Jie

    2011-09-01

    Anaerobic fermentative biohydrogen production, the conversion of organic substances especially from organic wastes to hydrogen gas, has become a viable and promising means of producing sustainable energy. Successful biological hydrogen production depends on the overall performance (results of interactions) of bacterial communities, i.e., mixed cultures in reactors. Mixed cultures might provide useful combinations of metabolic pathways for the processing of complex waste material ingredients, thereby supporting the more efficient decomposition and hydrogenation of biomass than pure bacteria species would. Therefore, understanding the relationships between variations in microbial composition and hydrogen production efficiency is the first step in constructing more efficient hydrogen-producing consortia, especially when complex and non-sterilized organic wastes are used as feeding substrates. In this review, we describe recent discoveries on bacterial community composition obtained from dark fermentation biohydrogen production systems, with emphasis on the possible roles of microorganisms that co-exist with common hydrogen producers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory.

    PubMed

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2017-08-01

    The fate of total solids, volatile solids, total organic carbon, fossil carbon, biogenic carbon and 17 substances (As, Ca, CaCO 3 , Cd, Cl, Cr, Cu, H, Hg, K, Mg, N, Ni, O, P, Pb, S, Zn) in a combined dry anaerobic digestion and post-composting facility were assessed. Mass balances showed good results with low uncertainties for non-volatile substances, while balances for nitrogen, carbon, volatile solids and total organic carbon showed larger but reasonable uncertainties, due to volatilisation and emissions into the air. Material and substance flow analyses were performed in order to obtain transfer coefficients for a combined dry anaerobic digestion and post-composting facility. All metals passed through the facility and ended up in compost or residues, but all concentrations of metals in the compost complied with legislation. About 23% of the carbon content of the organic waste was transferred to the biogas, 24% to the compost, 13% to residues and 40% into the atmosphere. For nitrogen, 69% was transferred to the compost, 10% volatilised to the biofilter, 11% directly into the atmosphere and 10% to residues. Finally, a full life cycle inventory was conducted for the combined dry anaerobic digestion and post-composting facility, including waste received, fuel consumption, energy use, gaseous emissions, products, energy production and chemical composition of the compost produced. Copyright © 2017. Published by Elsevier Ltd.

  2. Superfund Record of Decision (EPA Region 5): Allied Chemical and Ironton Coke, Ironton, OH. (Second remedial action), December 1990. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-28

    The 95-acre Allied Chemical and Ironton Coke site is comprised of a former coke plant and an operating tar plant in Ironton, Lawrence County, Ohio. The site is located within a coal mining region, and surrounding land use is predominantly industrial and residential. The ROD addresses contamination at all areas not previously addressed, and provides a final remedy at the site. The primary contaminants of concern affecting the soil, sediment, and ground water are VOCs including benzene; other organics including PAHs and phenols; metals including arsenic; and other inorganics including cyanide. The selected remedial action for this site includes excavatingmore » and incinerating onsite approximately 122,000 cubic yards of waste material from Lagoon 5, and 31,000 cubic yards of waste coal, followed by onsite waste fuel recovery and disposing of the residual ash offsite; in-situ bioremediation of approximately 475,000 cubic yards of waste material from Lagoons.« less

  3. Harvest and utilization of chemical energy in wastes by microbial fuel cells.

    PubMed

    Sun, Min; Zhai, Lin-Feng; Li, Wen-Wei; Yu, Han-Qing

    2016-05-21

    Organic wastes are now increasingly viewed as a resource of energy that can be harvested by suitable biotechnologies. One promising technology is microbial fuel cells (MFC), which can generate electricity from the degradation of organic pollutants. While the environmental benefits of MFC in waste treatment have been recognized, their potential as an energy producer is not fully understood. Although progresses in material and engineering have greatly improved the power output from MFC, how to efficiently utilize the MFC's energy in real-world scenario remains a challenge. In this review, fundamental understandings on the energy-generating capacity of MFC from real waste treatment are provided and the challenges and opportunities are discussed. The limiting factors restricting the energy output and impairing the long-term reliability of MFC are also analyzed. Several energy storage and in situ utilization strategies for the management of MFC's energy are proposed, and future research needs for real-world application of this approach are explored.

  4. Densified waste form and method for forming

    DOEpatents

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  5. Practical management of chemicals and hazardous wastes: An environmental and safety professional`s guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhre, W.L.

    This book was written to help the environmental and safety student learn about the field and to help the working professional manage hazardous material and waste issues. For example, one issue that will impact virtually all of these people mentioned is the upcoming environmental standardization movement. The International Standards Organization (ISO) is in the process of adding comprehensive environmental and hazardous waste management systems to their future certification requirements. Most industries worldwide will be working hard to achieve this new level of environmental management. This book presents many of the systems needed to receive certification. In order to properly managemore » hazardous waste, it is important to consider the entire life cycle, including when the waste was a useful chemical or hazardous material. Waste minimization is built upon this concept. Understanding the entire life cycle is also important in terms of liability, since many regulations hold generators responsible from cradle to grave. This book takes the life-cycle concept even further, in order to provide additional insight. The discussion starts with the conception of the chemical and traces its evolution into a waste and even past disposal. At this point the story continues into the afterlife, where responsibility still remains.« less

  6. Biotechnological possibilities for waste tyre-rubber treatment.

    PubMed

    Holst, O; Stenberg, B; Christiansson, M

    1998-01-01

    Every year large amounts of spent rubber material, mainly from rubber tyres, are discarded. Of the annual total global production of rubber material, which amounts to 16-17 million tonnes, approximately 65% is used for the production of tyres. About 250 millions spent car tyres are generated yearly in USA only. This huge amount of waste rubber material is an environmental problem of great concern. Various ways to remediate the problem have been proposed. Among these are road fillings and combustion in kilns. Spent tyres, however, comprise valuable material that could be recycled if a proper technique can be developed. One way of recycling old tyres is to blend ground spent rubber with virgin material followed by vulcanization. The main obstacle to this recycling is bad adhesion between the crumb and matrix of virgin rubber material due to little formation of interfacial sulphur crosslinks. Micro-organisms able to break sulphur-sulphur and sulphur-carbon bonds can be used to devulcanize waste rubber in order to make polymer chains on the surface more flexible and facilitate increased binding upon vulcanization. Several species belonging to both Bacteria and Archaea have this ability. Mainly sulphur oxidizing species, such as different species of the genus Thiobacillus and thermoacidophiles of the order of Sulfolobales, have been studied in this context. The present paper will give a background to the problem and an overview of the biotechnological possibilities for solutions of waste rubber as an environmental problem, focusing on microbial desulphurization.

  7. Fate of Organic Micropollutants during Hydrothermal Carbonization

    NASA Astrophysics Data System (ADS)

    Weiner, B.; Baskyr, I.; Pörschmann, J.; Kopinke, F.-D.

    2012-04-01

    The hydrothermal carbonization (HTC) is an exothermic process, in which biomass in an aqueous suspension is transformed into a bituminous coal-like material (hydrochar) at temperatures between 180-250°C and under moderate pressure. With these process conditions, little gas is generated (1-5%), and a fraction of the organic carbon is dissolved in the aqueous phase (10-30%) but the largest part is obtained as solid char. The respective yields and the molecular composition depend on the choice of educts and the process conditions, such as temperature, pH-value, and reaction time. Various biomass-educts have recently been studied, such as waste materials from agriculture, brewer's spent grains, sewage sludge, as well as wood and paper materials. Besides their use for energy generation, the hydrochars have also been investigated as soil amendments. Prior to addition of the chars to soil, these should be free of toxic components that could be released into the environment as harmful organic pollutants. Herein, the potential for the degradation of trace organic pollutants, such as pesticides and pharmaceuticals, under typical HTC conditions will be presented. The degradation of selected organic pollutants with different polarity and hydrophobicity was investigated. Scope and limitations of the degradation potential of the HTC are discussed on examples of micro pollutants such as hormones, residues of pharmaceuticals and personal care products including their metabolites, and pesticides. We will show that the target analytes are partially and in some cases completely degraded. The degree of degradation depends on the HTC process conditions such as reaction temperature and time, the solution pH value, the presence of catalysts or additional reagents. The biotic and abiotic degradation of chlorinated organic compounds, in particular chlorinated aromatics, has been a well-known environmental problem and remains a challenging issue for the development of a HTC process for contaminated biomass. Chlorinated aromatic compounds are not fully degraded during HTC. Therefore, the addition of catalysts and reagents for a possible reduction has been studied. Zero-valent environmentally acceptable metals, such as Fe or Si, are presented as potential additives for the dechlorination of chloronaphthalene as a representative of chloroaromatics. Furthermore, when using municipal household waste, such as the 'organic' bin, or gardening greens as biomass educts, these materials often contain traces of synthetic plastics, which can lead to problems during waste incineration. Initial studies on the fate of synthetic polymers will also be presented.

  8. Management of plastic wastes at Brazilian ports and diagnosis of their generation.

    PubMed

    Neffa Gobbi, Clarice; Lourenço Sanches, Vânia Maria; Acordi Vasques Pacheco, Elen Beatriz; de Oliveira Cavalcanti Guimarães, Maria José; Vasconcelos de Freitas, Marcos Aurélio

    2017-11-15

    This study evaluated the management of plastic wastes at 20 Brazilian maritime ports, from three sources: vessels, leased and non-leased areas. The data were obtained from documents on port wastes organized in a relational database with defined protocols (closed form). Analysis of the spreadsheets prepared and field visits revealed that the main bottleneck in managing plastic wastes at ports is their segregation. In general, more material is segregated and sent for recycling from leased areas than non-leased ones (administered by the government). This relatively better performance in managing the wastes generated in leased areas is probably due to the need for private operators to comply with the international standards such as the Code of Environmental Practice to satisfy the international market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Performance of green waste biocovers for enhancing methane oxidation.

