Sample records for organized vector control

  1. 9 CFR 94.18 - Restrictions on importation of meat and edible products from ruminants due to bovine spongiform...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DISEASE, EXOTIC NEWCASTLE DISEASE, AFRICAN SWINE FEVER, CLASSICAL SWINE FEVER, SWINE VESICULAR DISEASE... Importation and Transportation of Controlled Materials and Organisms and Vectors by filing a permit... Veterinary Permit for Importation and Transportation of Controlled Materials and Organisms and Vectors by...

  2. 9 CFR 94.18 - Restrictions on importation of meat and edible products from ruminants due to bovine spongiform...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DISEASE, EXOTIC NEWCASTLE DISEASE, AFRICAN SWINE FEVER, CLASSICAL SWINE FEVER, SWINE VESICULAR DISEASE... Importation and Transportation of Controlled Materials and Organisms and Vectors by filing a permit... Veterinary Permit for Importation and Transportation of Controlled Materials and Organisms and Vectors by...

  3. A review of the vector management methods to prevent and control outbreaks of West Nile virus infection and the challenge for Europe

    PubMed Central

    2014-01-01

    West Nile virus infection is a growing concern in Europe. Vector management is often the primary option to prevent and control outbreaks of the disease. Its implementation is, however, complex and needs to be supported by integrated multidisciplinary surveillance systems and to be organized within the framework of predefined response plans. The impact of the vector control measures depends on multiple factors and the identification of the best combination of vector control methods is therefore not always straightforward. Therefore, this contribution aims at critically reviewing the existing vector control methods to prevent and control outbreaks of West Nile virus infection and to present the challenges for Europe. Most West Nile virus vector control experiences have been recently developed in the US, where ecological conditions are different from the EU and vector control is organized under a different regulatory frame. The extrapolation of information produced in North America to Europe might be limited because of the seemingly different epidemiology in the European region. Therefore, there is an urgent need to analyse the European experiences of the prevention and control of outbreaks of West Nile virus infection and to perform robust cost-benefit analysis that can guide the implementation of the appropriate control measures. Furthermore, to be effective, vector control programs require a strong organisational backbone relying on a previously defined plan, skilled technicians and operators, appropriate equipment, and sufficient financial resources. A decision making guide scheme is proposed which may assist in the process of implementation of vector control measures tailored on specific areas and considering the available information and possible scenarios. PMID:25015004

  4. Vector control in developed countries

    PubMed Central

    Peters, Richard F.

    1963-01-01

    The recent rapid growth of California's population, leading to competition for space between residential, industrial and agricultural interests, the development of its water resources and increasing water pollution provide the basic ingredients of its present vector problems. Within the past half-century, the original mosquito habitats provided by nature have gradually given place to even more numerous and productive habitats of man-made character. At the same time, emphasis in mosquito control has shifted from physical to chemical, with the more recent extension to biological approaches as well. The growing domestic fly problem, continuing despite the virtual disappearance of the horse, is attributable to an increasing amount of organic by-products, stemming from growing communities, expanding industries and changing agriculture. The programme for the control of disease vectors and pest insects and animals directs its major effort to the following broad areas: (1) water management (including land preparation), (2) solid organic wastes management (emphasizing utilization), (3) community management (including design, layout, and storage practices of buildings and grounds), and (4) recreational area management (related to wildlife management). It is apparent that vector control can often employ economics as an ally in securing its objectives. Effective organization of the environment to produce maximum economic benefits to industry, agriculture, and the community results generally in conditions unfavourable to the survival of vector and noxious animal species. Hence, vector prevention or suppression is preferable to control as a programme objective. PMID:20604166

  5. Disruptive technology for vector control: the Innovative Vector Control Consortium and the US Military join forces to explore transformative insecticide application technology for mosquito control programmes.

    PubMed

    Knapp, Jennifer; Macdonald, Michael; Malone, David; Hamon, Nicholas; Richardson, Jason H

    2015-09-26

    Malaria vector control technology has remained largely static for decades and there is a pressing need for innovative control tools and methodology to radically improve the quality and efficiency of current vector control practices. This report summarizes a workshop jointly organized by the Innovative Vector Control Consortium (IVCC) and the Armed Forces Pest Management Board (AFPMB) focused on public health pesticide application technology. Three main topics were discussed: the limitations with current tools and techniques used for indoor residual spraying (IRS), technology innovation to improve efficacy of IRS programmes, and truly disruptive application technology beyond IRS. The group identified several opportunities to improve application technology to include: insuring all IRS programmes are using constant flow valves and erosion resistant tips; introducing compression sprayer improvements that help minimize pesticide waste and human error; and moving beyond IRS by embracing the potential for new larval source management techniques and next generation technology such as unmanned "smart" spray systems. The meeting served to lay the foundation for broader collaboration between the IVCC and AFPMB and partners in industry, the World Health Organization, the Bill and Melinda Gates Foundation and others.

  6. INTERIM ANALYSIS OF THE CONTRIBUTION OF HIGH-LEVEL EVIDENCE FOR DENGUE VECTOR CONTROL.

    PubMed

    Horstick, Olaf; Ranzinger, Silvia Runge

    2015-01-01

    This interim analysis reviews the available systematic literature for dengue vector control on three levels: 1) single and combined vector control methods, with existing work on peridomestic space spraying and on Bacillus thuringiensis israelensis; further work is available soon on the use of Temephos, Copepods and larvivorous fish; 2) or for a specific purpose, like outbreak control, and 3) on a strategic level, as for example decentralization vs centralization, with a systematic review on vector control organization. Clear best practice guidelines for methodology of entomological studies are needed. There is a need to include measuring dengue transmission data. The following recommendations emerge: Although vector control can be effective, implementation remains an issue; Single interventions are probably not useful; Combinations of interventions have mixed results; Careful implementation of vector control measures may be most important; Outbreak interventions are often applied with questionable effectiveness.

  7. Eco-bio-social research on community-based approaches for Chagas disease vector control in Latin America.

    PubMed

    Gürtler, Ricardo E; Yadon, Zaida E

    2015-02-01

    This article provides an overview of three research projects which designed and implemented innovative interventions for Chagas disease vector control in Bolivia, Guatemala and Mexico. The research initiative was based on sound principles of community-based ecosystem management (ecohealth), integrated vector management, and interdisciplinary analysis. The initial situational analysis achieved a better understanding of ecological, biological and social determinants of domestic infestation. The key factors identified included: housing quality; type of peridomestic habitats; presence and abundance of domestic dogs, chickens and synanthropic rodents; proximity to public lights; location in the periphery of the village. In Bolivia, plastering of mud walls with appropriate local materials and regular cleaning of beds and of clothes next to the walls, substantially decreased domestic infestation and abundance of the insect vector Triatoma infestans. The Guatemalan project revealed close links between house infestation by rodents and Triatoma dimidiata, and vector infection with Trypanosoma cruzi. A novel community-operated rodent control program significantly reduced rodent infestation and bug infection. In Mexico, large-scale implementation of window screens translated into promising reductions in domestic infestation. A multi-pronged approach including community mobilisation and empowerment, intersectoral cooperation and adhesion to integrated vector management principles may be the key to sustainable vector and disease control in the affected regions. © World Health Organization 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  8. Vector control programs in Saint Johns County, Florida and Guayas, Ecuador: successes and barriers to integrated vector management.

    PubMed

    Naranjo, Diana P; Qualls, Whitney A; Jurado, Hugo; Perez, Juan C; Xue, Rui-De; Gomez, Eduardo; Beier, John C

    2014-07-02

    Vector-borne diseases (VBDs) and mosquito control programs (MCPs) diverge in settings and countries, and lead control specialists need to be aware of the most effective control strategies. Integrated Vector Management (IVM) strategies, once implemented in MCPs, aim to reduce cost and optimize protection of the populations against VBDs. This study presents a strengths, weaknesses, opportunities, and threats (SWOT) analysis to compare IVM strategies used by MCPs in Saint Johns County, Florida and Guayas, Ecuador. This research evaluates MCPs strategies to improve vector control activities. Methods included descriptive findings of the MCP operations. Information was obtained from vector control specialists, directors, and residents through field trips, surveys, and questionnaires. Evaluations of the strategies and assets of the control programs where obtained through SWOT analysis and within an IVM approach. Organizationally, the Floridian MCP is a tax-based District able to make decisions independently from county government officials, with the oversight of an elected board of commissioners. The Guayas program is directed by the country government and assessed by non-governmental organizations like the World health Organization. Operationally, the Floridian MCP conducts entomological surveillance and the Ecuadorian MCP focuses on epidemiological monitoring of human disease cases. Strengths of both MCPs were their community participation and educational programs. Weaknesses for both MCPs included limitations in budgets and technical capabilities. Opportunities, for both MCPs, are additional funding and partnerships with private, non-governmental, and governmental organizations. Threats experienced by both MCPs included political constraints and changes in the social and ecological environment that affect mosquito densities and control efforts. IVM pillars for policy making were used to compare the information among the programs. Differences included how the Ecuadorian MCP relies heavily on the community for vector control while the American MCP relies on technologies and research. IVM based recommendations direct health policy leaders toward improving surveillance systems both entomologically and epidemiologically, improving community risk perceptions by integrating components of community participation, maximizing resources though the use of applied research, and protecting the environment by selecting low-risk pesticides. Outcomes of the research revealed that inter-sectorial and multidisciplinary interventions are critical to improve public health.

  9. The Anopheles gambiae transcriptome - a turning point for malaria control.

    PubMed

    Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J

    2017-04-01

    Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.

  10. Communications and control for electric power systems: Power flow classification for static security assessment

    NASA Technical Reports Server (NTRS)

    Niebur, D.; Germond, A.

    1993-01-01

    This report investigates the classification of power system states using an artificial neural network model, Kohonen's self-organizing feature map. The ultimate goal of this classification is to assess power system static security in real-time. Kohonen's self-organizing feature map is an unsupervised neural network which maps N-dimensional input vectors to an array of M neurons. After learning, the synaptic weight vectors exhibit a topological organization which represents the relationship between the vectors of the training set. This learning is unsupervised, which means that the number and size of the classes are not specified beforehand. In the application developed in this report, the input vectors used as the training set are generated by off-line load-flow simulations. The learning algorithm and the results of the organization are discussed.

  11. An innovative ecohealth intervention for Chagas disease vector control in Yucatan, Mexico.

    PubMed

    Waleckx, Etienne; Camara-Mejia, Javier; Ramirez-Sierra, Maria Jesus; Cruz-Chan, Vladimir; Rosado-Vallado, Miguel; Vazquez-Narvaez, Santos; Najera-Vazquez, Rosario; Gourbière, Sébastien; Dumonteil, Eric

    2015-02-01

    Non-domiciliated (intrusive) triatomine vectors remain a challenge for the sustainability of Chagas disease vector control as these triatomines are able to transiently (re-)infest houses. One of the best-characterized examples is Triatoma dimidiata from the Yucatan peninsula, Mexico, where adult insects seasonally infest houses between March and July. We focused our study on three rural villages in the state of Yucatan, Mexico, in which we performed a situation analysis as a first step before the implementation of an ecohealth (ecosystem approach to health) vector control intervention. The identification of the key determinants affecting the transient invasion of human dwellings by T. dimidiata was performed by exploring associations between bug presence and qualitative and quantitative variables describing the ecological, biological and social context of the communities. We then used a participatory action research approach for implementation and evaluation of a control strategy based on window insect screens to reduce house infestation by T. dimidiata. This ecohealth approach may represent a valuable alternative to vertically-organized insecticide spraying. Further evaluation may confirm that it is sustainable and provides effective control (in the sense of limiting infestation of human dwellings and vector/human contacts) of intrusive triatomines in the region. © The author 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  12. Response to Blood Meal in the Fat Body of Anopheles stephensi Using Quantitative Proteomics: Toward New Vector Control Strategies Against Malaria.

    PubMed

    Kumar, Manish; Mohanty, Ajeet Kumar; Sreenivasamurthy, Sreelakshmi K; Dey, Gourav; Advani, Jayshree; Pinto, Sneha M; Kumar, Ashwani; Prasad, Thottethodi Subrahmanya Keshava

    2017-09-01

    Malaria remains a grand challenge for disruptive innovation in global health therapeutics and diagnostics. Anopheles stephensi is one of the major vectors of malaria in Asia. Vector and transmission control are key focus areas in the fight against malaria, a field of postgenomics research where proteomics can play a substantive role. Moreover, to identify novel strategies to control the vector population, it is necessary to understand the vector life processes at a global and molecular scale. In this context, fat body is a vital organ required for vitellogenesis, vector immunity, vector physiology, and vector-parasite interaction. Given its central role in energy metabolism, vitellogenesis, and immune function, the proteome profile of the fat body and the impact of blood meal (BM) ingestion on the protein abundances of this vital organ have not been investigated so far. Therefore, using a proteomics approach, we identified the proteins expressed in the fat body of An. stephensi and their differential expression in response to BM ingestion. In all, we identified 3,218 proteins in the fat body using high-resolution mass spectrometry, of which 483 were found to be differentially expressed in response to the BM ingestion. Bioinformatics analysis of these proteins underscored their role in amino acid metabolism, vitellogenesis, lipid transport, signal peptide processing, mosquito immunity, and oxidation-reduction processes. Interestingly, we identified five novel genes, which were found to be differentially expressed upon BM ingestion. Proteins that exhibited altered expression in the present study are potential targets for vector control strategies and development of transmission blocking vaccines in the fight against malaria.

  13. Interruption of vector transmission by native vectors and “the art of the possible”

    PubMed Central

    Salvatella, Roberto; Irabedra, Pilar; Castellanos, Luis G

    2013-01-01

    In a recent article in the Reader’s Opinion, advantages and disadvantages of the certification processes of interrupted Chagas disease transmission (American trypanosomiasis) by native vector were discussed. Such concept, accepted by those authors for the case of endemic situations with introduced vectors, has been built on a long and laborious process by endemic countries and Subregional Initiatives for Prevention, Control and Treatment of Chagas, with Technical Secretariat of the Pan American Health Organization/World Health Organization, to create a horizon target and goal to concentrate priorities and resource allocation and actions. With varying degrees of sucess, which are not replaceable for a certificate of good practice, has allowed during 23 years to safeguard the effective control of transmission of Trypanosoma cruzi not to hundreds of thousands, but millions of people at risk conditions, truly “the art of the possible.” PMID:24626310

  14. Vector control programs in Saint Johns County, Florida and Guayas, Ecuador: successes and barriers to integrated vector management

    PubMed Central

    2014-01-01

    Background Vector-borne diseases (VBDs) and mosquito control programs (MCPs) diverge in settings and countries, and lead control specialists need to be aware of the most effective control strategies. Integrated Vector Management (IVM) strategies, once implemented in MCPs, aim to reduce cost and optimize protection of the populations against VBDs. This study presents a strengths, weaknesses, opportunities, and threats (SWOT) analysis to compare IVM strategies used by MCPs in Saint Johns County, Florida and Guayas, Ecuador. This research evaluates MCPs strategies to improve vector control activities. Methods Methods included descriptive findings of the MCP operations. Information was obtained from vector control specialists, directors, and residents through field trips, surveys, and questionnaires. Evaluations of the strategies and assets of the control programs where obtained through SWOT analysis and within an IVM approach. Results Organizationally, the Floridian MCP is a tax-based District able to make decisions independently from county government officials, with the oversight of an elected board of commissioners. The Guayas program is directed by the country government and assessed by non-governmental organizations like the World health Organization. Operationally, the Floridian MCP conducts entomological surveillance and the Ecuadorian MCP focuses on epidemiological monitoring of human disease cases. Strengths of both MCPs were their community participation and educational programs. Weaknesses for both MCPs included limitations in budgets and technical capabilities. Opportunities, for both MCPs, are additional funding and partnerships with private, non-governmental, and governmental organizations. Threats experienced by both MCPs included political constraints and changes in the social and ecological environment that affect mosquito densities and control efforts. IVM pillars for policy making were used to compare the information among the programs. Differences included how the Ecuadorian MCP relies heavily on the community for vector control while the American MCP relies on technologies and research. Conclusion IVM based recommendations direct health policy leaders toward improving surveillance systems both entomologically and epidemiologically, improving community risk perceptions by integrating components of community participation, maximizing resources though the use of applied research, and protecting the environment by selecting low-risk pesticides. Outcomes of the research revealed that inter-sectorial and multidisciplinary interventions are critical to improve public health. PMID:24990155

  15. Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.

    PubMed Central

    Gooding, R H

    1996-01-01

    An overview of the genetic variation in arthropods that transmit pathogens to vertebrates is presented, emphasizing the genetics of vector-pathogen relationships and the biochemical genetics of vectors. Vector-pathogen interactions are reviewed briefly as a prelude to a discussion of the genetics of susceptibility and refractoriness in vectors. Susceptibility to pathogens is controlled by maternally inherited factors, sex-linked dominant alleles, and dominant and recessive autosomal genes. There is widespread interpopulation (including intercolony) and temporal variation in susceptibility to pathogens. The amount of biochemical genetic variation in vectors is similar to that found in other invertebrates. However, the amount varies widely among species, among populations within species, and temporally within populations. Biochemical genetic studies show that there is considerable genetic structuring of many vectors at the local, regional, and global levels. It is argued that genetic variation in vectors is critical in understanding vector-pathogen interactions and that genetic variation in vectors creates both obstacles to and opportunities for application of genetic techniques to the control of vectors. PMID:8809462

  16. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    PubMed

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  17. Viral Vectors for in Vivo Gene Transfer

    NASA Astrophysics Data System (ADS)

    Thévenot, E.; Dufour, N.; Déglon, N.

    The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the review [2].) For this reason, it is mainly viral vectors that are used for gene transfer in animals and humans.

  18. Chagas disease vector control and Taylor's law

    PubMed Central

    Rodríguez-Planes, Lucía I.; Gaspe, María S.; Cecere, María C.; Cardinal, Marta V.

    2017-01-01

    Background Large spatial and temporal fluctuations in the population density of living organisms have profound consequences for biodiversity conservation, food production, pest control and disease control, especially vector-borne disease control. Chagas disease vector control based on insecticide spraying could benefit from improved concepts and methods to deal with spatial variations in vector population density. Methodology/Principal findings We show that Taylor's law (TL) of fluctuation scaling describes accurately the mean and variance over space of relative abundance, by habitat, of four insect vectors of Chagas disease (Triatoma infestans, Triatoma guasayana, Triatoma garciabesi and Triatoma sordida) in 33,908 searches of people's dwellings and associated habitats in 79 field surveys in four districts in the Argentine Chaco region, before and after insecticide spraying. As TL predicts, the logarithm of the sample variance of bug relative abundance closely approximates a linear function of the logarithm of the sample mean of abundance in different habitats. Slopes of TL indicate spatial aggregation or variation in habitat suitability. Predictions of new mathematical models of the effect of vector control measures on TL agree overall with field data before and after community-wide spraying of insecticide. Conclusions/Significance A spatial Taylor's law identifies key habitats with high average infestation and spatially highly variable infestation, providing a new instrument for the control and elimination of the vectors of a major human disease. PMID:29190728

  19. Harnessing Integrated Vector Management for Enhanced Disease Prevention.

    PubMed

    Chanda, Emmanuel; Ameneshewa, Birkinesh; Bagayoko, Magaran; Govere, John M; Macdonald, Michael B

    2017-01-01

    The increasing global threat of emerging and re-emerging vector-borne diseases (VBDs) poses a serious health problem. The World Health Organization (WHO) recommends integrated vector management (IVM) strategy for combating VBD transmission. An IVM approach requires entomological knowledge, technical and infrastructure capacity, and systems facilitating stakeholder collaboration. In sub-Saharan Africa, successful operational IVM experience comes from relatively few countries. This article provides an update on the extent to which IVM is official national policy, the degree of IVM implementation, the level of compliance with WHO guidelines, and concordance in the understanding of IVM, and it assesses the operational impact of IVM. The future outlook encompasses rational and sustainable use of effective vector control tools and inherent improved return for investment for disease vector control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014.

    PubMed

    Shortus, Matthew; Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia

    2016-01-01

    The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations' effectiveness.

  1. Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014

    PubMed Central

    Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia

    2016-01-01

    Problem The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. Context In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. Action The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Outcome Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Discussion Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations’ effectiveness. PMID:27757255

  2. Disruptive Technology for Vector Control: the Innovative Vector Control Consortium and the US Military Join Forces to Explore Transformative Insecticide Application Technology for Mosquito Control Programmes

    DTIC Science & Technology

    2015-09-26

    Forces Pest Management Board (AFPMB) focused on public health pesticide application technology. Three main top- ics were discussed: the limitations...industry, the World Health Organization, the Bill and Melinda Gates Foundation and others. Keywords: Pesticide application, Indoor residual spraying (IRS...Navy Entomology Center of Excel- lence (NECE), and industry as part of a joint workshop focused on public health pesticide application technology

  3. Current status of genome editing in vector mosquitoes: A review.

    PubMed

    Reegan, Appadurai Daniel; Ceasar, Stanislaus Antony; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Al-Dhabi, Naif Abdullah

    2017-01-16

    Mosquitoes pose a major threat to human health as they spread many deadly diseases like malaria, dengue, chikungunya, filariasis, Japanese encephalitis and Zika. Identification and use of novel molecular tools are essential to combat the spread of vector borne diseases. Genome editing tools have been used for the precise alterations of the gene of interest for producing the desirable trait in mosquitoes. Deletion of functional genes or insertion of toxic genes in vector mosquitoes will produce either knock-out or knock-in mutants that will check the spread of vector-borne diseases. Presently, three types of genome editing tools viz., zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats (CRISPR) and CRISPR associated protein 9 (Cas9) are widely used for the editing of the genomes of diverse organisms. These tools are also applied in vector mosquitoes to control the spread of vector-borne diseases. A few studies have been carried out on genome editing to control the diseases spread by vector mosquitoes and more studies need to be performed with the utilization of more recently invented tools like CRISPR/Cas9 to combat the spread of deadly diseases by vector mosquitoes. The high specificity and flexibility of CRISPR/Cas9 system may offer possibilities for novel genome editing for the control of important diseases spread by vector mosquitoes. In this review, we present the current status of genome editing research on vector mosquitoes and also discuss the future applications of vector mosquito genome editing to control the spread of vectorborne diseases.

  4. 9 CFR 103.2 - Disposition of animals administered experimental biological products or live organisms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... research sponsor to control disposition of all animals administered experimental biological products or... experimental biological products or live organisms. 103.2 Section 103.2 Animals and Animal Products ANIMAL AND... PRODUCTS; ORGANISMS AND VECTORS EXPERIMENTAL PRODUCTION, DISTRIBUTION, AND EVALUATION OF BIOLOGICAL...

  5. Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan.

    PubMed

    Chanda, Emmanuel; Govere, John M; Macdonald, Michael B; Lako, Richard L; Haque, Ubydul; Baba, Samson P; Mnzava, Abraham

    2013-10-25

    Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial.

  6. Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan

    PubMed Central

    2013-01-01

    Background Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. Case description A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. Discussion South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. Conclusion The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial. PMID:24156749

  7. Genetic shifting: a novel approach for controlling vector-borne diseases.

    PubMed

    Powell, Jeffrey R; Tabachnick, Walter J

    2014-06-01

    Rendering populations of vectors of diseases incapable of transmitting pathogens through genetic methods has long been a goal of vector geneticists. We outline a method to achieve this goal that does not involve the introduction of any new genetic variants to the target population. Rather we propose that shifting the frequencies of naturally occurring alleles that confer refractoriness to transmission can reduce transmission below a sustainable level. The program employs methods successfully used in plant and animal breeding. Because no artificially constructed genetically modified organisms (GMOs) are introduced into the environment, the method is minimally controversial. We use Aedes aegypti and dengue virus (DENV) for illustrative purposes but point out that the proposed program is generally applicable to vector-borne disease control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Vector control activities: Fiscal Year, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-04-01

    The program is divided into two major components - operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems requiring TVA attention and study. Nonchemical methods of control are emphasized and are supplemented with chemical measures as needed. TVA also cooperates with various concerned municipalities in identifying blood-sucking arthropod pest problems and demonstrating control techniques useful in establishing abatement programs, and provides technical assistance to other TVA programs and organizations. The program also helps Land Between The Lakes (LBL) plan and conduct vectormore » control operations and tick control research. Specific program control activities and support studies are discussed.« less

  9. RNA Interference in Insect Vectors for Plant Viruses.

    PubMed

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-12-12

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  10. RNA Interference in Insect Vectors for Plant Viruses

    PubMed Central

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-01-01

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists. PMID:27973446

  11. Evaluation of Attractive Toxic Sugar Bait (ATSB) - Barrier for Control of Vector and Nuisance Mosquitoes and Its Effect on Non-target Organisms in Sub-tropical Environments in Florida

    DTIC Science & Technology

    2014-01-01

    species does not frequently feed on humans but is considered the enzoonotic reservoir for EEE. Targeting this species development and resting habitats ...readily available sugar sources. However, we demonstrate that even in highly competitive sugar rich envi- ronments many vector and nuisance species ...effective control of anophelines in non-arid environments which suggest that even in highly competitive sugar rich environments this

  12. Automated innovative diagnostic, data management and communication tool, for improving malaria vector control in endemic settings.

