Science.gov

Sample records for organizations applied optics

  1. Organic optical bistable switch

    NASA Astrophysics Data System (ADS)

    Xue, Jiangeng; Forrest, Stephen R.

    2003-01-01

    We demonstrate an organic optical bistable switch by integrating an efficient organic photodetector on top of a transparent electrophosphorescent organic light-emitting diode (TOLED). The bistability is achieved with an external field-effect transistor providing positive feedback. In the "LOW" state, the TOLED is off and the current in the photodetector is solely its dark current. In the "HIGH" state, the TOLED emits light that is directly coupled into the integrated photodetector through the transparent cathode. The photocurrent then is fed back to the TOLED, maintaining it in the HIGH state. The green electrophosphorescent material, fac tris(2-phenylpyridine) iridium [Ir(ppy)3] doped into a 4,4'-N,N'-dicarbazole-biphenyl host was used as the luminescent material in the TOLED, while alternating thin layers of copper phthalocyanine and 3,4,9,10-perylenetetracarboxylic bis-benzimidazole were used as the active region of the organic photodetector. The circuit has a 3 dB bandwidth of 25 kHz, and can be switched between HIGH and LOW using pulses as narrow as 60 ns. The bistable switch can be both electrically and optically reset, making it a candidate for image-retaining displays (e.g., electronic paper) and other photonic logic applications. The integrated organic device also has broad use as a linear circuit element in applications such as automatic brightness control.

  2. Velocity filtering applied to optical flow calculations

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1990-01-01

    Optical flow is a method by which a stream of two-dimensional images obtained from a forward-looking passive sensor is used to map the three-dimensional volume in front of a moving vehicle. Passive ranging via optical flow is applied here to the helicopter obstacle-avoidance problem. Velocity filtering is used as a field-based method to determine range to all pixels in the initial image. The theoretical understanding and performance analysis of velocity filtering as applied to optical flow is expanded and experimental results are presented.

  3. Nonlinear and non-Hermitian optical systems applied to the development of filters and optical sensors

    NASA Astrophysics Data System (ADS)

    Amaro de Faria Júnior, A. C.

    2015-09-01

    In this work we present a method of investigation of nonlinear optical beams generated from non-Hermitian optical systems1 . This method can be applied in the development of optical filters and optical sensors to process, analyze and choose the passband of the propagation modes of an optical pulse from an non-Hermitian optical system. Non-Hermitian optical systems can be used to develop optical fiber sensors that suppress certain propagation modes of optical pulses that eventually behave as quantum noise. Such systems are described by the Nonlinear Schrödinger-like Equation with Parity-Time (PT) Symmetric Optical Potentials. There are optical fiber sensors that due to high laser intensity and frequency can produce quantum noise, such as Raman and Brillouin scattering. However, the optical fiber, for example, can be designed so that its geometry suppress certain propagation modes of the beam. We apply some results of non- Hermitian optical systems with PT symmetry to simulate optical lattice by a appropriate potential function, which among other applications, can naturally suppress certain propagation modes of an optical beam propagating through a waveguide. In other words, the optical system is modeled by a potential function in the Nonlinear Schrödinger-like Equation that one relates with the geometric aspects of the wave guides and with the optical beam interacting with the waveguide material. The paper is organized as follows: sections 1 and 2 present a brief description about nonlinear optical systems and non-Hermitian optical systems with PT symmetry. Section 3 presents a description of the dynamics of nonlinear optical pulses propagating through optical networks described by a optical potential non-Hermitian. Sections 4 and 5 present a general description of this non-Hermitian optical systems and how to get them from a more general model. Section 6 presents some conclusions and comment and the final section presents the references. Begin the abstract two

  4. Optical and optoelectronic properties of organic nanomaterials

    NASA Astrophysics Data System (ADS)

    Satapathi, Soumitra

    In this dissertation research, organic nanomaterials, such as semiconducting polymer nanoparticles, graphene nanosheets and organic small molecules were successfully utilized for fabrication of organic solar cells, optical sensors and for high contrast imaging of cancer cells. Semiconducting polymer nanoparticles were synthesized by a simple miniemulsion technique. These size controllable polymeric nanoparticles were proven to be able to optimize the morphologies of the bulk heterojunction solar cells and to provide fundamental insight into the evolution of the nanostructures. Highly sensitive optical sensors were fabricated using these polymeric nanoparticles for efficient detection of nitroaromatic explosives, such as 2,4 dinitrotoluene (DNT) and 2,4,6 trinitrotoluene (TNT) in aqueous medium as well as in vapor the phase. Moreover, these water dispersible and fluorescent polymer nanodots were two-photon active and could be internalized by tumor cells as demonstrated by two-photon confocal imaging. In addition to the polymer nanoparticles, the role of the graphene nanosheets in the performance enhancement of dye sensitized solar cells was also investigated. The use of organic small molecules for optical sensing of different nerve gas agents and their potential use in multiphoton imaging of cancer cells were discussed. Controlling material properties at nanoscale for optoelectronics and imaging application as discussed in this dissertation would provide new dimensions in the areas of applied physics and materials science researches.

  5. Applied physics: Optical trapping for space mirrors.

    PubMed

    McGloin, David

    2014-02-27

    Might it be possible to create mirrors for space telescopes, using nothing but microscopic particles held in place by light? A study that exploits a technique called optical binding provides a step towards this goal.

  6. Dielectric barrier discharges applied for optical spectrometry

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, J.; Franzke, J.

    2016-09-01

    The present review reflects the importance of dielectric barrier discharges for optical spectrometric detection in analytical chemistry. In contrast to usual discharges with a direct current the electrodes are separated by at least one dielectric barrier. There are two main features of the dielectric barrier discharges: they can serve as dissociation and excitation devices as well as ionization sources, respectively. This article portrays various application fields of dielectric barrier discharges in analytical chemistry used for elemental and molecular detection with optical spectrometry.

  7. Optical high-performance computing: introduction to the JOSA A and Applied Optics feature.

    PubMed

    Caulfield, H John; Dolev, Shlomi; Green, William M J

    2009-08-01

    The feature issues in both Applied Optics and the Journal of the Optical Society of America A focus on topics of immediate relevance to the community working in the area of optical high-performance computing.

  8. (Optical characterization techniques applied to ceramic oxides)

    SciTech Connect

    Abraham, M.M.

    1990-10-15

    The traveler collaborated with M.J.M. Leask, J.M. Baker, B. Bleaney, and others at the Clarendon Laboratory, Oxford University, Oxford, UK, to Study Tetragonal rare-earth phosphates and vanadates by optical and magnetic spectroscopy. This work is related to similar studies that have been performed at ORNL by the Synthesis and Properties of Novel Materials Group in the Solid State Division.

  9. Joint Applied Optics and Chinese Optics Letters feature introduction: digital holography and three-dimensional imaging.

    PubMed

    Poon, Ting-Chung

    2011-12-01

    This feature issue serves as a pilot issue promoting the joint issue of Applied Optics and Chinese Optics Letters. It focuses upon topics of current relevance to the community working in the area of digital holography and 3-D imaging.

  10. Teaching applied optics at the Univ. of Minho

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.

    1995-10-01

    In this communication we make a brief presentation of the branch of Applied Optics of the University of Mihno's undergraduate course of Applied Physics. The course of Applied Physics began in the year 1988/89. Previously we had just a course devoted to the formation of future physics and chemistry teachers at high school level. The Applied Physics course specialized in Optics appeared due to the growth of the physics department and due to request from the industry. The Applied Physics course has two specialization's on the field of applied optics: Optometry; and Optics and Lasers. The topics covered in the two first years of the course ar common to the two branches. On the second semester of the third year the students must choose between either one. The number of students on the Optometry branch was usually almost four times the number of Applied Optics and Lasers students. Nevertheless this tendency is rapidly changing. A short analysis of the result obtained will be presented focusing on last couple of years' advances. Presented will also be the results of an inquest made on students's opinions about the quality of the course, and their own performance and expectations.

  11. Trends in optical coherence tomography applied to medical imaging

    NASA Astrophysics Data System (ADS)

    Podoleanu, Adrian G.

    2014-01-01

    The number of publications on optical coherence tomography (OCT) continues to double every three years. Traditionally applied to imaging the eye, OCT is now being extended to fields outside ophthalmology and optometry. Widening its applicability, progress in the core engine of the technology, and impact on development of novel optical sources, make OCT a very active and rapidly evolving field. Trends in the developments of different specific devices, such as optical sources, optical configurations and signal processing will be presented. Encompassing studies on both the configurations as well as on signal processing themes, current research in Kent looks at combining spectral domain with time domain imaging for long axial range and simultaneous imaging at several depths. Results of the collaborative work of the Applied Optics Group in Kent with organisers of this conference will be presented, with reference to 3D monitoring of abfraction.

  12. Applying Knowledge Management to an Organization's Transformation

    NASA Technical Reports Server (NTRS)

    Potter, Shannon; Gill, Tracy; Fritsche, Ralph

    2008-01-01

    Although workers in the information age have more information at their fingertips than ever before, the ability to effectively capture and reuse actual knowledge is still a surmounting challenge for many organizations. As high tech organizations transform from providing complex products and services in an established domain to providing them in new domains, knowledge remains an increasingly valuable commodity. This paper explores the supply and demand elements of the "knowledge market" within the International Space Station and Spacecraft Processing Directorate (ISSSPD) of NASA's Kennedy Space Center (KSC). It examines how knowledge supply and knowledge demand determine the success of an organization's knowledge management (KM) activities, and how the elements of a KM infrastructure (tools, culture, and training), can be used to create and sustain knowledge supply and demand

  13. Nonlinear Optics and Organic Materials

    DTIC Science & Technology

    1989-10-01

    unmatched brilliance both probes a nd inelh~" ...) / these novel effects . A detailed understanding of the nature ,S .i of light, and how it interacts with...matter, is essential to evince these effects . Although everyday optical tools- windowpanes and eyeglasses-may remain unaffected, " such delicate...use the same pair of binoculars to focus on a faint star at night and a bird in daylight (1, 2). Intensity-dependent nonlinear effects However, when

  14. Applying of digital signal processing to optical equisignal zone system

    NASA Astrophysics Data System (ADS)

    Maraev, Anton A.; Timofeev, Aleksandr N.; Gusarov, Vadim F.

    2015-05-01

    In this work we are trying to assess the application of array detectors and digital information processing to the system with the optical equisignal zone as a new method of evaluating of optical equisignal zone position. Peculiarities of optical equisignal zone formation are described. The algorithm of evaluation of optical equisignal zone position is applied to processing on the array detector. This algorithm enables to evaluate as lateral displacement as turning angles of the receiver relative to the projector. Interrelation of parameters of the projector and the receiver is considered. According to described principles an experimental set was made and then characterized. The accuracy of position evaluation of the equisignal zone is shown dependent of the size of the equivalent entrance pupil at processing.

  15. Applied study of optical interconnection link in computer cluster

    NASA Astrophysics Data System (ADS)

    Zhou, Ge; Tian, Jindong; Zhang, Nan; Jing, Wencai; Li, Haifeng

    2000-10-01

    In this paper, some study results to apply fiber link to a computer cluster are presented. The research is based on a ring network topology for a cluster system, which is connected by gigabit/s virtual parallel optical fiber link (VPOFLink) and its driver is for Linux Operating System, the transmission protocol of VPOFLink is compliant with Ethernet standard. We have studied the effect of different types of motherboard on transmission rate of the VPOFLink, and have analyzed the influence of optical interconnection network topology and computer networks protocol on the performance of this optical interconnection computer cluster. The round-trip transmission bandwidth of the VPOFLink have been tested, and the factors that limit transmission bandwidth, such as modes of forwarding data packets in the optical interconnection ring networks, and the size of the link buffer etc., are investigated.

  16. Light deviation based optical techniques applied to solid propellant combustion

    NASA Astrophysics Data System (ADS)

    Cauty, F.; Eradès, C.; Desse, J.-M.

    2011-10-01

    The Investigation in Combustion of Energetic Materials (InCoME) program is aimed at validating the numerical simulation of composite propellant combustion using nonintrusive optical techniques. The Focusing Schlieren Technique (FST) was selected; it allows catching light deviation from a thin vertical planar section centered above the propellant combustion surface. The optical system is described in the paper. Significant results are presented showing the capabilities of this technique when applied to solid propellant combustion in terms of studying flame structure, flame propagation, and particle tracking.

  17. Highly Non-Linear Optical (NLO) organic crystals and films. Electrooptical organic materials

    NASA Technical Reports Server (NTRS)

    Mcmanus, Samuel P.; Rosenberger, Franz; Matthews, John

    1987-01-01

    Devices employing nonlinear optics (NLO) hold great promise for important applications in integrated optics, optical information processing and telecommunications. Properly designed organics possess outstanding optical and electrooptical properties which will substantially advance many technologies including electrooptical switching, optical amplification for communications, and parallel processing for hybrid optical computers. A brief comparison of organic and inorganic materials is given.

  18. Organic small molecule-based optical coatings

    NASA Astrophysics Data System (ADS)

    Schulz, U.; Präfke, C.; Munzert, P.; Kaiser, N.

    2011-09-01

    A small molecule is a low molecular weight organic compound which is by definition not a polymer. Therefore, physical vapor deposition by evaporation as common for inorganic oxides is often possible. Organic layers can be useful as components of interference stacks for different functions. A number of organic compounds have interesting UV absorption characteristics and can be used to protect UV-sensitive polymers such as polycarbonate. In addition, organic layers can be applied to generate nanostructured thin films with a very low effective refractive index, as shown recently for polymers. A structured organic single layer can be applied as an antireflective (AR) coating for a glass lens. The applicability of several small molecule compounds will be discussed in this paper.

  19. RA diagnostics applying optical tomography in frequency domain

    NASA Astrophysics Data System (ADS)

    Klose, Alexander D.; Prapavat, Viravuth; Minet, Olaf; Beuthan, Juergen; Mueller, Gerhard J.

    1998-01-01

    Our aim is to reconstruct the optical parameters in a slice of a finger joint phantom for further investigations about rheumatoid arthritis (RA). Therefore, we have developed a flexible NIR scanning system in order to collect amplitude and phase delay of photon density waves in frequency-domain. A cylindrical finger joint phantom was embedded in a container of Intralipid solution due to the application of an inverse method for infinite geometry. The joint phantom was investigated by a laser beam obtaining several projections. The average optical parameters of each projection was calculated. Using different reconstruction techniques, e.g. ART and SIRT with a special projection operator, we reconstructed the optical parameters in a slice. The projection operator can be heuristically described by a photon path density function of a homogeneous media with infinite geometry. Applied to an object with an unknown distribution of optical parameters it calculates the expectation value of the investigated object. The potentials and limits of these fast reconstruction methods will be presented.

  20. Resonant-state expansion applied to planar open optical systems

    NASA Astrophysics Data System (ADS)

    Doost, M. B.; Langbein, W.; Muljarov, E. A.

    2012-02-01

    The resonant-state expansion (RSE), a rigorous perturbation theory of the Brillouin-Wigner type recently developed in electrodynamics[E. A. Muljarov, W. Langbein, and R. Zimmermann, Europhys. Lett.EULEEJ0295-507510.1209/0295-5075/92/50010 92, 50010 (2010)], is applied to planar, effectively one-dimensional optical systems, such as layered dielectric slabs and Bragg reflector microcavities. It is demonstrated that the RSE converges with a power law in the basis size. Algorithms for error estimation and their reduction by extrapolation are presented and evaluated. Complex eigenfrequencies, electromagnetic fields, and the Green's function of a selection of optical systems are calculated, as well as the observable transmission spectra. In particular, we find that for a Bragg-mirror microcavity, which has sharp resonances in the spectrum, the transmission calculated using the RSE reproduces the result of the transfer- or scattering-matrix method.

  1. Influencing organizations to promote health: applying stakeholder theory.

    PubMed

    Kok, Gerjo; Gurabardhi, Zamira; Gottlieb, Nell H; Zijlstra, Fred R H

    2015-04-01

    Stakeholder theory may help health promoters to make changes at the organizational and policy level to promote health. A stakeholder is any individual, group, or organization that can influence an organization. The organization that is the focus for influence attempts is called the focal organization. The more salient a stakeholder is and the more central in the network, the stronger the influence. As stakeholders, health promoters may use communicative, compromise, deinstitutionalization, or coercive methods through an ally or a coalition. A hypothetical case study, involving adolescent use of harmful legal products, illustrates the process of applying stakeholder theory to strategic decision making.

  2. Optics & Materials Science & Technology (OMST) Organization at LLNL

    SciTech Connect

    Suratwala; Tayyab; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2016-11-30

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  3. Optics & Materials Science & Technology (OMST) Organization at LLNL

    ScienceCinema

    Suratwala; Tayyab; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2016-12-09

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  4. Applying a marketing perspective to health research organizations.

    PubMed

    McDermott, D R; Tuckman, H P

    1997-01-01

    An excellent way for health research organizations to raise funds is by applying a well-executed marketing plan. Such a plan should include four steps: performing an environmental/internal audit, performing a services marketing audit, performing a relationship marketing audit, and developing a set of marketing strategies and tactics.

  5. How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?

    ERIC Educational Resources Information Center

    Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O.

    2001-01-01

    Examines how students completing a two-semester organic sequence understand, explain, and apply hydrogen bonding to determine the physical attributes of molecules. Suggests that some students completing what is typically their second year of college-level chemistry still possess misconceptions about hydrogen bonds. (Contains 21 references.) (ASK)

  6. Turbulence profiling methods applied to ESO's adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Valenzuela, Javier; Béchet, Clémentine; Garcia-Rissmann, Aurea; Gonté, Frédéric; Kolb, Johann; Le Louarn, Miska; Neichel, Benoît; Madec, Pierre-Yves; Guesalaga, Andrés.

    2014-07-01

    Two algorithms were recently studied for C2n profiling from wide-field Adaptive Optics (AO) measurements on GeMS (Gemini Multi-Conjugate AO system). They both rely on the Slope Detection and Ranging (SLODAR) approach, using spatial covariances of the measurements issued from various wavefront sensors. The first algorithm estimates the C2n profile by applying the truncated least-squares inverse of a matrix modeling the response of slopes covariances to various turbulent layer heights. In the second method, the profile is estimated by deconvolution of these spatial cross-covariances of slopes. We compare these methods in the new configuration of ESO Adaptive Optics Facility (AOF), a high-order multiple laser system under integration. For this, we use measurements simulated by the AO cluster of ESO. The impact of the measurement noise and of the outer scale of the atmospheric turbulence is analyzed. The important influence of the outer scale on the results leads to the development of a new step for outer scale fitting included in each algorithm. This increases the reliability and robustness of the turbulence strength and profile estimations.

  7. Extended Kramers-Moyal analysis applied to optical trapping.

    PubMed

    Honisch, Christoph; Friedrich, Rudolf; Hörner, Florian; Denz, Cornelia

    2012-08-01

    The Kramers-Moyal analysis is a well-established approach to analyze stochastic time series from complex systems. If the sampling interval of a measured time series is too low, systematic errors occur in the analysis results. These errors are labeled as finite time effects in the literature. In the present article, we present some new insights about these effects and discuss the limitations of a previously published method to estimate Kramers-Moyal coefficients at the presence of finite time effects. To increase the reliability of this method and to avoid misinterpretations, we extend it by the computation of error estimates for estimated parameters using a Monte Carlo error propagation technique. Finally, the extended method is applied to a data set of an optical trapping experiment yielding estimations of the forces acting on a Brownian particle trapped by optical tweezers. We find an increased Markov-Einstein time scale of the order of the relaxation time of the process, which can be traced back to memory effects caused by the interaction of the particle and the fluid. Above the Markov-Einstein time scale, the process can be very well described by the classical overdamped Markov model for Brownian motion.

  8. Optical and Probe Diagnostics Applied to Reacting Flows

    NASA Technical Reports Server (NTRS)

    Ticich, Thomas M.

    2003-01-01

    The general theme of the research my NASA colleague and I have planned is "Optical and probe diagnostics applied to reacting flows". We plan to explore three major threads during the fellowship period. The first interrogates the flame synthesis of carbon nanotubes using aerosol catalysts. Having demonstrated the viability of the technique for nanotube synthesis, we seek to understand the details of this reacting system which are important to its practical application. Laser light scattering will reveal changes in particle size at various heights above the burner. Analysis of the flame gas by mass spectroscopy will reveal the chemical composition of the mixture. Finally, absorption measurements will map the nanotube concentration within the flow. The second thread explores soot oxidation kinetics. Despite the impact of soot on engine performance, fire safety and pollution, models for its oxidation are inhibited by uncertainty in the values of the oxidation rate. We plan to employ both optical and microscopic measurements to refine this rate. Cavity ring-down absorption measurements of the carbonaceous aerosol can provide a measure of the mass concentration with time and, hence, an oxidation rate. Spectroscopic and direct probe measurements will provide the temperature of the system needed for subsequent modeling. These data will be benchmarked against changes in soot nanostructures as revealed by transmission electron microscopic images from directly sampled material.

  9. Research of the grid computing system applied in optical simulation

    NASA Astrophysics Data System (ADS)

    Jin, Wei-wei; Wang, Yu-dong; Liu, Qiangsheng; Cen, Zhao-feng; Li, Xiao-tong; Lin, Yi-qun

    2008-03-01

    A grid computing in the field of optics is presented in this paper. Firstly, the basic principles and research background of grid computing are outlined in this paper, along with the overview of its applications and the development status quo. The paper also discusses several typical tasks scheduling algorithms. Secondly, it focuses on describing a task scheduling of grid computing applied in optical computation. The paper gives details about the task scheduling system, including the task partition, granularity selection and tasks allocation, especially the structure of the system. In addition, some details of communication on grid computing are also illustrated. In this system, the "makespan" and "load balancing" are comprehensively considered. Finally, we build a grid model to test the task scheduling strategy, and the results are analyzed in detail. Compared to one isolated computer, a grid comprised of one server and four processors can shorten the "makespan" to 1/4. At the same time, the experimental results of the simulation also illustrate that the proposed scheduling system is able to balance loads of all processors. In short, the system performs scheduling well in the grid environment.

  10. Applying the balanced scorecard in healthcare provider organizations.

    PubMed

    Inamdar, Noorein; Kaplan, Robert S; Bower, Marvin

    2002-01-01

    Several innovative healthcare executives have recently introduced a new business strategy implementation tool: the Balanced Scorecard. The scorecard's measurement and management system provides the following potential benefits to healthcare organizations: It aligns the organization around a more market-oriented, customer-focused strategy It facilitates, monitors, and assesses the implementation of the strategy It provides a communication and collaboration mechanism It assigns accountability for performance at all levels of the organization It provides continual feedback on the strategy and promotes adjustments to marketplace and regulatory changes. We surveyed executives in nine provider organizations that were implementing the Balanced Scorecard. We asked about the following issues relating to its implementation and effect: 1. The role of the Balanced Scorecard in relation to a well-defined vision, mission, and strategy 2. The motivation for adopting the Balanced Scorecard 3. The difference between the Balanced Scorecard and other measurement systems 4. The process followed to develop and implement the Balanced Scorecard 5. The challenges and barriers during the development and implementation process 6. The benefits gained by the organization from adoption and use. The executives reported that the Balanced Scorecard strategy implementation and performance management tool could be successfully applied in the healthcare sector, enabling organizations to improve their competitive market positioning, financial results, and customer satisfaction. This article concludes with guidelines for other healthcare provider organizations to capture the benefits of the Balanced Scorecard performance management system.

  11. Optical band gaps of organic semiconductor materials

    NASA Astrophysics Data System (ADS)

    Costa, José C. S.; Taveira, Ricardo J. S.; Lima, Carlos F. R. A. C.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2016-08-01

    UV-Vis can be used as an easy and forthright technique to accurately estimate the band gap energy of organic π-conjugated materials, widely used as thin films/composites in organic and hybrid electronic devices such as OLEDs, OPVs and OFETs. The electronic and optical properties, including HOMO-LUMO energy gaps of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant π-conjugated systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3, Inq3, Al(qNO2)3, Al(qCl)3, Al(qBr)3, In(qNO2)3, In(qCl)3 and In(qBr)3); triphenylamine derivatives (DDP, p-TTP, TPB, TPD, TDAB, m-MTDAB, NPB, α-NPD); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2T, α-3T, β-3T, α-4T and α-5T). Additionally, some electronic properties were also explored by quantum chemical calculations. The experimental UV-Vis data are in accordance with the DFT predictions and indicate that the band gap energies of the OSCs dissolved in CHCl3 solution are consistent with the values presented for thin films.

  12. Statistical optics applied to high-power glass lasers

    SciTech Connect

    Manes, K.R.; Simmons, W.W.

    1985-04-01

    Multiterawatt laser systems, particularly the Novette system at the Lawrence Livermore National Laboratory, are simulated using statistical-optics techniques. The results are compared with experimental observations.

  13. Fast frequency hopping codes applied to SAC optical CDMA network

    NASA Astrophysics Data System (ADS)

    Tseng, Shin-Pin

    2015-06-01

    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  14. Acousto-Optic and Linear Electro-Optic Properties of Organic Polymeric Materials

    DTIC Science & Technology

    1989-04-27

    Naval Research Laboratory Washington, DC 20375-5000 NRL Memorandum Report 6454 od I3 Acousto - Optic and Linear Electro-Optic Properties of Organic...PROGRAM P1RC;EC7 ASK Arlington, VA 22217-5000 ELEMENT NO NO1 I1I TITLE (Include Security Classification) Acousto - Optic and Linear Electro-Optic...briefly discussing the important molecular properties for enhanced acousto ~ optic and electro-Ooptic ef fects and then relating these to "current

  15. Application of acousto-optic actuator applied in holographic system

    NASA Astrophysics Data System (ADS)

    Ling, FuRi; Wang, Biao

    2002-09-01

    In this paper, we discuss acousto-optical scanning and deflection, and design an acousto-optical actuator for steering the laser beam in the direction of vertical and horizon. In this system a laser whose wavelength is 532 nm is used and is expanded by a cylindrical lens. This horizontal actuator produces the horizontal deflection and the spherical lens following the horizontal actuator rotates the beam to match the aperture of the vertical actuator. The cylindrical lens restores the beam to its original circular cross-section, after which the microscope optics brings it to a focus in the lithium niobate crystal in which we store information.

  16. Electro-optic studies of novel organic materials and devices

    NASA Astrophysics Data System (ADS)

    Xu, Jianjun

    1997-11-01

    Specific single crystal organic materials have high potential for use in high speed optical signal processing and various other electro-optic applications. In this project some of the most important organic crystal materials were studied regarding their detailed electro- optic properties and potential device applications. In particular, the electro-optic properties of N-(4- Nitrophenyl)-L-Prolinol (NPP) and 4'-N,N- dimethylamino-4-methylstilbazolium tosylate (DAST) both of which have extremely large second order susceptibilites were studied. The orientation of the thin film crystal with respect to the substrate surface was determined using-X-ray diffraction. The principal axes of the single crystal thin film were determined by polarization transmission microscopy. The elements of the electro-optic coefficient tensor were measured by field induced birefringence measurements. Detailed measurements for NPP thin films with different orientations of the external electric field with respect to the charge transfer axis were carried out at a wavelength of 1064nm. The wavelength dependence of the electro-optic effect for DAST single crystal thin films was measured using a Ti:Sapphire laser. Several device geometries involving organic single crystal thin film materials were studied. A new method for the fabrication of channel waveguides for organic materials was initiated. Channel waveguides for NPP and ABP were obtained using this methods. Optical modulation due to the electro-optic effect based on the organic channel waveguide for NPP single crystal was demonstrated. The electro-optic modulation using NPP single crystals thin film in a Fabry-Perot cavity was measured. A device using a optical fiber half coupler and organic electro-optic thin film material was constructed, and it has potential applications in optical signal processing.

  17. Applying total quality management concepts to public health organizations.

    PubMed Central

    Kaluzny, A D; McLaughlin, C P; Simpson, K

    1992-01-01

    Total quality management (TQM) is a participative, systematic approach to planning and implementing a continuous organizational improvement process. Its approach is focused on satisfying customers' expectations, identifying problems, building commitment, and promoting open decision-making among workers. TQM applies analytical tools, such as flow and statistical charts and check sheets, to gather data about activities within an organization. TQM uses process techniques, such as nominal groups, brainstorming, and consensus forming to facilitate communication and decision making. TQM applications in the public sector and particularly in public health agencies have been limited. The process of integrating TQM into public health agencies complements and enhances the Model Standards Program and assessment methodologies, such as the Assessment Protocol for Excellence in Public Health (APEX-PH), which are mechanisms for establishing strategic directions for public health. The authors examine the potential for using TQM as a method to achieve and exceed standards quickly and efficiently. They discuss the relationship of performance standards and assessment methodologies with TQM and provide guidelines for achieving the full potential of TQM in public health organizations. The guidelines include redefining the role of management, defining a common corporate culture, refining the role of citizen oversight functions, and setting realistic estimates of the time needed to complete a task or project. PMID:1594734

  18. Applied grinding wheel performance evaluation for optical fabrication

    SciTech Connect

    Piscotty, M.A.; Taylor, J.S.; Blaedel, K.L.

    1996-06-11

    We are collaborating with the Center for Optics Manufacturing (Rochester NY) to develop fine diamond grinding wheels for spherical grinding of glass optics. A standardized method for evaluating wheel performance includes in-process acoustic emission (AE). This paper includes recent AE measurements taken during the evaluation of several fine diamond grinding wheels and discusses how this new information might relate to the physical performance of the wheels. An interesting observation is also reported on the surface topography of worn bronze wheels using an interferometric profiler.

  19. Fiber optic diagnostic techniques applied to electrical discharge machining sparks

    NASA Astrophysics Data System (ADS)

    Pillans, B. W.; Evensen, M. H.; Taylor, H. F.; Eubank, P. T.; Ma, Lianxi

    2002-02-01

    Plasma sparks from an electrical discharge machining (EDM) process were observed using fiber optics positioned in the dielectric oil. Measurement techniques were developed to observe the spark in the extremely noisy environment. Optical data were used along with current pulse wave forms from the EDM machine to study the temporal characteristics of the spark in both the pulse time and the pause time. During the pause time, extinction of the sparks was longer than previously thought—perhaps due to the remaining infrared radiation after the collapse of the spark. Further, an optical pattern was identified that indicated in advance when an arc was being formed instead of a spark. Spectral data of the plasma spark was obtained by using a scanning grating spectrometer in conjunction with crosscorrelation to maximize the signal-to-noise ratio. Average spark temperatures from the spectral data were found to be significantly higher than those previously predicted from energy balances. The results showed a shift in the optical spectra to longer wavelengths during the spark, showing that the spark temperature decreased with time.

  20. Fundamental and applied studies of organic photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Hill, Caleb M.

    Presented here are applied and fundamental studies of model organic photovoltaic (OPV) systems. Graphene oxide (GO) nanosheets were investigated as a potential electron acceptor in bulk heterojunction organic solar cells which employed poly[3-hexylthiophene] (P3HT) as an electron donor. GO nanosheets were transferred into organic solution through a surfactant-assisted phase transfer method. Electron transfer from P3HT to GO in solutions and thin films was established through fluorescence spectroscopy. Bulk heterojunction solar cells containing P3HT, P3HT-GO, and P3HT-phenyl-C61-butyric acid methyl ester (PCBM, a prototypical elector acceptor employed in polymer solar cells) were constructed and evaluated. Single molecule fluorescence spectroscopy was employed to study charge transfer between conjugated polymers and TiO2 at the single molecule level. The fluorescence of individual chains of the conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) at TiO2 surfaces was shown to exhibit increased intermittent (on/off "blinking") behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and TiO 2 substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between MEH-PPV and TiO2, which provides additional pathways between states of high and low fluorescence quantum efficiency. The electrodeposition of individual Ag nanoparticles (NPs), which can be used to enhance light harvesting in organic photovoltaic systems, was studied in situ via dark field scattering (DFS) microscopy. The scattering at the surface of an indium tin oxide (ITO) working electrode was measured during a potential sweep. Utilizing Mie scattering theory and high resolution scanning electron microscopy (SEM), the scattering data were used to

  1. Optically Excited Entangled States in Organic Molecules Illuminate the Dark.

    PubMed

    Upton, L; Harpham, M; Suzer, O; Richter, M; Mukamel, S; Goodson, T

    2013-06-20

    We utilize quantum entangled photons to carry out nonlinear optical spectroscopy in organic molecules with an extremely small number of photons. For the first time, fluorescence is reported as a result of entangled photon absorption in organic nonlinear optical molecules. Selectivity of the entangled photon absorption process is also observed and a theoretical model of this process is provided. Through these experiments and theoretical modeling it is found that while some molecules may not have strong classical nonlinear optical properties due to their excitation pathways; these same excitation pathways may enhance the entangled photon processes. It is found that the opposite is also true. Some materials with weak classical nonlinear optical effects may exhibit strong non-classical nonlinear optical effects. Our entangled photon fluorescence results provide the first steps in realizing and demonstrating the viability of entangled two-photon microscopy, remote sensing, and optical communications.

  2. Applying fiber optical methods for toxicological testing in vitro

    NASA Astrophysics Data System (ADS)

    Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Scheper, Thomas-Helmut; Ulrich, Elizabeth; Marx, Uwe

    1999-04-01

    The new medical developments, e.g. immune therapy, patient oriented chemotherapy or even gene therapy, create a questionable doubt to the further requirement of animal test. Instead the call for humanitarian reproductive in vitro models becomes increasingly louder. Pharmaceutical usage of in vitro has a long proven history. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; but the assays do not always correlate with in vivo-like drug resistance and sensitivity. We developed a drug test system in vitro, feasible for therapeutic drug monitoring by the combination of tissue cultivation in hollow fiber bioreactors and fiber optic sensors for monitoring the pharmaceutical effect. Using two fiber optic sensors - an optical oxygen sensor and a metabolism detecting Laserfluoroscope, we were able to successfully monitor the biological status of tissue culture and the drug or toxic effects of in vitro pharmaceutical testing. Furthermore, we developed and patented a system for monitoring the effect of minor toxic compounds which can induce Sick Building Syndrome.

  3. Full-field optical coherence tomography apply in sphere measurements

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Li, Weiwei; li, Juncheng; Wang, Jingyu; Wang, Jianguo

    2016-10-01

    The geometry of a spherical surface, for example that of a precision optic, is completely determined by the radius -of-curvature at one point and the deviation from the perfect spherical form at all other points of the sphere. Full-field Optical Coherence Tomography (FF-OCT) is a parallel detection OCT technique that utilizes a 2D detector array. This technique avoids mechanical scanning in imaging optics, thereby speeding up the imaging process and enhancing the quality of images. The current paper presents an FF-OCT instrument that is designed to be used in sphere measurement with the principle of multiple delays (MD) OCT to evaluate the curvature and radius of curved objects in single-shot imaging. The optimum combination of the MD principle with the FF-OCT method was evaluated, and the radius of a metal ball was measured with this method. The generated 2n-1 contour lines were obtained by using an MDE with n delays in a single en-face OCT image. This method of measurement, it engaged in the measurement accuracy of spherical and enriches the means of measurement, to make a spherical scan techniques flexible application.

  4. Organic transistors in optical displays and microelectronic applications.

    PubMed

    Gelinck, Gerwin; Heremans, Paul; Nomoto, Kazumasa; Anthopoulos, Thomas D

    2010-09-08

    Organic thin-film transistors (OTFTs) offer unprecedented opportunities for implementation in a broad range of technological applications spanning from large-volume microelectronics and optical displays to chemical and biological sensors. In this Progress Report, we review the application of organic transistors in the fields of flexible optical displays and microelectronics. The advantages associated with the use of OTFT technology are discussed with primary emphasis on the latest developments in the area of active-matrix electrophoretic and organic light-emitting diode displays based on OTFT backplanes and on the application of organic transistors in microelectronics including digital and analog circuits.

  5. Influencing Organizations to Promote Health: Applying Stakeholder Theory

    ERIC Educational Resources Information Center

    Kok, Gerjo; Gurabardhi, Zamira; Gottlieb, Nell H.; Zijlstra, Fred R. H.

    2015-01-01

    Stakeholder theory may help health promoters to make changes at the organizational and policy level to promote health. A stakeholder is any individual, group, or organization that can influence an organization. The organization that is the focus for influence attempts is called the focal organization. The more salient a stakeholder is and the more…

  6. Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques

    NASA Astrophysics Data System (ADS)

    Schukar, Vivien G.; Kadoke, Daniel; Kusche, Nadine; Münzenberger, Sven; Gründer, Klaus-Peter; Habel, Wolfgang R.

    2012-08-01

    Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions.

  7. Use of a fiber optic probe for organic species determination

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A fiber optic probe for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe's distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device.

  8. Apply lightweight recognition algorithms in optical music recognition

    NASA Astrophysics Data System (ADS)

    Pham, Viet-Khoi; Nguyen, Hai-Dang; Nguyen-Khac, Tung-Anh; Tran, Minh-Triet

    2015-02-01

    The problems of digitalization and transformation of musical scores into machine-readable format are necessary to be solved since they help people to enjoy music, to learn music, to conserve music sheets, and even to assist music composers. However, the results of existing methods still require improvements for higher accuracy. Therefore, the authors propose lightweight algorithms for Optical Music Recognition to help people to recognize and automatically play musical scores. In our proposal, after removing staff lines and extracting symbols, each music symbol is represented as a grid of identical M ∗ N cells, and the features are extracted and classified with multiple lightweight SVM classifiers. Through experiments, the authors find that the size of 10 ∗ 12 cells yields the highest precision value. Experimental results on the dataset consisting of 4929 music symbols taken from 18 modern music sheets in the Synthetic Score Database show that our proposed method is able to classify printed musical scores with accuracy up to 99.56%.

  9. Molecular Optics Nonlinear Optical Processes in Organic and Polymeric Crystals and Films

    DTIC Science & Technology

    1988-04-01

    LAr 9B L Appr 1~ forjIbi1893 2 8 I I IE2 Molecular Optics: Nonlinear Optical Processes in Organic and Polymeric Crystals and Films i Professor A. F...frequency dependent local field factors. While there are various prevalent models (Lorentz- Lorenz, Onsager ) all of them give the field factors in terms of

  10. Optical and Probe Diagnostics Applied to Reacting Flows

    NASA Technical Reports Server (NTRS)

    Ticich, Thomas M.

    2003-01-01

    We plan to explore three major threads during the fellowship period. The first interrogates the flame synthesis of carbon nanotubes using aerosol catalysts. Laser light scattering will reveal changes in particle size at various heights above the burner. Analysis of the flame gas by mass spectroscopy will reveal the chemical composition of the mixture. Finally, absorption measurements will map the nanotube concentration within the flow. The second thread explores soot oxidation kinetics. Cavity ring-down absorption measurements of the carbonaceous aerosol can provide a measure of the mass concentration with time and, hence, an oxidation rate. Spectroscopic and direct probe measurements will provide the temperature of the system needed for subsequent modeling. The third thread will explore the details of turbulent flame dynamics. Laser induced incandescence will be applied to measurements of soot volume fraction in a 2-d configuration. Analysis of seed tracer particles by planar laser light MIE scattering will reveal the elemental fuel mixture fraction in the flames. Cavity ring-down spectroscopy, a pulsed transient absorption method, will determine the instantaneous mass loading and its fluctuation. Finally, fluorescence measurements will investigate the formation of PAH's in these flames.

  11. Organic materials with nonlinear optical properties

    DOEpatents

    Stupp, Samuel I.; Son, Sehwan; Lin, Hong-Cheu

    1995-01-01

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4'-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidene) phenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl) 4'-[(4'-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it.

  12. Organic materials with nonlinear optical properties

    DOEpatents

    Stupp, S.I.; Son, S.; Lin, H.C.

    1995-05-02

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4{prime}-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidenephenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl)-4{prime}-[(4{prime}-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it. 4 figs.

  13. Implementation of Optical Characterization for Flexible Organic Electronics Applications

    NASA Astrophysics Data System (ADS)

    Laskarakis, A.; Logothetidis, S.

    One of the most rapidly evolving sectors of the modern science and technology is the flexible organic electronic devices (FEDs) that are expected to significantly improve and revolutionize our everyday life. The FED application includes the generation of electricity by renewable sources (by organic photovoltaic cells - OPVs), power storage (thin film batteries), the visualization of information (by organic displays), the working and living environment (ambient lighting, sensors), safety, market (smart labels, radio frequency identification tags - RFID), textiles (smart fabrics with embedded display and sensor capabilities), as well as healthcare (smart sensors for vital sign monitoring), etc. Although there has been important progresses in inorganic-based Si devices, there are numerous advances in the organic (semiconducting, conducting), inorganic, and hybrid (organic-inorganic) materials that exhibit desirable properties and stability, and in the synthesis and preparation methods. The understanding of the organic material properties can lead to the fast progress of the functionality and performance of FEDs. The investigation of the optical properties of these materials can promote the understanding of the optical, electrical, structural properties of organic semiconductors and electrodes and can contribute to the optimization of the synthesis process and the tuning of their structure and morphology. In this chapter, we will describe briefly some of the advances toward the implementation of optical characterization methods, such as Spectroscopic Ellipsometry (SE) from the infrared to the visible and ultraviolet spectral region for the study of materials (flexible polymer substrates, barrier layers, transparent electrodes) to be used for application in the fabrication of FEDs.

  14. Organic non-linear optics and opto-electronics

    NASA Astrophysics Data System (ADS)

    Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.

    2010-12-01

    π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.

  15. APPLIED OPTICS. Overcoming Kerr-induced capacity limit in optical fiber transmission.

    PubMed

    Temprana, E; Myslivets, E; Kuo, B P-P; Liu, L; Ataie, V; Alic, N; Radic, S

    2015-06-26

    Nonlinear optical response of silica imposes a fundamental limit on the information transfer capacity in optical fibers. Communication beyond this limit requires higher signal power and suppression of nonlinear distortions to prevent irreversible information loss. The nonlinear interaction in silica is a deterministic phenomenon that can, in principle, be completely reversed. However, attempts to remove the effects of nonlinear propagation have led to only modest improvements, and the precise physical mechanism preventing nonlinear cancellation remains unknown. We demonstrate that optical carrier stability plays a critical role in canceling Kerr-induced distortions and that nonlinear wave interaction in silica can be substantially reverted if optical carriers possess a sufficient degree of mutual coherence. These measurements indicate that fiber information capacity can be notably increased over previous estimates.

  16. Applying Systems Analysis to Program Failure in Organizations.

    ERIC Educational Resources Information Center

    Holt, Margaret E.; And Others

    1986-01-01

    Certain systems analysis techniques can be applied to examinations of program failure in continuing education to locate weaknesses in planning and implementing stages. Questions to guide an analysis and various procedures are recommended. Twelve issues that contribute to failures or discontinuations are identified. (Author/MLW)

  17. Applying Operant Conditioning Principles to the Management of Organizations.

    ERIC Educational Resources Information Center

    DeVries, David L.; Jablonsky, Stephen F.

    Following Walter Nord (1969), the present article contains a predictive model of individual behavior based on both operant conditioning and management literatures. The behavior of an organizational member is seen as a function of the reinforcement contingencies applied by various groups in his environment and of his cognitive assessment of such…

  18. Crystal growth of organics for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Mazelsky, R.

    1993-01-01

    The crystal growth and characterization of organic and inorganic nonlinear optical materials were extensively studied. For example, inorganic crystals such as thallium arsenic selenide were studied in our laboratory for several years and crystals in sizes over 2.5 cm in diameter are available. Organic crystals are suitable for the ultraviolet and near infrared region, but are relatively less developed than their inorganic counterparts. Very high values of the second harmonic conversion efficiency and the electro-optic coefficient were reported for organic compounds. Single crystals of a binary organic alloy based on m.NA and CNA were grown and higher second harmonic conversion efficiency than the values reported for m.NA were observed.

  19. Magneto-optical activity in organic thin film materials

    NASA Astrophysics Data System (ADS)

    Vleugels, Rick; de Vega, Laura; Brullot, Ward; Verbiest, Thierry; Gómez-Lor, Berta; Gutierrez-Puebla, Enrique; Hennrich, Gunther

    2016-12-01

    A series of CF3-capped phenylacetylenes with varying symmetry is obtained by a conventional palladium-catalyzed cross-coupling protocol. The phenylacetylene targets form thin films both, liquid crystalline (LC) and crystalline in nature depending on their molecular structure. The magneto-optical activity of the resulting organic material is extraordinarily high as proved by Faraday rotation spectroscopy on thin film devices.

  20. Experimental scrambling and noise reduction applied to the optical encryption of QR codes.

    PubMed

    Barrera, John Fredy; Vélez, Alejandro; Torroba, Roberto

    2014-08-25

    In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task.

  1. Low voltage integrated optics electro-optical modulator applied to optical voltage transformer based on WLI technique

    NASA Astrophysics Data System (ADS)

    Santos, J. C.; Rubini, J.; Silva, L. P. C.; Caetano, R. E.

    2015-09-01

    The use of two electro-optical modulators linked in series, one for sensing and one for recovering signals, was formerly presented by some of the authors as a solution for interrogation of optical fiber sensor systems based on WLI method. A key feature required from such systems is that half-wave voltage (Vπ) of recovering modulator must be as small as possible. Aiming at meeting this requirement, in this paper it is presented the use of an unbalanced Michelson Interferometer implemented using an integrated optics component as recover interferometer in an optical voltage transformer intended for high voltage measurements.

  2. 7 CFR 322.14 - Documentation; applying for a permit to import a restricted organism.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... restricted organism. 322.14 Section 322.14 Agriculture Regulations of the Department of Agriculture..., AND BEEKEEPING EQUIPMENT Importation of Restricted Organisms § 322.14 Documentation; applying for a permit to import a restricted organism. Any restricted organism imported into the United States must...

  3. 7 CFR 322.14 - Documentation; applying for a permit to import a restricted organism.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... restricted organism. 322.14 Section 322.14 Agriculture Regulations of the Department of Agriculture..., AND BEEKEEPING EQUIPMENT Importation of Restricted Organisms § 322.14 Documentation; applying for a permit to import a restricted organism. Any restricted organism imported into the United States must...

  4. Optical clearing for luminal organ imaging with ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liang, Yanmei; Yuan, Wu; Mavadia-Shukla, Jessica; Li, Xingde

    2016-08-01

    The imaging depth of optical coherence tomography (OCT) in highly scattering biological tissues (such as luminal organs) is limited, particularly for OCT operating at shorter wavelength regions (such as around 800 nm). For the first time, the optical clearing effect of the mixture of liquid paraffin and glycerol on luminal organs was explored with ultrahigh-resolution spectral domain OCT at 800 nm. Ex vivo studies were performed on pig esophagus and bronchus, and guinea pig esophagus with different volume ratios of the mixture. We found that the mixture of 40% liquid paraffin had the best optical clearing effect on esophageal tissues with a short effective time of ˜10 min, which means the clearing effect occurs about 10 min after the application of the clearing agent. In contrast, no obvious optical clearing effect was identified on bronchus tissues.

  5. Use of a fiber optic probe for organic species determination

    DOEpatents

    Ekechukwu, A.A.

    1996-12-10

    A fiber optic probe is described for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe`s distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device. 5 figs.

  6. Enhanced nonlinear optical effects in organic frustum-shaped microresonators

    NASA Astrophysics Data System (ADS)

    Mamonov, Evgeniy A.; Novikov, Vladimir B.; Zhdanova, Karina D.; Mitetelo, Nikolai V.; Kolmychek, Irina A.; Venkatakrishnarao, Dasari; Narayana, Yemineni S. L. V.; Mohiddon, Mahamad A.; Chandrasekar, Rajadurai; Murzina, Tatyana V.

    2017-03-01

    We discuss photonic effects in arrays of frustum-shaped organic microstructures prepared from organic orange dye composed on a solid substrate by self-assembling technique. We demonstrate that such structures reveal strong amplification of second-order nonlinear optical response, including optical second harmonic generation (SHG) and two-photon fluorescence (TPF), as compared to that of a continuous film. This is associated with a strong light localization in microstructures composed of high refractive index material. The TPF and SHG power dependencies show that the observed effects are governed by high second-order nonlinearity of the dye damped by a strong absorption. FDTD calculations confirm that the mechanism of the light localization inside organic frustums can be in the form of whispering gallery modes excitation.

  7. Smart Optical Composite Materials: Dispersions of Metal-Organic Framework@Superparamagnetic Microrods for Switchable Isotropic-Anisotropic Optical Properties.

    PubMed

    Mandel, Karl; Granath, Tim; Wehner, Tobias; Rey, Marcel; Stracke, Werner; Vogel, Nicolas; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2017-01-24

    A smart optical composite material with dynamic isotropic and anisotropic optical properties by combination of luminescence and high reflectivity was developed. This combination enables switching between luminescence and angle-dependent reflectivity by changing the applied wavelength of light. The composite is formed as anisotropic core/shell particles by coating superparamagnetic iron oxide-silica microrods with a layer of the luminescent metal-organic framework (MOF) (3)∞[Eu2(BDC)3]·2DMF·2H2O (BDC(2-) = 1,4-benzenedicarboxylate). The composite particles can be rotated by an external magnet. Their anisotropic shape causes changes in the reflectivity and diffraction of light depending on the orientation of the composite particle. These rotation-dependent optical properties are complemented by an isotropic luminescence resulting from the MOF shell. If illuminated by UV light, the particles exhibit isotropic luminescence while the same sample shows anisotropic optical properties when illuminated with visible light. In addition to direct switching, the optical properties can be tailored continuously between isotropic red emission and anisotropic reflection of light if the illuminating light is tuned through fractions of both UV and visible light. The integration and control of light emission modes within a homogeneous particle dispersion marks a smart optical material, addressing fundamental directions for research on switchable multifunctional materials. The material can function as an optic compass or could be used as an optic shutter that can be switched by a magnetic field, e.g., for an intensity control for waveguides in the visible range.

  8. Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Lane, A. L.; Bhartia, R.; Hug, W. H.

    2004-01-01

    We have developed a non-contact, optical life detection instrument that can detect organic chemical biosignatures in a number of different environments, including dry land, shallow aqueous, deep marine or in ice. Hence, the instrument is appropriate as a biosignature survey tool both for Mars exploration or in situ experiments in an ice-covered ocean such as one might wish to explore on Europa. Here, we report the results we obtained on an expedition aboard the Russian oceanographic vessel Akademik Mstislav Keldysh to hydrothermal vent sites in the Pacific Ocean using our life detection instrument MCDUVE, a multichannel, deep ultraviolet excitation fluorescence detector. MCDUVE detected organic material distribution on rocks near the vent, as well as direct detection of organisms, both microbial and microscopic. We also were able to detect organic material issuing directly from vent chimneys, measure the organic signature of the water column as we ascended, and passively observe the emission of light directly from some vents.

  9. Organic-inorganic hybrid glass: non-linear optical properties

    NASA Astrophysics Data System (ADS)

    Domínguez Cruz, R.; Mendez-Perez, A.; Romero Galván, G.; Mendoza-Panduro, M.; Trejo-Duran, M.; Alvarado-Mendez, E.; Estudillo-Ayala, J. M.; Rojas-Laguna, R.; Martínez-Richa, A.; Castano, V. M.

    2008-04-01

    In this paper we report the preliminary results about the optical characterization of a new kind of organic-inorganic hybrid glass named 4-((5-dichloromethylsily1)-penty)oxy-cyanobenzene (DCN) synthesized by sol-gel process. We obtain the sign and magnitude of the sample by the Z-scan technique using a low power He-Ne laser at 632 nm in CW operation. The experimental data show that the DNC glass has a negative Kerr optical non-linearity and is estimated a nonlinear coefficient as Δn˜10-6.

  10. Applying Organizational Learning Research to Accountable Care Organizations.

    PubMed

    Nembhard, Ingrid M; Tucker, Anita L

    2016-12-01

    To accomplish the goal of improving quality of care while simultaneously reducing cost, Accountable Care Organizations (ACOs) need to find new and better ways of providing health care to populations of patients. This requires implementing best practices and improving collaboration across the multiple entities involved in care delivery, including patients. In this article, we discuss seven lessons from the organizational learning literature that can help ACOs overcome the inherent challenges of learning how to work together in radically new ways. The lessons involve setting expectations, creating a supportive culture, and structuring the improvement efforts. For example, with regard to setting expectations, framing the changes as learning experiences rather than as implementation projects encourages the teams to utilize helpful activities, such as dry runs and pilot tests. It is also important to create an organizational culture where employees feel safe pointing out improvement opportunities and experimenting with new ways of working. With regard to structure, stable, cross-functional teams provide a powerful building block for effective improvement efforts. The article concludes by outlining opportunities for future research on organizational learning in ACOs.

  11. Applying Western Organization Development in China: Lessons from a Case of Success

    ERIC Educational Resources Information Center

    Wang, Jia

    2010-01-01

    Purpose: The purpose of this paper is to explore a successful case of a Chinese state-owned enterprise (SOE) as it applied western organization development (OD) approaches. Specifically, this study seeks to answer two questions: How has western organization development and change (OD/C) been applied in one Chinese SOE? and What lessons can be…

  12. 13 CFR 120.703 - How does an organization apply to become an Intermediary?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false How does an organization apply to become an Intermediary? 120.703 Section 120.703 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Microloan Program § 120.703 How does an organization apply to become...

  13. Volatile Organic Compound Optical Fiber Sensors: A Review

    PubMed Central

    Elosua, Cesar; Matias, Ignacio R.; Bariain, Candido; Arregui, Francisco J.

    2006-01-01

    Volatile organic compound (VOC) detection is a topic of growing interest with applications in diverse fields, ranging from environmental uses to the food or chemical industries. Optical fiber VOC sensors offering new and interesting properties which overcame some of the inconveniences found on traditional gas sensors appeared over two decades ago. Thanks to its minimum invasive nature and the advantages that optical fiber offers such as light weight, passive nature, low attenuation and the possibility of multiplexing, among others, these sensors are a real alternative to electronic ones in electrically noisy environments where electronic sensors cannot operate correctly. In the present work, a classification of these devices has been made according to the sensing mechanism and taking also into account the sensing materials or the different methods of fabrication. In addition, some solutions already implemented for the detection of VOCs using optical fiber sensors will be described with detail.

  14. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    SciTech Connect

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  15. Optical design of organic solar cell with hybrid plasmonic system

    NASA Astrophysics Data System (ADS)

    Sha, Wei E. I.; Choy, Wallace C. H.; Chen, Yongpin P.; Chew, Weng Cho

    2011-08-01

    We propose a novel optical design of organic solar cell with a hybrid plasmonic system, which comprises a plasmonic cavity coupled with a dielectric core-metal shell nanosphere. From a rigorous solution of Maxwell's equations, called volume integral equation method, optical absorption of the active polymer material has a four-fold increase. The significant enhancement mainly attributes to the coupling of symmetric surface wave modes supported by the cavity resonator. The dispersion relation of the plasmonic cavity is characterized by solving an 1D eigenvalue problem of the air/metal/polymer/metal/air structure with finite thicknesses of metal layers. We demonstrate that the optical enhancement strongly depends on the decay length of surface plasmon waves penetrated into the active material. Furthermore, the coherent interplay between the cavity and the dielectric core-metal shell nanosphere is undoubtedly confirmed by our theoretical model. The work offers detailed physical explanations to the hybrid plasmonic cavity device structure for enhancing the optical absorption of organic photovoltaics.

  16. Optical design of organic solar cell with hybrid plasmonic system.

    PubMed

    Sha, Wei E I; Choy, Wallace C H; Chen, Yongpin P; Chew, Weng Cho

    2011-08-15

    We propose a novel optical design of organic solar cell with a hybrid plasmonic system, which comprises a plasmonic cavity coupled with a dielectric core-metal shell nanosphere. From a rigorous solution of Maxwell's equations, called volume integral equation method, optical absorption of the active polymer material has a four-fold increase. The significant enhancement mainly attributes to the coupling of symmetric surface wave modes supported by the cavity resonator. The dispersion relation of the plasmonic cavity is characterized by solving an 1D eigenvalue problem of the air/metal/polymer/metal/air structure with finite thicknesses of metal layers. We demonstrate that the optical enhancement strongly depends on the decay length of surface plasmon waves penetrated into the active material. Furthermore, the coherent interplay between the cavity and the dielectric core-metal shell nanosphere is undoubtedly confirmed by our theoretical model. The work offers detailed physical explanations to the hybrid plasmonic cavity device structure for enhancing the optical absorption of organic photovoltaics.

  17. Optical and THz reflectance investigations of organic solar cells

    NASA Astrophysics Data System (ADS)

    Sporea, Dan; Mihai, Laura; Sporea, Adelina; Galagan, Yulia

    2016-04-01

    Two Organic Photovoltaic devices having a photoactive layer containing Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5- (4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM, 99%), and the layer sequences - glass/ITO/ZnO/PAL/PEDOT:PSS/Ag/encapsulation were non-destructively investigated by diffuse optical spectral reflectance, THz spectroscopy and THz imaging. The proposed methods proved to be powerful tools to support quality assurance in organic solar cells development, facilitating both the localization of manufacturing defects and the device degradation, as they are combined with "classical" evaluation means.