    PubMed

    Mei, Changgen; Yazdani, Ramin; Han, Byunghyun; Mostafid, M Erfan; Chanton, Jeff; VanderGheynst, Jean; Imhoff, Paul

    2015-05-01

    Green waste aged 2 and 24months, labeled "fresh" and "aged" green waste, respectively, were placed in biocover test cells and evaluated for their ability to oxidize methane (CH4) under high landfill gas loading over a 15-month testing period. These materials are less costly to produce than green waste compost, yet satisfied recommended respiration requirements for landfill compost covers. In field tests employing a novel gas tracer to correct for leakage, both green wastes oxidized CH4 at high rates during the first few months of operation - 140 and 200g/m(2)/day for aged and fresh green waste, respectively. Biocover performance degraded during the winter and spring, with significant CH4 generated from anaerobic regions in the 60-80cm thick biocovers. Concurrently, CH4 oxidation rates decreased. Two previously developed empirical models for moisture and temperature dependency of CH4 oxidation in soils were used to test their applicability to green waste. Models accounted for 68% and 79% of the observed seasonal variations in CH4 oxidation rates for aged green waste. Neither model could describe similar seasonal changes for the less stable fresh green waste. This is the first field application and evaluation of these empirical models using media with high organic matter. Given the difficulty of preventing undesired CH4 generation, green waste may not be a viable biocover material for many climates and landfill conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. EMERGING TECHNOLOGY REPORT: DEVELOPMENT OF A PHOTOTHERMAL DETOXIFICATION UNIT

    EPA Science Inventory

    There has long been interest in utilizing photochemical methods for destroying hazardous organic materials. Unfortunately, the direct application of classic, low temperature photochemical processes to hazardous waste detoxification are often too slow to be practical for wide spr...

  11. Catalytic methods using molecular oxygen for treatment of PMMS and ECLSS waste streams, volume 2

    NASA Technical Reports Server (NTRS)

    Akse, James R.

    1992-01-01

    Catalytic oxidation has proven to be an effective addition to the baseline sorption, ion exchange water reclamation technology which will be used on Space Station Freedom (SSF). Low molecular weight, polar organics such as alcohols, aldehydes, ketones, amides, and thiocarbamides which are poorly removed by the baseline multifiltration (MF) technology can be oxidized to carbon dioxide at low temperature (121 C). The catalytic oxidation process by itself can reduce the Total Organic Carbon (TOC) to below 500 ppb for solutions designed to model these waste waters. Individual challenges by selected contaminants have shown only moderate selectivity towards particular organic species. The combined technology is applicable to the more complex waste water generated in the Process Materials Management System (PMMS) and Environmental Control and Life Support System (ECLSS) aboard SSF. During the phase 3 Core Module Integrated Facility (CMIF) water recovery tests at NASA MSFC, real hygiene waste water and humidity condensate were processed to meet potable specifications by the combined technology. A kinetic study of catalytic oxidation demonstrates that the Langmuir-Hinshelwood rate equation for heterogeneous catalysts accurately represent the kinetic behavior. From this relationship, activation energy and rate constants for acetone were determined.

  12. Solid recovered fuels in the cement industry with special respect to hazardous waste.

    PubMed

    Thomanetz, Erwin

    2012-04-01

    Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.

  13. The Research and Application of Sustainable Long-release Carbon Material with Agricultural Waste

    NASA Astrophysics Data System (ADS)

    Wen, Z.

    2017-12-01

    (1) The element analysis shown that ten kinds of agricultural wastes containing a certain amount of C, N, H elements, the highest content of C element, and t value ranges from 36.02% 36.02%, and the variation of C, N, H elements content in difference materials was not significant. The TOC concentration of sugar cane was up to 38.66 mg·g-1, and quality ratio was 39‰, significantly lower than C elements content. The released TOC quality of the rest materials were 2.36 2.36 mg·g-1, and the order from high to low were the soybean straw, rice straw, corn straw, rice husk, poplar branches, wheat straw, reeds, corn cob and wood chips respectively. The long-term leaching experiment of selected Optimized agricultural waste showed that the TOC content in leaching solution rise rapidly to peak value and was stable afterwards, with the concentration of 4.59 19.46 mg·g-1. The TOC releasing amount order was same with the short-term leaching experiment. (2) The releasing of nitrate nitrogen in ten kinds of agricultural waste was low (< 0.08mg·g-1), among which corn straw was up to 0.12mg·g-1, and the rest were all below 0.04mg·g-1 without accumulation. Most of the ammonia nitrogen concentration in leachate was lower than 0.3mg·g-1. The kjeldahl nitrogen in the corn straw, soybean straw, rice straw, reed, rice husk, and sugar cane leachate (0.81 1.65mg·g-1) were higher than that of poplar branches, corn cob and wood chips (< 0.30mg·g-1). The organic composition analysis of above carbon source shown that organic acid in leachate was mainly formic acid, acetic acid, oxalic acid, fumaric acid and other small molecule organic acids, and sugars was mainly cellobiose, glucose, fructose and xylose. Substance concentration was higher in sugar cane leachate, and the small molecular organic acid concentration was higher in the corn straw, rice husk and wheat straw leachate. Above all, it can be concluded that the sugar cane, corn straw, rice husk, wheat straw, corn cob, wood were ideal carbon source material in ten kinds of agricultural.

  14. An assessment of the current municipal solid waste management system in Lahore, Pakistan.

    PubMed

    Masood, Maryam; Barlow, Claire Y; Wilson, David C

    2014-09-01

    The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable. © The Author(s) 2014.

  15. Densified waste form and method for forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate themore » temperature sensitive waste material in a physically densified matrix.« less

  16. Renewable synthetic diesel fuel from triglycerides and organic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillard, J.C.; Strassburger, R.S.

    1986-03-01

    A renewable, synthetic diesel fuel has been developed that employs ethanol and organic waste materials. These organic materials, such as soybean oil or animal fats, are hydrolized to yield a mixture of solid soap like materials and glycerol. These soaps, now soluble in ethanol, are blended with ethanol; the glycerol is nitrated and added as well as castor oil when necessary. The synthetic fuel is tailored to match petroleum diesel fuel in viscosity, lubricity and cetane quality and, therefore, does not require any engine modifications. Testing in a laboratory engine and in a production Oldsmobile Cutlass has revealed that thismore » synthetic fuel is superior to petroleum diesel fuel in vehicle efficiency, cetane quality, combustion noise, cold start characteristics, exhaust odor and emissions. Performance characteristics are indistinguishable from those of petroleum diesel fuel. These soaps are added to improve the calorific value, lubricity and cetane quality of the ethanol. The glycerol from the hydrolysis process is nitrated and added to the ethanol as an additional cetane quality improver. Caster oil is added to the fuel when necessary to match the viscosity and lubricity of petroleum diesel fuel as well as to act as a corrosion inhibitor, thereby, precluding any engine modifications. The cetane quality of the synthetic fuel is better than that of petroleum diesel as the fuel carries its own oxygen. The synthetic fuel is also completely miscible with petroleum diesel.« less

  17. Chemical recycling of scrap composites

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Salas, Richard M.

    1994-01-01

    There are no well-developed technologies for recycling composite materials other than grinding to produce fillers. New approaches are needed to reclaim these valuable resources. Chemical or tertiary recycling, conversion of polymers into low molecular weight hydrocarbons for reuse as chemicals or fuels, is emerging as the most practical means for obtaining value from waste plastics and composites. Adherent Technologies is exploring a low-temperature catalytic process for recycling plastics and composites. Laboratory results show that all types of plastics, thermosets as well as thermoplastics, can be converted in high yields to valuable hydrocarbon products. This novel catalytic process runs at 200 C, conversion times are rapid, the process is closed and, thus, nonpolluting, and no highly toxic gas or liquid products have been observed so no negative environmental impact will result from its implementation. Tests on reclamation of composite materials show that epoxy, imide, and engineering thermoplastic matrices can be converted to low molecular weight hydrocarbons leaving behind the reinforcing fibers for reuse as composite reinforcements in secondary, lower-performance applications. Chemical recycling is also a means to dispose of sensitive or classified organic materials without incineration and provides a means to eliminate or reduce mixed hazardous wastes containing organic materials.

  18. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  19. International waste management fact book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaya, J P; LaMarche, M N; Upton, J F

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  20. Real-time monitoring and control of the plasma hearth process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, M.A.; Carney, K.P.; Peters, G.G.

    1996-05-01

    A distributed monitoring and control system is proposed for a plasma hearth, which will be used to decompose hazardous organic materials, encapsulate actinide waste in an obsidian-like slag, and reduce storage volume of actinide waste. The plasma hearth will be installed at ANL-West with the assistance of SAIC. Real-time monitoring of the off-gas system is accomplished using a Sun Workstation and embedded PCs. LabWindows/CVI software serves as the graphical user interface.

  1. Anaerobic codigestion of dairy manure and food manufacturing waste for renewable energy generation in New York State

    NASA Astrophysics Data System (ADS)

    Rankin, Matthew J.

    Anaerobic digestion is a microbiological process that converts biodegradable organic material into biogas, consisting primarily of methane and carbon dioxide. Anaerobic digestion technologies have been integrated into wastewater treatment facilities nationwide for many decades to increase the economic viability of the treatment process by converting a waste stream into two valuable products: biogas and fertilizer. Thus, anaerobic digestion offers potential economic and environmental benefits of organic waste diversion and renewable energy generation. The use of biogas has many applications, including cogeneration, direct combustion, upgrading for conversion to feed a fuel cell, and compression for injection into the natural gas grid or for vehicular use. The potential benefits of waste diversion and renewable energy generation are now being realized by major organic waste generators in New York State, in particular the food manufacturing and dairy industries, thus warranting an analysis of the energy generation potential for these waste products. Anaerobic codigestion of dairy manure and food-based feedstocks reflects a cradle-to- cradle approach to organic waste management. Given both of their abundance throughout New York State, waste-to-energy processes represent promising waste management strategies. The objective of this thesis was to evaluate the current technical and economic feasibility of anaerobically codigesting existing dairy manure and food manufacturing waste feedstocks in New York State to produce high quality biogas for renewable energy generation. The first element to determining the technical feasibility of anaerobic codigestion potential in New York State was to first understand the feedstock availability. A comprehensive survey of existing organic waste streams was conducted. The key objective was to identify the volume and composition of dairy manure and liquid-phase food manufacturing waste streams available in New York State to make codigestion of multiple feedstocks in centralized anaerobic codigestion facilities an economically attractive alternative to traditional waste disposal pathways (e.g. landfill and wastewater treatment facilities). A technical and environmental assessment of processing food manufacturing wastes and dairy manure for production of electricity via cogeneration, while dependent on biogas quantity and quality as well as the proximity of the waste generators to the centralized codigestion facility, suggests that a real possibility exists for integrating dairy operations with food manufacturing facilities, dependent on the values of the parameters indicated in this thesis. The results of the environmental analysis show that considerable electricity generation and greenhouse gas emissions reductions are possible, depending primarily on feedstock availability and proximity to the centralized anaerobic digester. The initial results are encouraging and future work is warranted for analyzing the site-specific technical and economic viability of codigesting dairy manure and food manufacturing wastes to produce high quality biogas for renewable energy generation in New York State.