    PubMed

    Vontas, John; Mitsakakis, Konstantinos; Zengerle, Roland; Yewhalaw, Delenasaw; Sikaala, Chadwick Haadezu; Etang, Josiane; Fallani, Matteo; Carman, Bill; Müller, Pie; Chouaïbou, Mouhamadou; Coleman, Marlize; Coleman, Michael

    2016-01-01

    Malaria is a life-threatening disease that caused more than 400,000 deaths in sub-Saharan Africa in 2015. Mass prevention of the disease is best achieved by vector control which heavily relies on the use of insecticides. Monitoring mosquito vector populations is an integral component of control programs and a prerequisite for effective interventions. Several individual methods are used for this task; however, there are obstacles to their uptake, as well as challenges in organizing, interpreting and communicating vector population data. The Horizon 2020 project "DMC-MALVEC" consortium will develop a fully integrated and automated multiplex vector-diagnostic platform (LabDisk) for characterizing mosquito populations in terms of species composition, Plasmodium infections and biochemical insecticide resistance markers. The LabDisk will be interfaced with a Disease Data Management System (DDMS), a custom made data management software which will collate and manage data from routine entomological monitoring activities providing information in a timely fashion based on user needs and in a standardized way. The ResistanceSim, a serious game, a modern ICT platform that uses interactive ways of communicating guidelines and exemplifying good practices of optimal use of interventions in the health sector will also be a key element. The use of the tool will teach operational end users the value of quality data (relevant, timely and accurate) to make informed decisions. The integrated system (LabDisk, DDMS & ResistanceSim) will be evaluated in four malaria endemic countries, representative of the vector control challenges in sub-Saharan Africa, (Cameroon, Ivory Coast, Ethiopia and Zambia), highly representative of malaria settings with different levels of endemicity and vector control challenges, to support informed decision-making in vector control and disease management.

  13. National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria.

    PubMed

    Tesfazghi, Kemi; Hill, Jenny; Jones, Caroline; Ranson, Hilary; Worrall, Eve

    2016-02-01

    New vector control tools are needed to combat insecticide resistance and reduce malaria transmission. The World Health Organization (WHO) endorses larviciding as a supplementary vector control intervention using larvicides recommended by the WHO Pesticides Evaluation Scheme (WHOPES). The decision to scale-up larviciding in Nigeria provided an opportunity to investigate the factors influencing policy adoption and assess the role that actors and evidence play in the policymaking process, in order to draw lessons that help accelerate the uptake of new methods for vector control. A retrospective policy analysis was carried out using in-depth interviews with national level policy stakeholders to establish normative national vector control policy or strategy decision-making processes and compare these with the process that led to the decision to scale-up larviciding. The interviews were transcribed, then coded and analyzed using NVivo10. Data were coded according to pre-defined themes from an analytical policy framework developed a priori. Stakeholders reported that the larviciding decision-making process deviated from the normative vector control decision-making process. National malaria policy is normally strongly influenced by WHO recommendations, but the potential of larviciding to contribute to national economic development objectives through larvicide production in Nigeria was cited as a key factor shaping the decision. The larviciding decision involved a restricted range of policy actors, and notably excluded actors that usually play advisory, consultative and evidence generation roles. Powerful actors limited the access of some actors to the policy processes and content. This may have limited the influence of scientific evidence in this policy decision. This study demonstrates that national vector control policy change can be facilitated by linking malaria control objectives to wider socioeconomic considerations and through engaging powerful policy champions to drive policy change and thereby accelerate access to new vector control tools. © The Author 2015. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.

  14. Evaluation of attractive toxic sugar bait (ATSB)-barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida

    USDA-ARS?s Scientific Manuscript database

    We evaluated the efficacy of attractive toxic sugar baits (ATSB) in the laboratory and the field with the Environmental Protection Agency exempt active ingredient eugenol against vector and nuisance mosquitoes. In the laboratory, eugenol combined in attractive sugar bait (ASB) solution provided high...

  15. Self-Organizing-Map Program for Analyzing Multivariate Data

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Jacob, Joseph C.; Block, Gary L.; Braverman, Amy J.

    2005-01-01

    SOM_VIS is a computer program for analysis and display of multidimensional sets of Earth-image data typified by the data acquired by the Multi-angle Imaging Spectro-Radiometer [MISR (a spaceborne instrument)]. In SOM_VIS, an enhanced self-organizing-map (SOM) algorithm is first used to project a multidimensional set of data into a nonuniform three-dimensional lattice structure. The lattice structure is mapped to a color space to obtain a color map for an image. The Voronoi cell-refinement algorithm is used to map the SOM lattice structure to various levels of color resolution. The final result is a false-color image in which similar colors represent similar characteristics across all its data dimensions. SOM_VIS provides a control panel for selection of a subset of suitably preprocessed MISR radiance data, and a control panel for choosing parameters to run SOM training. SOM_VIS also includes a component for displaying the false-color SOM image, a color map for the trained SOM lattice, a plot showing an original input vector in 36 dimensions of a selected pixel from the SOM image, the SOM vector that represents the input vector, and the Euclidean distance between the two vectors.

  16. Sustainable dengue prevention and control through a comprehensive integrated approach: the Sri Lankan perspective.

    PubMed

    Tissera, Hasitha; Pannila-Hetti, Nimalka; Samaraweera, Preshila; Weeraman, Jayantha; Palihawadana, Paba; Amarasinghe, Ananda

    2016-09-01

    Dengue is a leading public health problem in Sri Lanka. All 26 districts and all age groups are affected, with high disease transmission; the estimated average annual incidence is 175/100 000 population. Harnessing the World Health Organization Global strategy for dengue prevention and control, 2012-2020, Sri Lanka has pledged in its National Strategic Framework to achieve a mortality from dengue below 0.1% and to reduce morbidity by 50% (from the average of the last 5 years) by 2020. Turning points in the country's dengue-control programme have been the restructuring and restrategizing of the core functions; this has involved establishment of a separate dengue-control unit to coordinate integrated vector management, and creation of a presidential task force. There has been great progress in disease surveillance, clinical management and vector control. Enhanced real-time surveillance for early warning allows ample preparedness for an outbreak. National guidelines with enhanced diagnostics have significantly improved clinical management of dengue, reducing the case-fatality rate to 0.2%. Proactive integrated vector management, with multisector partnership, has created a positive vector-control environment; however, sustaining this momentum is a challenge. Robust surveillance, evidence-based clinical management, sustainable vector control and effective communication are key strategies that will be implemented to achieve set targets. Improved early detection and a standardized treatment protocol with enhanced diagnostics at all medical care institutions will lead to further reduction in mortality. Making the maximum effort to minimize outbreaks through sustainable vector control in the three dimensions of risk mapping, innovation and risk modification will enable a reduction in morbidity.

  17. Implication of vector characteristics of Phlebotomus argentipes in the kala-azar elimination programme in the Indian sub-continent.

    PubMed

    Chowdhury, Rajib; Kumar, Vijay; Mondal, Dinesh; Das, Murari Lal; Das, Pradeep; Dash, Aditya Prasad; Kroeger, Axel

    2016-05-01

    Visceral leishmaniasis (VL), also known as kala-azar in the Indian sub-continent (ISC), is a major public health concern in Bangladesh, India, and Nepal, where it is caused by Leishmania donovani transmitted by the sand fly Phlebotomus argentipes. Various ecological parameters including air temperature, rainfall, wind speed, relative humidity, soil moisture, pH, and organic carbon are known to influence the oviposition of female sand flies, as well as the survival and development of larvae. However, more detailed knowledge on vector behavior, such as biting times, breeding places, and preferred hosts are needed to design optimal evidence-based vector control interventions. In order to facilitate rational decisions regarding VL vector control, a systematic review was conducted to identify the prevailing practice and knowledge gaps in relation to vector bionomics and behavior. Search terms included 'sand fly bionomics', 'habitat', and 'visceral leishmaniasis/kala-azar vector control' using the Boolean operator AND to identify the country of interest, namely: Bangladesh, India, and Nepal. Both PubMed and Google search engines were used. Additional unpublished documents in the three countries were also analyzed. Information on the life cycle of VL vectors, their breeding behavior, infection rate with L. donovani, feeding behavior, and seasonal variation are useful for designing vector control operations. Unfortunately, none of the studies on the life cycle of P. argentipes was conducted in field settings of the ISC, so the publications from other locations had to be used for determining the duration of life cycle and development from egg to adult. However, information about breeding places, seasonal variation of vector densities, and 47 out of the selected 51 papers are available from the ISC and can be used for intelligent design of control operations. Vector control services should undertake routine insecticide resistance monitoring and adapt indoor residual spraying rounds to the seasonality of vector densities. Further research is needed on potential animal reservoirs for L. donovani, on the breeding habitat, and life cycle of sand flies in the ISC.

  18. Evaluating the promise of recombinant transmissible vaccines

    PubMed Central

    Basinski, Andrew J.; Varrelman, Tanner J.; Smithson, Mark W.; May, Ryan H.; Remien, Christopher H.; Nuismer, Scott L.

    2018-01-01

    Transmissible vaccines have the potential to revolutionize infectious disease control by reducing the vaccination effort required to protect a population against a disease. Recent efforts to develop transmissible vaccines focus on recombinant transmissible vaccine designs (RTVs) because they pose reduced risk if intra-host evolution causes the vaccine to revert to its vector form. However, the shared antigenicity of the vaccine and vector may confer vaccine-immunity to hosts infected with the vector, thwarting the ability of the vaccine to spread through the population. We build a mathematical model to test whether a RTV can facilitate disease management in instances where reversion is likely to introduce the vector into the population or when the vector organism is already established in the host population, and the vector and vaccine share perfect cross-immunity. Our results show that a RTV can autonomously eradicate a pathogen, or protect a population from pathogen invasion, when cross-immunity between vaccine and vector is absent. If cross-immunity between vaccine and vector exists, however, our results show that a RTV can substantially reduce the vaccination effort necessary to control or eradicate a pathogen only when continuously augmented with direct manual vaccination. These results demonstrate that estimating the extent of cross-immunity between vector and vaccine is a critical step in RTV design, and that herpesvirus vectors showing facile reinfection and weak cross-immunity are promising. PMID:29279283

  19. Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements

    PubMed Central

    Kohl, Alain; Pondeville, Emilie; Schnettler, Esther; Crisanti, Andrea; Supparo, Clelia; Christophides, George K.; Kersey, Paul J.; Maslen, Gareth L.; Takken, Willem; Koenraadt, Constantianus J. M.; Oliva, Clelia F.; Busquets, Núria; Abad, F. Xavier; Failloux, Anna-Bella; Levashina, Elena A.; Wilson, Anthony J.; Veronesi, Eva; Pichard, Maëlle; Arnaud Marsh, Sarah; Simard, Frédéric; Vernick, Kenneth D.

    2016-01-01

    Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector–pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations. PMID:27677378

  20. Human onchocerciasis in Brazil: an overview.

    PubMed

    Shelley, Anthony J

    2002-01-01

    Human onchocerciasis was recently discovered in Brazil among Yanomámi Indians living along the border region with Venezuela in the States of Amazonas and Roraima. The article reports on the history of the disease's discovery, its distribution, and incrimination of vector simuliid species. The literature that has been generated on the parasite, its vectors, and control of the disease is critically analyzed as well as the organization of epidemiological surveys and the control program developed by the Brazilian government and an international agency. Suggestions for future work are made.

  1. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors?

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Arivoli, Subramanian; Tennyson, Samuel; Benelli, Giovanni

    2016-05-01

    Mosquitoes (Diptera: Culicidae) are important vectors of terms of public health relevance, especially in tropical and sub-tropical regions. The continuous and indiscriminate use of conventional pesticides for the control of mosquito vectors has resulted in the development of resistance and negative impacts on non-target organisms and the environment. Therefore, there is a need for development of effective mosquito control tools. In this study, the larvicidal and repellent activity of Zingiber nimmonii rhizome essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti, and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy (GC-MS). GC-MS revealed that the Z. nimmonii EO contained at least 33 compounds. Major constituents were myrcene, β-caryophyllene, α-humulene, and α-cadinol. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus, with LC50 values of 41.19, 44.46, and 48.26 μg/ml, respectively. Repellency bioassays at 1.0, 2.0, and 5.0 mg/cm(2) of Z. nimmonii EO gave 100 % protection up to 120, 150, and 180 min. against An. stephensi, followed by Ae. aegypti (90, 120, and 150 min) and Cx. quinquefasciatus (60, 90, and 120 min). Furthermore, the EO was safer towards two non-target aquatic organisms, Diplonychus indicus and Gambusia affinis, with LC50 values of 3241.53 and 9250.12 μg/ml, respectively. Overall, this research adds basic knowledge to develop newer and safer natural larvicides and repellent from Zingiberaceae plants against malaria, dengue, and filariasis mosquito vectors.

  2. RNA Interference in Infectious Tropical Diseases

    PubMed Central

    Hong, Young S.

    2008-01-01

    Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi. PMID:18344671

  3. Modern advances in sustainable tick control

    USDA-ARS?s Scientific Manuscript database

    Ticks are the vector of the many different organisms responsible for both animal and human diseases. Understanding the progress we have made and new directions in tick control is critical to the sustainability of human and animal health. The integration of vaccines, acaricides, and new acaricide ap...

  4. Implication of vector characteristics of Phlebotomus argentipes in the kala-azar elimination programme in the Indian sub-continent

    PubMed Central

    Chowdhury, Rajib; Kumar, Vijay; Mondal, Dinesh; Das, Murari Lal; Das, Pradeep; Dash, Aditya Prasad

    2016-01-01

    Background Visceral leishmaniasis (VL), also known as kala-azar in the Indian sub-continent (ISC), is a major public health concern in Bangladesh, India, and Nepal, where it is caused by Leishmania donovani transmitted by the sand fly Phlebotomus argentipes. Various ecological parameters including air temperature, rainfall, wind speed, relative humidity, soil moisture, pH, and organic carbon are known to influence the oviposition of female sand flies, as well as the survival and development of larvae. However, more detailed knowledge on vector behavior, such as biting times, breeding places, and preferred hosts are needed to design optimal evidence-based vector control interventions. Methods In order to facilitate rational decisions regarding VL vector control, a systematic review was conducted to identify the prevailing practice and knowledge gaps in relation to vector bionomics and behavior. Search terms included ‘sand fly bionomics’, ‘habitat’, and ‘visceral leishmaniasis/kala-azar vector control’ using the Boolean operator AND to identify the country of interest, namely: Bangladesh, India, and Nepal. Both PubMed and Google search engines were used. Additional unpublished documents in the three countries were also analyzed. Results Information on the life cycle of VL vectors, their breeding behavior, infection rate with L. donovani, feeding behavior, and seasonal variation are useful for designing vector control operations. Unfortunately, none of the studies on the life cycle of P. argentipes was conducted in field settings of the ISC, so the publications from other locations had to be used for determining the duration of life cycle and development from egg to adult. However, information about breeding places, seasonal variation of vector densities, and 47 out of the selected 51 papers are available from the ISC and can be used for intelligent design of control operations. Conclusion Vector control services should undertake routine insecticide resistance monitoring and adapt indoor residual spraying rounds to the seasonality of vector densities. Further research is needed on potential animal reservoirs for L. donovani, on the breeding habitat, and life cycle of sand flies in the ISC. PMID:27376500

  5. Malaria rapid diagnostic tests.

    PubMed

    Wilson, Michael L

    2012-06-01

    Global efforts to control malaria are more complex than those for other infectious diseases, in part because of vector transmission, the complex clinical presentation of Plasmodium infections, >1 Plasmodium species causing infection, geographic distribution of vectors and infection, and drug resistance. The World Health Organization approach to global malaria control focuses on 2 components: vector control and diagnosis and treatment of clinical malaria. Although microscopy performed on peripheral blood smears remains the most widely used diagnostic test and the standard against which other tests are measured, rapid expansion of diagnostic testing worldwide will require use of other diagnostic approaches. This review will focus on the malaria rapid diagnostic test (MRDT) for detecting malaria parasitemia, both in terms of performance characteristics of MRDTs and how they are used under field conditions. The emphasis will be on the performance and use of MRDTs in regions of endemicity, particularly sub-Saharan Africa, where most malaria-related deaths occur.

  6. Detection of Wolbachia in Aedes albopictus and Their Effects on Chikungunya Virus

    PubMed Central

    Ahmad, Noor Afizah; Vythilingam, Indra; Lim, Yvonne A. L.; Zabari, Nur Zatil Aqmar M.; Lee, Han Lim

    2017-01-01

    Wolbachia-based vector control strategies have been proposed as a means to augment the currently existing measures for controlling dengue and chikungunya vectors. Prior to utilizing Wolbachia as a novel vector control strategy, it is crucial to understand the Wolbachia–mosquito interactions. In this study, field surveys were conducted to screen for the infection status of Wolbachia in field-collected Aedes albopictus. The effects of Wolbachia in its native host toward the replication and dissemination of chikungunya virus (CHIKV) was also studied. The prevalence of Wolbachia-infected field-collected Ae. albopictus was estimated to be 98.6% (N = 142) for females and 95.1% (N = 102) for males in the population studied. The Ae. albopictus were naturally infected with both wAlbA and wAlbB strains. We also found that the native Wolbachia has no impact on CHIKV infection and minimal effect on CHIKV dissemination to secondary organs. PMID:27920393

  7. Tissue-specific expression of silkmoth chorion genes in vivo using Bombyx mori nuclear polyhedrosis virus as a transducing vector.

    PubMed Central

    Iatrou, K; Meidinger, R G

    1990-01-01

    A pair of silkmoth chorion chromosomal genes, HcA.12-HcB.12, was inserted into a baculovirus transfer vector, pBmp2, derived from the nuclear polyhedrosis virus of Bombyx mori. This vector, which permits the insertion of foreign genetic material in the vicinity of a mutationally inactivated polyhedrin gene, was used to acquire the corresponding recombinant virus. Injection of mutant silkmoth pupae that lack all Hc chorion genes with the recombinant virus resulted in the infection of all internal organs including follicular tissue. Analysis of RNA from infected tissues has demonstrated that the two chorion genes present in the viral genome are correctly transcribed under the control of their own promoter in follicular cells, the tissue in which chorion genes are normally expressed. The chorion primary transcripts are also correctly processed in the infected follicular cells and yield mature mRNAs indistinguishable from authentic chorion mRNAs present in wild-type follicles. These results demonstrate that recombinant nuclear polyhedrosis viruses can be used as transducing vectors for introducing genetic material of host origin into the cells of the organism and that the transduced genes are transiently expressed in a tissue-specific manner under the control of their resident regulatory sequences. Thus we show the in vivo expression of cloned genes under cellular promoter control in an insect other than Drosophila melanogaster. The approach should be applicable to all insect systems that are subject to nuclear polyhedrosis virus infection. Images PMID:2187186

  8. 75 FR 43190 - Statement of Organization, Functions, and Delegations of Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... human and animal health; (5) ensures scientific quality and ethical and regulatory compliance of center... investigations on the biology, ecology, and control of arthropod vectors of viral, rickettsial, and bacterial...

  9. Loa loa vectors Chrysops spp.: perspectives on research, distribution, bionomics, and implications for elimination of lymphatic filariasis and onchocerciasis.

    PubMed

    Kelly-Hope, Louise; Paulo, Rossely; Thomas, Brent; Brito, Miguel; Unnasch, Thomas R; Molyneux, David

    2017-04-05

    Loiasis is a filarial disease caused Loa loa. The main vectors are Chrysops silacea and C. dimidiata which are confined to the tropical rainforests of Central and West Africa. Loiasis is a mild disease, but individuals with high microfilaria loads may suffer from severe adverse events if treated with ivermectin during mass drug administration campaigns for the elimination of lymphatic filariasis and onchocerciasis. This poses significant challenges for elimination programmes and alternative interventions are required in L. loa co-endemic areas. The control of Chrysops has not been considered as a viable cost-effective intervention; we reviewed the current knowledge of Chrysops vectors to assess the potential for control as well as identified areas for future research. We identified 89 primary published documents on the two main L. loa vectors C. silacea and C dimidiata. These were collated into a database summarising the publication, field and laboratory procedures, species distributions, ecology, habitats and methods of vector control. The majority of articles were from the 1950-1960s. Field studies conducted in Cameroon, Democratic Republic of Congo, Equatorial Guinea, Nigeria and Sudan highlighted that C. silacea is the most important and widespread vector. This species breeds in muddy streams or swampy areas of forests or plantations, descends from forest canopies to feed on humans during the day, is more readily adapted to human dwellings and attracted to wood fires. Main vector targeted measures proposed to impact on L. loa transmission included personal repellents, household screening, indoor residual spraying, community-based environmental management, adulticiding and larviciding. This is the first comprehensive review of the major L. loa vectors for several decades. It highlights key vector transmission characteristics that may be targeted for vector control providing insights into the potential for integrated vector management, with multiple diseases being targeted simultaneously, with shared human and financial resources and multiple impact. Integrated vector management programmes for filarial infections, especially in low transmission areas of onchocerciasis, require innovative approaches and alternative strategies if the elimination targets established by the World Health Organization are to be achieved.

  10. The impact of insecticides management linked with resistance expression in Anopheles spp. populations.

    PubMed

    Silva, Guilherme Liberato da; Pereira, Thiago Nunes; Ferla, Noeli Juarez; Silva, Onilda Santos da

    2016-06-01

    The resistance of some species of Anopheles to chemical insecticides is spreading quickly throughout the world and has hindered the actions of prevention and control of malaria. The main mechanism responsible for resistance in these insects appears to be the target site known as knock-down resistance (kdr), which causes mutations in the sodium channel. Even so, many countries have made significant progress in the prevention of malaria, focusing largely on vector control through long-lasting insecticide nets (LLINs), indoor residual spraying and (IRS) of insecticides. The objective of this review is to contribute with information on the more applied insecticides for the control of the main vectors of malaria, its effects, and the different mechanisms of resistance. Currently it is necessary to look for others alternatives, e.g. biological control and products derived from plants and fungi, by using other organisms as a possible regulator of the populations of malaria vectors in critical outbreaks.

  11. Vector ecology and integrated control procedures

    PubMed Central

    Laird, Marshall

    1963-01-01

    The elucidation of population regulatory mechanisms calls for exhaustive biological and ecological studies of whole ecosystems. Until lately, little effort was made to relate insect control activities to such a background, and the use of non-selective pesticides has often resulted in biotic equilibria being disrupted to the ultimate advantage of the organism under attack or of some other undesirable species. However, there is a growing realization in the field of economic entomology at large that biotic control agents usually constitute the major portion of the environmental resistance to increases in pest numbers and that insecticides should be fitted into the ecosystem, and not imposed upon it—in fact, that integrated control procedures are called for. The author considers such integrated procedures from the standpoint of vector control. His paper points out their potentialities in helping to solve resistance problems and in increasing the selectivity of control operations. It further suggests that they offer the means of achieving economical and lasting reductions of vector populations to levels at which human disease transmission is interrupted and pest problems lose much of their importance. PMID:20604165

  12. Determination of Insecticidal Effect (LC50 and LC90) of Organic Fatty Acids Mixture (C8910+Silicone) Against Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Dunford, James C; Falconer, Aneika; Leite, Laura N; Wirtz, Robert A; Brogdon, William G

    2016-05-01

    Emerging and re-emerging vector-borne diseases such as chikungunya and dengue and associated Aedes vectors are expanding their historical ranges; thus, there is a need for the development of novel insecticides for use in vector control programs. The mosquito toxicity of a novel insecticide and repellent consisting of medium-chain carbon fatty acids (C8910) was examined. Determination of LC 50 and LC 90 was made against colony-reared Aedes aegypti (L.) and Aedes albopictus (Skuse) using probit analysis on mortality data generated by Centers for Disease Control and Prevention bottle bioassays. Six different concentrations of C8910 + silicone oil yielded an LC 50 of 160.3 µg a.i/bottle (147.6-182.7) and LC 90 of 282.8 (233.2-394.2) in Ae. aegypti; five concentrations yielded an LC 50 of 125.4 (116.1-137.6) and LC 90 of 192.5 (165.0-278.9) in Ae. albopictus. Further development of C8910 and similar compounds could provide vector control specialists novel insecticides for controlling insect disease vectors. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  13. Method and apparatus for enhanced detection of toxic agents

    DOEpatents

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Wu, Jie Jayne; Qi, Hairong

    2013-10-01

    A biosensor based detection of toxins includes enhancing a fluorescence signal by concentrating a plurality of photosynthetic organisms in a fluid into a concentrated region using biased AC electro-osmosis. A measured photosynthetic activity of the photosynthetic organisms is obtained in the concentrated region, where chemical, biological or radiological agents reduce a nominal photosynthetic activity of the photosynthetic organisms. A presence of the chemical, biological and/or radiological agents or precursors thereof, is determined in the fluid based on the measured photosynthetic activity of the concentrated plurality of photosynthetic organisms. A lab-on-a-chip system is used for the concentrating step. The presence of agents is determined from feature vectors, obtained from processing a time dependent signal using amplitude statistics and/or time-frequency analysis, relative to a control signal. A linear discriminant method including support vector machine classification (SVM) is used to identify the agents.

  14. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Strategies for targeting primate neural circuits with viral vectors

    PubMed Central

    El-Shamayleh, Yasmine; Ni, Amy M.