  18. Self-organized call admission control for optical communication networks

    NASA Astrophysics Data System (ADS)

    Zuo, Bing; Liu, Lei; Wu, Jian; Lin, Jintong

    2008-11-01

    Call Admission Control (CAC) is widely used in optical communication networks to reduce network congestion. However, the conventional CAC scheme recommended by International Telecommunication Union -Telecommunication Standardization Sector (ITU-T) has a serious deficiency under high traffic load. In this paper, the disadvantage of conventional CAC scheme is analyzed in detail, and a Self-organized Call Admission Control (SCAC) scheme is proposed to solve this disadvantage. This scheme is accord with the principle of self-organization system, so it can be easily implemented in practice. Numerical results show that the proposed scheme can improve the network performance to a great extent.

  19. Highly Non-Linear Optical (NLO) organic crystals

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    This research project involves the synthesis and characterization of organic materials having powerful nonlinear optical (NLO) properties and the growth of highly ordered crystals and monomolecular films of these materials. Research in four areas is discussed: theoretical design of new materials, characterization of NLO materials, synthesis of new materials and development of coupling procedures for forming layered films, and improvement of the techniques for vapor phase and solution phase growth of high quality organic crystals. Knowledge gained from these experiments will form the basis for experiments in the growth of these crystals.

  20. The tunable electronic structure and optic absorption properties of phosphorene by a normally applied electric field

    NASA Astrophysics Data System (ADS)

    Yang, Mou; Duan, Hou-Jian; Wang, Rui-Qiang

    2016-10-01

    We studied the electronic structure and optical absorption properties of phosphorene (a monolayer black phosphorus) under a normally applied electric field. The electric field enlarges the energy gap, weakens the effective mass anisotropy, and increases the effective mass component along the armchair direction (x-direction) for both conduction and valence bands but provides little change to the component along the zigzag direction (y-direction). The band edge optical absorption is completely polarized in the x-direction, and decreases when increasing the electric field. If the exciting frequency is beyond the energy gap, the absorption for the y-polarized light becomes nonzero, but the absorption is still highly polarized.

  1. All-optical detection of magnetization precession in tunnel junctions under applied voltage

    NASA Astrophysics Data System (ADS)

    Sasaki, Yuta; Suzuki, Kazuya; Sugihara, Atsushi; Kamimaki, Akira; Iihama, Satoshi; Ando, Yasuo; Mizukami, Shigemi

    2017-02-01

    An all-optical time-resolved magneto-optical Kerr effect measurement of a micron-sized tunnel junction with a CoFeB electrode was performed. The femtosecond (fs) laser-induced magnetization precession was clearly observed at various magnetic field angles. The frequency f and relaxation time τ of the magnetization precession varied with the voltage applied via a MgO barrier. The precession dynamics were in accordance with Kittel’s ferromagnetic resonance mode, and the voltage-induced changes in f and τ were well explained by the voltage-induced change in the perpendicular magnetic anisotropy of -36 fJ/Vm.

  2. Spatial and temporal patterns of dissolved organic matter optical properties across large rivers in Africa

    NASA Astrophysics Data System (ADS)

    Lambert, Thibault; Darchambeau, François; Vieira Borges, Alberto; Alhou, Bassirou; Mbega, Jean-Daniel; Teodoru, Cristian; Marwick, Trent Richard; Bouillon, Steven

    2014-05-01

    Tropical rivers have disproportionally high carbon transport and outgassing compared to temperate and Arctic rivers. Yet the cycling of dissolved organic matter (DOM) within these systems is still poorly studied with the exception of the Amazon basin. The chromophoric or colored dissolved organic matter (CDOM) is the fraction of DOM that absorbs ultraviolet and visible light. As the biochemical nature of DOM (and CDOM) defines its optical properties, optical measurements are particularly useful to assess the composition of DOM in freshwater and hence can be applied as proxies for assessments of DOM sources and its biogeochemical role. However, less is known on how specific optical characteristics can be applied as proxies and how these proxies vary from one system to another. In this study we compared concentrations and stable isotopic signature of dissolved organic carbon with optical properties of DOM from diverse tropical river systems across the African continent including the Congo basin, the Zambezi basin, the Ogooué basin and the Niger basin. These major rivers of the African continent were monitored for long period (from 1-3 years) at biweekly frequency. This large dataset allowed us to compare the spatial and temporal patterns of DOM quality along various environmental gradients, including hydrology, river size, terrestrial vegetation and connectivity to terrestrial inputs. The optical proxies presented and discussed in this study include absorption coefficients a(Λ) at different wavelength (254, 300, 350 and 440 nm), spectral slopes (S275-295and S350-400), the spectral slope ratio (SR=S275-295:S350-400) and the a(250):a(365) ratio.

  3. A novel organic nonlinear optical crystal: Creatininium succinate

    NASA Astrophysics Data System (ADS)

    Thirumurugan, R.; Anitha, K.

    2015-06-01

    A novel organic material complex of creatininium succinate (CS) has been synthesized and single crystals were grown by the reaction of creatinine and succinic acid from aqueous solution by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated using single crystal X-ray diffraction analysis and the structure was refined by least-squares method to R = 0.027 for 1840 reflections. FT-IR spectral investigation has been carried out to identify the various functional groups in the title compound. UV-Vis transmission was carried out which shows the crystal has a good optical transmittance in the visible region with lower cutoff wavelength around 220 nm. Nonlinear optical property of the crystal was confirmed by Kurtz-Perry powder technique.

  4. Current developments in optical data storage with organic dyes.

    PubMed

    Mustroph, Heinz; Stollenwerk, Manfred; Bressau, Volker

    2006-03-20

    The main motivation for the development of digital data storage has been the improvement in play-back quality and the increase in storage capacity. In 1982 Philips and Sony introduced the first technically and economically successful system based on this-the compact disc (CD) and a compatible player. A very broad diversity of optical data recording formats are available today, and a difference is drawn between prerecorded, recordable, and rewritable media. This Review gives an overview of the systems used, the main features of production, and then concentrates on the properties of the organic dyes that are used in recordable systems. Dyestuffs chemistry has gained the reputation of having become a mature field of activity. Is this prejudice or a justified swan song for dyestuffs chemistry? When applications in optical data storage are considered, it is evident that even today progresses such as CD-R and DVD/R would not be feasible without functional dyes.

  5. A novel organic nonlinear optical crystal: Creatininium succinate

    SciTech Connect

    Thirumurugan, R.; Anitha, K.

    2015-06-24

    A novel organic material complex of creatininium succinate (CS) has been synthesized and single crystals were grown by the reaction of creatinine and succinic acid from aqueous solution by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated using single crystal X-ray diffraction analysis and the structure was refined by least-squares method to R = 0.027 for 1840 reflections. FT-IR spectral investigation has been carried out to identify the various functional groups in the title compound. UV–Vis transmission was carried out which shows the crystal has a good optical transmittance in the visible region with lower cutoff wavelength around 220 nm. Nonlinear optical property of the crystal was confirmed by Kurtz-Perry powder technique.

  6. Self-organized plasmonic metasurfaces for all-optical modulation

    NASA Astrophysics Data System (ADS)

    Della Valle, G.; Polli, D.; Biagioni, P.; Martella, C.; Giordano, M. C.; Finazzi, M.; Longhi, S.; Duò, L.; Cerullo, G.; Buatier de Mongeot, F.

    2015-06-01

    We experimentally demonstrate a self-organized metasurface with a polarization dependent transmittance that can be dynamically controlled by optical means. The configuration consists of tightly packed plasmonic nanowires with a large dispersion of width and height produced by the defocused ion-beam sputtering of a thin gold film supported on a silica glass. Our results are quantitatively interpreted according to a theoretical model based on the thermomodulational nonlinearity of gold and a finite-element numerical analysis of the absorption and scattering cross-sections of the nanowires. We found that the polarization sensitivity of the metasurface can be strongly enhanced by pumping with ultrashort laser pulses, leading to potential applications in ultrafast all-optical modulation and switching of light.

  7. Applying LED in full-field optical coherence tomography for gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Yu-Yen; Juan, Yu-Shan; Hsu, Sheng-Jie

    2015-08-01

    Optical coherence tomography (OCT) has become an important medical imaging technology due to its non-invasiveness and high resolution. Full-field optical coherence tomography (FF-OCT) is a scanning scheme especially suitable for en face imaging as it employs a CMOS/CCD device for parallel pixels processing. FF-OCT can also be applied to high-speed endoscopic imaging. Applying cylindrical scanning and a right-angle prism, we successfully obtained a 360° tomography of the inner wall of an intestinal cavity through an FF-OCT system with an LED source. The 10-μm scale resolution enables the early detection of gastrointestinal lesions, which can increase detection rates for esophageal, stomach, or vaginal cancer. All devices used in this system can be integrated by MOEMS technology to contribute to the studies of gastrointestinal medicine and advanced endoscopy technology.

  8. In plane optical sensor based on organic electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc; Rensing, Peter; van Heck, Gert; Sharpe, Ruben; Allard, Bart; Wieringa, Fokko; Kruijt, Peter; Meulendijks, Nicole; Jansen, Henk; Schoo, Herman

    2008-08-01

    Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils with OLED and OPD arrays form an in-plane optical sensor platform (IPOS). This platform can be extended with a wireless data and signal processing unit yielding a sensor node. The focus of our research is to engage the node in a healthcare application, in which a bandage is able to monitor the vital signs of a person, a so-called Smart Bandage. One of the principles that is described here is based on measuring the absorption modulation of blood volume induced by the pulse (photoplethysmography). The information from such a bandage could be used to monitor wound healing by measuring the perfusion in the skin. The OLED and OPD devices are manufactured on separate foils and glass substrates by means of printing and coating technologies. Furthermore, the modular approach allows for the application of the optical sensing unit in a variety of other fields including chemical sensing. This, ultimately enables the measurement of a large variety of physiological parameters using the same bandage and the same basic sensor architecture. Here we discuss the build-up of our device in general terms. Specific characteristics of the used OLEDs and OPDs are shown and finally we demonstrate the functionality by simultaneously recorded photoplethysmograms of our device and a clinical pulseoximeter.

  9. Two-dimensional null subspace algorithm applied for blind optical images deconvolution

    NASA Astrophysics Data System (ADS)

    Berezovskiy, Andrey; Goriachkin, Oleg

    2016-03-01

    The article deals with the image blind identification algorithm applied for optical images restoration. The proposed solution is based on the polynomial transform of the signals and allows to reduce multichannel blind image identification to the linear equation solving with the number of equations, equal to the number of the unknown PSF samples. The outcome of the simulation for different SNR is examined during the simulation; the real images, restored by the proposed algorithm are shown.

  10. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  11. Total light loss optic spectroscopy. Progress towards a fiber optic Raman organic vapor sensor

    SciTech Connect

    Kyle, K.R.; Vess, T.M.; Angel, S.M.

    1993-09-01

    A Raman probe has been developed utilizing a single optical fiber as both a light pipe and an active sensing element. By coating a small segment of the surface of an exposed glass fiber core with a thin polymer film, an inverted waveguide is formed where light transmitted down the fiber is stripped out of the core and into the polymer film. The polymer coating is used both as a waveguide and as a medium for concentrating small organic molecules to be interrogated by Raman spectroscopy. The ability of the fiber optic thin film waveguide probe to detect organic vapors is demonstrated. The utility of the probe in the detection of nonaqueous phase liquids (NAPLs) is also described.

  12. Probing electric fields within organic transistors by nonlinear optics

    NASA Astrophysics Data System (ADS)

    Miranda, Paulo B.; Motti, Silvia G.; Gomes, Douglas J. C.

    2015-03-01

    Organic field-effect transistors (OFETs) are important building blocks in many organic devices, but further improvements in their performance will require a detailed knowledge of their operation mechanism. Thus mapping the electric fields in OFETs, both in the active organic layer and inside the gate dielectric, will allow a direct comparison with theoretical OFET models and guide advances in device engineering. The nonlinear optical processes of sum-frequency generation (SFG) and second-harmonic generation (SHG) may be used to probe electric fields in OFETs. With a proper choice of pump wavelength, SHG can selectively probe the field component along the OFET channel, inside the organic semiconductor. In contrast, SFG may probe the field within any organic material by selecting a specific molecular vibration and monitoring the field-enhanced SFG signal. Here we investigate OFETs fabricated with a polythiophene derivative (P3HT) on silicon substrates and with the insulating polymer PMMA for the dielectric layer. Both the strength and sign of the electric field in PMMA can be determined, yielding a direct probe of charge accumulation along the OFET channel. An extension of this technique to map the spatial distribution of accumulated charge along the channel will also be discussed. Work funded by FAPESP and CNPq (Brazil).

  13. How Settings Change People: Applying Behavior Setting Theory to Consumer-Run Organizations

    ERIC Educational Resources Information Center

    Brown, Louis D.; Shepherd, Matthew D.; Wituk, Scott A.; Meissen, Greg

    2007-01-01

    Self-help initiatives stand as a classic context for organizational studies in community psychology. Behavior setting theory stands as a classic conception of organizations and the environment. This study explores both, applying behavior setting theory to consumer-run organizations (CROs). Analysis of multiple data sets from all CROs in Kansas…

  14. 13 CFR 119.9 - How will a qualified organization apply for PRIME grant awards?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... apply for PRIME grant awards? 119.9 Section 119.9 Business Credit and Assistance SMALL BUSINESS... organization apply for PRIME grant awards? (a) SBA will issue Program Announcements specifying the terms... the right to consider at the same time multiple applications from a single applicant when appropriate....

  15. Research on fabrication of aspheres at the Center of Optics Technology (University of Applied Science in Aalen); Techical Digest

    NASA Astrophysics Data System (ADS)

    Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas

    2005-05-01

    The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics & Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.

  16. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    SciTech Connect

    Young, P.G.

    1994-10-01

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, {sup 3}He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei.

  17. Threshold thickness for applying diffusion equation in thin tissue optical imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong

    2014-08-01

    We investigated the suitability of the semi-infinite model of the diffusion equation when using diffuse optical imaging (DOI) to image thin tissues with double boundaries. Both diffuse approximation and Monte Carlo methods were applied to simulate light propagation in the thin tissue model with variable optical parameters and tissue thicknesses. A threshold value of the tissue thickness was defined as the minimum thickness in which the semi-infinite model exhibits the same reflected intensity as that from the double-boundary model and was generated as the final result. In contrast to our initial hypothesis that all optical properties would affect the threshold thickness, our results show that only absorption coefficient is the dominant parameter and the others are negligible. The threshold thickness decreases from 1 cm to 4 mm as the absorption coefficient grows from 0.01 mm-1 to 0.2 mm-1. A look-up curve was derived to guide the selection of the appropriate model during the optical diagnosis of thin tissue cancers. These results are useful in guiding the development of the endoscopic DOI for esophageal, cervical and colorectal cancers, among others.

  18. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging

    PubMed Central

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J. Alexander; Bargmann, Cornelia I.

    2016-01-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a “precise color” MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. PMID:27231594

  19. Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies

    NASA Astrophysics Data System (ADS)

    Hamel, Caroline; Pinet, Éric

    2006-02-01

    We present how fiber-optic temperature or pressure sensors could be applied to minimally invasive diagnostics and therapies. For instance a miniature pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes. These include intra-aortic balloon pumping (IABP) therapy and other applications requiring detection of fast and/or subtle fluid pressure variations such as for intracranial pressure monitoring or for urology diagnostics. As well, miniature temperature sensors permit minimally invasive direct temperature measurement in diagnostics or therapies requiring energy transfer to living tissues. The extremely small size of fiber-optic sensors that we have developed allows quick and precise in situ measurements exactly where the physical parameters need to be known. Furthermore, their intrinsic immunity to electromagnetic interference (EMI) allows for the safe use of EMI-generating therapeutic or diagnostic equipments without compromising the signal quality. With the trend of ambulatory health care and the increasing EMI noise found in modern hospitals, the use of multi-parameter fiber-optic sensors will improve constant patient monitoring without any concern about the effects of EMI disturbances. The advantages of miniature fiberoptic sensors will offer clinicians new monitoring tools that open the way for improved diagnostic accuracy and new therapeutic technologies.

  20. Layer-Resolved Evolution of Organic Thin Films Monitored by Photoelectron Emission Microscopy and Optical Reflectance Spectroscopy

    PubMed Central

    2015-01-01

    Photoelectron emission microscopy (PEEM) and differential (optical) reflectance spectroscopy (DRS) have proven independently to be versatile analytical tools for monitoring the evolution of organic thin films during growth. In this paper, we present the first experiment in which both techniques have been applied simultaneously and synchronously. We illustrate how the combined PEEM and DRS results can be correlated to obtain an extended perspective on the electronic and optical properties of a molecular film dependent on the film thickness and morphology. As an example, we studied the deposition of the organic molecule α-sexithiophene on Ag(111) in the thickness range from submonolayers up to several monolayers. PMID:26523159

  1. Can Applied Naturoptics Fund Associates Degrees in Applied Optics Graduates, in the Americas and Elsewhere, into BS/MS/PhD Physics/Applied Physics Programs?

    NASA Astrophysics Data System (ADS)

    Ferreira, Nadja; Andrade, Jennifer; Mc Leod, Roger D.

    2007-04-01

    Youthful females and other disadvantaged minority members sometimes develop visual handicaps when educational and/or other stressors are present. Special methods already available, effective, and underutilized, can be marshaled towards correcting current technologic and academic systems demand-supply mismatches in the sciences. More efficient harvesting of intellectually advantaged youthful students may represent more-highly-productive global scientific output. RDM has found that it is possible to motivate, stimulate, teach, and foster increased science interest by interacting with students at the earliest possible academic moments. The same applied optics of burning paper with a magnifying glass, and prismatic dispersing of light, allows understanding how vision operates, and can be damaged. Providing information to all students that they safely can self-repair damaged vision could only increase their interest in physics and special work-study programs. ``Indians'' are the most poorly represented group at all levels of education and its support services. MOLLOCKET/MULLAH indicates extra-human/higher-power interactions. Why? Obvious survival value suggests possible information-transmission attempts like those accessed by ``Indians.'' To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C2.2

  2. Electronic and optical properties at organic/organic interfaces in organic solar cells.

    PubMed

    Yost, Shane R; Hontz, Eric; McMahon, David P; Van Voorhis, Troy

    2014-01-01

    In organic photovoltaic (OPV) devices the formation of free charges from a singlet excited state is the key step in converting light to electrical energy. However, questions still remain as to why the process is so fast and efficient in some OPV devices while not in others. Currently, it is not understood how the binding energy of the charge transfer state formed at an organic/organic interface, ~40 kT, is overcome in order to create free charge carriers. Given the difficulty of experimentally probing the electronic processes occurring at the organic/organic interface, it falls to theoretical and computational studies to provide essential insights into the processes occurring on the microscopic level. In this review we will cover the contributions made by theoretical studies to improve our understanding of the organic/organic interface. We will address the advantages and disadvantages of different theoretical approaches to studying the numerous interesting effects observed, such as shifts in the HOMO and LUMO levels due to the electrostatic environment, increased localization due to disorder, and the general impact of molecular orientation on different molecular properties. Further, we will discuss the currently proposed mechanisms of charge separation at the organic/organic interface and the implications that these mechanisms have on the choice of materials for use in OPV devices.

  3. Leaching of Particulate and Dissolved Organic Carbon from Compost Applied to Bioretention Systems

    NASA Astrophysics Data System (ADS)

    Iqbal, Hamid; Flury, Markus; Mullane, Jessica; Baig, Muhammad

    2015-04-01

    Compost is used in bioretention systems to improve soil quality, to promote plant growth, and to remove metal contaminants from stormwater. However, compost itself, particularly when applied freshly, can be a source of contamination of the stormwater. To test the potential contamination caused by compost when applied to bioretention systems, we continuously leached a compost column with water under unsaturated conditions and characterized dissolved and particulate organic matter in the leachate. Freshly applied, mature compost leached up to 400 mg/L of dissolved organic carbon and 2,000 mg/L of suspended particulate organic carbon. It required a cumulative water flux of 4,000 mm until concentrations of dissolved and particulate organic carbon declined to levels typical for surface waters. Although, dissolved and particulate organic carbon are not contaminants per se, they can facilitate the movement of metals, thereby enhancing the mobility of toxic metals present in stormwater. Therefore, we recommended that compost is washed before it is applied to bioretention systems. Keywords compost; leachate; alkali extract; dissolved organic carbon; flux

  4. Applied electro-optics educational and training program with multiple entrance and exit pathways

    NASA Astrophysics Data System (ADS)

    Scott, Patricia; Zhou, Feng; Zilic, Dorothy

    2007-06-01

    This paper presents an innovative hands-on training program designed to create a pipeline of highly-skilled technical workers for today's workforce economy. The 2+2+2 Pennsylvania Integrated Workforce Leadership Program in Electro-Optics prepares students for a career in this new high-tech field. With seamless transition from high school into college, the program offers the versatility of multiple entrance and exit pathways. After completion of each educational level, students can exit the program with various skill levels, including certificates, an associate's degree, or a bachelor's degree. Launched by Indiana University of Pennsylvania (IUP) in partnership with Lenape Vocational School (Lenape), the 2+2+2 educational pathway program was implemented to promote early training of high-school students. During the first level, students in their junior and/or senior year enroll in four Electro-Optics courses at Lenape. Upon completion of these courses and an Advanced Placement Equivalency course with an appropriate exam score, students can earn a certificate from Lenape for the 15+ credits, which also can be articulated into IUP's associate degree program in Electro-Optics. During the second level, students can earn an associate's degree in Electro-Optics, offered only at the IUP Northpointe Campus. After completion of the Associate in Applied Science (A.A.S.), students are prepared to enter the workforce as senior technicians. During the third level, students who have completed the Associate of Science (A.S.) in Electro-Optics have the opportunity to matriculate at IUP's Indiana Campus to earn a Bachelor of Science (B.S.) degree in Applied Physics with a track in Electro-Optics. Hence, the name 2+2+2 refers to getting started in high school, continuing the educational experience with an associate's degree program, and optionally moving on to a bachelor's degree. Consequently, students move from one educational level to the next with advanced credits toward the next

  5. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    USGS Publications Warehouse

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-01-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer–Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  6. Kyropoulos method for growth of nonlinear optical organic crystal ABP (4-aminobenzophenone) from the melt

    NASA Astrophysics Data System (ADS)

    Pan, Shoukui; Okano, Y.; Tsunekawa, S.; Fukuda, T.

    1993-03-01

    The Kyropoulus method was used to grow nonlinear optical organic crystals ABP (4-aminobenzophenone). The crystals were characterized by nonlinear optical measurements and had a large effect of frequency doubling.

  7. Acenes and acenequinones for optics and organic electronics

    NASA Astrophysics Data System (ADS)

    Bruzek, Matthew J.

    Acenes have been explored by a number of research groups in the field of organic electronics with a particular emphasis on transistor materials. This group has been actively studying acene-based organic semiconductors for more than a decade using a crystal engineering approach and has developed acene derivatives for applications in field-effect transistors, light-emitting diodes, and photovoltaics. In addition to organic electronics, crystal engineering has important applications in a number of other fields, quite notably in the design of metal-organic frameworks. Chapters 2 and 3 of this dissertation focus on applying crystal engineering to the synthesis of acene derivatives for use as solid-state, long-wavelength fluorescent organic dyes in the field of biomedical imaging. More specifically, this work studied the synthesis and properties of dioxolane-functionalized pentacenes and hexacenes. One of these pentacene derivatives has already been demonstrated in biomedical imaging which may lead to improved treatment of tuberculosis. The dioxolane-functionalized hexacene is still under evaluation for bioimaging applications. Chapters 4 and 5 focus on crystal engineering in relation to organic electronics. Chapter 4 deals with fine-tuning of crystal packing and demonstrated that small differences in molecular structure can result in significant changes to the solid-state structure which affects semiconductor properties. Finally, chapter 5 studies the use of singlet fission in photovoltaics and demonstrated that this process does occur in a solar cell incorporating a hexacene derivative. Pentadithiophenes were also synthesized for singlet fission photovoltaics, but they have yet to be studied further. KEYWORDS: Crystal Engineering, Biomedical Imaging, Acenes, Singlet Fission, Organic Semiconductors.

  8. Fiber-optic laser-Doppler anemometer microscope applied to the cerebral microcirculation in rats.

    PubMed

    Seki, J; Sasaki, Y; Oyama, T; Yamamoto, J

    1996-01-01

    We have applied our developed fiber-optic laser-Doppler anemometer microscope (FLDAM) for the study of the cerebral microcirculation in the rat. The red cell velocity in single pial microvessels was successfully measured through a closed cranial window for the vessel diameter range from 7.8 to 230 microns. The temporal resolution of the FLDAM was sufficiently high to detect the pulsation in the arterioles. Arterio-venous distributions of the temporal mean red cell velocity and wall shear rate are also described.

  9. Thin film of the PVK and PPV applied in optoelectronic organic sensor

    NASA Astrophysics Data System (ADS)

    Guedes, Andre F. S.; Guedes, Vilmar P.; Tartari, Simone; Cunha, Idaulo Jose

    2016-09-01

    Phototherapy makes use of different radiation sources, and the treatment of hyperbilirubinemia the most common therapeutic intervention occurs in the neonatal period. In this work we developed an organic optoelectronic sensor capable of detecting and determining the radiation dose rate emitted by the radiation source of neonatal phototherapy equipment. The sensors were developed using optically transparent substrate with Nanostructured thin film layers of Poly(9-Vinylcarbazole) covered by a layer of Poly(P-Phenylene Vinylene). The samples were characterized by UV-Vis Spectroscopy, Electrical Measurements and SEM. With the results obtained from this study can be developed dosimeters organics to the neonatal phototherapy equipment.

  10. Luminescence Sensors Applied to Water Analysis of Organic Pollutants—An Update

    PubMed Central

    Ibañez, Gabriela A.; Escandar, Graciela M.

    2011-01-01

    The development of chemical sensors for environmental analysis based on fluorescence, phosphorescence and chemiluminescence signals continues to be a dynamic topic within the sensor field. This review covers the fundamentals of this type of sensors, and an update on recent works devoted to quantifying organic pollutants in environmental waters, focusing on advances since about 2005. Among the wide variety of these contaminants, special attention has been paid polycyclic aromatic hydrocarbons, pesticides, explosives and emerging organic pollutants. The potential of coupling optical sensors with multivariate calibration methods in order to improve the selectivity is also discussed. PMID:22247654

  11. Applying Organization Theory to Understanding the Adoption and Implementation of Accountable Care Organizations: Commentary.

    PubMed

    Shortell, Stephen M

    2016-12-01

    This commentary highights the key arguments and contributions of institutional thoery, transaction cost economics (TCE) theory, high reliability theory, and organizational learning theory to understanding the development and evolution of Accountable Care Organizations (ACOs). Institutional theory and TCE theory primarily emphasize the external influences shaping ACOs while high reliability theory and organizational learning theory underscore the internal fctors influencing ACO perfromance. A framework based on Implementation Science is proposed to conside the multiple perspectives on ACOs and, in particular, their abiity to innovate to achieve desired cost, quality, and population health goals.

  12. Optical Spintronics in Organic-Inorganic Perovskite Photovoltaics.

    PubMed

    Li, Junwen; Haney, Paul M

    2016-04-15

    Organic-inorganic halide CH3NH3PbI3 solar cells have attracted enormous attention in recent years due to their remarkable power conversion efficiency. When inversion symmetry is broken, these materials should exhibit interesting spin-dependent properties as well, owing to their strong spin-orbit coupling. In this work, we consider the spin-dependent optical response of CH3NH3PbI3. We first use density functional theory to compute the ballistic spin current generated by absorption of unpolarized light. We then consider diffusive transport of photogenerated charge and spin for a thin CH3NH3PbI3 layer with a passivated surface and an Ohmic, non-selective contact. The spin density and spin current are evaluated by solving the drift-diffusion equations for a simplified 3-dimensional Rashba model of the electronic structure of the valence and conduction bands. We provide analytic expressions for the photon flux required to induce measurable spin densities, and propose that these spin densities can provide useful information about the role of grain boundaries in the photovoltaic behavior of these materials. We also discuss the prospects for measuring the optically generated spin current with the inverse spin Hall effect.

  13. Optical spintronics in organic-inorganic perovskite photovoltaics

    NASA Astrophysics Data System (ADS)

    Li, Junwen; Haney, Paul M.

    2016-04-01

    Organic-inorganic halide CH3NH3PbI3 solar cells have attracted enormous attention in recent years due to their remarkable power conversion efficiency. When inversion symmetry is broken, these materials should exhibit interesting spin-dependent properties as well, owing to their strong spin-orbit coupling. In this work, we consider the spin-dependent optical response of CH3NH3PbI3 . We first use density functional theory to compute the ballistic spin current generated by absorption of unpolarized light. We then consider diffusive transport of photogenerated charge and spin for a thin CH3NH3PbI3 layer with a passivated surface and an Ohmic, nonselective contact. The spin density and spin current are evaluated by solving the drift-diffusion equations for a simplified three-dimensional Rashba model of the electronic structure of the valence and conduction bands. We provide analytic expressions for the photon flux required to induce measurable spin densities, and propose that these spin densities can provide useful information about the role of grain boundaries in the photovoltaic behavior of these materials. We also discuss the prospects for measuring the optically generated spin current with the inverse spin Hall effect.

  14. Self-organized optical device driven by motor proteins

    PubMed Central

    Aoyama, Susumu; Shimoike, Masahiko; Hiratsuka, Yuichi

    2013-01-01

    Protein molecules produce diverse functions according to their combination and arrangement as is evident in a living cell. Therefore, they have a great potential for application in future devices. However, it is currently very difficult to construct systems in which a large number of different protein molecules work cooperatively. As an approach to this challenge, we arranged protein molecules in artificial microstructures and assembled an optical device inspired by a molecular system of a fish melanophore. We prepared arrays of cell-like microchambers, each of which contained a scaffold of microtubule seeds at the center. By polymerizing tubulin from the fixed microtubule seeds, we obtained radially arranged microtubules in the chambers. We subsequently prepared pigment granules associated with dynein motors and attached them to the radial microtubule arrays, which made a melanophore-like system. When ATP was added to the system, the color patterns of the chamber successfully changed, due to active transportation of pigments. Furthermore, as an application of the system, image formation on the array of the optical units was performed. This study demonstrates that a properly designed microstructure facilitates arrangement and self-organization of molecules and enables assembly of functional molecular systems. PMID:24065817

  15. Optical Spintronics in Organic-Inorganic Perovskite Photovoltaics

    PubMed Central

    Li, Junwen; Haney, Paul M.

    2016-01-01

    Organic-inorganic halide CH3NH3PbI3 solar cells have attracted enormous attention in recent years due to their remarkable power conversion efficiency. When inversion symmetry is broken, these materials should exhibit interesting spin-dependent properties as well, owing to their strong spin-orbit coupling. In this work, we consider the spin-dependent optical response of CH3NH3PbI3. We first use density functional theory to compute the ballistic spin current generated by absorption of unpolarized light. We then consider diffusive transport of photogenerated charge and spin for a thin CH3NH3PbI3 layer with a passivated surface and an Ohmic, non-selective contact. The spin density and spin current are evaluated by solving the drift-diffusion equations for a simplified 3-dimensional Rashba model of the electronic structure of the valence and conduction bands. We provide analytic expressions for the photon flux required to induce measurable spin densities, and propose that these spin densities can provide useful information about the role of grain boundaries in the photovoltaic behavior of these materials. We also discuss the prospects for measuring the optically generated spin current with the inverse spin Hall effect. PMID:27453958

  16. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    SciTech Connect

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew E.; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  17. Optical coherence tomography: a non-invasive technique applied to conservation of paintings

    NASA Astrophysics Data System (ADS)

    Liang, Haida; Gomez Cid, Marta; Cucu, Radu; Dobre, George; Kudimov, Boris; Pedro, Justin; Saunders, David; Cupitt, John; Podoleanu, Adrian

    2005-06-01

    It is current practice to take tiny samples from a painting to mount and examine in cross-section under a microscope. However, since conservation practice and ethics limit sampling to a minimum and to areas along cracks and edges of paintings, which are often unrepresentative of the whole painting, results from such analyses cannot be taken as representative of a painting as a whole. Recently in a preliminary study, we have demonstrated that near-infrared Optical Coherence Tomography (OCT) can be used directly on paintings to examine the cross-section of paint and varnish layers without contact and the need to take samples. OCT is an optical interferometric technique developed for in vivo imaging of the eye and biological tissues; it is essentially a scanning Michelson's interferometer with a "broad-band" source that has the spatial coherence of a laser. The low temporal coherence and high spatial concentration of the source are the keys to high depth resolution and high sensitivity 3D imaging. The technique is non-invasive and non-contact with a typical working distance of 2 cm. This non-invasive technique enables cross-sections to be examined anywhere on a painting. In this paper, we will report new results on applying near-infrared en-face OCT to paintings conservation and extend the application to the examination of underdrawings, drying processes, and quantitative measurements of optical properties of paint and varnish layers.

  18. Fine functional organization of auditory cortex revealed by Fourier optical imaging.

    PubMed

    Kalatsky, Valery A; Polley, Daniel B; Merzenich, Michael M; Schreiner, Christoph E; Stryker, Michael P

    2005-09-13

    We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena.

  19. Pseudo-organ boundary conditions applied to a computational fluid dynamics model of the human aorta.

    PubMed

    Yull Park, Joong; Young Park, Chan; Mo Hwang, Chang; Sun, Kyung; Goo Min, Byoung

    2007-08-01

    In three-dimensional numerical studies of the aorta, it is difficult to apply proper boundary conditions at the end of each major aortic branch because of interactions between blood and organs. Organs and body parts were assumed to be likened to cylindrically shaped porous media, so-called pseudo-organs, and treated in the computational domain as forms of hemodynamic resistance. Permeability functions were determined from two-dimensional axisymmetric computations of each aortic branch and these functions were then used in an unsteady three-dimensional simulation of the complete aorta. Substantially accurate cardiac output (5.91 L/min) and blood distributions to the major branches were predicted.

  20. Characterization of optically stimulated luminescence dosemeters to measure organ doses in diagnostic radiology

    PubMed Central

    Endo, A; Katoh, T; Kobayashi, I; Joshi, R; Sur, J; Okano, T

    2012-01-01

    Objective The aim of this study was to assess the characteristics of an optically stimulated luminescence dosemeter (OSLD) for use in diagnostic radiology and to apply the OSLD in measuring the organ doses by panoramic radiography. Methods The dose linearity, energy dependency and angular dependency of aluminium oxide-based OSLDs were examined using an X-ray generator to simulate various exposure settings in diagnostic radiology. The organ doses were then measured by inserting the dosemeters into an anthropomorphic phantom while using three panoramic machines. Results The dosemeters demonstrated consistent dose linearity (coefficient of variation<1.5%) and no significant energy dependency (coefficient of variation<1.5%) under the applied exposure conditions. They also exhibited negligible angular dependency (≤10%). The organ doses of the X-ray as a result of panoramic imaging by three machines were calculated using the dosemeters. Conclusion OSLDs can be utilized to measure the organ doses in diagnostic radiology. The availability of these dosemeters in strip form proves to be reliably advantageous. PMID:22116136

  1. 24 CFR 5.1003 - Use of a universal identifier for organizations applying for HUD grants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Use of a universal identifier for organizations applying for HUD grants. 5.1003 Section 5.1003 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development GENERAL HUD PROGRAM REQUIREMENTS; WAIVERS...

  2. 40 CFR 262.100 - To what organizations does this subpart apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false To what organizations does this subpart apply? 262.100 Section 262.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE...

  3. Virginia Henderson's principles and practice of nursing applied to organ donation after brain death.

    PubMed

    Nicely, Bruce; DeLario, Ginger T

    2011-03-01

    Registered nurses were some of the first nonphysician organ transplant and donation specialists in the field, both in procurement and clinical arenas. Nursing theories are abundant in the literature and in nursing curricula, but none have been applied to the donation process. Noted nursing theorist Virginia Henderson (1897-1996), often referred to as the "first lady of nursing," developed a nursing model based on activities of living. Henderson had the pioneering view that nursing stands separately from medicine and that nursing consists of more than simply following physicians' orders. Henderson's Principles and Practice of Nursing is a grand theory that can be applied to many types of nursing. In this article, Henderson's theory is applied to the intensely focused and specialized area of organ donation for transplantation. Although organ donation coordinators may have backgrounds as physicians' assistants, paramedics, or other allied health professions, most are registered nurses. By virtue of the inherent necessity for involvement of the family and friends of the potential donor, Henderson's concepts are applied to the care and management of the organ donor, to the donor's family and friends, and in some instances, to the caregivers themselves.

  4. 40 CFR 262.100 - To what organizations does this subpart apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false To what organizations does this subpart apply? 262.100 Section 262.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE...

  5. 40 CFR 262.100 - To what organizations does this subpart apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false To what organizations does this subpart apply? 262.100 Section 262.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE...

  6. 40 CFR 262.100 - To what organizations does this subpart apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false To what organizations does this subpart apply? 262.100 Section 262.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE...

  7. Dispersion-model-free determination of optical constants: application to materials for organic thin film devices.

    PubMed

    Flämmich, Michael; Danz, Norbert; Michaelis, Dirk; Bräuer, Andreas; Gather, Malte C; Kremer, Jonas H-W M; Meerholz, Klaus

    2009-03-10

    We describe a method to determine the refractive index and extinction coefficient of thin film materials without prior knowledge of the film thickness and without the assumption of a dispersion model. A straightforward back calculation to the optical parameters can be performed starting from simple measurements of reflection and transmission spectra of a 100-250 nm thick supported film. The exact film thickness is found simultaneously by fulfilling the intrinsic demand of continuity of the refractive index as a function of wavelength. If both the layer and the substrate are homogeneous and isotropic media with plane and parallel interfaces, effects like surface roughness, scattering, or thickness inhomogeneities can be neglected. Then, the accuracy of the measurement is approximately 10(-2) and 10(-3) for the refractive index and the extinction coefficient, respectively. The error of the thin film thickness determination is well below 1 nm. Thus this technique is well suited to determine the input parameters for optical simulations of organic thin film devices, such as organic light-emitting diodes (OLEDs) or organic photovoltaic (OPV) cells. We apply the method to the electroluminescent polymer poly(2,5-dioctyl-p-phenylene vinylene) (PDO-PPV) and show its applicability by comparing the measured and calculated reflection and transmission spectra of OLED stacks with up to five layers.

  8. 3D Fluorescence Quenching of Dissolved Organic Matter Applying PARAFAC Treatment

    NASA Astrophysics Data System (ADS)

    Zhao, H. A.; Garnier, C.; Redon, R.; Mounier, S.

    2009-12-01

    Dissolved Organic Matter (DOM) exists everywhere in the environment. The studies of DOM in aquatic ecosystems enable us to obtain some information on its coming future and the importance of its role in the bio-geochemical processes. The fluorescence technique makes analyzes possible on the basis of the optical propriety of the DOM including its fluorophores composition and its complexation propriety face to face to certain metal (3). Recently for luminescence spectrum it is possible to determine the fluorescent component composition by the statistical analysis of parallel factor analysis (PARAFAC) with excitation-emission matrix (EEM) (1). The complexation propriety between DOM and metals is accessible by measuring the fluorescence quenching (FQ) functional to the metal additions. The EEMs in the FQ experiments contain maximal information as a whole of fluorescent DOM (FDOM). This work presents a quenching experience brought from copper ions titration onto a tropical river water sample (Rio Negro à Sao Gabriel Brésil) of 5mgC/L carbon concentration and 1.68 nano-molaire initial copper ions concentration (pH=4.5). A titration of copper ions (Cu(NO3)2) has been applied at total analytical concentration of copper-ions from 10-9M jusqu’à 10-3M. Fifty (50) EEM were obtained and gathered in order to analyze the FQ by PARAFAC. This statistic treatment permits us to extract 2 fluorescent components with the whole EEM: C1 (λex=225-235nm/λem=420-425nm) and C2 (λex=250-260nm and 345-355nm/λem=470-480nm) corresponding to the peaks already descript in the literature. Using the participation to the total fluorescence of these peaks, we have observed clearly that the fluorescence diminution was not uniform. The measurement of complexation propriety by this new approach gives the values following: K1=10E4.6; L1=10E-7.8 et K2=10E4.46; L2=10E-9 respectively the components C1 et C2. These results conform that determined in the literature by FQ. The utilisation of PARAFAC has

  9. Optical Properties of Polymers Relevant to Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Marrero-Ortiz, W.; Gomez-Hernandez, M. E.; Xu, W.; Guo, S.; Zhang, R.

    2014-12-01

    Atmospheric aerosols play a critical role in climate directly by scattering and absorbing solar radiation and indirectly by modifying the cloud formation. Currently, the direct and indirect effects of aerosols represent the largest uncertainty in climate predictions models. Some aerosols are directly emitted, but the majority are formed in the atmosphere by the oxidation of gaseous precursors. However, the formation of aerosols at the molecular level is not fully characterized. Certain category of secondary organic aerosols (SOA), which represent a significant fraction of the total aerosol burden, can be light-absorbing, also known as brown carbon. However, the overall contribution of SOA to the brown carbon and the related climate forcing is poorly understood. Such incomplete understanding is due in part to the chemical complexity of SOA and the lack of knowledge regarding SOA formation, transformation, and optical properties. Based on previous laboratory experiments, field measurements, and modeling studies, it has been suggested that the polymers and oligomers play an important role in the SOA formation. Atmospheric polymers could be produced by the hydration or heterogeneous reactions of epoxides and small α-dicarbonyls. Their aqueous chemistry products have been shown to give light-absorbing and high molecular weight oligomeric species, which increase the SOA mass production and alter the direct and indirect effect of aerosols. In this paper, the aerosol chemistry of small α-dicarbonyl compounds with amines is investigated and the associated optical properties are measured using spectroscopic techniques. The differences between primary, secondary and tertiary amines with glyoxal and methylglyoxal are evaluated in terms of SOA browning efficiency. Atmospheric implications of our present work for understanding the formation of light-absorbing SOA will be presented, particularly in terms of the product distribution of light-absorbing SOA formed by aqueous phase

  10. A novel optical calorimetry dosimetry approach applied to an HDR Brachytherapy source

    NASA Astrophysics Data System (ADS)

    Cavan, A.; Meyer, J.

    2013-06-01

    The technique of Digital Holographic Interferometry (DHI) is applied to the measurement of radiation absorbed dose distribution in water. An optical interferometer has been developed that captures the small variations in the refractive index of water due to the radiation induced temperature increase ΔT. The absorbed dose D is then determined with high temporal and spatial resolution using the calorimetric relation D=cΔT (where c is the specific heat capacity of water). The method is capable of time resolving 3D spatial calorimetry. As a proof-of-principle of the approach, a prototype DHI dosimeter was applied to the measurement of absorbed dose from a High Dose Rate (HDR) Brachytherapy source. Initial results are in agreement with modelled doses from the Brachyvision treatment planning system, demonstrating the viability of the system for high dose rate applications. Future work will focus on applying corrections for heat diffusion and geometric effects. The method has potential to contribute to the dosimetry of diverse high dose rate applications which require high spatial resolution such as microbeam radiotherapy (MRT) or small field proton beam dosimetry but may potentially also be useful for interface dosimetry.

  11. Methods of biomedical optical imaging: from subcellular structures to tissues and organs

    NASA Astrophysics Data System (ADS)

    Turchin, I. V.

    2016-05-01

    Optical bioimaging methods have a wide range of applications in the life sciences, most notably including the molecular resolution study of subcellular structures, small animal molecular imaging, and structural and functional clinical diagnostics of tissue layers and organs. We review fluorescent microscopy, fluorescent macroscopy, optical coherence tomography, optoacoustic tomography, and optical diffuse spectroscopy and tomography from the standpoint of physical fundamentals, applications, and progress.

  12. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  13. Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms

    PubMed Central

    Khare, Siddharth M.; Awasthi, Anjali; Venkataraman, V.; Koushika, Sandhya P.

    2015-01-01

    Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semi-automated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of ∼1 μN on an individual pillar and a total average force of ∼7.68 μN. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4 Hz applying an average force of ∼1.58 μN on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces

  14. Resonant state expansion applied to two-dimensional open optical systems

    NASA Astrophysics Data System (ADS)

    Doost, M. B.; Langbein, W.; Muljarov, E. A.

    2013-04-01

    The resonant state expansion (RSE), a rigorous perturbative method in electrodynamics, is applied to two-dimensional open optical systems. The analytically solvable homogeneous dielectric cylinder is used as an unperturbed system, and its Green's function is shown to contain a cut in the complex frequency plane, which is included in the RSE basis. The complex eigenfrequencies of modes are calculated using the RSE for a selection of perturbations which mix unperturbed modes of different orbital momentum, such as half-cylinder, thin-film, and thin-wire perturbation, demonstrating the accuracy and convergency of the method. The resonant states for the thin-wire perturbation are shown to reproduce an approximative analytical solution.

  15. Optical measurement system applied to continuous displacement monitoring of long-span suspension bridges

    NASA Astrophysics Data System (ADS)

    Lages Martins, L.; Rebordão, J. M.; Ribeiro, A. S.

    2013-04-01

    This paper provides a general description of main issues related to the design of an optical measurement system applied to continuous displacement monitoring of long-span suspension bridges. The proposed system's architecture is presented and its main components - camera and active targets - are described in terms of geometrical and radiometric characteristics required for long distance measurement of the tridimensional displacement of the stiffness girder in the middle section of the bridge's central span. The intrinsic and extrinsic camera parameterization processes, which support the adopted measurement approach, are explained in a specific section. Since the designed measurement system is intended to perform continuous displacement monitoring in long distance observation framework, particular attention is given to environmental effects, namely, refraction, turbulence and sensor saturation phenomena, which can influence the displacement measurement accuracy. Finally, a measurement uncertainty method is discussed in order to provide a suitable solution for the determination of the accuracy related to the proposed measurement approach.

  16. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  17. Racemization and the origin of optically active organic compounds in living organisms

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1987-01-01

    The organic compounds synthesized in prebiotic experiments are racemic mixtures. A number of proposals have been offered to explain how asymmetric organic compounds formed on the Earth before life arose, with the influence of chiral weak nuclear interactions being the most frequent proposal. This and other proposed asymmetric syntheses give only sight enantiomeric excess and any slight excess will be degraded by racemization. This applies particularly to amino acids where half-lives of 10(5)-10(6) years are to be expected at temperatures characteristic of the Earth's surface. Since the generation of chiral molecules could not have been a significant process under geological conditions, the origins of this asymmetry must have occurred at the time of the origin of life or shortly thereafter. It is possible that the compounds in the first living organisms were prochiral rather than chiral; this is unlikely for amino acids, but it is possible for the monomers of RNA-like molecules.

  18. Asymmetric split ring resonators for optical sensing of organic materials.

    PubMed

    Lahiri, Basudev; Khokhar, Ali Z; De La Rue, Richard M; McMeekin, Scott G; Johnson, Nigel P

    2009-01-19

    Asymmetric Split Ring Resonators are known to exhibit resonant modes where the optical electric field is strongest near the ends of the arms, thereby increasing the sensitivity of spectral techniques such as surface enhanced Raman scattering (SERS). By producing asymmetry in the structures, the two arms of the ring produce distinct plasmonic resonances related to their lengths - but are also affected by the presence of the other arm. This combination leads to a steepening of the slope of the reflection spectrum between the resonances that increases the sensitivity of the resonant behavior to the addition of different molecular species. We describe experimental results, supported by simulation, on the resonances of a series of circular split ring resonators with different gap and section lengths--at wavelengths in the mid-infra red regions of the spectrum--and their utilization for highly sensitive detection of organic compounds. We have used thin films of PMMA with different thicknesses, resulting in characteristic shifts from the original resonance. We also demonstrate matching of asymmetric split ring resonators to a molecular resonance of PMMA.

  19. Toward Investigating Optically Trapped Organic Aerosols with CARS Microspectroscopy

    NASA Astrophysics Data System (ADS)

    Voss, L. F.

    2009-12-01

    The Intergovernmental Panel on Climate Change notes the huge uncertainty in the effect that atmospheric aerosols play in determining overall global temperature, specifically in their ability to nucleate clouds. To better understand aerosol chemistry, the novel coupling of gradient force optical trapping with broad bandwidth coherent anti-Stokes Raman scattering (CARS) spectroscopy is being developed to study single particles suspended in air. Building on successful designs employed separately for the techniques, this hybrid technology will be used to explain how the oxidation of organic compounds changes the chemical and physical properties of aerosols. By trapping the particles, an individual aerosol can be studied for up to several days. Using a broad bandwidth pulse for one of the incident beams will result in a Raman vibrational spectrum from every laser pulse. Combined with signal enhancement due to resonance and coherence of nonlinear CARS spectroscopy, this technique will allow for acquisition of data on the millisecond time scale, facilitating the study of dynamic processes. This will provide insights on how aerosols react with and absorb species from the gas phase. These experiments will increase understanding of aerosol oxidation and growth mechanisms and the effects that aerosols have on our atmosphere and climate. Progress in efforts developing this novel technique to study model systems is presented.

  20. Nonlinear optical rectification in laterally-coupled quantum well wires with applied electric field

    NASA Astrophysics Data System (ADS)

    Liu, Guanghui; Guo, Kangxian; Zhang, Zhongmin; Hassanbadi, Hassan; Lu, Liangliang

    2017-03-01

    Nonlinear optical rectification coefficient χ0(2) in laterally-coupled AlxGa1-xAs/GaAs quantum well wires with an applied electric field is theoretically investigated using the effective mass approximation as well as the numerical energy levels and wavefunctions of electrons. We find that χ0(2) is greatly influenced by the electric field as well as both the distance and the radius of the coupled system. A blue shift of χ0(2) with increasing electric field is exhibited while a red shift followed by a blue shift with increasing distance or radius is exhibited. A nonmonotonic behavior can be found in the resonant peak values of χ0(2) along with the increase of the electric field, the distance or the radius. One or two of the following physical mechanisms: the increased localization of the ground and first-excited states, the reduced coupling and the reduced quantum confinement effect are applied to elucidate the results above. Our results play a potential role in infrared photodetectors based on the coupled system.

  1. New techniques to apply an optical fiber image guide to harsh radiation environments in nuclear facilities

    NASA Astrophysics Data System (ADS)

    Kimura, Atsushi; Takada, Eiji; Hosono, Yoneichi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Hayami, Hiroyuki

    1999-01-01

    To apply optical fiber image guide (IG) to harsh radiation environments, we have developed two new techniques. One technique is a visible type IG with a color correcting system and the other technique is an IR type IG. We irradiated the IGs utilizing a 60Co gamma source. Measured Images with the visible type IG became dark and yellowish because of radiation induced loss. By using a color correction system, the original color of the images can be obtained. In the case of IR type IG, because of low radiation induced loss in the IR region, the degree of darkening was less than half of that for the visible type of IG. For a fixed irradiated length of 2.5m, the dose limit for using IG was estimated to be 4.6 X 108 with the visible type IG and 1.2 X 109 with the IR type IG. These radiation resistivities were more than 103 times of that for usual CCD cameras. With these techniques, IG can be applied to harsh radiation environment.

  2. Device applications and structural and optical properties of Indigo - A biodegradable, low-cost organic semiconductor

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Pisane, Kelly L.; Sierros, Konstantinos; Seehra, Mohindar S.; Korakakis, Dimitris

    2015-03-01

    Currently, memory devices based on organic materials are attracting great attention due to their simplicity in device structure, mechanical flexibility, potential for scalability, low-cost potential, low-power operation, and large capacity for data storage. In a recent paper from our group, Indigo-based nonvolatile organic write-once-read-many-times (WORM) memory device, consisting of a 100nm layer of indigo sandwiched between an indium tin oxide (ITO) cathode and an Al anode, has been reported. This device is found to be at its low resistance state (ON state) and can be switched to high resistance state (OFF state) by applying a positive bias with ON/OFF current ratio of the device being up to 1.02 × e6. A summary of these results along with the structural and optical properties of indigo powder will be reported. Analysis of x-ray diffraction shows a monoclinic structure with lattice parameters a(b)[c] = 0.924(0.577)[0.1222]nm and β =117° . Optical absorption shows a band edge at 1.70 eV with peak of absorption occurring at 1.90 eV. These results will be interpreted in terms of the HOMO-LUMO bands of Indigo.

  3. Advanced Organic Electro-Optic Materials for Integrated Device Applications

    DTIC Science & Technology

    2001-06-01

    Electro - optic chromophores (FTC and CLD) were synthesized in bulk (kilogram) quantities and were distributed to the participants of this program...to stabilize electro - optic activity for operation at elevated temperatures and photon flux levels. Over 100 variants of these chromophores were...1.5-2.0 improvement over FTC and CLD chromophores in terms of electro - optic activity at telecommunication wavelengths. They also have proven more

  4. Performance evaluation of gratings applied by genetic algorithm for the real-time optical interconnection

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Seon; Kim, Nam; Suh, HoHyung; Jeon, Seok Hee

    2000-03-01

    In this paper, gratings to apply for the optical interconnection are designed using a genetic algorithm (GA) for a robust and efficient schema. The real-time optical interconnection system architecture is composed with LC-SLM, CCD array detector, IBM-PC, He-Ne laser, and Fourier transform lens. A pixelated binary phase grating is displayed on LC-SLM and could interconnect incoming beams to desired output spots freely by real-time. So as to adapt a GA for finding near globally-cost solutions, a chromosome is coded as a binary integer of length 32 X 32, the stochastic tournament method for decreasing the stochastic sampling error is performed, and a single-point crossover having 16 X 16 block size is used. The characteristics on the several parameters are analyzed in the desired grating design. Firstly, as the analysis of the effect on the probability of crossover, a designed grating when the probability of crossover is 0.75 has a 74.7[%] high diffraction efficiency and a 1.73 X 10-1 uniformity quantitatively, where the probability of mutation is 0.001 and the population size is 300. Secondly, on the probability of mutation, a designed grating when the probability of mutation is 0.001 has a 74.4[%] high efficiency and a 1.61 X 10-1 uniformity quantitatively, where the probability of crossover is 1.0 and the population size is 300. Thirdly, on the population size, a designed grating when the population size is 300 and the generation is 400 has above 74[%] diffraction efficiency, where the probability of mutation is 0.001 and the probability of crossover is 1.0.

  5. Optical properties of InP doping superlattices grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gal, M.; Viner, J. M.; Taylor, P. C.; Yaun, J. S.; Stringfellow, G. B.

    1987-04-01

    Photoluminescence (PL), time-resolved PL, and photoreflectance spectroscopy are applied to InP doping superlattices grown by metal organic chemical vapor deposition. It is observed that the emission peak and line shape depend on the optical excitation intensity; the peak of the CW PL spectrum increases in energy with the intensity of the pumping light; the highest energy peak is at 888 nm; and the time-resolved PL exhibits long decay times. The energy separation of the quantized subbands is studied by measuring the PR spectra of two samples. The measurements reveal that PR line shapes are explained by photomodulation of the subbands in the conduction band; these line shapes account for the dependence of the spectrum on the power of the exciting light and on the layer thickness.

  6. The two-dimensional optical pattern of a five inch diagonal white organic light emitting diode by rapid rotating measurement

    NASA Astrophysics Data System (ADS)

    Yang, Henglong; Cheng, Yu-Hen; Chen, Ming-Hong; Lin, Yu-Hsuan

    2016-09-01

    The feasibility of applying a five-inch diagonal white organic light-emitting diode (WOLED) as a desk lamp was experimentally investigated by quantitatively comparing its two-dimensional (2D) optical intensity profile to that of a traditional 3M desk lamp equipped with optical diffuser. The 2D optical distribution patterns as the function of vertical distances to a surface of a five-inch diagonal WOLED were obtained by using rapid rotating measurement technique consisted of a sample holder on a rotational stage and a fixed photo detector with optical power meter. The 2D optical intensity profile on a surface can be rapidly established in a relatively small space by recording the reading from the fixed photo detector as rotating the sample holder. This rapid measurement technique is suitable for practical application in quality engineering without larger space. A WOLED is a compact and thin lighting source with planar device structure without additional optical components. Its optical intensity profile on a plane is expected to be different from traditional lighting sources. The optical distribution pattern of a desk lamp requires a relatively large area on a surface with relatively uniformed intensity distribution. The quantitative analysis of the similarity between WOLED and 3M desk lamp was conducted by comparing the optimal zones defined as the area within 75% of the maximum intensity in 2D optical distribution pattern. Our preliminary result showed that the optimal zone of a five-inch diagonal WOLED at 45cm vertical distance is highly similar to that of the 3M desk lamp with optical diffuser.

  7. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish.

    PubMed

    Correia, Teresa; Lockwood, Nicola; Kumar, Sunil; Yin, Jun; Ramel, Marie-Christine; Andrews, Natalie; Katan, Matilda; Bugeon, Laurence; Dallman, Margaret J; McGinty, James; Frankel, Paul; French, Paul M W; Arridge, Simon

    2015-01-01

    Optical projection tomography (OPT) provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP), which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections) and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections-achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds.

  8. Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass

    NASA Astrophysics Data System (ADS)

    Ouyang, Qiuyun; Yu, Hailong; Xu, Zheng; Zhang, Yue; Li, Chunyan; Qi, Lihong; Chen, Yujin

    2013-01-01

    Graphene/CdS (G/CdS) nanocomposite was first fabricated by a hydrothermal method. G/CdS nanocomposite was then dispersed in polymethyl methacrylate (PMMA) for preparation of organic glass by a casting method. The G/CdS/PMMA organic glass exhibits enhanced nonlinear optical (NLO) properties compared to G/PMMA and CdS/PMMA organic glass. Moreover, NLO properties of the G/CdS/PMMA organic glass can be controlled by adjusting the addition amount of G/CdS nanocomposite in PMMA. Our results demonstrate that the G/CdS/PMMA organic glass is very promising for optical devices, such as optical limiters and optical switch.