  2. The efficiency of home composting programmes and compost quality.

    PubMed

    Vázquez, M A; Soto, M

    2017-06-01

    The efficiency of home composting programmes and the quality of the produced compost was evaluated in eight rural areas carrying out home composting programmes (up to 880 composting bins) for all household biowaste including meat and fish leftovers. Efficiency was analysed in terms of reduction of organic waste collected by the municipal services. An efficiency of 77% on average was obtained, corresponding to a composting rate of 126kg/person·year of biowaste (or 380kg/composter·year). Compost quality was determined for a total of 90 composting bins. The operation of composting bins by users was successful, as indicated by a low C/N ratio (10-15), low inappropriate materials (or physical contaminant materials, mean of 0.27±0.44% dry matter), low heavy metal content (94% of samples met required standards for agricultural use) and high nutrient content (2.1% N, 0.6% P, 2.5% K, 0.7% Mg and 3.7% Ca on average, dry matter). The high moisture (above 70% in 48% of the samples) did not compromise the compost quality. Results of this study show that home composting of household organic waste including meat and fish leftovers is a feasible practice. Home composting helps individuals and families to reduce the amount of household waste at the same time gaining a fertiliser material (compost) of excellent quality for gardens or vegetable plots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  4. Production of an innovative fertilizer from organic waste: process monitoring by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Bonifazi, Giuseppe; Fabbri, Andrea; Dall'Ara, Alice; Garcia Izquierdo, Carlos

    2015-05-01

    The European directive 2008/98/CE establishes a legal framework for the treatment of waste within the Community. It aims at protecting the environment and human health through the prevention of the harmful effects of waste generation and waste management. In order to better protect the environment, the Member States should adopt measures for the treatment of their waste according to a hierarchy as outlined: prevention, preparing for reuse, recycling, energy recovery, disposal. In this context, the European project LIFE12 ENV/IT/000356 "RESAFE" is addressed to produce and utilize a new class of fertilizers characterized by reduced salinity in order to substitute chemical and mineral fertilizers through a technological route based on Urban Organic Waste (UOW), Farm Organic Residues (FOR), Bio-Chars (BC) and Vegetable Active Principles (VAP) processing. Following this approach, it will be possible for farmers and urban waste managers to reduce costs and to obtain environmental and economic incomes. Furthermore, environmental impacts will be also reduced contributing to decrease the greenhouse emissions from landfills and from the production of mineral fertilizers. In this paper, specific innovative sensing architectures, based on Hyper-Spectral Imaging (HSI) devices working in the near infrared (NIR) range, and related detection architectures, is presented and discussed in order to define and apply smart detection engines to follow the transformations of the complex material, resulting from UOW, FOR, BC and VAP based recipes during the different stages of the fertilizer production process. Results show as the fertilizer production process can be monitored adopting the NIR-HSI approach.

  5. Results of Testing the Relative Oxidizing Hazard of Wipes and KMI Zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ams, Bridget Elaine

    This report includes the results from testing performed on the relative oxidizing hazard of a number of organic sorbing wipe materials, as well as KMI zeolite. These studies were undertaken to address a need by the Los Alamos National Laboratory (LANL) Hazardous Materials Management group, which requires a material that can sorb small spills in a glovebox without creating a disposal hazard due to the potential for oxidation reactions, as requested in Request for Testing of Wipes and Zeolite for Los Alamos National Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-002) and Request for Testing of Chamois Material for Los Alamos Nationalmore » Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-005). This set oftests is a continuation of previous testing described in Results from Preparation and Testing of Sorbents Mixed with (DWT-RPT-003), which provided data for the Waste Isolation Pilot Plant's Basis of Knowledge. The Basis of Knowledge establishes criteria for evaluating transuranic (TRU) waste that contains oxidizing chemicals.« less

  6. Microwave-assisted transformations and synthesis of polymer nanocomposites and nanomaterials

    EPA Science Inventory

    The use of emerging MW-assisted chemistry techniques in conjunction with greener reaction media is dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This account summarizes our own experience in developing MW-assist...

  7. The carbonaceous sorbent based on the secondary silica-containing material from oil extraction industry

    NASA Astrophysics Data System (ADS)

    Starostina, I. V.; Stolyarov, D. V.; Anichina, Ya N.; Porozhnyuk, E. V.

    2018-01-01

    The object of research in this work is the silica-containing waste of oil extraction industry - the waste kieselghur (diatomite) sludge from precoat filtering units, used for the purification of vegetable oils from organic impurities. As a result of the thermal modification of the sludge, which contains up to 70% of organic impurities, a finely-dispersed low-porous carbonaceous mineral sorption material is formed. The modification of the sludge particles surface causes the substantial alteration of its physical, chemical, adsorption and structural properties - the organic matter is charred, the particle size is reduced, and on the surface of diatomite particles a carbon layer is formed, which deposits in macropores and partially occludes them. The amount of mesopores is increased, along with the specific surface of the obtained product. The optimal temperature of sludge modification is 500°C. The synthesized carbonaceous material can be used as an adsorbing agent for the purification of wastewater from heavy metal ions. The sorption capacity of Cu2+ ions amounted to 14.2 mg·g-1 and for Ni2+ ions - 17.0 mg·g-1. The obtained values exceed the sorption capacity values of the initial kieselghur, used as a filtering charge, for the researched metal ions.

  8. Hazard property classification of waste according to the recent propositions of the EC using different methods.

    PubMed

    Hennebert, Pierre; van der Sloot, Hans A; Rebischung, Flore; Weltens, Reinhilde; Geerts, Lieve; Hjelmar, Ole

    2014-10-01

    Hazard classification of waste is a necessity, but the hazard properties (named "H" and soon "HP") are still not all defined in a practical and operational manner at EU level. Following discussion of subsequent draft proposals from the Commission there is still no final decision. Methods to implement the proposals have recently been proposed: tests methods for physical risks, test batteries for aquatic and terrestrial ecotoxicity, an analytical package for exhaustive determination of organic substances and mineral elements, surrogate methods for the speciation of mineral elements in mineral substances in waste, and calculation methods for human toxicity and ecotoxicity with M factors. In this paper the different proposed methods have been applied to a large assortment of solid and liquid wastes (>100). Data for 45 wastes - documented with extensive chemical analysis and flammability test - were assessed in terms of the different HP criteria and results were compared to LoW for lack of an independent classification. For most waste streams the classification matches with the designation provided in the LoW. This indicates that the criteria used by LoW are similar to the HP limit values. This data set showed HP 14 'Ecotoxic chronic' is the most discriminating HP. All wastes classified as acute ecotoxic are also chronic ecotoxic and the assessment of acute ecotoxicity separately is therefore not needed. The high number of HP 14 classified wastes is due to the very low limit values when stringent M factors are applied to total concentrations (worst case method). With M factor set to 1 the classification method is not sufficiently discriminating between hazardous and non-hazardous materials. The second most frequent hazard is HP 7 'Carcinogenic'. The third most frequent hazard is HP 10 'Toxic for reproduction' and the fourth most frequent hazard is HP 4 "Irritant - skin irritation and eye damage". In a stepwise approach, it seems relevant to assess HP 14 first, then, if the waste is not classified as hazardous, to assess subsequently HP 7, HP 10 and HP 4, and then if still not classified as hazardous, to assess the remaining properties. The elements triggering the HP 14 classification in order of importance are Zn, Cu, Pb, Cr, Cd and Hg. Progress in the speciation of Zn and Cu is essential for HP 14. Organics were quantified by the proposed method (AFNOR XP X30-489) and need no speciation. Organics can contribute significantly to intrinsic toxicity in many waste materials, but they are only of minor importance for the assessment of HP 14 as the metal concentrations are the main HP 14 classifiers. Organic compounds are however responsible for other toxicological characteristics (hormone disturbance, genotoxicity, reprotoxicity…) and shall be taken into account when the waste is not HP 14 classified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.

    PubMed

    Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi

    2012-01-01

    The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800  tons with per capita solid waste generation rate of 0.609  kg  person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36  ton  year(-1)) in 1999 to 7.22% (10, 165  ton  year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.

  10. Fluorescence of aqueous solutions of commercial humic products

    NASA Astrophysics Data System (ADS)

    Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.

    2012-01-01

    We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Alisha J.; Cole, Jacqueline M.

    The ever-increasing demands of the modern world continue to place substantial strain on the environment. To help alleviate the damage done to the natural world, the encapsulation of small molecules or ions (guests) into porous inorganic structural frameworks (hosts) provides a potential remedy for some of the environmental concerns facing us today. These concerns include the removal of harmful pollutants from water or air, the safe entrapment of nuclear waste materials, or the purification and storage of small molecules that act as alternative fuel sources. For this study, we review the trends in using inorganic materials as hostmedia for themore » removal or storage of various wastes and alternative fuels. In conclusion, we cover the treatment of water contaminated with dyes or heavy metals, air pollution alleviation via CO 2, SO x, NO x, and volatile organic compound containment, nuclear waste immobilization, and storage for H 2 and methane as alternative fuels.« less

  12. Large-Scale In-situ Experiments to Determine Geochemical Alterations and Microbial Activities at the Geological Repository

    NASA Astrophysics Data System (ADS)

    Choung, S.; Francis, A. J.; Um, W.; Choi, S.; Kim, S.; Park, J.; Kim, S.

    2013-12-01

    The countries that have generated nuclear power have facing problems on the disposal of accumulated radioactive wastes. Geological disposal method has been chosen in many countries including Korea. A safety issue after the closure of geological repository has been raised, because microbial activities lead overpressure in the underground facilities through gas production. In particular, biodegradable organic materials derived from low- and intermediate-level radioactive wastes play important role on microbial activities in the geological repository. This study performed large scale in-situ experiments using organic wastes and groundwater, and investigated geochemical alteration and microbial activities at early stage (~63 days) as representative of the period, after closure of the geological repository. The geochemical alteration controlled significantly the microorganism types and populations. Database of the biogeochemical alteration facilitates prediction of radionuclides' mobility and establishment of remedial strategy against unpredictable accidents and hazards at early stage right after closure of the geological repository.