    2016-01-01

    Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level. PMID:27052579

  16. Virus-Derived Gene Expression and RNA Interference Vector for Grapevine

    PubMed Central

    Kurth, Elizabeth G.; Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Kasschau, Kristin D.; Miller, Marilyn; Carrington, James C.

    2012-01-01

    The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests. PMID:22438553

  17. Vector-borne disease intelligence: strategies to deal with disease burden and threats.

    PubMed

    Braks, Marieta; Medlock, Jolyon M; Hubalek, Zdenek; Hjertqvist, Marika; Perrin, Yvon; Lancelot, Renaud; Duchyene, Els; Hendrickx, Guy; Stroo, Arjan; Heyman, Paul; Sprong, Hein

    2014-01-01

    Owing to the complex nature of vector-borne diseases (VBDs), whereby monitoring of human case patients does not suffice, public health authorities experience challenges in surveillance and control of VBDs. Knowledge on the presence and distribution of vectors and the pathogens that they transmit is vital to the risk assessment process to permit effective early warning, surveillance, and control of VBDs. Upon accepting this reality, public health authorities face an ever-increasing range of possible surveillance targets and an associated prioritization process. Here, we propose a comprehensive approach that integrates three surveillance strategies: population-based surveillance, disease-based surveillance, and context-based surveillance for EU member states to tailor the best surveillance strategy for control of VBDs in their geographic region. By classifying the surveillance structure into five different contexts, we hope to provide guidance in optimizing surveillance efforts. Contextual surveillance strategies for VBDs entail combining organization and data collection approaches that result in disease intelligence rather than a preset static structure.

  18. Vector-Borne Disease Intelligence: Strategies to Deal with Disease Burden and Threats

    PubMed Central

    Braks, Marieta; Medlock, Jolyon M.; Hubalek, Zdenek; Hjertqvist, Marika; Perrin, Yvon; Lancelot, Renaud; Duchyene, Els; Hendrickx, Guy; Stroo, Arjan; Heyman, Paul; Sprong, Hein

    2014-01-01

    Owing to the complex nature of vector-borne diseases (VBDs), whereby monitoring of human case patients does not suffice, public health authorities experience challenges in surveillance and control of VBDs. Knowledge on the presence and distribution of vectors and the pathogens that they transmit is vital to the risk assessment process to permit effective early warning, surveillance, and control of VBDs. Upon accepting this reality, public health authorities face an ever-increasing range of possible surveillance targets and an associated prioritization process. Here, we propose a comprehensive approach that integrates three surveillance strategies: population-based surveillance, disease-based surveillance, and context-based surveillance for EU member states to tailor the best surveillance strategy for control of VBDs in their geographic region. By classifying the surveillance structure into five different contexts, we hope to provide guidance in optimizing surveillance efforts. Contextual surveillance strategies for VBDs entail combining organization and data collection approaches that result in disease intelligence rather than a preset static structure. PMID:25566522

  19. Paratransgenesis applied for control of tsetse transmitted sleeping sickness.

    PubMed

    Aksoy, Serap; Weiss, Brian; Attardo, Geoffrey

    2008-01-01

    African trypanosomiasis (sleeping sickness) is a major cause of morbidity and mortality in Subsaharan Africa for human and animal health. In the absence of effective vaccines and efficacious drugs, vector control is an alternative intervention tool to break the disease cycle. This chapter describes the vectorial and symbiotic biology of tsetse with emphasis on the current knowledge on tsetse symbiont genomics and functional biology, and tsetse's trypanosome transmission capability. The ability to culture one of tsetse's commensal symbiotic microbes, Sodalis in vitro has allowed for the development of a genetic transformation system for this organism. Tsetse can be repopulated with the modified Sodalis symbiont, which can express foreign gene products (an approach we refer to as paratransgenic expression system). Expanding knowledge on tsetse immunity effectors, on genomics of tsetse symbionts and on tsetse's parasite transmission biology stands to enhance the development and potential application of paratransgenesis as a new vector-control strategy. We describe the hallmarks of the paratransgenic transformation technology where the modified symbionts expressing trypanocidal compounds can be used to manipulate host functions and lead to the control of trypanosomiasis by blocking trypanosome transmission in the tsetse vector.

  20. Development of a Novel Escherichia coli-Kocuria Shuttle Vector Using the Cryptic pKPAL3 Plasmid from K. palustris IPUFS-1 and Its Utilization in Producing Enantiopure (S)-Styrene Oxide.

    PubMed

    Toda, Hiroshi; Itoh, Nobuya

    2017-01-01

    The novel cryptic pKPAL3 plasmid was isolated from the Gram-positive microorganism Kocuria palustris IPUFS-1 and characterized in detail. pKPAL3 is a circular plasmid that is 4,443 bp in length. Open reading frame (ORF) and homology search analyses indicated that pKPAL3 possesses four ORFs; however, there were no replication protein coding genes predicted in the plasmid. Instead, there were two nucleotide sequence regions that showed significant identities with untranslated regions of K. rhizophila DC2201 (NBRC 103217) genomic sequences, and these sequences were essential for autonomous replication of pKPAL3 in Kocuria cells. Based on these findings, we constructed the novel Escherichia coli - Kocuria shuttle vectors pKITE301 (kanamycin resistant) and pKITE303 (thiostrepton resistant) from pKPAL3. The copy numbers of the constructed shuttle vectors were estimated to be 20 per cell, and they exhibited low segregation stability in Kocuria transformant cells in the absence of antibiotics. Moreover, constructed vectors showed compatibility with the other K. rhizophila shuttle vector pKITE103. We successfully expressed multiple heterologous genes, including the styrene monooxygenase gene from Rhodococcus sp. ST-10 ( rhsmo ) and alcohol dehydrogenase gene from Leifsonia sp. S749 ( lsadh ), in K . rhizophila DC2201 using the pKITE301P and pKITE103P vectors under the control of the glyceraldehyde 3-phosphate dehydrogenase ( gapdh ) promotor. The RhSMO-LSADH co-expressing K. rhizophila was used as a biocatalyst in an organic solvent-water biphasic reaction system to efficiently convert styrene into ( S )-styrene oxide with 99% ee in the presence of 2-propanol as a hydrogen donor. The product concentration of the reaction in the organic solvent reached 235 mM after 30 h under optimum conditions. Thus, we demonstrated that this novel shuttle vector is useful for developing biocatalysts based on organic solvent-tolerant Kocuria cells.

  1. Bioinformatic prediction of G protein-coupled receptor encoding sequences from the transcriptome of the foreleg, including the Haller’s organ, of the cattle tick, Rhipicephalus australis

    USDA-ARS?s Scientific Manuscript database

    The cattle tick of Australia, Rhipicephalus australis, is a vector for microbial parasites that cause serious bovine diseases. The Haller's organ, located in the tick's forelegs, is crucial for host detection and mating. To facilitate the development of new technologies for better control of this ag...

  2. An Operational Framework for Insecticide Resistance Management Planning

    PubMed Central

    Chanda, Emmanuel; Thomsen, Edward K.; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G.; Norris, Douglas E.; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H.; Muleba, Mbanga; Craig, Allen; Govere, John M.; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B.

    2016-01-01

    Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future. PMID:27089119

  3. An Operational Framework for Insecticide Resistance Management Planning.

    PubMed

    Chanda, Emmanuel; Thomsen, Edward K; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G; Norris, Douglas E; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H; Muleba, Mbanga; Craig, Allen; Govere, John M; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B; Coleman, Michael

    2016-05-01

    Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future.

  4. Chlorophyll derivatives for pest and disease control: Are they safe?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizullah, Azizullah, E-mail: azizswabi@gmail.com; Murad, Waheed

    2015-01-15

    Chlorophyll derivatives are getting widespread acceptance among the researchers as natural photosensitizers for photodynamic control of pests and disease vectors; however, rare attention has been given to evaluation of their toxicity to non-target organisms in the environment. This perspective article highlights that chlorophyll derivatives may not be as safe as believed and can possibly pose risk to non-target organisms in the environment. We invite the attention of environmental biologists, particularly ecotoxicologists, to contribute their role in making the application of chlorophyll derivatives more environmentally friendly and publicly acceptable.

  5. Long-lasting insecticide-treated house screens and targeted treatment of productive breeding-sites for dengue vector control in Acapulco, Mexico.

    PubMed

    Che-Mendoza, Azael; Guillermo-May, Guillermo; Herrera-Bojórquez, Josué; Barrera-Pérez, Mario; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Arredondo-Jiménez, Juan I; Sánchez-Tejeda, Gustavo; Vazquez-Prokopec, Gonzalo; Ranson, Hilary; Lenhart, Audrey; Sommerfeld, Johannes; McCall, Philip J; Kroeger, Axel; Manrique-Saide, Pablo

    2015-02-01

    Long-lasting insecticidal net screens (LLIS) fitted to domestic windows and doors in combination with targeted treatment (TT) of the most productive Aedes aegypti breeding sites were evaluated for their impact on dengue vector indices in a cluster-randomised trial in Mexico between 2011 and 2013. Sequentially over 2 years, LLIS and TT were deployed in 10 treatment clusters (100 houses/cluster) and followed up over 24 months. Cross-sectional surveys quantified infestations of adult mosquitoes, immature stages at baseline (pre-intervention) and in four post-intervention samples at 6-monthly intervals. Identical surveys were carried out in 10 control clusters that received no treatment. LLIS clusters had significantly lower infestations compared to control clusters at 5 and 12 months after installation, as measured by adult (male and female) and pupal-based vector indices. After addition of TT to the intervention houses in intervention clusters, indices remained significantly lower in the treated clusters until 18 (immature and adult stage indices) and 24 months (adult indices only) post-intervention. These safe, simple affordable vector control tools were well-accepted by study participants and are potentially suitable in many regions at risk from dengue worldwide. © The author 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  6. Can Horton hear the whos? The importance of scale in mosquito-borne disease.

    PubMed

    Lord, C C; Alto, B W; Anderson, S L; Connelly, C R; Day, J F; Richards, S L; Smartt, C T; Tabachnick, W J

    2014-03-01

    The epidemiology of vector-borne pathogens is determined by mechanisms and interactions at different scales of biological organization, from individual-level cellular processes to community interactions between species and with the environment. Most research, however, focuses on one scale or level with little integration between scales or levels within scales. Understanding the interactions between levels and how they influence our perception of vector-borne pathogens is critical. Here two examples of biological scales (pathogen transmission and mosquito mortality) are presented to illustrate some of the issues of scale and to explore how processes on different levels may interact to influence mosquito-borne pathogen transmission cycles. Individual variation in survival, vector competence, and other traits affect population abundance, transmission potential, and community structure. Community structure affects interactions between individuals such as competition and predation, and thus influences the individual-level dynamics and transmission potential. Modeling is a valuable tool to assess interactions between scales and how processes at different levels can affect transmission dynamics. We expand an existing model to illustrate the types of studies needed, showing that individual-level variation in viral dose acquired or needed for infection can influence the number of infectious vectors. It is critical that interactions within and among biological scales and levels of biological organization are understood for greater understanding of pathogen transmission with the ultimate goal of improving control of vector-borne pathogens.

  7. Plant extracts as potential mosquito larvicides

    PubMed Central

    Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam

    2012-01-01

    Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed. PMID:22771587

  8. Plant extracts as potential mosquito larvicides.

    PubMed

    Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam

    2012-05-01

    Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed.

  9. The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Zhang, Jingzhu; Muz, Barbara; Azab, Abdel K; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Curiel, David T; Arbeit, Jeffrey M

    2014-08-01

    Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.

  10. Standards for gene therapy clinical trials based on pro-active risk assessment in a London NHS Teaching Hospital Trust.

    PubMed

    Bamford, K B; Wood, S; Shaw, R J

    2005-02-01

    Conducting gene therapy clinical trials with genetically modified organisms as the vectors presents unique safety and infection control issues. The area is governed by a range of legislation and guidelines, some unique to this field, as well as those pertinent to any area of clinical work. The relevant regulations covering gene therapy using genetically modified vectors are reviewed and illustrated with the approach taken by a large teaching hospital NHS Trust. Key elements were Trust-wide communication and involvement of staff in a pro-active approach to risk management, with specific emphasis on staff training and engagement, waste management, audit and record keeping. This process has led to the development of proposed standards for clinical trials involving genetically modified micro-organisms.

  11. Mapping of Malaria Vectors at District Level in India: Changing Scenario and Identified Gaps.

    PubMed

    Singh, Poonam; Lingala, Mercy Aparna L; Sarkar, Soma; Dhiman, Ramesh C

    2017-02-01

    Malaria is one of the six major vector-borne diseases in India, the endemicity of which changes with changes in ecological, climatic, and sociodevelopmental conditions. The anopheline vectors are greatly affected by ecological conditions such as deforestation, urbanization, climate and lifestyle. Despite the advent of tools such as Geographic Information System (GIS), the updated information on the distribution of anopheline vectors of malaria is not available. In India, the plan for vector control is organized at subcentral level but information about vectors is unavailable even at the district level. Therefore, a systematic presentation of vector distribution has been made to provide maps in respect of major vector species. A search of the literature for major vector species, that is, Anopheles culicifacies, Anopheles fluviatilis, Anopheles stephensi, Anopheles minimus, and Anopheles dirus sensu lato, since 1927 till 2015 was carried out. Data have been presented as present, absent, and no information about vector species during pre-eradication (1927-1958), posteradication (1959-1999), and current scenario (2000-2015). Vectors' distribution and malaria endemicity were mapped using Arc GIS. Of 630 districts of India, major vectors An. culicifacies, An. fluviatilis, and An. stephensi were present in 420, 241, and 243 districts, respectively. In 183 districts, there is no information on any major malaria vector species although 27 of them from the states of Arunachal Pradesh, Jharkhand, Manipur, and Mizoram are highly endemic for malaria, having incidences of 2-40 cases/1000/year. The identified gaps in vector distribution, particularly in malaria endemic areas, necessitate further surveys so as to generate the missing information.

  12. 9 CFR 106.1 - Biological products; exemption.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Biological products; exemption. 106.1...

  13. 9 CFR 106.1 - Biological products; exemption.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Biological products; exemption. 106.1...

  14. 9 CFR 106.1 - Biological products; exemption.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Biological products; exemption. 106.1...

  15. 9 CFR 106.1 - Biological products; exemption.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Biological products; exemption. 106.1...

  16. 9 CFR 106.1 - Biological products; exemption.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Biological products; exemption. 106.1...

  17. Schistosomiasis: The World's Number One Health Problem

    ERIC Educational Resources Information Center

    Mallon, Elizabeth J.

    1977-01-01

    Provides an informative discussion of the disease called schistosomiasis. The discussion covers environmental factors contributing to the disease, its symptoms, the disease organism and its vectors, and treatment of the disease. The author points out the need for water and soil pollution control in disease prone areas. (MR)

  18. Effectiveness and feasibility of long-lasting insecticide-treated curtains and water container covers for dengue vector control in Colombia: a cluster randomised trial.

    PubMed

    Quintero, Juliana; García-Betancourt, Tatiana; Cortés, Sebastian; García, Diana; Alcalá, Lucas; González-Uribe, Catalina; Brochero, Helena; Carrasquilla, Gabriel

    2015-02-01

    Long-lasting insecticide-treated net (LLIN) window and door curtains alone or in combination with LLIN water container covers were analysed regarding effectiveness in reducing dengue vector density, and feasibility of the intervention. A cluster randomised trial was conducted in an urban area of Colombia comparing 10 randomly selected control and 10 intervention clusters. In control clusters, routine vector control activities were performed. The intervention delivered first, LLIN curtains (from July to August 2013) and secondly, water container covers (from October to March 2014). Cross-sectional entomological surveys were carried out at baseline (February 2013 to June 2013), 9 weeks after the first intervention (August to October 2013), and 4-6 weeks after the second intervention (March to April 2014). Curtains were installed in 922 households and water container covers in 303 households. The Breteau index (BI) fell from 14 to 6 in the intervention group and from 8 to 5 in the control group. The additional intervention with LLIN covers for water containers showed a significant reduction in pupae per person index (PPI) (p=0.01). In the intervention group, the PPI index showed a clear decline of 71% compared with 25% in the control group. Costs were high but options for cost savings were identified. Short term impact evaluation indicates that the intervention package can reduce dengue vector density but sustained effect will depend on multiple factors. © The author 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  19. Flavivirus Infection of Ixodes scapularis (Black-Legged Tick) Ex Vivo Organotypic Cultures and Applications for Disease Control.

    PubMed

    Grabowski, Jeffrey M; Tsetsarkin, Konstantin A; Long, Dan; Scott, Dana P; Rosenke, Rebecca; Schwan, Tom G; Mlera, Luwanika; Offerdahl, Danielle K; Pletnev, Alexander G; Bloom, Marshall E

    2017-08-22

    Ixodes scapularis ticks transmit many infectious agents that cause disease, including tick-borne flaviviruses (TBFVs). TBFV infections cause thousands of human encephalitis cases worldwide annually. In the United States, human TBFV infections with Powassan virus (POWV) are increasing and have a fatality rate of 10 to 30%. Additionally, Langat virus (LGTV) is a TBFV of low neurovirulence and is used as a model TBFV. TBFV replication and dissemination within I. scapularis organs are poorly characterized, and a deeper understanding of virus biology in this vector may inform effective countermeasures to reduce TBFV transmission. Here, we describe short-term, I. scapularis organ culture models of TBFV infection. Ex vivo organs were metabolically active for 9 to 10 days and were permissive to LGTV and POWV replication. Imaging and videography demonstrated replication and spread of green fluorescent protein-expressing LGTV in the organs. Immunohistochemical staining confirmed LGTV envelope and POWV protein synthesis within the infected organs. LGTV- and POWV-infected organs produced infectious LGTV and POWV; thus, the ex vivo cultures were suitable for study of virus replication in individual organs. LGTV- and POWV-infected midgut and salivary glands were subjected to double-stranded RNA (dsRNA) transfection with dsRNA to the LGTV 3' untranslated region (UTR), which reduced infectious LGTV and POWV replication, providing a proof-of-concept use of RNA interference in I. scapularis organ cultures to study the effects on TBFV replication. The results contribute important information on TBFV localization within ex vivo I. scapularis organs and provide a significant translational tool for evaluating recombinant, live vaccine candidates and potential tick transcripts and proteins for possible therapeutic use and vaccine development to reduce TBFV transmission. IMPORTANCE Tick-borne flavivirus (TBFV) infections cause neurological and/or hemorrhagic disease in humans worldwide. There are currently no licensed therapeutics or vaccines against Powassan virus (POWV), the only TBFV known to circulate in North America. Evaluating tick vector targets for antitick vaccines directed at reducing TBFV infection within the arthropod vector is a critical step in identifying efficient approaches to controlling TBFV transmission. This study characterized infection of female Ixodes scapularis tick organ cultures of midgut, salivary glands, and synganglion with the low-neurovirulence Langat virus (LGTV) and the more pathogenic POWV. Cell types of specific organs were susceptible to TBFV infection, and a difference in LGTV and POWV replication was noted in TBFV-infected organs. This tick organ culture model of TBFV infection will be useful for various applications, such as screening of tick endogenous dsRNA corresponding to potential control targets within midgut and salivary glands to confirm restriction of TBFV infection.

  20. Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India

    PubMed Central

    Arunachalam, Natarajan; Tyagi, Brij Kishore; Samuel, Miriam; Krishnamoorthi, R; Manavalan, R; Tewari, Satish Chandra; Ashokkumar, V; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max

    2012-01-01

    Background Dengue is highly endemic in Chennai city, South India, in spite of continuous vector control efforts. This intervention study was aimed at establishing the efficacy as well as the favouring and limiting factors relating to a community-based environmental intervention package to control the dengue vector Aedes aegypti. Methods A cluster randomized controlled trial was designed to measure the outcome of a new vector control package and process analysis; different data collection tools were used to determine the performance. Ten randomly selected intervention clusters (neighbourhoods with 100 houses each) were paired with ten control clusters on the basis of ecological/entomological indices and sociological parameters collected during baseline studies. In the intervention clusters, Aedes control was carried out using a community-based environmental management approach like provision of water container covers through community actors, clean-up campaigns, and dissemination of dengue information through schoolchildren. The main outcome measure was reduction in pupal indices (pupae per person index), used as a proxy measure of adult vectors, in the intervention clusters compared to the control clusters. Results At baseline, almost half the respondents did not know that dengue is serious but preventable, or that it is transmitted by mosquitoes. The stakeholder analysis showed that dengue vector control is carried out by vertically structured programmes of national, state, and local administrative bodies through fogging and larval control with temephos, without any involvement of community-based organizations, and that vector control efforts were conducted in an isolated and irregular way. The most productive container types for Aedes pupae were cement tanks, drums, and discarded containers. All ten intervention clusters with a total of 1000 houses and 4639 inhabitants received the intervention while the ten control clusters with a total of 1000 houses and 4439 inhabitants received only the routine government services and some of the information education and communication project materials. The follow-up studies showed that there was a substantial increase in dengue understanding in the intervention group with only minor knowledge changes in the control group. Community involvement and the partnership among stakeholders (particularly women’s self-help groups) worked well. After 10 months of intervention, the pupae per person index was significantly reduced to 0.004 pupae per person from 1.075 (P = 0.020) in the intervention clusters compared to control clusters. There were also significant reductions in the Stegomyia indices: the house index was reduced to 4.2%, the container index to 1.05%, and the Breteau index to 4.3 from the baseline values of 19.6, 8.91, and 30.8 in the intervention arm. Conclusion A community-based approach together with other stakeholders that promoted interventions to prevent dengue vector breeding led to a substantial reduction in dengue vector density. PMID:23318241

  1. Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India.

    PubMed

    Arunachalam, Natarajan; Tyagi, Brij Kishore; Samuel, Miriam; Krishnamoorthi, R; Manavalan, R; Tewari, Satish Chandra; Ashokkumar, V; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max

    2012-12-01

    Dengue is highly endemic in Chennai city, South India, in spite of continuous vector control efforts. This intervention study was aimed at establishing the efficacy as well as the favouring and limiting factors relating to a community-based environmental intervention package to control the dengue vector Aedes aegypti. A cluster randomized controlled trial was designed to measure the outcome of a new vector control package and process analysis; different data collection tools were used to determine the performance. Ten randomly selected intervention clusters (neighbourhoods with 100 houses each) were paired with ten control clusters on the basis of ecological/entomological indices and sociological parameters collected during baseline studies. In the intervention clusters, Aedes control was carried out using a community-based environmental management approach like provision of water container covers through community actors, clean-up campaigns, and dissemination of dengue information through schoolchildren. The main outcome measure was reduction in pupal indices (pupae per person index), used as a proxy measure of adult vectors, in the intervention clusters compared to the control clusters. At baseline, almost half the respondents did not know that dengue is serious but preventable, or that it is transmitted by mosquitoes. The stakeholder analysis showed that dengue vector control is carried out by vertically structured programmes of national, state, and local administrative bodies through fogging and larval control with temephos, without any involvement of community-based organizations, and that vector control efforts were conducted in an isolated and irregular way. The most productive container types for Aedes pupae were cement tanks, drums, and discarded containers. All ten intervention clusters with a total of 1000 houses and 4639 inhabitants received the intervention while the ten control clusters with a total of 1000 houses and 4439 inhabitants received only the routine government services and some of the information education and communication project materials. The follow-up studies showed that there was a substantial increase in dengue understanding in the intervention group with only minor knowledge changes in the control group. Community involvement and the partnership among stakeholders (particularly women's self-help groups) worked well. After 10 months of intervention, the pupae per person index was significantly reduced to 0·004 pupae per person from 1·075 (P = 0·020) in the intervention clusters compared to control clusters. There were also significant reductions in the Stegomyia indices: the house index was reduced to 4·2%, the container index to 1·05%, and the Breteau index to 4·3 from the baseline values of 19·6, 8·91, and 30·8 in the intervention arm. A community-based approach together with other stakeholders that promoted interventions to prevent dengue vector breeding led to a substantial reduction in dengue vector density.

  2. Introduction to a standardized method for the evaluation of the potency of Bacillus thuringiensis serotype H-14 based products*

    PubMed Central

    Rishikesh, N.; Quélennec, G.

    1983-01-01

    Vector resistance and other constraints have necessitated consideration of the use of alternative materials and methods in an integrated approach to vector control. Bacillus thuringiensis serotype H-14 is a promising biological control agent which acts as a conventional larvicide through its delta-endotoxin (active ingredient) and which now has to be suitably formulated for application in vector breeding habitats. The active ingredient in the formulations has so far not been chemically characterized or quantified and therefore recourse has to be taken to a bioassay method. Drawing on past experience and through the assistance mainly of various collaborating centres, the World Health Organization has standardized a bioassay method (described in the Annex), which gives consistent and reproducible results. The method permits the determination of the potency of a B.t. H-14 preparation through comparison with a standard powder. The universal adoption of the standardized bioassay method will ensure comparability of the results of different investigators. PMID:6601545

  3. Barriers and Opportunities to Advancing Women in Leadership Roles in Vector Control: Perspectives from a Stakeholder Survey.