  9. Bulk growth, structure, optical properties and laser damage threshold of organic nonlinear optical crystals of Imidazolium L-Ascorbate

    NASA Astrophysics Data System (ADS)

    Saripalli, Ravi Kiran; Bhat, H. L.; Elizabeth, Suja

    2016-09-01

    Bulk, transparent organic nonlinear optical (NLO) single-crystals of imidazolium L-Ascorbate (ImLA) were grown using slow-evaporation. Crystal structure was determined by single crystal X-ray diffraction analysis. Preliminary linear optical measurements through UV-Visible and infrared spectroscopy revealed good optical transmittance and a low near-UV cutoff wavelength at 256 nm. Kurtz and Perry powder test revealed that ImLA is a phase-matchable NLO material with a second harmonic generation (SHG) efficiency of 1.2 times larger than that of standard KH2PO4 (KDP). Laser damage thresholds were determined for ImLA.

  10. Resonant-state expansion applied to three-dimensional open optical systems

    NASA Astrophysics Data System (ADS)

    Doost, M. Â. B.; Langbein, W.; Muljarov, E. Â. A.

    2014-07-01

    The resonant-state expansion (RSE), a rigorous perturbative method in electrodynamics, is developed for three-dimensional open optical systems. Results are presented using the analytically solvable homogeneous dielectric sphere as unperturbed system. Since any perturbation which breaks the spherical symmetry mixes transverse electric (TE) and transverse magnetic (TM) modes, the RSE is extended here to include TM modes and a zero-frequency pole of the Green's function. We demonstrate the validity of the RSE for TM modes by verifying its convergence towards the exact result for a homogeneous perturbation of the sphere. We then apply the RSE to calculate the modes for a selection of perturbations sequentially reducing the remaining symmetry, given by a change of the dielectric constant of half-sphere and quarter-sphere shape. Since no exact solutions are known for these perturbations, we verify the RSE results by comparing them with the results of state of the art finite element method (FEM) and finite difference in time domain (FDTD) solvers. We find that for the selected perturbations, the RSE provides a significantly higher accuracy than the FEM and FDTD for a given computational effort, demonstrating its potential to supersede presently used methods. We furthermore show that in contrast to presently used methods, the RSE is able to determine the perturbation of a selected group of modes by using a limited basis local to these modes, which can further reduce the computational effort by orders of magnitude.

  11. Statistical Track-Before-Detect Methods Applied to Faint Optical Observations of Resident Space Objects

    NASA Astrophysics Data System (ADS)

    Fujimoto, K.; Yanagisawa, T.; Uetsuhara, M.

    Automated detection and tracking of faint objects in optical, or bearing-only, sensor imagery is a topic of immense interest in space surveillance. Robust methods in this realm will lead to better space situational awareness (SSA) while reducing the cost of sensors and optics. They are especially relevant in the search for high area-to-mass ratio (HAMR) objects, as their apparent brightness can change significantly over time. A track-before-detect (TBD) approach has been shown to be suitable for faint, low signal-to-noise ratio (SNR) images of resident space objects (RSOs). TBD does not rely upon the extraction of feature points within the image based on some thresholding criteria, but rather directly takes as input the intensity information from the image file. Not only is all of the available information from the image used, TBD avoids the computational intractability of the conventional feature-based line detection (i.e., "string of pearls") approach to track detection for low SNR data. Implementation of TBD rooted in finite set statistics (FISST) theory has been proposed recently by Vo, et al. Compared to other TBD methods applied so far to SSA, such as the stacking method or multi-pass multi-period denoising, the FISST approach is statistically rigorous and has been shown to be more computationally efficient, thus paving the path toward on-line processing. In this paper, we intend to apply a multi-Bernoulli filter to actual CCD imagery of RSOs. The multi-Bernoulli filter can explicitly account for the birth and death of multiple targets in a measurement arc. TBD is achieved via a sequential Monte Carlo implementation. Preliminary results with simulated single-target data indicate that a Bernoulli filter can successfully track and detect objects with measurement SNR as low as 2.4. Although the advent of fast-cadence scientific CMOS sensors have made the automation of faint object detection a realistic goal, it is nonetheless a difficult goal, as measurements

  12. The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices

    SciTech Connect

    Cheon, Kwang-Ohk

    2003-01-01

    Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either α-NPD or DPVBi host layers, are optically efficient fluorophores but also generate deep carrier trap-sites. Since their traps reduce the carrier mobility, the current density decreases with increased doping concentration. At the same time, due to efficient energy transfer, the quantum efficiency of the devices is improved by light doping or thin doping thickness, in comparison with the undoped neat devices. However, heavy doping induces concentration quenching effects. Thus, the doping concentration and doping thickness may be optimized for best performance.

  13. Golgi tendon organ reflex inhibition following manually applied acute static stretching.

    PubMed

    Miller, Kevin C; Burne, John A

    2014-01-01

    Golgi tendon organ disinhibition may contribute to exercise-associated muscle cramp (henceforth referred to as "cramps") genesis. Static stretching pre-exercise is prescribed to prevent cramps based on the assumption golgi tendon organ inhibition remains elevated post-stretching. We determined whether stretching increased gastrocnemius golgi tendon organ inhibition and, if so, the time course of this inhibition post-stretching. Twelve participants' dominant limb medial gastrocnemius inhibition was measured before, and at 1, 5, 10, 15 and 30 min after investigators applied three, 1-min duration stretches. Participants maintained voluntary contraction intensities of 5% of their maximum while the Achilles tendon was stimulated transcutaneously 50 times. Five-hundred millisecond epochs of raw electromyographic activity were band-pass filtered, full-wave rectified and averaged. An algorithm identified inhibitory points and calculated the area, maximum and duration of inhibition. Area of inhibition (F1,14 = 1.5, P = 0.25), maximum inhibition (F1,14 = 0.2, P = 0.72) and duration of inhibition (F1,14 = 1.5, P = 0.24) were unaffected by static stretching over the 30-min post-stretching period. If pre-stretching does prevent fatigue-induced cramping, the mechanism is unlikely to involve the autoinhibition produced by the golgi tendon organ reflex. Further empirical research is needed to validate the proposed link between static stretching and cramping and then to investigate alternative mechanisms.

  14. Greenhouse Gas Emissions from Solid and Liquid Organic Fertilizers Applied to Lettuce.

    PubMed

    Toonsiri, Phasita; Del Grosso, Stephen J; Sukor, Arina; Davis, Jessica G

    2016-11-01

    Improper application of nitrogen (N) fertilizer and environmental factors can cause the loss of nitrous oxide (NO) to the environment. Different types of fertilizers with different C/N ratios may have different effects on the environment. The focus of this study was to evaluate the effects of environmental factors and four organic fertilizers (feather meal, blood meal, fish emulsion, and cyano-fertilizer) applied at different rates (0, 28, 56, and 112 kg N ha) on NO emissions and to track CO emissions from a lettuce field ( L.). The study was conducted in 2013 and 2014 and compared preplant-applied solid fertilizers (feather meal and blood meal) and multiple applications of liquid fertilizers (fish emulsion and cyano-fertilizer). Three days a week, NO and CO emissions were measured twice per day in 2013 and once per day in 2014 using a closed-static chamber, and gas samples were analyzed by gas chromatography. Preplant-applied solid fertilizers significantly increased cumulative NO emissions as compared with control, but multiple applications of liquid fertilizers did not. Emission factors for NO ranged from 0 to 0.1% for multiple applications of liquid fertilizers and 0.6 to 11% for preplant-applied solid fertilizers, which could be overestimated due to chamber placement over fertilizer bands. In 2014, solid fertilizers with higher C/N ratios (3.3-3.5) resulted in higher CO emissions than liquid fertilizers (C/N ratio, 0.9-1.5). Therefore, organic farmers should consider the use of multiple applications of liquid fertilizers as a means to reduce soil greenhouse gas emissions while maintaining high yields.

  15. Entropy Applied to Morphological Analysis and Modelisation of Nanomaterial Optical Properties

    NASA Astrophysics Data System (ADS)

    Andraud, Christine; Lafait, Jacques; Beghdadi, Azeddine; Peiro, Joaquina

    1997-03-01

    The normalized configuration entropy, based on the theory of information, when applied to the image of heterogeneous media, points out a characteristic length of the disorder, ell_opt, at which we calculate the optical properties. The models we propose make a partition of the image between percolated and non percolated cells of size ell_opt, in which we calculate effective dielectric functions. Two models are then developed performing respectively a coherent and a non coherent treatment in the calculation of the optical properties of the whole medium. The coherent model gives a good account of the metallic grain resonance and of the infrared behavior of both reflectance and transmittance of granular gold films, close to the percolation threshold, domain where the effective medium theories fail. L'entropie de configuration normalisée, basée sur la théorie de l'information et appliquée à l'image d'un milieu hétérogène, permet de mettre en évidence une longueur caractéristique du désordre, ell_opt, à laquelle nous calculons les propriétés optiques. Les modèles que nous proposons effectuent une partition de l'image entre cellules de taille ell_opt, percolées et non percolées, dans lesquelles nous calculons une fonction diélectrique effective. Deux modèles ont ainsi été développés, réalisant respectivement un traitement cohérent et incohérent lors du calcul des propriétés optiques du milieu global. Le modèle cohérent rend bien compte de la résonance de grains métalliques et du comportement infrarouge de la réflexion et de la transmission de films d'or granulaires, aux alentours du seuil de percolation, hors du domaine de validité des théories de milieu effectif.

  16. Pu-239 organ specific dosimetric model applied to non-human biota

    NASA Astrophysics Data System (ADS)

    Kaspar, Matthew Jason

    There are few locations throughout the world, like the Maralinga nuclear test site located in south western Australia, where sufficient plutonium contaminate concentration levels exist that they can be utilized for studies of the long-term radionuclide accumulation in non-human biota. The information obtained will be useful for the potential human users of the site while also keeping with international efforts to better understand doses to non-human biota. In particular, this study focuses primarily on a rabbit sample set collected from the population located within the site. Our approach is intended to employ the same dose and dose rate methods selected by the International Commission on Radiological Protection and adapted by the scientific community for similar research questions. These models rely on a series of simplifying assumptions on biota and their geometry; in particular; organisms are treated as spherical and ellipsoidal representations displaying the animal mass and volume. These simplifications assume homogeneity of all animal tissues. In collaborative efforts between Colorado State University and the Australian Nuclear Science and Technology Organisation (ANSTO), we are expanding current knowledge on radionuclide accumulation in specific organs causing organ-specific dose rates, such as Pu-239 accumulating in bone, liver, and lungs. Organ-specific dose models have been developed for humans; however, little has been developed for the dose assessment to biota, in particular rabbits. This study will determine if it is scientifically valid to use standard software, in particular ERICA Tool, as a means to determine organ-specific dosimetry due to Pu-239 accumulation in organs. ERICA Tool is normally applied to whole organisms as a means to determine radiological risk to whole ecosystems. We will focus on the aquatic model within ERICA Tool, as animal organs, like aquatic organisms, can be assumed to lie within an infinite uniform medium. This model would

  17. Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Chan, M. Y.; Lai, S. L.; Lau, K. M.; Lee, C. S.; Lee, S. T.

    2006-10-01

    An effective optical spacer based on doping of ytterbium (Yb) metal into bathophenanthroline (BPhen) has been developed for applications in organic photovoltaic (OPV) devices. Utilizing Yb:BPhen as an optical spacer in standard copper phthalocyanine/C60 photovoltaic devices, power efficiency can be increased by four times to 3.42%. Ultraviolet photoemission spectroscopy measurements reveal that the good electron transport between C60 and Yb:BPhen is mainly related to the suitable energy level alignment at the interface. Combining with its high optical transparency and electrical conductivity, the Yb:BPhen film provides a useful means for maximizing the power conversion efficiency of OPV devices.

  18. Synthesis and evaluation of sensitizer drug photorelease chemistry: Micro-optic method applied to singlet oxygen generation and drug delivery

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam

    This thesis summarizes a new micro-optic method for singlet oxygen generation and sensitizer drug delivery, which include i) synthesis and evaluation of a first generation device for drug delivery from native and fluorinated silica probe tips, ii) synthesis of PEG conjugated sensitizers to study phototoxicity in ovarian cancer cells, and iii) synthesis and evaluation of tris-PEGylated chlorin conjugated fluorinated silica for its future integration into the device to use as a 2nd generation device. A first generation micro-optic device was developed that works by sparging O2 gas and light generating cytotoxic singlet oxygen that cleaves the covalently attached drug (sensitizer) from the probe tip at the distal end of the fiber. The aim is to develop a 1st and 2nd generation device for site specific delivery of photosensitizer and singlet oxygen to overcome the challenges involved in systemic administration of the sensitizer. Synthesis and evaluation of drug (pheophorbide-a) delivery applying micro-optic method from native and fluorinated silica probe tip was achieved. The amount of sensitizer photocleavage depends on the loading level of sensitizer onto the probe tips. We also found that photorelease efficiency depends on the nature of the solvents where sensitizer is photocleaved. For example, no photorelease was observed in an aqueous solvent where sensitizer remained adsorbed to the native silica probe-tip. But, 90% photocleavage was obtained in octanol. A significant amount of photosensitizer (formate ester of pyropheophorbide- a) diffused into the liposome when photocleavage study was carried out in liposome. Substantial increase of photorelease was observed in organic solvent when pyropheophorbide-a (PPa) sensitizer was attached to the partially fluorinated porous Vycor glass. We also explored sensitizer photorelease from the fluorinated silica surface at various temperatures and we found that autocatalytic photorelease happened at room temperature and above

  19. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  20. New method to determine the optical rotatory dispersion of inorganic crystals applied to some samples of Carpathian Quartz.

    PubMed

    Dimitriu, Dan Gheorghe; Dorohoi, Dana Ortansa

    2014-10-15

    A new method to determine the optical rotatory dispersion (ORD) in the visible range, based on a channeled spectrum obtained with a uniax inorganic crystal introduced between two crossed polarizers with its optical axis parallel to the light propagation direction is detailed in this paper. When the studied inorganic crystals are transparent, this method permits the estimation of the optical rotatory dispersion in the visible range, for which the cheap polarizers are available. The speed of the measurements is very high, because the estimations are made from the channeled spectrum obtained for a single arrangement of the optical components. By using a computer, ORD is quickly determined for the visible range. The results obtained by this method for some Carpathian Quartz samples are consistent with those from literature. The proposed method can be also applied in UV and IR spectral ranges, when the anisotropic layers are transparent and the linearly polarized radiations can be obtained.

  1. A general method for manipulating DNA sequences from any organism with optical tweezers.

    PubMed

    Fuller, Derek N; Gemmen, Gregory J; Rickgauer, John Peter; Dupont, Aurelie; Millin, Rachel; Recouvreux, Pierre; Smith, Douglas E

    2006-02-01

    Mechanical manipulation of single DNA molecules can provide novel information about DNA properties and protein-DNA interactions. Here we describe and characterize a useful method for manipulating desired DNA sequences from any organism with optical tweezers. Molecules are produced from either genomic or cloned DNA by PCR using labeled primers and are tethered between two optically trapped microspheres. We demonstrate that human, insect, plant, bacterial and viral sequences ranging from approximately 10 to 40 kilobasepairs can be manipulated. Force-extension measurements show that these constructs exhibit uniform elastic properties in accord with the expected contour lengths for the targeted sequences. Detailed protocols for preparing and manipulating these molecules are presented, and tethering efficiency is characterized as a function of DNA concentration, ionic strength and pH. Attachment strength is characterized by measuring the unbinding time as a function of applied force. An alternative stronger attachment method using an amino-carboxyl linkage, which allows for reliable DNA overstretching, is also described.

  2. Wavelet image processing applied to optical and digital holography: past achievements and future challenges

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2005-08-01

    The link between wavelets and optics goes back to the work of Dennis Gabor who both invented holography and developed Gabor decompositions. Holography involves 3-D images. Gabor decompositions involves 1-D signals. Gabor decompositions are the predecessors of wavelets. Wavelet image processing of holography, both optical holography and digital holography, will be examined with respect to past achievements and future challenges.

  3. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    PubMed

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics.

  4. Towards Quantitative Whole Organ Thermoacoustics with a Clinical Array plus One Very Low Frequency Channel Applied to Prostate Cancer Imaging

    PubMed Central

    Patch, Sarah K.; Hull, David; See, William A.; Hanson, George W.

    2016-01-01

    Thermoacoustics has the potential to provide quantitative images of intrinsic tissue properties, most notably electrical conductivity in Siemens/meter, much as shear wave elastography provides tissue stiffness in kPa. Although thermoacoustic imaging with optical excitation has been commercialized for small animals, it has not yet made the transition to clinic for whole organ imaging in humans. The purpose of this work was to develop and validate specifications for a clinical ultrasound array for quantitative whole organ thermoacoustic imaging. Imaging a large organ requires exciting thermoacoustic pulses throughout the volume and broadband detection of those pulses because tomographic image reconstruction preserves frequency content. Applying the half-wavelength limit to a 200-micron inclusion inside a 7.5 cm diameter organ requires measurement sensitivity to frequencies ranging from 4 MHz down to 10 kHz, respectively. A dual-transducer system utilizing a P4-1 array connected to a Verasonics V1 system as well as a focused single element transducer sensitive to lower frequencies was developed. Very high frequency (VHF) irradiation generated thermoacoustic pulses throughout a 6 × 6 × 5 cm3 volume. In the VHF regime, electrical conductivity drives thermoacoustic signal production. Simultaneous acquisition of thermoacoustic pulses by both transducers enabled comparison of transducer performance. Data from the clinical array generated a stack of 96-images with separation of 0.3 mm, whereas the single element transducer imaged only in a single plane. In-plane resolution and quantitative accuracy were quantified at isocenter. The array provided volumetric imaging capability with superior resolution whereas the single element transducer provided superior quantitative accuracy in axial images. Combining axial images from both transducers preserved resolution of the P4-1 array and improved image contrast. Neither transducer was sensitive to frequencies below 50 k

  5. Novel optical interconnect devices applying mask-transfer self-written method

    NASA Astrophysics Data System (ADS)

    Ishizawa, Nobuhiko; Matsuzawa, Yusuke; Tokiwa, Yu; Nakama, Kenichi; Mikami, Osamu

    2012-01-01

    The introduction of optical interconnect technology is expected to solve problems of conventional electric wiring. One of the promising technologies realizing optical interconnect is the self-written waveguide (SWW) technology with lightcurable resin. We have developed a new technology of the "Mask-Transfer Self-Written (MTSW)" method. This new method enables fabrication of arrayed M x N optical channels at one shot of UV-light. Using this technology, several new optical interconnect devices and connection technologies have been proposed and investigated. In this paper, first, we introduce MTSW method briefly. Next, we show plug-in alignment approach using optical waveguide plugs (OWP) and a micro-hole array (MHA) which are made of the light-curable resin. Easy and high efficiency plug-in alignment between fibers and an optoelectronic-printed wiring board (OE-PWB), between a fiber and a VCSEL, so on will be feasible. Then, we propose a new three-dimensional (3D) branch waveguide. By controlling the irradiating angle through the photomask aperture, it will be possible to fabricate 2-branch and 4-branch waveguides with a certain branch angle. The 3D branch waveguide will be very promising in the future optical interconnects and coupler devices of the multicore optical fiber.

  6. Comparing geometrical and wave-optical algorithms of a novel propagation code applied to the VLTI

    NASA Astrophysics Data System (ADS)

    Wilhelm, Rainer

    2001-12-01

    Time-dependent modeling of controlled opto-mechanical systems (e.g. astronomical telescopes) is part of the VLTI system engineering work at ESO. For creation of optical models to be integrated within a dynamic Matlab/ Simulink simulation, a novel optical modeling tool has been developed. It offers a versatile set of geometrical and wave optical propagation algorithms each with its specific strengths. The article describes the algorithms -both from a theoretical and practical point of view. The VLTI as a "real world" application example is presented.

  7. Controlled Lattice-Hardening for Exceptionally Stable and Highly Efficient Organic Electro-Optic (EO) Materials toward Next Generation Optical Switches

    NASA Astrophysics Data System (ADS)

    Shi, Zhengwei

    Organic electro-optic (OEO) materials can effectively encode or decode an optical carrier wave with a high-speed electronic data signal. They provide very high modulation efficiency for the development of the next generation optical interconnects with large bandwidth, low power consumption, and cost-effective integration to address the issue of the dramatically increasing data rates. To facilitate the device fabrication, it is highly desirable to implement the well-established semiconductor processes of microelectronics to photonics devices. When applying these processes to photonic devices, the main challenge lies in the thermal stability of both the chemical composition and poling-induced acentric order of EO lattices. In addition to excellent longterm thermal stability at elevated temperatures (80-100 °C), satisfactory short-period stability at a temperature range greater than 250 °C is required. Thus, this dissertation is devoted to the research of seeking OEO materials with remarkable thermal stability and large EO coefficients as a valid near-term solution in chip-to-chip optical interconnects for tera-scale (terabits per second) computing. Herein, a very effective molecular engineering approach of reinforced site isolation has been systematically developed to increase thermal stability of highly polarizable dipolar chromophores. With this novel approach, we succeeded in prolonging the thermal and temporal alignment stability of organic EO materials up to 250 °C with large r33 values (>100 pm/V at the wavelengths of 1310 nm). The success of these material developments has inspired the exploration of new device concepts to take full advantage of organic EO materials with large r33 values.

  8. Photographic-Based Optical Evaluation of Tissues and Biomaterials Used for Corneal Surface Repair: A New Easy-Applied Method

    PubMed Central

    Gonzalez-Andrades, Miguel; Cardona, Juan de la Cruz; Ionescu, Ana Maria; Mosse, Charles A.; Brown, Robert A.

    2015-01-01

    Purpose Tissues and biomaterials used for corneal surface repair require fulfilling specific optical standards prior to implantation in the patient. However, there is not a feasible evaluation method to be applied in clinical or Good Manufacturing Practice settings. In this study, we describe and assess an innovative easy-applied photographic-based method (PBM) for measuring functional optical blurring and transparency in corneal surface grafts. Methods Plastic compressed collagen scaffolds (PCCS) and multilayered amniotic membranes (AM) samples were optically and histologically evaluated. Transparency and image blurring measures were obtained by PBM, analyzing photographic images of a standardized band pattern taken through the samples. These measures were compared and correlated to those obtained applying the Inverse Adding-Doubling (IAD) technique, which is the gold standard method. Results All the samples used for optical evaluation by PBM or IAD were histological suitable. PCCS samples presented transmittance values higher than 60%, values that increased with increasing wavelength as determined by IAD. The PBM indicated that PCCS had a transparency ratio (TR) value of 80.3±2.8%, with a blurring index (BI) of 50.6±4.2%. TR and BI obtained from the PBM showed a high correlation (ρ>|0.6|) with the diffuse transmittance and the diffuse reflectance, both determined using the IAD (p<0.005). The AM optical properties showed that there was a largely linear relationship between the blurring and the number of amnion layers, with more layers producing greater blurring. Conclusions This innovative proposed method represents an easy-applied technique for evaluating transparency and blurriness of tissues and biomaterials used for corneal surface repair. PMID:26566050

  9. Wurtzite silicon as a potential absorber in photovoltaics: Tailoring the optical absorption by applying strain

    NASA Astrophysics Data System (ADS)

    Rödl, C.; Sander, T.; Bechstedt, F.; Vidal, J.; Olsson, P.; Laribi, S.; Guillemoles, J.-F.

    2015-07-01

    We present ab initio calculations of the electronic structure and the optical properties of wurtzite Si (Si-IV). We find an indirect band gap of 0.95 eV (Γ5→M1 ) and an optically forbidden direct gap of 1.63 eV (Γ5→Γ10 ), which is due to a backfolding of the L1 state of Si in the diamond structure (Si-I). Optical absorption spectra including excitonic and local-field effects are calculated. Further, the effects of hydrostatic pressure, uniaxial strain, and biaxial strain on the absorption properties are investigated. Biaxial tensile strains enhance the optical absorption of Si-IV in the spectral range which is relevant for photovoltaic applications. High biaxial tensile strains (>4 % ) even transform Si-IV into a direct semiconductor.

  10. Recipes to make organic phantoms for diffusive optical spectroscopy.

    PubMed

    Quarto, Giovanna; Pifferi, Antonio; Bargigia, Ilaria; Farina, Andrea; Cubeddu, Rinaldo; Taroni, Paola

    2013-04-10

    Three recipes are presented to make tissue constituent-equivalent phantoms of water and lipids. Different approaches to prepare the emulsion are proposed. Nature phantoms are made using no emulsifying agent, but just a professional disperser; instead Agar and Triton phantoms are made using agar or Triton X-100, respectively, as agents to emulsify water and lipids. Different water-to-lipid ratios ranging from 30% to 70% by mass were tested. A broadband time-resolved diffuse optical spectroscopy system was used to characterize the phantoms in terms of optical properties and composition. For some water/lipid ratios the emulsion fails or the phantom has limited lifetime, but in most cases the recipes provide phantoms with a high degree of homogeneity [coefficient of variation (CV) of 4.6% and 1.5% for the absorption and reduced scattering coefficient, respectively] and good reproducibility (CV of 8.3% and 12.4% for absorption and reduced scattering coefficient, respectively).

  11. Net transformation of phosphorus forms applied as inorganic and organic amendments to a calcareous soil

    NASA Astrophysics Data System (ADS)

    Audette, Yuki; O'Halloran, Ivan; Voroney, Paul

    2016-04-01

    The forms of phosphorus (P) in animal manure composts are different from that of synthetic P fertilizers, and this could affect how soil P chemistry will be altered when they are used as P amendments. The objective of this study was to analyze the net changes in the nature and dynamics of plant available P forms applied either as inorganic P (KH2PO4) or turkey litter compost (TLC) in calcareous soil with and without plant growth. Forms of TLC-P were characterized by x-ray diffraction and solution 31P NMR spectroscopy techniques. The amounts of various P forms in soils were measured by a sequential fractionation method after 4, 8, 12 and 16 weeks incubation. Brushite (Ca-P) and newberyite (Mg-P) were the major forms of inorganic P, and phosphate monoester was the major form of organic P present in TLC. The addition of inorganic P fertilizer increased the labile/moderately labile P, whereas the compost increased the moderately labile P extractable with weak acid (pH 4.2). Even though the amount of the labile P fraction in the compost-treated soil was smaller than that in the fertilizer-treated soils, ryegrass growth and plant P uptake were greater. The net transformation of the labile/moderately labile P was slower in the compost-treated soil without plant growth, however it was faster with plant growth. This study showed that P applied either as an inorganic or an organic amendment was recovered in different P fractions in a calcareous soil, and therefore it is expected that the P source would affect soil P chemistry. A weak acid extractable inorganic P fraction should be considered as plant available P especially in the compost-treated soil, that is converted into plant available P through direct and/or indirect root-induced acidification in the rhizosphere.

  12. Investigations of the polar atmosphere with use of dynamical characteristics of the processes and self -organizing neural networks on ground-based multi-position optical observations

    NASA Astrophysics Data System (ADS)

    Alpatov, V. V.; Matveev, A. A.; Enel, F.; Brandstrom, U.; Gustavsson, B.; Steen, A.

    This article discusses questions connected with investigations of the polar atmosphere via ground-based multi-position optical observations. For this investigation a specially developed method is applied. It use the calculated dynamical parameters of the processes and self-organizing artificial neural networks. With self-organizing neural networks 5-7 classes have been extracted which can be associated with the regions having different physical properties. In particular, have been extracted regions intuitively coincident with polar stratospheric clouds and aurora.

  13. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    NASA Astrophysics Data System (ADS)

    Rourke, Devin; Ahn, Sungmo; Nardes, Alexandre M.; van de Lagemaat, Jao; Kopidakis, Nikos; Park, Wounjhang

    2014-09-01

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer:fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent.

  14. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    SciTech Connect

    Rourke, Devin; Ahn, Sungmo; Nardes, Alexandre M.; Lagemaat, Jao van de; Kopidakis, Nikos; Park, Wounjhang

    2014-09-21

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer:fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent.

  15. Optical, Electrical and Magnetic Studies of Pi-Conjugated Organic Semiconductor Systems

    SciTech Connect

    Vardeny, Zeev Valentine

    2016-09-15

    Over the duration of this grant our group has studied the transient and cw optical response of various π-conjugated polymers, oligomers, single crystals, fullerene molecules and blends of organic donor-acceptor molecules. We have been also involved in complementary experiments such as magneto-optical studies and spin-physics. We have advanced the field of photophysics of these materials by providing information on their excited state energies and primodal and long-lived photoexcitations such as singlet excitons, triplet excitons, polaron-pairs, excimers and exciplexes. We also fabricated various organic optoelectronic devices such as organic light emitting diodes (OLED), electrochemical cells, organic diodes, organic spin-valves (OSV), and organic photovoltaic (OPV) solar cells. These devices benefited the society in terms of cheap and energy saving illumination, as well as harnessing the solar energy.

  16. Poling and characterization of a novel organic/polymer electro-optic material

    NASA Astrophysics Data System (ADS)

    Liao, Jinkun; Tang, Xianzhong; Lu, Rongguo; Tang, Xionggui; Li, Heping; Zhang, Xiaoxia; Liu, Yongzhi

    2010-10-01

    Electro-optic organic/polymer material is important for the fabrication of polymer integrated optic-electronic devices and organic sensors. Recently, a novel organic high μβ value chromophore FFC have been synthesized by molecular design. The absorption spectrum in 400-4000 cm-1 is measured for the material, and the measurement result shows that the absorption loss is negligibly small. An organic/polymer high electro-optic activity material FFC/PSU is obtained by dissolving guest FFC (wt. 20%) and a host polysulfone (PSU) in a solvent. The resolvability of cyclohexanone for the material is satisfactory by comparison with other solvents experimentally, and the preparation of FFC/PSU thin film is ease relatively. The materiel is poled by electric field-assisted contact poling, and the near optimum poling condition is determined by adjusting poling parameters as pre-curing duration, poling temperature and poling voltage etc. The electro-optic coefficient of the material is measured as high as 130pm/V by using the widely accepted simple reflection technique. The investigation indicates that the FFC/PSU has excellent characteristics, such as high electro-optic coefficient, low absorption loss, good thermal stability and capability for withstanding the subsequent process techniques, suitable for the fabrication of high-performance integrated optic-electronic devices and sensors.

  17. Communication and Control in Organizations: Applying the Work of James Thompson and Gregory Bateson to Interpretive Research.

    DTIC Science & Technology

    1985-07-01

    REPORT. PERIOD C ,EREOa) Communication and Control in Organizations: Iff SDISSERTATION Applying the Work of James Thompson and Gregory Bateson to...PAGE (When Data Entered)g " 813.0 ABSTRACT COMMUNICATION AND CONTROL IN ORGANIZATIONS: APPLYING THE WORK OF JAMES THOMPSON AND GREGORY BATESON TO...examina- tion of the works of James Thompson and Gregory Bateson . -Thus - .he thesis addresses ’problems’ at three interrelated levels: (1) It is an

  18. Doppler optical coherence microscopy and tomography applied to inner ear mechanics

    SciTech Connect

    Page, Scott; Freeman, Dennis M.; Ghaffari, Roozbeh

    2015-12-31

    While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometer motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.

  19. Optical Engines, Organic Spintronics & Ice-Cube/Astranomcs Notions

    NASA Astrophysics Data System (ADS)

    Hidajatullah-Maksoed, Fatahillah; Faizal-Imaduddin, Fauzan

    2015-09-01

    Refers to ``Optical engines for light energy detection,'' PhysicsToday,June 2012, h 60 denotes NewPortCorp's OptoFlash is a miniature multichannel spectrometer engine that detects lght energy at multiple wavelengths. According to NewPort, the demultiplexing optical engine is easy to customize. Involves the Computational Fluid Dynamics/ContractForDifferences, there were sought for ``LaserDopplerVelocimetry/LDV, we intended to comprises the lVDT include in Sensor technology as well as to PVDF/polyvynilidine fluoride who comprises giant flexoelectric in alpha-phase-Xiaoning Jiang et al.``Flexoelectric Nanogenerator:Materials, structures & devices,'' 2013 paved with good intentions, the ``jellium model'' [Overhauser, 1963a] maybe can be interrelated to reflex action & primary process used by Id to avoids pain in painstakingly to wieghs spin relaxation & dephasing process that guides ``EQILIBRATION.'' Also offered the spintronics using PID-controller, from Microbisl Cells to ``The Motor Response inPlasma Heating.'' Further, the Aug 1985 FAA Certification for IAI 1125 ASTRA Jet Corp inherently existed between Julian C. Blecker's dissertation to ``realistic mathematics'' from Prof. R.K. Sembiring/MA-ITB. Great acknowledgment devotes to HE. Mr. Drs. P. SWANTORO through the Jakarta-based BCA Bank.

  20. Investigation of organic nonlinear optical crystals for harmonic frequency conversion and electro-optics. Final technical report

    SciTech Connect

    1998-01-01

    The authors are conducting a detailed study of the crystal growth of different organic materials and their physical, optical and morphological properties. The crystals are grown by a novel solution crystal growth technique developed by the principal investigator at Alabama A and M University (AAMU). The studies included the measurement of solubility of organic NLO materials in different solvents, growth of crystals by solution growth technique, and the characterization of optical properties and damage threshold of crystals for high power laser applications. Two different NLO crystals of 4-Aminobenzophenone (ABP) and 3-methoxy-4-hydroxy-benzaldehyde (MHBA) were investigated during the course of this investigation. A paper on ABP crystals was published in Journal of Crystal Growth in 1997.

  1. Enola Gay: an integrated modelling optical toolbox applied to a wide-field telescope

    NASA Astrophysics Data System (ADS)

    Schipani, P.; Perrotta, F.

    2008-07-01

    The integrated modelling approach is fundamental in telescopes design where it is necessary to merge different disciplines together. This paper describes the integration of optical ray-tracing capabilities within the Matlab computational environment. This approach allows to write automatic procedures to implement a huge number of computations, that are very unpractical to perform in interactive mode by ray tracing software packages. Data produced by computations are stored and automatically analyzed. One of the main benefits from this approach comes from the traceability of the work, that is intrinsically impossible when the optical designer works in interactive mode. The right procedure is built and tuned just the first time and the computation software is available for inspection and check. Furthermore computations and results are easily reproducible simply re-running Matlab scripts. An automatic approach is especially helpful in wide-field telescope projects where the optical quality has to be studied over a wide field of view. This leads to repeat the same computations many times in a number of fields. In interactive mode this would cause a significant waste of optical designer time to repeat many times the same manual procedures. The solution proposed here allows to save time and prevent occasional mistakes.

  2. Conoscopic polarized interference applied in measuring uniaxial axis direction of electro-optic crystal

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Jiang, Hongzhen; Zhang, Lin; Li, Dong; Liu, Xu; Zheng, Fanglan

    2016-10-01

    The crystal can be used to be electro-optic switch because of its electro-optic modulation. Generally the uniaxial axis of electro-optic crystal is perpendicular to the light injection surface. Due to the manufacturing precision, the uniaxial axis direction has a little angle with the normal of the light injection surface, which affects the electro-optic modulation ability. In conoscopic polarized inference, due to birefraction the ordinary ray and extraordinary ray from crystal interferes after the polarizer. The interference pattern of crystal component is circle fringes with dark cross. The center of interference pattern has relation to the uniaxial axis direction. Using digital camera to capture the pattern and the center position of interferogram can be determinate by image processing program. In repeatability experiments the rms of center position is around 1 pixel. To measure the uniaxial axis direction, the normal direction of the crystal component should also be accurately determinate. Michelson interference method is introduced to determinate the normal direction. If rotate the crystal component around the normal direction in conoscopic polarized interference, the track of interferogram center is a circle theoretically. The circle center is related to the normal direction of crystal component, and the radii is related to the angle uniaxial axis, which can be determinate by least square fitting method. Experiment result shows that the measuring precision can achieves several tens of microradians.

  3. Distributed optical fiber temperature sensor applied in underground coal gasification system

    NASA Astrophysics Data System (ADS)

    Wang, Jianfeng; Hu, Chuanlong; Zhang, Zaixuan; Gong, Huaping; Jin, Yongxing; Shen, Changyu

    2010-12-01

    Distributed optical fiber temperature sensor (DTS) for underground coal gasification (UCG) system using is studied in this paper. By measuring temperature of reacting mine gasification process can be controlled. Calibration of DTS and experiment result are introduced. The results show that, DTS can play an important role in UCG systems.

  4. Organic crystalline films for optical applications and related methods of fabrication

    NASA Technical Reports Server (NTRS)

    Leyderman, Alexander (Inventor); Cui, Yunlong (Inventor)

    2003-01-01

    The present invention provides organic single crystal films of less than 20 .mu.m, and devices and methods of making such films. The crystal films are useful in electro-optical applications and can be provided as part of an electro-optical device which provides strength, durability, and relative ease of manipulation of the mono-crystalline films during and after crystal growth.

  5. MaizeGDB: The Maize Model Organism Database for Basic, Translational, and Applied Research

    PubMed Central

    Lawrence, Carolyn J.; Harper, Lisa C.; Schaeffer, Mary L.; Sen, Taner Z.; Seigfried, Trent E.; Campbell, Darwin A.

    2008-01-01

    In 2001 maize became the number one production crop in the world with the Food and Agriculture Organization of the United Nations reporting over 614 million tonnes produced. Its success is due to the high productivity per acre in tandem with a wide variety of commercial uses. Not only is maize an excellent source of food, feed, and fuel, but also its by-products are used in the production of various commercial products. Maize's unparalleled success in agriculture stems from basic research, the outcomes of which drive breeding and product development. In order for basic, translational, and applied researchers to benefit from others' investigations, newly generated data must be made freely and easily accessible. MaizeGDB is the maize research community's central repository for genetics and genomics information. The overall goals of MaizeGDB are to facilitate access to the outcomes of maize research by integrating new maize data into the database and to support the maize research community by coordinating group activities. PMID:18769488

  6. RAPID, a revolutionary fast optical to NIR camera applied to interferometry

    NASA Astrophysics Data System (ADS)

    Guieu, S.; Feautrier, P.; Zins, G.; Le Bouquin, J.-B.; Stadler, E.; Kern, P.; Rothman, J.; Tauvy, M.; Coussement, J.; de Borniol, E.; Gach, J.-L.; Jacquard, M.; Moulin, T.; Rochat, S.; Delboulb, A.; Derelle, S.; Robert, C.; Vuillermet, M.; Mérand, A.; Bourget, P.

    2014-07-01

    The RAPID camera is an Avalanche Photo Diode array allowing very fast observation from the optical to the infrared with still a low noise per read. The camera born from a large collaboration within the FUI/FOCUS is intensively tested at IPAG (Grenoble) on an interferometric bench and will soon replace the actual camera of the PIONIER interferometer mounted on the visitor focus of the VLTi. We shortly present here the PIONIER instrument design and success to then focus on the RAPID tested performances. We will then resume the performance tests made on sky with the PIONIER. The RAPID camera is the first IR APD matrix ever mounted on an on-sky astronomical instrument. We show here how this fast, low-noise, large-band and sensitive camera improves PIONIER and the optical interferometry in general.

  7. Fiber-optic technologies for advanced thermo-therapy applied ex vivo to liver tumors

    NASA Astrophysics Data System (ADS)

    Tosi, D.; Perrone, G.; Vallan, A.; Braglia, A.; Liu, Y.; Macchi, E. G.; Braschi, G.; Gallati, M.; Cigada, A.; Poeggel, S.; Duraibabu, D. B.; Leen, G.; Lewis, E.

    2015-07-01

    Thermal ablation, using radiofrequency, microwave, and laser sources, is a common treatment for hepatic tumors. Sensors allow monitoring, at the point of treatment, the evolution of thermal ablation procedures. We present optical fiber sensors that allow advanced capabilities for recording the biophysical phenomena occurring in the tissue in real time. Distributed or quasi-distributed thermal sensors allow recording temperature with spatial resolution ranging from 0.1 mm to 5 mm. In addition, a thermally insensitive pressure sensor allows recording pressure rise, supporting advanced treatment of encapsulated tumors. Our investigation is focused on two case studies: (1) radiofrequency ablation of hepatic tissue, performed on a phantom with a stem-shaped applicator; (2) laser ablation of a liver phantom, performed with a fiber laser. The main measurement results are discussed, comparing the technologies used for the investigation, and drawing the potential for using optical fiber sensors for "smart"-ablation.

  8. Computational Study of Linear and Nonlinear Optical Properties of Single Molecules and Clusters of Organic Electro-Optic Chromophores

    NASA Astrophysics Data System (ADS)

    Garrett, Kerry

    Organic electro-optic (OEO) materials integrated into silicon-organic hybrid (SOH) devices afford significant improvements in size, weight, power, and bandwidth (SWAP) performance of integrated electronic/photonic systems critical for current and next generation telecommunication, computer, sensor, transportation, and defense technologies. Improvement in molecular first hyperpolarizability, and in turn electro-optic activity, is crucial to further improvement in the performance of SOH devices. The timely preparation of new chromophores with improved molecular first hyperpolarizability requires theoretical guidance; however, common density functional theory (DFT) methods often perform poorly for optical properties in systems with substantial intramolecular charge transfer character. The first part of this dissertation describes the careful evaluation of popular long-range correction (LC) and range-separated hybrid (RSH) density functional theory (DFT) for definition of structure/function relationships crucial for the optimization of molecular first hyperpolarizability, beta. In particular, a benchmark set of well-characterized OEO chromophores is used to compare calculated results with the corresponding experimentally measured linear and nonlinear optical properties; respectively, the wavelength of the peak one-photon absorption energy, lambdamax, and beta. A goal of this work is to systematically determine the amount of exact exchange in LC/RSH-DFT methods required for accurately computing these properties for a variety OEO chromophores. High-level electron correlation (post-Hartree-Fock) methods are also investigated and compared with DFT. Included are results for the computation of beta using second-order Moller-Plesset perturbation theory (MP2) and the double-hybrid method, B2PLYP. The second part of this work transitions from single-molecule studies to computing bulk electronic and nonlinear optical properties of molecular crystals and isotropic ensembles of a

  9. Optical tomograph optimized for tumor detection inside highly absorbent organs

    NASA Astrophysics Data System (ADS)

    Boutet, Jérôme; Koenig, Anne; Hervé, Lionel; Berger, Michel; Dinten, Jean-Marc; Josserand, Véronique; Coll, Jean-Luc

    2011-05-01

    This paper presents a tomograph for small animal fluorescence imaging. The compact and cost-effective system described in this article was designed to address the problem of tumor detection inside highly absorbent heterogeneous organs, such as lungs. To validate the tomograph's ability to detect cancerous nodules inside lungs, in vivo tumor growth was studied on seven cancerous mice bearing murine mammary tumors marked with Alexa Fluor 700. They were successively imaged 10, 12, and 14 days after the primary tumor implantation. The fluorescence maps were compared over this time period. As expected, the reconstructed fluorescence increases with the tumor growth stage.

  10. Three-dimensional confocal optical imagery of precambrian microscopic organisms.

    PubMed

    Schopf, J William; Tripathi, Abhishek B; Kudryavtsev, Anatoliy B

    2006-02-01

    A major difficulty that has long hindered studies of organic-walled Precambrian microbes in petrographic thin sections is the accurate documentation of their three-dimensional morphology. To address this need, we here demonstrate the use of confocal laser scanning microscopy. This technique, both non-intrusive and non-destructive, can provide data by which to objectively characterize, in situ and at submicron-scale resolution, the cellular and organismal morphology of permineralized (petrified) microorganisms. Application of this technique can provide information in three dimensions about the morphology, taphonomy, and fidelity of preservation of such fossils at a spatial resolution unavailable by any other means.

  11. Measuring the effects of topically applied skin optical clearing agents and modeling the effects and consequences for laser therapies

    NASA Astrophysics Data System (ADS)

    Verkruysse, Wim; Khan, Misbah; Choi, Bernard; Svaasand, Lars O.; Nelson, J. Stuart

    2005-04-01

    Human skin prepared with an optical clearing agent manifests reduced scattering as a result of de-hydration and refractive index matching. This has potentially large effects for laser therapies of several skin lesions such as port wine stain, hair removal and tattoo removal. With most topically applied clearing agents the clearing effect is limited because they penetrate poorly through the intact superficial skin layer (stratum corneum). Agent application modi other than topical are impractical and have limited the success of optical clearing in laser dermatology. In recent reports, however, a mixture of lipofylic and hydrofylic agents was shown to successfully penetrate through the intact stratum corneum layer which has raised new interest in this field. Immediately after application, the optical clearing effect is superficial and, as the agent diffuses through the skin, reduced scattering is manifested in deeper skin layers. For practical purposes as well as to maximize therapeutic success, it is important to quantify the reduced scattering as well as the trans-cutaneous transport dynamics of the agent. We determined the time and tissue depth resolved effects of optically cleared skin by inserting a microscopic reflector array in the skin. Depth dependent light intensity was measured by quantifying the signal of the reflector array with optical coherence tomography. A 1-dimensional mass diffusion model was used to estimate a trans-cutaneous transport diffusion constant for the clearing agent mixture. The results are used in Monte Carlo modeling to determine the optimal time of laser treatment after topical application of the optical clearing agent.

  12. Proven high-reliability assembly methods applied to avionics fiber-optics high-speed transceivers

    NASA Astrophysics Data System (ADS)

    Lauzon, Jocelyn; Leduc, Lorrain; Bessette, Daniel; Bélanger, Nicolas; Larose, Robert; Dion, Bruno

    2012-06-01

    Harsh environment avionics applications require operating temperature ranges that can extend to, and exceed -50 to 115°C. For obvious maintenance, management and cost arguments, product lifetimes as long as 20 years are also sought. This leads to mandatory long-term hermeticity that cannot be obtained with epoxy or silicone sealing; but only with glass seal or metal solder or brazing. A hermetic design can indirectly result in the required RF shielding of the component. For fiber-optics products, these specifications need to be compatible with the smallest possible size, weight and power consumption. The products also need to offer the best possible high-speed performances added to the known EMI immunity in the transmission lines. Fiber-optics transceivers with data rates per fiber channel up to 10Gbps are now starting to be offered on the market for avionics applications. Some of them are being developed by companies involved in the "normal environment" telecommunications market that are trying to ruggedize their products packaging in order to diversify their customer base. Another approach, for which we will present detailed results, is to go back to the drawing boards and design a new product that is adapted to proven MIL-PRF-38534 high-reliability packaging assembly methods. These methods will lead to the introduction of additional requirements at the components level; such as long-term high-temperature resistance for the fiber-optic cables. We will compare both approaches and demonstrate the latter, associated with the redesign, is the preferable one. The performance of the fiber-optic transceiver we have developed, in terms of qualification tests such as temperature cycling, constant acceleration, hermeticity, residual gaz analysis, operation under random vibration and mechanical shocks and accelerated lifetime tests will be presented. The tests are still under way, but so far, we have observed no performance degradation of such a product after more than

  13. Research in Image Understanding as Applied to 3-D Microwave Tomographic Imaging with Near Optical Resolution.

    DTIC Science & Technology

    1986-03-10

    Severe Clutter .... ........ 1I-i III . Optical Implementation of the HopfieldModel .I -? .- . ." Model........................ . . BY...can be employed in future broad-band imaging radar networks capable of providing 3-D projective or . - tomographic images of remote aerospace targets...We expect the results of this effort to tell us how to achieve centimeter resolution on remote aerospace objects cost-effectively using microwave

  14. Optical performance of a PDMS tunable lens with automatically controlled applied stress

    NASA Astrophysics Data System (ADS)

    Cruz-Felix, Angel S.; Santiago-Alvarado, Agustín.; Hernández-Méndez, Arturo; Reyes-Pérez, Emilio R.; Tepichín-Rodriguez, Eduardo

    2016-09-01

    The advances in the field of adaptive optics and in the fabrication of tunable optical components capable to automatically modify their physical features are of great interest in areas like machine vision, imaging systems, ophthalmology, etc. Such components like tunable lenses are used to reduce the overall size of optical setups like in small camera systems and even to imitate some biological functions made by the human eye. In this direction, in the last years we have been working in the development and fabrication of PDMS-made tunable lenses and in the design of special mechanical mounting systems to manipulate them. A PDMS-made tunable lens was previously designed by us, following the scheme reported by Navarro et al. in 1985, in order to mimic the accommodation process made by the crystalline lens of the human eye. The design included a simulation of the application of radial stress onto the lens and it was shown that the effective focal length was indeed changed. In this work we show the fabrication process of this particular tunable lens and an optimized mechanism that is able to automatically change the curvature of both surfaces of the lens by the application of controlled stress. We also show results of a study and analysis of aberrations performed to the Solid Elastic Lens (SEL).

  15. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication

    NASA Astrophysics Data System (ADS)

    Cai, D. K.; Neyer, A.; Kuckuk, R.; Heise, H. M.

    2008-03-01

    The optical properties of transparent PDMS polymer materials, which can be integrated into general printed circuit board (PCB) for data communication, are of great interest due to the substantial market expectations for the near future. For the present paper, it was found that the absorption loss in polydimethylsiloxane (PDMS) is mainly caused by the vibrational overtone and combination bands of the CH 3-groups of the polymer in the spectral datacom region of 600-900 nm. Based on observed positions of fundamental, overtone and combination bands of the methyl-group, as recorded within the mid- and near-infrared spectra, anharmonicity constants and normal vibration frequencies were determined. Thus, an empirical equation for estimating the wavelengths with the most significant intrinsic absorption loss due to the corresponding band positions was formulated, which was found to agree well with the experimental data. In addition, PDMS multimode waveguides were fabricated and the respective optical insertion loss was measured at 850 nm, which is commercially used for optical datacom transmission and finally the thermal stability of PDMS multimode waveguides was verified as well.

  16. Synthesis and optical properties of organic semiconductor: zirconia nanocomposites

    NASA Astrophysics Data System (ADS)

    Sagmeister, M.; Brossmann, U.; List, E. J. W.; Ochs, R.; Szabó, D. V.; Saf, R.; Grogger, W.; Tchernychova, E.; Würschum, R.

    2010-09-01

    Oxide nanoparticles were used as carrier for organic semiconductor materials. Stable suspensions of ZrO2 nanoparticles coated with anthracene, pentacene, or para-hexaphenyl were obtained by microwave plasma synthesis of ZrO2 cores, subsequent in situ coating with organic compounds, and in situ dispersion in ethylene glycol. Powders of coated oxide nanoparticles were synthesized for comparison. The successful coating and a small uniform size distribution of the ZrO2 cores were confirmed by comprehensive characterization including photoluminescence, absorption spectroscopy, electron microscopy, electron energy loss spectroscopy, mass spectrometry, and X-ray diffraction. Powder compacts of anthracene-coated ZrO2 particles showed good air stability and a significant blue shift accompanied by an attenuation of the emission lines at higher vibronic orders in comparison to samples of pure anthracene as received. For para-hexaphenyl-coated nanoparticles, the same photoluminescence characteristics are observed as for pure para-hexaphenyl. In the case of pentacene-coated nanoparticles indication for degradation is found.

  17. Mustiscaling Analysis applied to field Water Content through Distributed Fiber Optic Temperature sensing measurements

    NASA Astrophysics Data System (ADS)

    Benitez Buelga, Javier; Rodriguez-Sinobas, Leonor; Sanchez, Raul; Gil, Maria; Tarquis, Ana M.

    2014-05-01

    signal variation, or to see at which scales signals are most correlated. This can give us an insight into the dominant processes An alternative to both of the above methods has been described recently. Relative entropy and increments in relative entropy has been applied in soil images (Bird et al., 2006) and in soil transect data (Tarquis et al., 2008) to study scale effects localized in scale and provide the information that is complementary to the information about scale dependencies found across a range of scales. We will use them in this work to describe the spatial scaling properties of a set of field water content data measured in an extension of a corn field, in a plot of 500 m2 and an spatial resolution of 25 cm. These measurements are based on an optics cable (BruggSteal) buried on a ziz-zag deployment at 30cm depth. References Bird, N., M.C. Díaz, A. Saa, and A.M. Tarquis. 2006. A review of fractal and multifractal analysis of soil pore-scale images. J. Hydrol. 322:211-219. Kravchenko, A.N., R. Omonode, G.A. Bollero, and D.G. Bullock. 2002. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 66:235-243. Lark, R.M., A.E. Milne, T.M. Addiscott, K.W.T. Goulding, C.P. Webster, and S. O'Flaherty. 2004. Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets. Eur. J. Soil Sci. 55:611-627. Lark, R.M., S.R. Kaffka, and D.L. Corwin. 2003. Multiresolution analysis of data on electrical conductivity of soil using wavelets. J. Hydrol. 272:276-290. Lark, R. M. and Webster, R. 1999. Analysis and elucidation of soil variation using wavelets. European J. of Soil Science, 50(2): 185-206. Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman, New York. Percival, D.B., and A.T. Walden. 2000. Wavelet methods for time series analysis. Cambridge Univ. Press, Cambridge, UK. Tarquis, A.M., N.R. Bird, A.P. Whitmore, M.C. Cartagena, and

  18. Optical macro-tweezers: trapping of highly motile micro-organisms

    NASA Astrophysics Data System (ADS)

    Thalhammer, G.; Steiger, R.; Bernet, S.; Ritsch-Marte, M.

    2011-04-01

    Optical micromanipulation stands for contact-free handling of microscopic particles by light. Optical forces can manipulate non-absorbing objects in a large range of sizes, e.g., from biological cells down to cold atoms. Recently much progress has been made going from the micro- down to the nanoscale. Less attention has been paid to going the other way, trapping increasingly large particles. Optical tweezers typically employ a single laser beam tightly focused by a microscope objective of high numerical aperture to stably trap a particle in three dimensions (3D). As the particle size increases, stable 3D trapping in a single-beam trap requires scaling up the optical power, which eventually induces adverse biological effects. Moreover, the restricted field of view of standard optical tweezers, dictated by the use of high NA objectives, is particularly unfavorable for catching actively moving specimens. Both problems can be overcome by traps with counter-propagating beams. Our 'macro-tweezers' are especially designed to trap highly motile organisms, as they enable three-dimensional all-optical trapping and guiding in a volume of 2 × 1 × 2 mm3. Here we report for the first time the optical trapping of large actively swimming organisms, such as for instance Euglena protists and dinoflagellates of up to 70 µm length. Adverse bio-effects are kept low since trapping occurs outside high intensity regions, e.g., focal spots. We expect our approach to open various possibilities in the contact-free handling of 50-100 µm sized objects that could hitherto not be envisaged, for instance all-optical holding of individual micro-organisms for taxonomic identification, selective collecting or tagging.

  19. Molecular Optics Nonlinear Optical Processes in Organic and Polymeric Crystals and Films. Part 2

    DTIC Science & Technology

    1991-11-01

    susceptibility gamma ijkl(-omega 4; omega 1, omega 2, omega 3 ) demonstrate that the microscopic origin of the nonresonant third order nonlinear optical...interaction calculations of gamma jkl(-omega 4; omega 1, omega 2, omega 3 ) for the archetypal class of quasi-one dimensional conjugated structures...largest of the two dominant, competing virtual excitation processes that determine gamma ijkl(- omega 4; omega 1, omega 2, omega 3 ). It is also found in

  20. First International Conference on Organic Nonlinear Optics. Section B: Nonlinear Optics, Principles, Materials, Phenomena, and Devices.

    DTIC Science & Technology

    1994-01-01

    1461, 1466.4 and 1489 cm for the C=C- wavelength [nto] 1000 800 600 500 400 1.0- "-0.8 06- o, 064 C 0 0.4 o 0.2- PPVS Lutt 0- Z-N 10000 15000 20000...well as in biological systems (e.g., light harvesting antenna). In addition the nonlinear optical response (NLO) of coherent extended states has in

  1. Optical and electrical properties of bi-layers organic devices

    NASA Astrophysics Data System (ADS)

    Trad, Hager; Rouis, Ahlem; Davenas, Jöel; Majdoub, Mustapha

    2014-10-01

    The influence of interfacial charges on the device characteristics of bi-layers structure LEDs with poly[5-methoxy-2-octyloxy-1,4-phenylenevinylene] (MO-PPV) as active polymer layer is investigated. The concept to improve device performance is presented using: a diacetate cellulose (DAC) and a new synthetized 5-{2-(2-chloroethoxy)ethoxy}-2-{(E)-(2-pyridyl)azo}phenol (PDEG) components. The DAC and mixed (DAC+PDEG) layers were inserted between indium tin oxide (ITO) and MO-PPV polymer. The optical properties (UV-Vis) of MO-PPV, PDEG and mixed (DAC+PDEG) in solutions were studied and compared to those on thin films. Detailed current-voltage measurements of the bi-layers devices showed improvements of the threshold voltage (Vth) of the ITO/(DAC+PDEG)/MO-PPV/Al device attributed to the enhancement of carriers injection and transport resulted from the modified electrode structures. Conduction mechanisms of structure LEDs were matched with space-charge-limited current (SCLC) one. The impedance spectra for all devices can be discussed in terms of an equivalent circuit model designed as a parallel resistor Rp and capacitor Cp network in series with resistor Rs. The ITO/(DAC+PDEG)/MO-PPV/Al device showed the lowest impedance attributed to the removal of contaminants and to changes in the work function of ITO. The frequency-dependent electrical properties of the ITO/(DAC+PDEG)/MO-PPV/Al structure is analyzed by impedance spectroscopy as function of bias. We have extracted numerical values of the equivalent circuit model parameters by fitting experimental data. Their evolution with bias voltages has shown that the SCLC mechanism is characterized by an exponential trap distribution.