  13. Influence of resources on Hermetia illucens (Diptera: Stratiomyidae) larval development.

    PubMed

    Nguyen, Trinh T X; Tomberlin, Jeffery K; Vanlaerhoven, Sherah

    2013-07-01

    Arthropod development can be used to determine the time of colonization of human remains to infer a minimum postmortem interval. The black soldier fly, Hermetia illucens L. (Diptera. Stratiomyidae) is native to North America and is unique in that its larvae can consume a wide range of decomposing organic material, including carrion. Larvae development was observed on six resources: control poultry feed, liver, manure, kitchen waste, fruits and vegetables, and fish rendering. Larvae fed manure were shorter, weighed less, and took longer to develop. Kitchen waste produced longer and heavier larvae, whereas larvae fed fish had almost 100% mortality. Black soldier flies can colonize human remains, which in many instances can coincide with food and organic wastes. Therefore, it is necessary to understand black soldier fly development on different food resources other than carrion tissue to properly estimate their age when recovered from human remains.

  14. Sources and management of hazardous waste in Papua New Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises;more » it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.« less

  15. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.

    PubMed

    Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon

    2011-07-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.

  16. Chemical Technology Division annual technical report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, andmore » treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.« less

  17. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

    PubMed

    Torres-Climent, A; Gomis, P; Martín-Mata, J; Bustamante, M A; Marhuenda-Egea, F C; Pérez-Murcia, M D; Pérez-Espinosa, A; Paredes, C; Moral, R

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.

  18. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting

    PubMed Central

    Torres-Climent, A.; Gomis, P.; Martín-Mata, J.; Bustamante, M. A.; Marhuenda-Egea, F. C.; Pérez-Murcia, M. D.; Pérez-Espinosa, A.; Paredes, C.; Moral, R.

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio. PMID:26418458

  19. Mechanochemical pre-treatment for viable recycling of plastic waste containing haloorganics.

    PubMed

    Cagnetta, Giovanni; Zhang, Kunlun; Zhang, Qiwu; Huang, Jun; Yu, Gang

    2018-05-01

    Chemical recycling technologies are the most promising for a waste-to-energy/material recovery of plastic waste. However, 30% of such waste cannot be treated in this way due to the presence of halogenated organic compounds, which are often utilized as flame retardants. In fact, high quantities of hydrogen halides and dioxin would form. In order to enabling such huge amount of plastic waste as viable feedstock for recycling, an investigation on mechanochemical pre-treatment by high energy ball milling is carried out on polypropylene containing decabromodiphenyl ether. Results demonstrate that co-milling with zero valent iron and quartz sand ensures complete debromination and mineralization of the flame retardant. Furthermore, a comparative experiment demonstrates that the mechanochemical debromination kinetics is roughly proportional to the polymer-to-haloorganics mass ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, S.

    During the period from fiscal year (FY) 2009 to FY 2011, there were a total of 21 incidents involving radioactively contaminated shipment trailers and 9 contaminated waste packages received at the Nevada National Security Site (NNSS) Area 5 Radioactive Waste Management Site (RWMS). During this time period, the EnergySolutions (ES) Clive, Utah, disposal facility had a total of 18 similar incidents involving trailer and package contamination issues. As a result of the increased occurrence of such incidents, DOE Environmental Management Headquarters (EM/HQ) Waste Management organization (EM-30) requested that the Energy Facility Contractors’ Group (EFCOG) Waste Management Working Group (WMWG) conductmore » a detailed review of these incidents and report back to EM-30 regarding the results of this review, including providing any recommendations formulated as a result of the evaluation of current site practices involving handling and management of radioactive material and waste shipments.« less

  1. Method and system including a double rotary kiln pyrolysis or gasification of waste material

    DOEpatents

    McIntosh, M.J.; Arzoumanidis, G.G.

    1997-09-02

    A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet. 5 figs.

  2. Method and system including a double rotary kiln pyrolysis or gasification of waste material

    DOEpatents

    McIntosh, Michael J.; Arzoumanidis, Gregory G.

    1997-01-01

    A method of destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500.degree. C. to heat the particulate material to a temperature in the range of from about 200.degree. C. to about 900.degree. C. in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

  3. Field bioassays for early detection of chronic impacts of chemical wastes upon marine organisms

    NASA Astrophysics Data System (ADS)

    Pequegnat, W. E.; Wastler, T. A.

    1980-03-01

    A major problem facing those who must assess the environmental effects of the disposal in the ocean of industrial and municipal wastes, including dredged materials, is determining whether given wastes elicit chronic deteriorative responses in important species of organisms. The full importance of such low-level, nonlethal effects is not known, but it is suspected that repeated elicitations may result in ecosystem changes as important as those caused by more easily determinable acute effects. Such considerations are important to the marine environment, where dumped pollutants may be quickly diluted to legal nonlethal concentrations, but may still bring forth cumulative chronic response patterns. One objective of this study has been to develop a field method of assessing the impacts of the disposal of various industrial and municipal wastes. The measure of the impact is not mortality measured against time, but the increase or decrease in activity of certain metabolic enzymes that signal whether an organism is under stress from a class of wastes. Also, by analysing tissues of test and indigenous species for the accumulation of metals, PCBs, and high molecular weight hydrocarbons as well as for the enzyme activity, one gains an insight into the actual effect, if any, of the accumulation upon the whole organism. The test organisms are exposed for selected periods of time in the field in devices called Biotal Ocean Monitors (BOMs); they are then assayed for enzyme induction. At present the following enzymes are used: mitochondrial ATPase, which responds particularly to excess biphenyls in the environment; catalase that is dissolved in the cytosol and responds to excesses of toxic metals; and cytochrome P-420 and P-450, which respond to cyclic and long-chain hydrocarbons. The applicability of the adenylate energy charge system to this problem is also studied.

  4. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    NASA Astrophysics Data System (ADS)

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  5. Using slaughterhouse waste in a biochemical-based biorefinery - results from pilot scale tests.

    PubMed

    Schwede, Sebastian; Thorin, Eva; Lindmark, Johan; Klintenberg, Patrik; Jääskeläinen, Ari; Suhonen, Anssi; Laatikainen, Reino; Hakalehto, Elias

    2017-05-01

    A novel biorefinery concept was piloted using protein-rich slaughterhouse waste, chicken manure and straw as feedstocks. The basic idea was to provide a proof of concept for the production of platform chemicals and biofuels from organic waste materials at non-septic conditions. The desired biochemical routes were 2,3-butanediol and acetone-butanol fermentation. The results showed that hydrolysis resulted only in low amounts of easily degradable carbohydrates. However, amino acids released from the protein-rich slaughterhouse waste were utilized and fermented by the bacteria in the process. Product formation was directed towards acidogenic compounds rather than solventogenic products due to increasing pH-value affected by ammonia release during amino acid fermentation. Hence, the process was not effective for 2,3-butanediol production, whereas butyrate, propionate, γ-aminobutyrate and valerate were predominantly produced. This offered fast means for converting tedious protein-rich waste mixtures into utilizable chemical goods. Furthermore, the residual liquid from the bioreactor showed significantly higher biogas production potential than the corresponding substrates. The combination of the biorefinery approach to produce chemicals and biofuels with anaerobic digestion of the residues to recover energy in form of methane and nutrients that can be utilized for animal feed production could be a feasible concept for organic waste utilization.

  6. Peat

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article looks at the U.S. peat market as of July 2013. Peat is produced from deposits of plant organic materials in wetlands and includes varieties such as reed-sedge, sphagnum moss, and humus. Use for peat include horticultural soil additives, filtration, and adsorbents. Other topics include effects of environmental protection regulations on peat extraction, competition from products such as coir, composted organic waste, and wood products, and peatland carbon sinks.

  7. Biodigester Feasibility and Design for Space & Earth

    NASA Technical Reports Server (NTRS)

    Shutts, Stacy; Ewert, Mike; Bacon, Jack

    2016-01-01

    Anaerobic digestion converts organic waste into methane gas and fertilizer effluent. The ICA-developed prototype system is designed for planetary surface operation. It uses passive hydrostatic control for reliability, and is modular and redundant. The serpentine configuration accommodates tight geometric constraints similar to the ISS ECLSS rack architectures. Its shallow, low-tilt design enables (variable) lower-g convection than standard Earth (1 g) digesters. This technology will reuse and recycle materials including human waste, excess food, as well as packaging (if biodegradable bags are used).

  8. Aqueous Alkaline Cleaners: An Alternative to Organic Solvents

    DTIC Science & Technology

    1993-09-01

    F021, F022, F023, F026, F027, F1028) Spent solvents (FOOl, F002, F003, F004, F005) July 8, 1987 California list wastes (Liquid hazardous wastes...installations and has been successful in developing a recycling program to reclaim spent Stoddard solvent and produce a material that meets Army specifications...metal parts it has cleaned. As the contamination level rises, it depletes the solvent’s effective cleaning power until the solvent becomes " spent

  9. Marine and Freshwater Fecal Indicators and Source Identification

    EPA Science Inventory

    Fecal indicators are organisms or chemical constituents found in fecal material or wastewater that can be measured to demonstrate the presence of fecal pollution. Fecal waste from humans and other animals can contaminant surface waters and pose a serious threat to the environmen...

  10. Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2013-01-01

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications. PMID:24048207

  11. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy.

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2013-09-17

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications.

  12. Interlaboratory comparison program for nondestructive assay of prototype uranium reference materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trahey, N.M.; Smith, M.M.; Voeks, A.M.