    PubMed

    Hayden, Mary H; Barrett, Erika; Bernard, Guyah; Toko, Eunice N; Agawo, Maurice; Okello, Amanda M; Gunn, Jayleen K L; Ernst, Kacey C

    2018-05-01

    Increasing the active participation of professional women in vector control (VC) activities may help promote greater gender equity in the workplace and reduce the burden of vector-borne diseases. This stakeholder survey examined the current roles and perspective of professionals employed in the VC sector in Kenya, Indonesia, India, and other countries. The largest barriers that women face in pursuing leadership roles in the VC sector include lack of awareness of career opportunities, limitations based on cultural norms, and the belief that VC is men's work. These barriers could be addressed through improving education and recruitment campaigns, as well as supporting higher education and mentoring programs. Females were almost six times more likely to be encouraged to pursue leadership positions in their organization compared with male respondents (odds ratio = 5.9, P > 0.03, 95% confidence interval: 1.19, 29.42). These findings suggest that once women are recruited into the VC workforce, they face minimal discrimination and have increased leadership opportunities.

  4. Unrestricted Hepatocyte Transduction with Adeno-Associated Virus Serotype 8 Vectors in Mice

    PubMed Central

    Nakai, Hiroyuki; Fuess, Sally; Storm, Theresa A.; Muramatsu, Shin-ichi; Nara, Yuko; Kay, Mark A.

    2005-01-01

    Recombinant adeno-associated virus (rAAV) vectors can mediate long-term stable transduction in various target tissues. However, with rAAV serotype 2 (rAAV2) vectors, liver transduction is confined to only a small portion of hepatocytes even after administration of extremely high vector doses. In order to investigate whether rAAV vectors of other serotypes exhibit similar restricted liver transduction, we performed a dose-response study by injecting mice with β-galactosidase-expressing rAAV1 and rAAV8 vectors via the portal vein. The rAAV1 vector showed a blunted dose-response similar to that of rAAV2 at high doses, while the rAAV8 vector dose-response remained unchanged at any dose and ultimately could transduce all the hepatocytes at a dose of 7.2 × 1012 vector genomes/mouse without toxicity. This indicates that all hepatocytes have the ability to process incoming single-stranded vector genomes into duplex DNA. A single tail vein injection of the rAAV8 vector was as efficient as portal vein injection at any dose. In addition, intravascular administration of the rAAV8 vector at a high dose transduced all the skeletal muscles throughout the body, including the diaphragm, the entire cardiac muscle, and substantial numbers of cells in the pancreas, smooth muscles, and brain. Thus, rAAV8 is a robust vector for gene transfer to the liver and provides a promising research tool for delivering genes to various target organs. In addition, the rAAV8 vector may offer a potential therapeutic agent for various diseases affecting nonhepatic tissues, but great caution is required for vector spillover and tight control of tissue-specific gene expression. PMID:15596817

  5. 9 CFR 104.3 - Permit application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PERMITS FOR BIOLOGICAL PRODUCTS § 104.3 Permit application. (a) Each person desiring to import a biological product shall make written... control number 0579-0013) [38 FR 32916, Nov. 29, 1973, as amended at 48 FR 57473, Dec. 30, 1983; 56 FR...

  6. Development of a Novel Escherichia coli–Kocuria Shuttle Vector Using the Cryptic pKPAL3 Plasmid from K. palustris IPUFS-1 and Its Utilization in Producing Enantiopure (S)-Styrene Oxide

    PubMed Central

    Toda, Hiroshi; Itoh, Nobuya

    2017-01-01

    The novel cryptic pKPAL3 plasmid was isolated from the Gram-positive microorganism Kocuria palustris IPUFS-1 and characterized in detail. pKPAL3 is a circular plasmid that is 4,443 bp in length. Open reading frame (ORF) and homology search analyses indicated that pKPAL3 possesses four ORFs; however, there were no replication protein coding genes predicted in the plasmid. Instead, there were two nucleotide sequence regions that showed significant identities with untranslated regions of K. rhizophila DC2201 (NBRC 103217) genomic sequences, and these sequences were essential for autonomous replication of pKPAL3 in Kocuria cells. Based on these findings, we constructed the novel Escherichia coli–Kocuria shuttle vectors pKITE301 (kanamycin resistant) and pKITE303 (thiostrepton resistant) from pKPAL3. The copy numbers of the constructed shuttle vectors were estimated to be 20 per cell, and they exhibited low segregation stability in Kocuria transformant cells in the absence of antibiotics. Moreover, constructed vectors showed compatibility with the other K. rhizophila shuttle vector pKITE103. We successfully expressed multiple heterologous genes, including the styrene monooxygenase gene from Rhodococcus sp. ST-10 (rhsmo) and alcohol dehydrogenase gene from Leifsonia sp. S749 (lsadh), in K. rhizophila DC2201 using the pKITE301P and pKITE103P vectors under the control of the glyceraldehyde 3-phosphate dehydrogenase (gapdh) promotor. The RhSMO–LSADH co-expressing K. rhizophila was used as a biocatalyst in an organic solvent–water biphasic reaction system to efficiently convert styrene into (S)-styrene oxide with 99% ee in the presence of 2-propanol as a hydrogen donor. The product concentration of the reaction in the organic solvent reached 235 mM after 30 h under optimum conditions. Thus, we demonstrated that this novel shuttle vector is useful for developing biocatalysts based on organic solvent-tolerant Kocuria cells. PMID:29230202

  7. Evolution of Chagas' disease in Brazil. Epidemiological perspective and challenges for the future: a critical review.

    PubMed

    Bello Corassa, Rafael; Aceijas, Carmen; Alves, Paula Aryane Brito; Garelick, Hemda

    2017-09-01

    This article aimed to provide a critical review of the evolution of Chagas' disease (ChD) in Brazil, its magnitude, historical development and management, and challenges for the future. A literature search was performed using PubMed, SciELO and Google Scholar and throughout collected articles' references. Narrative analysis was structured around five main themes identified: vector transmission, control programme, transfusion, oral and congenital transmission. In Brazil, the Chagas' Disease Control Programme was fully implemented in the 1980s, when it reached practically all the endemic areas, and in 1991, the Southern Cone Initiative was created, aiming to control the disease transmission through eliminating the Triatoma infestans and controlling blood banks. As a result, the prevalence of chagasic donors in blood banks reduced from 4.4% in the 1980s to 0.2% in 2005. In 2006, Pan American Health Organization (PAHO) certified the interruption of transmission of ChD through this vector in Brazil. However, there are still challenges, such as the domiciliation of new vector species, the need for medical care of the infected individuals, the prevention of alternative mechanisms of transmission, the loss of political concern regarding the disease and the weakening of the control programme. Despite the progress towards control, there are still many challenges ahead to maintain and expand such control and minimise the risk of re-emergence.

  8. Eco-bio-social research on dengue in Asia: a multicountry study on ecosystem and community-based approaches for the control of dengue vectors in urban and peri-urban Asia.

    PubMed

    Sommerfeld, Johannes; Kroeger, Axel

    2012-12-01

    This article provides an overview of methods and cross-site insights of a 5-year research and capacity building initiative conducted between 2006 and 2011 in six countries of South Asia (India, Sri Lanka) and South-East Asia (Indonesia, Myanmar, Philippines, Thailand).The initiative managed an interdisciplinary investigation of ecological, biological, and social (i.e., eco-bio-social) dimensions of dengue in urban and peri-urban areas, and developed community-based interventions aimed at reducing dengue vector breeding and viral transmission. The multicountry study comprised interdisciplinary research groups from six leading Asian research institutions. The groups conducted a detailed situation analysis to identify and characterize local eco-bio-social conditions, and formed a community-of-practice for EcoHealth research where group partners disseminated results and collaboratively developed site-specific intervention tools for vector-borne diseases. In sites where water containers produced more than 70% of Aedes pupae, interventions ranged from mechanical lid covers for containers to biological control. Where small discarded containers presented the main problem, groups experimented with solid waste management, composting and recycling schemes. Many intervention tools were locally produced and all tools were implemented through community partnership strategies. All sites developed socially and culturally appropriate health education materials. The study also mobilised and empowered women's, students' and community groups and at several sites organized new volunteer groups for environmental health. The initiative's programmes showed significant impact on vector densities in some sites. Other sites showed varying effect - partially attributable to the 'contamination' of control groups - yet led to significant outcomes at the community level where local groups united around broad interests in environmental hygiene and sanitation. The programme's findings are relevant for defining efficient, effective and ecologically sound vector control interventions based on local evidence and in accordance with WHO's strategy for integrated vector management.

  9. Eco-bio-social research on dengue in Asia: a multicountry study on ecosystem and community-based approaches for the control of dengue vectors in urban and peri-urban Asia

    PubMed Central

    Sommerfeld, Johannes; Kroeger, Axel

    2012-01-01

    This article provides an overview of methods and cross-site insights of a 5-year research and capacity building initiative conducted between 2006 and 2011 in six countries of South Asia (India, Sri Lanka) and South-East Asia (Indonesia, Myanmar, Philippines, Thailand).The initiative managed an interdisciplinary investigation of ecological, biological, and social (i.e., eco-bio-social) dimensions of dengue in urban and peri-urban areas, and developed community-based interventions aimed at reducing dengue vector breeding and viral transmission. The multicountry study comprised interdisciplinary research groups from six leading Asian research institutions. The groups conducted a detailed situation analysis to identify and characterize local eco-bio-social conditions, and formed a community-of-practice for EcoHealth research where group partners disseminated results and collaboratively developed site-specific intervention tools for vector-borne diseases. In sites where water containers produced more than 70% of Aedes pupae, interventions ranged from mechanical lid covers for containers to biological control. Where small discarded containers presented the main problem, groups experimented with solid waste management, composting and recycling schemes. Many intervention tools were locally produced and all tools were implemented through community partnership strategies. All sites developed socially and culturally appropriate health education materials. The study also mobilised and empowered women’s, students’ and community groups and at several sites organized new volunteer groups for environmental health. The initiative’s programmes showed significant impact on vector densities in some sites. Other sites showed varying effect — partially attributable to the ‘contamination’ of control groups — yet led to significant outcomes at the community level where local groups united around broad interests in environmental hygiene and sanitation. The programme’s findings are relevant for defining efficient, effective and ecologically sound vector control interventions based on local evidence and in accordance with WHO’s strategy for integrated vector management. PMID:23318234

  10. VectorBase: a home for invertebrate vectors of human pathogens

    PubMed Central

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Emmert, David; Hammond, Martin; Hill, Catherine A.; Kennedy, Ryan C.; Lobo, Neil F.; MacCallum, M. Robert; Madey, Greg; Megy, Karine; Redmond, Seth; Russo, Susan; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Zdobnov, Evgeny M.; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2007-01-01

    VectorBase () is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever. PMID:17145709

  11. A geo-coded inventory of anophelines in the Afrotropical Region south of the Sahara: 1898-2016.

    PubMed

    Kyalo, David; Amratia, Punam; Mundia, Clara W; Mbogo, Charles M; Coetzee, Maureen; Snow, Robert W

    2017-01-01

    Background : Understanding the distribution of anopheline vectors of malaria is an important prelude to the design of national malaria control and elimination programmes. A single, geo-coded continental inventory of anophelines using all available published and unpublished data has not been undertaken since the 1960s. Methods : We have searched African, European and World Health Organization archives to identify unpublished reports on anopheline surveys in 48 sub-Saharan Africa countries. This search was supplemented by identification of reports that formed part of post-graduate theses, conference abstracts, regional insecticide resistance databases and more traditional bibliographic searches of peer-reviewed literature. Finally, a check was made against two recent repositories of dominant malaria vector species locations ( circa 2,500). Each report was used to extract information on the survey dates, village locations (geo-coded to provide a longitude and latitude), sampling methods, species identification methods and all anopheline species found present during the survey. Survey records were collapsed to a single site over time.    Results : The search strategy took years and resulted in 13,331 unique, geo-coded survey locations of anopheline vector occurrence between 1898 and 2016. A total of 12,204 (92%) sites reported the presence of 10 dominant vector species/sibling species; 4,473 (37%) of these sites were sampled since 2005. 4,442 (33%) sites reported at least one of 13 possible secondary vector species; 1,107 (25%) of these sites were sampled since 2005. Distributions of dominant and secondary vectors conform to previous descriptions of the ecological ranges of these vectors. Conclusion : We have assembled the largest ever geo-coded database of anophelines in Africa, representing a legacy dataset for future updating and identification of knowledge gaps at national levels. The geo-coded database is available on Harvard Dataverse as a reference source for African national malaria control programmes planning their future control and elimination strategies.

  12. A geo-coded inventory of anophelines in the Afrotropical Region south of the Sahara: 1898-2016

    PubMed Central

    Kyalo, David; Amratia, Punam; Mundia, Clara W.; Mbogo, Charles M.; Coetzee, Maureen; Snow, Robert W.

    2017-01-01

    Background: Understanding the distribution of anopheline vectors of malaria is an important prelude to the design of national malaria control and elimination programmes. A single, geo-coded continental inventory of anophelines using all available published and unpublished data has not been undertaken since the 1960s. Methods: We have searched African, European and World Health Organization archives to identify unpublished reports on anopheline surveys in 48 sub-Saharan Africa countries. This search was supplemented by identification of reports that formed part of post-graduate theses, conference abstracts, regional insecticide resistance databases and more traditional bibliographic searches of peer-reviewed literature. Finally, a check was made against two recent repositories of dominant malaria vector species locations ( circa 2,500). Each report was used to extract information on the survey dates, village locations (geo-coded to provide a longitude and latitude), sampling methods, species identification methods and all anopheline species found present during the survey. Survey records were collapsed to a single site over time.    Results: The search strategy took years and resulted in 13,331 unique, geo-coded survey locations of anopheline vector occurrence between 1898 and 2016. A total of 12,204 (92%) sites reported the presence of 10 dominant vector species/sibling species; 4,473 (37%) of these sites were sampled since 2005. 4,442 (33%) sites reported at least one of 13 possible secondary vector species; 1,107 (25%) of these sites were sampled since 2005. Distributions of dominant and secondary vectors conform to previous descriptions of the ecological ranges of these vectors. Conclusion: We have assembled the largest ever geo-coded database of anophelines in Africa, representing a legacy dataset for future updating and identification of knowledge gaps at national levels. The geo-coded database is available on Harvard Dataverse as a reference source for African national malaria control programmes planning their future control and elimination strategies. PMID:28884158

  13. INSECTICIDE-TREATED BED NETS IN RONDÔNIA, BRAZIL: EVALUATION OF THEIR IMPACT ON MALARIA CONTROL

    PubMed Central

    Vieira, Gabriel de Deus; Basano, Sergio de Almeida; Katsuragawa, Tony Hiroshi; Camargo, Luís Marcelo Aranha

    2014-01-01

    Mosquito nets treated with long-lasting insecticide (LLINs), when used in compliance with guidelines of the World Health Organization, may be effective for malaria vector control. In 2012, approximately 150,000 LLINs were installed in nine municipalities in the state of Rondônia. However, no studies have assessed their impact on the reduction of malaria incidence. This study analyzed secondary data of malaria incidence, in order to assess the impact of LLINs on the annual parasite incidence (API). The results showed no statistically significant differences in API one year after LLIN installation when compared to municipalities without LLINs. The adoption of measures for malaria vector control should be associated with epidemiological studies and evaluations of their use and efficiency, with the aim of offering convincing advantages that justify their implementation and limit malaria infection in the Amazon Region. PMID:25351543

  14. What does not kill them makes them stronger: larval environment and infectious dose alter mosquito potential to transmit filarial worms.

    PubMed

    Breaux, Jennifer A; Schumacher, Molly K; Juliano, Steven A

    2014-07-07

    For organisms with complex life cycles, larval environments can modify adult phenotypes. For mosquitoes and other vectors, when physiological impacts of stressors acting on larvae carry over into the adult stage they may interact with infectious dose of a vector-borne pathogen, producing a range of phenotypes for vector potential. Investigation of impacts of a common source of stress, larval crowding and intraspecific competition, on adult vector interactions with pathogens may increase our understanding of the dynamics of pathogen transmission by mosquito vectors. Using Aedes aegypti and the nematode parasite Brugia pahangi, we demonstrate dose dependency of fitness effects of B. pahangi infection on the mosquito, as well as interactions between competitive stress among larvae and infectious dose for resulting adults that affect the physiological and functional ability of mosquitoes to act as vectors. Contrary to results from studies on mosquito-arbovirus interactions, our results suggest that adults from crowded larvae may limit infection better than do adults from uncrowded controls, and that mosquitoes from high-quality larval environments are more physiologically and functionally capable vectors of B. pahangi. Our results provide another example of how the larval environment can have profound effects on vector potential of resulting adults. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Acoustic communication in insect disease vectors

    PubMed Central

    Vigoder, Felipe de Mello; Ritchie, Michael Gordon; Gibson, Gabriella; Peixoto, Alexandre Afranio

    2013-01-01

    Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects. PMID:24473800

  16. INGN 007, an oncolytic adenovirus vector, replicates in Syrian hamsters but not mice: comparison of biodistribution studies.

    PubMed

    Ying, B; Toth, K; Spencer, J F; Meyer, J; Tollefson, A E; Patra, D; Dhar, D; Shashkova, E V; Kuppuswamy, M; Doronin, K; Thomas, M A; Zumstein, L A; Wold, W S M; Lichtenstein, D L

    2009-08-01

    Preclinical biodistribution studies with INGN 007, an oncolytic adenovirus (Ad) vector, supporting an early stage clinical trial were conducted in Syrian hamsters, which are permissive for Ad replication, and mice, which are a standard model for assessing toxicity and biodistribution of replication-defective (RD) Ad vectors. Vector dissemination and pharmacokinetics following intravenous administration were examined by real-time PCR in nine tissues and blood at five time points spanning 1 year. Select organs were also examined for the presence of infectious vector/virus. INGN 007 (VRX-007), wild-type Ad5 and AdCMVpA (an RD vector) were compared in the hamster model, whereas only INGN 007 was examined in mice. DNA of all vectors was widely disseminated early after injection, but decayed rapidly in most organs. In the hamster model, DNA of INGN 007 and Ad5 was more abundant than that of the RD vector AdCMVpA at early times after injection, but similar levels were seen later. An increased level of INGN 007 and Ad5 DNA but not AdCMVpA DNA in certain organs early after injection, and the presence of infectious INGN 007 and Ad5 in lung and liver samples at early times after injection, strongly suggests that replication of INGN 007 and Ad5 occurred in several Syrian hamster organs. There was no evidence of INGN 007 replication in mice. In addition to providing important information about INGN 007, the results underscore the utility of the Syrian hamster as a permissive immunocompetent model for Ad5 pathogenesis and oncolytic Ad vectors.

  17. Biological nanopesticides: a greener approach towards the mosquito vector control.

    PubMed

    Mishra, Prabhakar; Tyagi, Brij Kishore; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2018-04-01

    Mosquitoes, being a vector for some potentially dreadful diseases, pose a considerable threat to people all around the world. The control over the growth and propagation of mosquitoes comprises conventional pesticides, insect growth regulators and other microbial control agents. However, the usage of these common chemicals and conventional pesticides eventually has a negative impact on human health as well as the environment, which therefore becomes a major concern. The lacuna allows nanotechnology to come into action and exploit nanopesticides. Nanopesticides are majorly divided into two categories-synthetic and biological. Several nanoformulations serve as a promising nanopesticide viz. nanoparticles, e.g. biologically synthesised nanoparticles through plant extracts, nanoemulsions prepared using the essential oils like neem oil and citronella oil and nanoemulsion of conventional pesticides like pyrethroids. These green approaches of synthesising nanopesticides make use of non-toxic and biologically derived compounds and hence are eco-friendly with a better target specificity. Even though there are numerous evidences to show the effectiveness of these nanopesticides, very few efforts have been made to study the possible non-target effects on other organisms prevalent in the aquatic ecosystem. This study focuses on the role of these nanopesticides towards the vector control and its eco-safe property against the other non-target species.

  18. Sequential cloning of chromosomes

    DOEpatents

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  19. The Environmental Issues of DDT Pollution and Bioremediation: a Multidisciplinary Review.

    PubMed

    Mansouri, Ahlem; Cregut, Mickael; Abbes, Chiraz; Durand, Marie-Jose; Landoulsi, Ahmed; Thouand, Gerald

    2017-01-01

    DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) is probably the best known and most useful organochlorine insecticide in the world which was used since 1945 for agricultural purposes and also for vector-borne disease control such as malaria since 1955, until its banishment in most countries by the Stockholm convention for ecologic considerations. However, the World Health Organization allowed its reintroduction only for control of vector-borne diseases in some tropical countries in 2006. Due to its physicochemical properties and specially its persistence related with a half-life up to 30 years, DDT linked to several health and social problems which are due to its accumulation in the environment and its biomagnification properties in living organisms. This manuscript compiles a multidisciplinary review to evaluate primarily (i) the worldwide contamination of DDT and (ii) its (eco) toxicological impact onto living organisms. Secondly, several ways for DDT bioremediation from contaminated environment are discussed. For this, reports on DDT biodegradation capabilities by microorganisms and ways to enhance bioremediation strategies to remove DDT are presented. The different existing strategies for DDT bioremediation are evaluated with their efficiencies and limitations to struggle efficiently this contaminant. Finally, rising new approaches and technological bottlenecks to promote DDT bioremediation are discussed.

  20. Aspects of pathogen genomics, diversity, epidemiology, vector dynamics, and disease management for a newly emerged disease of potato: zebra chip.

    PubMed

    Lin, Hong; Gudmestad, Neil C

    2013-06-01

    An overview is provided for the aspects of history, biology, genomics, genetics, and epidemiology of zebra chip (ZC), a destructive disease of potato (Solanum tuberosum) that represents a major threat to the potato industries in the United States as well as other potato-production regions in the world. The disease is associated with a gram-negative, phloem-limited, insect-vectored, unculturable prokaryote, 'Candidatus Liberibacter solanacearum', that belongs to the Rhizobiaceae family of α-Proteobacteria. The closest cultivated relatives of 'Ca. L. solanacearum' are members of the group of bacteria known as the α-2 subgroup. In spite of the fact that Koch's postulates sensu stricto have not been fulfilled, a great deal of progress has been made in understanding the ZC disease complex since discovery of the disease. Nevertheless, more research is needed to better understand vector biology, disease mechanisms, host response, and epidemiology in the context of vector-pathogen-plant interactions. Current ZC management strategies focus primarily on psyllid control. The ultimate control of ZC likely relies on host resistance. Unfortunately, all commercial potato cultivars are susceptible to ZC. Elucidation of the 'Ca. L. solanacearum' genome sequence has provided insights into the genetic basis of virulence and physiological and metabolic capability of this organism. Finally, the most effective, sustainable management of ZC is likely to be based on integrated strategies, including removal or reduction of vectors or inocula, improvement of host resistance to the presumptive pathogen and psyllid vectors, and novel gene-based therapeutic treatment.

  1. Effects of Organic Amendments on Microbiota Associated with the Culex nigripalpus Mosquito Vector of the Saint Louis Encephalitis and West Nile Viruses.

    PubMed

    Duguma, Dagne; Hall, Michael W; Smartt, Chelsea T; Neufeld, Josh D

    2017-01-01

    Pollution from nutrients in aquatic habitats has been linked to increases in disease vectors, including mosquitoes and other pestiferous insects. One possibility is that changes in mosquito microbiomes are impacted by nutrient enrichments and that these changes affect various traits, including larval development, susceptibility to larval control agents, and susceptibility of the adult mosquitoes to pathogens. We tested this hypothesis using field mesocosms supplemented with low- and high-organic-nutrient regimens and then sampled microbial communities associated with the naturally colonizing Culex nigripalpus mosquito vector. By high-throughput sequencing of 16S rRNA gene sequences, we found no significant differences in overall microbial communities associated with sampled mosquitoes, despite detecting discernible differences in environmental variables, including pH, dissolved oxygen, and nutrient amendments. Nevertheless, indicator species analysis revealed that members of the Clostridiales were significantly associated with mosquitoes that originated from high-nutrient enrichments. In contrast, members of the Burkholderiales were associated with mosquitoes from the low-nutrient enrichment. High bacterial variability associated with the life stages of the C. nigripalpus was largely unaffected by levels of nutrient enrichments that impacted larval microbial resources, including bacteria, ciliates, and flagellates in the larval environments. IMPORTANCE Mosquito microbiota provide important physiological and ecological attributes to mosquitoes, including an impact on their susceptibility to pathogens, fitness, and sensitivity to mosquito control agents. Culex nigripalpus mosquito populations transmit various pathogens, including the Saint Louis and West Nile viruses, and proliferate in nutrient-rich environments, such as in wastewater treatment wetlands. Our study examined whether increases in nutrients within larval mosquito developmental habitats impact microbial communities associated with C. nigripalpus mosquitoes. We characterized the effects of organic enrichments on microbiomes associated with C. nigripalpus mosquitoes and identified potential bacterial microbiota that will be further investigated for whether they alter mosquito life history traits and for their potential role in the development of microbial-based control strategies.

  2. Vector-averaged gravity does not alter acetylcholine receptor single channel properties

    NASA Technical Reports Server (NTRS)

    Reitstetter, R.; Gruener, R.

    1994-01-01

    To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.