  2. The removal kinetics of dissolved organic matter and the optical clarity of groundwater

    NASA Astrophysics Data System (ADS)

    Chapelle, Francis H.; Shen, Yuan; Strom, Eric W.; Benner, Ronald

    2016-09-01

    Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d-1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d-1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20-75 μM; 0.26-1 mg L-1) and ultraviolet absorption coefficient values ( a 254 < 5 m-1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.

  3. Crystal structure, growth and nonlinear optical studies of isonicotinamide p-nitrophenol: A new organic crystal for optical limiting applications

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.

    2016-08-01

    Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.

  4. From hyperons to applied optics: {open_quotes}Winston Cones{close_quotes} during and after ZGS era

    SciTech Connect

    Swallow, E.C. |

    1994-12-31

    This paper discusses developments in light collection which had their origin in efforts to construct high performance gas Cerenkov detectors for precision studies of hyperon beta decays at the ZGS. The resulting devices, know generally as {open_quotes}compound parabolic concentrators,{close_quotes} have found applications ranging from nuclear and particle physics experiments to solar energy concentration, instrument illumination, and understanding the optics of visual receptors. Interest in these devices and the ideas underlying them stimulated the development of a substantial new subfield of physics: nonimaging optics. This progression provides an excellent example of some ways in which unanticipated - and often unanticipatable - applied science and {open_quotes}practical{close_quotes} devices naturally emerge from first-rate basic science. The characteristics of this process suggest that the term {open_quotes}spinoff{close_quotes} commonly used to denote it is misleading and in need of replacement.

  5. A statistical model for road surface friction forecasting applying optical road weather measurements

    NASA Astrophysics Data System (ADS)

    Hippi, M.; Juga, I.; Nurmi, P.

    2009-09-01

    Road surface friction is defined as the grip between car tyre and underlying surface. Poor friction often plays a crucial role in wintertime car accidents. Friction can decrease dramatically during snowfall or when wet road surface temperature falls below zero. Even a thin layer of ice or snow can decrease friction substantially increasing the risk of accidents. Many studies have shown that road surface temperature, road conditions and friction can fluctuate dramatically within short distances under specific weather situations. Friction or grip can be improved with road maintenance activities like salting and gritting. Salting will melt the ice or snow layer, whereas gritting will improve the grip. Salting is effective only above -5C temperatures. Light snowfall together with low temperatures can result in very slippery driving conditions. Finnish Road Administration's observing network covers c. 500 road weather stations in Finland. Almost 100 of them are equipped with optical sensors (in winter 2008-2009). The number of optical sensors has increased remarkably during past few years. The optical measuring devices are Vaisala DSC111 sensors which measure the depth of water, snow and ice on the road surface and also produce an estimate of the state of road and prevailing friction. Observation data from road weather stations with optical sensors were collected from winter 2007/08, and a couple of representative (from a weather perspective) stations were selected for detailed statistical analysis. The purpose of the study was to find a statistical relationship between the observed values and, especially, the correlation between friction and other road weather parameters. Consequently, a model based on linear regression was developed. With the model friction being the dependent variable, the independent variables having highest correlations were the composite of ice and snow (water content) on the road, and the road surface temperature. In the case of a wet road

  6. Anisotropic optical distribution of powder phosphor materials applied in medical imaging instrumentation

    NASA Astrophysics Data System (ADS)

    Liaparinos, P. F.

    2016-02-01

    Image quality for medical purposes is related to the useful diagnostic information that can be extracted from an image. The performance of indirect X-ray detectors, which in turn affects the quality of the medical image, can be significantly influenced by the characteristics of the phosphor, employed to convert incident radiation into emitted light. Given the technological and medical importance of phosphor materials, understanding the fundamental effects of optical anisotropy is crucial. The purpose of the present paper was to examine the influence of optical anisotropy in optical diffusion within the powder phosphor-based X-ray detectors. The present investigation was based on Mie scattering theory and Monte Carlo simulation techniques. The variation of the anisotropy factor was examined for: (1) light wavelengths in the range 400-700 nm, (2) particle refractive index between 1.5 and 2 and (3) three regions of particle sizes: nanoscale (from 10 up to 100 nm), submicron scale (from 100 nm up to 1 μm), and microscale (from 1 up to 10 μm). In addition, optical diffusion performance was carried out considering: (a) anisotropy factor values 0.2, 0.5, 0.8 which represent different aspects of light propagation after scattering and (b) phosphors of different layer thickness, 100 (thin layer) and 300 μm (thick layer), respectively. Results showed that the highest variation on the anisotropy factor was observed in the submicron scale, and, in particular, for grain diameters between 100 and 600 nm (increase from 0.1 up to 0.8). In addition, Monte Carlo simulations showed that the spread of light photons decreases (i.e., high spatial resolution) with the decrease in the anisotropy factor. In particular, the FWHM was found to decrease with the anisotropy factor: (1) 11.4 % at 100 μm and 4.2 %, at 300 μm layer thickness, for light extinction coefficient 0.217 μm-1 and (2) 1.9 % at 100 μm and 2.0 %, at 300 μm layer thickness, for light extinction coefficient 3 μm-1

  7. The early-stage diagnosis of albinic embryos by applying optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Shih-Yuan; Wang, Yu-Yen; Cai, Jyun-Jhang; Chang, Chung-Hao

    2013-09-01

    Albinism is a kind of congenital disease of abnormal metabolism. Poecilia reticulata (guppy fish) is chosen as the model to study the development of albinic embryos as it is albinic, ovoviviparous and with short life period. This study proposed an imaging method for penetrative embryo investigation using optical coherence tomography. By imaging through guppy mother’s reproduction purse, we found the embryo’s eyes were the early-developed albinism features. As human’s ocular albinism typically appear at about four weeks old, it is the time to determine if an embryo will grow into an albino.

  8. Characterization of Optical and Associated Properties of Marine Colored Dissolved Organic Material (CDOM)

    DTIC Science & Technology

    2016-06-14

    significant impacts for the cycling and sources of DOM in the ocean. Correlating changes in optical characteristics with associated changes in...FFFF and LC/MSn instrumentation/ techniques to the study of other complex organic systems (eg. volatile organic carbons and polyaromatic hydrocarbons...carbonyl sulfide, carbon monoxide and carbon dioxide in the west coastal waters of Florida: a photochemical study of plumes. J.G.R, submitted. Clark, C.D

  9. Thermal and Optical Modulation of the Carrier Mobility in OTFTs Based on an Azo-anthracene Liquid Crystal Organic Semiconductor.

    PubMed

    Chen, Yantong; Li, Chao; Xu, Xiuru; Liu, Ming; He, Yaowu; Murtaza, Imran; Zhang, Dongwei; Yao, Chao; Wang, Yongfeng; Meng, Hong

    2017-03-01

    One of the most striking features of organic semiconductors compared with their corresponding inorganic counterparts is their molecular diversity. The major challenge in organic semiconductor material technology is creating molecular structural motifs to develop multifunctional materials in order to achieve the desired functionalities yet to optimize the specific device performance. Azo-compounds, because of their special photoresponsive property, have attracted extensive interest in photonic and optoelectronic applications; if incorporated wisely in the organic semiconductor groups, they can be innovatively utilized in advanced smart electronic applications, where thermal and photo modulation is applied to tune the electronic properties. On the basis of this aspiration, a novel azo-functionalized liquid crystal semiconductor material, (E)-1-(4-(anthracen-2-yl)phenyl)-2-(4-(decyloxy)phenyl)diazene (APDPD), is designed and synthesized for application in organic thin-film transistors (OTFTs). The UV-vis spectra of APDPD exhibit reversible photoisomerizaton upon photoexcitation, and the thin films of APDPD show a long-range orientational order based on its liquid crystal phase. The performance of OTFTs based on this material as well as the effects of thermal treatment and UV-irradiation on mobility are investigated. The molecular structure, stability of the material, and morphology of the thin films are characterized by thermal gravimetric analysis (TGA), polarizing optical microscopy (POM), (differential scanning calorimetry (DSC), UV-vis spectroscopy, atomic force microscopy (AFM), and scanning tunneling microscopy (STM). This study reveals that our new material has the potential to be applied in optical sensors, memories, logic circuits, and functional switches.

  10. New light-trapping concept by means of several optical components applied to compact holographic 3D concentration solar module

    NASA Astrophysics Data System (ADS)

    Villamarín Villegas, Ayalid M.; Pérez López, Francisco J.; Calo López, Antonio; Rodríguez San Segundo, Hugo-José

    2014-05-01

    A new light-trapping concept is presented, which joins broad bandwidth volume phase reflection holograms (VPRH) working together with three other optical components: specifically designed three-dimensional (3D) cavities, Total Internal Reflection (TIR) within an optical medium, and specular reflection by means of a highly reflective surface. This concept is applied to the design and development of both low concentration photovoltaic (LCPV) and solar thermal modules reaching a concentration factor of up to 3X. Higher concentrations are feasible for use in concentrated solar power (CSP) devices. The whole system is entirely made of polymeric materials (except for the solar cells or fluid carrying pipes), thus reducing cost by up to 40%. The module concentrates solar light onto solar cells - or fluid carrying pipes - with no need for active tracking of the sun, covering the whole seasonal and daily incident angle spectrum while it also minimizes optical losses. In this work we analyze the first experimentally measured optical characteristics and performance of VPRH in dichromated gelatin film (DCG) in our concept. The VPRH can reach high diffraction efficiencies (˜98%, ignoring Fresnel reflection losses). Thanks to specifically designed raw material, coating and developing process specifications, also very broad selective spectral (higher than 300 nm) and angular bandwidths (˜+20º) per grating are achieved. The VPRH was optimized to use silicon solar cells, but designs for other semiconductor devices or for fluid heating are feasible. The 3D shape, the hologram's and reflective surface's optical quality, the TIR effect and the correct coupling of all the components are key to high performance of the concentration solar module.

  11. APPLYING OPEN-PATH OPTICAL SPECTROSCOPY TO HEAVY-DUTY DIESEL EMISSIONS

    EPA Science Inventory

    Non-dispersive infrared absorption has been used to measure gaseous emissions for both stationary and mobile sources. Fourier transform infrared spectroscopy has been used for stationary sources as both extractive and open-path methods. We have applied the open-path method for bo...

  12. Calculation of accurate channel spacing of an AWG optical demultiplexer applying proportional method

    NASA Astrophysics Data System (ADS)

    Seyringer, D.; Hodzic, E.

    2015-06-01

    We present the proportional method to correct the channel spacing between the transmitted output channels of an AWG. The developed proportional method was applied to 64-channel, 50 GHz AWG and the achieved results confirm very good correlation between designed channel spacing (50 GHz) and the channel spacing calculated from simulated AWG transmission characteristics.

  13. Optical devices combining an organic semiconductor crystal with a two-dimensional inorganic diffraction grating

    SciTech Connect

    Kitazawa, Takenori; Yamao, Takeshi Hotta, Shu

    2016-02-01

    We have fabricated optical devices using an organic semiconductor crystal as an emission layer in combination with a two-dimensional (2D) inorganic diffraction grating used as an optical cavity. We formed the inorganic diffraction grating by wet etching of aluminum-doped zinc oxide (AZO) under a 2D cyclic olefin copolymer (COC) diffraction grating used as a mask. The COC diffraction grating was fabricated by nanoimprint lithography. The AZO diffraction grating was composed of convex prominences arranged in a triangular lattice. The organic crystal placed on the AZO diffraction grating indicated narrowed peaks in its emission spectrum under ultraviolet light excitation. These are detected parallel to the crystal plane. The peaks were shifted by rotating the optical devices around the normal to the crystal plane, which reflected the rotational symmetries of the triangular lattice through 60°.

  14. Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes

    ERIC Educational Resources Information Center

    Hutchins, Benjamin M.; Morgan, Thomas T.; Ucak-Astarlioglu, Mine G.; Wlilliams, Mary Elizabeth

    2007-01-01

    The study describes and compares the size-dependent optical properties of organic dyes with those of semiconductor nanocrystals or quantum dots (QDs). The analysis shows that mixtures of QDs contain emission colors that are sum of the individual QD components.

  15. Ultrafast Frequency Agile Optical Materials: Organically Doped Sol-Gel Glasses

    DTIC Science & Technology

    1992-10-13

    PhD. anticipated 1/93 John Pelo Robert A. Crowell, Ph.D. awarded 9/92 Teresa Rose Undergraduate Students: John Middleton Bibliography [1] A...Coulter, D. Alvarez Jr., S. R. Marder, T. H. Wei, M. J. Sence, E. W. Van Stryland, and D. J. Hagan, Organic Materials for Nonlinear Optics and Photonics, J

  16. Optical Characterization of Dissolved Organic Matter in Maine Rivers

    NASA Astrophysics Data System (ADS)

    White, D. P.; Roesler, C. S.; Bourakovsky, A.; Drapeau, S.; Huntington, T. G.; Billmire, M.; Camill, P.

    2014-12-01

    The coastal waters of the Gulf of Maine are significantly impacted by the input of fresh water from a distributed river system. In this study, we focus on the four largest watersheds (Androscoggin, Kennebec, Penobscot and St. John) that contribute to the freshwater inputs. In particular, we investigated the input of dissolved organic carbon via PARAFAC analysis of excitation/emission matrix fluorescence spectroscopy. Monthly sampling of over 65 stations for three years has yielded a wealth of information about tributary characteristics. Specifically, we investigated the role of water quality properties and landscape coverage in the mobilization and flux of different components of DOC and how those properties vary spatially across the landscape and temporally over seasons and between years. Across all rivers, humic-like materials were the most prevalent components at the river mouths; accumulating along the rivers due to sequential tributary inputs. The concentration of humic-like materials increased latitudinally from the Androscoggin to St John, a geographic progression in source material also correlated to climate variations, land coverage or bedrock acidity. Dissolved proteins displayed positive relationships with climatological Chlorophyll a and total Nitrogen values. In all rivers, peak fluorescence of dissolved proteins was observed during summer months, with the maximum intensity observed in the Androscoggin River. The magnitude and pattern of seasonal flux of fluorescent materials into the Gulf of Maine was very similar between the Penobscot and the Kennebec rivers. The flux of all DOM components was highest during the spring freshet, with a secondary peak during fall precipitation maxima and lowest during August, likely due to both low mobilization and photo degradation of river borne materials.

  17. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation

    USGS Publications Warehouse

    Hansen, Angela; Kraus, Tamara; Pellerin, Brian; Fleck, Jacob; Downing, Bryan D.; Bergamaschi, Brian

    2016-01-01

    Advances in spectroscopic techniques have led to an increase in the use of optical properties (absorbance and fluorescence) to assess dissolved organic matter (DOM) composition and infer sources and processing. However, little information is available to assess the impact of biological and photolytic processing on the optical properties of original DOM source materials. We measured changes in commonly used optical properties and indices in DOM leached from peat soil, plants, and algae following biological and photochemical degradation to determine whether they provide unique signatures that can be linked to original DOM source. Changes in individual optical parameters varied by source material and process, with biodegradation and photodegradation often causing values to shift in opposite directions. Although values for different source materials overlapped at the end of the 111-day lab experiment, multivariate statistical analyses showed that unique optical signatures could be linked to original DOM source material even after degradation, with 17 optical properties determined by discriminant analysis to be significant (p<0.05) in distinguishing between DOM source and environmental processing. These results demonstrate that inferring the source material from optical properties is possible when parameters are evaluated in combination even after extensive biological and photochemical alteration.

  18. Under-Coupling Whispering Gallery Mode Resonator Applied to Resonant Micro-Optic Gyroscope.

    PubMed

    Qian, Kun; Tang, Jun; Guo, Hao; Liu, Wenyao; Liu, Jun; Xue, Chenyang; Zheng, Yongqiu; Zhang, Chengfei

    2017-01-06

    As an important sensing element, the whispering gallery mode resonator (WGMR) parameters seriously affect the resonant micro-optic gyroscope (RMOG) performance. This work proposes an under-coupling resonator to improve the resonator's Q value and to optimize the coupling coefficient to maximize the RMOG's sensitivity. GeO₂-doped silica waveguide-type resonators with different coupling coefficients were simulated, designed, fabricated and tested. An under-coupling ring resonator with a quality factor of 10 million is reported. The RMOG system was built based on this resonator and the scale factor was tested on a uniaxial high-precision rotating platform. Experimental results show that this resonator could improve the RMOG sensitivity by five times.

  19. Ultrafast Rotation of Light Fields Applied to Highly Non-Linear Optics

    NASA Astrophysics Data System (ADS)

    Quéré, Fabien

    2014-05-01

    Femtosecond laser beams can exhibit spatio-temporal couplings (STC), i.e. a temporal dependence of their spatial properties, or vice versa. Although these couplings have long been considered as detrimental for high-intensity and ultrafast experiments, moderate and controlled STC provide a powerful means of controlling high-intensity laser-matter interactions. This talk will first explain the basics of a particular STC, where the propagation direction of laser light rotates in time on the femtosecond time scale. Laser pulses with such ultrafast wavefront rotation can be used to generate attosecond pulses of light through non-linear optical processes. We show that these pulses, periodically generated in each laser cycle, can then be emitted in spatially separated beamlets. This effects provides a new type of light sources called attosecond lighthouses, and can be exploited for ultrafast measurements with femtosecond resolution, in a scheme called photonic streaking.

  20. Under-Coupling Whispering Gallery Mode Resonator Applied to Resonant Micro-Optic Gyroscope

    PubMed Central

    Qian, Kun; Tang, Jun; Guo, Hao; Liu, Wenyao; Liu, Jun; Xue, Chenyang; Zheng, Yongqiu; Zhang, Chengfei

    2017-01-01

    As an important sensing element, the whispering gallery mode resonator (WGMR) parameters seriously affect the resonant micro-optic gyroscope (RMOG) performance. This work proposes an under-coupling resonator to improve the resonator’s Q value and to optimize the coupling coefficient to maximize the RMOG’s sensitivity. GeO2-doped silica waveguide-type resonators with different coupling coefficients were simulated, designed, fabricated and tested. An under-coupling ring resonator with a quality factor of 10 million is reported. The RMOG system was built based on this resonator and the scale factor was tested on a uniaxial high-precision rotating platform. Experimental results show that this resonator could improve the RMOG sensitivity by five times. PMID:28067824

  1. APPLIED OPTICS. Voltage-tunable circular photogalvanic effect in silicon nanowires.

    PubMed

    Dhara, Sajal; Mele, Eugene J; Agarwal, Ritesh

    2015-08-14

    Electronic bands in crystals can support nontrivial topological textures arising from spin-orbit interactions, but purely orbital mechanisms can realize closely related dynamics without breaking spin degeneracies, opening up applications in materials containing only light elements. One such application is the circular photogalvanic effect (CPGE), which is the generation of photocurrents whose magnitude and polarity depend on the chirality of optical excitation. We show that the CPGE can arise from interband transitions at the metal contacts to silicon nanowires, where inversion symmetry is locally broken by an electric field. Bias voltage that modulates this field further controls the sign and magnitude of the CPGE. The generation of chirality-dependent photocurrents in silicon with a purely orbital-based mechanism will enable new functionalities in silicon that can be integrated with conventional electronics.

  2. Applying of the optical time-of-flight spectroscopy for the paper and pulp characterization

    NASA Astrophysics Data System (ADS)

    Pluciński, Jerzy

    2006-02-01

    The paper presents benefits of optical time-of-flight spectroscopy for the pulp and paper characterization. A semiconductor pulse laser and a streak camera as the photodetector were utilized in experimental part of research described in this paper. Distribution of the time of flight of photons through various kinds of wood pulp (e.g. pulp after mechanical treatment coming both fi-om tree species giving hard and soft wood and pulp after thermo-mechanical treatment) was measured. The pulp samples used in the measurements had consistency ranging from 0 to 5% of dry mass in the suspension. The influence of additives (kaolin, talc and calcium carbonate) present in the suspension on the time of flight distribution of photons was studied as well. Finally, dependence of the time of flight of photons through various kinds of the paper (i.e. newspaper, copy paper, and tissue) on the thickness of the sample was investigated.

  3. Laser-electron beam interaction applied to optical amplifiers and oscillators

    NASA Technical Reports Server (NTRS)

    Pantell, R. H.; Piestrup, M. A.

    1976-01-01

    Momentum modulation of a relativistic electron beam by a Nd:YAG laser is demonstrated. The electrons, at 100 MeV energy, interact with the laser light in helium gas at standard temperature and pressure. At an angle of 6.55 mrad between the two wavevectors, corresponding to the Cerenkov angle, a given electron remains in a field of constant phase as it passes through the light beam. The experimental arrangement is illustrated showing the trajectories of the electron and light. The particle momentum is measured by a mass spectrometer, and the angle between the wavevectors is controlled by a rotatable mirror. Experimental results indicate that momentum modulation of an electron beam may be used for amplification. A possible configuration for an optical klystron is illustrated.

  4. Growth, spectroscopic, dielectric and nonlinear optical studies of semi organic nonlinear optical crystal - L-Alanine lithium chloride

    NASA Astrophysics Data System (ADS)

    Hanumantharao, Redrothu; Kalainathan, S.

    2012-02-01

    A new and efficient semi organic nonlinear optical crystal (NLO) from the amino acid family L-alanine lithium chloride (LAL) has been grown by slow evaporation technique from aqueous solution. The functional groups were identified from NMR spectral studies. Mass spectral analysis shows the molecular ion mass. Dielectric studies has been done for the grown crystal and relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.43 times that of standard potassium dihydrogen phosphate (KDP) crystals. The compound crystallized in non-centrosymmetric space group Pna21. The results have been discussed in detail.

  5. Growth, spectroscopic, dielectric and nonlinear optical studies of semi organic nonlinear optical crystal--L-alanine lithium chloride.

    PubMed

    Hanumantharao, Redrothu; Kalainathan, S

    2012-02-01

    A new and efficient semi organic nonlinear optical crystal (NLO) from the amino acid family L-alanine lithium chloride (LAL) has been grown by slow evaporation technique from aqueous solution. The functional groups were identified from NMR spectral studies. Mass spectral analysis shows the molecular ion mass. Dielectric studies has been done for the grown crystal and relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.43 times that of standard potassium dihydrogen phosphate (KDP) crystals. The compound crystallized in non-centrosymmetric space group Pna21. The results have been discussed in detail.

  6. Optics system design applying a micro-prism array of a single lens stereo image pair.

    PubMed

    Chen, Chien-Yue; Yang, Ting-Ting; Sun, Wen-Shing

    2008-09-29

    In this study we apply a micro-prism array technique to enable a single lens CCD to capture a stereo image for the simulation of double lens vision. A micro-prism array plate serves as the basis for design, which also improves the lightweight and portability of the overall system in addition to lowering the mass-production costs. Most important of all, this design possesses the characteristics of integration compatibility between general-purpose and video camera.

  7. Applying universal scaling laws to identify the best molecular design paradigms for third-order nonlinear optics

    NASA Astrophysics Data System (ADS)

    Perez-Moreno, Javier; Shafei, Shoresh; Kuzyk, Mark G.

    2016-12-01

    The scaling of the fundamental limits of the second hyperpolarizability is used to define the intrinsic second hyperpolarizability, which aids in identifying material classes with ultralarge nonlinear-optical response per unit of molecular size. The intrinsic nonlinear response is a size-independent metric that we apply to comparing classes of molecular homologues, which are made by adding repeat units to extend their lengths. Several new figures of merit are proposed that quantify not only the intrinsic nonlinear response, but also how the second hyperpolarizability increases with size within a molecular class. Scaling types can be classified into sub-scaling, nominal scaling that follows the theory of limits, and super-scaling behavior. Super-scaling homologues that have large intrinsic nonlinearity are the most promising because they efficiently take advantage of increased size. We apply our approach to data in the literature to identify the best super-scaling molecular paradigms and articulate the important underlying parameters.

  8. Applying universal scaling laws to identify the best molecular design paradigms for second-order nonlinear optics

    NASA Astrophysics Data System (ADS)

    Perez-Moreno, Javier; Shafei, Shoresh; Kuzyk, Mark G.

    2016-12-01

    We apply scaling and the theory of the fundamental limits of the second-order molecular susceptibility to identify material classes with ultralarge nonlinear-optical response. Size effects are removed by normalizing all nonlinearities to get intrinsic values so that the scaling behavior of a series of molecular homologues can be determined. Several new figures of merit are proposed that quantify the desirable properties for molecules that can be designed by adding a sequence of repeat units, and used in the assessment of the data. Three molecular classes are found. They are characterized by sub-scaling, nominal scaling, or super-scaling. Super-scaling homologues most efficiently take advantage of increased size. We apply our approach to data currently available in the literature to identify the best super-scaling molecular paradigms with the aim of identifying desirable traits of new materials.

  9. Social Science at the Center for Adaptive Optics: Synergistic Systems of Program Evaluation, Applied Research, Educational Assessment, and Pedagogy

    NASA Astrophysics Data System (ADS)

    Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.

    2010-12-01

    This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the

  10. Optical properties of self-organized gold nanorod-polymer hybrid films.

    PubMed

    Tritschler, Ulrich; Zlotnikov, Igor; Keckeis, Philipp; Schlaad, Helmut; Cölfen, Helmut

    2014-11-25

    High fractions of gold nanorods were locally aligned by means of a polymeric liquid crystalline phase. The gold nanorods constituting >80 wt % of the thin organic-inorganic composite films form a network with side-by-side and end-to-end combinations. Organization into these network structures was induced by shearing gold nanorod-LC polymer dispersions via spin-coating. The LC polymer is a polyoxazoline functionalized with pendent cholesteryl and carboxyl side groups enabling the polymer to bind to the CTAB stabilizer layer of the gold nanorods via electrostatic interactions, thus forming the glue between organic and inorganic components, and to form a chiral nematic lyotropic phase. The self-assembled locally oriented gold nanorod structuring enables control over collective optical properties due to plasmon resonance coupling, reminiscent of enhanced optical properties of natural biomaterials.

  11. Acquisition, simulation, and test replication of weapon firing shock applied to optical sights

    NASA Astrophysics Data System (ADS)

    Ball, Kenneth D.; Gardner, Dave

    2011-09-01

    With the ever increasing desire for range and delivery capabilities of ballistic defence equipment, weapons and sight systems are constantly evolving in complexity. As a result current systems now incorporate more sophisticated technology than ever before. This paper describes the non-intrusive mechanical field data acquisition and subsequent analysis and test integration techniques performed on complex opto-mechanical weapon mounted systems. As a result of physical acquisition, innovative techniques have been developed to enable the synthesis of the transient recordings for the purpose of finite element analysis. Further investigations have revealed new possibilities in applying more accurately controlled 'in house' loads, for low cost representative test purposes.

  12. Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    2002-01-01

    The objectives of the project, as they were formulated in the proposal, are the following: (1) Design and development of novel electro-optic modulator using single crystalline film of highly efficient electro-optic organic material integrated with prism coupler; (2) Experimental characterization of the figures-of-merit of the modulator. It is expected to perform with an extinction ratio of 10 dB at a driving signal of 5 V; (3) Conclusions on feasibility of the modulator as an element of data communication systems of future generations. The accomplishments of the project are the following: (1) The design of the electro-optic modulator based on a single crystalline film of organic material NPP has been explored; (2) The evaluation of the figures-of-merit of the electro-optic modulator has been performed; (3) Based on the results of characterization of the figures-of-merit, the conclusion was made that the modulator based on a thin film of NPP is feasible and has a great potential of being used in optic communication with a modulation bandwidth of up to 100 GHz and a driving voltage of the order of 3 to 5 V.

  13. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    SciTech Connect

    Rourke, D; Ahn, S; Nardes, AM; van de Lagemaat, J; Kopidakis, N; Park, W

    2014-09-21

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer: fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent. (C) 2014 AIP Publishing LLC.

  14. Metal-organic frameworks as competitive materials for non-linear optics.

    PubMed

    Mingabudinova, L R; Vinogradov, V V; Milichko, V A; Hey-Hawkins, E; Vinogradov, A V

    2016-09-26

    The last five years have witnessed a huge breakthrough in the creation and the study of the properties of a new class of compounds - metamaterials. The next stage of this technological revolution will be the development of active, controllable, and non-linear metamaterials, surpassing natural media as platforms for optical data processing and quantum information applications. However, scientists are constantly faced with the need to find new methods that can ensure the formation of quantum and non-linear metamaterials with higher resolution. One such method of producing metamaterials in the future, which will provide scalability and availability, is chemical synthesis. Meanwhile, the chemical synthesis of organized 3D structures with a period of a few nanometers and a size of up to a few millimeters is not an easy task and is yet to be resolved. The most promising avenue seems to be the use of highly porous structures based on metal-organic frameworks that have demonstrated their unique properties in the field of non-linear optics (NLO) over the past three years. Thus, the aim of this review is to examine current progress and the possibilities of using metal-organic frameworks in the field of non-linear optics as chemically obtained metamaterials of the future. The review begins by presenting the theoretical principles of physical phenomena represented by mathematical descriptions for clarity. Major attention is paid to the second harmonic generation (SHG) effect. In this section we compare inorganic single crystals, which are most commonly used to study the effect in question, to organic materials, which also possess the required properties. Based on these data, we present a rationale for the possibility of studying the non-linear optical properties of metal-organic structures as well as describing the use of synthetic approaches and the difficulties associated with them. The second part of the review explicitly acquaints the reader with a new class of materials

  15. Optical Measurements and Modeling to Estimate Concentrations and Fluxes of Organic Matter in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    Stramski, Dariusz; Mitchell, B. Greg; Marra, John W. (Technical Monitor)

    2001-01-01

    This project was a collaboration between two Principal Investigators, Dr. Dariusz Stramski and Dr. Greg Mitchell of Scripps Institution of Oceanography, University of California San Diego. Our overall goal was to conduct optical measurements and modeling to estimate concentrations of organic matter in the Southern Ocean in support of the U.S. JGOFS Process Study in this region. Key variables and processes of high relevance to accomplish the JGOFS goals include time and space resolution of phytoplankton pigments, particulate organic carbon, and the formation and export of organic carbon. Our project focused on establishing the fundamental relationships for parameterization of these variables and processes in terms of the optical properties of seawater, and developing understanding of why the Southern Ocean differs from other low-latitude systems, or has differentiation within. Our approach builds upon historical observations that optical properties provide a useful proxy for key reservoirs of organic matter such as chlorophyll alpha (Chl) and particulate organic carbon (POC) concentrations, which are of relevance to the JGOFS objectives. We carried out detailed studies of in situ and water sample optical properties including spectral reflectance, absorption, beam attenuation, scattering, and backscattering coefficients. We evaluated the ability to estimate Chl from the spectral reflectance (ocean color) in the Southern Ocean. We examined relationships between the ocean optical properties and particulate organic carbon. We developed, for the first time, an algorithm for estimating particulate organic carbon concentration in the surface ocean from satellite imagery of ocean color. With this algorithm, we obtained maps of POC distribution in the Southern Ocean showing the seasonal progression of POC in the austral spring-summer season. We also developed a semianalytical reflectance model for the investigated polar waters based on our field measurements of absorption

  16. Excimer laser ablation lithography applied to the fabrication of reflective diffractive optics

    NASA Astrophysics Data System (ADS)

    Flury, M.; Benatmane, A.; Gérard, P.; Montgomery, P. C.; Fontaine, J.; Engel, T.; Schunck, J. P.; Fogarassy, E.

    2003-03-01

    We propose a low cost technique for the production of diffractive optical elements (DOE). These elements are devoted to high power lasers beam shaping in the mid-infrared wavelengths. This process called laser ablation lithography (LAL), may seem similar to laser beam writing (LBW) in the way the whole DOE's design is reproduced pixel by pixel on the substrate placed on a computer controlled XY translation stage. A first difference is that the photoresist is not exposed with UV light but is directly ablated with short excimer laser pulses. Furthermore, with LAL technique the size of the smallest pixel ( 5 μm×5 μm) is more than 10 times greater than those produced by LBW. We discuss in details the experimental set-up for LAL and demonstrate that it gives a resolution up to 10 times greater than photolithography with flexible masks. This makes LAL a promising solution for the production of DOE for use with Nd:YAG lasers. New applications of DOEs are finally introduced with high power lasers sources, such as laser marking or multi-point brazing.

  17. Menzerath-Altmann Law: Statistical Mechanical Interpretation as Applied to a Linguistic Organization

    NASA Astrophysics Data System (ADS)

    Eroglu, Sertac

    2014-10-01

    The distribution behavior described by the empirical Menzerath-Altmann law is frequently encountered during the self-organization of linguistic and non-linguistic natural organizations at various structural levels. This study presents a statistical mechanical derivation of the law based on the analogy between the classical particles of a statistical mechanical organization and the distinct words of a textual organization. The derived model, a transformed (generalized) form of the Menzerath-Altmann model, was termed as the statistical mechanical Menzerath-Altmann model. The derived model allows interpreting the model parameters in terms of physical concepts. We also propose that many organizations presenting the Menzerath-Altmann law behavior, whether linguistic or not, can be methodically examined by the transformed distribution model through the properly defined structure-dependent parameter and the energy associated states.

  18. Synthesis, linear optical, non-linear optical, thermal and mechanical characterizations of dye-doped semi-organic NLO crystals

    NASA Astrophysics Data System (ADS)

    Sesha Bamini, N.; Vidyalakshmy, Y.; Choedak, Tenzin; Kejalakshmy, N.; Muthukrishnan, P.; Ancy, C. J.

    2015-06-01

    Organic laser dyes Coumarin 485, Coumarin 540 and Rhodamine 590 Chloride were used to dope potassium acid phthalate crystals (KAP). Dye-doped KAP crystals with different dye concentrations such as 0.01 mM, 0.03 mM, 0.05 mM, 0.07 mM and 0.09 mM (in the KAP growth solution) were grown. The linear optical, non-linear optical, mechanical and thermal characterizations of dye-doped KAP crystals were studied and compared to understand the effect of dye and dye concentration on the KAP crystal. Absorption and emission studies of KAP and dye-doped KAP single crystals indicated the inclusion of the dye into the KAP crystal lattice. The effect of dye and its concentration on the SHG efficiency of the KAP crystal was studied using the Kurtz and Perry powder technique. It was observed that the absorption maximum wavelength and concentration of the dye used for doping the KAP single crystal decided the SHG efficiency of the dye-doped KAP single crystals. The mechanical hardness of the dye-doped and undoped (pure) KAP single crystals were studied using the Vickner’s microhardness test. It was observed that doping the KAP crystals with the laser dyes changed them from softer material to harder material. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with laser dyes.

  19. 20 CFR 641.620 - How may an organization apply for pilot, demonstration, and evaluation project funding?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false How may an organization apply for pilot, demonstration, and evaluation project funding? 641.620 Section 641.620 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR PROVISIONS GOVERNING THE SENIOR COMMUNITY SERVICE...

  20. 20 CFR 641.620 - How may an organization apply for pilot, demonstration, and evaluation project funding?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false How may an organization apply for pilot, demonstration, and evaluation project funding? 641.620 Section 641.620 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR PROVISIONS GOVERNING THE SENIOR COMMUNITY SERVICE...

  1. 25 CFR 900.43 - What are the general financial management system standards that apply to a tribal organization...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false What are the general financial management system... ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems Standards for Financial Management Systems § 900.43 What are the general financial management system standards that apply to a...

  2. 25 CFR 900.43 - What are the general financial management system standards that apply to a tribal organization...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false What are the general financial management system... ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems Standards for Financial Management Systems § 900.43 What are the general financial management system standards that apply to a...

  3. 25 CFR 900.43 - What are the general financial management system standards that apply to a tribal organization...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false What are the general financial management system... ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems Standards for Financial Management Systems § 900.43 What are the general financial management system standards that apply to a...

  4. 25 CFR 900.43 - What are the general financial management system standards that apply to a tribal organization...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false What are the general financial management system... ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems Standards for Financial Management Systems § 900.43 What are the general financial management system standards that apply to a...

  5. 25 CFR 900.43 - What are the general financial management system standards that apply to a tribal organization...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false What are the general financial management system... ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems Standards for Financial Management Systems § 900.43 What are the general financial management system standards that apply to a...

  6. Effect of the modulating of organic content on optical properties of single-crystal perovskite

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Yan, Jun; Wang, Ji; Chen, Yunlin

    2016-12-01

    Most of the systematic studies on affecting photoluminescence (PL) properties in single-crystal perovskite (MAPbX3: MA = CH3NH3, X = Br, I) have focused on changing the compositions of inorganic content. Here, a serious of MAPbX3 perovskite single crystals with different molar ratio of organic to inorganic were successfully prepared by inverse temperature crystallization (ITC) method. The morphology and the PL properties of the single crystals with different ratios of organic to inorganic content were investigated. We demonstrated that the PL intensity of MAPbX3 was increased with increasing the organic content of the perovskite single crystals. It was found that morphology and lattice constants of the perovskite crystals were varied with changing of the organic content. The mechanism of the effect of organic content on optical properties of single-crystal perovskite was discussed.

  7. Electro-optical techniques for the investigation of photoplethysmographic signals in human abdominal organs

    NASA Astrophysics Data System (ADS)

    Kyriacou, P. A.; Crerar-Gilber, A.; Langford, R. M.; Jones, D. P.

    2006-07-01

    There is a need for reliable continuous monitoring of abdominal organ oxygen saturation (SpO2). Splanchnic ischaemia may ultimately lead to cellular hypoxia and necrosis and may well contribute to the development of multiple organ failures and increased mortality. A new reflectance electro-optical photoplethysmographic (PPG) probe and signal processing system were developed. PPG signals from abdominal organs (bowel, liver, and kidney) and the finger were obtained from 12 anaesthetised patients. The amplitudes of the abdominal organ PPGs were, on average, approximately the same as those obtained simultaneously from the finger. These observations suggest that pulse oximetry may be a valid monitoring technique for abdominal organs such as the bowel liver and kidney.

  8. Improvement in the efficiency of organic solar cells using a low-temperature evaporable optical spacer

    NASA Astrophysics Data System (ADS)

    Song, Hyung-Jun; Kim, Jun Young; Kwon, Yongwon; Ko, Youngjun; Lee, Donggu; Syn, Ho Jung; Song, Jiyun; Kwak, Jeonghun; Lee, Changhee

    2014-08-01

    We demonstrate the enhancement in performance of organic solar cells (OSCs) by employing a low-temperature evaporable optical spacer, consisting of potassium borohydride (KBH4) and bathophenanthroline (Bphen) (0.2:1, volume ratio). Since the KBH4-doped Bphen shows improved electron transporting properties and high transparency in the visible range, it can be used as an efficient optical spacer layer that can maximize the internal electrical field distribution in the active layer. As a result, the power conversion efficiency of the OSCs having the KBH4-doped Bphen with an optimized thickness was improved by 15% in comparison with the device with the non-KBH4-doped Bphen.

  9. Eye/Sensor Protection against Laser Irradiation Organic Nonlinear Optical Materials

    DTIC Science & Technology

    1989-06-12

    degenerate four wave mixing," J. Chem Phys 84 (1986) 7049-7050. [17] Williams, D . (ed.), Nonlinear Optical Properties of Organic and Polymeric Materials, ACS...of liquid crystals," Ctics Letters 9 (1984) 285-287. [1591 Fekete, D ., AuYeung, J., Yariv, A. "Phase-conjugate reflection by degenerate four- wave ...1988) 765-768. [166] Sari, S.O., Rogovin, D ., "Degenerate four- wave mixing from anisotropic artificial Kerr media," Optics Letters 9 (1984) 414-416

  10. The preparation of the nonlinear optical quantum dots in organic polymer composite

    NASA Astrophysics Data System (ADS)

    Huang, Guochang; Yu, Dabin; Zhang, Jinhua; Zhao, Minghui; Zhao, Dapeng; Pan, Maosen

    2016-11-01

    Quantum dots (QDs) is some material which particle size is between 1 to 10 nanometers. Because of the unique nonlinear optical properties, QDs has been widely applied in optical, electrical, magnetic, biological fields etc. Though the size of the nanoscale is bringing the QDs a series of characteristic advantages, it has also brought some problems for further application, such as QDs are easily degenerative according to their small size. However, The preparation of quantum dots with special polymer composite film can avoid this phenomenon, This means that the composite is usually with inert matrix can be realized for further application.

  11. Laboratory investigations of mixed organic/inorganic particles: Ice nucleation and optical hygroscopic growth

    NASA Astrophysics Data System (ADS)

    Beaver, Melinda R.

    The interactions of ambient aerosol particles with the atmosphere influence global climate and local visibility. Many of these atmospheric interactions are determined by the chemical composition of the aerosol particles. Ice nucleation in the upper troposphere is influenced and modified by the presence of anthropogenic aerosol particles. Also, interactions between particles and solar radiation are influenced by hygroscopic growth upon humidification. This thesis contains laboratory investigations into the role organic compounds play in ice nucleation and optical hygroscopic growth. Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10) and ketones (C 3 and C9) on ice nucleation in sulfuric acid aerosols. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. The physical properties of the organic compounds (primarily the solubility and melting point) were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous) and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures) nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Light extinction by atmospheric particles is strongly dependent on the size, chemical composition, and water content of the aerosol. Since light extinction by particles directly impacts climate and visibility, measurements of

  12. Optical coherence tomography applied to the evaluation of wear of composite resin for posterior teeth

    NASA Astrophysics Data System (ADS)

    Mota, Cláudia C. B. O.; Guerra, Bruna A.; Machado, Brena S. A.; Cabral, Adolfo J.; Gomes, Anderson S. L.

    2015-06-01

    Resin composites are widely used as restorative materials due to their excellent aesthetical and mechanical properties. Posterior teeth are constantly submitted to occlusal stress and upon restoration require more resistant resins. The aim of this study was to analyze in vitro the wear suffered over time by restorations in resin composite in posterior teeth, by Optical Coherence Tomography (OCT). 30 molars had occlusal cavities prepared and were randomly divided into three groups (n=10) and restored with resin composite: G1: Filtek P90 (3M/ESPE), G2: Tetric N-Ceram (Ivoclar Vivadent); G3: Filtek P60 (3M/ESPE). Specimens were subjected to initial analysis by OCT (OCP930SR, Thorlabs, axial resolution 6.2 μm) and stereoscopic microscope. Specimens were submitted to thermocycling (500 cycles, 5-55 °C) and subjected to simulated wear through a machine chewing movements (Wear Machine WM001), projecting four years of use. After mechanical cycles, the specimens were submitted to a second evaluation by the OCT and stereoscopic microscopy. As a result, it was observed that 90% of the restorations of both groups had fractures and/or points of stress concentration, considered niches for early dissemination of new fracture lines. It was also found that G1 and G2 had more points of stress concentration, whereas G3 had a higher incidence of fracture lines already propagated. It was concluded that the G3 showed more brittle behavior at the masticatory wear when compared to G1 and G2.

  13. Blob identification algorithms applied to laser speckle to characterize optical turbulence

    NASA Astrophysics Data System (ADS)

    Cauble, Galen D.; Wayne, David T.

    2015-09-01

    Laser beam speckle resulting from atmospheric turbulence contains information about the propagation channel. The number and size of the speckle cells can be used to infer the spatial coherence and thus the Cn2 along a path. The challenge with this technique is the rapidly evolving speckle pattern and non-uniformity of the speckle cells. In this paper we investigate modern blob counting techniques used in biology, microscopy, and medical imaging. These methods are then applied to turbulent speckle images to estimate the number and size of the speckle cells. Speckle theory is reviewed for different beam types and different regimes of turbulence. Algorithms are generated to calculate path Cn2 from speckle information and path geometry. The algorithms are tested on speckle images from experimental data collected over a turbulent 1km path and compared to Cn2 measurements collected in parallel.

  14. Shape-Engineering of Self-Assembled Organic Single Microcrystal as Optical Microresonator for laser Applications

    NASA Astrophysics Data System (ADS)

    Wang, Xuedong; Liao, Qing; Lu, Xiaomei; Li, Hui; Xu, Zhenzhen; Fu, Hongbing

    2014-11-01

    Single micro/nanocrystals based on π-conjugated organic molecules have caused tremendous interests in the optoelectronic applications in laser, optical waveguide, nonlinear optics, and field effect transistors. However, the controlled synthesis of these organic micro/nanocrystals with regular shapes is very difficult to achieve, because the weak interaction (van der Waals' force, ca. 5 kJ/mol) between organic molecules could not dominate the kinetic process of crystal growth. Herein, we develop an elaborate strategy, selective adhesion to organic crystal plane by the hydrogen-bonding interaction (ca. 40 kJ/mol), for modulating the kinetic process of the formation of microcrystal, which leads to the self-assembly of one organic molecule 3-[4-(dimethylamino)phenyl]-1-(2-hy-droxyphenyl)prop-2-en-1-on (HDMAC) into one-dimensional (1D) microwires and 2D microdisks respectively. Furthermore, these as-prepared microcrystals demonstrate shape-dependent microresonator properties that 1D microwires act as Fabry-Pérot (FP) mode lasing resonator and 2D microdisks provide the whispering-gallery-mode (WGM) resonator for lasing oscillator. More significantly, through the investigation of the size-effect on the laser performance, single-mode lasing at red wavelength was successfully achieved in the self-assembled 2D organic microdisk at room temperature. These easily fabricated organic single-crystalline microcrystals with controlled shapes are the natural laser sources, which offer considerable promise for the multi-functionalities of coherent light devices integrated on the optics microchip.

  15. Shape-Engineering of Self-Assembled Organic Single Microcrystal as Optical Microresonator for laser Applications

    PubMed Central

    Wang, Xuedong; Liao, Qing; Lu, Xiaomei; Li, Hui; Xu, Zhenzhen; Fu, Hongbing

    2014-01-01

    Single micro/nanocrystals based on π-conjugated organic molecules have caused tremendous interests in the optoelectronic applications in laser, optical waveguide, nonlinear optics, and field effect transistors. However, the controlled synthesis of these organic micro/nanocrystals with regular shapes is very difficult to achieve, because the weak interaction (van der Waals' force, ca. 5 kJ/mol) between organic molecules could not dominate the kinetic process of crystal growth. Herein, we develop an elaborate strategy, selective adhesion to organic crystal plane by the hydrogen-bonding interaction (ca. 40 kJ/mol), for modulating the kinetic process of the formation of microcrystal, which leads to the self-assembly of one organic molecule 3-[4-(dimethylamino)phenyl]-1-(2-hy-droxyphenyl)prop-2-en-1-on (HDMAC) into one-dimensional (1D) microwires and 2D microdisks respectively. Furthermore, these as-prepared microcrystals demonstrate shape-dependent microresonator properties that 1D microwires act as Fabry-Pérot (FP) mode lasing resonator and 2D microdisks provide the whispering-gallery-mode (WGM) resonator for lasing oscillator. More significantly, through the investigation of the size-effect on the laser performance, single-mode lasing at red wavelength was successfully achieved in the self-assembled 2D organic microdisk at room temperature. These easily fabricated organic single-crystalline microcrystals with controlled shapes are the natural laser sources, which offer considerable promise for the multi-functionalities of coherent light devices integrated on the optics microchip. PMID:25388213

  16. Hybrid organic/inorganic copolymers with strongly hydrogen-bond acidic properties for acoustic wave and optical sensors

    SciTech Connect

    Grate, J.W.; Kaganove, S.N.; Patrash, S.J.

    1997-05-01

    Hybrid organic/inorganic polymers have been prepared incorporating fluoroalkyl-substituted bisphenol groups linked using oligosiloxane spacers. These hydrogen-bond acidic materials have glass-to-rubber transition temperatures below room temperature and are excellent sorbents for basic vapors. The physical properties such as viscosity and refractive index can be tuned by varying the length of the oligosiloxane spacers and the molecular weight. In addition, the materials are easily cross-linked to yield solid elastomers. The potential use of these materials for chemical sensing has been demonstrated by applying them to surface acoustic wave devices as thin films and detecting the hydrogen-bond basic vapor dimethyl methylphosphonate with high sensitivity. It has also been demonstrated that one of these materials with suitable viscosity and refractive index can be used to clad silica optical fibers; the cladding was applied to freshly drawn fiber using a fiber drawing tower. These fibers have potential as evanescent wave optical fiber sensors. 38 refs., 2 figs.

  17. Detailed optical modelling and light-management of thin-film organic solar cells with consideration of small-area effects.

    PubMed

    Lipovšek, Benjamin; Čampa, Andrej; Guo, Fei; Brabec, Christoph J; Forberich, Karen; Krč, Janez; Topič, Marko

    2017-02-20

    We present detailed numerical and experimental investigation of thin-film organic solar cells with a micro-textured light management foil applied on top of the front glass substrate. We first demonstrate that measurements of small-area laboratory solar cells are susceptible to a significant amount of optical losses that could lead to false interpretation of the measurement results. Using the combined optical model CROWM calibrated with realistic optical properties of organic films and other layers, we identify the origins of these losses and quantify the extent of their influence. Further on, we identify the most important light management mechanisms of the micro-textured foil, among which the prevention of light escaping at the front side of the cell is revealed as the dominant one. Detailed three-dimensional simulations show that the light-management foil applied on top of a large-area organic solar cell can reduce the total reflection losses by nearly 60% and improve the short-circuit current density by almost 20%. Finally, by assuming realistic open-circuit voltage and especially the realistic fill factor that deteriorates as the absorber layer thickness is increased, we determine the optimal absorber layer thickness that would result in the highest power conversion efficiency of the investigated organic solar cells.

  18. Feasibility of a feedback control of atomic self-organization in an optical cavity

    SciTech Connect

    Ivanov, D. A. Ivanova, T. Yu.

    2015-08-15

    Many interesting nonlinear effects are based on the strong interaction of motional degrees of freedom of atoms with an optical cavity field. Among them is the spatial self-organization of atoms in a pattern where the atoms group in either odd or even sites of the cavity-induced optical potential. An experimental observation of this effect can be simplified by using, along with the original cavity-induced feedback, an additional electronic feedback based on the detection of light leaking the cavity and the control of the optical potential for the atoms. Following our previous study, we show that this approach is more efficient from the laser power perspective than the original scheme without the electronic feedback.

  19. Optical modeling of organic solar cells based on CuPc and C60.

    PubMed

    Monestier, Florent; Simon, Jean-Jacques; Torchio, Philippe; Escoubas, Ludovic; Ratier, Bernard; Hojeij, Wassim; Lucas, Bruno; Moliton, André; Cathelinaud, Michel; Defranoux, Christophe; Flory, François

    2008-05-01

    We have investigated the influence of the poly(3,4-ethylenedioxythiophene)-blend-poly(styrene-sulfonate) (PEDOT:PSS) layer on the short-circuit current density (J(sc)) of single planar heterojunction organic solar cells based on a copper phthalocyanine (CuPc)-buckminsterfullerene (C(60)) active layer. Complete optical and electrical modeling of the cell has been performed taking into account optical interferences and exciton diffusion. Comparison of experimental and simulated external quantum efficiency has allowed us to estimate the exciton diffusion length to be 37 nm for the CuPc and 19 nm for the C(60). The dependence of short-circuit current densities versus the thickness of the PEDOT:PSS layer is analyzed and compared with experimental data. It is found that the variation in short-circuit current densities could be explained by optical interferences.

  20. Optical and morphological characteristics of organic thin films for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Zhong, Zhiyou; Sun, Fenglou

    2007-12-01

    Organic semiconductor thin films of tri-(8-hydroxyquinoline)-aluminum (Alq), 9,10-di-(2-naphthyl)-anthracene (ADN), and N,N'bis(naphthalen-1-yl)-N,N'bis(phenyl)-benzidine (NPB) for optoelectronic devices were deposited onto glass substrates by vacuum sublimation technique. The surface morphology and roughness of the thin film were characterized by means of atomic force microscopy (AFM). Experimental results indicate that all thin films present similar granular topography but different surface roughness. In addition, the optical transmittance spectra of thin films were measured by a double beam spectrophotometer and their corresponding optical properties were investigated. The complex refractive index and the optical band gap of thin films were obtained, respectively. Meanwhile, the dispersion behavior of the refractive index was studied in terms of Wemple-DiDomenico single oscillator model, and the oscillator parameters were achieved.

  1. Growth and characterization of an organic nonlinear optical material: L-Histidine malonate

    NASA Astrophysics Data System (ADS)

    Ramya, K.; Saraswathi, N. T.; Raja, C. Ramachandra

    2016-10-01

    L-Histidine malonate is one of the potential organic material for nonlinear optical applications. Single crystals of L-Histidine malonate were grown by the liquid diffusion method. The lattice parameter values were evaluated from single crystal X-ray diffraction technique. The Fourier Transform Infra Red and Raman spectral studies were employed to identify the different modes of vibrations of molecular groups in the crystal. Optical characterization and the percentage of optical transmission were recorded using UV-vis-NIR spectroscopy. The molecular structure was established by proton and carbon Nuclear magnetic resonance spectral studies. The thermal behavior of the material has been studied by Thermo gravimetric and Differential thermal plots. The second harmonic generation conversion efficiency was found out from the powder technique of Kurtz and Perry.

  2. Studying the reversal mode of the magnetization vector versus applied field angle using generalized magneto-optical ellipsometry

    SciTech Connect

    Pufall, M. R.; Berger, A.

    1999-10-26

    The authors used the technique of vector Generalized Magneto-optical Ellipsometry to study the behavior of the magnetization vector of a 50 Co thin film as a function of external field magnitude and direction. With this method, which determines the both the direction and magnitude of the magnetization, averaged over the 1 mm incident laser beam, they were able to determine the relative contributions of magnetization rotation and domain formation to the reversal of M. The Co sample had a uniaxial in-plane anisotropy. The authors found that when the angle between the applied field and the easy axis was greater than {approximately} 40 degrees, the reversal occurred primarily by rotation of the magnetization, accompanied by a small reduction of the magnitude of M. In this angular region, the critical field-the field at which there is a large jump in the angle of M -- as a function of applied field angle followed a coherent rotation model. However, at applied field angles less than 40 degrees to the easy axis, they found a larger reduction in {vert_bar}M{vert_bar} occurring before and during the jump in the magnetization angle. The jump also occurred at fields much lower than those predicted by the coherent rotation model, indicating a reversal mode initiated by domain formation.

  3. Alchemy in the underworld - recent progress and future potential of organic geochemistry applied to speleothems.

    NASA Astrophysics Data System (ADS)

    Blyth, Alison

    2016-04-01

    Speleothems are well used archives for chemical records of terrestrial environmental change, and the integration of records from a range of isotopic, inorganic, and organic geochemical techniques offers significant power in reconstructing both changes in past climates and identifying the resultant response in the overlying terrestrial ecosystems. The use of organic geochemistry in this field offers the opportunity to recover new records of vegetation change (via biomarkers and compound specific isotopes), temperature change (via analysis of glycerol dialkyl glycerol tetraethers, a compound group derived from microbes and varying in structure in response to temperature and pH), and changes in soil microbial behaviour (via combined carbon isotope analysis). However, to date the use of organic geochemical techniques has been relatively limited, due to issues relating to sample size, concerns about contamination, and unanswered questions about the origins of the preserved organic matter and rates of transport. Here I will briefly review recent progress in the field, and present a framework for the future research needed to establish organic geochemical analysis in speleothems as a robust palaeo-proxy approach.

  4. Electrochemical noise methods applied to the study of organic coatings and pretreatments

    SciTech Connect

    Bierwagen, G.P.; Talhnan, D.E.; Touzain, S.; Smith, A.; Twite, R.; Balbyshev, V.; Pae, Y.

    1998-12-31

    The use of electrochemical noise methods (ENM) to examine organic coatings was first performed in 1986 by Skerry and Eden. The technique uses the spontaneous voltage and current noise that occurs between two identical coated electrodes in electrolyte immersion to determine resistance properties of the coating as well as low frequency noise impedance data for the system. It is a non-perturbing measurement, and one that allows judgment and ranking of coating systems performance. This paper will summarize work in the lab over the past five years on the use of ENM for examining the properties of organic coatings and pretreatment over metals. They have studied marine coatings, pipeline coatings, coil coatings, electrodeposited organic coatings (e-coats), and aircraft coatings by this method and found it to be useful, especially when used in conjunction with impedance and other electrochemical techniques.

  5. Zeolite-fiber integrated optical chemical sensors for detection of dissolved organics in water.

    PubMed

    Zhang, Jian; Dong, Junhang; Luo, Ming; Xiao, Hai; Murad, Sohail; Normann, Randy A

    2005-09-13

    MFI zeolite coated optical fiber sensors have been developed for in situ detection of dissolved organics in water. The sensors operate by monitoring the optical reflectivity changes caused by the selective adsorption of organic molecules, i.e., 2-propanol or pentanoic acid in this study, from aqueous solutions in the zeolitic pores. Reversible and monotonic sensor signals were observed in response to the variation of 2-propanol concentration in water with fast response. However, the sensor exhibited a much slower response to pentanoic acid than to 2-propanol. It was also found that substitution of Si by Al in the MFI framework increased the adsorption of pentanoic acid that resulted in enhanced sensor responses.