    The US Department of Energy (DOE), New Brunswick Laboratory (NBS), designed and administered an interlaboratory comparison program based on the measurement of NBL-produced prototype uranium nondestructive assay (NDA) reference materials for scrap and waste. The objectives of the program were to evaluate the reliability of NDA techniques as applied to nuclear safeguards materials control and accountability needs and to investigate the feasibility of providing practical NDA scrap and waste reference materials for use throughout the nuclear safeguards community. Fourteen facilities representing seven DOE contractors, four US Nuclear Regulatory Commission (NRC) licensees, one EURATOM Laboratory, and NBL, participated in this program.more » Three stable, well-characterized uranium reference materials were developed and certified for this program. Synthetic calcined ash, cellulose fiber, and ion-exchange resin simulate selected uranium scrap and waste forms which are often encountered in fabrication and recovery operations. The synthetic calcined ash represents an intermediate density inorganic matrix while the cellulose fiber and ion-exchange resin are representative of low-density organic matrices. The materials, containing from 0 to 13% uranium enriched at 93% /sup 235/U, were sealed in specially selected containers. Nineteen prototype reference samples, plus three empty containers, one to accompany each set, was circulated to the participants between August 1979 and May 1984. Triplicate measurements for /sup 235/U on each of the 19 filled containers were required. In addition, participants could opt to perform modular configuration measurements using containers from Sets IIA and IIB to simulate non-homogeneously dispersed uranium in waste containers. All data were reported to NBL for evaluation.« less

  13. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials havemore » been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA. Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium loading, and handling of liquid wash and conditioning solutions. RF processing requires handling and evaporation of cesium eluates, disposal of spent organic resin, and handling of the various liquid wash and regenerate solutions used. In both cases, the DSS will be immobilized in a low activity waste form. It appears that both technologies are mature, well studied, and generally suitable for this application. Technology selection will likely be based on downstream impacts or preferences between the various processing options for the two materials rather than on some unacceptable performance property identified for one material. As a result, the following detailed technical review and summary of the two technologies should be useful to assist in technology selection for SCIX.« less

  14. Effect of biogas generation on radon emissions from landfills receiving radium-bearing waste from shale gas development.

    PubMed

    Walter, Gary R; Benke, Roland R; Pickett, David A

    2012-09-01

    Dramatic increases in the development of oil and natural gas from shale formations will result in large quantities of drill cuttings, flowback water, and produced water. These organic-rich shale gas formations often contain elevated concentrations of naturally occurring radioactive materials (NORM), such as uranium, thorium, and radium. Production of oil and gas from these formations will also lead to the development of technologically enhanced NORM (TENORM) in production equipment. Disposal of these potentially radium-bearing materials in municipal solid waste (MSW) landfills could release radon to the atmosphere. Risk analyses of disposal of radium-bearing TENORM in MSW landfills sponsored by the Department of Energy did not consider the effect of landfill gas (LFG) generation or LFG control systems on radon emissions. Simulation of radon emissions from landfills with LFG generation indicates that LFG generation can significantly increase radon emissions relative to emissions without LFG generation, where the radon emissions are largely controlled by vapor-phase diffusion. Although the operation of LFG control systems at landfills with radon source materials can result in point-source atmospheric radon plumes, the LFG control systems tend to reduce overall radon emissions by reducing advective gas flow through the landfill surface, and increasing the radon residence time in the subsurface, thus allowing more time for radon to decay. In some of the disposal scenarios considered, the radon flux from the landfill and off-site atmospheric activities exceed levels that would be allowed for radon emissions from uranium mill tailings. Increased development of hydrocarbons from organic-rich shale formations has raised public concern that wastes from these activities containing naturally occurring radioactive materials, particularly radium, may be disposed in municipal solid waste landfills and endanger public health by releasing radon to the atmosphere. This paper analyses the processes by which radon may be emitted from a landfill to the atmosphere. The analyses indicate that landfill gas generation can significantly increase radon emissions, but that the actual level of radon emissions depend on the place of the waste, construction of the landfill cover, and nature of the landfill gas control system.

  15. A procedure to estimate proximate analysis of mixed organic wastes.

    PubMed

    Zaher, U; Buffiere, P; Steyer, J P; Chen, S

    2009-04-01

    In waste materials, proximate analysis measuring the total concentration of carbohydrate, protein, and lipid contents from solid wastes is challenging, as a result of the heterogeneous and solid nature of wastes. This paper presents a new procedure that was developed to estimate such complex chemical composition of the waste using conventional practical measurements, such as chemical oxygen demand (COD) and total organic carbon. The procedure is based on mass balance of macronutrient elements (carbon, hydrogen, nitrogen, oxygen, and phosphorus [CHNOP]) (i.e., elemental continuity), in addition to the balance of COD and charge intensity that are applied in mathematical modeling of biological processes. Knowing the composition of such a complex substrate is crucial to study solid waste anaerobic degradation. The procedure was formulated to generate the detailed input required for the International Water Association (London, United Kingdom) Anaerobic Digestion Model number 1 (IWA-ADM1). The complex particulate composition estimated by the procedure was validated with several types of food wastes and animal manures. To make proximate analysis feasible for validation, the wastes were classified into 19 types to allow accurate extraction and proximate analysis. The estimated carbohydrates, proteins, lipids, and inerts concentrations were highly correlated to the proximate analysis; correlation coefficients were 0.94, 0.88, 0.99, and 0.96, respectively. For most of the wastes, carbohydrate was the highest fraction and was estimated accurately by the procedure over an extended range with high linearity. For wastes that are rich in protein and fiber, the procedure was even more consistent compared with the proximate analysis. The new procedure can be used for waste characterization in solid waste treatment design and optimization.

  16. Stabilization of tannery sludge by co-treatment with aluminum anodizing sludge and phytotoxicity of end-products.

    PubMed

    Pantazopoulou, E; Zebiliadou, O; Mitrakas, M; Zouboulis, A

    2017-03-01

    A global demand for efficient re-utilization of produced solid wastes, which is based on the principles of re-use and recycling, results to a circular economy, where one industry's waste becomes another's raw material and it can be used in a more efficient and sustainable way. In this study, the influence of a by-product addition, such as aluminum anodizing sludge, on tannery waste (air-dried sludge) stabilization was examined. The chemical characterization of tannery waste leachate, using the EN 12457-2 standard leaching test, reveals that tannery waste cannot be accepted even in landfills for hazardous wastes, according to the EU Decision 2003/33/EC. The stabilization of tannery waste was studied applying different ratios of tannery waste and aluminum anodizing sludge, i.e. 50:50, 60:40, 70:30 and 80:20 ratios respectively. Subsequently, the stabilization rate of the qualified as optimum homogenized mixture of 50:50 ratio was also tested during time (7, 15 and 30days). Moreover, this stabilized product was subjected to phytotoxicity tests using the Lepidium sativum, Sinapis alba and Sorghum saccharatum seeds. The experimental results showed that aluminum anodizing sludge managed to stabilize effectively chromium and organic content of tannery waste, which are the most problematic parameters influencing its subsequent disposal. As a result, tannery waste stabilized with the addition of aluminum anodizing sludge at 50:50 ratio can be accepted in non-hazardous waste landfills, as chromium and dissolved organic carbon concentrations in the respective leachate are below the relevant regulation limits, while the stabilized waste shows decreased phytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and othermore » contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in the subsurface; a primary concern of the DOE Environmental Remediation Science Division (ERSD) and Subsurface Geochemical Research (SBR) Program.« less

  18. Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation.

    PubMed

    Chen, Yong; Sun, Li-Ping; Liu, Zhi-Hui; Martin, Greg; Sun, Zheng

    2017-11-27

    Managing waste is an increasing problem globally. Microalgae have the potential to help remove contaminants from a range of waste streams and convert them into useful biomass. This article presents a critical review of recent technological developments in the production of chemicals and other materials from microalgae grown using different types of waste. A range of novel approaches are examined for efficiently capturing CO 2 in flue gas via photosynthetic microalgal cultivation. Strategies for using microalgae to assimilate nitrogen, organic carbon, phosphorus, and metal ions from wastewater are considered in relation to modes of production. Generally, more economical open cultivation systems such as raceway ponds are better suited for waste conversion than more expensive closed photobioreactor systems, which might have use for higher-value products. The effect of cultivation methods and the properties of the waste streams on the composition the microalgal biomass is discussed relative to its utilization. Possibilities include the production of biodiesel via lipid extraction, biocrude from hydrothermal liquefaction, and bioethanol or biogas from microbial conversion. Microalgal biomass produced from wastes may also find use in higher-value applications including protein feeds or for the production of bioactive compounds such as astaxanthin or omega-3 fatty acids. However, for some waste streams, further consideration of how to manage potential microbial and chemical contaminants is needed for food or health applications. The use of microalgae for waste valorization holds promise. Widespread implementation of the available technologies will likely follow from further improvements to reduce costs, as well as the increasing pressure to effectively manage waste.

  19. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards.

    PubMed

    Long, Laishou; Sun, Shuiyu; Zhong, Sheng; Dai, Wencan; Liu, Jingyong; Song, Weifeng

    2010-05-15

    The constant growth in generation of waste printed circuit boards (WPCB) poses a huge disposal problem because they consist of a heterogeneous mixture of organic and metallic chemicals as well as glass fiber. Also the presence of heavy metals, such as Pb and Cd turns this scrap into hazardous waste. Therefore, recycling of WPCB is an important subject not only from the recovery of valuable materials but also from the treatment of waste. The aim of this study was to present a recycling process without negative impact to the environment as an alternative for recycling WPCB. In this work, a process technology containing vacuum pyrolysis and mechanical processing was employed to recycle WPCB. At the first stage of this work, the WPCB was pyrolyzed under vacuum in a self-made batch pilot-scale fixed bed reactor to recycle organic resins contained in the WPCB. By vacuum pyrolysis the organic matter was decomposed to gases and liquids which could be used as fuels or chemical material resources, however, the inorganic WPCB matter was left unaltered as solid residues. At the second stage, the residues obtained at the first stage were investigated to separate and recover the copper through mechanical processing such as crushing, screening, and gravity separation. The copper grade of 99.50% with recovery of 99.86% based on the whole WPCB was obtained. And the glass fiber could be obtained by calcinations in a muffle furnace at 600 degrees C for 10 min. This study had demonstrated the feasibility of vacuum pyrolysis and mechanical processing for recycling WPCB. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  20. Peptide-based ambidextrous bifunctional gelator: applications in oil spill recovery and removal of toxic organic dyes for waste water management.