  3. Long-Term Efficacy and Safety of Insulin and Glucokinase Gene Therapy for Diabetes: 8-Year Follow-Up in Dogs.

    PubMed

    Jaén, Maria Luisa; Vilà, Laia; Elias, Ivet; Jimenez, Veronica; Rodó, Jordi; Maggioni, Luca; Ruiz-de Gopegui, Rafael; Garcia, Miguel; Muñoz, Sergio; Callejas, David; Ayuso, Eduard; Ferré, Tura; Grifoll, Iris; Andaluz, Anna; Ruberte, Jesus; Haurigot, Virginia; Bosch, Fatima

    2017-09-15

    Diabetes is a complex metabolic disease that exposes patients to the deleterious effects of hyperglycemia on various organs. Achievement of normoglycemia with exogenous insulin treatment requires the use of high doses of hormone, which increases the risk of life-threatening hypoglycemic episodes. We developed a gene therapy approach to control diabetic hyperglycemia based on co-expression of the insulin and glucokinase genes in skeletal muscle. Previous studies proved the feasibility of gene delivery to large diabetic animals with adeno-associated viral (AAV) vectors. Here, we report the long-term (∼8 years) follow-up after a single administration of therapeutic vectors to diabetic dogs. Successful, multi-year control of glycemia was achieved without the need of supplementation with exogenous insulin. Metabolic correction was demonstrated through normalization of serum levels of fructosamine, triglycerides, and cholesterol and remarkable improvement in the response to an oral glucose challenge. The persistence of vector genomes and therapeutic transgene expression years after vector delivery was documented in multiple samples from treated muscles, which showed normal morphology. Thus, this study demonstrates the long-term efficacy and safety of insulin and glucokinase gene transfer in large animals and especially the ability of the system to respond to the changes in metabolic needs as animals grow older.

  4. Development of an Expression Vector to Overexpress or Downregulate Genes in Curvularia protuberata.

    PubMed

    Liu, Chengke; Cleckler, Blake; Morsy, Mustafa

    2018-05-05

    Curvularia protuberata , an endophytic fungus in the Ascomycota, provides plants with thermotolerance only when it carries a mycovirus known as Curvularia thermotolerance virus (CThTV), and forms a three-way symbiotic relationship among these organisms. Under heat stress, several genes are expressed differently between virus-free C. protuberata (VF) and C. protuberata carrying CThTV (AN). We developed an expression vector, pM2Z-fun, carrying a zeocin resistance gene driven by the ToxA promoter, to study gene functions in C. protuberata to better understand this three-way symbiosis. Using this new 3.7-kb vector, five genes that are differentially expressed in C. protuberata —including genes involved in the trehalose, melanin, and catalase biosynthesis pathways—were successfully overexpressed or downregulated in VF or AN C. protuberata strains, respectively. The VF overexpression lines showed higher metabolite and enzyme activity than in the control VF strain. Furthermore, downregulation of expression of the same genes in the AN strain resulted in lower metabolite and enzyme activity than in the control AN strain. The newly generated expression vector, pM2Z-fun, has been successfully used to express target genes in C. protuberata and will be useful in further functional expression studies in other Ascomycota fungi.

  5. Insights from agriculture for the management of insecticide resistance in disease vectors.

    PubMed

    Sternberg, Eleanore D; Thomas, Matthew B

    2018-04-01

    Key to contemporary management of diseases such as malaria, dengue, and filariasis is control of the insect vectors responsible for transmission. Insecticide-based interventions have contributed to declines in disease burdens in many areas, but this progress could be threatened by the emergence of insecticide resistance in vector populations. Insecticide resistance is likewise a major concern in agriculture, where insect pests can cause substantial yield losses. Here, we explore overlaps between understanding and managing insecticide resistance in agriculture and in public health. We have used the Global Plan for Insecticide Resistance Management in malaria vectors, developed under the auspices of the World Health Organization Global Malaria Program, as a framework for this exploration because it serves as one of the few cohesive documents for managing a global insecticide resistance crisis. Generally, this comparison highlights some fundamental differences between insect control in agriculture and in public health. Moreover, we emphasize that the success of insecticide resistance management strategies is strongly dependent on the biological specifics of each system. We suggest that the biological, operational, and regulatory differences between agriculture and public health limit the wholesale transfer of knowledge and practices from one system to the other. Nonetheless, there are some valuable insights from agriculture that could assist in advancing the existing Global Plan for Insecticide Resistance Management framework.

  6. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan; Hoti, S L; Khater, Hanem F; Benelli, Giovanni

    2016-08-01

    Mosquitoes (Diptera: Culicidae) are vectors of important pathogens and parasites, including malaria, dengue, chikungunya, Japanese encephalitis, lymphatic filariasis and Zika virus. The application of synthetic insecticides causes development of resistance, biological magnification of toxic substances through the food chain, and adverse effects on the environment and human health. In this scenario, eco-friendly control tools of mosquito vectors are a priority. Here single-step fabrication of silver nanoparticles (AgNP) using a cheap aqueous leaf extract of Zornia diphylla as reducing and capping agent pf Ag(+) ions has been carried out. Biosynthesized AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of Z. diphylla leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the Z. diphylla leaf extract and Ag NP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 12.53, 13.42 and 14.61μg/ml, respectively. Biosynthesized Ag NP were found safer to non-target organisms Chironomus circumdatus, Anisops bouvieri and Gambusia affinis, with the respective LC50 values ranging from 613.11 to 6903.93μg/ml, if compared to target mosquitoes. Overall, our results highlight that Z. diphylla-fabricated Ag NP are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against other non-target organisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Adulticidal Susceptibility Evaluation of Aedes albopictus Using New Diagnostic Doses in Penang Island, Malaysia.

    PubMed

    Rahim, Junaid; Ahmad, Abu H; Ahmad, Hamdan; Ishak, Intan H; Rus, Adanan Che; Maimusa, Hamisu A

    2017-09-01

    Insecticide-based vector control approaches are facing challenges due to the development of resistance in vector mosquitoes. Therefore, a proper resistance surveillance program using baseline lethal concentrations is crucial for resistance management strategies. Currently, the World Health Organization's (WHO) diagnostic doses established for Aedes aegypti and Anopheles species are being used to study the resistance status of Aedes albopictus. In this study, we established the diagnostic doses for permethrin, deltamethrin, and malathion using a known susceptible reference strain. Five field-collected populations were screened against these doses, following the WHO protocol. This study established the diagnostic dose of malathion at 2.4%, permethrin at 0.95%, and deltamethrin at 0.28%, which differ from the WHO doses for Aedes aegypti and Anopheles spp. Among the insecticides tested on the 5 wild populations, only deltamethrin showed high effectiveness. Different susceptibility and resistance patterns were observed with permethrin, malathion, and dichloro-diphenyl-trichloroethane (DDT) at 4%. This study may assist the health authorities to improve future chemical-based vector control operations in dengue-endemic areas.

  8. INGN 007, an oncolytic adenovirus vector, replicates in Syrian hamsters but not mice: comparison of biodistribution studies

    PubMed Central

    Ying, B; Toth, K; Spencer, JF; Meyer, J; Tollefson, AE; Patra, D; Dhar, D; Shashkova, EV; Kuppuswamy, M; Doronin, K; Thomas, MA; Zumstein, LA; Wold, WSM; Lichtenstein, DL

    2012-01-01

    Preclinical biodistribution studies with INGN 007, an oncolytic adenovirus (Ad) vector, supporting an early stage clinical trial were conducted in Syrian hamsters, which are permissive for Ad replication, and mice, which are a standard model for assessing toxicity and biodistribution of replication-defective (RD) Ad vectors. Vector dissemination and pharmacokinetics following intravenous administration were examined by real-time PCR in nine tissues and blood at five time points spanning 1 year. Select organs were also examined for the presence of infectious vector/virus. INGN 007 (VRX-007), wild-type Ad5 and AdCMVpA (an RD vector) were compared in the hamster model, whereas only INGN 007 was examined in mice. DNA of all vectors was widely disseminated early after injection, but decayed rapidly in most organs. In the hamster model, DNA of INGN 007 and Ad5 was more abundant than that of the RD vector AdCMVpA at early times after injection, but similar levels were seen later. An increased level of INGN 007 and Ad5 DNA but not AdCMVpA DNA in certain organs early after injection, and the presence of infectious INGN 007 and Ad5 in lung and liver samples at early times after injection, strongly suggests that replication of INGN 007 and Ad5 occurred in several Syrian hamster organs. There was no evidence of INGN 007 replication in mice. In addition to providing important information about INGN 007, the results underscore the utility of the Syrian hamster as a permissive immunocompetent model for Ad5 pathogenesis and oncolytic Ad vectors. PMID:19197322

  9. A Potential Food-Grade Cloning Vector for Streptococcus thermophilus That Uses Cadmium Resistance as the Selectable Marker

    PubMed Central

    Wong, Wing Yee; Su, Ping; Allison, Gwen E.; Liu, Chun-Qiang; Dunn, Noel W.

    2003-01-01

    A potential food-grade cloning vector, pND919, was constructed and transformed into S. thermophilus ST3-1, a plasmid-free strain. The vector contains DNAs from two different food-approved organisms, Streptococcus thermophilus and Lactococcus lactis. The 5.0-kb pND919 is a derivative of the cloning vector pND918 (9.3 kb) and was constructed by deletion of the 4.3-kb region of pND918 which contained DNA from non-food-approved organisms. pND919 carries a heterologous native cadmium resistance selectable marker from L. lactis M71 and expresses the Cdr phenotype in S. thermophilus transformants. With the S. thermophilus replicon derived from the shuttle vector pND913, pND919 is able to replicate in the two S. thermophilus industrial strains tested, ST3-1 and ST4-1. Its relatively high retention rate in S. thermophilus further indicates its usefulness as a potential food-grade cloning vector. To our knowledge, this is the first report of a replicative potential food-grade vector for the industrially important organism S. thermophilus. PMID:14532023

  10. A potential food-grade cloning vector for Streptococcus thermophilus that uses cadmium resistance as the selectable marker.

    PubMed

    Wong, Wing Yee; Su, Ping; Allison, Gwen E; Liu, Chun-Qiang; Dunn, Noel W

    2003-10-01

    A potential food-grade cloning vector, pND919, was constructed and transformed into S. thermophilus ST3-1, a plasmid-free strain. The vector contains DNAs from two different food-approved organisms, Streptococcus thermophilus and Lactococcus lactis. The 5.0-kb pND919 is a derivative of the cloning vector pND918 (9.3 kb) and was constructed by deletion of the 4.3-kb region of pND918 which contained DNA from non-food-approved organisms. pND919 carries a heterologous native cadmium resistance selectable marker from L. lactis M71 and expresses the Cd(r) phenotype in S. thermophilus transformants. With the S. thermophilus replicon derived from the shuttle vector pND913, pND919 is able to replicate in the two S. thermophilus industrial strains tested, ST3-1 and ST4-1. Its relatively high retention rate in S. thermophilus further indicates its usefulness as a potential food-grade cloning vector. To our knowledge, this is the first report of a replicative potential food-grade vector for the industrially important organism S. thermophilus.

  11. Integrating vector control across diseases.

    PubMed

    Golding, Nick; Wilson, Anne L; Moyes, Catherine L; Cano, Jorge; Pigott, David M; Velayudhan, Raman; Brooker, Simon J; Smith, David L; Hay, Simon I; Lindsay, Steve W

    2015-10-01

    Vector-borne diseases cause a significant proportion of the overall burden of disease across the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective interventions for many of these diseases, a lack of resources prevents their effective control. Many existing vector control interventions are known to be effective against multiple diseases, so combining vector control programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable disease reductions. The highly successful cross-disease integration of vaccine and mass drug administration programmes in low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of 'accidental' cross-disease vector control suggest the potential of such an approach. Combining contemporary high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of the global population live in regions of the world at risk from one vector-borne disease, and more than half the world's population live in areas where at least two different vector-borne diseases pose a threat to health. Combining information on co-endemicity with an assessment of the overlap of vector control methods effective against these diseases allows us to highlight opportunities for such integration. Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector control. All four of these diseases overlap considerably in their distributions and there is a growing body of evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their vectors. The real-world effectiveness of cross-disease vector control programmes can only be evaluated by large-scale trials, but there is clear evidence of the potential of such an approach to enable greater overall health benefit using the limited funds available.

  12. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases

    PubMed Central

    Giraldo-Calderón, Gloria I.; Emrich, Scott J.; MacCallum, Robert M.; Maslen, Gareth; Dialynas, Emmanuel; Topalis, Pantelis; Ho, Nicholas; Gesing, Sandra; Madey, Gregory; Collins, Frank H.; Lawson, Daniel

    2015-01-01

    VectorBase is a National Institute of Allergy and Infectious Diseases supported Bioinformatics Resource Center (BRC) for invertebrate vectors of human pathogens. Now in its 11th year, VectorBase currently hosts the genomes of 35 organisms including a number of non-vectors for comparative analysis. Hosted data range from genome assemblies with annotated gene features, transcript and protein expression data to population genetics including variation and insecticide-resistance phenotypes. Here we describe improvements to our resource and the set of tools available for interrogating and accessing BRC data including the integration of Web Apollo to facilitate community annotation and providing Galaxy to support user-based workflows. VectorBase also actively supports our community through hands-on workshops and online tutorials. All information and data are freely available from our website at https://www.vectorbase.org/. PMID:25510499

  13. Human gene therapy: novel approaches to improve the current gene delivery systems.

    PubMed

    Cucchiarini, Magali

    2016-06-01

    Even though gene therapy made its way through the clinics to treat a number of human pathologies since the early years of experimental research and despite the recent approval of the first gene-based product (Glybera) in Europe, the safe and effective use of gene transfer vectors remains a challenge in human gene therapy due to the existence of barriers in the host organism. While work is under active investigation to improve the gene transfer systems themselves, the use of controlled release approaches may offer alternative, convenient tools of vector delivery to achieve a performant gene transfer in vivo while overcoming the various physiological barriers that preclude its wide use in patients. This article provides an overview of the most significant contributions showing how the principles of controlled release strategies may be adapted for human gene therapy.

  14. Environmental management: a re-emerging vector control strategy.

    PubMed

    Ault, S K

    1994-01-01

    Vector control may be accomplished by environmental management (EM), which consists of permanent or long-term modification of the environment, temporary or seasonal manipulation of the environment, and modifying or changing our life styles and practices to reduce human contact with infective vectors. The primary focus of this paper is EM in the control of human malaria, filariasis, arboviruses, Chagas' disease, and schistosomiasis. Modern EM developed as a discipline based primarily in ecologic principles and lessons learned from the adverse environmental impacts of rural development projects. Strategies such as the suppression of vector populations through the provision of safe water supplies, proper sanitation, solid waste management facilities, sewerage and excreta disposal systems, water manipulation in dams and irrigation systems, vector diversion by zooprophylaxis, and vector exclusion by improved housing, are discussed with appropriate examples. Vectors of malaria, filariasis, Chagas' disease, and schistosomiasis have been controlled by drainage or filling aquatic breeding sites, improved housing and sanitation, the use of expanded polystyrene beads, zooprophylaxis, or the provision of household water supplies. Community participation has been effective in the suppression of dengue vectors in Mexico and the Dominican Republic. Alone or combined with other vector control methods, EM has been proven to be a successful approach to vector control in a number of places. The future of EM in vector control looks promising.

  15. Current vector control challenges in the fight against malaria.

    PubMed

    Benelli, Giovanni; Beier, John C

    2017-10-01

    The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance, presence of behavioral avoidance, high vector biodiversity, competitive and food web interactions, lack of insights on mosquito dispersal and mating behavior, and the impact of environmental changes on mosquito ecological traits. Overall, the trans-disciplinary cooperation among parasitologists and entomologists is crucial to ensure proper evaluation of the epidemiological impact triggered by novel mosquito vector control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...

  17. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...

  18. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...

  19. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...

  20. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...

  1. Annotated Differentially Expressed Salivary Proteins of Susceptible and Insecticide-Resistant Mosquitoes of Anopheles stephensi

    PubMed Central

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito—parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins may play a role in regulating mosquito biting behavior patterns and may have implications in the development of malaria parasites in resistant mosquitoes during parasite transmission. PMID:25742511

  2. Annotated differentially expressed salivary proteins of susceptible and insecticide-resistant mosquitoes of Anopheles stephensi.

    PubMed

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito-parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins may play a role in regulating mosquito biting behavior patterns and may have implications in the development of malaria parasites in resistant mosquitoes during parasite transmission.

  3. Control of Scaphoideus titanus with Natural Products in Organic Vineyards

    PubMed Central

    Tacoli, Federico; Mori, Nicola; Cargnus, Elena; Da Vià, Sarah; Zandigiacomo, Pietro; Duso, Carlo; Pavan, Francesco

    2017-01-01

    The leafhopper Scaphoideus titanus is the vector of ‘Candidatus Phytoplasma vitis’, the causal agent of Flavescence dorée (FD) a key disease for European viticulture. In organic vineyards, the control of S. titanus relies mostly on the use of pyrethrins that have suboptimal efficacy. During 2016, three field trials were conducted to evaluate the efficacy of kaolin, orange oil, insecticidal soap and spinosad against S. titanus nymphs, in comparison with pyrethrins. The activity of kaolin was evaluated also in the laboratory. In all field trials, kaolin had an efficacy against nymphs comparable to pyrethrins, while the other products were not effective. Laboratory results confirmed that kaolin increased nymph mortality. In organic vineyards, kaolin and pyrethrins are valuable tools in the management of FD. Nevertheless, their efficacy is lower compared to that of the synthetic insecticides used in conventional viticulture. Therefore, further research should be conducted in order to identify alternatives to synthetic insecticides for S. titanus control in the context of organic viticulture. PMID:29258165

  4. Work culture among healthcare personnel in a palliative medicine unit.

    PubMed

    André, Beate; Sjøvold, Endre; Rannestad, Toril; Holmemo, Marte; Ringdal, Gerd I

    2013-04-01

    Understanding and assessing health care personnel's work culture in palliative care is important, as a conflict between "high tech" and "high touch" is present. Implementing necessary changes in behavior and procedures may imply a profound challenge, because of this conflict. The aim of this study was to explore the work culture at a palliative medicine unit (PMU). Healthcare personnel (N = 26) at a PMU in Norway comprising physicians, nurses, physiotherapists, and others filled in a questionnaire about their perception of the work culture at the unit. The Systematizing Person-Group Relations (SPGR) method was used for gathering data and for the analyses. This method applies six different dimensions representing different aspects of a work culture (Synergy, Withdrawal, Opposition, Dependence, Control, and Nurture) and each dimension has two vectors applied. The method seeks to explore which aspects dominate the particular work culture, identifying challenges, limitations, and opportunities. The findings were compared with a reference group of 347 ratings of well-functioning Norwegian organizations, named the "Norwegian Norm." The healthcare personnel working at the PMU had significantly higher scores than the "Norwegian Norm" in both vectors in the "Withdrawal" dimension and significant lower scores in both vectors in the "Synergy," "Control," and "Dependence" dimensions. Healthcare personnel at the PMU have a significantly different perception of their work culture than do staff in "well-functioning organizations" in several dimensions. The low score in the "Synergy" and "Control" dimensions indicate lack of engagement and constructive goal orientation behavior, and not being in a position to change their behavior. The conflict between "high tech" and "high touch" at a PMU seems to be an obstacle when implementing new procedures and alternative courses of action.

  5. Successes and failures of sixty years of vector control in French Guiana: what is the next step?

    PubMed

    Epelboin, Yanouk; Chaney, Sarah C; Guidez, Amandine; Habchi-Hanriot, Nausicaa; Talaga, Stanislas; Wang, Lanjiao; Dusfour, Isabelle

    2018-03-12

    Since the 1940s, French Guiana has implemented vector control to contain or eliminate malaria, yellow fever, and, recently, dengue, chikungunya, and Zika. Over time, strategies have evolved depending on the location, efficacy of the methods, development of insecticide resistance, and advances in vector control techniques. This review summarises the history of vector control in French Guiana by reporting the records found in the private archives of the Institute Pasteur in French Guiana and those accessible in libraries worldwide. This publication highlights successes and failures in vector control and identifies the constraints and expectations for vector control in this French overseas territory in the Americas.

  6. [Distribution of Leishmania infantum vector species in Colombia].

    PubMed

    González, Camila; Cabrera, Olga L; Munstermann, Leonard E; Ferro, Cristina

    2006-10-01

    Since entomological surveillance is the main control strategy for visceral leishmaniasis, updated information on the distribution and ecology of involved vector species is necessary for planning preventive measures. To present the updated and geo-referenced distribution of L. longipalpis and L. evansi, vectors of visceral leishmaniasis in Colombia, considering their relationship with their habitat. Distribution was estimated from records of the sand fly specimens collected since 1967. The information was organized in a database from which the localities were selected and geographically analyzed with Arc view in order to develop the distribution maps. 40 localities were established for L. longipalpis along the upper (24), middle (11) and lower (5) Magdalena river valley. L. evansi was recorded in 19 localities of the middle (5) and lower (14) Magdalena valley. Both species showed consistent association with dry tropical forest (sensu Holdridge 1967), confirming the epidemiological risk for visceral leishmaniasis in these areas.

  7. [Potential of Bacillus thuringiensis israelensis Berliner for controlling Aedes aegypti].

    PubMed

    Polanczyk, Ricardo Antonio; Garcia, Marcelo de Oliveira; Alves, Sérgio Batista

    2003-12-01

    The importance of the entomopathogenic bacterium Bacillus thuringiensis israelensis in the control of Aedes aegypti is presented. The use and potential of B. thuringiensis israelensis against the mosquito vector of dengue fever is described. Other aspects such as insect's resistance development against chemicals and advantages and constraints of using microbial control are discussed. Emphasis is given to the importance of the use of this bacterium in Brazil, which could contribute significantly to solving the mosquito problem without affecting the environment, humans and others invertebrate organisms in critical regions.

  8. Protecting cows in small holder farms in East Africa from tsetse flies by mimicking the odor profile of a non-host bovid

    PubMed Central

    Orindi, Benedict O.; Mbahin, Norber; Muasa, Peter N.; Mbuvi, David M.; Muya, Caroline M.; Pickett, John A.; Borgemeister, Christian W.

    2017-01-01

    Background For the first time, differential attraction of pathogen vectors to vertebrate animals is investigated for novel repellents which when applied to preferred host animals turn them into non-hosts thereby providing a new paradigm for innovative vector control. For effectively controlling tsetse flies (Glossina spp.), vectors of African trypanosomosis, causing nagana, repellents more powerful than plant derived, from a non-host animal the waterbuck, Kobus ellipsiprymnus defassa, have recently been identified. Here we investigate these repellents in the field to protect cattle from nagana by making cattle as unattractive as the buck. Methodology/Principal findings To dispense the waterbuck repellents comprising guaiacol, geranylacetone, pentanoic acid and δ-octalactone, (patent application) we developed an innovative collar-mounted release system for individual cattle. We tested protecting cattle, under natural tsetse challenge, from tsetse transmitted nagana in a large field trial comprising 1,100 cattle with repellent collars in Kenya for 24 months. The collars provided substantial protection to livestock from trypanosome infection by reducing disease levels >80%. Protected cattle were healthier, showed significantly reduced disease levels, higher packed cell volume and significantly increased weight. Collars >60% reduced trypanocide use, 72.7% increase in ownership of oxen per household and enhanced traction power (protected animals ploughed 66% more land than unprotected). Land under cultivation increased by 73.4%. Increase in traction power of protected animals reduced by 69.1% acres tilled by hand per household per ploughing season. Improved food security and household income from very high acceptance of collars (99%) motivated the farmers to form a registered community based organization promoting collars for integrated tsetse control and their commercialization. Conclusion/Significance Clear demonstration that repellents from un-preferred hosts prevent contact between host and vector, thereby preventing disease transmission: a new paradigm for vector control. Evidence that deploying water buck repellents converts cattle into non-hosts for tsetse flies—‘cows in waterbuck clothing’. PMID:29040267

  9. Sequential cloning of chromosomes

    DOEpatents

    Lacks, Sanford A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  10. Malaria vector control: from past to future.

    PubMed

    Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P

    2011-04-01

    Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough understanding of biology, ethical considerations, and sufficiently trained manpower for implementation being technically intensive methods. All the methods mentioned in the review that are being implemented or proposed for implementation needs effective inter-sectoral coordination and community participation. The latest strategy is evolution-proof insecticides that include fungal biopesticides, Wolbachia, and Denso virus that essentially manipulate the life cycle of the mosquitoes were found effective but needs more research. However, for effective vector control, integrated vector management methods, involving use of combination of effective tools, is needed and is also suggested by Global Malaria Control Strategy. This review article raises issues associated with the present-day vector control strategies and state opportunities with a focus on ongoing research and recent advances to enable to sustain the gains achieved so far.

  11. 9 CFR 122.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Definitions. 122.1 Section 122.1..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS ORGANISMS AND VECTORS § 122.1 Definitions... regulations. (g) Person. Any individual, firm, partnership, corporation, company, society, association, or...

  12. Mathematical modeling of Chikungunya fever control

    NASA Astrophysics Data System (ADS)

    Hincapié-Palacio, Doracelly; Ospina, Juan

    2015-05-01

    Chikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures.