  6. Self-Organization of Light in Optical Media with Competing Nonlinearities

    NASA Astrophysics Data System (ADS)

    Maucher, F.; Pohl, T.; Skupin, S.; Krolikowski, W.

    2016-04-01

    We study the propagation of light beams through optical media with competing nonlocal nonlinearities. We demonstrate that the nonlocality of competing focusing and defocusing nonlinearities gives rise to self-organization and stationary states with stable hexagonal intensity patterns, akin to transverse crystals of light filaments. Signatures of this long-range ordering are shown to be observable in the propagation of light in optical waveguides and even in free space. We consider a specific form of the nonlinear response that arises in atomic vapor upon proper light coupling. Yet, the general phenomenon of self-organization is a generic consequence of competing nonlocal nonlinearities, and may, hence, also be observed in other settings.

  7. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  8. Optically tunable spin-exchange energy at donor:acceptor interfaces in organic solar cells

    SciTech Connect

    Li, Mingxing; Wang, Hongfeng; He, Lei; Zang, Huidong; Xu, Hengxing; Hu, Bin

    2014-07-14

    Spin-exchange energy is a critical parameter in controlling spin-dependent optic, electronic, and magnetic properties in organic materials. This article reports optically tunable spin-exchange energy by studying the line-shape characteristics in magnetic field effect of photocurrent developed from intermolecular charge-transfer states based on donor:acceptor (P3HT:PCBM) system. Specifically, we divide magnetic field effect of photocurrent into hyperfine (at low field < 10 mT) and spin-exchange (at high field > 10 mT) regimes. We observe that increasing photoexcitation intensity can lead to a significant line-shape narrowing in magnetic field effect of photocurrent occurring at the spin-exchange regime. We analyze that the line-shape characteristics is essentially determined by the changing rate of magnetic field-dependent singlet/triplet ratio when a magnetic field perturbs the singlet-triplet transition through spin mixing. Based on our analysis, the line-shape narrowing results indicate that the spin-exchange energy at D:A interfaces can be optically changed by changing photoexcitation intensity through the interactions between intermolecular charge-transfer states. Therefore, our experimental results demonstrate an optical approach to change the spin-exchange energy through the interactions between intermolecular charge-transfer states at donor:acceptor interface in organic materials.

  9. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors.

    PubMed

    Nashy, El-Shahat H A; Al-Ashkar, Emad; Moez, A Abdel

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows.

  10. Growth and characterization of a new nonlinear optical organic crystal: 2,4,6-Trimethylacetanilide

    NASA Astrophysics Data System (ADS)

    Upadhyaya, V.; Prabhu, Sharada G.

    2015-09-01

    A new nonlinear optical organic material, 2,4,6-trimethylacetanilide (246TMAA), also known as N-[2,4,6- trimethylphenyl]acetamide, has been synthesized and grown as a single crystal by the slow evaporation technique by organic solvents. The grown crystals have been characterized by morphology study. The crystals are prismatic. Surface examination shows granular dendritic pattern in optical micrograph. The Scanning Electron Micrograph shows the layered growth of the crystal. The Differential Scanning Calorimeter plot shows no phase change until melting point (219°C). The density of the crystals is 1.1g/cc and the crystals are soft. The crystals are transparent in the visible region and in the ultra-violet region till 280 nm. 246TMAA crystallizes with 2 molecules in a monoclinic unit cell in the noncentrosymmetric point group m, space group Pn. Refractive indices of this optically biaxial crystal along the three crystallophysical axes have been measured at 633 nm. The optical second harmonic generation efficiency of the crystal at 1064 nm is about half that of the urea crystal, measured by powder method using Nd:YAG laser. The results show that the 246TMAA crystal can efficiently be used for up-conversion of infrared radiation into visible green light. The powder X-ray diffraction spectrum of the crystal has been obtained.

  11. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale.

    PubMed

    Luo, Guoping; Ren, Xingang; Zhang, Su; Wu, Hongbin; Choy, Wallace C H; He, Zhicai; Cao, Yong

    2016-03-23

    Organic photovoltaic (OPV) devices, which can directly convert absorbed sunlight to electricity, are stacked thin films of tens to hundreds of nanometers. They have emerged as a promising candidate for affordable, clean, and renewable energy. In the past few years, a rapid increase has been seen in the power conversion efficiency of OPV devices toward 10% and above, through comprehensive optimizations via novel photoactive donor and acceptor materials, control of thin-film morphology on the nanoscale, device structure developments, and interfacial and optical engineering. The intrinsic problems of short exciton diffusion length and low carrier mobility in organic semiconductors creates a challenge for OPV designs for achieving optically thick and electrically thin device structures to achieve sufficient light absorption and efficient electron/hole extraction. Recent advances in the field of OPV devices are reviewed, with a focus on the progress in device architecture and optical engineering approaches that lead to improved electrical and optical characteristics in OPV devices. Successful strategies are highlighted for light wave distribution, modulation, and absorption promotion inside the active layer of OPV devices by incorporating periodic nanopatterns/nanostructures or incorporating metallic nanomaterials and nanostructures.

  12. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Nashy, El-Shahat H. A.; Al-Ashkar, Emad; Abdel Moez, A.

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows.

  13. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    SciTech Connect

    Kim, Chang-Hwan

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  14. New concept to break the intrinsic properties of organic semiconductors for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Choy, Wallace C. H.

    2015-09-01

    As the intrinsic electrostatic limit, space charge limit (SCL) for photocurrent is a universal phenomenon which is fundamental important for organic semiconductors. We will demonstrate SCL breaking by a new plasmonic-electrical concept. As a proof-ofconcept, organic solar cells (OSCs) comprising metallic planar and grating electrodes are studied. Interestingly, although strong plasmonic resonances induce abnormally dense photocarriers around a grating anode, the grating incorporated inverted OSC is exempt from space charge accumulation (limit) and degradation of electrical properties. The plasmonic-electrical concept will open up a new way to manipulate both optical and electrical properties of semiconductor devices simultaneously.

  15. Emergence of self-organized long-period fiber gratings in supercontinuum-generating optical fibers

    PubMed Central

    Tu, Haohua; Liang, Xing; Marks, Daniel L.; Boppart, Stephen A.

    2010-01-01

    A localized long-period fiber grating emerges in a silica optical fiber transmitting femtosecond pulse-induced supercontinuum. Simultaneously, a specific higher-order fiber cladding mode associated with the grating gains amplification at the expense of the fiber core mode. The grating has a period dependent on the dielectric structure of the fiber and is therefore classified as a self-organized structure. PMID:19252587

  16. Vibrational, electronic absorption, thermal and mechanical analyses of organic nonlinear optical material guanidinium phthalate

    NASA Astrophysics Data System (ADS)

    Devi, T. Uma; Prabha, A. Josephine; Meenakshi, R.; Kalpana, G.; Dilip, C. Surendra

    2017-02-01

    The FTIR and UV spectroscopic analysis have been carried out on guanidinium phthalate (GUP) crystal, an organic nonlinear optical material. The spectra are interpreted with the aid of normal coordinate analysis following structure optimizations and force field calculations based on density functional theory (DFT). The thermogravimetric (TG) and differential thermal analysis (DTA) ensures the thermal stability of the compound. Vickers microhardness values reveals the mechanical strength of the crystal.

  17. Characterization of Optical and Associated Properties of Marine Colored Dissolved Organic Material (CDOM)

    DTIC Science & Technology

    2000-09-30

    Characterization of Optical and Associated Properties of Marine Colored Dissolved Organic Material (CDOM) Principal Investigator: Dr. Rod G. Zika Co...of the FFFF on the ship. A nitrogen purification system, that eliminates our dependence on and the cost of liquid nitrogen dewers as a N2 source, has...Catherine D., Erik R. Stabenau, Eliete Zanardi-Lamardo, Cynthia A. Moore, and Rod G. Zika (1999) “Photochemical Effects on the Structural Properties

  18. Organic electroluminescent devices and method for improving energy efficiency and optical stability thereof

    DOEpatents

    Heller, Christian Maria

    2004-04-27

    An organic electroluminescent device ("OELD") has a controllable brightness, an improved energy efficiency, and stable optical output at low brightness. The OELD is activated with a series of voltage pulses, each of which has a maximum voltage value that corresponds to the maximum power efficiency when the OELD is activated. The frequency of the pulses, or the duty cycle, or both are chosen to provide the desired average brightness.

  19. Polarimeter with linear response for measuring optical activity in organic compounds

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; Montoya, Marcial; Garcia-Torales, G.; Gonzalez Alvarez, Alejandro

    2005-08-01

    A polarimeter designed for measuring small rotation angles on the polarization plane of light is described. The experimental device employs one fixed polarizer and a rotating analyzer. The system generates a periodical intensity signal, which is then Fourier analyzed. The coefficients of Fourier Transform contain information about rotation angles produced by organic compounds that exhibited optical activity. The experimental device can be used to determine the sugar concentration in agave juice.

  20. Dynamic contrast-enhanced optical imaging of in vivo organ function

    NASA Astrophysics Data System (ADS)

    Amoozegar, Cyrus B.; Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

    2012-09-01

    Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ's response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition.

  1. Tunable organization of cellulose nanocrystals for controlled thermal and optical response

    NASA Astrophysics Data System (ADS)

    Diaz A., Jairo A.

    The biorenewable nature of cellulose nanocrystals (CNCs) has opened up new opportunities for cost-effective, sustainable materials design. By taking advantage of their distinctive structural properties and self-assembly, promising applications have started to nurture the fields of flexible electronics, biomaterials, and nanocomposites. CNCs exhibit two fundamental characteristics: rod-like morphology (5-20 nm wide, 50-500 nm long), and lyotropic behavior (i.e., liquid crystalline mesophases formed in solvents), which offer unique opportunities for structural control and fine tuning of thermal and optical properties based on a proper understanding of their individual behavior and interactions at different length scales. In the present work, we attempt to provide an integral description of the influence of single crystals in the thermal and optical response exhibited by nanostructured films. Our approach involved the connection of experimental evidence with predictions of molecular dynamics (MD) simulations. In order to assess the effect of CNC orientation in the bulk response, we produced cellulose nanostructured films under two different mechanisms, namely, self-organization and shear orientation. Self-organized nanostructured films exhibited the typical iridescent optical reflection generated by chiral nematic organization. Shear oriented films disrupted the cholesteric organization, generating highly aligned structures with high optical transparency. The resultant CNC organization present in all nanostructured films was estimated by a second order statistical orientational distribution based on two- dimensional XRD signals. A new method to determine the coefficient of thermal expansion (CTE) in a contact-free fashion was developed to properly characterize the thermal expansion of thin soft films by excluding other thermally activated phenomena. The method can be readily extended to other soft materials to accurately measure thermal strains in a non

  2. 7 CFR 322.14 - Documentation; applying for a permit to import a restricted organism.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS..., subspecies or strain, and author (if known). (5) Type of organism. Select or write “Bees and/or bee germ...) of approval. Is your facility approved for the species of bees or bee germ plasm for which you...

  3. 7 CFR 322.14 - Documentation; applying for a permit to import a restricted organism.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS..., subspecies or strain, and author (if known). (5) Type of organism. Select or write “Bees and/or bee germ...) of approval. Is your facility approved for the species of bees or bee germ plasm for which you...

  4. 7 CFR 322.14 - Documentation; applying for a permit to import a restricted organism.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS..., subspecies or strain, and author (if known). (5) Type of organism. Select or write “Bees and/or bee germ...) of approval. Is your facility approved for the species of bees or bee germ plasm for which you...

  5. Contending with Poverty: Applied Research in a Community-Based Poverty Intervention Organization.

    ERIC Educational Resources Information Center

    McGettigan, Timothy

    This paper describes preliminary results from a study at the Crisis Control Ministry, a poverty relief organization in Winston-Salem (North Carolina). The intent of the study was to explore the nature of and influences on contemporary urban poverty by having the investigator serve as a volunteer interviewer at the Crisis Control Ministry. Another…

  6. Attacking Transnational Organized Criminal Networks: Applying Principles of Irregular Warfare to an Emerging Salient Threat

    DTIC Science & Technology

    2014-12-04

    7 Considering the complex social interaction from which the nexus of illicit trafficking, corruption, and organized crime emerges, the study...Authorization Act NDCS National Drug Control Strategy NSS National Security Strategy NSS-CTOC National Security Strategy to Combat Transnational...enforcement concern to national security threat. Transcending the narrow ends, ways and means of illicit drug trafficking, Transnational Criminal

  7. Rainfall-induced fecal indicator organisms transport from animal waste applied fields: model sensitivity analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microbial quality of surface waters warrants attention because of associated food- and waterborne-disease outbreaks, and fecal indicator organisms (FIOs) are commonly used to evaluate levels of microbial pollution. Models that predict the fate and transport of FIOs are required for designing and...

  8. Controlling of the optical properties of the solutions of the PTCDI-C8 organic semiconductor

    NASA Astrophysics Data System (ADS)

    Erdoğan, Erman; Gündüz, Bayram

    2016-09-01

    N,N'-Dioctyl-3,4,9,10 perylenedicarboximide (PTCDI-C8) organic semiconductor have vast applications in solar cells, thermoelectric generators, thin film photovoltaics and many other optoelectronic devices. These applications of the materials are based on their spectral and optical properties. The solutions of the PTCDI-C8 for different molarities were prepared and the spectral and optical mesaurements were analyzed. Effects of the molarities on optical properties were investigated. Vibronic structure has been observed based on the absorption bands of PTCDI-C8 semiconductor with seven peaks at 2.292, 2.451, 2.616, 3.212, 3.851, 4.477 and 4.733 eV. The important spectral parameteres such as molar/mass extinction coefficients, absorption coefficient of the PTCDI-C8 molecule were calculated. Optical properties such as angle of incidence/refraction, optical band gap, real and imaginary parts of dielectric constant, loss factor and electrical susceptibility of the the PTCDI-C8 were obtained. Finally, we discussed these parameters for optoelectronic applications and compared with related parameters in literature.

  9. Improved method for determination of optical constants of organic thin films from reflection and transmission measurements.

    PubMed

    Djurisić, A B; Fritz, T; Leo, K; Li, E H

    2000-03-01

    A new technique for determining the optical properties of organic thin films is presented. A detailed evaluation of the accuracy of the determined optical constants has been performed, and the best combination of measured values yielding the smallest errors in the index of refraction for realistic experimental uncertainties has been found. The proposed method utilizes the fact that optical constants are smooth continuous functions, which reduces the possibility of encountering multiple solutions. The method consists of two steps. In the first step the optical constants at all wavelengths and the film thickness are determined. In the second step the thickness and the imaginary part of the index of refraction are kept fixed while we reevaluate the real part of the index of refraction by using a different objective function with improved sensitivity to the refractive index. After verifying that the proposed method is capable of an accurate estimation of optical constants, we determine the index of refraction data of vanadyl-phthalocyanine in the visible spectral range.

  10. A Comprehensive Dust Model Applied to the Resolved Beta Pictoris Debris Disk from Optical to Radio Wavelengths

    NASA Astrophysics Data System (ADS)

    Ballering, Nicholas P.; Su, Kate Y. L.; Rieke, George H.; Gáspár, András

    2016-06-01

    We investigate whether varying the dust composition (described by the optical constants) can solve a persistent problem in debris disk modeling—the inability to fit the thermal emission without overpredicting the scattered light. We model five images of the β Pictoris disk: two in scattered light from the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph at 0.58 μm and HST/Wide Field Camera 3 (WFC 3) at 1.16 μm, and three in thermal emission from Spitzer/Multiband Imaging Photometer for Spitzer (MIPS) at 24 μm, Herschel/PACS at 70 μm, and Atacama Large Millimeter/submillimeter Array at 870 μm. The WFC3 and MIPS data are published here for the first time. We focus our modeling on the outer part of this disk, consisting of a parent body ring and a halo of small grains. First, we confirm that a model using astronomical silicates cannot simultaneously fit the thermal and scattered light data. Next, we use a simple generic function for the optical constants to show that varying the dust composition can improve the fit substantially. Finally, we model the dust as a mixture of the most plausible debris constituents: astronomical silicates, water ice, organic refractory material, and vacuum. We achieve a good fit to all data sets with grains composed predominantly of silicates and organics, while ice and vacuum are, at most, present in small amounts. This composition is similar to one derived from previous work on the HR 4796A disk. Our model also fits the thermal spectral energy distribution, scattered light colors, and high-resolution mid-IR data from T-ReCS for this disk. Additionally, we show that sub-blowout grains are a necessary component of the halo.

  11. Applying Community Organizing Principles to Assess Health Needs in New Haven, Connecticut.

    PubMed

    Santilli, Alycia; Carroll-Scott, Amy; Ickovics, Jeannette R

    2016-05-01

    The Affordable Care Act added requirements for nonprofit hospitals to conduct community health needs assessments. Guidelines are minimal; however, they require input and representation from the broader community. This call echoes 2 decades of literature on the importance of including community members in all aspects of research design, a tenet of community organizing. We describe a community-engaged research approach to a community health needs assessment in New Haven, Connecticut. We demonstrate that a robust community organizing approach provided unique research benefits: access to residents for data collection, reliable data, leverage for community-driven interventions, and modest improvements in behavioral risk. We make recommendations for future community-engaged efforts and workforce development, which are important for responding to increasing calls for community health needs assessments.

  12. Performance comparison of two efficient genomic selection methods (gsbay & MixP) applied in aquacultural organisms

    NASA Astrophysics Data System (ADS)

    Su, Hailin; Li, Hengde; Wang, Shi; Wang, Yangfan; Bao, Zhenmin

    2017-02-01

    Genomic selection is more and more popular in animal and plant breeding industries all around the world, as it can be applied early in life without impacting selection candidates. The objective of this study was to bring the advantages of genomic selection to scallop breeding. Two different genomic selection tools MixP and gsbay were applied on genomic evaluation of simulated data and Zhikong scallop ( Chlamys farreri) field data. The data were compared with genomic best linear unbiased prediction (GBLUP) method which has been applied widely. Our results showed that both MixP and gsbay could accurately estimate single-nucleotide polymorphism (SNP) marker effects, and thereby could be applied for the analysis of genomic estimated breeding values (GEBV). In simulated data from different scenarios, the accuracy of GEBV acquired was ranged from 0.20 to 0.78 by MixP; it was ranged from 0.21 to 0.67 by gsbay; and it was ranged from 0.21 to 0.61 by GBLUP. Estimations made by MixP and gsbay were expected to be more reliable than those estimated by GBLUP. Predictions made by gsbay were more robust, while with MixP the computation is much faster, especially in dealing with large-scale data. These results suggested that both algorithms implemented by MixP and gsbay are feasible to carry out genomic selection in scallop breeding, and more genotype data will be necessary to produce genomic estimated breeding values with a higher accuracy for the industry.

  13. Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.

    PubMed

    Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C

    2016-03-01

    This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications.

  14. Characterization of low-pressure microwave and radio frequency discharges in oxygen applying optical emission spectroscopy and multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Styrnoll, Tim; Mitschker, Felix; Bienholz, Stefan; Nikita, Bibinov; Awakowicz, Peter

    2013-11-01

    Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to ne = (1.25 ± 0.26) × 1017 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8)×1015 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K.

  15. Dynamic contrast-enhanced optical imaging of in vivo organ function

    PubMed Central

    Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

    2012-01-01

    Abstract. Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ’s response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition. PMID:23085904

  16. Strong Magneto-Optical Response of Nonmagnetic Organic Materials Coupled to Plasmonic Nanostructures.

    PubMed

    Melnikau, Dzmitry; Govyadinov, Alexander A; Sánchez-Iglesias, Ana; Grzelczak, Marek; Liz-Marzán, Luis M; Rakovich, Yury P

    2017-03-08

    Plasmonic nanoparticles (PNPs) can significantly modify the optical properties of nearby organic molecules and thus present an attractive opportunity for sensing applications. However, the utilization of PNPs in conventional absorption, fluorescence, or Raman spectroscopy techniques is often ineffective due to strong absorption background and light scattering, particularly in the case of turbid solutions, cell suspensions, and biological tissues. Here we show that nonmagnetic organic molecules may exhibit magneto-optical response due to binding to a PNP. Specifically, we detect strong magnetic circular dichroism signal from supramolecular J-aggregates, a representative organic dye, upon binding to silver-coated gold nanorods. We explain this effect by strong coupling between the J-aggregate exciton and the nanoparticle plasmon, leading to the formation of a hybrid state in which the exciton effectively acquires magnetic properties from the plasmon. Our findings are fully corroborated by theoretical modeling and constitute a novel magnetic method for chemo- and biosensing, which (upon adequate PNP functionalization) is intrinsically insensitive to the organic background and thus offers a significant advantage over conventional spectroscopy techniques.

  17. Detection of Organic Compounds in Water by an Optical Absorbance Method

    PubMed Central

    Kim, Chihoon; Eom, Joo Beom; Jung, Soyoun; Ji, Taeksoo

    2016-01-01

    This paper proposes an optical method which allows determination of the organic compound concentration in water by measurement of the UV (ultraviolet) absorption at a wavelength of 250 nm~300 nm. The UV absorbance was analyzed by means of a multiple linear regression model for estimation of the total organic carbon contents in water, which showed a close correlation with the UV absorbance, demonstrating a high adjusted coefficient of determination, 0.997. The comparison of the TOC (total organic carbon) concentrations for real samples (tab water, sea, and river) calculated from the UV absorbance spectra, and those measured by a conventional TOC analyzer indicates that the higher the TOC value the better the agreement. This UV absorbance method can be easily configured for real-time monitoring water pollution, and built into a compact system applicable to industry areas. PMID:26742043

  18. Azobenzene Containing Low-Molecular Weight Organic Glasses for Optical Recording

    NASA Astrophysics Data System (ADS)

    Aleksejeva, J.; Teteris, J.; Tokmakovs, A.

    In this work photoinduced processes and holographic surface relief formation in azobenzene containing low- molecular weight organic glasses were studied. The molecular glasses due to trans-cis isomerisation and photo- orientation of molecules possess high sensitivity to the light irradiation and therefore they are promising media for holographic recording. Electric field of linearly polarized light causes an alignment of molecule dipoles perpendicularly to the electric field vector and this process is accompanied by an appearance of photoinduced optical anisotropy in organic glasses. The photoinduced birefringence and dichroism induced by 532 nm light was studied. Holographic recording in organic molecular glasses was performed with 532 nm solid-state diode-pumped laser Verdi-6. Very rapid holographic grating recording and surface relief formation at small recording beam intensities was observed. The dependence of recorded grating diffraction efficiency and surface relief depth on recording beams polarization state and intensities was studied. The surface relief was studied with AFM.

  19. Vertical Single-Crystalline Organic Nanowires on Graphene: Solution-Phase Epitaxy and Optical Microcavities.

    PubMed

    Zheng, Jian-Yao; Xu, Hongjun; Wang, Jing Jing; Winters, Sinéad; Motta, Carlo; Karademir, Ertuğrul; Zhu, Weigang; Varrla, Eswaraiah; Duesberg, Georg S; Sanvito, Stefano; Hu, Wenping; Donegan, John F

    2016-08-10

    Vertically aligned nanowires (NWs) of single crystal semiconductors have attracted a great deal of interest in the past few years. They have strong potential to be used in device structures with high density and with intriguing optoelectronic properties. However, fabricating such nanowire structures using organic semiconducting materials remains technically challenging. Here we report a simple procedure for the synthesis of crystalline 9,10-bis(phenylethynyl) anthracene (BPEA) NWs on a graphene surface utilizing a solution-phase van der Waals (vdW) epitaxial strategy. The wires are found to grow preferentially in a vertical direction on the surface of graphene. Structural characterization and first-principles ab initio simulations were performed to investigate the epitaxial growth and the molecular orientation of the BPEA molecules on graphene was studied, revealing the role of interactions at the graphene-BPEA interface in determining the molecular orientation. These free-standing NWs showed not only efficient optical waveguiding with low loss along the NW but also confinement of light between the two end facets of the NW forming a microcavity Fabry-Pérot resonator. From an analysis of the optical dispersion within such NW microcavities, we observed strong slowing of the waveguided light with a group velocity reduced to one-tenth the speed of light. Applications of the vertical single-crystalline organic NWs grown on graphene will benefit from a combination of the unique electronic properties and flexibility of graphene and the tunable optical and electronic properties of organic NWs. Therefore, these vertical organic NW arrays on graphene offer the potential for realizing future on-chip light sources.

  20. How to control optical activity in organic-silver hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Hidalgo, Francisco; Noguez, Cecilia

    2016-07-01

    The mechanisms that originate and control optical activity in organic-metal hybrid nanoparticles (NPs) are identified using a time-perturbed density functional theory. Electronic circular dichroism (CD) is studied in terms of the intrinsic chirality of the ligands, the number of ligands and the induced chirality by the arrangement of the ligands on the NP. Left-handed cysteine and achiral methylthio ligands adsorbed on an icosahedral silver NP are investigated. The analysis of CD allows the identification of the spectral regions when the induced chirality by the ligand array dominates over the intrinsic chirality of the ligands, determining conditions for CD control and enlargement. These results would be significant in the discussion of experimental CD spectra of organic-metal hybrid NPs, which might allow the development of new strategies to improve the sensitivity of chiroptical spectroscopies for the identification of bio and organic molecules.The mechanisms that originate and control optical activity in organic-metal hybrid nanoparticles (NPs) are identified using a time-perturbed density functional theory. Electronic circular dichroism (CD) is studied in terms of the intrinsic chirality of the ligands, the number of ligands and the induced chirality by the arrangement of the ligands on the NP. Left-handed cysteine and achiral methylthio ligands adsorbed on an icosahedral silver NP are investigated. The analysis of CD allows the identification of the spectral regions when the induced chirality by the ligand array dominates over the intrinsic chirality of the ligands, determining conditions for CD control and enlargement. These results would be significant in the discussion of experimental CD spectra of organic-metal hybrid NPs, which might allow the development of new strategies to improve the sensitivity of chiroptical spectroscopies for the identification of bio and organic molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6

  1. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  2. Optics of an individual organic molecular mesowire waveguide: directional light emission and anomalous refractive index

    NASA Astrophysics Data System (ADS)

    Tripathi, Ravi P. N.; Dasgupta, Arindam; Chikkaraddy, Rohit; Pratim Patra, Partha; Vasista, Adarsh B.; Pavan Kumar, G. V.

    2016-06-01

    We report on experimental investigations performed on an isolated organic mesowire waveguide resting on a glass substrate. The waveguide was made of diaminoanthraquinone (DAAQ) molecular aggregates. First, we show directional emission of light from distal ends of the DAAQ waveguide. For a given mesowire geometry, operating in passive or photoluminescence regimes, we quantified the emission angles by combining multi-wavelength Fourier-plane optical microscopy and photoluminescence micro-spectroscopy. We found light emission in the photoluminescence regime to be more directional in nature compared to the passive waveguiding regime, which was supported by three-dimensional finite-difference time-domain (FDTD) simulations. Second, we measured the anomalous behaviour of refractive index as a function of emission wavelength using the spectra of directionally emitted light. Third, by using spatial-filtered collection optics, we observed and quantified single-excitation dual-channel directional, active emission from DAAQ mesowire. The results discussed herein has implication not only in understanding some fundamental aspects of exciton-polariton mediated directional light emission, but also in applications such as organic optical antennas and photonic couplers.

  3. Organization of the channel-switching process in parallel computer systems based on a matrix optical switch

    NASA Technical Reports Server (NTRS)

    Golomidov, Y. V.; Li, S. K.; Popov, S. A.; Smolov, V. B.

    1986-01-01

    After a classification and analysis of electronic and optoelectronic switching devices, the design principles and structure of a matrix optical switch is described. The switching and pair-exclusion operations in this type of switch are examined, and a method for the optical switching of communication channels is elaborated. Finally, attention is given to the structural organization of a parallel computer system with a matrix optical switch.

  4. Applied Optics Research Report

    DTIC Science & Technology

    1975-05-01

    of a picture of the distribution of radiopharmaceuticals within a patient. Isotopes commonly used in nuclear medicine emit gamma rays with energy...of detectors when Fresnel zone plate coded apertures are used. Introduction The imaging problem encountered in nuclear medicine is the formation...the annulus as a coded aperture in nuclear medicine .1 Other investigators have taken an interest in it since then.2«3 Walton’s reconstruction process

  5. Fluorescence spectroscopy to study dissolved organic matter interactions with agrochemicals applied in Swiss vineyards.

    PubMed

    Daouk, Silwan; Frege, Carla; Blanc, Nicolas; Mounier, Stéphane; Redon, Roland; Merdy, Patricia; Lucas, Yves; Pfeifer, Hans-Rudolf

    2015-06-01

    UV/Vis fluorescence spectroscopy was used to study the possible interactions of dissolved organic matter (DOM) with the herbicide glyphosate and copper-based fungicide used in vineyards. The study focused on the role of DOM in the transport of these micropollutants from parcels to surface waters (river, lake). Soil solution and river water samples were collected in the Lavaux vineyard area, western Switzerland. Their fluorescence excitation emission matrices (EEM) were decomposed using parallel factor (PARAFAC) analysis, and compared to their content in glyphosate and copper. PARAFAC analysis of EEM of both types of samples showed the contribution of protein-like and humic-like fluorophores. In soil water samples, complexes between fulvic-like and humic-like fluorophores of DOM, copper, and glyphosate were likely formed. In surface water, DOM-copper and glyphosate-copper interactions were observed, but not between glyphosate and DOM.

  6. Beneficial reuse and sustainability: the fate of organic compounds in land-applied waste.

    PubMed

    Overcash, Michael; Sims, Ronald C; Sims, Judith L; Nieman, J Karl C

    2005-01-01

    Land application systems, also referred to as beneficial reuse systems, are engineered systems that have defined and permitted application areas based on site and waste characteristics to determine the land area size requirement. These terrestrial systems have orders of magnitude greater microbial capability and residence time to achieve decomposition and assimilation compared with aquatic systems. In this paper we focus on current information and information needs related to terrestrial fate pathways in land treatment systems. Attention is given to conventional organic chemicals as well as new estrogenic and pharmaceutical chemicals of commerce. Specific terrestrial fate pathways addressed include: decomposition, bound residue formation, leaching, runoff, and crop uptake. Molecular decomposition and formation of bound residues provide the basis for the design and regulation of land treatment systems. These mechanisms allow for assimilation of wastes and nondegradation of the environment and accomplish the goal of sustainable land use. Bound residues that are biologically produced are relatively immobile, degrade at rates similar to natural soil materials, and should present a significantly reduced risk to the environment as opposed to parent contaminants. With regard to leaching and runoff pathways, no comprehensive summary or mathematical model of organic chemical migration from land treatment systems has been developed. For the crop uptake pathway, a critical need exists to develop information for nonagricultural chemicals and to address full-scale performance and monitoring at more land application sites. The limited technology choices for treatment of biosolids, liquids, and other wastes implies that acceptance of some risks and occurrence of some benefits will continue to characterize land application practices that contribute directly to the goal of beneficial reuse and sustainability.

  7. Optical, electrical, and magnetic field studies of organic materials for light emitting diodes and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Basel, Tek Prasad

    We studied optical, electrical, and magnetic field responses of films and devices based on organic semiconductors that are used for organic light emitting diodes (OLEDs) and photovoltaic (OPV) solar cell applications. Our studies show that the hyperfine interaction (HFI)-mediated spin mixing is the key process underlying various magnetic field effects (MFE) and spin transport in aluminum tris(8-hydroxyquinoline)[Alq3]-based OLEDs and organic spin-valve (OSV). Conductivity-detected magnetic resonance in OLEDs and magneto-resistance (MR) in OSVs show substantial isotope dependence. In contrast, isotope-insensitive behavior in the magneto-conductance (MC) of same devices is explained by the collision of spin ½ carriers with triplet polaron pairs. We used steady state optical spectroscopy for studying the energy transfer dynamics in films and OLEDs based on host-guest blends of the fluorescent polymer and phosphorescent molecule. We have also studied the magnetic-field controlled color manipulation in these devices, which provide a strong proof for the `polaron-pair' mechanism underlying the MFE in organic devices. The critical issue that hampers organic spintronics device applications is significant magneto-electroluminescence (MEL) at room temperature (RT). Whereas inorganic spin valves (ISVs) show RT magneto-resistance, MR>80%, however, the devices do not exhibit electroluminescence (EL). In contrast, OLEDs show substantive EL emission, and are particularly attractive because of their flexibility, low cost, and potential for multicolor display. We report a conceptual novel hybrid organic/inorganic spintronics device (h-OLED), where we employ both ISV with large MR at RT, and OLED that has efficient EL emission. We investigated the charge transfer process in an OPV solar cell through optical, electrical, and magnetic field measurements of thin films and devices based on a low bandgap polymer, PTB7 (fluorinated poly-thienothiophene-benzodithiophene). We found that

  8. Multi-parameter optical image interpretations based on self-organizing mapping

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.; Klose, A. K.; Netz, U.; Scheel, A.; Beuthan, J.; Hielscher, Andreas H.

    2008-02-01

    We found that using more than one parameter derived from optical tomographic images can lead to better image classification results compared to cases when only one parameter is used.. In particular we present a multi-parameter classification approach, called self-organizing mapping (SOM), for detecting synovitis in arthritic finger joints based on sagittal laser optical tomography (SLOT). This imaging modality can be used to determine various physical parameters such as minimal absorption and scattering coefficients in an image of the proximal interphalengeal joint. Results were compared to different gold standards: magnet resonance imaging, ultra-sonography and clinical evaluation. When compared to classifications based on single-parameters, e.g., absorption minimum only, the study reveals that multi-parameter classifications lead to higher classification sensitivities and specificities and statistical significances with p-values <5 per cent. Finally, the data suggest that image analyses are more reliable and avoid ambiguous interpretations when using more than one parameter.

  9. Improving optical properties of silicon nitride films to be applied in the middle infrared optics by a combined high-power impulse/unbalanced magnetron sputtering deposition technique.

    PubMed

    Liao, Bo-Huei; Hsiao, Chien-Nan

    2014-02-01

    Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400-700 nm, and all the extinction coefficients are smaller than 1×10(-4). The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.

  10. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect

    Cai, Min

    2011-01-01

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to

  11. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    NASA Astrophysics Data System (ADS)

    Cai, Min

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs' performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to

  12. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators.

    PubMed

    Yan, Hai; Xu, Xiaochuan; Chung, Chi-Jui; Subbaraman, Harish; Pan, Zeyu; Chakravarty, Swapnajit; Chen, Ray T

    2016-12-01

    In an on-chip silicon-organic hybrid electro-optic (EO) modulator, the mode overlap with EO materials, in-device effective r33, and propagation loss are among the most critical factors that determine the performance of the modulator. Various waveguide structures have been proposed to optimize these factors, yet there is a lack of comprehensive consideration on all of them. In this Letter, a one-dimensional (1D) photonic crystal (PC) slot waveguide structure is proposed that takes all these factors into consideration. The proposed structure takes advantage of the strong mode confinement within a low-index region in a conventional slot waveguide and the slow-light enhancement from the 1D PC structure. Its simple geometry makes it robust to resist fabrication imperfections and helps reduce the propagation loss. Using it as a phase shifter in a Mach-Zehnder interferometer structure, an integrated silicon-organic hybrid EO modulator was experimentally demonstrated. The observed effective EO coefficient is as high as 490 pm/V. The measured half-wave voltage and length product is less than 1  V·cm and can be further improved. A potential bandwidth of 61 GHz can be achieved and further improved by tailoring the doping profile. The proposed structure offers a competitive novel phase-shifter design, which is simple, highly efficient, and with low optical loss, for on-chip silicon-organic hybrid EO modulators.

  13. Nonlinear optical properties of Pb-La metal-organic chelidamic acid frameworks

    NASA Astrophysics Data System (ADS)

    Tan, Min; Chen, Ruiqi; Yang, Sanjun; Liu, Qiming

    2017-04-01

    Chelidamic acid, acting as ligands, reacted with metal cation of lead and lanthanum. Both of them were dissolved in water and resulted in novel MOFs complexes by using solvothermal synthesis method. The complexes were characterized by the X-ray diffraction, UV-vis spectrophotometer and Z-scan measurements to investigate their morphology and optical properties. The Z-scan measurements indicated that the obtained lead metal-organic chelidamic acid frameworks showed 6.09 × 10-12 esu of χ(3). The special structure and properties, especially the empty f-electron orbital of the rare earth elements, were used to enhance optical nonlinearity. Using one-step solvothermal synthesis method, we added lanthanum into the lead-chelidamic acid metal organic complexes. By changing the spatial configuration of the ligand in the self-assembly process, novel structural complex metals of the lead-lanthanum metal-organic chelidamic acid frameworks have been successfully synthetized, and the third-order nonlinear susceptibility of χ(3)was enhanced to be 1.13 × 10-11 esu.

  14. Sewage sludge applied to agricultural soil: Ecotoxicological effects on representative soil organisms.

    PubMed

    Carbonell, G; Pro, J; Gómez, N; Babín, M M; Fernández, C; Alonso, E; Tarazona, J V

    2009-05-01

    Application of sewage sludge to agricultural lands is a current practice in EU. European legislation permits its use when concentrations of metals in soil do not increase above the maximum permissible limits. In order to assess the fate and the effects on representative soil organisms of sewage sludge amendments on agricultural lands, a soil microcosm (multi-species soil system-MS3) experiment was performed. The MS3 columns were filled with spiked soil at three different doses: 30, 60 and 120tha(-1) fresh wt. Seed plants (Triticum aestivum, Vicia sativa and Brassica rapa) and earthworms (Eisenia fetida) were introduced into the systems. After a 21-d exposure period, a statistically significant increase for Cd, Cu, Zn and Hg concentrations was found for the soils treated with the highest application rate. Dose-related increase was observed for nickel concentrations in leachates. Plants and earthworm metal body burden offer much more information than metal concentrations and help to understand the potential for metal accumulation. Bioaccumulation factor (BAF(plant-soil)) presented a different behavior among species and large differences for BAF(earthworm-soil), from control or sewage-amended soil, for Cd and Hg were found. B. rapa seed germination was reduced. Statistically significant decrease in fresh biomass was observed for T. aestivum and V. sativa at the highest application rate, whereas B. rapa biomass decreased at any application rate. Enzymatic activities (dehydrogenase and phosphatase) as well as respiration rate on soil microorganisms were enlarged.

  15. Changing environmental conditions and applying organic fertilizers in Origanum vulgare L.

    PubMed Central

    Murillo-Amador, Bernardo; Morales-Prado, Luis E.; Troyo-Diéguez, Enrique; Córdoba-Matson, Miguel V.; Hernández-Montiel, Luis G.; Rueda-Puente, Edgar O.; Nieto-Garibay, Alejandra

    2015-01-01

    Any improvement in agricultural systems that results in higher production should also reduce negative environmental impacts and enhance sustainability. The aim of this research was to investigate the effect of two different production systems, one open-field and the other shade-enclosure with four bocashi doses, in order to find the best environmental option in terms of yield, physiological and morphometric characteristics in one oregano (Origanum vulgare L.) cultivar. In this study a completely randomized block design was used with four replications and evaluated for photosynthetic and transpiration rate, stomatal conductance, chlorophyll, leaf area and temperature, aerial and roots fresh and dry biomass, fresh and dry yield. The results showed that oregano adapted best to the shade-enclosure with increase yield of fresh and dry leaf weight of 165% and 118%, respectively, when compared to open-field. Also, higher doses of bocashi improved yield in both environments but more so in shade-enclosure. Soil moisture retention was higher in shade-enclosure which was reflected in physiological variables for soil matric potential, transpiration, stomatal conductivity, photosynthesis being significantly higher in shade-enclosure compared to open-field, thus improving yield. It seems that oregano plants can be grown and perform better under shade-enclosure than open-field and bocashi is a suitable organic fertilizer. PMID:26257756

  16. Changing environmental conditions and applying organic fertilizers in Origanum vulgare L.

    PubMed

    Murillo-Amador, Bernardo; Morales-Prado, Luis E; Troyo-Diéguez, Enrique; Córdoba-Matson, Miguel V; Hernández-Montiel, Luis G; Rueda-Puente, Edgar O; Nieto-Garibay, Alejandra

    2015-01-01

    Any improvement in agricultural systems that results in higher production should also reduce negative environmental impacts and enhance sustainability. The aim of this research was to investigate the effect of two different production systems, one open-field and the other shade-enclosure with four bocashi doses, in order to find the best environmental option in terms of yield, physiological and morphometric characteristics in one oregano (Origanum vulgare L.) cultivar. In this study a completely randomized block design was used with four replications and evaluated for photosynthetic and transpiration rate, stomatal conductance, chlorophyll, leaf area and temperature, aerial and roots fresh and dry biomass, fresh and dry yield. The results showed that oregano adapted best to the shade-enclosure with increase yield of fresh and dry leaf weight of 165% and 118%, respectively, when compared to open-field. Also, higher doses of bocashi improved yield in both environments but more so in shade-enclosure. Soil moisture retention was higher in shade-enclosure which was reflected in physiological variables for soil matric potential, transpiration, stomatal conductivity, photosynthesis being significantly higher in shade-enclosure compared to open-field, thus improving yield. It seems that oregano plants can be grown and perform better under shade-enclosure than open-field and bocashi is a suitable organic fertilizer.

  17. Heterogeneous Catalysis Applied To Advanced Oxidation Processes (AOPs) For Degradation of Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Cotto-Maldonado, Maria del Carmen

    Water is an essencial resource for humankind and biomes. Actually, the pollution of the water resources, specially the contamination of the fresh water is great concern in our society. Develop of new and more efficient method for degradation of pollutant in water increase the research in this area, especially in the AOPs. During this investigation a comparison between different AOPs methods (photocatalysis, sono-Fenton and photo-Fenton) to determine the most efficient process of them was done. To reach our goal, different catalysts, namely TiO2 nanowires, TiO2 CNTs, ZnO nanoparticles, Fe2O3 nanowires and magnetite nanoparticles were synthesized and characterized by different techniques including FE-SEM, TGA, specific surface area (BET), XRD, Raman spectroscopy, XPS and magnetic susceptibility. Commercial and synthesized catalysts were used in photocatalysis, sono-Fenton and photo-Fenton processes for the degradation of model organic compounds (Methylene Blue, Rhodamine B, Methyl Orange, Gential Violet, Methyl Violet and p-aminobenzoic acid). According with the experimental results, no significant differences were observed between the photo-Fenton and sono-Fenton processes when the same catalysts were used. For the photocatalytic process, the more effective catalyst was TiO2NWs and for the sono-Fenton and photo-Fenton processes, the more effective catalyst was FeCl2.

  18. Transient electrically detected magnetic resonance spectroscopy applied to organic solar cells

    SciTech Connect

    Kraffert, Felix; Steyrleuthner, Robert; Meier, Christoph; Bittl, Robert; Behrends, Jan

    2015-07-27

    The influence of light-induced paramagnetic states on the photocurrent generated by polymer:fullerene solar cells is studied using spin-sensitive techniques in combination with laser-flash excitation. For this purpose, we developed a setup that allows for simultaneous detection of transient electron paramagnetic resonance as well as transient electrically detected magnetic resonance (trEDMR) signals from fully processed and encapsulated solar cells. Combining both techniques provides a direct link between photoinduced triplet excitons, charge transfer states, and free charge carriers as well as their influence on the photocurrent generated by organic photovoltaic devices. Our results obtained from solar cells based on poly(3-hexylthiophene) as electron donor and a fullerene-based electron acceptor show that the resonant signals observed in low-temperature (T = 80 K) trEDMR spectra can be attributed to positive polarons in the polymer as well as negative polarons in the fullerene phase, indicating that both centers are involved in spin-dependent processes that directly influence the photocurrent.

  19. SU-E-J-187: Management of Optic Organ Motion in Fractionated Stereotactic Radiotherapy

    SciTech Connect

    Manning, M; Maurer, J

    2015-06-15

    Purpose: Fractionated stereotactic radiotherapy (FSRT) for optic nerve tumors can potentially use planning target volume (PTV) expansions as small as 1–5 mm. However, the motion of the intraorbital segment of the optic nerve has not been studied. Methods: A subject with a right optic nerve sheath meningioma underwent CT simulation in three fixed gaze positions: right, left, and fixed forward at a marker. The gross tumor volume (GTV) and the organs-at-risk (OAR) were contoured on all three scans. An IMRT plan using 10 static non-coplanar fields to 50.4 Gy in 28 fractions was designed to treat the fixed-forward gazing GTV with a 1 mm PTV, then resulting coverage was evaluated for the GTV in the three positions. As an alternative, the composite structures were computed to generate the internal target volume (ITV), 1 mm expansion free-gazing PTV, and planning organat-risk volumes (PRVs) for free-gazing treatment. A comparable IMRT plan was created for the free-gazing PTV. Results: If the patient were treated using the fixed forward gaze plan looking straight, right, and left, the V100% for the GTV was 100.0%, 33.1%, and 0.1%, respectively. The volumes of the PTVs for fixed gaze and free-gazing plans were 0.79 and 2.21 cc, respectively, increasing the PTV by a factor of 2.6. The V100% for the fixed gaze and free-gazing plans were 0.85 cc and 2.8 cc, respectively increasing the treated volume by a factor of 3.3. Conclusion: Fixed gaze treatment appears to provide greater organ sparing than free-gazing. However unanticipated intrafraction right or left gaze can produce a geometric miss. Further study of optic nerve motion appears to be warranted in areas such as intrafraction optical confirmation of fixed gaze and optimized gaze directions to minimize lens and other normal organ dose in cranial radiotherapy.

  20. Effects of topically applied antiandrogenic compounds on sebaceous glands of hamster ears and flank organs

    SciTech Connect

    Schroeder, H.G.Z.; Ziegler, M.; Nickisch, K.; Kaufmann, J.; el Etreby, M.F.

    1989-05-01

    Growth of sebaceous glands in the ears and flank organs of castrated male hamsters is dependent on androgen substitution. Taking this for granted, a study was done to compare the effects of topical antiandrogenic treatment in vivo on the morphology and size of sebaceous glands with the concomitant changes in in vitro metabolism of /sup 3/H-testosterone. The role of dihydrotestosterone in sebaceous gland stimulation was thereby investigated. Topical treatment was carried out with the androgen antagonist 17 alpha-propylmesterolone (PM), with 4-androsten-3-one-17 beta-carboxylic acid (17 beta-C), and 17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one (4-MA), both described as specific 4-steroid-5 alpha-reductase inhibitors, and with progesterone (PRO), which is an androgen receptor antagonist with 5 alpha-reductase inhibiting properties. Regrowth of sebaceous glands after castration and substitution with testosterone propionate or dihydrotestosterone could be inhibited by topical PM and PRO. This occurred irrespective of the influence on testosterone metabolism and irrespective of the mode of substitution. 4-MA, on the other hand, while exhibiting strong 5 alpha-reductase inhibition in vitro, was ineffective in reducing sebaceous gland sizes in vivo. The compound 17 beta-C was ineffective in every respect. In no case were systemic antiandrogenic effects on prostates and seminal vesicles observed. Our results support the view that the DHT formation rate has no regulatory function for growth of sebaceous glands in hamsters and that PM and PRO counteract the androgenic stimulus by their competitive antagonistic binding to the androgen receptor, but not by their influence on testosterone metabolism.

  1. Paleobiology of a Precambrian Shale: Geology, organic geochemistry, and paleontology are applied to the problem of detection of ancient life.

    PubMed

    Barghoorn, E S; Meinschein, W G; Schopf, J W

    1965-04-23

    Investigations have been made of crude oil, pristane, phytane, steranetype and optically active alkanes, porphyrins, microfossils, and the stable isotopes of carbon and of sulfur found in the Nonesuch shale of Precambrian age from Northern Michigan. These sediments are approximately 1 billion years old. Geologic evidence indicates that they were deposited in a nearshore deltaic environment. Porphyrins are found in the siltstones but not in the crude oils of the Nonesuch formation-evidence that these chemical fossils are adsorbed or absorbed and immobile. This immobility makes it highly unlikely that these porphyrins could have moved from younger formations into the Nonesuch sediments, and the widely disseminated particulate organic matters and fossils in this Precambrian shale are certainly indigenous.

  2. Three-dimensional imaging of the developing mouse female reproductive organs with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Burton, Jason C.; Wang, Shang; Behringer, Richard R.; Larina, Irina V.

    2016-03-01

    Infertility is a known major health concern and is estimated to impact ~15% of couples in the U.S. The majority of failed pregnancies occur before or during implantation of the fertilized embryo into the uterus. Understanding the mechanisms regulating development by studying mouse reproductive organs could significantly contribute to an improved understanding of normal development of reproductive organs and developmental causes of infertility in humans. Towards this goal, we report a three-dimensional (3D) imaging study of the developing mouse reproductive organs (ovary, oviduct, and uterus) using optical coherence tomography (OCT). In our study, OCT was used for 3D imaging of reproductive organs without exogenous contrast agents and provides micro-scale spatial resolution. Experiments were conducted in vitro on mouse reproductive organs ranging from the embryonic day 14.5 to adult stages. Structural features of the ovary, oviduct, and uterus are presented. Additionally, a comparison with traditional histological analysis is illustrated. These results provide a basis for a wide range of infertility studies in mouse models. Through integration with traditional genetic and molecular biology approaches, this imaging method can improve understanding of ovary, oviduct, and uterus development and function, serving to further contribute to our understanding of fertility and infertility.

  3. Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles.

    PubMed

    Qu, Di; Liu, Fang; Huang, Yidong; Xie, Wanlu; Xu, Qi

    2011-11-21

    The optical absorption enhancement in thin film organic solar cells (OSCs) with plasmonic metal nanoparticles (NPs) has been studied by means of finite element method with a three-dimension model. It is found that significant plasmonic enhancement of above 100% can be obtained by introducing Ag-NPs at the interface between P3HT:PCBM active layer and PEDOT:PSS anode layer. This enhancement is even larger than that with Ag-NPs totally embedded in the P3HT:PCBM active layer of thin film OSCs. Furthermore, the enhancement mechanism of Ag-NPs at different positions of thin film OSCs is investigated.

  4. Optically readout write once read many memory with single active organic layer

    SciTech Connect

    Nguyen, Viet Cuong; Lee, Pooi See

    2016-01-18

    An optically readable write once read many memory (WORM) in Ag/Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH PPV)/ITO is demonstrated in this work. Utilising characteristics of the organic light emitting diode structure of Ag/MEH PPV/ITO and electrochemical metallization of Ag, a WORM with light emitting capability can be realised. The simple fabrication process and multifunction capability of the device can be useful for future wearable optoelectronics and photomemory applications, where fast and parallel readout can be achieved by photons.

  5. Organic Fabry-Perot micro-cavity for electro-optic sampling by amplitude modulation

    NASA Astrophysics Data System (ADS)

    Gaborit, G.; Martin, G.; Duvillaret, L.; Coutaz, J.-L.; Nguyen, C.; Hierle, R.; Zyss, J.

    2006-02-01

    We present herein a original concept of electro-optic (EO) probe for high frequency electric field measurements. This sensors is based on a thin organic layer of DR1-PMMA embedded in a high finesse Fabry-Perot cavity. The optimal orientation of DRl molecules, parallel to the face of the micro-cavity, has been obtained thanks to a lateral poling method. A r 33 of 2.5 pm/V has been reached for a 16 μm thick polymer layer. The final probe exhibits high sensitivity of 2V.cm -1.Hz -1/2.

  6. Optically readout write once read many memory with single active organic layer

    NASA Astrophysics Data System (ADS)

    Nguyen, Viet Cuong; Lee, Pooi See

    2016-01-01

    An optically readable write once read many memory (WORM) in Ag/Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH PPV)/ITO is demonstrated in this work. Utilising characteristics of the organic light emitting diode structure of Ag/MEH PPV/ITO and electrochemical metallization of Ag, a WORM with light emitting capability can be realised. The simple fabrication process and multifunction capability of the device can be useful for future wearable optoelectronics and photomemory applications, where fast and parallel readout can be achieved by photons.

  7. In situ optical measurement of charge transport dynamics in organic photovoltaics.

    PubMed

    Chow, Philip C Y; Bayliss, Sam L; Lakhwani, Girish; Greenham, Neil C; Friend, Richard H

    2015-02-11

    We present a novel experimental approach which allows extraction of both spatial and temporal information on charge dynamics in organic solar cells. Using the wavelength dependence of the photonic structure in these devices, we monitor the change in spatial overlap between the photogenerated hole distribution and the optical probe profile as a function of time. In a model system we find evidence for a buildup of the photogenerated hole population close to the hole-extracting electrode on a nanosecond time scale and show that this can limit charge transport through space-charge effects under operating conditions.

  8. Post-annealed gallium and aluminum co-doped zinc oxide films applied in organic photovoltaic devices

    PubMed Central

    2014-01-01

    Gallium and aluminum co-doped zinc oxide (GAZO) films were produced by magnetron sputtering. The GAZO films were post-annealed in either vacuum or hydrogen microwave plasma. Vacuum- and hydrogen microwave plasma-annealed GAZO films show different surface morphologies and lattice structures. The surface roughness and the spacing between adjacent (002) planes decrease; grain growth occurs for the GAZO films after vacuum annealing. The surface roughness increases and nanocrystals are grown for the GAZO films after hydrogen microwave plasma annealing. Both vacuum and hydrogen microwave plasma annealing can improve the electrical and optical properties of GAZO films. Hydrogen microwave plasma annealing improves more than vacuum annealing does for GAZO films. An electrical resistivity of 4.7 × 10−4 Ω-cm and average optical transmittance in the visible range from 400 to 800 nm of 95% can be obtained for the GAZO films after hydrogen microwave plasma annealing. Hybrid organic photovoltaic (OPV) devices were fabricated on the as-deposited, vacuum-annealed, and hydrogen microwave plasma-annealed GAZO-coated glass substrates. The active layer consisted of blended poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) in the OPV devices. The power conversion efficiency of the OPV devices is 1.22% for the hydrogen microwave plasma-annealed GAZO films, which is nearly two times higher compared with that for the as-deposited GAZO films. PMID:25352768

  9. Micro-optics for simultaneous multi-spectral imaging applied to chemical/biological and IED detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2012-06-01

    Using diffractive micro-lenses configured in an array and placed in close proximity to the focal plane array will enable a small compact simultaneous multispectral imaging camera. This approach can be applied to spectral regions from the ultraviolet (UV) to the long-wave infrared (LWIR). The number of simultaneously imaged spectral bands is determined by the number of individually configured diffractive optical micro-lenses (lenslet) in the array. Each lenslet images at a different wavelength determined by the blaze and set at the time of manufacturing based on application. In addition, modulation of the focal length of the lenslet array with piezoelectric or electro-static actuation will enable spectral band fill-in allowing hyperspectral imaging. Using the lenslet array with dual-band detectors will increase the number of simultaneous spectral images by a factor of two when utilizing multiple diffraction orders. Configurations and concept designs will be presented for detection application for biological/chemical agents, buried IED's and reconnaissance. The simultaneous detection of multiple spectral images in a single frame of data enhances the image processing capability by eliminating temporal differences between colors and enabling a handheld instrument that is insensitive to motion.

  10. Structural, optical, thermal and mechanical characterization of an organic nonlinear optical material: 4-methyl-3-nitrobenzoic acid single crystal

    NASA Astrophysics Data System (ADS)

    Bharathi, M. Divya; Ahila, G.; Mohana, J.; Chakkaravarthi, G.; Anbalagan, G.

    2016-11-01

    Organic single crystals of 4-methyl-3-nitrobenzoic acid (4M3N) have been grown by slow evaporation solution growth technique at room temperature. The single crystal X-ray diffraction study reveals that 4M3N crystallizes in monoclinic system with space group P21/n. The crystalline perfection of the crystal was analyzed by high resolution X-ray diffraction (HRXRD) measurements. The functional groups present in 4M3N have been identified from FT-IR and FT-Raman spectra. The lower cut-off wavelength of 4M3N is found to be 404 nm and the optical band gap is calculated as 2.91 eV. The refractive index shows normal behavior with wavelength. The physio chemical changes, decomposition and stability of the 4M3N compound were established by TG-DTA studies. Vickers microhardness measurement concludes that 4M3N belongs to soft material (n=2.5) category. The LDT value is found to be higher than that of KDP and some of the important organic NLO materials. The third order nonlinear refractive index and nonlinear absorption coefficient of the 4M3N have been measured by Z-scan studies. The imaginary and real parts of the third-order susceptibility values were determined as Im χ3=9.129×10-11 esu and Re χ3=1.4034×10-9 esu respectively. The dislocation density was calculated to be 3.0448×106 cm-2 which indicates the quality of the crystal.

  11. Nonlinear optical and light emission studies of special organic molecules and crystals

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya K.