    PubMed

    Basu, Kingshuk; Nandi, Nibedita; Mondal, Biplab; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam

    2017-12-06

    A low molecular weight peptide-based ambidextrous gelator molecule has been discovered for efficient control of water pollution. The gelator molecules can gel various organic solvents with diverse polarity, e.g. n -hexane, n -octane, petroleum ether, petrol, diesel, aromatic solvents like chlorobenzene, toluene, benzene, o -xylene and even aqueous phosphate buffer of pH 7.5. These gels have been thoroughly characterized using various techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, small angle X-ray scattering and rheological experiments. Interestingly, hydrogel obtained from the gelator molecule has been found to absorb toxic organic dyes (both cationic and anionic dyes) from dye-contaminated water. The gelator molecule can be reused for several cycles, indicating its possible future use in waste water management. Moreover, this gelator can selectively gel petrol, diesel, pump oil from an oil-water mixture in the presence of a carrier solvent, ethyl acetate, suggesting its efficient application for oil spill recovery. These results indicate that the peptide-based ambidextrous gelator produces soft materials (gels) with dual function: (i) removal of toxic organic dyes in waste water treatment and (ii) oil spill recovery.

  1. An incentive-based source separation model for sustainable municipal solid waste management in China.

    PubMed

    Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin

    2015-05-01

    Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. © The Author(s) 2015.

  2. Characterization of selected municipal solid waste components to estimate their biodegradability.

    PubMed

    Bayard, R; Benbelkacem, H; Gourdon, R; Buffière, P

    2018-06-15

    Biological treatments of Residual Municipal Solid Waste (RMSW) allow to divert biodegradable materials from landfilling and recover valuable alternative resources. The biodegradability of the waste components needs however to be assessed in order to design the bioprocesses properly. The present study investigated complementary approaches to aerobic and anaerobic biotests for a more rapid evaluation. A representative sample of residual MSW was collected from a Mechanical Biological Treatment (MBT) plant and sorted out into 13 fractions according to the French standard procedure MODECOM™. The different fractions were analyzed for organic matter content, leaching behavior, contents in biochemical constituents (determined by Van Soest's acid detergent fiber method), Biochemical Oxygen Demand (BOD) and Bio-Methane Potential (BMP). Experimental data were statistically treated by Principal Components Analysis (PCA). Cumulative oxygen consumption from BOD tests and cumulative methane production from BMP tests were found to be positively correlated in all waste fractions. No correlation was observed between the results from BOD or BMP bioassays and the contents in cellulose-like, hemicelluloses-like or labile organic compounds. No correlation was observed either with the results from leaching tests (Soluble COD). The contents in lignin-like compounds, evaluated as the non-extracted RES fraction in Van Soest's method, was found however to impact negatively the biodegradability assessed by BOD or BMP tests. Since cellulose, hemicelluloses and lignin are the polymers responsible for the structuration of lignocellulosic complexes, it was concluded that the structural organization of the organic matter in the different waste fractions was more determinant on biodegradability than the respective contents in individual biopolymers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Characterization of urban waste management practices in developing Asian countries: A new analytical framework based on waste characteristics and urban dimension.

    PubMed

    Aleluia, João; Ferrão, Paulo

    2016-12-01

    This paper characterizes municipal solid waste (MSW) management practices in developing Asia, with a focus on low and middle-income countries. The analysis that is conducted supports a proposed framework that maps out the trends observed in the region in relation to two parameters, waste compositions and urban dimension, which was prepared based on a set of national and urban case studies. The management of MSW in developing Asian countries is driven, first and foremost, by a public health imperative: the collection and disposal of waste in order to avoid the spread of disease vectors from uncollected waste. This comes, however, at a high cost, with local government authorities in these countries spending up to 50% of their budgets in the provision of these services. Little or no value is derived from waste, which is typically seen as a liability and not as a resource that can be harnessed. On the other hand, in many cities in developing Asia there is an informal sector that ekes out a living from the recovery of recyclable materials found in waste. Members of this "informal waste sector" are especially active in areas that are not served by formal waste collection systems, such as slums or squatter areas. A distinctive element shared among many cities in developing Asian countries concerns the composition of the municipal solid waste. MSW in those countries tends to be richer in biodegradable organic matter, which usually accounts for more than 50% of the total waste composition, suggesting that biological methods are more appropriate for treating this organic fraction. Conversely, thermal combustion technologies, which are extensively applied in high-income countries, are technically and economically challenging to deploy in light of the lower calorific value of waste streams which are rich in organics and moisture. Specific approaches and methods are therefore required for designing adequate waste management systems in developing Asian countries. In addition, despite some common characteristics shared among cities in developing Asia, their specific circumstances can significantly vary, even within the same country, calling for the need for context-specific waste management approaches. Set against this background, this paper proposes a guiding framework in the form of a matrix that maps out approaches observed in the management of municipal solid waste in cities of developing Asian countries as a function of the city dimension, share of organics on waste streams, and wealth generated by the city. The cities of Surabaya (Indonesia), Bangalore (India), Quy Nhon (Viet Nam), and Matale (Sri Lanka) are showcased as good practices in the region in the management of solid waste, with their experiences used to illustrate the framework laid out in the matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    PubMed

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-02-04

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  5. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    PubMed Central

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Tafur Marinos, Janeth Alicia; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  6. A pilot-scale steam autoclave system for treating municipal solid waste for recovery of renewable organic content: Operational results and energy usage.

    PubMed

    Holtman, Kevin M; Bozzi, David V; Franqui-Villanueva, Diana; Offeman, Richard D; Orts, William J

    2016-05-01

    A pilot-scale (1800 kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organic content can be recovered at nearly 90% efficiency and the trommel rejects are also much easier to sort for recovery. This study provides the evaluation of autoclave operation, including mass and energy balances for the purpose of integration into organic diversion systems. Several methods of cooking municipal solid waste were explored from indirect oil heating only, a combination of oil and direct steam during the same cooking cycle, and steam only. Gross energy requirements averaged 1290 kJ kg(-1) material in vessel, including the weight of free water and steam added during heating. On average, steam recovery can recoup 43% of the water added and 30% of the energy, supplying on average 40% of steam requirements for the next cook. Steam recycle from one vessel to the next can reduce gross energy requirements to an average of 790 kJ kg(-1). © The Author(s) 2016.

  7. Environmental management aspects for TBT antifouling wastes from the shipyards.

    PubMed

    Kotrikla, Anna

    2009-02-01

    Tributyltin (TBT)-based antifouling paints have been successfully used for over 40 years to protect a ship's hull from biofouling. However, due to its high toxicity to marine organisms, the International Maritime Organization (IMO), in 1990, adopted a resolution recommending governments to adopt measures to eliminate antifouling paints containing TBT. High concentrations of TBT are detected in the vicinity of ports and shipyards. TBT is also usually detected in the sediment, in which it accumulates. This study reviews recent literature for the best management practices (BMPs) in order to minimize the environmental effects of TBT. The paper focuses on the evaluation of the available techniques for the removal of TBT from shipyard wastes and from the sediment. The most effective treatment methods are highlighted. BMPs include recycling of abrasive materials, use of cleaner abrasive materials, reuse of spent abrasive materials, substitution of hydroblasting by vacuum blasting or containment or ultra-high-pressure water blasting and confinement of pollution by enclosure and containment systems. The treatment of the TBT wastes by conventional biological wastewater treatment processes is probably not suitable, because the concentrations of TBT found in shipyards' wastewaters are toxic to microorganisms. Advanced technologies such as activated carbon adsorption and dissolved air flotation, in combination with filtration and coagulation-clarification, photodegradation and electrochemical treatment, are required to remove TBT. However, advanced methods should be further optimized to meet the regulatory limit of 200 ng/L. To date, only one published work examines the efficiency of incineration for the treatment of solid sandblast wastes. Regarding the treatment of sediment, land deposition of the less polluted fraction of sediment is a feasible option. Such treatment must take into account the risk of contamination of groundwater and the surroundings, and it requires extended areas of land. Other treatment methods, such as thermal and electrochemical treatment, are promising options but due to the large amounts of dredged material, they have high capital and operational costs.

  8. Prospects for development of hydrocarbon raw materials resources reproduction

    NASA Astrophysics Data System (ADS)

    Vertakova, Y. V.; Babich, T. N.; Polozhentseva, Y. S.; Zvyagintsev, G. L.

    2017-10-01

    The article presents data on the influence of factors in the field of innovative technology of thermocatalytic depolymerization of solid household wastes (SHW) on the efficiency and prospects for the development of technogenic hydrocarbon raw materials resource reproduction. Process thermodynamics, reactions kinetics, the mechanism of thermolysis of secondary polymers in organic solvents have been studied by means of laboratory experiments. It is shown that different morphological groups of wastes dissolve practically at the same rate at temperatures of 250-310°C. A homogeneous product is formed in the liquid phase; the spread of values for the elements lies in the interval of 1.5-4.5 %; technological requirements of the stages of formation of boiler fuels are satisfied. Using the principles of patent analysis, new techniques of processing household waste components are proposed. The basics of energy-efficient and energy-saving processes of technogenic hydrocarbon raw materials resource reproduction have been laid. The possibility of increasing the production payback and intensification is shown. Ecological and demographic safety for population and technical and economic benefits from SHW processing are achieved.

  9. Implementation of the Leaching Environmental Assessment ...

    EPA Pesticide Factsheets

    LEAF provides a uniform and integrated approach for evaluating leaching from solid materials (e.g., waste, treated wastes such as by solidification/stabilization, secondary materials such as blast furnace slags, energy residuals such as coal fly ash, soil, sediments, mining and mineral processing wastes). Assessment using LEAF applies a stepwise approach that considers the leaching behavior of COPCs in response to chemical and physical factors that control and material properties across a range of plausible field conditions (US EPA, 2010). The framework provides the flexibility to tailor testing to site conditions and select the extent of testing based on assessment objectives and the level of detailed information needed to support decision-making. The main focus will be to discuss the implementation of LEAF in the US and the How to Guide that has recently been completed. To present the How To Guide for the implementation of the leaching environmental assessment framework to an international audience already familiar with comparable leaching tests in use in Europe. Will be meeting with European colleagues on their interest in expanding methods to include organics.

  10. Subcritical and supercritical water oxidation of CELSS model wastes

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  11. Raw liquid waste treatment process

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F. (Inventor)

    1980-01-01

    A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, which is suspended in the sewage water is first separated from the water, in which at least organic matter is dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material absorbs organic matter and heavy metal ions, it is believed, are dissolved in the water and is thereafter supplied in a counter current flow direction and combined with the incoming raw sewage to facilitate the separation of the non-dissolved settleable materials from the sewage water. The used carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.