  13. Dose-response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato.

    PubMed

    Mbare, Oscar; Lindsay, Steven W; Fillinger, Ulrike

    2013-03-14

    Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. Dose-response and standardized field tests were implemented following standard procedures of the World Health Organization's Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77% of eggs laid by females exposed to 0.018 ppm ai failed to hatch, whilst 98% of eggs laid by females exposed to 0.09 ppm ai did not hatch. Anopheles gambiae s.s. and An. arabiensis are highly susceptible to Sumilarv®0.5G at very low dosages. The persistence of this granule formulation in treated habitats under standardized field conditions and its sub-lethal impact, reducing the number of viable eggs from adults emerging from treated ponds, enhances its potential as malaria vector control tool. These unique properties warrant further field testing to determine its suitability for inclusion in malaria vector control programmes.

  14. US and Cuban Scientists Forge Collaboration on Arbovirus Research.

    PubMed

    Pérez-Ávila, Jorge; Guzmán-Tirado, Maria G; Fraga-Nodarse, Jorge; Handley, Gray; Meegan, James; Pelegrino-Martínez de la Cotera, Jose L; Fauci, Anthony S

    2018-04-01

    After December 17, 2014, when the US and Cuban governments announced their intent to restore relations, the two countries participated in various exchange activities in an effort to encourage cooperation in public health, health research and biomedical sciences. The conference entitled Exploring Opportunities for Arbovirus Research Collaboration, hosted at Havana's Hotel Nacional, was part of these efforts and was the first major US-Cuban scientific conference in over 50 years. Its purpose was to share information about current arbovirus research and recent findings, and to explore opportunities for future joint research. The nearly 100 participants included leading arbovirus and vector transmission experts from ten US academic institutions, NIH, CDC, FDA and the US Department of Defense. Cuban participants included researchers, clinicians and students from Cuba's Ministry of Public Health, Pedro Kourí Tropical Medicine Institute, Center for Genetic Engineering and Biotechnology, Center for State Control of Medicines and Medical Devices and other health research and regulatory organizations. Topics highlighted at the three-day meeting included surveillance, research and epidemiology; pathogenesis, immunology and virology; treatment and diagnosis; vector biology and control; vaccine development and clinical trials; and regulatory matters. Concurrent breakout discussions focused on novel vector control, nonvector transmission, community engagement, Zika in pregnancy, and workforce development. Following the conference, the Pedro Kourí Tropical Medicine Institute and the US National Institute of Allergic and Infectious Diseases have continued to explore ways to encourage and support scientists in Cuba and the USA who wish to pursue arbovirus research cooperation to advance scientific discovery to improve disease prevention and control. KEYWORDS Arboviruses, flavivirus, Zika virus, chikungunya virus, dengue virus, research, disease vectors, Cuba, USA.

  15. Pesticide susceptibility status of Anopheles mosquitoes in four flood-affected districts of South Punjab, Pakistan.

    PubMed

    Rathor, Hamayun Rashid; Nadeem, Ghazala; Khan, Imtinan Akram

    2013-01-01

    Recent floods drastically increased the burden of disease, in particular the incidence of malaria, in the southern districts of the Punjab province in Pakistan. Control of malaria vector mosquitoes in these districts requires the adoption of an appropriate evidence-based policy on the use of pesticides, and having the latest information on the insecticide resistance status of malaria vector mosquitoes is essential for designing effective disease prevention policy. Using World Health Organization (WHO) test kits, the present study utilized papers impregnated with DDT, malathion, deltamethrin, lambda-cyhalothrin, and permethrin, to determine the insecticide susceptibility/resistance status of malaria vector mosquitoes in four flood-affected districts. The test results showed that both Anopheles stephensi and Anopheles culicifacies remained resistant to DDT and malathion. Tests with three commonly used pyrethroids, permethrin, lambda-cyhalothrin, and deltamethrin, detected resistance in the majority of cases, but in a number of localities mortalities with these three pyrethroids ranged from 80-97% and were therefore placed under verification-required status. This status indicates the presence of susceptible individuals in these populations. These results suggest that if appropriate resistance management strategies are applied in these areas, then the development of high levels of resistance can still be prevented or slowed. This study forms an important evidence base for the strategic planning of vector control in the four flood-affected districts.

  16. [Challenges and inputs of the gender perspective to the study of vector borne diseases].

    PubMed

    Arenas-Monreal, Luz; Piña-Pozas, Maricela; Gómez-Dantés, Héctor

    2015-01-01

    The analysis of social determinants and gender within the health-disease-care process is an imperative to understand the variables that define the vulnerability of populations, their exposure risks, the determinants of their care, and the organization and participation in prevention and control programs. Ecohealth incorporates the study of the social determinants and gender perspectives because the emergency of dengue, malaria and Chagas disease are bound to unplanned urbanization, deficient sanitary infrastructure, and poor housing conditions. Gender emerges as an explanatory element of the roles played by men and women in the different scenarios (domestic, communitarian and social) that shape exposure risks to vectors and offer a better perspective of success for the prevention, control and care strategies. The objective is to contribute to the understanding on the gender perspective in the analysis of health risks through a conceptual framework.

  17. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    DOEpatents

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  18. Integrated pest management and allocation of control efforts for vector-borne diseases

    USGS Publications Warehouse

    Ginsberg, H.S.

    2001-01-01

    Applications of various control methods were evaluated to determine how to integrate methods so as to minimize the number of human cases of vector-borne diseases. These diseases can be controlled by lowering the number of vector-human contacts (e.g., by pesticide applications or use of repellents), or by lowering the proportion of vectors infected with pathogens (e.g., by lowering or vaccinating reservoir host populations). Control methods should be combined in such a way as to most efficiently lower the probability of human encounter with an infected vector. Simulations using a simple probabilistic model of pathogen transmission suggest that the most efficient way to integrate different control methods is to combine methods that have the same effect (e.g., combine treatments that lower the vector population; or combine treatments that lower pathogen prevalence in vectors). Combining techniques that have different effects (e.g., a technique that lowers vector populations with a technique that lowers pathogen prevalence in vectors) will be less efficient than combining two techniques that both lower vector populations or combining two techniques that both lower pathogen prevalence, costs being the same. Costs of alternative control methods generally differ, so the efficiency of various combinations at lowering human contact with infected vectors should be estimated at available funding levels. Data should be collected from initial trials to improve the effects of subsequent interventions on the number of human cases.

  19. Attitude Control for an Aero-Vehicle Using Vector Thrusting and Variable Speed Control Moment Gyros

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Lim, K. B.; Moerder, D. D.

    2005-01-01

    Stabilization of passively unstable thrust-levitated vehicles can require significant control inputs. Although thrust vectoring is a straightforward choice for realizing these inputs, this may lead to difficulties discussed in the paper. This paper examines supplementing thrust vectoring with Variable-Speed Control Moment Gyroscopes (VSCMGs). The paper describes how to allocate VSCMGs and the vectored thrust mechanism for attitude stabilization in frequency domain and also shows trade-off between vectored thrust and VSCMGs. Using an H2 control synthesis methodology in LMI optimization, a feedback control law is designed for a thrust-levitated research vehicle and is simulated with the full nonlinear model. It is demonstrated that VSCMGs can reduce the use of vectored thrust variation for stabilizing the hovering platform in the presence of strong wind gusts.

  20. Decoding the Ubiquitin-Mediated Pathway of Arthropod Disease Vectors

    PubMed Central

    Choy, Anthony; Severo, Maiara S.; Sun, Ruobai; Girke, Thomas; Gillespie, Joseph J.; Pedra, Joao H. F.

    2013-01-01

    Protein regulation by ubiquitin has been extensively described in model organisms. However, characterization of the ubiquitin machinery in disease vectors remains mostly unknown. This fundamental gap in knowledge presents a concern because new therapeutics are needed to control vector-borne diseases, and targeting the ubiquitin machinery as a means for disease intervention has been already adopted in the clinic. In this study, we employed a bioinformatics approach to uncover the ubiquitin-mediated pathway in the genomes of Anopheles gambiae, Aedes aegypti, Culex quinquefasciatus, Ixodes scapularis, Pediculus humanus and Rhodnius prolixus. We observed that (1) disease vectors encode a lower percentage of ubiquitin-related genes when compared to Drosophila melanogaster, Mus musculus and Homo sapiens but not Saccharomyces cerevisiae; (2) overall, there are more proteins categorized as E3 ubiquitin ligases when compared to E2-conjugating or E1-activating enzymes; (3) the ubiquitin machinery within the three mosquito genomes is highly similar; (4) ubiquitin genes are more than doubled in the Chagas disease vector (R. prolixus) when compared to other arthropod vectors; (5) the deer tick I. scapularis and the body louse (P. humanus) genomes carry low numbers of E1-activating enzymes and HECT-type E3 ubiquitin ligases; (6) R. prolixus have low numbers of RING-type E3 ubiquitin ligases; and (7) C. quinquefasciatus present elevated numbers of predicted F-box E3 ubiquitin ligases, JAB and UCH deubiquitinases. Taken together, these findings provide novel opportunities to study the interaction between a pathogen and an arthropod vector. PMID:24205097

  1. Reducing vector-borne disease by empowering farmers in integrated vector management.

    PubMed

    van den Berg, Henk; von Hildebrand, Alexander; Ragunathan, Vaithilingam; Das, Pradeep K

    2007-07-01

    Irrigated agriculture exposes rural people to health risks associated with vector-borne diseases and pesticides used in agriculture and for public health protection. Most developing countries lack collaboration between the agricultural and health sectors to jointly address these problems. We present an evaluation of a project that uses the "farmer field school" method to teach farmers how to manage vector-borne diseases and how to improve rice yields. Teaching farmers about these two concepts together is known as "integrated pest and vector management". An intersectoral project targeting rice irrigation systems in Sri Lanka. Project partners developed a new curriculum for the field school that included a component on vector-borne diseases. Rice farmers in intervention villages who graduated from the field school took vector-control actions as well as improving environmental sanitation and their personal protection measures against disease transmission. They also reduced their use of agricultural pesticides, especially insecticides. The intervention motivated and enabled rural people to take part in vector-management activities and to reduce several environmental health risks. There is scope for expanding the curriculum to include information on the harmful effects of pesticides on human health and to address other public health concerns. Benefits of this approach for community-based health programmes have not yet been optimally assessed. Also, the institutional basis of the integrated management approach needs to be broadened so that people from a wider range of organizations take part. A monitoring and evaluation system needs to be established to measure the performance of integrated management initiatives.

  2. Vineyard Colonization by Hyalesthes obsoletus (Hemiptera: Cixiidae) Induced by Stinging Nettle Cut Along Surrounding Ditches.

    PubMed

    Mori, N; Pozzebon, A; Duso, C; Reggiani, N; Pavan, F

    2016-02-01

    Stinging nettle (Urtica dioica L.) is the most important host plant for both phytoplasma associated with Bois noir disease of the grapevine and its vector Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae). Vector abundance in vineyards is favored by stinging nettle growing in surrounding areas. Nettle control by herbicides or cutting can reduce vector population in vineyards. However, chemical weeding can cause environmental problems. Many authors suggest that stinging nettle control applied during H. obsoletus flight could force adults to migrate into vineyards. We evaluate if cutting of nettle growing along ditches during adult flight favors vineyard colonization by H. obsoletus. Three different weed management regimes ("no cuts," "one cut" just before the beginning of adult flight, and "frequent cuts" over the whole vegetative season) were applied to the herbaceous vegetation in ditches bordering two vineyards. The flight dynamics of H. obsoletus were recorded by placing yellow sticky traps on the vegetation along the ditches and at different positions in the vineyards. Frequent stinging nettle cuts (compared with a single cut) in surrounding areas favored the dispersion of vectors inside the vineyards. Stinging nettle control should be based on an integration of a single herbicide application before H. obsoletus emergence followed by frequent cuts to minimize negative side effects of chemical weeding. In organic viticulture, a frequent-cuts strategy should avoid cuts during H. obsoletus flight period, at least in the first year of adoption. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Preparing the United States for Zika Virus: Pre-emptive Vector Control and Personal Protection.

    PubMed

    Diaz, James H

    2016-12-01

    Discovered in 1947 in a monkey in the Zika forest of Uganda, Zika virus was dismissed as a cause of a mild illness that was confined to Africa and Southeast Asia and transmitted by Aedes mosquitoes. In 2007, Zika virus appeared outside of its endemic borders in an outbreak on the South Pacific Island of Yap. In 2013, Zika virus was associated with a major neurological complication, Guillain-Barré syndrome, in a larger outbreak in the French Polynesian Islands. From the South Pacific, Zika invaded Brazil in 2015 and caused another severe neurological complication, fetal microcephaly. The mosquito-borne transmission of Zika virus can be propagated by sexual transmission and, possibly, by blood transfusions, close personal contacts, and organ transplants, like other flaviviruses. Since these combined mechanisms of infectious disease transmission could result in catastrophic incidences of severe neurological diseases in adults and children, the public should know what to expect from Zika virus, how to prevent infection, and what the most likely failures in preventive measures will be. With federal research funding stalled, a Zika vaccine is far away. The only national strategies to prepare the United States for Zika virus invasion now are effective vector control measures and personal protection from mosquito bites. In addition to a basic knowledge of Aedes mosquito vectors and their biting behaviors, an understanding of simple household vector control measures, and the selection of the best chemical and physical mosquito repellents will be required to repel the Zika threat. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  4. Exploiting the potential of vector control for disease prevention.

    PubMed

    Townson, H; Nathan, M B; Zaim, M; Guillet, P; Manga, L; Bos, R; Kindhauser, M

    2005-12-01

    Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities.

  5. Exploiting the potential of vector control for disease prevention.

    PubMed Central

    Townson, H.; Nathan, M. B.; Zaim, M.; Guillet, P.; Manga, L.; Bos, R.; Kindhauser, M.

    2005-01-01

    Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities. PMID:16462987

  6. On the possibilities of polychromatic synchrotron radiation microtomography for visualization of internal structures of Rhodnius prolixus

    NASA Astrophysics Data System (ADS)

    Sena, G.; Almeida, A. P.; Braz, D.; Nogueira, L. P.; Soares, J.; Azambuja, P.; Gonzalez, M. S.; Tromba, G.; Barroso, R. C.

    2015-10-01

    The recent years advancements in microtomography have increased the achievable resolution and contrast, making this relatively inexpensive and a widely available technology, potentially useful for studies of insect's internal morphology. Phase Contrast X-Ray Synchrotron Microtomography (SR-PhC-μCT) is a non-destructive technique that allows the microanatomical investigations of Rhodnius prolixus, one of the most important insect vectors of Trypanosoma cruzi, the etiologic agent of Chagas' disease. In Latin America, vector control is the most useful method to prevent Chagas' disease, and a detailed knowledge of R. prolixus' interior structures is crucial for a better understanding of their function and evolution. Traditionally, in both biological morphology and anatomy, the internal structures of whole organisms or parts of them are accessed by dissecting or histological serial sectioning; so studying the internal structures of R. prolixus' head using SR-PhC-μCT is of great importance in researches on vector control. In this work, volume-rendered SR-PhC-μCT images of the heads of selected R. prolixus were obtained using the new set-up available at the SYRMEP beamline of ELETTRA (Trieste, Italy). In this new set-up, the outcoming beam from the ring is restrained before the monochromator and in a devoted end-station, absorption and phase contrast radiography and tomography set-up are available. The images obtained with polychromatic X-ray beam in phase contrast regimen and 2 μm resolution, showed details and organs of R. prolixus never seen before with SR-PhC-μCT.

  7. Consolidating tactical planning and implementation frameworks for integrated vector management in Uganda.

    PubMed

    Okia, Michael; Okui, Peter; Lugemwa, Myers; Govere, John M; Katamba, Vincent; Rwakimari, John B; Mpeka, Betty; Chanda, Emmanuel

    2016-04-14

    Integrated vector management (IVM) is the recommended approach for controlling some vector-borne diseases (VBD). In the face of current challenges to disease vector control, IVM is vital to achieve national targets set for VBD control. Though global efforts, especially for combating malaria, now focus on elimination and eradication, IVM remains useful for Uganda which is principally still in the control phase of the malaria continuum. This paper outlines the processes undertaken to consolidate tactical planning and implementation frameworks for IVM in Uganda. The Uganda National Malaria Control Programme with its efforts to implement an IVM approach to vector control was the 'case' for this study. Integrated management of malaria vectors in Uganda remained an underdeveloped component of malaria control policy. In 2012, knowledge and perceptions of malaria vector control policy and IVM were assessed, and recommendations for a specific IVM policy were made. In 2014, a thorough vector control needs assessment (VCNA) was conducted according to WHO recommendations. The findings of the VCNA informed the development of the national IVM strategic guidelines. Information sources for this study included all available data and accessible archived documentary records on VBD control in Uganda. The literature was reviewed and adapted to the local context and translated into the consolidated tactical framework. WHO recommends implementation of IVM as the main strategy to vector control and has encouraged member states to adopt the approach. However, many VBD-endemic countries lack IVM policy frameworks to guide implementation of the approach. In Uganda most VBD coexists and could be managed more effectively if done in tandem. In order to successfully control malaria and other VBD and move towards their elimination, the country needs to scale up proven and effective vector control interventions and also learn from the experience of other countries. The IVM strategy is important in consolidating inter-sectoral collaboration and coordination and providing the tactical direction for effective deployment of vector control interventions along the five key elements of the approach and to align them with contemporary epidemiology of VBD in the country. Uganda has successfully established an evidence-based IVM approach and consolidated strategic planning and operational frameworks for VBD control. However, operating implementation arrangements as outlined in the national strategic guidelines for IVM and managing insecticide resistance, as well as improving vector surveillance, are imperative. In addition, strengthened information, education and communication/behaviour change and communication, collaboration and coordination will be crucial in scaling up and using vector control interventions.

  8. Knowledge Space: A Conceptual Basis for the Organization of Knowledge

    ERIC Educational Resources Information Center

    Meincke, Peter P. M.; Atherton, Pauline

    1976-01-01

    Proposes a new conceptual basis for visualizing the organization of information, or knowledge, which differentiates between the concept "vectors" for a field of knowledge represented in a multidimensional space, and the state "vectors" for a person based on his understanding of these concepts, and the representational…

  9. Application of eco-friendly tools and eco-bio-social strategies to control dengue vectors in urban and peri-urban settings in Thailand

    PubMed Central

    Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat

    2012-01-01

    Background Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Methodology Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Results Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. Conclusion An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities. PMID:23318236

  10. Application of eco-friendly tools and eco-bio-social strategies to control dengue vectors in urban and peri-urban settings in Thailand.

    PubMed

    Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat

    2012-12-01

    Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities.

  11. Status of pesticide management in the practice of vector control: a global survey in countries at risk of malaria or other major vector-borne diseases.

    PubMed

    van den Berg, Henk; Hii, Jeffrey; Soares, Agnes; Mnzava, Abraham; Ameneshewa, Birkinesh; Dash, Aditya P; Ejov, Mikhail; Tan, Soo Hian; Matthews, Graham; Yadav, Rajpal S; Zaim, Morteza

    2011-05-14

    It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach.

  12. Status of pesticide management in the practice of vector control: a global survey in countries at risk of malaria or other major vector-borne diseases

    PubMed Central

    2011-01-01

    Background It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. Methods A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Results Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Conclusions Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach. PMID:21569601

  13. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm

    PubMed Central

    Sakumura, Yuichi; Koyama, Yutaro; Tokutake, Hiroaki; Hida, Toyoaki; Sato, Kazuo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2017-01-01

    Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs) at very low concentrations (ppb level). We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls) using gas chromatography/mass spectrometry (GC/MS), and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM) algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH3CN, isoprene, 1-propanol) is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer. PMID:28165388

  14. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm.

    PubMed

    Sakumura, Yuichi; Koyama, Yutaro; Tokutake, Hiroaki; Hida, Toyoaki; Sato, Kazuo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2017-02-04

    Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs) at very low concentrations (ppb level). We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls) using gas chromatography/mass spectrometry (GC/MS), and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM) algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH₃CN, isoprene, 1-propanol) is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer.

  15. All That Glisters Is Not Gold: Sampling-Process Uncertainty in Disease-Vector Surveys with False-Negative and False-Positive Detections

    PubMed Central

    Abad-Franch, Fernando; Valença-Barbosa, Carolina; Sarquis, Otília; Lima, Marli M.

    2014-01-01

    Background Vector-borne diseases are major public health concerns worldwide. For many of them, vector control is still key to primary prevention, with control actions planned and evaluated using vector occurrence records. Yet vectors can be difficult to detect, and vector occurrence indices will be biased whenever spurious detection/non-detection records arise during surveys. Here, we investigate the process of Chagas disease vector detection, assessing the performance of the surveillance method used in most control programs – active triatomine-bug searches by trained health agents. Methodology/Principal Findings Control agents conducted triplicate vector searches in 414 man-made ecotopes of two rural localities. Ecotope-specific ‘detection histories’ (vectors or their traces detected or not in each individual search) were analyzed using ordinary methods that disregard detection failures and multiple detection-state site-occupancy models that accommodate false-negative and false-positive detections. Mean (±SE) vector-search sensitivity was ∼0.283±0.057. Vector-detection odds increased as bug colonies grew denser, and were lower in houses than in most peridomestic structures, particularly woodpiles. False-positive detections (non-vector fecal streaks misidentified as signs of vector presence) occurred with probability ∼0.011±0.008. The model-averaged estimate of infestation (44.5±6.4%) was ∼2.4–3.9 times higher than naïve indices computed assuming perfect detection after single vector searches (11.4–18.8%); about 106–137 infestation foci went undetected during such standard searches. Conclusions/Significance We illustrate a relatively straightforward approach to addressing vector detection uncertainty under realistic field survey conditions. Standard vector searches had low sensitivity except in certain singular circumstances. Our findings suggest that many infestation foci may go undetected during routine surveys, especially when vector density is low. Undetected foci can cause control failures and induce bias in entomological indices; this may confound disease risk assessment and mislead program managers into flawed decision making. By helping correct bias in naïve indices, the approach we illustrate has potential to critically strengthen vector-borne disease control-surveillance systems. PMID:25233352

  16. Consolidating strategic planning and operational frameworks for integrated vector management in Eritrea.

    PubMed

    Chanda, Emmanuel; Ameneshewa, Birkinesh; Mihreteab, Selam; Berhane, Araia; Zehaie, Assefash; Ghebrat, Yohannes; Usman, Abdulmumini

    2015-12-02

    Contemporary malaria vector control relies on the use of insecticide-based, indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). However, malaria-endemic countries, including Eritrea, have struggled to effectively deploy these tools due technical and operational challenges, including the selection of insecticide resistance in malaria vectors. This manuscript outlines the processes undertaken in consolidating strategic planning and operational frameworks for vector control to expedite malaria elimination in Eritrea. The effort to strengthen strategic frameworks for vector control in Eritrea was the 'case' for this study. The integrated vector management (IVM) strategy was developed in 2010 but was not well executed, resulting in a rise in malaria transmission, prompting a process to redefine and relaunch the IVM strategy with integration of other vector borne diseases (VBDs) as the focus. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Eritrea. Structured literature searches of published, peer-reviewed sources using online, scientific, bibliographic databases, Google Scholar, PubMed and WHO, and a combination of search terms were utilized to gather data. The literature was reviewed and adapted to the local context and translated into the consolidated strategic framework. In Eritrea, communities are grappling with the challenge of VBDs posing public health concerns, including malaria. The global fund financed the scale-up of IRS and LLIN programmes in 2014. Eritrea is transitioning towards malaria elimination and strategic frameworks for vector control have been consolidated by: developing an integrated vector management (IVM) strategy (2015-2019); updating IRS and larval source management (LSM) guidelines; developing training manuals for IRS and LSM; training of national staff in malaria entomology and vector control, including insecticide resistance monitoring techniques; initiating the global plan for insecticide resistance management; conducting needs' assessments and developing standard operating procedure for insectaries; developing a guidance document on malaria vector control based on eco-epidemiological strata, a vector surveillance plan and harmonized mapping, data collection and reporting tools. Eritrea has successfully consolidated strategic frameworks for vector control. Rational decision-making remains critical to ensure that the interventions are effective and their choice is evidence-based, and to optimize the use of resources for vector control. Implementation of effective IVM requires proper collaboration and coordination, consistent technical and financial capacity and support to offer greater benefits.

  17. Blood pressure cuffs as a vector for transmission of multi-resistant organisms: colonisation rates and effects of disinfection.

    PubMed

    Grewal, Harjeet; Varshney, Kavita; Thomas, Lee C; Kok, Jen; Shetty, Amith

    2013-06-01

    Blood pressure (BP) cuffs are potential vectors for transmission of multi-resistant organisms (MROs). The present study aims to determine MRO colonisation rates in BP cuffs from areas of high patient flow as an assessment of the quality of disinfection and infection control practices. BP cuffs in the ED, high dependency unit (HDU) and operating theatres (OT) were prospectively examined after routine disinfection procedures. Swabs collected from the inner and outer surfaces of BP cuffs during inter-patient intervals were plated onto replicate organism detection and counting, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) chromogenic agar plates to detect rates of bacterial, MRSA and VRE colonisation, respectively. High bacterial colonisation rates were detected in BP cuffs from all three areas. BP cuffs from OT were significantly less colonised compared with cuffs from HDU and ED; 76% versus 96% and 100% (P < 0.0001) for inner surfaces and 86% versus 98% and 100% (P < 0.0001) for outer surfaces, respectively. Equivalent or higher bacterial growth was observed on the inner surface compared with outer surface in 54%, 84% and 86% of BP cuffs from OT, HDU and ED, respectively. MRSA was detected in 3 of 150 (2%) swabs collected, but no VRE was detected. Although MRSA and VRE were infrequently isolated, current disinfection and infection control protocols need to be improved given the greater recovery of organisms from the inner compared with outer surfaces of BP cuffs. © 2013 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  18. [Susceptibility of Aedes aegypti (L.) strains from Havana to a Bacillus thuringiensis var. israelensis].