    The nonlinear optical properties and light emission characteristics of some special organic molecules and crystals have been studied in detail. The second-order nonlinear optical effects were measured in the single- crystal films of the materials. The crystallographic orientations of the films were determined using x-ray diffraction measurements. The second-order susceptibility tensor elements of 4-aminobenzophenone (ABP) and 8- (4'-acetylphenyl)-1,4-dioxa-8- azaspiro[4.5]decane (APDA) films were measured using polarization selective second-harmonic generation experiments. The d-coefficients of ABP are: d 23 = 7.3 +/- 0.4 pm/V and d22 = 0.73 +/- 0.04 pm/V, while those of APDA are: d33 = 54 +/- 6 pm/V and d15 = 18 +/- 3 pm/V at 1064 nm. Phase-matched propagation directions were identified on the films. The application of these films in measuring ultra-short laser pulse-width was demonstrated. Polarized optical absorption and photo- luminescence were measured in 4'- dimethylamino-N-methyl-4-stilbazolium tosylate (DAST). The electro-optic properties of single- crystal films of DAST and styryl pyridinium cyanine dye (SPCD) were studied over a broad range of wavelengths. The measured r-coefficients are the largest reported in any material. Thin-film electro-optic modulators were demonstrated using these films which have insignificant insertion and propagation losses compared to the traditional waveguide based devices. The response was observed to be flat over the measured frequency range (2 kHz-100 MHz), which indicates the origin of the electro-optic effect to be predominantly electronic. Thus these materials have significant potential for applications in high-speed optical signal processing. Spectral broadening of femtosecond laser pulses in poly- [2,4 hexadiyne-1,6 diol-bis-(p-toluene sulfonate)] (PTS) single-crystals due to self-phase modulation was studied. The magnitudes of the nonlinear refractive index were determined over the wavelength range of 720-1064 nm

  12. Metal–organic frameworks for electronics: emerging second order nonlinear optical and dielectric materials

    PubMed Central

    Mendiratta, Shruti; Lee, Cheng-Hua; Usman, Muhammad; Lu, Kuang-Lieh

    2015-01-01

    Metal–organic frameworks (MOFs) have been intensively studied over the past decade because they represent a new category of hybrid inorganic–organic materials with extensive surface areas, ultrahigh porosity, along with the extraordinary tailorability of structure, shape and dimensions. In this highlight, we summarize the current state of MOF research and report on structure–property relationships for nonlinear optical (NLO) and dielectric applications. We focus on the design principles and structural elements needed to develop potential NLO and low dielectric (low-κ) MOFs with an emphasis on enhancing material performance. In addition, we highlight experimental evidence for the design of devices for low-dielectric applications. These results motivate us to develop better low-dielectric and NLO materials and to perform in-depth studies related to deposition techniques, patterning and the mechanical performance of these materials in the future. PMID:27877833

  13. Optical and electrical study of organic solar cells with a 2D grating anode.

    PubMed

    Sha, Wei E I; Choy, Wallace C H; Wu, Yumao; Chew, Weng Cho

    2012-01-30

    We investigate both optical and electrical properties of organic solar cells (OSCs) incorporating 2D periodic metallic back grating as an anode. Using a unified finite-difference approach, the multiphysics modeling framework for plasmonic OSCs is established to seamlessly connect the photon absorption with carrier transport and collection by solving the Maxwell's equations and semiconductor equations (Poisson, continuity, and drift-diffusion equations). Due to the excited surface plasmon resonance, the significantly nonuniform and extremely high exciton generation rate near the metallic grating are strongly confirmed by our theoretical model. Remarkably, the nonuniform exciton generation indeed does not induce more recombination loss or smaller open-circuit voltage compared to 1D multilayer standard OSC device. The increased open-circuit voltage and reduced recombination loss by the plasmonic OSC are attributed to direct hole collections at the metallic grating anode with a short transport path. The work provides an important multiphysics understanding for plasmonic organic photovoltaics.

  14. Optical modeling of sunlight by using partially coherent sources in organic solar cells.

    PubMed

    Alaibakhsh, Hamzeh; Darvish, Ghafar

    2016-03-01

    We investigate the effects of coherent and partially coherent sources in optical modeling of organic solar cells. Two different organic solar cells are investigated: one without substrate and the other with a millimeter-sized glass substrate. The coherent light absorption is calculated with rigorous coupled-wave analysis. The result of this method is convolved with a distribution function to calculate the partially coherent light absorption. We propose a new formulation to accurately model sunlight as a set of partially coherent sources. In the structure with glass substrate, the accurate sunlight modeling results in the elimination of coherent effects in the thick substrate, but the coherency in other layers is not affected. Using partially coherent sources instead of coherent sources for simulations with sunlight results in a smoother absorption spectrum, but the change in the absorption efficiency is negligible.

  15. Synthesis, growth, structural, optical, thermal and mechanical properties of an organic Urea maleic acid single crystals for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Vinothkumar, P.; Kumar, R. Mohan; Jayavel, R.; Bhaskaran, A.

    2016-07-01

    A potential organic urea maleic acid (UMA) was synthesized and single crystals were grown at room temperature by slow evaporation and seed rotation methods. The grown crystal has been subjected to single crystal XRD analysis and found to have been crystallized in a noncentrosymmetric monoclinic crystal system with Cc as space group. The High resolution X-ray diffraction analysis revealed that the specimen is free from structural grain boundaries. The transparency of the grown crystal was confirmed by optical absorption and transmittance spectra with lower cut-off wavelength of 285 nm. The microhardness test was carried out on different planes to study the load dependent hardness values. The dislocation density of the UMA crystal was estimated from the etching studies. The dielectric permittivity and dielectric loss of the grown crystal was carried out as a function of frequency for different temperatures along three crystallographic axes. Thermal properties of UMA crystals were studied by TG-DTA analysis and it is stable upto 112 °C. The laser induced surface damage threshold of the grown crystal was measured using Nd: YAG laser. The birefringence of the crystal measured in the visible region was found to vary with the wavelength. The particle size dependent SHG of the sample was measured with different input energies by Kurtz's powder method using Nd:YAG laser.

  16. Synthesis, growth, optical and anisotropic mechanical behaviour of organic nonlinear optical imidazolium 2-chloro-4-nitrobenzoate single crystals

    NASA Astrophysics Data System (ADS)

    Krishnakumar, Varadharajan; Jayaprakash, Jeyaram; Boobas, Singaram; Komathi, Muniraj

    2016-10-01

    The title compound, imidazolium 2-chloro-4-nitrobenzoate (I2C4NB), has been synthesized and optical quality single crystals were grown with a dimension of 4 × 2 × 1 mm3 using an ethanol and acetone (1:1) mixed solvent by slow evaporation solution growth technique. The powder XRD analysis confirmed the crystal structure and found that it is crystallized in the non-centrosymmetric space group P21 with the monoclinic system. The symmetries of molecular vibrations were confirmed by FT-IR spectrum. The CHN(S) analysis confirmed the stoichiometric composition of the grown crystal. It also exhibits a good transparency in the entire visible region (300-800nm) and it was thermally stable up to 131.1 °C. The microhardness measurement shows the anisotropic nature of I2C4NB and also that it belongs to a soft material category. Photoconductivity studies reveal a linear increase of the photocurrent with respect to the applied electric field. HOMO LUMO studies were carried out for the crystal. The second harmonic generation test by the Kurtz powder method shows that the crystal exhibits phase matching and a conversion efficiency which is 2 times that of KDP.

  17. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma

    SciTech Connect

    Candela-Juan, Cristian; Perez-Calatayud, Jose; Ballester, Facundo; Rivard, Mark J.

    2013-03-15

    Purpose: The aim of this study was to obtain equivalent doses in radiosensitive organs (aside from the bladder and rectum) when applying high-dose-rate (HDR) brachytherapy to a localized prostate carcinoma using {sup 60}Co or {sup 192}Ir sources. These data are compared with results in a water phantom and with expected values in an infinite water medium. A comparison with reported values from proton therapy and intensity-modulated radiation therapy (IMRT) is also provided. Methods: Monte Carlo simulations in Geant4 were performed using a voxelized phantom described in International Commission on Radiological Protection (ICRP) Publication 110, which reproduces masses and shapes from an adult reference man defined in ICRP Publication 89. Point sources of {sup 60}Co or {sup 192}Ir with photon energy spectra corresponding to those exiting their capsules were placed in the center of the prostate, and equivalent doses per clinical absorbed dose in this target organ were obtained in several radiosensitive organs. Values were corrected to account for clinical circumstances with the source located at various positions with differing dwell times throughout the prostate. This was repeated for a homogeneous water phantom. Results: For the nearest organs considered (bladder, rectum, testes, small intestine, and colon), equivalent doses given by {sup 60}Co source were smaller (8%-19%) than from {sup 192}Ir. However, as the distance increases, the more penetrating gamma rays produced by {sup 60}Co deliver higher organ equivalent doses. The overall result is that effective dose per clinical absorbed dose from a {sup 60}Co source (11.1 mSv/Gy) is lower than from a {sup 192}Ir source (13.2 mSv/Gy). On the other hand, equivalent doses were the same in the tissue and the homogeneous water phantom for those soft tissues closer to the prostate than about 30 cm. As the distance increased, the differences of photoelectric effect in water and soft tissue, and appearance of other materials

  18. In vivo X-ray elemental imaging of single cell model organisms manipulated by laser-based optical tweezers

    PubMed Central

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; De Rijcke, Maarten; Bauters, Stephen; Deruytter, David; Vandegehuchte, Michiel; Van Nieuwenhove, Ine; Janssen, Colin; Burghammer, Manfred; Vincze, Laszlo

    2015-01-01

    We report on a radically new elemental imaging approach for the analysis of biological model organisms and single cells in their natural, in vivo state. The methodology combines optical tweezers (OT) technology for non-contact, laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time. The main objective of this work is to establish a new method for in vivo elemental imaging in a two-dimensional (2D) projection mode in free-standing biological microorganisms or single cells, present in their aqueous environment. Using the model organism Scrippsiella trochoidea, a first proof of principle experiment at beamline ID13 of the European Synchrotron Radiation Facility (ESRF) demonstrates the feasibility of the OT XRF methodology, which is applied to study mixture toxicity of Cu-Ni and Cu-Zn as a result of elevated exposure. We expect that the new OT XRF methodology will significantly contribute to the new trend of investigating microorganisms at the cellular level with added in vivo capability. PMID:25762511

  19. Optical properties and aging of light-absorbing secondary organic aerosol

    DOE PAGES

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; ...

    2016-10-14

    The light-absorbing organic aerosol (OA) commonly referred to as “brown carbon” (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NOx concentrations, photolysis time, and relative humidity (RH) on the light absorptionmore » of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  20. Optical properties and aging of light-absorbing secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-01

    The light-absorbing organic aerosol (OA) commonly referred to as "brown carbon" (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NOx concentrations, photolysis time, and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  1. Radiation dose to radiosensitive organs in PET/CT myocardial perfusion examination using versatile optical fibre

    NASA Astrophysics Data System (ADS)

    Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.

    2013-05-01

    Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.

  2. Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ

    NASA Astrophysics Data System (ADS)

    Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong

    2015-03-01

    We investigated the performance of endoscopic diffuse optical spectroscopy probes with circular or linear fiber arrangements for tubular organ cancer detection. Probe performance was measured by penetration depth. A Monte Carlo model was employed to simulate light transport in the hollow cylinder that both emits and receives light from the inner boundary of the sample. The influence of fiber configurations and tissue optical properties on penetration depth was simulated. The results show that under the same condition, probes with circular fiber arrangement penetrate deeper than probes with linear fiber arrangement, and the difference between the two probes' penetration depth decreases with an increase in the 'distance between source and detector (SD)' and the radius of the probe. Other results show that the penetration depths and their differences both decrease with an increase in the absorption coefficient and the reduced scattering coefficient but remain constant with changes in the anisotropy factor. Moreover, the penetration depth was more affected by the absorption coefficient than the reduced scattering coefficient. It turns out that in NIR band, probes with linear fiber arrangements are more appropriate for diagnosing superficial cancers, whereas probes with circular fiber arrangements should be chosen for diagnosing adenocarcinoma. But in UV-VIS band, the two probe configurations exhibit nearly the same. These results are useful in guiding endoscopic diffuse optical spectroscopy-based diagnosis for esophageal, cervical, colorectal and other cancers.

  3. Organic nanoclusters for nonlinear optics: from model systems to cooperative nanoassemblies with enhanced NLO responses

    NASA Astrophysics Data System (ADS)

    Terenziani, Francesca; Parthasarathy, Venkatakrishnan; Ghosh, Sampa; Pandey, Ravindra; Das, Puspendu K.; Blanchard-Desce, Mireille

    2009-08-01

    While structure-properties relationships are quite actively and successfully investigated at the molecular level of engineering of optical nonlinear responses, supramolecular structure-property relationships are an appealing field. The realization that interchromophoric interactions between strongly polar/polarizable NLO chromophores can significantly affect the NLO response of each chromophoric unit as well as promote associations has opened new dimensions for molecular design. Several elegant routes have been implemented to hinder or counterbalance dipole-dipole interactions between dipolar NLO chromophores for the elaboration of second-order materials (for SHG or electro-optical modulation). At opposite, we have implemented a reverse strategy by confining discrete numbers of NLO push-pull chromophores in close proximity within covalent organic nanoclusters with the aim to exploit interchromophoric interactions in order to achieve enhanced NLO responses. As a proof of concept, we present here the investigation of two-series of multichromophoric covalent assemblies built from NLO push-pull chromophores showing that cooperative enhancement can be achieved both for second-order optical responses (first hyperpolarizabilities) or third-order responses (two-photon absorption cross-sections).

  4. Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method

    NASA Astrophysics Data System (ADS)

    Baek, Se-Woong; Noh, Jonghyeon; Lee, Chun-Ho; Kim, Bongsoo; Seo, Min-Kyo; Lee, Jung-Yong

    2013-04-01

    In this report, plasmonic effects in organic photovoltaic cells (OPVs) are systematically analyzed using size-controlled silver nanoparticles (AgNPs, diameter: 10 ~ 100 nm), which were incorporated into the anodic buffer layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The optical properties of AgNPs tuned by size considerably influence the performance levels of devices. The power conversion efficiency (PCE) was increased from 6.4% to 7.6% in poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71-butyric acid methyl ester (PC70BM) based-OPVs and from 7.9% to 8.6% in polythieno[3,4-b]thiophene/benzodithiophene (PTB7):PC70BM based-OPVs upon embedding the AgNPs. The external quantum efficiency (EQE) was significantly enhanced by the absorption enhancement due to the plasmonic scattering effect. Finally, we verified the origin of the size-dependent plasmonic forwarding scattering effect of the AgNPs by visualizing the scattering field with near-field optical microscopy (NSOM) and through analytic optical simulations.

  5. Influence of TiO2 nanostructures on the optical absorption of organic-inorganic perovskite

    NASA Astrophysics Data System (ADS)

    Liu, Zongyi; Ye, Mao; Ostrowski, Michel; Yi, Ya Sha

    2016-04-01

    This work aims to reveal the strong influence of TiO2 nanostructures on the light absorption property of TiO2 and perovskite mixture. Three TiO2 nanostructures, i.e., nanoparticles (S1), ultrapure nanorods (S2), and ultrasmall nanorods (S3), were studied: S1 was selected as a baseline; S2 and S3 were synthesized from S1 by using modified hydrothermal processes. Mesoporous TiO2 thin films were spin-coated from solutions containing these TiO2 nanorods and nanoparticles (S1 as baseline). Organic-inorganic hybrid perovskite CH3NH3PbI3 was then incorporated into these mesoporous TiO2 thin films. Optical absorption results showed that the perovskite mixture with ultrasmall TiO2 nanostructures (S3) has significantly higher optical absorption coefficient. Finite-difference time domain models were built based on three distinct nanostructures of TiO2 and CH3NH3PbI3 mixtures fabricated (S1 to S3) to understand their optical absorption properties. Our work is promising to fabricate TiO2 nanostructures, as a backbone structure, for a series of applications including photovoltaics and photodetection.

  6. Dielectric, optical and mechanical studies of phenolic polyene OH1 organic electrooptic crystal

    NASA Astrophysics Data System (ADS)

    Bharath, D.; Kalainathan, S.

    2014-11-01

    2-{3-[2-(4-Hydroxyphenyl) vinyl]-5, 5-dimethylcyclo-hex-2-en-1-ylidene}malononitrile (OH1) phenolic locked polyene organic material has been synthesized by the Knoevenagel condensation method. OH1 single crystals were grown in methanol by a slow evaporation method. In order to avoid the multinucleation and reduce the metastable zone width, phosphoric acid is added in different concentrations. The linear optical property of OH1 crystal has been studied using UV-vis-NIR spectroscopy in the wavelength range 190-1100 nm and optical constants are calculated theoretically. The magnitude of nonlinear refractive index (10-12 m2/W), nonlinear absorption (10-6 m/W) and third order nonlinear susceptibility (10-6 esu) has been studied using a Z-scan technique. Dielectric property of OH1 crystal has been studied in frequency range 50 Hz-5 MHz. Photoluminescence spectrum was recorded using a xenon lamp in the range of 450-700 nm. Laser optical damage threshold of OH1 crystal was obtained (0.62 GW/cm2) using a pulsed Nd-YAG laser (1064 nm) of repetition rate 10 ns.

  7. Demonstration of 40 MHz thin-film electro-optic modulator using an organic molecular salt

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya; Ahyi, Ayayi; Tan, Shida; Mishra, Alpana; Thakur, Mrinal

    2000-03-01

    Recently we reported the first demonstration of a single-pass thin-film electro-optic modulator based on a DAST single-crystal film.(M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, Appl. Phys. Lett. 74, 635-637 (1999).) In this work, we report a larger modulation depth ( ~80%) and higher speed of operation. Excellent optical quality single-crystal films were prepared by a modified shear method.(M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985); M. Thakur, Y. Shani, G. C. Chi, and K. O'Brien, Synth. Met. 28, D595 (1989).) Thin-film modulator was constructed by depositing electrodes across the polar axis. The beam from a Ti-Sapphire laser, tunable over 720-850 nm, was propagated perpendicular to the film surface. The modulated signal was detected using a fast photodetector, and displayed on a high bandwidth oscilloscope and a spectrum analyzer. The response was independent of the frequency of applied field over the measurement range (2 kHz - 40 MHz). A much higher speed (>100 GHz) of operation should be possible using these films. These modulators involve negligible losses compared to the waveguide structures, and have significant potential for a broad range of applications in high speed optical signal processing.

  8. AnSBBR applied to organic matter and sulfate removal: interaction effect between feed strategy and COD/sulfate ratio.

    PubMed

    Friedl, Gregor F; Mockaitis, Gustavo; Rodrigues, José A D; Ratusznei, Suzana M; Zaiat, Marcelo; Foresti, Eugênio

    2009-10-01

    A mechanically stirred anaerobic sequencing batch reactor containing anaerobic biomass immobilized on polyurethane foam cubes, treating low-strength synthetic wastewater (500 mg COD L(-1)), was operated under different operational conditions to assess the removal of organic matter and sulfate. These conditions were related to fill time, defined by the following feed strategies: batch mode of 10 min, fed-batch mode of 3 h and fed-batch mode of 6 h, and COD/[SO(4)(2-)] ratios of 1.34, 0.67, and 0.34 defined by organic matter concentration of 500 mg COD L(-1) and sulfate concentrations of 373, 746, and 1,493 mg SO(4)(2-) L(-1) in the influent. Thus, nine assays were performed to investigate the influence of each of these parameters, as well as the interaction effect, on the performance of the system. The reactor operated with agitation of 400 rpm, total volume of 4.0 L, and treated 2.0 L synthetic wastewater in 8-h cycles at 30 +/- 1 degrees C. During all assays, the reactor showed operational stability in relation to the monitored variables such as COD, sulfate, sulfide, sulfite, volatile acids, bicarbonate alkalinity, and solids, thus demonstrating the potential to apply this technology to the combined removal of organic matter and sulfate. In general, the results showed that the 3-h fed-batch operation with a COD/[SO(4)(2-)] ratio of 0.34 presented the best conditions for organic matter removal (89%). The best efficiency for sulfate removal (71%) was accomplished during the assay with a COD/[SO(4)(2-)] ratio of 1.34 and a fill time of 6 h. It was also observed that as fill time and sulfate concentration in the influent increased, the ratio between removed sulfate load and removed organic load also increased. However, it should be pointed out that the aim of this study was not to optimize the removal of organic matter and sulfate, but rather to analyze the behavior of the reactor during the different feed strategies and applied COD/[SO(4)(2-)] ratios, and mainly to

  9. CARBON LOSS AND OPTICAL PROPERTY CHANGES DURING LONG-TERM PHOTOCHEMICAL AND BIOLOGICAL DEGRADATION OF ESTUARINE DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Terrestrially derived dissolved organic matter (DOM) impacts the optical properties of coastal seawater and affects carbon cycling on a global scale. We studied sequential long-term photochemical and biological degradation of estuarine dissolved organic matter from the
    Satilla...

  10. Synthesis, crystal growth and characterization of nonlinear optical organic crystal: p-Toluidinium p-toluenesulphonate

    SciTech Connect

    Vijayakumar, P.; Anandha Babu, G.; Ramasamy, P.

    2012-04-15

    Graphical abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. p-TTS single crystal belongs to negative birefringence crystal. Second harmonic conversion efficiency of p-TTS has been found to be 1.3 times higher than that of KDP. Multiple shot surface laser damage threshold is determined to be 0.30 GW/cm{sup 2} at 1064 nm laser radiation. Highlights: Black-Right-Pointing-Pointer It deals with the synthesis, growth and characterization of p-TTS an organic NLO crystal. Black-Right-Pointing-Pointer Wide optical transparency window between 280 nm and 1100 nm. Black-Right-Pointing-Pointer Negative birefringence crystal and dispersion of birefringence is negligibly small. Black-Right-Pointing-Pointer Thermal study reveals that the grown crystal is stable up to 210 Degree-Sign C. Black-Right-Pointing-Pointer Multiple shot surface laser damage threshold is 0.30 GW/cm{sup 2} at 1064 nm laser radiation. -- Abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. The structural perfection of the grown p-TTS single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. Fourier transform infrared spectral studies have been performed to identify the functional groups. The optical transmittance window and the lower cutoff wavelength of the grown crystals have been identified by UV-vis-IR studies. Birefringence of p-TTS crystal has been studied using channel spectrum measurement. The laser damage threshold value was measured using Nd:YAG laser. The second harmonic conversion efficiency of p-TTS has

  11. Distinct Optical Chemistry of Dissolved Organic Matter in Urban Pond Ecosystems

    PubMed Central

    McEnroe, Nicola A.; Williams, Clayton J.; Xenopoulos, Marguerite A.; Porcal, Petr; Frost, Paul C.

    2013-01-01

    Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario, Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L-1 across the ponds with an average value of 5.3 mg C L-1. Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by 25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these relatively novel aquatic ecosystems. PMID:24348908

  12. Laminar organization of peptide-like immunoreactivity in the anuran optic tectum.

    PubMed

    Kuljis, R O; Karten, H J

    1982-12-01

    Peptide, 5-hydroxytryptamine (5-HT)-, tyrosine hydroxylase (TOH)-, and glial fibrillary acidic protein (GFAP)-like immunoreactivity was studied in the optic tectum of Rana pipiens. Peroxidase-antiperoxidase and indirect immunofluorescence single- and double-labeling methods were used to compare differential laminar distribution of each of these substances. Substance P (SP), leucine-enkephalin (LENK), cholecystokinin octapeptide (CCK8), bombesin (BOM), avian pancreatic polypeptide (APP), and possibly neurotensin display unique individual patterns of laminar distribution of processes and cell bodies throughout the tectum. A correlative analysis of the topographical distribution of SP, LENK, BOM, and APP on the basis of double-labeled sections shows a precise laminar segregation of these substances. Vasoactive intestinal peptide-, beta-endorphin-, and ranatensinlike immunoreactivity is consistently absent from our material. 5HT- and TOH-like immunoreactivity discloses a reticular array of fibers without clear evidence of laminar organization. This peptide-like laminar organization is particularly elaborate throughout the superficial neuropil of the optic tectum, the major retinorecipient zone. The pattern of lamination demonstrated in the present study differs in several important features from that previously described on the basis of several histological methods. The cells of origin of processes (axons and/or dendrites) in the superficial tectal neuropil may be either intrinsic or extrinsic to the tectum. Special reference is made to conflicting evidence regarding the possibility of a retinal contribution to peptide-like tectal lamination.

  13. Distinct optical chemistry of dissolved organic matter in urban pond ecosystems.

    PubMed

    McEnroe, Nicola A; Williams, Clayton J; Xenopoulos, Marguerite A; Porcal, Petr; Frost, Paul C

    2013-01-01

    Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario, Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L(-1) across the ponds with an average value of 5.3 mg C L(-1). Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by 25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these relatively novel aquatic ecosystems.

  14. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    PubMed Central

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites. PMID:27991554

  15. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    NASA Astrophysics Data System (ADS)

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-12-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites.

  16. Molecular organization of the desmosome as revealed by direct stochastic optical reconstruction microscopy.

    PubMed

    Stahley, Sara N; Bartle, Emily I; Atkinson, Claire E; Kowalczyk, Andrew P; Mattheyses, Alexa L

    2016-08-01

    Desmosomes are macromolecular junctions responsible for providing strong cell-cell adhesion. Because of their size and molecular complexity, the precise ultrastructural organization of desmosomes is challenging to study. Here, we used direct stochastic optical reconstruction microscopy (dSTORM) to resolve individual plaque pairs for inner and outer dense plaque proteins. Analysis methods based on desmosomal mirror symmetry were developed to measure plaque-to-plaque distances and create an integrated map. We quantified the organization of desmoglein 3, plakoglobin and desmoplakin (N-terminal, rod and C-terminal domains) in primary human keratinocytes. Longer desmosome lengths correlated with increasing plaque-to-plaque distance, suggesting that desmoplakin is arranged with its long axis at an angle within the plaque. We next examined whether plaque organization changed in different adhesive states. Plaque-to-plaque distance for the desmoplakin rod and C-terminal domains decreased in PKP-1-mediated hyperadhesive desmosomes, suggesting that protein reorganization correlates with function. Finally, in human epidermis we found a difference in plaque-to-plaque distance for the desmoplakin C-terminal domain, but not the desmoplakin rod domain or plakoglobin, between basal and suprabasal cells. Our data reveal the molecular organization of desmosomes in cultured keratinocytes and skin as defined by dSTORM.

  17. Prediction of nonlinear optical properties of organic materials. General theoretical considerations

    NASA Technical Reports Server (NTRS)

    Cardelino, B.; Moore, C.; Zutaut, S.

    1993-01-01

    The prediction of nonlinear optical properties of organic materials is geared to assist materials scientists in the selection of good candidate molecules. A brief summary of the quantum mechanical methods used for estimating hyperpolarizabilities will be presented. The advantages and limitations of each technique will be discussed. Particular attention will be given to the finite-field method for calculating first and second order hyperpolarizabilities, since this method is better suited for large molecules. Corrections for dynamic fields and bulk effects will be discussed in detail, focusing on solvent effects, conformational isomerization, core effects, dispersion, and hydrogen bonding. Several results will be compared with data obtained from third-harmonic-generation (THG) and dc-induced second harmonic generation (EFISH) measurements. These comparisons will demonstrate the qualitative ability of the method to predict the relative strengths of hyperpolarizabilities of a class of compounds. The future application of molecular mechanics, as well as other techniques, in the study of bulk properties and solid state defects will be addressed. The relationship between large values for nonlinear optical properties and large conjugation lengths is well known, and is particularly important for third-order processes. For this reason, the materials with the largest observed nonresonant third-order properties are conjugated polymers. An example of this type of polymer is polydiacetylene. One of the problems in dealing with polydiacetylene is that substituents which may enhance its nonlinear properties may ultimately prevent it from polymerizing. A model which attempts to predict the likelihood of solid-state polymerization is considered, along with the implications of the assumptions that are used. Calculations of the third-order optical properties and their relationship to first-order properties and energy gaps will be discussed. The relationship between monomeric and

  18. Ethanol alters gene expression and cell organization during optic vesicle evagination.

    PubMed

    Santos-Ledo, A; Cavodeassi, F; Carreño, H; Aijón, J; Arévalo, R

    2013-10-10

    Ethanol has been described as a teratogen in vertebrate development. During early stages of brain formation, ethanol affects the evagination of the optic vesicles, resulting in synophthalmia or cyclopia, phenotypes where the optic vesicles partially or totally fuse. The mechanisms by which ethanol affects the morphogenesis of the optic vesicles are however largely unknown. In this study we make use of in situ hybridization, electron microscopy and immunohistochemistry to show that ethanol has profound effects on cell organization and gene expression during the evagination of the optic vesicles. Exposure to ethanol during early eye development alters the expression patterns of some genes known to be important for eye morphogenesis, such as rx3/1 and six3a. Furthermore, exposure to ethanol interferes with the acquisition of neuroepithelial features by the eye field cells, which is clear at ultrastructual level. Indeed, ethanol disrupts the acquisition of fusiform cellular shapes within the eye field. In addition, tight junctions do not form and retinal progenitors do not properly polarize, as suggested by the mis-localization and down-regulation of zo1. We also show that the ethanol-induced cyclopic phenotype is significantly different to that observed in cyclopic mutants, suggesting a complex effect of ethanol on a variety of targets. Our results show that ethanol not only disrupts the expression pattern of genes involved in retinal morphogenesis, such as rx3 and rx1, but also disrupts the changes in cell polarity that normally occur during eye field splitting. Thus, ethylic teratology seems to be related not only to modifications in gene expression and cell death but also to alterations in cell morphology.

  19. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation.

    PubMed

    O'Brien, Daniel B; Massari, Aaron M

    2015-01-14

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

  20. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation

    SciTech Connect

    O’Brien, Daniel B.; Massari, Aaron M.

    2015-01-14

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N′-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

  1. Optical Properties of Moderately-Absorbing Organic and Mixed Organic/Inorganic Particles at Very High Humidities

    SciTech Connect

    Bond, Tami C; Rood, Mark J; Brem, Benjamin T; Mena-Gonzalez, Francisco C; Chen, Yanju

    2012-04-16

    Relative humidity (RH) affects the water content of an aerosol, altering its ability to scatter and absorb light, which is important for aerosol effects on climate and visibility. This project involves in situ measurement and modeling of aerosol optical properties including absorption, scattering and extinction at three visible wavelengths (467, 530, 660 nm), for organic carbon (OC) generated by pyrolysis of biomass, ammonium sulfate and sodium chloride, and their mixtures at controlled RH conditions. Novel components of this project include investigation of: (1) Changes in all three of these optical properties at scanned RH conditions; (2) Optical properties at RH values up to 95%, which are usually extrapolated instead of measured; and (3) Examination of aerosols generated by the pyrolysis of wood, which is representative of primary atmospheric organic carbon, and its mixture with inorganic aerosol. Scattering and extinction values were used to determine light absorption by difference and single scattering albedo values. Extensive instrumentation development and benchmarking with independently measured and modeled values were used to obtain and evaluate these new results. The single scattering albedo value for a dry absorbing polystyrene microsphere benchmark agreed within 0.02 (absolute value) with independently published results at 530 nm. Light absorption by a nigrosin (sample light-absorbing) benchmark increased by a factor of 1.24 +/-0.06 at all wavelengths as RH increased from 38 to 95%. Closure modeling with Mie theory was able to reproduce this increase with the linear volume average (LVA) refractive index mixing rule for this water soluble compound. Absorption by biomass OC aerosol increased by a factor of 2.1 +/- 0.7 and 2.3 +/- 1.2 between 32 and 95% RH at 467 nm and 530 nm, but there was no detectable absorption at 660 nm. Additionally, the spectral dependence of absorption by OC that was observed with filter measurements was confirmed qualitatively

  2. Measurements of thermodynamic and optical properties of selected aqueous organic and organic-inorganic mixtures of atmospheric relevance.

    PubMed

    Lienhard, Daniel M; Bones, David L; Zuend, Andreas; Krieger, Ulrich K; Reid, Jonathan P; Peter, Thomas

    2012-10-11

    Atmospheric aerosol particles can exhibit liquid solution concentrations supersaturated with respect to the dissolved organic and inorganic species and supercooled with respect to ice. In this study, thermodynamic and optical properties of sub- and supersaturated aqueous solutions of atmospheric interest are presented. The density, refractive index, water activity, ice melting temperatures, and homogeneous ice freezing temperatures of binary aqueous solutions containing L(+)-tartaric acid, tannic acid, and levoglucosan and ternary aqueous solutions containing levoglucosan and one of the salts NH(4)HSO(4), (NH(4))(2)SO(4), and NH(4)NO(3) have been measured in the supersaturated concentration range for the first time. In addition, the density and refractive index of binary aqueous citric acid and raffinose solutions and the glass transition temperatures of binary aqueous L(+)-tartaric acid and levoglucosan solutions have been measured. The data presented here are derived from experiments on single levitated microdroplets and bulk solutions and should find application in thermodynamic and atmospheric aerosol models as well as in food science applications.

  3. Low-coherence spectral interferometry with a Michelson interferometer applied to dispersion measurement of a two-mode optical fiber

    NASA Astrophysics Data System (ADS)

    Hlubina, Petr

    1999-12-01

    Intermodal dispersion in a two-mode optical fiber can be measured in the spectral domain when the spectral interference between modes at the output of the optical fiber shows up as a periodic modulation of the source spectrum that can be processed. However, this technique cannot be used to measure intermodal dispersion in the two- mode optical fiber when the period of modulation is too small to be resolved by a spectrometer. Consequently, we proposed a new measuring technique utilizing a tandem configuration of a dispersive Michelson interferometer and the two-mode optical fiber in which the spectral interference can be resolved even if a low-resolution spectrometer is used. In the tandem configuration of the Michelson interferometer and the two-mode optical fiber, the optical path difference (OPD) in the Michelson interferometer is adjusted close to the group OPD between modes of the optical fiber so that the low-frequency spectral modulation that can be processed is produced. Using the Fourier transform method in processing the measured spectral modulations and subtracting the effect of the dispersive Michelson interferometer, the feasibility of this technique has successfully been demonstrated in obtaining the intermodal dispersion in the two-model optical fiber.

  4. Toward Quantitative Whole Organ Thermoacoustics With a Clinical Array Plus One Very Low-Frequency Channel Applied to Prostate Cancer Imaging.

    PubMed

    Patch, Sarah K; Hull, David; See, William A; Hanson, George W

    2016-02-01

    Thermoacoustics has the potential to provide quantitative images of intrinsic tissue properties, most notably electrical conductivity in Siemens/meter, much as shear wave elastography provides tissue stiffness in kilopascal. Although thermoacoustic imaging with optical excitation has been commercialized for small animals, it has not yet made the transition to clinic for whole organ imaging in humans. The purpose of this work was to develop and validate specifications for a clinical ultrasound array for quantitative whole organ thermoacoustic imaging. Imaging a large organ requires exciting thermoacoustic pulses throughout the volume and broadband detection of those pulses because tomographic image reconstruction preserves frequency content. Applying the half-wavelength limit to a [Formula: see text] inclusion inside a 7.5-cm diameter organ requires measurement sensitivity to frequencies ranging from 4 MHz to 10 kHz, respectively. A dual-transducer system utilizing a P4-1 array connected to a Verasonics V1 system as well as a focused single-element transducer sensitive to lower frequencies was developed. Very high-frequency (VHF) irradiation generated thermoacoustic pulses throughout a [Formula: see text] volume. In the VHF regime, electrical conductivity drives thermoacoustic signal production. Simultaneous acquisition of thermoacoustic pulses by both transducers enabled comparison of transducer performance. Data from the clinical array generated a stack of 96 images with a separation of 0.3 mm, whereas the single-element transducer imaged only in a single plane. In-plane resolution and quantitative accuracy were quantified at isocenter. The array provided volumetric imaging capability with superior resolution whereas the single-element transducer provided superior quantitative accuracy in axial images. Combining axial images from both transducers preserved resolution of the P4-1 array and improved image contrast. Neither transducer was sensitive to frequencies

  5. Flexible Endoscopic Spray Application of Respiratory Epithelial Cells as Platform Technology to Apply Cells in Tubular Organs

    PubMed Central

    Thiebes, Anja Lena; Reddemann, Manuel Armin; Palmer, Johannes; Kneer, Reinhold; Cornelissen, Christian Gabriel

    2016-01-01

    Introduction: Inoperable airway stenoses are currently treated by placing stents. A major problem of covered stents is missing mucociliary clearance, which is caused by covering the native respiratory epithelium. By coating a stent with respiratory epithelium, this problem can be overcome. However, no methods are available for efficient endoscopic cell seeding. Methods: We designed a flexible endoscopic spraying device based on a bronchoscope and tested it with respiratory epithelial cells. With this device cells can also be applied in a thin layer of fibrin glue. We evaluated the survival rate directly after spray application with a live-dead staining and the long-term differentiation capacity with histology and electron microscopy. Furthermore, the random distribution of cells when applied in a tube was analyzed and the macroscopic and microscopic characteristics of the endoscopic spray were investigated using high-speed visualization. Results: Spray visualization revealed a polydisperse character of the spray with the majority of droplets larger than epithelial cells. Spray application does not influence the survival rate and differentiation of respiratory epithelial cells. After 4 weeks, cells built up a pseudostratified epithelial layer with cilia and goblet cells. When cells are applied in a thin layer of fibrin gel into a tube, a nearest neighbor index of 1.2 is obtained, which suggests a random distribution of the cells. Conclusions: This spraying device is a promising tool for application of various cell types onto stents or implants with high survival rates and homogeneous distribution as shown in this study for ovine respiratory epithelial cells. The system could also be used for cell therapy to locally apply cells to the diseased parts of hollow organs. For the first time, the fluid dynamics of a spray device for cells were examined to validate in vitro results. PMID:26739252

  6. AnSBBR applied to the treatment of metalworking fluid wastewater: effect of organic and shock load.

    PubMed

    Carvalhinha, Pedro P; Flôres, Anderson; Rodrigues, José A D; Ratusznei, Suzana M; Zaiat, Marcelo; Foresti, Eugenio

    2010-11-01

    An investigation was performed regarding the application of a mechanically stirred anaerobic sequencing batch biofilm reactor containing immobilized biomass on inert polyurethane foam (AnSBBR) to the treatment of soluble metalworking fluids to remove organic matter and produce methane. The effect of increasing organic matter and reactor fill time, as well as shock load, on reactor stability and efficiency have been analyzed. The 5-L AnSBBR was operated at 30 degrees C in 8-h cycles, agitation of 400 rpm, and treated 2.0 L effluent per cycle. Organic matter was increased by increasing the influent concentration (500, 1,000, 2,000, and 3,000 mg chemical oxygen demand (COD)/L). Fill times investigated were in the batch mode (fill time 10 min) and fed-batch followed by batch (fill time 4 h). In the batch mode, organic matter removal efficiencies were 87%, 86%, and 80% for influent concentrations of 500, 1,000, and 2,000 mgCOD/L (1.50, 3.12, and 6.08 gCOD/L.d), respectively. At 3,000 mgCOD/L (9.38 gCOD/L.d), operational stability could not be achieved. The reactor managed to maintain stability when a shock load twice as high the feed concentration was applied, evidencing the robustness of the reactor to potential concentration variations in the wastewater being treated. Increasing the fill time to 4 h did not improve removal efficiency, which was 72% for 2,000 mgCOD/L. Thus, gradual feeding did not improve organic matter removal. The concentration of methane formed at 6.08 gCOD/L was 5.20 mmolCH(4), which corresponded to 78% of the biogas composition. The behavior of the reactor during batch and fed-batch feeding could be explained by a kinetic model that considers organic matter consumption, production, and consumption of total volatile acids and methane production.

  7. Tunable morphology of the self-assembled organic microcrystals for the efficient laser optical resonator by molecular modulation.

    PubMed

    Wang, Xuedong; Li, Hui; Wu, Yishi; Xu, Zhenzhen; Fu, Hongbing

    2014-11-26

    Organic single-crystalline micro/nanostructures can effectively generate and carry photons due to their smooth morphologies, high photoluminescence quantum efficiency, and minimized defects density and therefore are potentially ideal building blocks for the optical circuits in the next generation of miniaturized optoelectronics. However, the tailor-made organic molecules can be generally obtained by organic synthesis, ensuring that the organic molecules aggregate in a specific form and generate micro/nanostructures with desirable morphology and therefore act as the efficient laser optical resonator remains a great challenge. Here, the molecular modulation of the morphology on the laser optical resonator properties has been investigated through the preparation of the elongated hexagonal microplates (PHMs) and the rectangular microplates (ORMs), respectively, from two model isomeric organic molecules of 1,4-bis(4-methylstyryl)benzene (p-MSB) and 1,4-bis(2-methylstyryl)benzene (o-MSB). Significantly, fluorescence resonance phenomenon was only observed in the individual ORM other than the PHM. It indicates that the rectangular resonators possess better light-confinement property over the elongated hexagonal resonators. More importantly, optically pumped lasing action was observed in the o-MSB rectangular morphology microplates resonator with a high Q ≈ 1500 above a threshold of ∼540 nJ/cm(2). The excellent optical properties of these microstructures are associated with the morphology, which can be precisely modulated by the organic molecular structure. These self-assembled organic microplates with different morphologies can contribute to the distinct functionality of photonics elements in the integrated optical circuits at micro/nanoscale.

  8. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    USGS Publications Warehouse

    Mann, Paul J.; Spencer, Robert G.M.; Hernes, Peter J.; Six, Johan; Aiken, George R.; Tank, Suzanne E.; McClelland, James W.; Butler, Kenna; Dyda, Rachael Y.; Holmes, Robert M.

    2016-01-01

    Climate change is causing extensive warming across Arctic regions resulting in permafrost degradation, alterations to regional hydrology and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest Arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275–295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of “terrestrial humic-like” vs. “marine humic-like” fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in

  9. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    NASA Astrophysics Data System (ADS)

    Mann, Paul; Spencer, Robert; Hernes, Peter; Six, Johan; Aiken, George; Tank, Suzanne; McClelland, James; Butler, Kenna; Dyda, Rachael; Holmes, Robert

    2016-03-01

    Climate change is causing extensive warming across arctic regions resulting in permafrost degradation, alterations to regional hydrology, and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275-295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of 'terrestrial humic-like' versus 'marine humic-like' fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in

  10. Leber’s hereditary optic neuropathy is multiorgan not mono-organ

    PubMed Central

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2016-01-01

    Leber’s hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disorder with bilateral loss of central vision primarily due to mitochondrial DNA (mtDNA) mutations in subunits of complex I in the respiratory chain (primary LHON mutations), while other mtDNA mutations can also be causative. Since the first description, it is known that LHON is not restricted to the eyes but is a multisystem disorder additionally involving the central nervous system, ears, endocrinological organs, heart, bone marrow, arteries, kidneys, or the peripheral nervous system. Multisystem involvement may start before or after the onset of visual impairment. Involvement of organs other than the eyes may be subclinical depending on age, ethnicity, and possibly the heteroplasmy rate of the responsible primary LHON mutation. Primary LHON mutations may rarely manifest without ocular compromise but with arterial hypertension, various neurodegenerative diseases, or Leigh syndrome. Patients with LHON need to be closely followed up to detect at which point organs other than the eyes become affected. Multiorgan disease in LHON often responds more favorably to symptomatic treatment than the ocular compromise. PMID:27843288

  11. Optical soliton in dielectric fibers and self-organization of turbulence in plasmas in magnetic fields

    PubMed Central

    Hasegawa, Akira

    2009-01-01

    One important discovery in the twentieth century physics is the natural formation of a coherent or a well-ordered structure in continuous media, in contrary to degradation of the state as predicted earlier from the second law of thermodynamics. Here nonlinearity plays the essential role in its process. The discovery of soliton, a localized stable wave in a nonlinear and dispersive medium and the self-organization of fluid turbulence are of the major examples. A soliton is formed primarily in one-dimensional medium where the dispersion and nonlinearity play the essential role. Here the temporal evolution can be described by an infinite dimensional Hamiltonian system that is integrable. While a self-organization appears in an infinite dimensional non-Hamiltonian (or dissipative) system where more than two conservative quantities exist in the limit of no dissipation. In this manuscript, by showing examples of the optical soliton in dielectric fibers and self-organization of turbulence in a toroidal plasma in a magnetic field, we demonstrate these interesting discoveries. The manuscript is intended to describe these discoveries more on philosophical basis with some sacrifice on mathematical details so that the idea is conveyed to those in the wide area of sciences. PMID:19145067

  12. Optical Properties of Hybrid Inorganic/Organic Thin Film Encapsulation Layers for Flexible Top-Emission Organic Light-Emitting Diodes.

    PubMed

    An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun

    2015-10-01

    Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.

  13. Electro-Optic Beam Steering Using Non-Linear Organic Materials

    DTIC Science & Technology

    1993-08-01

    York (SUNY), Buffalo, for potential application to the Hughes electro - optic beam deflector device. Evaluations include electro - optic coefficient...response time, transmission, and resistivity. Electro - optic coefficient measurements were made at 633 nm using a simple reflection technique. The

  14. A transmission line model for the optical simulation of multilayer structures and its application for oblique illumination of an organic solar cell with anisotropic extinction coefficient

    NASA Astrophysics Data System (ADS)

    Stathopoulos, N. A.; Palilis, L. C.; Yesayan, S. R.; Savaidis, S. P.; Vasilopoulou, M.; Argitis, P.

    2011-12-01

    A transmission line model for the calculation of optical interference phenomena in dielectric multilayered structures is adopted as an alternative option to the transfer matrix model (TMM). The method is based on the transmission line theory and is exact, easy to implement and uses closed iterative forms instead of the TMMs matrix formalism. The proposed model has been appropriately modified and then applied for performance evaluation of a typical organic photovoltaic device under inclined illumination. Optical field distribution, short-circuit photocurrent and reflectivity have been calculated under different angles of light incidence. The theoretical simulations have been discussed and compared with experimental photocurrent measurements, while the influence of the photoactive layer thickness on the device efficiency has been evaluated for different angles of light incidence, taking into account its extinction coefficient anisotropy.

  15. Associations Between the Molecular and Optical Properties of Dissolved Organic Matter in the Florida Everglades, a Model Coastal Wetland System

    PubMed Central

    Wagner, Sasha; Jaffé, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-01-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source, and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial, and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275−295, S350−400, SR, FI, freshness index, and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman's rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance, and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands. PMID:26636070

  16. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system

    NASA Astrophysics Data System (ADS)

    Wagner, Sasha; Jaffe, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-11-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman’s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.

  17. High resolution magic angle spinning NMR applied to the analysis of organic compounds bound to solid supports.

    PubMed

    Espinosa, Juan F

    2011-01-01

    In situ structural characterization of organic compounds attached to solid supports can be achieved by high-resolution magic angle spinning NMR (HRMAS NMR), a technique that provides solution-like spectra for resin-bound molecules. This review outlines the principles of the technique, the influence of the solid support on data quality, and NMR experiments that are useful for obtaining valuable information. The review describes, with multiple examples mainly from the last 7 years, how HRMAS NMR has been applied to monitor solid-phase reactions, elucidate reaction products and quantify compound loading on a solid support. Other applications, such as conformational analysis of immobilized compounds and investigation of molecular interactions with compounds in solution, are also discussed.

  18. Discharge and optical characterizations of nanosecond pulse sliding dielectric barrier discharge plasma for volatile organic compound degradation

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Guo, Lianjie; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2017-04-01

    In this work, a nanosecond bipolar pulsed voltage coupled with a negative DC component is employed to generate sliding dielectric barrier discharge (DBD) plasma in a three-electrode geometry reactor and improve volatile organic compound (VOC) degradation at room temperature. The effects of the bipolar pulsed voltage (U ±pulse) and negative DC voltage (U ‑DC) on the discharge characteristic, optical characteristic, plasma gas temperature (T gas), and vibrational temperature (T vib) are discussed. The horizontal distribution characteristics of the N2(C3Πu  →  B3Πg) emission intensity, T gas, and T vib are also investigated to understand the propagation mechanism of sliding DBD along the dielectric surface. The experimental results reveal that a negative DC component applied to a third electrode can extend the plasma extension region, indicating that the gas ionization is ignited by the nanosecond high-voltage pulse, while charge drift is forced by the surface potential difference caused by the negative high-voltage DC. The T gas is measured by optical emission spectroscopy related to the rotational bands of N2(C3 Πu  →  B3Πg), and is approximately 375  ±  5 K under the condition of U ±pulse  =  20 kV and U ‑DC  =  ‑20 kV. Compared with typical surface DBD plasma, sliding DBD plasma is quasi-diffusive and distributed more uniformly within the whole discharge gap. Furthermore, both surface DBD and sliding DBD are used for removing toluene from flowing air. It is found that sliding DBD has higher toluene degradation efficiency and energy yield than surface DBD when they are excited by the positive pulsed voltage (U +pulse).

  19. Integration of optical and electrochemical sensors on a microfluidic platform using organic optoelectronic components and silver nanowires.

    PubMed

    Poorahong, Sujittra; Lefevre, Florent; Perron, Marie-Claude; Juneau, Philippe; Izquierdo, Ricardo

    2016-08-01

    Since the emergence of microfluidic platforms sensors integration has been a major challenge. With the advances in miniaturization of these platforms, there is a need for solutions to integrate various optical components in order to build sensors, which will offer different detection characteristics such as several emission and sensing wavelengths. Moreover, the integration of an electrochemical sensor including a transparent electrode that will be compatible with the optical sensor represents an additional challenge. In this perspective, organic optoelectronic devices combined with silver nanowire electrodes could be a solution. The integration of a fluorescent sensor and an electrochemical oxygen sensor into a microfluidic platform and the different characteristics, advantages and disadvantages that offer organic light-emitting diodes (OLED), organic photodetectors (OPD) and silver nanowire electrodes are discussed. Finally, an example of the integration of an optical and an electrochemical sensor into a microfluidic chip for water pollution detection will be described.

  20. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation

    USGS Publications Warehouse

    Osburn, C.L.; Morris, D.P.; Thorn, K.A.; Moeller, R.E.

    2001-01-01

    We studied the chemical and optical changes in the dissolved organic matter (DOM) from two freshwater lakes and a Sphagnum bog after exposure to solar radiation. Stable carbon isotopes and solid-state 13C-NMR spectra of DOM were used together with optical and chemical data to interpret results from experimental exposures of DOM to sunlight and from seasonal observations of two lakes in northeastern Pennsylvania. Solar photochemical oxidation of humic-rich bog DOM to smaller LMW compounds and to DIC was inferred from losses of UV absorbance, optical indices of molecular weight and changes in DOM chemistry. Experimentally, we observed a 1.2??? enrichment in ??13C and a 47% loss in aromatic C functionality in bog DOM samples exposed to solar UVR. Similar results were observed in the surface waters of both lakes. In late summer hypolimnetic water in humic Lake Lacawac, we observed 3 to 4.5??? enrichments in ??13C and a 30% increase in aromatic C relative to early spring values during spring mixing. These changes coincided with increases in molecular weight and UV absorbance. Anaerobic conditions of the hypolimnion in Lake Lacawac suggest that microbial metabolism may be turning over allochthonous C introduced during spring mixing, as well as autochthonous C. This metabolic activity produces HMW DOM during the summer, which is photochemically labile and isotopically distinct from allochthonous DOM or autochthonous DOM. These results suggest both photooxidation of allochthonous DOM in the epilimnion and autotrophic production of DOM by bacteria in the hypolimnion cause seasonal trends in the UV absorbance of lakes.

  1. Organization of columnar inputs in the third optic ganglion of a highly visual crab.

    PubMed

    Bengochea, Mercedes; Berón de Astrada, Martín

    2014-01-01

    Motion information provides essential cues for a wide variety of animal behaviors such as mate, prey, or predator detection. In decapod crustaceans and pterygote insects, visual codification of object motion is associated with visual processing in the third optic neuropile, the lobula. In this neuropile, tangential neurons collect motion information from small field columnar neurons and relay it to the midbrain where behavioral responses would be finally shaped. In highly ordered structures, detailed knowledge of the neuroanatomy can give insight into their function. In spite of the relevance of the lobula in processing motion information, studies on the neuroarchitecture of this neuropile are scant. Here, by applying dextran-conjugated dyes in the second optic neuropile (the medulla) of the crab Neohelice, we mass stained the columnar neurons that convey visual information into the lobula. We found that the arborizations of these afferent columnar neurons lie at four main lobula depths. A detailed examination of serial optical sections of the lobula revealed that these input strata are composed of different number of substrata and that the strata are thicker in the centre of the neuropile. Finally, by staining the different lobula layers composed of tangential processes we combined the present characterization of lobula input strata with the previous characterization of the neuroarchitecture of the crab's lobula based on reduced-silver preparations. We found that the third lobula input stratum overlaps with the dendrites of lobula giant tangential neurons. This suggests that columnar neurons projecting from the medulla can directly provide visual input to the crab's lobula giant neurons.

  2. Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells.

    PubMed

    Kim, Inho; Lee, Taek Seong; Jeong, Doo Seok; Lee, Wook Seong; Kim, Won Mok; Lee, Kyeong-Seok

    2013-07-01

    Transparent metal grid combining with plasmonic absorption enhancement is a promising replacement to indium tin oxide thin films. We numerically demonstrate metal grids in one or two dimension lead to plasmonic absorption enhancements in ultrathin organic solar cells. In this paper, we study optical design of metal grids for plasmonic light trapping and identify different plasmonic modes of the surface plasmon polaritons excited at the interfaces of glass/metal grids, metal grids/active layers, and the localized surface plasmon resonance of the metal grids using numerical calculations. One dimension metal grids with the optimal design of a width and a period lead to the absorption enhancement in the ultrathin active layers of 20 nm thickness by a factor of 2.6 under transverse electric polarized light compared to the case without the metal grids. Similarly, two dimensional metal grids provide the absorption enhancement by a factor of 1.8 under randomly polarized light.

  3. Investigation of nonlinear optical properties of various organic materials by the Z-scan method

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.; Boltaev, G. S.; Tugushev, R. I.; Usmanov, T.

    2012-06-01

    We have studied the nonlinear optical properties of various organic materials (vegetable oil, juice, wine, cognac, Coca-Cola and Fanta drinks, Nescafé coffee, tea, gasoline, clock oil, glycerol, and polyphenyl ether) that are used in everyday life. Their nonlinearities have been studied by the Z-scan method in the near-IR and visible spectral ranges. We have shown that the majority of samples possess a nonlinear absorption; however, some of the studied materials show a strong saturated absorption and nonlinear refraction. Red wine and glycerol proved to be the most interesting materials. For these samples, we have observed a change in the sign of the nonlinear absorption with increasing laser intensity, which was attributed to the competition between two-photon absorption and saturated absorption.

  4. Growth and properties of novel organic nonlinear optical crystal: L-alaninium tartrate (LAT)

    NASA Astrophysics Data System (ADS)

    Vimalan, M.; Kumar, T. Rajesh; Tamilselvan, S.; Sagayaraj, P.; Mahadevan, C. K.

    2010-09-01

    A new organic nonlinear optical crystal L-alaninium tartrate (LAT) has been grown by slow evaporation method at room temperature. Single crystal X-ray diffraction studies reveal that the crystal has monoclinic structure with space group P2 1. From FT-IR spectrum, the CH vibrations of tartaric acid generate peaks at 2977 and 2960 cm -1. The thermal studies indicate that the grown LAT is stable up to 118 °C, SHG measurements and UV-Vis-NIR spectroscopy. Photoconductivity studies of LAT reveal its negative photoconducting nature. The second harmonic generation efficiency of LAT crystal is found to be 174 mV. The laser damage threshold is found to be 8.16 GW/cm 2. The dielectric constant and dielectric loss of the crystal were studied as a function of frequency and the results are discussed. The AC/DC conductivity studies are carried out and reported for the first time.

  5. Optical properties of organic conductor and semiconductor crystals: Model for a half-filled dimerized chain

    SciTech Connect

    Meneghetti, M. )

    1991-10-15

    The interpretation of the charge transfer and vibronic optical spectra of molecular organic half-filled crystals is shown to be possible on the basis of a periodic cluster model made up of four sites. The results obtained by using this model, which considers an extended Hubbard Hamiltonian and the interaction of {ital intramolecular} vibrations with the electronic system, are reported in detail to show the dependence of the various calculated excitations on the {ital intermolecular} dimerization, a structural distortion characteristic of the compounds on which attention is focused. The effect of including off-diagonal Coulomb interaction is also considered. The available experimental spectra of a well-known half-filled compound like K-TCNQ (where TCNQ is tetracyanoquinodimethane) are satisfactorily fitted and the values of the parameters obtained by the fittings are used to suggest an interpretation of the phase transition of this compound. Some parallel observations for half-filled polymers are also reported.

  6. Encapsulation of cobalt porphyrins in organically modified silica gel glasses and their nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Zheng, Chan; Huang, Li; Li, Wei; Chen, Wenzhe

    2017-01-01

    2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin Cobalt(II) (CoPor) was introduced into nanostructured organically modified silica (ORMOSIL) using a sol-gel technique. Scanning electron microscopy, Fourier transform infrared (FT-IR), thermogravimetric analysis, and UV-Vis spectroscopy were performed to investigate the morphology, structure, thermal stability, and linear optical properties of the resulting gel glasses. The FT-IR spectrum and UV-Vis spectra strongly indicated the formation of a silica gel glass network and the successful encapsulation of CoPor in ORMOSIL silica gel glasses, respectively. The introduction of guest CoPor molecules induces silica to form more condensed surface characteristics, owing to the fact that CoPor can promote the hydrolysis and polycondensation procedure, and hence have better thermal stability as compared to blank silica gel glasses. Meanwhile, the dimerization phenomenon in a liquid matrix can be effectively suppressed in a silica solid-state matrix and is attributed to the `cage protection effect.' The nonlinear optical (NLO) properties of CoPor gel glasses were investigated using the open-aperture Z-scan technique at 532 nm. The NLO performance of CoPor-incorporated solid-state silica gel glasses has been improved in comparison with those dispersed in dimethylformamide solution. More significantly, the NLO properties of CoPor-doped ORMOSIL gel glasses can be controlled by adjusting the concentration of the CoPor molecules.