  12. Raw Liquid Waste Treatment System and Process

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F. (Inventor)

    1974-01-01

    A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, suspended in the sewage water is first separated from the water, in which at least organic matter remains dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material adsorbs the organic matter dissolved in the water and is thereafter supplied in a counter flow direction and combined with the incoming raw sewage to at least facilitate the separation of the non-dissolved settleable materials from the sewage water. Carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.

  13. Bio-effectors from waste materials as growth promoters for tomato plants, an agronomic and metabolomic study

    NASA Astrophysics Data System (ADS)

    Abou Chehade, Lara; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    In organic farming, where nutrient management is constrained and sustainability is claimed, bio-effectors pave their way. Considering selected bio-effectors, this study integrates metabolomics to agronomy in depicting induced relevant phenomena. Extracts of three agro-industrial wastes (Lemon processing residues, Fennel processing residues and Brewer's spent grain) are being investigated as sources of bio-effectors for the third trial consequently. Corresponding individual and mixture aqueous extracts are assessed for their synergistic and/or single agronomic and qualitative performances on soil-grown tomato, compared to both a control and humic acid treatments. A metabolomic profiling of tomato fruits via the Proton Nuclear Magnetic Resonance (NMR) spectroscopy, as holistic indicator of fruit quality and extract-induced responses, complements crop productivity and organoleptic/nutritional qualitative analyses. Results are expected to show mainly an enhancement of the fruit qualitative traits, and to confirm partly the previous results of better crop productivity and metabolism enhancement. Waste-derived bio-effectors could be, accordingly, demonstrated as potential candidates of plant-enhancing substances. Keywords: bio-effectors, organic farming, agro-industrial wastes, nuclear magnetic resonance (NMR), tomato.

  14. Production of hydrogen driven from biomass waste to power Remote areas away from the electric grid utilizing fuel cells and internal combustion engines vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tawfik, Hazem

    Recent concerns over the security and reliability of the world’s energy supply has caused a flux towards the research and development of renewable sources. A leading renewable source has been found in the biomass gasification of biological materials derived from organic matters such as wood chips, forest debris, and farm waste that are found in abundance in the USA. Accordingly, there is a very strong interest worldwide in the development of new technologies that provide an in-depth understanding of this economically viable energy source. This work aims to allow the coupling of biomass gasification and fuel cell systems as wellmore » as Internal Combustion Engines (ICE) to produce high-energy efficiency, clean environmental performance and near-zero greenhouse gas emissions. Biomass gasification is a process, which produces synthesis gas (syngas) that contains 19% hydrogen and 20% carbon monoxide from inexpensive organic matter waste. This project main goal is to provide cost effective energy to the public utilizing remote farms’ waste and landfill recycling area.« less

  15. Phosphorus recovery and reuse from waste streams

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is a macronutrient essential for all living organisms. Regrettably, it is a finite resource since phosphate rock (PR) is the main material used for production of P fertilizers. Globally, the demand for quality PR is escalating due to many factors including increasing human population....

  16. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi.

    PubMed

    Ogbo, Frank C

    2010-06-01

    Two fungi characterized as Aspergillus fumigatus and Aspergillus niger, isolated from decaying cassava peels were used to convert cassava wastes by the semi-solid fermentation technique to phosphate biofertilizer. The isolates solubilized Ca(3)(PO(4))(2), AlPO(4) and FePO(4) in liquid Pikovskaya medium, a process that was accompanied by acid production. Medium for the SSF fermentation was composed of 1% raw cassava starch and 3% poultry droppings as nutrients and 96% ground (0.5-1.5mm) dried cassava peels as carrier material. During the 14days fermentation, both test organisms increased in biomass in this medium as indicated by increases in phosphatase activity and drop in pH. Ground cassava peels satisfied many properties required of carrier material particularly in respect of the organisms under study. Biofertilizer produced using A. niger significantly (p<.05) improved the growth of pigeon pea [Cajanus cajan (L.) Millsp.] in pot experiments but product made with A. fumigatus did not. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Fate of organic carbon from different waste materials in cropland soils

    NASA Astrophysics Data System (ADS)

    Paetsch, Lydia; Mueller, Carsten; Rumpel, Cornelia; Houot, Sabine; Kögel-Knabner, Ingrid

    2015-04-01

    Organic amendments are widely used to enhance the fertility of cropland soils. However, there is only scarce knowledge about the long term impact of added organic matter (OM) on the soil organic carbon (SOC) pool. Therefore, we analyzed a long-term field experiment in Feucherolles (France), which regularly received three different composts (home sorted bio-waste mixed with green waste (BIO), municipal solid waste (MSW) and a mixture of green waste and sewage sludge (GWS) and cattle manure since 1998. With these organic materials approximately 4 Mg total OC were added to the soil in two year intervals. The experiment was fully randomized with 4 replicates for each amendment. In September 2013 we took samples from the surface soil (0-5 cm of Ap horizon) of all 4 treatments and the unamended control. To study the chemical alteration and the fate of the added OC into different soil compartments, we fractionated the soils by physical means using a combined density and particle size protocol. Carbon and N content were determined in bulk soils, amendments as well as in size fractions (fPOM, oPOM <20µm and oPOM >20µm, sand, silt and a combined fine silt-clay fraction). Chemical composition was determined by solid-state 13C CPMAS NMR spectroscopy. We found significant higher C contents for the oPOM small and sand fraction of BIO treated soil and for the clay fraction of GWS treated soils (p<0.05). Nitrogen contents were significantly higher for BIO treated soils in bulk soil, fPOM, oPOM small and for GWS treated soils in bulk soil, fPOM and oPOM. The NMR measurements revealed that only the chemical composition of the fPOM differed according to the treatment; towards the more altered fractions as the oPOM small, the compositional differences leveled out and became almost homogeneous. Furthermore, the NMR measurements indicate a similar OC composition within the independent field replicates regarding the different amendments and fractions. As previously shown, N was found to be concentrated in the clay fractions, but interestingly we were able to show this also for the oPOM small. Proteins and peptides, as indicated by the broad resonance between 30 and 55 ppm, clearly point to the presence of microbial products and residues in this fraction.

  18. Medical waste to energy: experimental study.

    PubMed

    Arcuri, C; Luciani, F; Piva, P; Bartuli, F N; Ottria, L; Mecheri, B; Licoccia, S

    2013-04-01

    Although waste is traditionally assessed as a pollutant which needs to be reduced or lessened, its management is certainly necessary. Nowadays, biological fuel cells, through the direct conversion of organic matter to electricity using biocatalysts, represent a technology able to produce sustainable energy by means of waste treatment. This study aims to propose a mean to generate energy from blood and saliva, that are common risk-infectious medical waste. Material employed (purchased by Sigma-Aldrich) were: Glucose oxidase (GOx), Nafion perfluorinated resin solution at 5% in a mixture of lower aliphatic alcohols and water, Polyethylene oxide. Stock solutions of D (+) glucose were prepared in a 0.1 M phosphate buffer solution and stored at 4 °C for at least 24 h before use. Carbon cloth electrode ELAT HT 140 E-W with a platinum loading of 5 gm-2 was purchased by E-Tek. Electrospun Nafion fibers were obtained as follows. Scanning electron microscopy was used to characterize the electrode morphologies. In order to develop an effective immobilization strategy of GOx on the electrode surface, Nafion fibers (a fully fluorinated ion conducting polymer used as a membrane material in enzymatic fuel cells - EFC) were selected as immobilizing polymer matrix. In this work, exploiting the nafion fibers capability of being able to cathalize Gox activity, we have tried to produce an enzymatic fuel cell which could produce energy from the blood and the saliva within medical-dental waste. Medical waste refers to all those materials produced by the interaction among doctor and patient, such as blood and saliva. During our research we will try to complete an EFC prototype able to produce energy from blood and saliva inside the risk-infectious medical waste in order to contribute to the energy requirements of a consulting room.

  19. Capturing the lost phosphorus.

    PubMed

    Rittmann, Bruce E; Mayer, Brooke; Westerhoff, Paul; Edwards, Mark

    2011-08-01

    Minable phosphorus (P) reserves are being depleted and will need to be replaced by recovering P that currently is lost from the agricultural system, causing water-quality problems. The largest two flows of lost P are in agricultural runoff and erosion (∼46% of mined P globally) and animal wastes (∼40%). These flows are quite distinct. Runoff has a very high volumetric flow rate, but a low P concentration; animal wastes have low flow rates, but a high P concentration together with a high concentration of organic material. Recovering the lost P in animal wastes is technically and economically more tractable, and it is the focus for this review of promising P-capture technologies. P capture requires that organic P be transformed into inorganic P (phosphate). For high-strength animal wastes, P release can be accomplished in tandem with anaerobic treatment that converts the energy value in the organic matter to CH(4), H(2), or electricity. Once present as phosphate, the P can be captured in a reusable form by four approaches. Most well developed is precipitation as magnesium or calcium solids. Less developed, but promising are adsorption to iron-based adsorbents, ion exchange to phosphate-selective solids, and uptake by photosynthetic microorganisms or P-selective proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Regulatory Exclusions and Alternative Standards for the Recycling of Materials, Solid Wastes and Hazardous Wastes

    EPA Pesticide Factsheets

    Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.

  1. Solid waste characterization in Ketao, a rural town in Togo, West Africa.

    PubMed

    Edjabou, Maklawe Essonanawe; Møller, Jacob; Christensen, Thomas H

    2012-07-01

    In Africa the majority of solid waste data is for big cities. Small and rural towns are generally neglected and waste data from these areas are often unavailable, which makes planning a proper solid waste management difficult. This paper presents the results from two waste characterization projects conducted in Kétao, a rural town in Togo during the rainy season and the dry season in 2010. The seasonal variation has a significant impact on the waste stream. The household waste generation rate was estimated at 0.22 kg person(-1) day(-1) in the dry season and 0.42 in the rainy season. Likewise, the waste moisture content was 4% in the dry season while it was 33-63% in the rainy season. The waste consisted mainly of soil and dirt characterized as 'other' (41%), vegetables and putrescibles (38%) and plastic (11%). In addition to these fractions, considerable amounts of material are either recycled or reused locally and do not enter the waste stream. The study suggests that additional recycling is not feasible, but further examination of the degradability of the organic fraction is needed in order to assess whether the residual waste should be composed or landfilled.