    PubMed

    Menéndez Díaz, Zulema; Rodríguez Rodríguez, Jinnay; Gato Armas, René; Companioni Ibañez, Ariamys; Díaz Pérez, Manuel; Bruzón Aguila, Rosa Yirian

    2012-01-01

    the integration of chemical and biological methods is one of the strategies for the vector control, due to the existing environmental problems and the concerns of the community as a result of the synthetic organic insecticide actions. The bacterium called Bacillus thuringiensis var. israelensis in liquid formulation has been widely used in the vector control programs in several countries and has shown high efficacy at lab in Cuba. to determine the susceptibility of Aedes aegypti collected in the municipalities of La Habana province to Bacillus thuringiensis var. israelensis. fifteen Aedes aegypti strains, one from each municipality, were used including larvae and pupas collected in 2010 and one reference strain known as Rockefeller. The aqueous formulation of Bacillus thuringiensis var. israelensis (Bactivec, Labiofam, Cuba) was used. The bioassays complied with the World Health Organization guidelines for use of bacterial larvicides in the public health sector. The larval mortality was read after 24 hours and the results were processed by the statistical system SPSS (11.0) through Probit analysis. the evaluated mosquito strains showed high susceptibility to biolarvicide, there were no significant differences in LC50 values of Ae. aegypti strains, neither in the comparison of these values with those of the reference strain. the presented results indicate that the use of Bacillus thuringiensis var. israelensis continues to be a choice for the control of Aedes aegypti larval populations in La Habana province.

  19. Wheel speed management control system for spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  20. Impact of vectorborne parasitic neglected tropical diseases on child health.

    PubMed

    Barry, Meagan A; Murray, Kristy O; Hotez, Peter J; Jones, Kathryn M

    2016-07-01

    Chagas disease, leishmaniasis, onchocerciasis and lymphatic filariasis are all vectorborne neglected tropical diseases (NTDs) that are responsible for significant disease burden in impoverished children and adults worldwide. As vectorborne parasitic diseases, they can all be targeted for elimination through vector control strategies. Examples of successful vector control programmes for these diseases over the past two decades have included the Southern Cone Initiative against Chagas disease, the Kala-azar Control Scheme against leishmaniasis, the Onchocerciasis Control Programme and the lymphatic filariasis control programme in The Gambia. A common vector control component in all of these programmes is the use of adulticides including dichlorodiphenyltrichloroethane and newer synthetic pyrethroid insecticides against the insect vectors of disease. Household spraying has been used against Chagas disease and leishmaniasis, and insecticide-treated bed nets have helped prevent leishmaniasis and lymphatic filariasis. Recent trends in vector control focus on collaborations between programmes and sectors to achieve integrated vector management that addresses the holistic vector control needs of a community rather than approaching it on a disease-by-disease basis, with the goals of increased efficacy, sustainability and cost-effectiveness. As evidence of vector resistance to currently used insecticide regimens emerges, research to develop new and improved insecticides and novel control strategies will be critical in reducing disease burden. In the quest to eliminate these vectorborne NTDs, efforts need to be made to continue existing control programmes, further implement integrated vector control strategies and stimulate research into new insecticides and control methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.

    2003-01-01

    Interest in low-observable aircraft and in lowering an aircraft's exhaust system weight sparked decades of research for fixed geometry exhaust nozzles. The desire for such integrated exhaust nozzles was the catalyst for new fluidic control techniques; including throat area control, expansion control, and thrust-vector angle control. This paper summarizes a variety of fluidic thrust vectoring concepts that have been tested both experimentally and computationally at NASA Langley Research Center. The nozzle concepts are divided into three categories according to the method used for fluidic thrust vectoring: the shock vector control method, the throat shifting method, and the counterflow method. This paper explains the thrust vectoring mechanism for each fluidic method, provides examples of configurations tested for each method, and discusses the advantages and disadvantages of each method.

  2. Vector control for malaria and other mosquito-borne diseases. Report of a WHO study group.

    PubMed

    1995-01-01

    Since the Ministerial Conference on Malaria in 1992, which acknowledged the urgent need for worldwide commitment to malaria control, efforts have been directed to implementation of a Global Malaria Control Strategy. Vector control, an essential component of malaria control, has become less effective in recent years, partly as a result of poor use of alternative control tools, inappropriate use of insecticides, lack of an epidemiological basis for interventions, inadequate resources and infrastructure, and weak management. Changing environmental conditions, the behavioural characteristics of certain vectors, and resistance to insecticides have added to the difficulties. This report of a WHO Study Group provides guidelines for the planning, implementation and evaluation of cost-effective and sustainable vector control in the context of the Global Malaria Control Strategy. It reviews the available methods - indoor residual spraying, personal protection, larval control and environmental management - stressing the need for selective and flexible use of interventions according to local conditions. Requirements for data collection and the appropriate use of entomological parameters and techniques are discussed and priorities identified for the development of local capacity for vector control and for operational research. Emphasis is placed both on the monitoring and evaluation of vector control to ensure cost-effectiveness and on the development of strong managerial structures, which can support community participation and intersectoral collaboration and accommodate the control of other vector-borne diseases. The report concludes with recommendations aimed at promoting the targeted and efficient use of vector control in preventing and controlling malaria, thereby reducing the threat to health and socioeconomic development in many tropical countries.

  3. An economic evaluation of vector control in the age of a dengue vaccine.

    PubMed

    Fitzpatrick, Christopher; Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman

    2017-08-01

    Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control.

  4. An economic evaluation of vector control in the age of a dengue vaccine

    PubMed Central

    Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman

    2017-01-01

    Introduction Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. Methods We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Results Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70–90%, the cost per disability-adjusted life year averted is 2013 US$ 679–1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50–70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Discussion Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control. PMID:28806786

  5. Integrated vector management for malaria control

    PubMed Central

    Beier, John C; Keating, Joseph; Githure, John I; Macdonald, Michael B; Impoinvil, Daniel E; Novak, Robert J

    2008-01-01

    Integrated vector management (IVM) is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1) evidence-based decision-making, 2) integrated approaches 3), collaboration within the health sector and with other sectors, 4) advocacy, social mobilization, and legislation, and 5) capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN) and/or indoor residual spraying (IRS) coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with existing biomedical strategies within national malaria control programmes. This review provides an overview of how IVM programmes are being implemented, and provides recommendations for further development of IVM to meet the goals of national malaria control programmes in Africa. PMID:19091038

  6. Multiaxis Thrust-Vectoring Characteristics of a Model Representative of the F-18 High-Alpha Research Vehicle at Angles of Attack From 0 deg to 70 deg

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Capone, Francis J.

    1995-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip supported, partially metric, 0.10-scale jet-effects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. Testing was conducted at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from O' to 70', and at nozzle pressure ratios from 1.0 to approximately 5.0. Results indicate that the thrust-vectoring control system of the HARV can successfully generate multiaxis thrust-vectoring forces and moments. During vectoring, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle and were accompanied by large thrust losses. Significant external flow effects that were dependent on Mach number and angle of attack were noted during vectoring operation. Comparisons of the aerodynamic and propulsive control capabilities of the HARV configuration indicate that substantial gains in controllability are provided by the multiaxis thrust-vectoring control system.

  7. Comparative field trial of alternative vector control strategies for non-domiciliated Triatoma dimidiata.

    PubMed

    Ferral, Jhibran; Chavez-Nuñez, Leysi; Euan-Garcia, Maria; Ramirez-Sierra, Maria Jesus; Najera-Vazquez, M Rosario; Dumonteil, Eric

    2010-01-01

    Chagas disease is a major vector-borne disease, and regional initiatives based on insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is a challenge. We performed a proof-of-concept field trial to test alternative strategies in rural Yucatan, Mexico. Follow-up of house infestation for two seasons following the interventions confirmed that insecticide spraying should be performed annually for the effective control of Triatoma dimidiata; however, it also confirmed that insect screens or long-lasting impregnated curtains may represent good alternative strategies for the sustained control of these vectors. Ecosystemic peridomicile management would be an excellent complementary strategy to improve the cost-effectiveness of interventions. Because these strategies would also be effective against other vector-borne diseases, such as malaria or dengue, they could be integrated within a multi-disease control program.

  8. Feasibility of a combined camp approach for vector control together with active case detection of visceral leishmaniasis, post kala-azar dermal leishmaniasis, tuberculosis, leprosy and malaria in Bangladesh, India and Nepal: an exploratory study.

    PubMed

    Banjara, Megha R; Kroeger, Axel; Huda, Mamun M; Kumar, Vijay; Gurung, Chitra K; Das, Murari L; Rijal, Suman; Das, Pradeep; Mondal, Dinesh

    2015-06-01

    We assessed the feasibility and results of active case detection (ACD) of visceral leishmaniasis (VL), post kala-azar dermal leishmaniasis (PKDL) and other febrile diseases as well as of bednet impregnation for vector control. Fever camps were organized and analyzed in twelve VL endemic villages in Bangladesh, India, and Nepal. VL, PKDL, tuberculosis, malaria and leprosy were screened among the febrile patients attending the camps, and existing bednets were impregnated with a slow release insecticide. Among the camp attendees one new VL case and two PKDL cases were detected in Bangladesh and one VL case in Nepal. Among suspected tuberculosis cases two were positive in India but none in the other countries. In India, two leprosy cases were found. No malaria cases were detected. Bednet impregnation coverage during fever camps was more than 80% in the three countries. Bednet impregnation led to a reduction of sandfly densities after 2 weeks by 86% and 32%, and after 4 weeks by 95% and 12% in India and Nepal respectively. The additional costs for the control programmes seem to be reasonable. It is feasible to combine ACD camps for VL and PKDL along with other febrile diseases, and vector control with bednet impregnation. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  9. Elements of the quality management in the materials' industry

    NASA Astrophysics Data System (ADS)

    Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş

    2017-12-01

    The criteria function concept consists of transforming the criteria function (CF) in a quality-economical matrix math MQE. The levels of prescribing the criteria function was obtained by using a composition algorithm for three vectors: T¯ vector - technical parameters' vector (ti); Ē vector - economical parameters' vector (ej) and P¯ vector - weight vector (p1). For each product or service, the area of the circle represents the value of its sales. The BCG Matrix thus offers a very useful map of the organization's service strengths and weaknesses, at least in terms of current profitability, as well as the likely cash flows.

  10. Applications of lentiviral vectors in molecular imaging.

    PubMed

    Chatterjee, Sushmita; De, Abhijit

    2014-06-01

    Molecular imaging provides the ability of simultaneous visual and quantitative estimation of long term gene expression directly from living organisms. To reveal the kinetics of gene expression by imaging method, often sustained expression of the transgene is required. Lentiviral vectors have been extensively used over last fifteen years for delivery of a transgene in a wide variety of cell types. Lentiviral vectors have the well known advantages such as sustained transgene delivery through stable integration into the host genome, the capability of infecting non-dividing and dividing cells, broad tissue tropism, a reasonably large carrying capacity for delivering therapeutic and reporter gene combinations. Additionally, they do not express viral proteins during transduction, have a potentially safe integration site profile, and a relatively easy system for vector manipulation and infective viral particle production. As a result, lentiviral vector mediated therapeutic and imaging reporter gene delivery to various target organs holds promise for the future treatment. In this review, we have conducted a brief survey of important lentiviral vector developments in diverse biomedical fields including reproductive biology.

  11. Is Vector Control Sufficient to Limit Pathogen Spread in Vineyards?

    PubMed

    Daugherty, M P; O'Neill, S; Byrne, F; Zeilinger, A

    2015-06-01

    Vector control is widely viewed as an integral part of disease management. Yet epidemiological theory suggests that the effectiveness of control programs at limiting pathogen spread depends on a variety of intrinsic and extrinsic aspects of a pathosystem. Moreover, control programs rarely evaluate whether reductions in vector density or activity translate into reduced disease prevalence. In areas of California invaded by the glassy-winged sharpshooter (Homalodisca vitripennis Germar), Pierce's disease management relies heavily on chemical control of this vector, primarily via systemic conventional insecticides (i.e., imidacloprid). But, data are lacking that attribute reduced vector pressure and pathogen spread to sharpshooter control. We surveyed 34 vineyards over successive years to assess the epidemiological value of within-vineyard chemical control. The results showed that imidacloprid reduced vector pressure without clear nontarget effects or secondary pest outbreaks. Effects on disease prevalence were more nuanced. Treatment history over the preceding 5 yr affected disease prevalence, with significantly more diseased vines in untreated compared with regularly or intermittently treated vineyards. Yet, the change in disease prevalence between years was low, with no significant effects of insecticide treatment or vector abundance. Collectively, the results suggest that within-vineyard applications of imidacloprid can reduce pathogen spread, but with benefits that may take multiple seasons to become apparent. The relatively modest effect of vector control on disease prevalence in this system may be attributable in part to the currently low regional sharpshooter population densities stemming from area-wide control, without which the need for within-vineyard vector control would be more pronounced. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Operational efficiency and sustainability of vector control of malaria and dengue: descriptive case studies from the Philippines

    PubMed Central

    2012-01-01

    Background Analysis is lacking on the management of vector control systems in disease-endemic countries with respect to the efficiency and sustainability of operations. Methods Three locations were selected, at the scale of province, municipality and barangay (i.e. village). Data on disease incidence, programme activities, and programme management were collected on-site through meetings and focus group discussions. Results Adaptation of disease control strategies to the epidemiological situation per barangay, through micro-stratification, brings gains in efficiency, but should be accompanied by further capacity building on local situational analysis for better selection and targeting of vector control interventions within the barangay. An integrated approach to vector control, aiming to improve the rational use of resources, was evident with a multi-disease strategy for detection and response, and by the use of combinations of vector control methods. Collaboration within the health sector was apparent from the involvement of barangay health workers, re-orientation of job descriptions and the creation of a disease surveillance unit. The engagement of barangay leaders and use of existing community structures helped mobilize local resources and voluntary services for vector control. In one location, local authorities and the community were involved in the planning, implementation and evaluation of malaria control, which triggered local programme ownership. Conclusions Strategies that contributed to an improved efficiency and sustainability of vector control operations were: micro-stratification, integration of vector control within the health sector, a multi-disease approach, involvement of local authorities, and empowerment of communities. Capacity building on situational analysis and vector surveillance should be addressed through national policy and guidelines. PMID:22873707

  13. Aquatic insect predators and mosquito control.

    PubMed

    Shaalan, Essam Abdel-Salam; Canyon, Deon V

    2009-12-01

    Mosquitoes are serious biting pests and obligate vectors of many vertebrate pathogens. Their immature larval and pupal life stages are a common feature in most tropical and many temperate water bodies and often form a significant proportion of the biomass. Control strategies rely primarily on the use of larvicides and environmental modification to reduce recruitment and adulticides during periods of disease transmission. Larvicides are usually chemical but can involve biological toxins, agents or organisms. The use of insect predators in mosquito control has been exploited in a limited fashion and there is much room for further investigation and implementation. Insects that are recognized as having predatorial capacity with regard to mosquito prey have been identified in the Orders Odonata, Coleoptera, Diptera (primarily aquatic predators), and Hemiptera (primarily surface predators). Although their capacity is affected by certain biological and physical factors, they could play a major role in mosquito control. Furthermore, better understanding for the mosquitoes-predators relationship(s) could probably lead to satisfactory reduction of mosquito-borne diseases by utilizing either these predators in control programs, for instance biological and/or integrated control, or their kairomones as mosquitoes' ovipoisting repellents. This review covers the predation of different insect species on mosquito larvae, predator-prey-habitat relationships, co-habitation developmental issues, survival and abundance, oviposition avoidance, predatorial capacity and integrated vector control.

  14. Tyrosine Mutation in AAV9 Capsid Improves Gene Transfer to the Mouse Lung.

    PubMed

    Martini, Sabrina V; Silva, Adriana L; Ferreira, Debora; Rabelo, Rafael; Ornellas, Felipe M; Gomes, Karina; Rocco, Patricia R M; Petrs-Silva, Hilda; Morales, Marcelo M

    2016-01-01

    Adeno-associated virus (AAV) vectors are being increasingly used as the vector of choice for in vivo gene delivery and gene therapy for many pulmonary diseases. Recently, it was shown that phosphorylation of surface-exposed tyrosine residues from AAV capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. In this study, we evaluated the pulmonary transgene expression efficacy of AAV9 vectors containing point mutations in surface-exposed capsid tyrosine residues. Eighteen C57BL/6 mice were randomly assigned into three groups: (1) a control group (CTRL) animals underwent intratracheal (i.t.) instillation of saline, (2) the wild-type AAV9 group (WT-AAV9, 1010 vg), and (3) the tyrosine-mutant Y731F AAV9 group (M-AAV9, 1010 vg), which received (i.t.) self-complementary AAV9 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP). Four weeks after instillation, lung mechanics, morphometry, tissue cellularity, gene expression, inflammatory cytokines, and growth factor expression were analyzed. No significant differences were observed in lung mechanics and morphometry among the experimental groups. However, the number of polymorphonuclear cells was higher in the WT-AAV9 group than in the CTRL and M-AAV9 groups, suggesting that the administration of tyrosine-mutant AAV9 vectors was better tolerated. Tyrosine-mutant AAV9 vectors significantly improved transgene delivery to the lung (30%) compared with their wild-type counterparts, without eliciting an inflammatory response. Our results provide the impetus for further studies to exploit the use of AAV9 vectors as a tool for pulmonary gene therapy. © 2016 The Author(s) Published by S. Karger AG, Basel.

  15. Outcome of capacity building intervention for malaria vector surveillance, control and research in Nigerian higher institutions.

    PubMed

    Oduola, Adedayo O; Obembe, Abiodun; Adelaja, Olukayode J; Adeneye, Adeniyi K; Akilah, Joel; Awolola, Taiwo S

    2018-05-15

    Despite the availability of effective malaria vector control intervention tools, implementation of control programmes in Nigeria is challenged by inadequate entomological surveillance data. This study was designed to assess and build the existing capacity for malaria vector surveillance, control and research (MVSC&R) in Nigerian institutions. Application call to select qualified candidates for the capacity building (CB) intervention training programme was advertised in a widely read newspaper and online platforms of national and international professional bodies. Two trainings were organized to train selected applicants on field activities, laboratory tools and techniques relevant to malaria vector surveillance and control research. A semi-structured questionnaire was administered to collect data on socio-demographic characteristics of participants, knowledge and access of participants to field and laboratory techniques in MVSC&R. Similarly, pre and post-intervention tests were conducted to assess the performance and improvement in knowledge of the participants. Mentoring activities to sustain CB activities after the training were also carried out. A total of 23 suitable applicants were shortlisted out of the 89 applications received. The South West, South East and North Central geopolitical zones of the country had the highest applications and the highest selected number of qualified applicants compared to the South South and North East geopolitical zones. The distribution with respect to gender indicated that males (72.7%) were more than females (27.3%). Mean score of participants' knowledge of field techniques was 27.8 (± 10.8) before training and 67.7 (± 9.8) after the training. Similarly, participants' knowledge on laboratory techniques also improved from 37.4 (± 5.6) to 77.2 (± 10.8). The difference in the mean scores at pre and post-test was statistically significant (p < 0.05). Access of participants to laboratory and field tools used in MVSC&R was generally low with insecticide susceptibility bioassays and pyrethrum spray collection methods being the most significant (p < 0.05). The capacity available for vector control research and surveillance at institutional level in Nigeria is weak and require further strengthening. Increased training and access of personnel to relevant tools for MVSC&R is required in higher institutions in the six geopolitical zones of the country.

  16. Computer-Assisted Transgenesis of Caenorhabditis elegans for Deep Phenotyping

    PubMed Central

    Gilleland, Cody L.; Falls, Adam T.; Noraky, James; Heiman, Maxwell G.; Yanik, Mehmet F.

    2015-01-01

    A major goal in the study of human diseases is to assign functions to genes or genetic variants. The model organism Caenorhabditis elegans provides a powerful tool because homologs of many human genes are identifiable, and large collections of genetic vectors and mutant strains are available. However, the delivery of such vector libraries into mutant strains remains a long-standing experimental bottleneck for phenotypic analysis. Here, we present a computer-assisted microinjection platform to streamline the production of transgenic C. elegans with multiple vectors for deep phenotyping. Briefly, animals are immobilized in a temperature-sensitive hydrogel using a standard multiwell platform. Microinjections are then performed under control of an automated microscope using precision robotics driven by customized computer vision algorithms. We demonstrate utility by phenotyping the morphology of 12 neuronal classes in six mutant backgrounds using combinations of neuron-type-specific fluorescent reporters. This technology can industrialize the assignment of in vivo gene function by enabling large-scale transgenic engineering. PMID:26163188

  17. Phoresy of the entomopathogenic nematode Steinernema feltiae by the earthworm Eisenia fetida.

    PubMed

    Campos-Herrera, Raquel; Trigo, Dolores; Gutiérrez, Carmen

    2006-05-01

    The free-living stage of entomopathogenic nematodes occurs in soil, and is an environmental-friendly alternative for biological control. However, their dispersal capability is limited. Earthworms improve soil characteristics, changing soil structure and influencing many edaphic organisms. Thus, earthworms could be used as vectors to introduce/disperse beneficial organisms. Nevertheless this interaction has not been studied in detail. This study presents the infectivity results of Steinernema feltiae after passing through the Eisenia fetida gut. Although entomopathogenic nematodes have no deleterious effects on earthworms, their passage through E. fetida gut seriously affected their mobility and virulence.

  18. Intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in continental and insular Greece

    PubMed Central

    Diakou, Anastasia; Di Cesare, Angela; Accettura, Paolo Matteo; Barros, Luciano; Iorio, Raffaella; Paoletti, Barbara; Frangipane di Regalbono, Antonio; Halos, Lénaïg; Beugnet, Frederic; Traversa, Donato

    2017-01-01

    This survey investigated the distribution of various intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in four regions of Greece. A total number of one hundred and fifty cats living in three Islands (Crete, Mykonos and Skopelos) and in Athens municipality was established as a realistic aim to be accomplished in the study areas. All cats were examined with different microscopic, serological and molecular assays aiming at evaluating the occurrence of intestinal parasites, and exposure to or presence of vector-borne infections. A total of 135 cats (90%) was positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-four (29.3%) cats were positive for one single infection, while 91 (60.7%) for more than one pathogen. A high number of (n. 53) multiple infections caused by feline intestinal and vector-borne agents including at least one zoonotic pathogen was detected. Among them, the most frequently recorded helminths were roundworms (Toxocara cati, 24%) and Dipylidium caninum (2%), while a high number of examined animals (58.8%) had seroreaction for Bartonella spp., followed by Rickettsia spp. (43.2%) and Leishmania infantum (6.1%). DNA-based assays revealed the zoonotic arthropod-borne organisms Bartonella henselae, Bartonella clarridgeiae, Rickettsia spp., and L. infantum. These results show that free-ranging cats living in areas of Greece under examination may be exposed to a plethora of internal parasites and vector-borne pathogens, some of them potentially able to infect humans. Therefore, epidemiological vigilance and appropriate control measures are crucial for the prevention and control of these infections and to minimize the risk of infection for people. PMID:28141857

  19. Intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in continental and insular Greece.

    PubMed

    Diakou, Anastasia; Di Cesare, Angela; Accettura, Paolo Matteo; Barros, Luciano; Iorio, Raffaella; Paoletti, Barbara; Frangipane di Regalbono, Antonio; Halos, Lénaïg; Beugnet, Frederic; Traversa, Donato

    2017-01-01

    This survey investigated the distribution of various intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in four regions of Greece. A total number of one hundred and fifty cats living in three Islands (Crete, Mykonos and Skopelos) and in Athens municipality was established as a realistic aim to be accomplished in the study areas. All cats were examined with different microscopic, serological and molecular assays aiming at evaluating the occurrence of intestinal parasites, and exposure to or presence of vector-borne infections. A total of 135 cats (90%) was positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-four (29.3%) cats were positive for one single infection, while 91 (60.7%) for more than one pathogen. A high number of (n. 53) multiple infections caused by feline intestinal and vector-borne agents including at least one zoonotic pathogen was detected. Among them, the most frequently recorded helminths were roundworms (Toxocara cati, 24%) and Dipylidium caninum (2%), while a high number of examined animals (58.8%) had seroreaction for Bartonella spp., followed by Rickettsia spp. (43.2%) and Leishmania infantum (6.1%). DNA-based assays revealed the zoonotic arthropod-borne organisms Bartonella henselae, Bartonella clarridgeiae, Rickettsia spp., and L. infantum. These results show that free-ranging cats living in areas of Greece under examination may be exposed to a plethora of internal parasites and vector-borne pathogens, some of them potentially able to infect humans. Therefore, epidemiological vigilance and appropriate control measures are crucial for the prevention and control of these infections and to minimize the risk of infection for people.