  7. New organic second-order nonlinear optical crystals of benzylidene-aniline derivative

    NASA Astrophysics Data System (ADS)

    Tsunekawa, Tetsuya; Gotoh, Tetsuya; Mataki, Hiroshi; Kondo, Toshiyuki; Fukuda, Seiji; Iwamoto, Masao

    1990-12-01

    The benzylidene-aniline derivative with an electron-donating group at 4-position and an electron-accepting group at 4'-position has been suggested by MO calculation, to have a small molecular dipole moment but a large second-order hyperpolarizability in comparison with those of p-nitroaniline analogous molecules, hence, to be a promising molecule on searching for a new organic crystal with large second-order optical nonlinearity. Chemical modification of the molecule suggested led to a discovery of a series of crystals having high activities in second harmonic generation ( SHG ) ; one of which, 4'-nitrobenzylidene-3-acetamino-4-methoxyaniline ( MNBA ) crystal in monodinic Cc with four molecules per unit cell showed larger powder SHG than 2-methyl-4-mtroaniline ( MNA ) crystal in a preliminary powder SHG experiment. A strongly polarized non-centrosymmetric molecular packing has been achieved in this crystal by the presence of intermolecular hydrogen bond between neighboring acetainino groups. Calculation by an oriented gas model with the use of the detailed structural data from X-ray analysis for the MNBA crystal predicted that the crystal may have up to ca. 2.9 times larger macroscopic optical nonlinearity than MNA crystal. This has been experimentally proven by measuring the d for SHG by Maker fringe method. The largest d coefficient was found to be dii , and the value obtained was 454 pm/V which is 1.8 times larger than d11 of MNA crystal and 13 times larger than of lithium mobate ( ) crystal.

  8. Optical Description of Mesostructured Organic-Inorganic Halide Perovskite Solar Cells.

    PubMed

    Anaya, Miguel; Lozano, Gabriel; Calvo, Mauricio E; Zhang, Wei; Johnston, Michael B; Snaith, Henry J; Míguez, Hernán

    2015-01-02

    Herein we describe both theoretically and experimentally the optical response of solution-processed organic-inorganic halide perovskite solar cells based on mesostructured scaffolds. We develop a rigorous theoretical model using a method based on the propagation of waves in layered media, which allows visualizing the way in which light is spatially distributed across the device and serves to quantify the fraction of light absorbed by each medium comprising the cell. The discrimination between productive and parasitic absorption yields an accurate determination of the internal quantum efficiency. State-of-the-art devices integrating mesoporous scaffolds infiltrated with perovskite are manufactured and characterized to support the calculations. This combined experimental and theoretical analysis provides a rational understanding of the optical behavior of perovskite cells and can be beneficial for the judicious design of devices with improved performance. Notably, our model justifies the presence of a solid perovskite capping layer in all of the highest efficiency perovskite solar cells based on thinner mesoporous scaffolds.

  9. Optical Generation of Ballistic and Diffusive Spin Currents in Organic-Inorganic Lead Halide Perovskites

    NASA Astrophysics Data System (ADS)

    Li, Junwen; Haney, Paul

    Organic-inorganic halide perovskite solar cells have attracted enormous attention in recent years due to their remarkable photovoltaic power conversion efficiency. These materials should exhibit interesting spin-dependent properties as well, owing to the strong spin-orbit coupling and the broken inversion symmetry present at room temperature. In this work, we consider the spin-dependent optical response of CH3NH3PbI3 on two distinct time scales. We first use density functional theory to compute the ballistic spin current injected by absorption of linearly polarized light. This spin current persists on a time scale of the momentum relaxation time. We then consider diffusive transport of photogenerated charge and spin for a thin perovskite layer with a passivated surface and an Ohmic, non-selective back contact. The spin densities and spin currents are evaluated by solving the drift-diffusion equations for a 3-dimensional Rashba model. We comment on the applications of optically excited spin densities and spin currents in these materials.

  10. Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite.

    PubMed

    Zhang, Yupeng; Wang, Yusheng; Xu, Zai-Quan; Liu, Jingying; Song, Jingchao; Xue, Yunzhou; Wang, Ziyu; Zheng, Jialu; Jiang, Liangcong; Zheng, Changxi; Huang, Fuzhi; Sun, Baoquan; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-07-26

    Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.

  11. Nanostructural organization and anion effects in the optical Kerr effect spectra of binary ionic liquid mixtures.

    PubMed

    Xiao, Dong; Rajian, Justin Rajesh; Hines, Larry G; Li, Shengfu; Bartsch, Richard A; Quitevis, Edward L

    2008-10-23

    This article reports a study of the effect of anions on the optical Kerr effect (OKE) spectra of binary ionic liquid mixtures with one mixture comprising the 3-methyl-1-pentylimidazolium ([C 5mim] (+)) cation and the anions PF 6 (-) and CF 3CO 2 (-) (TFA (-)), and another mixture comprising the [C 5mim] (+) cation and the anions Br (-) and bis(trifluomethanesulfonyl)imide (NTf 2 (-)). The spectra were obtained by the use of optical heterodyne-detected Raman-induced Kerr Effect Spectroscopy at 295 K. The OKE spectra of the mixtures are compared with the calculated mole-fraction weighted sum of the normalized OKE spectra of the neat liquids. The OKE spectra are nearly additive for [C 5mim]Br/[C 5mim][NTf 2] mixtures, but nonadditive for [C 5mim][PF 6]/[C 5mim][TFA] mixtures. In the case of the equimolar [C 5mim][PF 6]/[C 5mim][TFA] mixture, the nonadditivity is such that the experimental OKE spectrum is narrower than the calculated OKE spectrum. The additivity or nonadditivity of OKE spectra for IL mixtures can be explained by assuming ionic liquids are nanostructurally organized into nonpolar regions and ionic networks. The ionic networks in mixtures will be characterized by "random co-networks" for anions that are nearly the same in size (PF 6 (-) and TFA (-)) and by "block co-networks" for anions that differ greatly in size (Br (-) and NTf 2 (-)).

  12. Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties.

    PubMed

    Despoja, V; Marušić, L

    2014-12-03

    Our recently proposed theoretical formulation based on Bethe–Salpeter G(0)W(0) methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C(14)H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lying anthracene bright excitons p, α and β depend on the type of the adjacent surface (described by the Wigner Seits radius r(s)) and the separation from the surface. It is shown that p and α excitons weakly interact with surface excitations, but for r(s) ≈ 3 the intensive β exciton hybridizes with surface plasmon considerably, resulting in its splitting into two optically active modes. The β exciton decays extraordinarily fast (Γ ≈ 200 meV) to the electron-hole excitations in the metallic surface even for non-contact separations (z(0) ≈ 12 a.u.). For r(s) > 5 the β exciton becomes infinitely sharp (Γ ≈ 0) and no longer interacts with the surface plasmon. Moreover, it is shown that HOMO and LUMO states near a metallic surface behave as statically screened rigid orbitals, with the result that the simple image theory arguments are sufficient to explain the HOMO–LUMO gap shift. Finally, it is demonstrated that the HOMO–LUMO gap shift dominantly depends on the position of the effective image plane z(im) of the adjacent surface.

  13. Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties

    NASA Astrophysics Data System (ADS)

    Despoja, V.; Marušić, L.

    2014-12-01

    Our recently proposed theoretical formulation based on Bethe-Salpeter G0W0 methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C14H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lying anthracene bright excitons p, α and β depend on the type of the adjacent surface (described by the Wigner Seits radius rs) and the separation from the surface. It is shown that p and α excitons weakly interact with surface excitations, but for rs ≈ 3 the intensive β exciton hybridizes with surface plasmon considerably, resulting in its splitting into two optically active modes. The β exciton decays extraordinarily fast (Γ ≈ 200 meV) to the electron-hole excitations in the metallic surface even for non-contact separations (z0 ≈ 12 a.u.). For rs > 5 the β exciton becomes infinitely sharp (Γ ≈ 0) and no longer interacts with the surface plasmon. Moreover, it is shown that HOMO and LUMO states near a metallic surface behave as statically screened rigid orbitals, with the result that the simple image theory arguments are sufficient to explain the HOMO-LUMO gap shift. Finally, it is demonstrated that the HOMO-LUMO gap shift dominantly depends on the position of the effective image plane zim of the adjacent surface.

  14. Physical and Mathematical Methods for Removing Organic Interference from Optical Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Hsiao, G.; Chappellet-Volini, L.; Vu, D.

    2012-12-01

    Portable high precision isotope analyzers using CRDS technology have greatly increased the use of stable isotopes in hydrological, oceanographic, and ecological studies over the past five years. However studies of some water samples yielded incorrect isotopic values indicating some form of spectroscopic interference. Subsequent work has shown that waters derived from some plants containing interfering alcohols but meteoric waters are not affected. The initial approach to handling such samples was to use spectroscopic anomalies to identify and flag affected samples for later analysis by non-optical methods. This presentation will examine the approaches developed within the past year to allow for accurate analysis of such samples by optical methods. The first approach uses an advanced spectroscopic model to identify and quantify alcohols present in the sample. The alcohol signal is incorporated into the overall fit of the measure spectra to calculate the concentration of the individual isotopes. It was found that the δ18O value could be calculated with high accuracy, the result for the δ2H value was sufficient for many applications. The second approach uses physical treatment of the sample to break down the organic molecules into non-interfering species. The liquid sample is injected into a flash vaporizer then the vapor travels through a cartridge for physical treatment prior to analysis by CRDS. Inside the cartridge the organic molecules undergo oxidation at high temperature in the air carrier gas when exposed to the catalyst. This approach is highly effective for ethanol solutions as high as 5% as well as for the complex mixtures of alcohols found in plants. Comparison of the results of both of these methods will be compared with tertiary techniques such as IRMS where possible.

  15. Effect of intrinsic organic carbon on the optical properties of fresh diesel soot.

    PubMed

    Adler, Gabriella; Riziq, Ali Abo; Erlick, Carynelisa; Rudich, Yinon

    2010-04-13

    This study focuses on the retrieval of the normalized mass absorption cross section (MAC) of soot using theoretical calculations that incorporate new measurements of the optical properties of organic carbon (OC) intrinsic to fresh diesel soot. Intrinsic OC was extracted by water and an organic solvent, and the complex refractive index of the extracted OC was derived at 532 and 355-nm wavelengths using cavity ring-down aerosol spectrometry. The extracted OC was found to absorb weakly in the visible wavelengths and moderately at blue wavelengths. The mass ratio of OC and elemental carbon (EC) in the collected particles was evaluated using a thermo-optical method. The measured EC/OC ratio in the soot exhibited substantial variability from measurement to measurement, ranging between 2 and 5. To test the sensitivity of the MAC to this variability, three different EC/OC ratios (21, 11, and 12) were chosen as representative. Particle size and spherule morphology were estimated using scanning electron microscopy, and the soot was found to be primarily in the form of aggregates with a dominant aggregate diameter mode in the range 200-250 nm. The measured refractive index of the extracted OC was used with a variety of theoretical models to calculate the MAC of internally mixed diesel soot at 532 and 355 nm. We conclude that Rayleigh-Debye-Gans theory on clusters of coated spherules and T-matrix of a solid EC spheroid coated by intrinsic OC are both consistent with previous measurements; however, Rayleigh-Debye-Gans theory provides a more realistic physical model for the calculation.

  16. Simple model of dissolved oxygen consumption in a bay within high organic loading: an applied remediation tool.

    PubMed

    Ahumada, Ramón; Vargas, José; Pagliero, Liliana

    2006-07-01

    San Vicente Bay is a coastal shallow embayment in Central Chile with multiple uses, one of which is receiving wastewater from industrial fisheries, steel mill effluents, and domestic sewage. A simulation model was developed and applied to dissolved oxygen consumption by organic residues released into this embayment. Three compartments were established as function of: depth, circulation and outfall location. The model compartments had different volumes, and their oxygen saturation value was used as baseline. The parameters: (a) BOD5 of the industrial and urban effluents, (b) oxygen demand by organic sediments, (c) respiration, (d) photosynthesis and (e) re-aeration were included in the model. Iteration results of the model showed severe alterations in Compartment 1, with a decrease of 65% in the oxygen below saturation. Compartment 2 showed a small decline (10%) and compartment 3 did not show apparent changes in oxygen values. Measures recommended for remediation were to decrease the BOD5 loading by 30% in the affected sector. Iteration of the model for 200 h following recommendations derived from the preceding results produced an increase in saturation of 60% (5 ml O2 L(-1)), which suggested an improvement of the environmental conditions.

  17. Anticipating the fate and impact of organic environmental contaminants: a new approach applied to the pharmaceutical furosemide.

    PubMed

    Laurencé, Céline; Rivard, Michael; Martens, Thierry; Morin, Christophe; Buisson, Didier; Bourcier, Sophie; Sablier, Michel; Oturan, Mehmet A

    2014-10-01

    The presence of trace levels of organic contaminants in the environment is currently an environmental concern. When these contaminants are subjected to environmental transformations, environmental transformation products (ETPs) are obtained, whose structures often remain unknown. The absence of information concerning these new compounds makes them unavailable and consequently makes their environmental detection as well as their (eco)toxicological study impossible. This report describes a multidisciplinary approach that seeks to both anticipate the fate and evaluate the impact of organic environmental contaminants. Our approach consists of three steps. First, isolated and fully characterized transformation products (TPs) of the parent molecule are obtained. In the second step, the parent molecule is subjected to environmentally relevant transformations to identify plausible ETPs. The detection of previously characterized TPs allows the concomitant identification of plausible ETPs. The third step is devoted to the toxicological evaluation of the identified plausible ETPs. Such an approach has recently been applied to furosemide and has allowed the identification of its main TPs. This report now seeks to identify and evaluate toxicologically plausible ETPs of this drug, which is also known as an environmental contaminant.

  18. A novel toolbox to investigate tissue spatial organization applied to the study of the islets of Langerhans

    PubMed Central

    Tran Thi Nhu, Hoa; Arrojo E. Drigo, Rafael; Berggren, Per-Olof; Boudier, Thomas

    2017-01-01

    Thanks to the development of new 3D Imaging techniques, volumetric data of thick samples, especially tissues, are commonly available. Several algorithms were proposed to analyze cells or nuclei in tissues, however these tools are limited to two dimensions. Within any given tissue, cells are not likely to be organized randomly and as such have specific patterns of cell-cell interaction forming complex communication networks. In this paper, we propose a new set of tools as an approach to segment and analyze tissues in 3D with single cell resolution. This new tool box can identify and compute the geographical location of single cells and analyze the potential physical interactions between different cell types and in 3D. As a proof-of-principle, we applied our methodology to investigation of the cyto-architecture of the islets of Langerhans in mice and monkeys. The results obtained here are a significant improvement in current methodologies and provides new insight into the organization of alpha cells and their cellular interactions within the islet’s cellular framework. PMID:28303903

  19. Effects on soil organic matter mineralization and microbiological properties of applying compost to burned and unburned soils.

    PubMed

    Turrión, M B; Lafuente, F; Mulas, R; López, O; Ruipérez, C; Pando, V

    2012-03-01

    This study was undertaken in the context of a project of reclamation of a burned forest area applying municipal waste compost (MWC) and it consisted of an incubation experience carried out under laboratory conditions. The objectives of this research were to asses the effect of three doses of MWC added to burned and unburned calcareous soils on a) SOM mineralization and b) soil microbiological parameters. The laboratory incubation experience was carried out with three compost doses (1, 2 and 4% w/w) on a burned soil and another unburned one from an adjacent plot, besides the corresponding control samples. The mineralization kinetics of the organic matter was studied for 92 days. The kinetics data were adjusted to a double exponential model, showing two C pools of different degrees of resistance to mineralization and concentration, with half-life times of 1.9-4.9 and 34-76 days, respectively. In the unburned soil, the initial potential mineralization rate of the labile and stable C pools showed an opposed behavior, increased and decreased with the MWC dose, respectively. However in the burned soil no significant tendencies were observed. Although applying compost tended to increase the size of more labile pool with respect to total mineralizable C, however most of the soil or compost OM did not result mineralizable in the short and medium term. The compost amendment did not increase soil microbial activity.

  20. Validation of an optical model applied to the beam down CSP facility at the Masdar Institute Solar Platform

    NASA Astrophysics Data System (ADS)

    Grange, Benjamin; Kumar, Vikas; Torres, Juliana Beltran; Perez, Victor G.; Armstrong, Peter R.; Slocum, Alexander; Calvet, Nicolas

    2016-05-01

    In the framework of the CSPonD Demo project, the optical characterization of the Beam Down Optical Experiment (BDOE) heliostats field is an important step to certify the required power is provided. To achieve this goal, an experiment involving a single heliostat is carried out. The results of the experiment and the comparison with simulated results are presented in this paper. Only the reflection on the heliostat is observed in order to have a better assessment of its optical performance. The heliostat reflectance is modified and the experimental and simulated concentration distribution are confronted. Results indicate that the shapes of the concentration distributions are quite similar, hence validating the optical model respects the geometry of the BDOE. Moreover these results lead to an increase of the optimized heliostat reflectance when the incident angle on the heliostat decreases. Further investigation is required to validate this method with all the individual heliostats of the BDOE solar field.

  1. Effect of applied voltage, initial concentration and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes

    PubMed Central

    Sun, Mei; Reible, Danny D.; Lowry, Gregory V.; Gregory, Kelvin B.

    2012-01-01

    Carbon electrodes are proposed in reactive sediment caps for in situ treatment of contaminants. The electrodes produce reducing conditions and H2 at the cathode and oxidizing conditions and O2 at the anode. Emplaced perpendicular to seepage flow, the electrodes provide the opportunity for sequential reduction and oxidation of contaminants. The objectives of this study are to demonstrate degradation of nitrobenzene (NB) as a probe compound for sequential electrochemical reduction and oxidation, and to determine the effect of applied voltage, initial concentration and natural organic matter on the degradation rate. In H-cell reactors with graphite electrodes and buffer solution, NB was reduced stoichiometrically to aniline (AN) at the cathode with nitrosobenzene (NSB) as the intermediate. AN was then removed at the anode, faster than the reduction step. No common AN oxidation intermediate was detected in the system. Both the first order reduction rate constants of NB (kNB) and NSB (kNSB) increased with applied voltage between 2V and 3.5 V (when the initial NB concentration was 100 µM, kNB=0.3 d−1 and kNSB=0.04 d−1at 2V; kNB=1.6 d−1 and kNSB=0.64 d−1at 3.5 V) but stopped increasing beyond the threshold of 3.5V. When initial NB concentration decreased from 100 to 5 µM, kNB and kNSB became 9 and 5 times faster, respectively, suggesting that competition for active sites on the electrode surface is an important factor in NB degradation. Presence of natural organic matter (in forms of either humic acid or Anacostia River sediment porewater) decreased kNB while slightly increased kNSB, but only to a limited extent (~factor of 3) for dissolved organic carbon content up to 100 mg/l. These findings suggest that electrode-based reactive sediment capping via sequential reduction/oxidation is a potentially robust and tunable technology for in situ contaminants degradation. PMID:22571797

  2. Effect of applied voltage, initial concentration, and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes.

    PubMed

    Sun, Mei; Reible, Danny D; Lowry, Gregory V; Gregory, Kelvin B

    2012-06-05

    Carbon electrodes are proposed in reactive sediment caps for in situ treatment of contaminants. The electrodes produce reducing conditions and H(2) at the cathode and oxidizing conditions and O(2) at the anode. Emplaced perpendicular to seepage flow, the electrodes provide the opportunity for sequential reduction and oxidation of contaminants. The objectives of this study are to demonstrate degradation of nitrobenzene (NB) as a probe compound for sequential electrochemical reduction and oxidation, and to determine the effect of applied voltage, initial concentration, and natural organic matter on the degradation rate. In H-cell reactors with graphite electrodes and buffer solution, NB was reduced stoichiometrically to aniline (AN) at the cathode with nitrosobenzene (NSB) as the intermediate. AN was then removed at the anode, faster than the reduction step. No common AN oxidation intermediate was detected in the system. Both the first order reduction rate constants of NB (k(NB)) and NSB (k(NSB)) increased with applied voltage between 2 V and 3.5 V (when the initial NB concentration was 100 μM, k(NB) = 0.3 h(-1) and k(NSB) = 0.04 h(-1) at 2 V; k(NB) = 1.6 h(-1) and k(NSB) = 0.64 h(-1) at 3.5 V) but stopped increasing beyond the threshold of 3.5 V. When initial NB concentration decreased from 100 to 5 μM, k(NB) and k(NSB) became 9 and 5 times faster, respectively, suggesting that competition for active sites on the electrode surface is an important factor in NB degradation. Presence of natural organic matter (in forms of either humic acid or Anacostia River sediment porewater) decreased k(NB) while slightly increased k(NSB), but only to a limited extent (∼factor of 3) for dissolved organic carbon content up to 100 mg/L. These findings suggest that electrode-based reactive sediment capping via sequential reduction/oxidation is a potentially robust and tunable technology for in situ contaminants degradation.

  3. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 μg m-3, all μg m-3 values based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the

  4. Studies of selected organic nonlinear optical and light-emitting materials

    NASA Astrophysics Data System (ADS)

    Tan, Shida

    In this dissertation, the nonlinear optical and light emitting properties of a selected class of organic materials have been studied in detail. Novel organic molecular salts, 4-dimethylaminostyryl-N-methylpyridinium methanesulfonate (DASMS) and 4-diethylaminostyryl-N-methylpyridinium p-toluenesulfonate (DEST), were synthesized. A few selected stilbazolium derivatives, 3-methyl-4-methoxy-4'-nitrostilbene (MMONS), 4-dimethylaminostyryl-N-methylpyridinium p-toluenesulfonate (DAST), and DASMS were grown into excellent optical quality single-crystal thin-films, on which detailed polarized UV-Vis spectroscopy and X-ray diffraction studies were carried out. The crystallographic parameters of p-nitro-benzobromide (NBB) are reported for the first time. The values of the tensor elements of second-order susceptibility of MMONS at the fundamental wavelength of 1064 nm were measured to be d33 = 195 +/- 10 pm/V and d24 = 75 +/- 5 pm/V by detailed polarization selective second-harmonic generation measurements. Both type I and type II phase-matched propagation directions were identified in the MMONS single-crystal. The electro-optic effects in MMONS and DASMS single-crystal thin-films were studied using field-induced birefringence method. Measured r-coefficients of MMONS are r33 = 55rho5 pm/V and r23 = 21rho2 pm/V at 1064 nm. The electro-optic coefficients of DASMS single-crystal thin-films were measured over a broad range of wavelengths (from 632.8 nm to 820 nm). The largest r-coefficients of DASMS were observed at 740 nm to be r11 = 552rho60 pm/V and r12 = 184rho20 pm/V. Compact free-space and fiber-coupled DAST electro-optic thin-film devices with both transmission and reflection geometries were demonstrated for the first time. DEST and 4-(4-hydroxystyryl)-N-methylpyridinium p-toluenesulfonate (HSMPT) were shown to have 20% and 30% spectrally narrowed laser-like emission conversion efficiencies without external mirrors despite their small photoluminescence efficiencies. With 55

  5. Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons.

    PubMed

    Li, Kun; Wang, Weigang; Ge, Maofa; Li, Jiangjun; Wang, Dong

    2014-05-12

    The refractive index (RI) is the fundamental characteristic that affects the optical properties of aerosols, which could be some of the most important factors influencing direct radiative forcing. The secondary organic aerosols (SOAs) generated by the photooxidation of benzene, toluene, ethylbenzene and m-xylene (BTEX) under low-NOx and high-NOx conditions are explored in this study. The particles generated in our experiments are considered to be spherical, based on atomic force microscopy (AFM) images, and nonabsorbent at a wavelength of 532 nm, as determined by ultraviolet-visible light (UV-Vis) spectroscopy. The retrieved RIs at 532 nm for the SOAs range from 1.38-1.59, depending on several factors, such as different precursors and NOx levels. The RIs of the SOAs are altered differently as the NOx concentration increases as follows: the RIs of the SOAs derived from benzene and toluene increase, whereas those of the SOAs derived from ethylbenzene and m-xylene decrease. Finally, by comparing the experimental data with the model values, we demonstrate that the models likely overestimate the RI values of the SOA particles to a certain extent, which in turn overestimates the global direct radiative forcing of the organic particles.

  6. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

    PubMed

    Cai, Chen; Stewart, David J; Reid, Jonathan P; Zhang, Yun-hong; Ohm, Peter; Dutcher, Cari S; Clegg, Simon L

    2015-01-29

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments.

  7. Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; Maie, Nagamitsu; BriceñO, Henry; Jaffé, Rudolf

    2010-03-01

    Tropical rivers are an important source of dissolved organic matter (DOM) to coastal oceans. However, temporal and spatial variability of DOM composition and thus its quality in such rivers, on landscape and basin scales, have not been well documented. In this study, we present data on the spatial distribution of DOM quantity and quality based on source, molecular weight, and composition using optical properties including excitation emission matrix fluorescence with parallel factor analysis. We compared such DOM quantity and quality determinations in main river channels and their tributaries for three river systems of the Guayana Shield, Venezuela. Spatial variabilities of DOM parameters were strongly related to differences in the geological settings of the drainage basins and presumably their associated vegetation cover. Linear relationships between quantitative and qualitative DOM parameters were also evident, suggesting that high DOC concentration correlated with chromophoric dissolved organic matter (CDOM) characteristics of higher molecular weight associated with terrestrial sources, while low DOC concentrations correlated with CDOM characteristics of lower molecular weight associated primarily with microbial sources. Such relationships seem to imply that DOM concentrations and their sources/characteristics may be coupled in the studied fluvial systems. In addition, shifts in DOM compositions between terrestrial and microbial signals were observed with changes in water discharge and in watersheds disturbed by gold mining activities. The observed linkages between, and the changes among DOM quantity and quality, suggest that the biogeochemistry of DOM in tropical rivers may be quite sensitive to climatic and land use change.

  8. Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons

    PubMed Central

    Li, Kun; Wang, Weigang; Ge, Maofa; Li, Jiangjun; Wang, Dong

    2014-01-01

    The refractive index (RI) is the fundamental characteristic that affects the optical properties of aerosols, which could be some of the most important factors influencing direct radiative forcing. The secondary organic aerosols (SOAs) generated by the photooxidation of benzene, toluene, ethylbenzene and m-xylene (BTEX) under low-NOx and high-NOx conditions are explored in this study. The particles generated in our experiments are considered to be spherical, based on atomic force microscopy (AFM) images, and nonabsorbent at a wavelength of 532 nm, as determined by ultraviolet-visible light (UV-Vis) spectroscopy. The retrieved RIs at 532 nm for the SOAs range from 1.38–1.59, depending on several factors, such as different precursors and NOx levels. The RIs of the SOAs are altered differently as the NOx concentration increases as follows: the RIs of the SOAs derived from benzene and toluene increase, whereas those of the SOAs derived from ethylbenzene and m-xylene decrease. Finally, by comparing the experimental data with the model values, we demonstrate that the models likely overestimate the RI values of the SOA particles to a certain extent, which in turn overestimates the global direct radiative forcing of the organic particles. PMID:24815734

  9. Evaluation of optical and electronic properties of silicon nano-agglomerates embedded in SRO: applying density functional theory

    PubMed Central

    2014-01-01

    In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films. PMID:25276105

  10. Evaluation of optical and electronic properties of silicon nano-agglomerates embedded in SRO: applying density functional theory.

    PubMed

    Espinosa-Torres, Néstor D; la Luz, David Hernández-de; Flores-Gracia, José Francisco J; Luna-López, José A; Martínez-Juárez, Javier; Vázquez-Valerdi, Diana E

    2014-01-01

    In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films.

  11. A 45° saw-dicing process applied to a glass substrate for wafer-level optical splitter fabrication for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Maciel, M. J.; Costa, C. G.; Silva, M. F.; Gonçalves, S. B.; Peixoto, A. C.; Ribeiro, A. Fernando; Wolffenbuttel, R. F.; Correia, J. H.

    2016-08-01

    This paper reports on the development of a technology for the wafer-level fabrication of an optical Michelson interferometer, which is an essential component in a micro opto-electromechanical system (MOEMS) for a miniaturized optical coherence tomography (OCT) system. The MOEMS consists on a titanium dioxide/silicon dioxide dielectric beam splitter and chromium/gold micro-mirrors. These optical components are deposited on 45° tilted surfaces to allow the horizontal/vertical separation of the incident beam in the final micro-integrated system. The fabrication process consists of 45° saw dicing of a glass substrate and the subsequent deposition of dielectric multilayers and metal layers. The 45° saw dicing is fully characterized in this paper, which also includes an analysis of the roughness. The optimum process results in surfaces with a roughness of 19.76 nm (rms). The actual saw dicing process for a high-quality final surface results as a compromise between the dicing blade’s grit size (#1200) and the cutting speed (0.3 mm s-1). The proposed wafer-level fabrication allows rapid and low-cost processing, high compactness and the possibility of wafer-level alignment/assembly with other optical micro components for OCT integrated imaging.

  12. Ten new predicted covalent organic frameworks with strong optical response in the visible and near infrared

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ming; Dornfeld, Matthew; Hui, Pik-Mai; Frauenheim, Thomas; Ganz, Eric

    2015-06-01

    We use density functional theory to predict and evaluate 10 novel covalent organic frameworks (COFs), labeled (X4Y)(BDC)3, (X = C/Si; Y = C, Si, Ge, Sn, and Pb), with topology based on metal organic framework isoreticular metal-organic framework (IRMOF-1), but with new elements substituted for the corner atoms. We show that these new materials are stable structures using frequency calculations. For two structures, (C4C and Si4C) molecular dynamics simulations were performed to demonstrate stability of the systems up to 600 K for 10 ps. This demonstrates the remarkable stability of these systems, some of which may be experimentally accessible. For the C4C material, we also explored the stability of isolated corners and linkers and vacuum and started to build the structure from these pieces. We discuss the equilibrium lattice parameters, formation enthalpies, electronic structures, chemical bonding, and mechanical and optical properties. The predicted bulk moduli of these COFs range from 18.9 to 23.9 GPa, larger than that of IRMOF-1 (ca. 15.4 GPa), and larger than many existing 3D COF materials. The band gaps range from 1.5 to 2.1 eV, corresponding to 600-830 nm wavelength (orange through near infrared). The negative values of the formation enthalpy suggest that they are stable and should be experimentally accessible under suitable conditions. Seven materials distort the crystal structure to a lower space group symmetry Fm-3, while three materials maintain the original Fm-3m space group symmetry. All of the new materials are highly luminescent. We hope that this work will inspire efforts for experimental synthesis of these new materials.

  13. Ten new predicted covalent organic frameworks with strong optical response in the visible and near infrared

    SciTech Connect

    Yang, Li-Ming E-mail: ganzx001@umn.edu; Frauenheim, Thomas; Dornfeld, Matthew; Hui, Pik-Mai; Ganz, Eric E-mail: ganzx001@umn.edu

    2015-06-28

    We use density functional theory to predict and evaluate 10 novel covalent organic frameworks (COFs), labeled (X{sub 4}Y)(BDC){sub 3}, (X = C/Si; Y = C, Si, Ge, Sn, and Pb), with topology based on metal organic framework isoreticular metal-organic framework (IRMOF-1), but with new elements substituted for the corner atoms. We show that these new materials are stable structures using frequency calculations. For two structures, (C{sub 4}C and Si{sub 4}C) molecular dynamics simulations were performed to demonstrate stability of the systems up to 600 K for 10 ps. This demonstrates the remarkable stability of these systems, some of which may be experimentally accessible. For the C{sub 4}C material, we also explored the stability of isolated corners and linkers and vacuum and started to build the structure from these pieces. We discuss the equilibrium lattice parameters, formation enthalpies, electronic structures, chemical bonding, and mechanical and optical properties. The predicted bulk moduli of these COFs range from 18.9 to 23.9 GPa, larger than that of IRMOF-1 (ca. 15.4 GPa), and larger than many existing 3D COF materials. The band gaps range from 1.5 to 2.1 eV, corresponding to 600–830 nm wavelength (orange through near infrared). The negative values of the formation enthalpy suggest that they are stable and should be experimentally accessible under suitable conditions. Seven materials distort the crystal structure to a lower space group symmetry Fm-3, while three materials maintain the original Fm-3m space group symmetry. All of the new materials are highly luminescent. We hope that this work will inspire efforts for experimental synthesis of these new materials.

  14. Significant Lowering Optical Loss of Electrodes via using Conjugated Polyelectrolytes Interlayer for Organic Laser in Electrically Driven Device Configuration

    NASA Astrophysics Data System (ADS)

    Yi, Jianpeng; Niu, Qiaoli; Xu, Weidong; Hao, Lin; Yang, Lei; Chi, Lang; Fang, Yueting; Huang, Jinjin; Xia, Ruidong

    2016-05-01

    One of the challenges toward electrically driven organic lasers is the huge optical loss associated with the contact of electrodes and organic gain medium in device. We demonstrated a significant reduction of the optical loss by using our newly developed conjugated polyelectrolytes (CPE) PPFN+Br- as interlayer between gain medium and electrode. The optically pumped amplified spontaneous emission (ASE) was observed at very low threshold for PFO as optical gain medium and up to 37 nm thick CPE as interlayer in device configuration, c.f., a 5.7-fold ASE threshold reduction from pump energy 150 μJ/cm2 for ITO/PFO to 26.3 μJ/cm2 for ITO/PPFN+Br-/PFO. Furthermore, ASE narrowing displayed at pump energy up to 61.8 μJ/cm2 for device ITO/PEDOT:PSS/PFO/PPFN+Br-/Ag, while no ASE was observed for the reference devices without CPE interlayer at pump energy up to 240 μJ/cm2. The optically pumped lasing operation has also been achieved at threshold up to 45 μJ/cm2 for one-dimensional distributed feedback laser fabricated on ITO etched grating in devices with CPE interlayer, demonstrating a promising device configuration for addressing the challenge of electrically driven organic lasers.

  15. Significant Lowering Optical Loss of Electrodes via using Conjugated Polyelectrolytes Interlayer for Organic Laser in Electrically Driven Device Configuration

    PubMed Central

    Yi, Jianpeng; Niu, Qiaoli; Xu, Weidong; Hao, Lin; Yang, Lei; Chi, Lang; Fang, Yueting; Huang, Jinjin; Xia, Ruidong

    2016-01-01

    One of the challenges toward electrically driven organic lasers is the huge optical loss associated with the contact of electrodes and organic gain medium in device. We demonstrated a significant reduction of the optical loss by using our newly developed conjugated polyelectrolytes (CPE) PPFN+Br− as interlayer between gain medium and electrode. The optically pumped amplified spontaneous emission (ASE) was observed at very low threshold for PFO as optical gain medium and up to 37 nm thick CPE as interlayer in device configuration, c.f., a 5.7-fold ASE threshold reduction from pump energy 150 μJ/cm2 for ITO/PFO to 26.3 μJ/cm2 for ITO/PPFN+Br−/PFO. Furthermore, ASE narrowing displayed at pump energy up to 61.8 μJ/cm2 for device ITO/PEDOT:PSS/PFO/PPFN+Br−/Ag, while no ASE was observed for the reference devices without CPE interlayer at pump energy up to 240 μJ/cm2. The optically pumped lasing operation has also been achieved at threshold up to 45 μJ/cm2 for one-dimensional distributed feedback laser fabricated on ITO etched grating in devices with CPE interlayer, demonstrating a promising device configuration for addressing the challenge of electrically driven organic lasers. PMID:27165729

  16. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG)

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-11-01

    We present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography-mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arranged into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level resolution on

  17. Nonlinear Optical Properties of Organic and Polymeric Thin Film Materials of Potential for Microgravity Processing Studies

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.

    1996-01-01

    In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.

  18. Effects of organized turbulence structures on the phase distortion in a coherent optical beam propagating through a turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Truman, C. Randall; Lee, Moon Joo

    1990-01-01

    Phase distortion in a coherent optical beam propagating through a turbulent shear flow is studied. The instantaneous distribution of the index refraction is represented by a passive-scalar field in a computed homogeneous shear flow. The flow contains organized vortical structures (hairpin eddies), which are characteristic of turbulent shear flows. The phase distortion induced by turbulent fluctuations is calculated from the optical path difference through the flow. A conceptual model is proposed for the distribution of scalar fluctuations produced by the hairpin vortices in the shear flow. It is shown that the phase distortion of an optical beam can be minimized by propagating the beam at an angle approximately normal to the organized vortical structures in a turbulent shear flow.

  19. Coastal Benthic Optical Properties (COBOP): Characteristics and Processes Related to Optical Properties of Benthic Marine Organisms and Substrates

    DTIC Science & Technology

    1998-01-01

    coral reef cnidarians in particular. We wish to determine both how biological processes act to determine the optical properties and how optical measurements can be used to provide insight into biological state or process. The objectives for this year’s work were to: (1) Evaluate several methods for separating the fluorescence and reflectance components contributing to spectral signatures under daylight illumination; and (2) Locate specimens that contain only one of each of the coral fluorescent pigments and make excitation and emission measurements for use as

  20. Neuroendocrine neoplasms of liver - A 5-year retrospective clinico-pathological study applying World Health Organization 2010 classification

    PubMed Central

    Burad, Deepak Kalyansingh; Kodiatte, Thomas Alex; Rajeeb, Sayd Mohamed; Goel, Ashish; Eapen, Chundamannil Eapen; Ramakrishna, Banumathi

    2016-01-01

    AIM To study the clinicopathological characteristics of neuroendocrine neoplasms (NEN) on liver samples and apply World Health Organization (WHO) 2010 grading of gastroenteropancreatic (GEP) NEN. METHODS Clinicopathological features of 79 cases of NEN of the liver diagnosed between January 2011 to December 2015 were analyzed. WHO 2010 classification of GEP NEN was applied and the tumors were graded as G1, G2 or G3. Two more categories, D1/2 (discordant 1/2) and D2/3 (discordant 2/3) were also applied. The D1/2 grade tumors had a mitotic count of G1 and Ki-67 index of G2. The D2/3 tumors had a mitotic count of G2 and Ki-67 index of G3. The follow up details which were available till the end of the study period (December 2015) were collected. RESULTS Of the 79 tumors, 16 each were G1 and G2, and 18 were G3 tumors. Of the remaining 29 tumors, 13 were assigned to D1/2 and 16 were D2/3 grade. Male preponderance was noted in all tumors except for G2 neoplasms, which showed a slight female predilection. The median age at presentation was 47 years (range 10-82 years). The most common presentation was abdominal pain (81%). Pancreas (49%) was the most common site of primary followed by gastrointestinal tract (24.4%) and lungs (18%). Radiologically, 87% of the patients had multiple liver lesions. Histopathologically, necrosis was seen in only D2/3 and G3 tumors. Microvascular invasion was seen in all grades. Metastasis occurred in all grades of primary NEN and the grades of the metastatic tumors and their corresponding primary tumors were similar in 67% of the cases. Of the 79 patients, 36 had at least one follow up visit with a median duration of follow up of 8.5 mo (range: 1-50 mo). This study did not show any impact of the grade of tumor on the short term clinical outcome of these patients. CONCLUSION Liver biopsy is an important tool for clinicopathological characterization and grading of NEN, especially when the primary is not identified. Eighty-seven percent of the

  1. Methanol selective fibre-optic gas sensor with a nanoporous thin film of organic-inorganic hybrid multilayers

    NASA Astrophysics Data System (ADS)

    Wang, T.; Okuda, H.; Lee, S.-W.

    2015-07-01

    The development of an evanescent wave optical fibre (EWOF) sensor modified with an organic-inorganic hybrid nanoporous thin film for alcohol vapor detection was demonstrated. The optical fibre with a core diameter of 200 μm was bent into U-shape probe optic fibre to enhance the penetation depth of light transferred into the evanescent filed. The bended region of the fibre was modified with a multilayered thin film of poly(allyamine hydrochloride) and silica nanoparticels, (PAH/SiO2)n, by a layer-by-layer (LbL) film deposition technique, followed by infusion of tetrakis(4- sulfophenyl)porphine, TPPS. The mesoporous film structure showed high sensitivity and selectivity to methanol by the aid of the TPPS infused inside the film. The optical sensor response was reversible and reproducible over many times of exposures to analytes, which was caused by the change in refractive index (RI) of the film.

  2. Nonblocking photonic switching for P2P self-organized optical concurrent communications network using pseudo-random numbers

    NASA Astrophysics Data System (ADS)

    Oshima, Naoki; Nozaki, Yusuke; Sasaki, Wakao

    2007-02-01

    Peer-to-peer (P2P) optical communication network is presently attracting much attention in the application of smallscale network. We proposed a network element called as a node fabricated by optoelectronics hardware based on the optical bistable devices. These nodes can compose a self-organizing optical network being interconnected with each other. We also proposed an adaptive node with gate function which detects the differences of signal types as to the amplitude modulation (AM) signal in the network and switches their routings. Thus, the adaptive node allows optical P2P concurrent communications between multiple pairs of communicators in the network simultaneously. Moreover, we have proposed in the present work an optical nonblocking operation using the pseudorandom numbers fabricated into the above mentioned adaptive nodes. We have newly considered a switching scheme which identifies such pseudorandom numbers and forms automatically a signal propagation path so that the nodes with the same input pseudorandom numbers are to be linked. Since such a pseudorandom-number based switching may also prevent any irregular interception of established links among nodes, our scheme is proved to be a nonblocking operation. Therefore, this scheme allows multiple signals from input nodes to travel in the network simultaneously via only a single propagation path being established by the self-organized adaptive nodes. We have also demonstrated this switching operation experimentally by fabricating it into our optoelectronics hardware based on the optical bistable devices. As a consequence, nonblocking photonic switching scheme for P2P self-organized optical concurrent communications network has been achieved by our pseudorandom-number based adaptive nodes proposed by the present work.

  3. Characteristic study on volatile organic compounds optical fiber sensor with zeolite thin film-coated spherical end

    NASA Astrophysics Data System (ADS)

    Wu, Binqing; Zhao, Chunliu; Kang, Juan; Wang, Dongning

    2017-03-01

    In this paper, characteristic of volatile organic compounds (VOCs) optical fiber sensor with zeolite thin film-coated spherical end were investigated detailedly. The zeolite film and spherical end constituted an arc-shaped inline Fabry-Perot (F-P) cavity, and VOCs were measured by monitoring the wavelength shift of F-P interference which induced by the VOCs molecule adsorption of the zeolite film. The responses of the optical fiber sensor for monitoring isopropanol and formaldehyde were observed and especially observing the response of the optical fiber sensor in the mixed VOCs state. Experimental results show that the sensitivities of the optical fiber sensor for monitoring isopropanol and formaldehyde are 281.9 pm/ppm and 4.99 pm/ppm, respectively. The optical fiber sensor is more suitable for isopropanol measurement than formaldehyde. In the mixed VOCs state, the characteristic of the optical fiber sensor for isopropanol measurement is slightly changed when the air chamber is mixed with low concentration of formaldehyde, but the optical fiber sensor is still effective for isopropanol measurement.

  4. Tuning The Optical, Charge Injection, and Charge Transport Properties of Organic Electronic Devices

    NASA Astrophysics Data System (ADS)

    Zalar, Peter

    Since the early 1900's, synthetic insulating polymers (plastics) have slowly taken over the role that traditional materials like wood or metal have had as basic components for construction, manufactured goods, and parts. Plastics allow for high throughput, low temperature processing, and control of bulk properties through molecular modifications. In the same way, pi-conjugated organic molecules are emerging as a possible substitute for inorganic materials due to their electronic properties. The semiconductive nature of pi-conjugated materials make them an attractive candidate to replace inorganic materials, primarily due to their promise for low cost and large-scale production of basic semiconducting devices such as light-emitting diodes, solar cells, and field-effect transistors. Before organic semiconductors can be realized as a commercial product, several hurdles must be cleared. The purpose of this dissertation is to address three distinct properties that dominate the functionality of devices harnessing these materials: (1) optical properties, (2) charge injection, and (3) charge transport. First, it is shown that the electron injection barrier in the emissive layer of polymer light-emitting diodes can be significantly reduced by processing of novel conjugated oligoelectrolytes or deoxyribonucleic acid atop the emissive layer. Next, the charge transport properties of several polymers could be modified by processing them from solvents containing small amounts of additives or by using regioregular and enantiopure chemical structures. It is then demonstrated that the optical and electronic properties of Lewis basic polymer structures can be readily modified by interactions with strongly electron-withdrawing Lewis acids. Through red-shifted absorption, photoluminescence, and electroluminescence, a single pi-conjugated backbone can be polychromatic. In addition, interaction with Lewis acids can remarkably p-dope the hole transport of the parent polymer, leading to a

  5. Penetration studies of topically applied substances: Optical determination of the amount of stratum corneum removed by tape stripping.

    PubMed

    Lademann, J; Ilgevicius, A; Zurbau, O; Liess, H D; Schanzer, S; Weigmann, H J; Antoniou, C; Pelchrzim, R V; Sterry, W

    2006-01-01

    Tape stripping is a standard measuring method for the investigation of the dermatopharmacokinetics of topically applied substances using adhesive films. These tape strips are successively applied and removed from the skin after application and penetration of topically applied substances. Thus, layers of corneocytes and some amount of topical applied substances are removed. The amount of substances and the amount of stratum corneum removed with a single tape strip has to be determined for the calculation of the penetration profile. The topically applied substances removed from the skin can be determined by classical analytical methods like high-pressure liquid chromatography, mass spectroscopy, and spectroscopic measurements. The amount of corneocytes on the tape strips can be easily detected by their pseudoabsorption. In the present paper, an easy and cheap corneocyte density analyzer is presented that is based on a slide projector. Comparing the results of the measurements obtained by the corneocyte density analyzer and by uv-visible spectrometry, identical results were obtained.

  6. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-03-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, organic carbon is measured from a quartz fiber filter that has been exposed to a volume of ambient air and analyzed using thermal methods such as thermal-optical reflectance (TOR). Here, methods are presented that show the feasibility of using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters to accurately predict TOR OC. This work marks an initial step in proposing a method that can reduce the operating costs of large air quality monitoring networks with an inexpensive, non-destructive analysis technique using routinely collected PTFE filter samples which, in addition to OC concentrations, can concurrently provide information regarding the composition of organic aerosol. This feasibility study suggests that the minimum detection limit and errors (or uncertainty) of FT-IR predictions are on par with TOR OC such that evaluation of long-term trends and epidemiological studies would not be significantly impacted. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least-squares regression is used to calibrate sample FT-IR absorbance spectra to TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date. The calibration produces precise and accurate TOR OC predictions of the test set samples by FT-IR as indicated by high coefficient of variation (R2; 0.96), low bias (0.02 μg m-3, the nominal IMPROVE sample volume is 32.8 m3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision to collocated TOR measurements. FT-IR spectra are also

  7. Optical evolution of laboratory-produced organics - Applications to Phoebe, Iapetus, outer belt asteroids and cometary nuclei

    NASA Astrophysics Data System (ADS)

    Andronico, G.; Baratta, G. A.; Spinella, F.; Strazzulla, G.

    1987-10-01

    Optical and NIR spectra (0.3 - 2.5 μm) of organic materials, synthesized in the laboratory by ion beam bombardment, are presented. The spectral response of the organics changes as the ion fluence increases. They become darker and darker with increasing fluence. The authors suggest that bombardment by solar ions may produce both organic materials similar to those on D-type asteroids (and on the Iapetus leading hemisphere) and carbonaceous materials similar to those on C-type asteroids (and on Phoebe). The relevance of these experimental results in understanding the darkness of (some?) cometary nuclei is also outlined.

  8. Nanoscale Spatial Organization of Prokaryotic Cells Studied by Super-Resolution Optical Microscopy

    NASA Astrophysics Data System (ADS)

    McEvoy, Andrea Lynn

    All cells spatially organize their interiors, and this arrangement is necessary for cell viability. Until recently, it was believed that only eukaryotic cells spatially segregate their components. However, it is becoming increasingly clear that bacteria also assemble their proteins into complex patterns. In eukaryotic cells, spatial organization arises from membrane bound organelles as well as motor transport proteins which can move cargos within the cell. To date, there are no known motor transport proteins in bacteria and most microbes lack membrane bound organelles, so it remains a mystery how bacterial spatial organization emerges. In hind-sight it is not surprising that bacteria also exhibit complex spatial organization considering much of what we have learned about the basic processes that take place in all cells, such as transcription and translation was first discovered in prokaryotic cells. Perhaps the fundamental principles that govern spatial organization in prokaryotic cells may be applicable in eukaryotic cells as well. In addition, bacteria are attractive model organism for spatial organization studies because they are genetically tractable, grow quickly and much biochemical and structural data is known about them. A powerful tool for observing spatial organization in cells is the fluorescence microscope. By specifically tagging a protein of interest with a fluorescent probe, it is possible to examine how proteins organize and dynamically assemble inside cells. A significant disadvantage of this technology is its spatial resolution (approximately 250 nm laterally and 500 nm axially). This limitation on resolution causes closely spaced proteins to look blurred making it difficult to observe the fine structure within the complexes. This resolution limit is especially problematic within small cells such as bacteria. With the recent invention of new optical microscopies, we now can surpass the existing limits of fluorescence imaging. In some cases, we can

  9. Crystal structure, optical and thermal studies of a new organic nonlinear optical material: L-Histidinium maleate 1.5-hydrate

    SciTech Connect

    Gonsago, C. Alosious; Albert, Helen Merina; Karthikeyan, J.; Sagayaraj, P.; Pragasam, A. Joseph Arul

    2012-07-15

    Highlights: ► L-Histidinium maleate 1.5-hydrate, a new organic crystal has been grown for the first time. ► The crystal structure is reported for the first time (CCDC 845975). ► The crystal belongs to monoclinic system with space group P2{sub 1}, Z = 4, a = 11.4656(7) Å, b = 8.0530(5) Å, c = 14.9705(9) Å and β = 101.657(2)°. ► The optical absorption study substantiates the complete transparency of the crystal. ► Kurtz powder SHG test confirms the nonlinear property of the crystal. -- Abstract: A new organic nonlinear optical material L-histidinium maleate 1.5-hydrate (LHM) with the molecular formula C{sub 10}H{sub 16}N{sub 3}O{sub 7.5} has been successfully synthesized from aqueous solution by slow solvent evaporation method. The structural characterization of the grown crystal was carried out by single crystal X-ray diffraction at 293(2) K. In the crystal, molecules are linked through inter and intramolecular N-H⋯O and O-H⋯O hydrogen bonds, generate edge fused ring motif. The hydrogen bonded motifs are linked to each other to form a three dimensional network. The FT-IR spectroscopy was used to identify the functional groups of the synthesized compound. The optical behavior of the grown crystal was examined by UV–visible spectral analysis, which shows that the optical absorption is almost negligible in the wavelength range 280–1300 nm. The nonlinear optical property was confirmed by the powder technique of Kurtz and Perry. The thermal behavior of the grown crystal was analyzed by thermogravimetric analysis.

  10. Applying RGB LED in full-field optical coherence tomography for real-time full-color tissue imaging.

    PubMed

    Yang, Bor-Wen; Wang, Yu-Yen; Lin, Yu-Min; Juan, Yu-Shan; Chen, Hung-Te; Ying, Shang-Ping

    2014-08-01

    A conventional handheld skin camera is suitable for 2D inspection of shallow skin. Due to its high resolution and noninvasiveness, optical coherence tomography (OCT) has become a popular medical-imaging technology. Among OCT schemes, full-field optical coherence tomography (FF-OCT) is suitable for rapid en face imaging, as it uses a 2D imaging device for pixel processing of a sample plane. Because of its wide bandwidth and long lifetime, an RGB LED was chosen in an FF-OCT system among three source candidates in this study. A full-color tissue image and real-time video were obtained from the system to demonstrate the potential of the RGB LED FF-OCT system in medical imaging. All devices used here can be integrated by micro-optoelectromechanical technology into a handheld model. Noninvasive, real-time, full-color handheld imaging capability contributes to advance dermatology and cosmetology.

  11. On the possibility of applying a mirror ellipsoid of revolution to determining optical properties of biological tissues

    NASA Astrophysics Data System (ADS)

    Bezuglyi, M. A.; Yarych, A. V.; Botvinovskii, D. V.

    2012-07-01

    Possibilities of a measuring system that uses an ellipsoidal mirror for determining the coefficients of scattering μ s and absorption μ a , as well as the anisotropy factor g, of a biological tissue are studied. Based on the measured values of diffuse reflection and total and collimated transmission and on a simulation by the inverse Monte Carlo method, the values of optical parameters of porcine epidermis were obtained in vitro at a wavelength of 632.8 nm.

  12. Sub-wavelength modulation of χ(2) optical nonlinearity in organic thin films

    PubMed Central

    Yan, Yixin; Yuan, Yakun; Wang, Baomin; Gopalan, Venkatraman; Giebink, Noel C.

    2017-01-01

    Modulating the second-order nonlinear optical susceptibility (χ(2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor–acceptor (DA) interface, as a means to control the magnitude and sign of χ(2) at the nanoscale. Focusing initially on a single pentacene-C60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed via second harmonic generation that is sufficient to achieve d33>10 pm V−1, when incorporated in a non-centrosymmetric DA multilayer stack. Using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ(2) grating with 280 nm periodicity, which is the shortest reported to date. PMID:28128278

  13. Highly sensitive organic ultraviolet optical sensor based on phosphorescent Cu (I) complex

    NASA Astrophysics Data System (ADS)

    Kong, Zhiguo; Li, Wenlian; Che, Guangbo; Chu, Bei; Bi, Defeng; Han, Liangliang; Chen, Lili; Hu, Zhizhi; Zhang, Zhiqiang

    2006-10-01

    Ultraviolet light-sensitive organic optical sensor based on photovoltaic diode was demonstrated by using a phosphorescent Cu complex and a diamine derivative as electroacceptor and electrodonor, respectively. The Cu complex is Cu(DPEphos )((Bphen))BF4, in which DPEphos and Bphen denote 6,7-dicyanodipyrido [2,2-d:2',3'-f] quinoxaline and bathophenanthroline. And the diamine derivative, m-MTDATA, is 4, 4',4″-tris-(2-methylphenyl phenylamino) triphenylamine. The sensor is highly sensitive to UV light band from 300to420nm while it has almost no response to the visible light, and under illumination of 365nm light with power of 1.7mW/cm2, the sensor exhibits an open circuit voltage of 1.86V, a short circuit current of 105.3μA/cm2, a fill factor of 0.246, and a power conversion efficiency of 2.83%. The dependences of ultraviolet responsive sensitivity on illumination intensity and working temperature were also discussed.

  14. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-01

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N'-diphenyl-N,N'-bis(1-naphthyl)-[1,1'-biphthyl]-4,4'-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  15. Nonlinear optical analyses of organic N-(9-Anthrylmethylidene) methylamine Schiff base.

    PubMed

    Vijayalakshmi, S; Kalyanaraman, S; Krishnakumar, V

    2013-05-15

    The organic NLO Schiff base of N-(9-Anthrylmethylidene) methylamine was synthesized by condensation process. The material was characterized through Powder XRD, FT-IR, and Raman techniques. The various planes of reflection are identified from the Powder XRD pattern. The formation of Schiff base is confirmed through FT-IR and Raman analysis. The intra molecular charge transfer interaction and the existence of the first-order molecular hyperpolarizability (β) are identified from the red shift of the UV-Vis analysis. The structure of the molecule was optimized by density functional theory (DFT) using B3LYP method with 6-31G basis set. The NBO analysis is used to interpret the delocalization. The dipole moment and first hyperpolarizability values were also computed by HF/6-31G. These values indicate that the compound is a good candidate with nonlinear optical properties. This is the first time report on the existence of a second harmonic generation (SHG), χ(2), efficiency that has been identified by Powder Kurtz-Perry method.

  16. Sub-wavelength modulation of χ(2) optical nonlinearity in organic thin films

    NASA Astrophysics Data System (ADS)

    Yan, Yixin; Yuan, Yakun; Wang, Baomin; Gopalan, Venkatraman; Giebink, Noel C.

    2017-01-01

    Modulating the second-order nonlinear optical susceptibility (χ(2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor-acceptor (DA) interface, as a means to control the magnitude and sign of χ(2) at the nanoscale. Focusing initially on a single pentacene-C60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed via second harmonic generation that is sufficient to achieve d33>10 pm V-1, when incorporated in a non-centrosymmetric DA multilayer stack. Using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ(2) grating with 280 nm periodicity, which is the shortest reported to date.

  17. Electrically and optically detected spin echo of hopping carriers in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, Vagharsh; Dobrovitski, Viatcheslav

    We develop a theory for electrically and optically detected primary (2-pulse) and stimulated (3-pulse) spin echo produced by the polaron pairs coupled to the nuclear spins in organic semiconductors. The theory employs fully quantum description of the nuclear and polaron spins, and explains how the structure of the echo signal (electron spin echo envelope modulation, ESEEM) depends on the statistics and rate of the polaron hopping. For the primary spin echo the envelope modulation is strong for slow hopping; both modulation amplitude and dephasing time T2 decrease with increasing hopping rate. As the hopping rate increases further, T2 starts to increase again due to motional narrowing, while the primary echo signal becomes exponential without modulation. The stimulated spin echo signal also shows strong envelope modulation for slow polaron hopping. For faster hopping the stimulated echo (unlike the primary echo) shows a modulation which does not disappear for fast hopping, and has the frequency of the nuclear Larmor precession. Besides describing the recent spin echo measurements in π-conjugated polymers, our work provides a way to directly determine the polaron hopping dynamics from the spin echo experiments. This work was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  18. Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Stolz, A.; Cho, E.; Dogheche, E.; Androussi, Y.; Troadec, D.; Pavlidis, D.; Decoster, D.