  2. The role of non-governmental organizations in residential solid waste management: a case study of Puducherry, a coastal city of India.

    PubMed

    Rajamanikam, Ramamoorthy; Poyyamoli, Gopalsamy; Kumar, Sunil; R, Lekshmi

    2014-09-01

    Poorly planned and uncontrolled urbanization in India has caused a variety of negative, often irreversible, environmental impacts. The impacts appear to be unavoidable and not easily mitigable due to the mounting public health problems caused by non-segregation of solid wastes at source and their subsequent improper management. Recently in India, non-governmental organizations (NGOs) and other civil society organizations have increasingly started to get involved in improving waste management services. Municipal solid waste management being a governmental function, the contribution of NGOs in this field has not been well documented. This study highlights the activities and services of Shuddham, an NGO functioning in the town of Puducherry within the Union Territory of Puducherry in South India. The NGO program promoted much needed awareness and education, encouraged source separation, enhanced door-to-door collection, utilized wastes as raw materials and generated more job opportunities. Even though source separation prior to door-to-door collection is a relatively new concept, a significant percentage of residents (39%) in the study area participated fully, while a further 48% participated in the collection service. The average amount of municipal solid waste generated by residential units in the Raj Bhavan ward was 8582 kg/month of which 47% was recovered through active recycling and composting practices. The study describes the features and performance of NGO-mediated solid waste management, and evaluates the strengths and weaknesses as well as the opportunities and threats of this system to see whether this model can sustainably replace the low-performance conventional solid waste management in practice in the town of Puducherry. The experiences from this case study are expected to provide broad guidelines to better understand the role of NGOs and their contributions towards sustainable waste management practices in urban areas. © The Author(s) 2014.

  3. Comparative renal anatomy of exotic species.

    PubMed

    Holz, Peter H; Raidal, Shane R

    2006-01-01

    All living organisms consume nutrients that are required for the production of both tissue and energy. The waste products of this process include nitrogenous materials and inorganic salts. They are removed from the body by excretory organs, which in vertebrate shave developed into kidneys and into salt glands in some birds and reptiles. Many invertebrates use a series of excretory organs called nephridia to perform the same function. Even though they perform similar functions, there is no evolutionary connection between invertebrate nephridia and vertebrate kidneys. Both evolved independently.

  4. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates.

    PubMed

    Trulli, Ettore; Ferronato, Navarro; Torretta, Vincenzo; Piscitelli, Massimiliano; Masi, Salvatore; Mancini, Ignazio

    2018-01-01

    Landfill is still the main technological facility used to treat and dispose municipal solid waste (MSW) worldwide. In developing countries, final dumping is applied without environmental monitoring and soil protection since solid waste is mostly sent to open dump sites while, in Europe, landfilling is considered as the last option since reverse logistic approaches or energy recovery are generally encouraged. However, many regions within the European Union continue to dispose of MSW to landfill, since modern facilities have not been introduced owing to unreliable regulations or financial sustainability. In this paper, final disposal activities and pre-treatment operations in an area in southern Italy are discussed, where final disposal is still the main option for treating MSW and the recycling rate is still low. Mechanical biological treatment (MBT) facilities are examined in order to evaluate the organic stabilization practices applied for MSW and the efficiencies in refuse derived fuel production, organic waste stabilization and mass reduction. Implementing MBT before landfilling the environmental impact and waste mass are reduced, up to 30%, since organic fractions are stabilized resulting an oxygen uptake rate less than 1600 mgO 2  h -1  kg -1 VS , and inorganic materials are exploited. Based on experimental data, this work examines MBT application in contexts where recycling and recovery activities have not been fully developed. The evidence of this study led to state that the introduction of MBT facilities is recommended for developing regions with high putrescible waste production in order to decrease environmental pollution and enhance human healthy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes.

    PubMed

    Karagiannidis, A; Perkoulidis, G

    2009-04-01

    This paper describes a conceptual framework and methodological tool developed for the evaluation of different anaerobic digestion technologies suitable for treating the organic fraction of municipal solid waste, by introducing the multi-criteria decision support method Electre III and demonstrating its related applicability via a test application. Several anaerobic digestion technologies have been proposed over the last years; when compared to biogas recovery from landfills, their advantage is the stability in biogas production and the stabilization of waste prior to final disposal. Anaerobic digestion technologies also show great adaptability to a broad spectrum of different input material beside the organic fraction of municipal solid waste (e.g. agricultural and animal wastes, sewage sludge) and can also be used in remote and isolated communities, either stand-alone or in conjunction to other renewable energy sources. Main driver for this work was the preliminary screening of such methods for potential application in Hellenic islands in the municipal solid waste management sector. Anaerobic digestion technologies follow different approaches to the anaerobic digestion process and also can include production of compost. In the presented multi-criteria analysis exercise, Electre III is implemented for comparing and ranking 5 selected alternative anaerobic digestion technologies. The results of a performed sensitivity analysis are then discussed. In conclusion, the performed multi-criteria approach was found to be a practical and feasible method for the integrated assessment and ranking of anaerobic digestion technologies by also considering different viewpoints and other uncertainties of the decision-making process.

  6. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  7. Characteristics of and sorption to biochars derived from waste material

    NASA Astrophysics Data System (ADS)

    Sun, Huichao; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo

    2015-04-01

    Biochars can exhibit a high sorption potential towards heavy metals and organic contaminants in various environmental matrices (e.g., water, soil). They have therefore been proposed for environmental remediation purposes to sequester contaminants. To date, most studies have focused on the physicochemical and sorption properties of mineral phases poor biochars, which are typically produced from plant residues. Only little knowledge is available for biochars derived from human and animal waste material, which are typically characterized by high mineral contents (e.g., sewage sludge, manure). Using human and animal waste as source material to produce biochars would support the development of attractive combined strategies for waste management and remediation. The potential impact of mineral phases on the physicochemical and sorption properties of biochars requires further studies so that the potential as sorbent material can be evaluated. With this purpose, different source material biochars were produced at 200°C, 350°C and 500°C, to yield a series of biochars representing a range of mineral content. The derived biochars from wood shavings (<1% ash), sewage sludge (50-70% ash) and pig manure (30-60% ash), as well as a commercial biochar derived from grain husks (40% ash), were extensively characterized (e.g., element composition, surface area, porosity, Fourier transform infrared spectroscopy). The contents of potentially toxic elements (i.e., heavy metals and polycyclic aromatic hydrocarbons) of all materials were within the guidelines values proposed by the International Biochar Initiative, indicating their suitability for environmental application. Single point sorption coefficients for the model sorbate pyrene were measured to investigate the effect of mineral content, feedstock, pyrolysis temperature, particle size fractions and acid demineralization on sorption behavior. Overall, sorption of pyrene was strong for all materials (4 < Log Kd < 6.5 L/kg). Sorption generally increased with increasing pyrolysis temperature but there was no effect of particle size on sorption affinity. For mineral phase rich biochars, sorption generally increased after acid demineralization. When considering all materials together, the sorbent aromaticity (hydrogen-carbon ratio) was the most important factor controlling sorption of pyrene. Overall, the study demonstrates that biochars derived from human and animal waste material and exhibiting high mineral contents have potential for remediation applications.

  8. ENVIRONMENTAL AND ENERGY QUALITY TECHNOLOGIES Task Order 0005: Organic Finishing Technologies Sub Task 11: High Speed, Substrate Safe Specialty Coating Laser Stripping

    DTIC Science & Technology

    2015-06-22

    hazardous materials and eliminating the hazardous waste streams associated with wheat starch , chemical strippers and hand sanding. Additionally, the laser...chemical attack resistance and other special characteristics while providing corrosion protection. The materials used for these purposes are designed...inspection and/or replacement. Standard coating removal methods include chemical strippers, media blasting (i.e., wheat starch , plastic

  9. Incident Waste Decision Support Tool - Waste Materials ...

    EPA Pesticide Factsheets

    Report This is the technical documentation to the waste materials estimator module of I-WASTE. This document outlines the methodology and data used to develop the Waste Materials Estimator (WME) contained in the Incident Waste Decision Support Tool (I-WASTE DST). Specifically, this document reflects version 6.4 of the I-WASTE DST. The WME is one of four primary features of the I-WASTE DST. The WME is both a standalone calculator that generates waste estimates in terms of broad waste categories, and is also integrated into the Incident Planning and Response section of the tool where default inventories of specific waste items are provided in addition to the estimates for the broader waste categories. The WME can generate waste estimates for both common materials found in open spaces (soil, vegetation, concrete, and asphalt) and for a vast array of items and materials found in common structures.

  10. Phenolic cation exchange resin material for recovery of cesium and strontium

    DOEpatents

    Ebra, Martha A.; Wallace, Richard M.

    1983-01-01

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear waste solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs.sup.+ and Sr.sup.2+ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  11. Waste Information Management System: One Year After Web Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.

    2008-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less

  12. Phosphorus recovery from wastes

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is an important macro-nutrient essential for all living organisms and phosphate rock is the main raw material for all inorganic P fertilizers. It is expected that there will be a P peak and resulting P fertilizer shortage in near future. In general, phosphorus use efficiency is low a...

  13. Spent coffee grounds as air-propelled abrasive grit for weed control

    USDA-ARS?s Scientific Manuscript database

    Spent coffee grounds (SCG) represent a significant food waste residue. Value-added uses for this material would be beneficial. Gritty agricultural residues, such as corncob grit, can be employed as abrasive air-propelled agents for organically-compatible postemergence shredding of weed seedlings sel...

  14. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  15. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  16. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  17. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  18. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  19. 10 CFR 72.160 - Licensee and certificate holder inspection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... WASTE Quality Assurance § 72.160 Licensee and certificate holder inspection. The licensee, applicant for... inspection of activities affecting quality by or for the organization performing the activity to verify.... Examinations, measurements, or tests of material or products processed must be performed for each work...

  20. 10 CFR 72.160 - Licensee and certificate holder inspection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... WASTE Quality Assurance § 72.160 Licensee and certificate holder inspection. The licensee, applicant for... inspection of activities affecting quality by or for the organization performing the activity to verify.... Examinations, measurements, or tests of material or products processed must be performed for each work...

Top