    2011-04-01

    The waveguide properties are reported for wide bandgap gallium nitride (GaN) structures grown by metal organic vapor phase epitaxy on sapphire using a AlN/GaN short period-superlattice (SPS) buffer layer system. A detailed optical characterization of GaN structures has been performed using the prism coupling technique in order to evaluate its properties and, in particular, the refractive index dispersion and the propagation loss. In order to identify the structural defects in the samples, we performed transmission electron microscopy analysis. The results suggest that AlN/GaN SPS plays a role in acting as a barrier to the propagation of threading dislocations in the active GaN epilayer; above this defective region, the dislocations density is remarkably reduced. The waveguide losses were reduced to a value around 0.65dB/cm at 1.55 μm, corresponding to the best value reported so far for a GaN-based waveguide.

  19. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    PubMed

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.

  20. [CHROMATIN ORGANIZATION IN CELL CYCLE OF AMOEBA PROTEUS ACCORDING TO OPTICAL TOMOGRAPHY DATA].

    PubMed

    Demin, S Yu; Berdieva, M A; Podlipaeva, Yu I; Yudin, A L; Goodkov, A V

    2015-01-01

    For the first time the nuclear cycle of large freshwater amoeba Amoeba proteus was studied by the method of optical tomography. The nuclei were fixed in situ in the cells of synchronized culture, stained by DAPI and examined by confocal laser scanning microscope. 3D-images of intranuclear chromatin were studied in details at different stages of nuclear cycle. The obtained data, together with literary ones allow represent the dynamics of structural organization of the nucleus in Amoeba proteus cell cycle in a new fashion. It was concluded that in this species the two-stage interphase takes place, as well as mitosis of peculiar type which does not correspond to any known type of mitosis according to classification existing now. It is presumed that in the course of nuclear cycle the chromosomes and/or their fragments are amplified, this presumption being in a good correspondence with the data about nuclear DNA hyperreplication in the cell cycle of A. proteus. As a result of chromosomes amplification their number may vary at different stages of cell cycle, and it allows to explain the contradictory data concerning the exact number of chromosomes in this species. The elimination of extra-DNA occurs mainly at the stage between prophase and prometaphase. We presume the majority of chromosomes, or may be even all of them to be referred to cholocentric type according to their behaviour during the mitosis.

  1. Comparisons of N-state Models for the Nonlinear Optical Properties of Organic and Inorganic Molecules

    NASA Astrophysics Data System (ADS)

    Ferris, K. F.; Exarhos, G. J.; Risser, S. M.; Wolfgang, J.

    1997-03-01

    While the nonlinear optical properties of materials are frequently interpreted using a two or three state model for the electronic spectrum, systems with a more complex electronic structure require an approach which can denote state importance. In this paper, we examine and compare the electronic origin of the NLO properties for an inorganic polymer (polyphosphazenes) and an organic system (5-CB). In previous work we have shown that the electronic absorption spectrum of these compounds is complicated by localized excitations caused by geometric, charge distribution and symmetry constraints. These effects invoke both multistate and multiconfiguration contributions to the electronic transitions. In particular, the phosphazene system possessing in-plane and out-of-plane pi bonding networks requires a more flexible approach. Electronic structure calculations (NDDO/AM1) will be presented to illustrate the sensitivity of NLO properties to these effects and to suggest methods to control their nonlinearities. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division under contract DE-AC06-76RLO 1830.

  2. Sub-wavelength modulation of χ(2) optical nonlinearity in organic thin films

    DOE PAGES

    Yan, Yixin; Yuan, Yakun; Wang, Baomin; ...

    2017-01-27

    Modulating the second-order nonlinear optical susceptibility (χ(2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor–acceptor (DA) interface, as a means to control the magnitude and sign of χ(2) at the nanoscale. Focusing initially on a single pentacene-C60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed via second harmonic generationmore » that is sufficient to achieve d33 > 10pm V–1, when incorporated in a non-centrosymmetric DA multilayer stack. Lastly, using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ(2) grating with 280 nm periodicity, which is the shortest reported to date.« less

  3. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    SciTech Connect

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  4. Effects of organized turbulence structures on the phase distortion in a coherent optical beam propagating through a turbulent shear flow

    NASA Astrophysics Data System (ADS)

    Truman, C. Randall; Lee, Moon Joo

    1990-05-01

    Effects of organized turbulence structures on the propagation of an optical beam in a turbulent shear flow have been analyzed. An instantaneous passive-scalar field in a computed homogeneous turbulent shear flow is used to represent index-of-refraction fluctuations, and phase distortion induced in a coherent optical beam by turbulent fluctuations is calculated. The organized vortical structures (``hairpin-shaped'' eddies) in the turbulent flow give rise to a scalar distribution with elongated regions of intense fluctuation, which have an inclination (about 30°) with respect to the mean flow, similar to that of the characteristic ``hairpin'' eddies. Two-point correlations of vorticity and scalar fluctuations support a proposed physical model in which the regions of intense scalar fluctuation are produced primarily by hairpin vortices. It is found that the spatial distribution of the phase distortion has a substantial variation with the direction of propagation. A highly localized distribution of intense phase distortions is produced when the optical beam propagates at an angle (45°) close to the inclination of hairpin vortices; at larger angles of propagation the distribution shows an elongated pattern with smaller phase distortions. It is also found that the root-mean-square phase distortion depends significantly on the propagation direction, and the phase distortion can be minimized at an angle of propagation approximately normal to the inclination of hairpin eddies. This study shows how the characteristics of an optical beam propagating through a turbulent shear flow are affected by the geometrical configurations of organized vortical structures.

  5. Polymer waveguides self-organized by two-photon photochemistry for self-aligned optical couplings with wide misalignment tolerances

    NASA Astrophysics Data System (ADS)

    Yoshimura, Tetsuzo; Takeda, Daisuke; Sato, Takuya; Kinugasa, Yoshihiko; Nawata, Hideyuki

    2016-03-01

    Self-organized optical waveguides formed in a photopolymer using two-photon photochemistry is proposed for self-aligned optical couplings involving nano-scale optical devices with wide tolerances in lateral misalignments. Simulations based on the finite-difference time-domain method revealed that on introducing a 400-nm write beam and a 780-nm write beam into the two-photon photopolymer respectively from two 600-nm-wide waveguides facing each other with 32 μm gap a self-aligned coupling waveguide called a two-photon self-organized lightwave network (SOLNET) is formed between the two waveguides. The lateral misalignment tolerance was found to be 3000 nm, which is five times larger than the misalignment limit of ~600 nm in waveguides formed by conventional one-photon photochemistry. Preliminary experiments demonstrated that the two-photon SOLNETs are formed between multimode optical fibers by introducing a 448-nm write beam and a 780-nm (or 856-nm) write beam from the fibers into a photosensitive organic/inorganic hybrid material, SUNCONNECT®, with doped camphorquinone (or biacetyl).

  6. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure

    PubMed Central

    2012-01-01

    The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  7. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters.

    PubMed

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K

    2013-08-01

    Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response.

  8. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters

    PubMed Central

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei

    2013-01-01

    Abstract. Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response. PMID:23922124

  9. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters

    NASA Astrophysics Data System (ADS)

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K.

    2013-08-01

    Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response.

  10. 25 CFR 900.44 - What minimum general standards apply to all Indian tribe or tribal organization financial...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or tribal organization financial management systems when carrying out a self-determination contract... organization financial management systems when carrying out a self-determination contract? The fiscal control... EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems Standards...

  11. 25 CFR 900.44 - What minimum general standards apply to all Indian tribe or tribal organization financial...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... or tribal organization financial management systems when carrying out a self-determination contract... organization financial management systems when carrying out a self-determination contract? The fiscal control... EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems Standards...

  12. 25 CFR 900.44 - What minimum general standards apply to all Indian tribe or tribal organization financial...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... or tribal organization financial management systems when carrying out a self-determination contract... organization financial management systems when carrying out a self-determination contract? The fiscal control... EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems Standards...

  13. Development of feature extraction analysis for a multi-functional optical profiling device applied to field engineering applications

    NASA Astrophysics Data System (ADS)

    Han, Xu; Xie, Guangping; Laflen, Brandon; Jia, Ming; Song, Guiju; Harding, Kevin G.

    2015-05-01

    In the real application environment of field engineering, a large variety of metrology tools are required by the technician to inspect part profile features. However, some of these tools are burdensome and only address a sole application or measurement. In other cases, standard tools lack the capability of accessing irregular profile features. Customers of field engineering want the next generation metrology devices to have the ability to replace the many current tools with one single device. This paper will describe a method based on the ring optical gage concept to the measurement of numerous kinds of profile features useful for the field technician. The ring optical system is composed of a collimated laser, a conical mirror and a CCD camera. To be useful for a wide range of applications, the ring optical system requires profile feature extraction algorithms and data manipulation directed toward real world applications in field operation. The paper will discuss such practical applications as measuring the non-ideal round hole with both off-centered and oblique axes. The algorithms needed to analyze other features such as measuring the width of gaps, radius of transition fillets, fall of step surfaces, and surface parallelism will also be discussed in this paper. With the assistance of image processing and geometric algorithms, these features can be extracted with a reasonable performance. Tailoring the feature extraction analysis to this specific gage offers the potential for a wider application base beyond simple inner diameter measurements. The paper will present experimental results that are compared with standard gages to prove the performance and feasibility of the analysis in real world field engineering. Potential accuracy improvement methods, a new dual ring design and future work will be discussed at the end of this paper.

  14. Influence of applied electric fields on the electron-related second and third-order nonlinear optical responses in two dimensional elliptic quantum dots

    NASA Astrophysics Data System (ADS)

    Giraldo-Tobón, Eugenio; Ospina, Walter; Miranda-Pedraza, Guillermo L.; Mora-Ramos, Miguel E.

    2015-07-01

    The coefficients of the second-order nonlinear optical rectification and the generation of second and third harmonics, related to electron energy transitions in a two-dimensional elliptical quantum dot are calculated. The conduction band states are obtained using the finite element method to numerically solve the effective mass Schrödinger differential equation in the parabolic approximation, including the influence of an externally applied static electric field. It comes about that the geometry of the ellipse has a strong influence on the optical response, being the large eccentricity case the more favorable one. Furthermore, it is shown that the application of an electric field is of most importance for achieving well-resolved higher harmonics signals.

  15. Structural, thermal and optical characterization of a Schiff base as a new organic material for nonlinear optical crystals and films with reversible noncentrosymmetry.

    PubMed

    Rodríguez, Mario; Ramos-Ortíz, Gabriel; Maldonado, José Luis; Herrera-Ambriz, Víctor M; Domínguez, Oscar; Santillan, Rosa; Farfán, Norberto; Nakatani, Keitaro

    2011-09-01

    Macroscopic single crystals of (E)-5-(diethylamino)-2-((3,5-dinitrophenylimino)methyl)phenol (DNP) were obtained from slow cooling of chloroform or dichlorometane saturated solutions at controlled temperature. X-ray diffraction analysis showed that this compound crystallizes in a noncentrosymmetric space group (P2(1)2(1)2(1)). Thermal analysis was performed and indicated that the crystals are stable until 260 °C. Second-order nonlinear optical properties of DNP were experimentally investigated in solution through EFISH technique and in solid state through the Kurtz-Perry powder technique. Crystals of compound DNP exhibited a second-harmonic signals 39 times larger than of the technologically useful potassium dihydrogenphosphate (KDP) under excitation at infrared wavelengths. In addition, the second-order nonlinear optical properties of DNP were also studied at visible wavelengths through the photorefractive effect and applied to demonstrate dynamic holographic reconstruction.

  16. Photometric flow injection determination of phosphate on a PDMS microchip using an optical detection system assembled with an organic light emitting diode and an organic photodiode.

    PubMed

    Liu, Rong; Ishimatsu, Ryoichi; Yahiro, Masayuki; Adachi, Chihaya; Nakano, Koji; Imato, Toshihiko

    2015-01-01

    A compact photometric detector was constructed from an organic light emitting diode (OLED) based on a europium complex, europium(diben-zoylmethanato)3(bathophenanthroline) (Eu(DBM)3bath), as the light source and an organic photodiode (OPD) fabricated from a hetero-junction of two layers of copper phthalocyanine (CuPc)/fullerene (C60) as the photo-detector on a microchip prepared from poly(dimethylsiloxan) (PDMS) and was applied to the determination of phosphate. The OLED and the OPD were fabricated by a vapor deposition method on an indium tin oxide (ITO) coated glass substrate with the following layered structure; Glass (0.7 mm)/ITO (110 nm)/4,4'-bis[N-(1-naphthyl)-N-phenyl amino]-biphenyl (α-NPD) (30 nm)/4,4'-di(N-carbazolyl)biphenyl (CBP): Eu(3+) (8 wt%, 30 nm)/bathocuproine (BCP) (30 nm)/aluminum tris(8-hydroxyquinoline) (Alq3) (25 nm)/magnesium and silver (MgAg) (100 nm)/Ag (10nm) and Glass (0.7 mm)/ITO (110 nm)/CuPc (35 nm)/C60 (50 nm)/BCP (10 nm)/Ag (50 nm), respectively. The OLED based on the europium complex emitted a sharp light at the wavelength of 612 nm with a full width at half maximum (FWHM) of 8 nm. The performance of the photometric detector assembled was evaluated based on measurements of the absorbance of different concentrations of malachite green (MG) solutions for a batch system with 1cm long path length. The molar absorptive coefficient of the MG solution, calculated from the photocurrent of the OPD, was in good agreement with the value reported in the literature. A microchip with two inlets and one outlet U-shaped channel was prepared by a conventional photolithograph method. The OLED and the OPD were configured so as to face each other through the PDMS microchip in parallel in order to align the light axis of the OLED and the OPD with the flow cell (optical path length of 5mm), which was located at the end of outlet. For the determination of phosphate, an ion-association reaction between MG and a molybdenum-phosphate complex was utilized

  17. Technical Digest of the 1998 Summer Topical Meeting on Organic Optics and Optoelectronics

    DTIC Science & Technology

    1998-07-01

    Real World 37 WA3: Islands of Transparency - An Emerging Reality in Multiwavelength Optical Networking N/A Broadband Optical Networks and...than an LED , is the high relative intensity noise (RIN). Transmitting the laser through a WGR (or any narrow optical band-pass filter) will con...for High Capacity Multiwavelength Transport Network", IEEE Journal of Lightwave Technology, vol. 14, no. 6, June 1996, pp. 1198-1206. [9] M. Garnot

  18. Langley method applied in study of aerosol optical depth in the Brazilian semiarid region using 500, 670 and 870 nm bands for sun photometer calibration

    NASA Astrophysics Data System (ADS)

    Cerqueira, J. G.; Fernandez, J. H.; Hoelzemann, J. J.; Leme, N. M. P.; Sousa, C. T.

    2014-10-01

    Due to the high costs of commercial monitoring instruments, a portable sun photometer was developed at INPE/CRN laboratories, operating in four bands, with two bands in the visible spectrum and two in near infrared. The instrument calibration process is performed by applying the classical Langley method. Application of the Langley’s methodology requires a site with high optical stability during the measurements, which is usually found in high altitudes. However, far from being an ideal site, Harrison et al. (1994) report success with applying the Langley method to some data for a site in Boulder, Colorado. Recently, Liu et al. (2011) show that low elevation sites, far away from urban and industrial centers can provide a stable optical depth, similar to high altitudes. In this study we investigated the feasibility of applying the methodology in the semiarid region of northeastern Brazil, far away from pollution areas with low altitudes, for sun photometer calibration. We investigated optical depth stability using two periods of measurements in the year during dry season in austral summer. The first one was in December when the native vegetation naturally dries, losing all its leaves and the second one was in September in the middle of the dry season when the vegetation is still with leaves. The data were distributed during four days in December 2012 and four days in September 2013 totaling eleven half days of collections between mornings and afternoons and by means of fitted line to the data V0 values were found. Despite the high correlation between the collected data and the fitted line, the study showed a variation between the values of V0 greater than allowed for sun photometer calibration. The lowest V0 variation reached in this experiment with values lower than 3% for the bands 500, 670 and 870 nm are displayed in tables. The results indicate that the site needs to be better characterized with studies in more favorable periods, soon after the rainy season.

  19. Fabrication of optical element from unidirectional grown imidazole-imidazolium picrate monohydrate (IIP) organic crystals for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Vivek, P.; Murugakoothan, P.

    2014-12-01

    Nonlinear optical bulk single crystal of Imidazole-imidazolium picrate monohydrate (IIP) has been grown by Sankaranarayanan-Ramasamy (SR) method using acetonitrile as solvent. First time we report the bulk growth of IIP crystal by SR method. The transparent IIP single crystal of maximum diameter 21 mm and length 46 mm was obtained by employing SR method. The grown crystal was subjected to high resolution X-ray diffraction, UV-vis-NIR transmittance, refractive index, hardness, dielectric and laser damage threshold studies. The crystalline perfection of the grown crystal was analyzed using HRXRD. Cut off wavelength and optical transmission window of the crystal was assessed by UV-vis-NIR and the refractive index of the crystal was found. The mechanical property of the crystal was estimated by Vicker's hardness test. The dielectric property of the crystal was measured as a function of frequency. The laser damage threshold value was determined. The particle size dependent second harmonic generation efficiency for IIP was evaluated with standard reference material potassium dihydrogen phosphate (KDP) by Kurtz-Perry powder method using Nd:YAG laser, which established the existence of phase matching. The second harmonic generation (SHG) of IIP crystal was investigated by the SHG Maker fringes technique. The mechanism of growth is revealed by carrying out chemical etching using acetonitrile as etchant.

  20. Fibre-optic nonlinear optical microscopy and endoscopy.

    PubMed

    Fu, L; Gu, M

    2007-06-01

    Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.

  1. Laboratory Measurements of the Effect of Sulfuric and Organic Acid Coatings on the Optical Properties of Carbon Soot Aerosols

    NASA Astrophysics Data System (ADS)

    Xue, H.; Khalizov, A.; Zhang, R.

    2008-12-01

    Aerosol particles perturb the Earth-atmosphere radiative balance through scattering and absorption of the solar energy. Soot or black carbon, produced during combustion of fossil fuels and biofuels, is the major component responsible for light absorption by aerosol particles. The variation in the reported mass-specific absorption cross-sections (MAC) of fresh soot and increased light absorption by aged soot aerosols internally mixed with non-absorbing materials are the major factors leading to large uncertainties in the evaluation of the aerosol optical effects. We have investigated the optical properties of submicron carbon soot aerosols during simulated atmospheric processing with sulfuric acid and dicarboxylic organic acids. Internally mixed soot particles with known size, morphology, and the mixing state were produced by exposing the size-classified, flame-generated soot to sulfuric acid and organic acid vapor. Light extinction and scattering by fresh and internally mixed soot were measured at 532 nm wavelength using a cavity ring-down spectrometer and an integrating nephelometer, respectively; light absorption was derived as the difference between extinction and scattering. Mass-specific absorption cross-sections for fresh and internally mixed soot aggregates were calculated using the measured effective densities of soot cores. The optical properties of fresh soot were independent of the relative humidity (RH). Internally mixed soot exhibited significant enhancement in light absorption and scattering, increasing with the mass fraction of the coating material and RH. Sulfuric acid was found to cause greater enhancement in soot optical properties than organic acids. The higher absorption and scattering resulted in the increased single scattering albedo of coated soot aerosol. The measurements indicate that the irreversible restructuring of soot aggregates to more compact globules is a major contributor to the enhanced optical properties of internally mixed soot.

  2. High-efficiency heterojunction crystalline Si solar cell and optical splitting structure fabricated by applying thin-film Si technology

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kenji; Adachi, Daisuke; Uzu, Hisashi; Ichikawa, Mitsuru; Terashita, Toru; Meguro, Tomomi; Nakanishi, Naoaki; Yoshimi, Masashi; Hernández, José Luis

    2015-08-01

    Thin-film Si technology for solar cells has been developed for over 40 years. Improvements in the conversion efficiency and industrialization of thin-film Si solar cells have been realized through continuous research and development of the thin-film Si technology. The thin-film Si technology covers a wide range of fields such as fundamental understanding of the nature of thin-film Si, cell/module production, simulation, and reliability technologies. These technologies are also significant for solar cells other than the thin-film Si solar cells. Utilizing the highly developed thin-film Si solar cell technology, we have achieved ∼24% efficiency heterojunction crystalline Si solar cells using 6-in. wafers and >26% efficiency solar cells with an optical splitting structure. These results indicate that further improvement of thin-film Si technology and its synergy with crystalline Si solar cell technology will enable further improvement of solar cells with efficiencies above 26%.

  3. Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Rung; Lin, Chen-Yu; Liao, Yi-Hua; Sun, Chi-Kuang

    2013-02-01

    Third-harmonic generation (THG) microscopy has been reported to provide intrinsic contrast in elastic fibers, cytoplasmic membrane, nucleus, actin filaments, lipid bodies, hemoglobin, and melanin in human skin. For advanced molecular imaging, exogenous contrast agents are developed for a higher structural or molecular specificity. We demonstrate the potential of the commonly adopted tattoo dye as a THG contrast agent for in vivo optical biopsy of human skin. Spectroscopy and microscopy experiments were performed on cultured cells with tattoo dyes, in tattooed mouse skin, and in tattooed human skin to demonstrate the THG enhancement effect. Compared with other absorbing dyes or nanoparticles used as exogenous THG contrast agents, tattoo dyes are widely adopted in human skin so that future clinical biocompatibility evaluation is relatively achievable. Combined with the demonstrated THG enhancement effect, tattoo dyes show their promise for future clinical imaging applications.

  4. Biochemical and Physiological Characterization: Development & Apply Optical Methods for Charaterizing Biochemical Protein-Protein Interactions in MR-1

    SciTech Connect

    Weiss, Shimon

    2006-08-30

    The objectives of this report are to: Develop novel site-specific protein labeling chemistries for assaying protein-protein interactions in MR-1; and development of a novel optical acquisition and data analysis method for characterizing protein-protein interactions in MR-1 model systems. Our work on analyzing protein-protein interactions in MR-1 is divided in four areas: (1) expression and labeling of MR-1 proteins; (2) general scheme for site-specific fluorescent labeling of expressed proteins; (3) methodology development for monitoring protein-protein interactions; and (4) study of protein-protein interactions in MR-1. In this final report, we give an account for our advances in all areas.

  5. Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.

    PubMed

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo

    2015-07-01

    Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.

  6. Polarized optical spectroscopy applied to investigate two poly(phenylene-vinylene) polymers with different side chain structures

    NASA Astrophysics Data System (ADS)

    Pâlsson, Lars-Olof; Vaughan, Helen L.; Monkman, Andrew P.

    2006-10-01

    Two related poly(phenylene-vinylene) (PPV) light-emitting polymers have been investigated by means of polarized optical spectroscopy. The purpose of the investigation was to investigate the nature of the interactions in thin films and to examine what impact the difference in side chain structure and molecular weight in poly(2'-methoxy-5-2-ethyl-hexoxy)-1,4-phenylene vinylene (MEH-PPV) and poly(2-(3',7'-dimethyloctyloxy)-5-methoxy-1,4-phenylene-vinylene) (OC1C10-PPV) has on the electronic and optical properties of the two polymers. Aligning the polymers by dispersing them in anisotropic solvents and stretched films shows that the side chains have an impact on the relative orientations of the transition dipole moments. In anisotropic solvents the linear dichroism is larger for MEH-PPV than for the related polymer OC1C10-PPV, while in stretched films the opposite situation prevails. A lower polarization of the luminescence from OC1C10-PPV, relative to MEH-PPV, was also obtained independent of alignment medium used. The data therefore suggest that while mechanical stretching may align the OC1C10-PPV to a greater degree, the emitting species is distinct from the absorbing species. The circular dichroism (CD) spectra of both polymers undergo dramatic changes when the liquid phase and the solid state (film) are compared. The solution CD spectra shows no evidence of interchain interactions; instead the spectra of both systems indicate a helical conformation of the polymers. The CD spectra of films are dramatically different with the strong Cotton effect being observed. This points to the formation of an aggregate in the film, with an associated ground state interaction, an interchain species such as a physical dimer, or a more complex higher aggregate.

  7. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    NASA Astrophysics Data System (ADS)

    Sreedhar, Sreeja; Illyaskutty, Navas; Sreedhanya, S.; Philip, Reji; Muneera, C. I.

    2016-05-01

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of the polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.

  8. Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature

    SciTech Connect

    Singh, Akhilesh K.; Barik, Puspendu; Ullrich, Bruno E-mail: bruno.ullrich@yahoo.com

    2014-12-15

    We observed changes of the transmitted monochromatic light passing through a colloidal PbS quantum dot film on glass owing to an applied moderate (smaller than 1 T) magnetic field under ambient conditions. The observed alterations show a square dependence on the magnetic field increase that cannot be achieved with bulk semiconductors. The findings point to so far not recognized application potentials of quantum dots.

  9. Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh K.; Barik, Puspendu; Ullrich, Bruno

    2014-12-01

    We observed changes of the transmitted monochromatic light passing through a colloidal PbS quantum dot film on glass owing to an applied moderate (smaller than 1 T) magnetic field under ambient conditions. The observed alterations show a square dependence on the magnetic field increase that cannot be achieved with bulk semiconductors. The findings point to so far not recognized application potentials of quantum dots.

  10. Terahertz pulse generation in an organic crystal by optical rectification and resonant excitation of molecular charge transfer

    NASA Astrophysics Data System (ADS)

    Carey, John J.; Bailey, Ray T.; Pugh, D.; Sherwood, J. N.; Cruickshank, F. R.; Wynne, Klaas

    2002-12-01

    Organic molecular crystals that are extremely efficient at terahertz-pulse generation are in- vestigated. Terahertz pulses produced by optical rectification at 800 nm in (-)2-(α-methylbenzyl-amino)-5-nitropyridine have an order of magnitude higher power than those generated in the commonly used inorganic crystal ZnTe. The organic molecular crystals were also found to generate terahertz pulses when excited on resonance at 400 nm. This may pave the way for studying ultrafast charge-transport dynamics in three dimensions.

  11. Optical Coherence Tomography to Measure Sound-Induced Motions Within the Mouse Organ of Corti In Vivo.

    PubMed

    Jawadi, Zina; Applegate, Brian E; Oghalai, John S

    2016-01-01

    The measurement of mechanical vibrations within the living cochlea is critical to understanding the first nonlinear steps in auditory processing, hair cell stimulation, and cochlear amplification. However, it has proven to be a challenging endeavor. This chapter describes how optical coherence tomography (OCT) can be used to measure vibrations within the tissues of the organ of Corti. These experimental measurements can be performed within the unopened cochlea of living mice routinely and reliably.

  12. 25 CFR 900.44 - What minimum general standards apply to all Indian tribe or tribal organization financial...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... organization financial management systems when carrying out a self-determination contract? The fiscal control... or tribal organization financial management systems when carrying out a self-determination contract... SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE INDIAN SELF-DETERMINATION...

  13. 25 CFR 900.44 - What minimum general standards apply to all Indian tribe or tribal organization financial...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... organization financial management systems when carrying out a self-determination contract? The fiscal control... or tribal organization financial management systems when carrying out a self-determination contract... SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE INDIAN SELF-DETERMINATION...

  14. Growth and birefringence studies of semi organic non-linear optical LHB single crystal

    NASA Astrophysics Data System (ADS)

    Jayaramakrishnan, V.; Prasanyaa, T.; Haris, M.; Bhoopathi, G.

    2015-02-01

    In the last few decades nonlinear optical materials are getting attention in the field of optical data storage, telecommunication, second harmonic generation (SHG) and optical signal processing, etc. In the present work we are reporting the single crystal growth of L-Histidine with hydro-bromic acid. The L-Histidine bromide (LHB) single crystals have been harvested from the solution in a span of 34 days by adopting slow cooling solution growth technique. The grown crystals have been subjected to powder X-ray diffraction studies to identify the cell parameters and structure. The crystalline perfection has been defined by rocking curve (HRXRD) analysis. Optical transmission spectra reveal the optical properties of the grown crystals. The Modified channel spectrum (MCS) method has been adopted for the study of spectral dependence of linear birefringence over the wavelength range 480-620 nm. The second harmonic generation efficiency was tested by using Kurtz and Perry method, keeping KDP as reference.

  15. Advanced processing methods to introduce and preserve dipole orientation in organic electro-optic materials for next generation photonic devices

    NASA Astrophysics Data System (ADS)

    Huang, Su

    Organic electro-optic (E-O) materials have attracted considerable research attention in the past 20 years due to their rising potentials in a lot of novel photonic applications, such as high-speed telecommunication, terahertz generation and ultra-fast optical interconnections. Chapter 2 of this dissertation focuses on a barrier layer approach to improve the poling efficiency of electro-optic polymers. First of all, high conduction current from excessive charge injection is identified as a fundamental challenge of effective poling. After analyzing the conduction mechanism, we introduce a sol-gel derived thin titanium dioxide (TiO2) layer that can significantly block excessive charge injection and reduce the leakage current during high field poling. Ultralarge E-O coefficients, up to 160-350 pm/V at 1310 nm have been achieved by poling with such a barrier, which are 26%-40% higher than the results poled without such a TiO2 layer. This enhancement is explained by the suppressed charge injection and space charge accumulation by the insertion of the high injection barrier from the TiO2 barrier layer. In Chapter 3, the impact of the inserted barrier layer on the temporal alignment stability of E-O polymers is discussed. Considerable stability enhancement is confirmed using both standard 500-hour temporal alignment stability test at 85 °C and thermally stimulated discharge method. We suggest that the enhancement comes from improved stability of the screening charge. During poling the additional barrier layer helps to lower the injection and thus the space charge accumulation. And this reduced space charge accumulation further helps to replace the space charge part in the total formulation of screening charge with more stable interface trapped charge. We thus expand this knowledge to a group of other materials that can also block excessive charge injection and suppressed space charge accumulation, including dielectric polymers polyvinyl alcohol (PVA), poly(4-vinylphenol

  16. Optical Simulation and Optimization of Light Extraction Efficiency for Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Su, Hang

    Current organic light emitting diodes (OLEDs) suffer from the low light extraction efficiency. In this thesis, novel OLED structures including photonic crystal, Fabry-Perot resonance cavity and hyperbolic metamaterials were numerically simulated and theoretically investigated. Finite-difference time-domain (FDTD) method was employed to numerically simulate the light extraction efficiency of various 3D OLED structures. With photonic crystal structures, a maximum of 30% extraction efficiency is achieved. A higher external quantum efficiency of 35% is derived after applying Fabry-Perot resonance cavity into OLEDs. Furthermore, different factors such as material properties, layer thicknesses and dipole polarizations and locations have been studied. Moreover, an upper limit for the light extraction efficiency of 80% is reached theoretically with perfect reflector and single dipole polarization and location. To elucidate the physical mechanism, transfer matrix method is introduced to calculate the spectral-hemispherical reflectance of the multilayer OLED structures. In addition, an attempt of using hyperbolic metamaterial in OLED has been made and resulted in 27% external quantum efficiency, due to the similar mechanism of wave interference as Fabry-Perot structure. The simulation and optimization methods and findings would facilitate the design of next generation, high-efficiency OLED devices.

  17. Dynamic optical interferometry applied to analyse out of plane displacement fields for crack propagation in brittle materials

    NASA Astrophysics Data System (ADS)

    Hedan, S.; Pop, O.; Valle, V.; Cottron, M.

    2006-08-01

    We propose in this paper, to analyse, the evolution of out-of-plane displacement fields for a crack propagation in brittle materials. As the crack propagation is a complex process that involves the deformation mechanisms, the out-of-plane displacement measurement gives pertinent information about the 3D effects. For investigation, we use the interferometric method. The optical device includes a laser source, a Michelson interferometer and an ultra high-speed CCD camera. To take into account the crack velocity, we dispose of a maximum frame rate of 1Mfps. The experimental tests have been carried out for a SEN (Single Edge Notch) specimen of PMMA material. The crack propagation is initiated by adding a dynamic energy given by the impact of a cutter on the initial crack. The obtained interferograms are analysed with a new phase extraction method entitled MPC [6]. This analysis, which has been developed specially for dynamic studies, gives the out-of-plane displacement with an accuracy of about 10 nm.

  18. Optical study of diffraction grating/Fresnel lens combinations applied to a spectral-splitting solar concentrator for space applications.

    PubMed

    Michel, Céline; Loicq, Jérôme; Thibert, Tanguy; Habraken, Serge

    2015-08-01

    This paper presents a new design of a planar solar concentrator with spectral splitting of light for space applications. This concentrator spectrally splits the incident light into mainly two parts. Each part is then focused onto specific spatially separated photovoltaic cells allowing for independent control of respective cells' output power. These advantages of both spectral splitting and light focusing are combined here because of a specific diffraction grating superimposed on a Fresnel lens. The theoretical principle of the optical design is presented with optimization of each element and improvement steps including optimization of grating period evolution along the lens and testing of two kinds of gratings (a blazed and a lamellar one). First numerical results are presented highlighting the possibility to design a concentrator at about 10× or more for each cell with an output power larger than that of a classical concentrator focusing on a GaAs single junction cell and less than 10% of losses for tracking errors up to ±0.8°. Some experimental results are also presented.

  19. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    NASA Astrophysics Data System (ADS)

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  20. Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration

    SciTech Connect

    Paulsson, Bjorn N.P.

    2015-02-28

    To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.

  1. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part I. Theoretical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Due to their outstanding analytical performances, inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are widely used for multi-elemental measurements and also for isotopic characterization in the case of ICP-MS. While most studies are carried out in aqueous matrices, applications involving organic/hydro-organic matrices become increasingly widespread. This kind of matrices is introduced in ICP based instruments when classical "matrix removal" approaches such as acid digestion or extraction procedures cannot be implemented. Due to the physico-chemical properties of organic/hydro-organic matrices and their associated effects on instrumentation and analytical performances, their introduction into ICP sources is particularly challenging and has become a full topic. In this framework, numerous theoretical and phenomenological studies of these effects have been performed in the past, mainly by ICP-OES, while recent literature is more focused on applications and associated instrumental developments. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP-OES and ICP-MS. The present Part I, provides theoretical considerations in connection with the physico-chemical properties of organic/hydro-organic matrices, in order to better understand the induced phenomena. This focal point is divided in four chapters highlighting: (i) the impact of organic/hydro-organic matrices from aerosol generation to atomization/excitation/ionization processes; (ii) the production of carbon molecular constituents and their spatial distribution in the plasma with respect to analytes repartition; (iii) the subsequent modifications of plasma fundamental properties; and (iv) the resulting spectroscopic and non spectroscopic interferences. This first part of this tutorial review is addressed either to beginners or to more experienced scientists who are interested in the

  2. Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei

    2010-01-01

    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths

  3. Increase in growth, productivity and nutritional status of wheat (Triticum aestivum L. cv. WH-711) and enrichment in soil fertility applied with organic matrix entrapped urea.

    PubMed

    Kumar, Manoj; Bauddh, Kuldeep; Kumar, Sanjeev; Sainger, Manish; Sainger, Poonam A; Singh, Rana P

    2013-01-01

    Field experiments were conducted during two consequent years in semi-arid, subtropical climate of Rohtak district situated in North-West Indian state Haryana to evaluate the effects of eco-friendly organic matrix entrapped urea (OMEU) on wheat (Triticum aestivum L. cv. WH-711). The OMEU prepared in granular form contained cow dung, rice bran (grain cover of Oryza sativa), neem (Azadirachta indica) leaves and clay soil (diameter of particles < 0.002 mm) in 1:1:1:1 ratios and saresh (plant gum of Acacia sp.) as binder entrapping half of the recommended dose of urea. A basal application of organic matrix entrapped urea showed increase in plant growth in terms of fresh and dry weights, root length, root number, leaf number, tillers, plant height earlet number, earlet length and productivity in terms of grain yield and straw yield over free form of urea (FU) and no fertilizer (NF) application. The OMEU increased total soluble proteins, organic N and free ammonium content in the leaves at 45 and 60 days. The nutritional status of wheat grains in OMEU applied plants was almost similar to that observed for FU applied plants. An increase in organic carbon and available phosphorus (P) was observed in OMEU applied plots on harvest whereas pH was slightly decreased over FU applied plots. The microbial population and activity in terms of fungal and bacterial colony count and activities soil dehydrogenase and alkaline phosphatase were significantly higher in OMEU applied plots as compared to the FU applied plots. Our data indicate that OMEU which are low cost, biodegradable and non-toxic can be used to replace the expensive chemical fertilizers for wheat cultivation in semi-arid, subtropical climate.

  4. Effect of ultraviolet and x-ray radiation on optical properties of epoxy polymers dyed with organic phosphors

    NASA Astrophysics Data System (ADS)

    Laurinas, V. CH; Kasymov, S. S.; Yurov, V. M.; Eremin, E. N.; Vedyashkin, M. V.

    2017-01-01

    Highly purified industrial bisphenol and cycloaliphatic epoxy oligomers of ED-24 and UP-612 brands were used to produce optically transparent products. UV radiation of a low-pressure mercury lamp with 80% of the light energy at 254 nm was used to study photodegradation. X-ray apparatus with 0.7BSV- Ag tube was used as an ionizing radiation source to investigate the effect of X-rays on the spectra of organic dyes in epoxy polymer. The threshold value of the energy generated by ruby laser which indicated the degradation in the test samples recorded by light scattering method was determined to study radiation resistance of epoxy polymers. Basically, all the dyes exhibited high resistance to UV light. The observation of the absorption spectra showed that on average, a third of the dye molecules in the matrix experienced photobleaching within 200 hour exposure. The exception was coumarin 1, which was completely decolourized after 40 hours of exposure. X-ray irradiation of the samples for two hours results in the change in the optical density equivalent to that caused by 40 hour exposure to UV irradiation. However, in the first case, the matrix optical density is proportional to the irradiation time, and in the second case, it remains stable upon further UV irradiation. The comparison of photoaging processes in dyed and undyed epoxy polymers showed that the investigated organic dyes do not have a sensitizing effect on the matrix. The stability of the optical properties of the epoxy matrices exposed to the effects of different factors was found to depend on the nature of epoxy polymer and the technique of its production. The results of these effects are significantly different in the character of the change in the optical density and mechanisms of chemical transformations in polymer.

  5. Structural, thermal, linear and nonlinear optical studies of an organic optical limiter based on reverse saturable absorption

    NASA Astrophysics Data System (ADS)

    Menezes, Anthoni Praveen; Raghavendra, S.; Jayarama, A.; Sarveshwara, H. P.; Dharmaprakash, S. M.

    2016-09-01

    A new derivative of chalcone, 3-(4-bromophenyl)-1-(pyridin-4-yl) prop-2-en-1-one (4BP4AP), crystallizing in centrosymmetric structure has been synthesized using the Claisen-Schmidt condensation reaction method. The FTIR and FT-Raman spectral studies were carried out on 4BP4AP for structural conformation. The single crystals were grown using slow evaporation solution growth technique. The single crystal XRD of the crystal shows that the crystal system of 4BP4AP is triclinic with space group P-1. Scanning electron microscope images enunciate the surface smoothness and the two dimensional growth mechanisms in the crystal. The crystal is transparent in the entire visible region as indicated by the UV-VIS-NIR spectrum. The thermal stability and phase transition of the compound was studied by thermogravimetric and differential scanning calorimetric analysis and found to be stable up to 200 °C. By performing the open aperture z-scan experiment, nonlinear absorption and optical limiting behavior of the crystal were studied. The crystal can be used for optoelectronic application due to its excellent photo-physical properties.

  6. Minimalistic optic flow sensors applied to indoor and outdoor visual guidance and odometry on a car-like robot.

    PubMed

    Mafrica, Stefano; Servel, Alain; Ruffier, Franck

    2016-11-10

    Here we present a novel bio-inspired optic flow (OF) sensor and its application to visual  guidance and odometry on a low-cost car-like robot called BioCarBot. The minimalistic OF sensor was robust to high-dynamic-range lighting conditions and to various visual patterns encountered thanks to its M(2)APIX auto-adaptive pixels and the new cross-correlation OF algorithm implemented. The low-cost car-like robot estimated its velocity and steering angle, and therefore its position and orientation, via an extended Kalman filter (EKF) using only two downward-facing OF sensors and the Ackerman steering model. Indoor and outdoor experiments were carried out in which the robot was driven in the closed-loop mode based on the velocity and steering angle estimates. The experimental results obtained show that our novel OF sensor can deliver high-frequency measurements ([Formula: see text]) in a wide OF range (1.5-[Formula: see text]) and in a 7-decade high-dynamic light level range. The OF resolution was constant and could be adjusted as required (up to [Formula: see text]), and the OF precision obtained was relatively high (standard deviation of [Formula: see text] with an average OF of [Formula: see text], under the most demanding lighting conditions). An EKF-based algorithm gave the robot's position and orientation with a relatively high accuracy (maximum errors outdoors at a very low light level: [Formula: see text] and [Formula: see text] over about [Formula: see text] and [Formula: see text]) despite the low-resolution control systems of the steering servo and the DC motor, as well as a simplified model identification and calibration. Finally, the minimalistic OF-based odometry results were compared to those obtained using measurements based on an inertial measurement unit (IMU) and a motor's speed sensor.

  7. Nonlinear Optical Macroscopic Assessment of 3-D Corneal Collagen Organization and Axial Biomechanics

    PubMed Central

    Winkler, Moritz; Chai, Dongyul; Kriling, Shelsea; Nien, Chyong Jy; Brown, Donald J.; Jester, Bryan; Juhasz, Tibor

    2011-01-01

    Purpose. To characterize and quantify the collagen fiber (lamellar) organization of human corneas in three dimensions by using nonlinear optical high-resolution macroscopy (NLO-HRMac) and to correlate these findings with mechanical data obtained by indentation testing of corneal flaps. Methods. Twelve corneas from 10 donors were studied. Vibratome sections, 200 μm thick, from five donor eyes were cut along the vertical meridian from limbus to limbus (arc length, 12 mm). Backscattered second harmonic–generated (SHG) NLO signals from these sections were collected as a series of overlapping 3-D images, which were concatenated to form a single 3-D mosaic (pixel resolution: 0.44 μm lateral, 2 μm axial). Collagen fiber intertwining was quantified by determining branching point density as a function of stromal depth. Mechanical testing was performed on corneal flaps from seven additional eyes. Corneas were cut into three layers (anterior, middle, and posterior) using a femtosecond surgical laser system and underwent indentation testing to determine the elastic modulus for each layer. Results. The 3-D reconstructions revealed complex collagen fiber branching patterns in the anterior cornea, with fibers extending from the anterior limiting lamina (ALL, Bowman's layer), intertwining with deeper fibers and reinserting back to the ALL, forming bow spring–like structures. Measured branching-point density was four times higher in the anterior third of the cornea than in the posterior third and decreased logarithmically with increasing distance from the ALL. Indentation testing showed an eightfold increase in elastic modulus in the anterior stroma. Conclusions. The axial gradient in lamellar intertwining appears to be associated with an axial gradient in the effective elastic modulus of the cornea, suggesting that collagen fiber intertwining and formation of bow spring–like structures provide structural support similar to cross-beams in bridges and large-scale structures

  8. Growth, spectral and optical characterization of a novel nonlinear optical organic material: D-Alanine DL-Mandelic acid single crystal

    NASA Astrophysics Data System (ADS)

    Jayaprakash, P.; Mohamed, M. Peer; Caroline, M. Lydia

    2017-04-01

    An organic nonlinear optical single crystal, D-alanine DL-mandelic acid was synthesized and successfully grown by slow evaporation solution growth technique at ambient temperature using solvent of aqueous solution. The unit cell parameters were assessed from single crystal X-ray diffraction analysis. The presence of diverse functional groups and vibrational modes were identified using Fourier Transform Infra Red and Fourier Transform Raman spectral analyses. The chemical structure of grown crystal has been identified by Nuclear Magnetic Resonance spectroscopic study. Ultraviolet-visible spectral analysis reveal that the crystal has lower cut-off wavelength down to 259 nm, is a key factor to exhibit second harmonic generation signal. The electronic optical band gap and Urbach energy is calculated as 5.31 eV and 0.2425 eV respectively from the UV absorption profile. The diverse optical properties such as, extinction coefficient, reflectance, linear refractive index, optical conductivity was calculated using UV-visible data. The relative second harmonic efficiency of the compound is found to be 0.81 times greater than that of KH2PO4 (KDP). The thermal stability of the grown crystal was studied by thermogravimetric analysis and differential thermal analysis techniques. The luminescence spectrum exhibited two peaks (520 nm, 564 nm) due to the donation of protons from carboxylic acid to amino group. The Vickers microhardness test was carried out employing one of the as-grown hard crystal and there by hardness number (Hv), Meyer's index (n), yield strength (σy), elastic stiffness constant (C11) and Knoop hardness number (HK) were assessed. The dielectric behaviour of the as-grown crystal was analyzed for different temperatures (313 K, 333 K, 353 K, and 373 K) at different frequencies.

  9. Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus

    PubMed Central

    Sztarker, Julieta; Strausfeld, Nicholas; Andrew, David; Tomsic, Daniel

    2014-01-01

    Crustaceans are among the most extensively distributed arthropods, occupying many ecologies and manifesting a great variety of compound eye optics; but in comparison with insects, relatively little is known about the organization and neuronal morphologies of their underlying optic neuropils. Most studies, which have been limited to descriptions of the first neuropil - the lamina - suggest that different species have approximately comparable cell types. However, such studies have been limited with regard to the types of neurons they identify and most omit their topographic relationships. It is also uncertain whether similarities, such as they are, are independent of visual ecologies. The present account describes and compares the morphologies and dispositions of monopolar and other efferent neurons as well as the organization of tangential and smaller centrifugal neurons in two grapsoid crabs, one from the S. Atlantic, the other from the N. Pacific. Because these species occupy significantly disparate ecologies we ask whether this might be reflected in differences of cell arrangements within the most peripheral levels of the visual system. The present study identifies such differences with respect to the organization of centrifugal neurons to the lamina. We also identify in both species neurons in the lamina that have hitherto not been identified in crustaceans and we draw specific comparisons between the layered organization of the grapsoid lamina and layered laminas of insects. PMID:19123235

  10. Large electro-optic coefficient in single-crystal film of a novel organic salt, DASMS

    NASA Astrophysics Data System (ADS)

    Tan, Shida; Ahyi, Ayayi; Mishra, Alpana; Thakur, Mrinal

    2001-03-01

    We have synthesized a novel electro-optic material 4'-dimethylamino-4-methylstilbazolium methanesulfonate (DASMS). Large-area ( 60 mm^2), single-crystal films of DASMS with excellent optical quality have been grown for the first time by a modified shear method^1. These films have the noncentrosymmetric hydrated phase, which is electro-optically active^2. Polarized optical microscopy, X-ray diffraction and polarized UV-visible spectroscopic studies have been used to characterize the films. The single-crystal films were observed to be highly dichroic. Using field-induced birefringence measurement, the electro-optic coefficient of DASMS at 632.8 nm has been estimated to be r_11 160 pm/V, which is five times larger than the eletro-optic coefficient of LiNbO_3. For a 1.8 μm thick film, 28% intensity modulation was observed for an electric field of 4 V/μm. 1. M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985); M. Thakur, Y. Shani, G. C. Chi, and K. O'Brien, Synth. Met. 28, D595 (1989). 2. E. P. Boden, P. D. Phelps, C. P. Yakymyshyn, and K. R. Stewart, US patent 5,194,584.

  11. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    NASA Astrophysics Data System (ADS)

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Côté, C.; Sarkissian, A.; Stafford, L.

    2014-03-01

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C2 molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH3)x and O-Si-(CH3)x bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O2 in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiOx. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O2 in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the average size of the titanate nanoparticles was smaller

  12. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    SciTech Connect

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Stafford, L.; Côté, C.; Sarkissian, A.

    2014-03-21

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C{sub 2} molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH{sub 3}){sub x} and O-Si-(CH{sub 3}){sub x} bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O{sub 2} in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiO{sub x}. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O{sub 2} in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the

  13. In vivo measurement of amplifying motion within the organ of Corti under sound stimulation using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choudhury, Niloy; Chen, Fangyi; Zha, Dingjun; Fridberger, Anders; Zheng, Jiefu; Jacques, Steven L.; Wang, Ruikang K.; Nuttall, Alfred L.

    2012-01-01

    Hearing in mammals, depend on an amplifying motion which hypothetically uses force from outer hair cells (OHC) motility to enhance sound induced vibration of the organ of Corti of cochlea. In this hypothesis the differential motion among key structures in this organ and the timing of the OHC force generation is essential for cochlear amplification to occur. Using a time domain optical coherence tomography system which allows us to make vibration measurements we were able to measure differential motion of two functionally important surfaces, namely, basilar membrane and reticular lamina. The reticular lamina vibrates at higher amplitude than the basilar membrane and has significant phase lead over basilar membrane vibration. The differential motion, that is, different amplitude and phase of vibration, become less as the energy of the sound stimulus is increased and the amplification processes in the organ of Corti are quenched.

  14. Optical Actuation of Inorganic/Organic Interfaces: Comparing Peptide-Azobenzene Ligand Reconfiguration on Gold and Silver Nanoparticles.

    PubMed

    Palafox-Hernandez, J Pablo; Lim, Chang-Keun; Tang, Zhenghua; Drew, Kurt L M; Hughes, Zak E; Li, Yue; Swihart, Mark T; Prasad, Paras N; Knecht, Marc R; Walsh, Tiffany R

    2016-01-13

    Photoresponsive molecules that incorporate peptides capable of material-specific recognition provide a basis for biomolecule-mediated control of the nucleation, growth, organization, and activation of hybrid inorganic/organic nanostructures. These hybrid molecules interact with the inorganic surface through multiple noncovalent interactions which allow reconfiguration in response to optical stimuli. Here, we quantify the binding of azobenzene-peptide conjugates that exhibit optically triggered cis-trans isomerization on Ag surfaces and compare to their behavior on Au. These results demonstrate differences in binding and switching behavior between the Au and Ag surfaces. These molecules can also produce and stabilize Au and Ag nanoparticles in aqueous media where the biointerface can be reproducibly and reversibly switched by optically triggered azobenzene isomerization. Comparisons of switching rates and reversibility on the nanoparticles reveal differences that depend upon whether the azobenzene is attached at the peptide N- or C-terminus, its isomerization state, and the nanoparticle composition. Our integrated experimental and computational investigation shows that the number of ligand anchor sites strongly influences the nanoparticle size. As predicted by our molecular simulations, weaker contact between the hybrid biomolecules and the Ag surface, with fewer anchor residues compared with Au, gives rise to differences in switching kinetics on Ag versus Au. Our findings provide a pathway toward achieving new remotely actuatable nanomaterials for multiple applications from a single system, which remains difficult to achieve using conventional approaches.

  15. Growth, spectral, optical, thermal, and mechanical behaviour of an organic single crystal: Quinolinium 2-carboxy 6-nitrophthalate monohydrate

    NASA Astrophysics Data System (ADS)

    Mohana, J.; Ahila, G.; Bharathi, M. Divya; Anbalagan, G.

    2016-09-01

    Organic single crystals of quinolinium 2-carboxy 6-nitrophthalate monohydrate (QN) were grown by slow evaporation solution growth technique using ethanol and water as a mixed solvent. X-ray powder diffraction analysis revealed that the crystal belongs to the monoclinic crystal system with space group of P21/c. The functional groups present in the crystallized material confirmed its molecular structure. The optical transparency range and the lower cutoff wavelength were identified from the UV-vis spectrum. The optical constants were determined by UV-visible transmission spectrum at normal incidence, measured over the 200-700 nm spectral range. The dispersion of the refractive index was discussed in terms of the single-oscillator Wemple and DiDomenico model. The calculated HOMO and LUMO energies show that the charge transfer occur within the molecule. Electronic excitation properties were discussed within the framework of two level model on the basis of an orbital analysis. The nonlinear optical absorption coefficient (β) and nonlinear refraction (n2) of QN was measured by Z-scan technique and reported here. Thermal stability of QN was determined using TGA/DSC curves. Vicker's microhardness studies were carried out on the (1 1 ̅0) plane to understand the mechanical properties of the grown crystal. The microhardness measurements showed a Vickers hardness value as 18.4 kg/mm2 which is comparable to well-known organic crystal, urea.

  16. Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal

    SciTech Connect

    Nagapandiselvi, P.; Baby, C.; Gopalakrishnan, R.

    2016-09-15

    Highlights: • 2MIDP crystals were grown by slow evaporation solution growth technique. • Single crystal XRD revealed self-assembled supramolecular framework. • Z scan technique is employed for third order nonlinear optical susceptibility. • Structure-property correlation is established. - Abstract: A new semi-organic compound, 2-methyl imidazolium dihydrogen phosphate (2MIDP), was prepared and good quality single crystals of 2MIDP were grown by slow evaporation solution growth technique. Crystal structure elucidated using Single crystal XRD showed that 2MIDP crystallizes in monoclinic system with P2{sub 1}/c space group. FT-IR, UV-Vis-NIR, Fluorescence and FT-NMR spectra confirm the molecular structure of 2MIDP. The UV-Vis-NIR spectra established the suitability of the compound for NLO applications. TG-DSC showed that 2MIDP is thermally stable up to 200 °C. Mechanical characteristics like hardness number (H{sub v}), stiffness constant (C{sub 11}), yield strength (σ{sub v}), fracture toughness (K{sub c}) and brittleness index (B{sub i}) were assessed using Vicker’s microhardness tester. Third order nonlinear optical properties determined from Z-scan measurement using femto and picosecond lasers showed two photon reverse saturable absorption. The enhancement of nonlinear optical properties in femto second laser, revealed the suitability of 2MIDP for optical limiting applications.

  17. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part II. Practical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review, Electrothermal Vaporization and Laser Ablation will also be shortly described. The second issue is devoted to the analytical strategies for elemental quantification in such matrices, with particular insight into the isotope dilution technique, particularly used in speciation analysis by ICP-coupled separation techniques.

  18. Crystal growth and characterization of L-phenylalaninium trichloroacetate-A new organic nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Prakash, M.; Geetha, D.; Lydia Caroline, M.

    2011-07-01

    Amino acid based crystals exhibit excellent nonlinear and electro-optical properties. A new nonlinear optical single crystal L-phenylalaninium trichloroacetate (LPTCA) belonging to the amino acid group was grown by the slow evaporation solution growth method. The grown crystals have been subjected to powder X-ray diffraction studies to identify the crystalline nature. Single crystal X-ray diffraction study showed that LPTCA belongs to monoclinic crystal system. Fourier transform infrared study is used to confirm the presence of various functional groups in the grown crystal. Optical transparency of the grown crystals was investigated by UV-vis-NIR spectrum. The lower optical cutoff wavelength for this crystal is observed at 254 nm and energy band gap is 4.89 eV. Thermal properties of the LPTCA crystal were studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) techniques, which indicate that the material does not decompose before melting. The melting point of grown crystal was observed to be 136 °C in a melting point apparatus. The existence of nonlinear optical (NLO) property of LPTCA was confirmed by second harmonic generation test using Nd:YAG laser fundamental wavelength of 1064 nm.

  19. Monte Carlo implementation of Schiff's approximation for estimating radiative properties of homogeneous, simple-shaped and optically soft particles: Application to photosynthetic micro-organisms

    NASA Astrophysics Data System (ADS)

    Charon, Julien; Blanco, Stéphane; Cornet, Jean-François; Dauchet, Jérémi; El Hafi, Mouna; Fournier, Richard; Abboud, Mira Kaissar; Weitz, Sebastian

    2016-03-01

    In the present paper, Schiff's approximation is applied to the study of light scattering by large and optically-soft axisymmetric particles, with special attention to cylindrical and spheroidal photosynthetic micro-organisms. This approximation is similar to the anomalous diffraction approximation but includes a description of phase functions. Resulting formulations for the radiative properties are multidimensional integrals, the numerical resolution of which requires close attention. It is here argued that strong benefits can be expected from a statistical resolution by the Monte Carlo method. But designing such efficient Monte Carlo algorithms requires the development of non-standard algorithmic tricks using careful mathematical analysis of the integral formulations: the codes that we develop (and make available) include an original treatment of the nonlinearity in the differential scattering cross-section (squared modulus of the scattering amplitude) thanks to a double sampling procedure. This approach makes it possible to take advantage of recent methodological advances in the field of Monte Carlo methods, illustrated here by the estimation of sensitivities to parameters. Comparison with reference solutions provided by the T-Matrix method is presented whenever possible. Required geometric calculations are closely similar to those used in standard Monte Carlo codes for geometric optics by the computer-graphics community, i.e. calculation of intersections between rays and surfaces, which opens interesting perspectives for the treatment of particles with complex shapes.

  20. Surface-applied biosolids enhance soil organic carbon and nitrogen stocks but have contrasting effects on soil physical quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beneficial reuse of biosolids through land application can increase soil organic carbon (SOC) storage while also improving soil physical properties that affect fertility. The effects of continuous biosolids applications in the mid- to long-term, however, are likely to depend on application rate, me...