  20. Vector representation of user's view using self-organizing map

    NASA Astrophysics Data System (ADS)

    Ae, Tadashi; Yamaguchi, Tomohisa; Monden, Eri; Kawabata, Shunji; Kamitani, Motoki

    2004-05-01

    There exist various objects, such as pictures, music, texts, etc., around our environment. We have a view for these objects by looking, reading or listening. Our view is concerned with our behaviors deeply, and is very important to understand our behaviors. Therefore, we propose a method which acquires a view as a vector, and apply the vector to sequence generation. We focus on sequences of the data of which a user selects from a multimedia database containing pictures, music, movie, etc.. These data cannot be stereotyped because user's view for them changes by each user. Therefore, we represent the structure of the multimedia database as the vector representing user's view and the stereotyped vector, and acquire sequences containing the structure as elements. We demonstrate a city-sequence generation system which reflects user's intension as an application of sequence generation containing user's view. We apply the self-organizing map to this system to represent user's view.

  1. Optimal control of malaria: combining vector interventions and drug therapies.

    PubMed

    Khamis, Doran; El Mouden, Claire; Kura, Klodeta; Bonsall, Michael B

    2018-04-24

    The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.

  2. Current strategies and successes in engaging women in vector control: a systematic review

    PubMed Central

    Gunn, Jayleen K L; Ernst, Kacey C; Center, Katherine E; Bischoff, Kristi; Nuñez, Annabelle V; Huynh, Megan; Okello, Amanda; Hayden, Mary H

    2018-01-01

    Introduction Vector-borne diseases (VBDs) cause significant mortality and morbidity in low-income and middle-income countries and present a risk to high-income countries. Vector control programmes may confront social and cultural norms that impede their execution. Anecdotal evidence suggests that incorporating women in the design, delivery and adoption of health interventions increases acceptance and compliance. A better understanding of programmes that have attempted to increase women’s involvement in vector control could help shape best practices. The objective of this systematic review was to assess and critically summarise evidence regarding the effectiveness of women participating in vector control. Methods Seven databases were searched from inception to 21 December 2015. Two investigators independently reviewed all titles and abstracts for relevant articles. Grey literature was searched by assessing websites that focus on international development and vector control. Results In total, 23 articles representing 17 unique studies were included in this review. Studies discussed the involvement of women in the control of vectors for malaria (n=10), dengue (n=8), human African trypanosomiasis (n=3), schistosomiasis (n=1) and a combination (malaria and schistosomiasis, n=1). Seven programmes were found in the grey literature or through personal communications. Available literature indicates that women can be successfully engaged in vector control programmes and, when given the opportunity, they can create and sustain businesses that aim to decrease the burden of VBDs in their communities. Conclusion This systematic review demonstrated that women can be successfully engaged in vector control programmes at the community level. However, rigorous comparative effectiveness studies need to be conducted. PMID:29515913

  3. Synthetic Virology: Engineering Viruses for Gene Delivery

    PubMed Central

    Guenther, Caitlin M.; Kuypers, Brianna E.; Lam, Michael T.; Robinson, Tawana M.; Zhao, Julia; Suh, Junghae

    2014-01-01

    The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or “bionic” viruses, feature engineered components, or “parts”, that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man-made polymers or inorganic nanoparticles). Various design strategies – rational, combinatorial, and pseudo-rational – have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss-cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavours will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. PMID:25195922

  4. Synthetic virology: engineering viruses for gene delivery.

    PubMed

    Guenther, Caitlin M; Kuypers, Brianna E; Lam, Michael T; Robinson, Tawana M; Zhao, Julia; Suh, Junghae

    2014-01-01

    The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or 'bionic' viruses, feature engineered components, or 'parts', that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man-made polymers or inorganic nanoparticles). Various design strategies--rational, combinatorial, and pseudo-rational--have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss-cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. © 2014 Wiley Periodicals, Inc.

  5. West Nile virus transmission: results from the integrated surveillance system in Italy, 2008 to 2015.

    PubMed

    Rizzo, Caterina; Napoli, Christian; Venturi, Giulietta; Pupella, Simonetta; Lombardini, Letizia; Calistri, Paolo; Monaco, Federica; Cagarelli, Roberto; Angelini, Paola; Bellini, Romeo; Tamba, Marco; Piatti, Alessandra; Russo, Francesca; Palù, Giorgio; Chiari, Mario; Lavazza, Antonio; Bella, Antonino

    2016-09-15

    In Italy a national Plan for the surveillance of imported and autochthonous human vector-borne diseases (chikungunya, dengue, Zika virus disease and West Nile virus (WNV) disease) that integrates human and veterinary (animals and vectors) surveillance, is issued and revised annually according with the observed epidemiological changes. Here we describe results of the WNV integrated veterinary and human surveillance systems in Italy from 2008 to 2015. A real time data exchange protocol is in place between the surveillance systems to rapidly identify occurrence of human and animal cases and to define and update the map of affected areas i.e. provinces during the vector activity period from June to October. WNV continues to cause severe illnesses in Italy during every transmission season, albeit cases are sporadic and the epidemiology varies by virus lineage and geographic area. The integration of surveillance activities and a multidisciplinary approach made it possible and have been fundamental in supporting implementation of and/or strengthening preventive measures aimed at reducing the risk of transmission of WNV trough blood, tissues and organ donation and to implementing further measures for vector control. This article is copyright of The Authors, 2016.

  6. Field Assessment of Yeast- and Oxalic Acid-generated Carbon Dioxide for Mosquito Surveillance

    DTIC Science & Technology

    2014-12-01

    SentinelTM, Centers for Disease Control and Prevention light trap, sugar- fermenting yeast, electrolyzed oxalic acid INTRODUCTION Successful vector-borne...generated by a fermentation chamber, in which yeast metabolized sucrose. This source had been shown to attract various mosquito species in field and...surveillance periods. The 2 novel CO2 sources evaluated were yeast- fermenting sugar and electro-stripping a carboxylated organic compound (oxalic acid

  7. Paratransgenesis to control malaria vectors: a semi-field pilot study.

    PubMed

    Mancini, Maria Vittoria; Spaccapelo, Roberta; Damiani, Claudia; Accoti, Anastasia; Tallarita, Mario; Petraglia, Elisabetta; Rossi, Paolo; Cappelli, Alessia; Capone, Aida; Peruzzi, Giulia; Valzano, Matteo; Picciolini, Matteo; Diabaté, Abdoulaye; Facchinelli, Luca; Ricci, Irene; Favia, Guido

    2016-03-10

    Malaria still remains a serious health burden in developing countries, causing more than 1 million deaths annually. Given the lack of an effective vaccine against its major etiological agent, Plasmodium falciparum, and the growing resistance of this parasite to the currently available drugs repertoire and of Anopheles mosquitoes to insecticides, the development of innovative control measures is an imperative to reduce malaria transmission. Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector molecules, represents a novel strategy against Plasmodium development in mosquito vectors, showing the potential to reduce parasite development. However, the field application of laboratory-based evidence of paratransgenesis imposes the use of more realistic confined semi-field environments. Large cages were used to evaluate the ability of bacteria of the genus Asaia expressing green fluorescent protein (Asaia (gfp)), to diffuse in Anopheles stephensi and Anopheles gambiae target mosquito populations. Asaia (gfp) was introduced in large cages through the release of paratransgenic males or by sugar feeding stations. Recombinant bacteria transmission was directly detected by fluorescent microscopy, and further assessed by molecular analysis. Here we show the first known trial in semi-field condition on paratransgenic anophelines. Modified bacteria were able to spread at high rate in different populations of An. stephensi and An. gambiae, dominant malaria vectors, exploring horizontal ways and successfully colonising mosquito midguts. Moreover, in An. gambiae, vertical and trans-stadial diffusion mechanisms were demonstrated. Our results demonstrate the considerable ability of modified Asaia to colonise different populations of malaria vectors, including pecies where its association is not primary, in large environments. The data support the potential to employ transgenic Asaia as a tool for malaria control, disclosing promising perspective for its field application with suitable effector molecules.

  8. Vectors of invasions in freshwater invertebrates and fishes

    USGS Publications Warehouse

    Fuller, Pamela L.; Canning-Clode, João

    2015-01-01

    Without human assistance, the terrestrial environment and oceans represent barriers to the dispersal of freshwater aquatic organisms. The ability to overcome such barriers depends on the existence of anthropogenic vectors that can transport live organisms to new areas, and the species’ biology to survive the transportation and transplantation into the new environment (Johnson et al., 2006).

  9. Development of the First World Health Organization Lentiviral Vector Standard: Toward the Production Control and Standardization of Lentivirus-Based Gene Therapy Products

    PubMed Central

    Zhao, Yuan; Stepto, Hannah; Schneider, Christian K

    2017-01-01

    Gene therapy is a rapidly evolving field. So far, there have been >2,400 gene therapy products in clinical trials and four products on the market. A prerequisite for producing gene therapy products is ensuring their quality and safety. This requires appropriately controlled and standardized production and testing procedures that result in consistent safety and efficacy. Assuring the quality and safety of lentivirus-based gene therapy products in particular presents a great challenge because they are cell-based multigene products that include viral and therapeutic proteins as well as modified cells. In addition to the continuous refinement of a product, changes in production sites and manufacturing processes have become more and more common, posing challenges to developers regarding reproducibility and comparability of results. This paper discusses the concept of developing a first World Health Organization International Standard, suitable for the standardization of assays and enabling comparison of cross-trial and cross-manufacturing results for this important vector platform. The standard will be expected to optimize the development of gene therapy medicinal products, which is especially important, given the usually orphan nature of the diseases to be treated, naturally hampering reproducibility and comparability of results. PMID:28747142

  10. Broad patterns in domestic vector-borne Trypanosoma cruzi transmission dynamics: synanthropic animals and vector control.

    PubMed

    Peterson, Jennifer K; Bartsch, Sarah M; Lee, Bruce Y; Dobson, Andrew P

    2015-10-22

    Chagas disease (caused by Trypanosoma cruzi) is the most important neglected tropical disease (NTD) in Latin America, infecting an estimated 5.7 million people in the 21 countries where it is endemic. It is one of the NTDs targeted for control and elimination by the 2020 London Declaration goals, with the first goal being to interrupt intra-domiciliary vector-borne T. cruzi transmission. A key question in domestic T. cruzi transmission is the role that synanthropic animals play in T. cruzi transmission to humans. Here, we ask, (1) do synanthropic animals need to be targeted in Chagas disease prevention policies?, and (2) how does the presence of animals affect the efficacy of vector control? We developed a simple mathematical model to simulate domestic vector-borne T. cruzi transmission and to specifically examine the interaction between the presence of synanthropic animals and effects of vector control. We used the model to explore how the interactions between triatomine bugs, humans and animals impact the number and proportion of T. cruzi-infected bugs and humans. We then examined how T. cruzi dynamics change when control measures targeting vector abundance are introduced into the system. We found that the presence of synanthropic animals slows the speed of T. cruzi transmission to humans, and increases the sensitivity of T. cruzi transmission dynamics to vector control measures at comparable triatomine carrying capacities. However, T. cruzi transmission is amplified when triatomine carrying capacity increases with the abundance of syntathoropic hosts. Our results suggest that in domestic T. cruzi transmission scenarios where no vector control measures are in place, a reduction in synanthropic animals may slow T. cruzi transmission to humans, but it would not completely eliminate transmission. To reach the 2020 goal of interrupting intra-domiciliary T. cruzi transmission, it is critical to target vector populations. Additionally, where vector control measures are in place, synanthropic animals may be beneficial.

  11. Transcriptome of the adult female malaria mosquito vector Anopheles albimanus.

    PubMed

    Martínez-Barnetche, Jesús; Gómez-Barreto, Rosa E; Ovilla-Muñoz, Marbella; Téllez-Sosa, Juan; García López, David E; Dinglasan, Rhoel R; Ubaida Mohien, Ceereena; MacCallum, Robert M; Redmond, Seth N; Gibbons, John G; Rokas, Antonis; Machado, Carlos A; Cazares-Raga, Febe E; González-Cerón, Lilia; Hernández-Martínez, Salvador; Rodríguez López, Mario H

    2012-05-30

    Human Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex. We sequenced the transcriptome of the An. albimanus adult female. By combining Sanger, 454 and Illumina sequences from cDNA libraries derived from the midgut, cuticular fat body, dorsal vessel, salivary gland and whole body, we generated a single, high-quality assembly containing 16,669 transcripts, 92% of which mapped to the An. darlingi genome and covered 90% of the core eukaryotic genome. Bidirectional comparisons between the An. gambiae, An. darlingi and An. albimanus predicted proteomes allowed the identification of 3,772 putative orthologs. More than half of the transcripts had a match to proteins in other insect vectors and had an InterPro annotation. We identified several protein families that may be relevant to the study of Plasmodium-mosquito interaction. An open source transcript annotation browser called GDAV (Genome-Delinked Annotation Viewer) was developed to facilitate public access to the data generated by this and future transcriptome projects. We have explored the adult female transcriptome of one important New World malaria vector, An. albimanus. We identified protein-coding transcripts involved in biological processes that may be relevant to the Plasmodium lifecycle and can serve as the starting point for searching targets for novel control strategies. Our data increase the available genomic information regarding An. albimanus several hundred-fold, and will facilitate molecular research in medical entomology, evolutionary biology, genomics and proteomics of anopheline mosquito vectors. The data reported in this manuscript is accessible to the community via the VectorBase website (http://www.vectorbase.org/Other/AdditionalOrganisms/).

  12. Thrust Vector Control of an Overexpanded Supersonic Nozzle Using Pin Insertion and Rotating Airfoils

    DTIC Science & Technology

    1991-12-01

    12 THRUST VECTOR CONTROL OP AN OVEREXPANDED 3UPfRSONIC NOZZLE USING PIN INSERTION AND ROTATINO AIRFOILS THESIS Presented to the Faculty of the School...gather data that would aid in the evaluation of thrust vector control mechanisms for nozzle applications. I would like to thank my thesis advisor, Dr... Control Nozzle. MS Thesis . Air Force Institute of Technology (AU), Wright- Patterson AFB OH, December 1988. 4. Herup, Eric J. Confined Jet Thrust Vector

  13. Demand-supply gaps in human resources to combat vector-borne disease in India: capacity-building measures in medical entomology.

    PubMed

    Pandey, Anuja; Zodpey, Sanjay; Kumar, Raj

    2015-01-01

    Vector-borne diseases account for a significant proportion of the global burden of infectious disease. They are one of the greatest contributors to human mortality and morbidity in tropical settings, including India. The World Health Organization declared vector-borne diseases as theme for the year 2014, and thus called for renewed commitment to their prevention and control. Human resources are critical to support public health systems, and medical entomologists play a crucial role in public health efforts to combat vector-borne diseases. This paper aims to review the capacity-building initiatives in medical entomology in India, to understand the demand and supply of medical entomologists, and to give future direction for the initiation of need-based training in the country. A systematic, predefined approach, with three parallel strategies, was used to collect and assemble the data regarding medical entomology training in India and assess the demand-supply gap in medical entomologists in the country. The findings suggest that, considering the high burden of vector-borne diseases in the country and the growing need of health manpower specialized in medical entomology, the availability of specialized training in medical entomology is insufficient in terms of number and intake capacity. The demand analysis of medical entomologists in India suggests a wide gap in demand and supply, which needs to be addressed to cater for the burden of vector-borne diseases in the country.

  14. First comparative transcriptomic analysis of wild adult male and female Lutzomyia longipalpis, vector of visceral leishmaniasis.

    PubMed

    McCarthy, Christina B; Santini, María Soledad; Pimenta, Paulo F P; Diambra, Luis A

    2013-01-01

    Leishmaniasis is a vector-borne disease with a complex epidemiology and ecology. Visceral leishmaniasis (VL) is its most severe clinical form as it results in death if not treated. In Latin America VL is caused by the protist parasite Leishmania infantum (syn. chagasi) and transmitted by Lutzomyia longipalpis. This phlebotomine sand fly is only found in the New World, from Mexico to Argentina. However, due to deforestation, migration and urbanisation, among others, VL in Latin America is undergoing an evident geographic expansion as well as dramatic changes in its transmission patterns. In this context, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases. Insect vector transcriptomic analyses enable the identification of molecules involved in the insect's biology and vector-parasite interaction. Previous studies on laboratory reared Lu. longipalpis have provided a descriptive repertoire of gene expression in the whole insect, midgut, salivary gland and male reproductive organs. Nevertheless, the study of wild specimens would contribute a unique insight into the development of novel bioinsecticides. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. In this study, total RNA was extracted from the sand flies, submitted to sequence independent amplification and high-throughput pyrosequencing. This is the first time an unbiased and comprehensive transcriptomic approach has been used to analyse an infectious disease vector in its natural environment. Transcripts identified in the sand flies showed characteristic profiles which correlated with the environment of origin and with taxa previously identified in these same specimens. Among these, various genes represented putative targets for vector control via RNA interference (RNAi).

  15. First Comparative Transcriptomic Analysis of Wild Adult Male and Female Lutzomyia longipalpis, Vector of Visceral Leishmaniasis

    PubMed Central

    McCarthy, Christina B.; Santini, María Soledad; Pimenta, Paulo F. P.; Diambra, Luis A.

    2013-01-01

    Leishmaniasis is a vector-borne disease with a complex epidemiology and ecology. Visceral leishmaniasis (VL) is its most severe clinical form as it results in death if not treated. In Latin America VL is caused by the protist parasite Leishmania infantum (syn. chagasi) and transmitted by Lutzomyia longipalpis. This phlebotomine sand fly is only found in the New World, from Mexico to Argentina. However, due to deforestation, migration and urbanisation, among others, VL in Latin America is undergoing an evident geographic expansion as well as dramatic changes in its transmission patterns. In this context, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases. Insect vector transcriptomic analyses enable the identification of molecules involved in the insect's biology and vector-parasite interaction. Previous studies on laboratory reared Lu. longipalpis have provided a descriptive repertoire of gene expression in the whole insect, midgut, salivary gland and male reproductive organs. Nevertheless, the study of wild specimens would contribute a unique insight into the development of novel bioinsecticides. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. In this study, total RNA was extracted from the sand flies, submitted to sequence independent amplification and high-throughput pyrosequencing. This is the first time an unbiased and comprehensive transcriptomic approach has been used to analyse an infectious disease vector in its natural environment. Transcripts identified in the sand flies showed characteristic profiles which correlated with the environment of origin and with taxa previously identified in these same specimens. Among these, various genes represented putative targets for vector control via RNA interference (RNAi). PMID:23554910

  16. Recent advances in phlebotomine sand fly research related to leishmaniasis control.

    PubMed

    Bates, Paul A; Depaquit, Jerôme; Galati, Eunice A B; Kamhawi, Shaden; Maroli, Michele; McDowell, Mary Ann; Picado, Albert; Ready, Paul D; Salomón, O Daniel; Shaw, Jeffrey J; Traub-Csekö, Yara M; Warburg, Alon

    2015-02-27

    Phlebotomine sand flies are the subject of much research because of the role of their females as the only proven natural vectors of Leishmania species, the parasitic protozoans that are the causative agents of the neglected tropical disease leishmaniasis. Activity in this field was highlighted by the eighth International Symposium on Phlebotomine Sand flies (ISOPS) held in September 2014, which prompted this review focusing on vector control. Topics reviewed include: Taxonomy and phylogenetics, Vector competence, Genetics, genomics and transcriptomics, Eco-epidemiology, and Vector control. Research on sand flies as leishmaniasis vectors has revealed a diverse array of zoonotic and anthroponotic transmission cycles, mostly in subtropical and tropical regions of Africa, Asia and Latin America, but also in Mediterranean Europe. The challenge is to progress beyond descriptive eco-epidemiology, in order to separate vectors of biomedical importance from the sand fly species that are competent vectors but lack the vectorial capacity to cause much human disease. Transmission modelling is required to identify the vectors that are a public health priority, the ones that must be controlled as part of the integrated control of leishmaniasis. Effective modelling of transmission will require the use of entomological indices more precise than those usually reported in the leishmaniasis literature.

  17. Evaluation of Spatially Targeted Strategies to Control Non-Domiciliated Triatoma dimidiata Vector of Chagas Disease

    PubMed Central

    Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien

    2011-01-01

    Background Chagas disease is a major neglected tropical disease with deep socio-economical effects throughout Central and South America. Vector control programs have consistently reduced domestic populations of triatomine vectors, but non-domiciliated vectors still have to be controlled efficiently. Designing control strategies targeting these vectors is challenging, as it requires a quantitative description of the spatio-temporal dynamics of village infestation, which can only be gained from combinations of extensive field studies and spatial population dynamic modelling. Methodology/Principal Findings A spatially explicit population dynamic model was combined with a two-year field study of T. dimidiata infestation dynamics in the village of Teya, Mexico. The parameterized model fitted and predicted accurately both intra-annual variation and the spatial gradient in vector abundance. Five different control strategies were then applied in concentric rings to mimic spatial design targeting the periphery of the village, where vectors were most abundant. Indoor insecticide spraying and insect screens reduced vector abundance by up to 80% (when applied to the whole village), and half of this effect was obtained when control was applied only to the 33% of households closest to the village periphery. Peri-domicile cleaning was able to eliminate up to 60% of the vectors, but at the periphery of the village it has a low effect, as it is ineffective against sylvatic insects. The use of lethal traps and the management of house attractiveness provided similar levels of control. However this required either house attractiveness to be null, or ≥5 lethal traps, at least as attractive as houses, to be installed in each household. Conclusion/Significance Insecticide and insect screens used in houses at the periphery of the village can contribute to reduce house infestation in more central untreated zones. However, this beneficial effect remains insufficient to allow for a unique spatially targeted strategy to offer protection to all households. Most efficiently, control should combine the use of insect screens in outer zones to reduce infestation by both sylvatic and peri-domiciliated vectors, and cleaning of peri-domicile in the centre of the village where sylvatic vectors are absent. The design of such spatially mixed strategies of control offers a promising avenue to reduce the economic cost associated with the control of non-domiciliated vectors. PMID:21610862

  18. Identification and characterization of highly versatile peptide-vectors that bind non-competitively to the low-density lipoprotein receptor for in vivo targeting and delivery of small molecules and protein cargos

    PubMed Central

    David, Marion; Lécorché, Pascaline; Masse, Maxime; Faucon, Aude; Abouzid, Karima; Gaudin, Nicolas; Varini, Karine; Gassiot, Fanny; Ferracci, Géraldine; Jacquot, Guillaume; Vlieghe, Patrick

    2018-01-01

    Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells—or organs that express the LDLR. PMID:29485998

  19. Ice Shape Characterization Using Self-Organizing Maps

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Tino, Peter; Kreeger, Richard E.

    2011-01-01

    A method for characterizing ice shapes using a self-organizing map (SOM) technique is presented. Self-organizing maps are neural-network techniques for representing noisy, multi-dimensional data aligned along a lower-dimensional and possibly nonlinear manifold. For a large set of noisy data, each element of a finite set of codebook vectors is iteratively moved in the direction of the data closest to the winner codebook vector. Through successive iterations, the codebook vectors begin to align with the trends of the higher-dimensional data. In information processing, the intent of SOM methods is to transmit the codebook vectors, which contains far fewer elements and requires much less memory or bandwidth, than the original noisy data set. When applied to airfoil ice accretion shapes, the properties of the codebook vectors and the statistical nature of the SOM methods allows for a quantitative comparison of experimentally measured mean or average ice shapes to ice shapes predicted using computer codes such as LEWICE. The nature of the codebook vectors also enables grid generation and surface roughness descriptions for use with the discrete-element roughness approach. In the present study, SOM characterizations are applied to a rime ice shape, a glaze ice shape at an angle of attack, a bi-modal glaze ice shape, and a multi-horn glaze ice shape. Improvements and future explorations will be discussed.

  20. Multiaxis control power from thrust vectoring for a supersonic fighter aircraft model at Mach 0.20 to 2.47

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Bare, E. Ann

    1987-01-01

    The aeropropulsive characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Tansonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective was to determine multiaxis control-power characteristics from thrust vectoring. A two-dimensional convergent-divergent nozzle was designed to provide yaw vector angles of 0, -10, and -20 deg combined with geometric pitch vector angles of 0 and 15 deg. Yaw thrust vectoring was provided by yaw flaps located in the nozzle sidewalls. Roll control was obtained from differential pitch vectoring. This investigation was conducted at Mach numbers from 0.20 to 2.47. Angle of attack was varied from 0 to about 19 deg, and nozzle pressure ratio was varied from about 1 (jet off) to 28, depending on Mach number. Increments in force or moment coefficient that result from pitch or yaw thrust vectoring remain essentially constant over the entire angle-of-attack range of all Mach numbers tested. There was no effect of pitch vectoring on the lateral aerodynamic forces and moments and only very small effects of yaw vectoring on the longitudinal aerodynamic forces and moments. This result indicates little cross-coupling of control forces and moments for combined pitch-yaw vectoring.

  1. [Going into the 21st century: should one dream or act?].

    PubMed

    Coosemans, M

    1991-01-01

    A historical review of vector control is made. Despite the available tools, vector borne diseases are still a priority in Public Health. Magic tools, like DDT, were often misused. Adapted strategies and structures for vector control are now required. Progress will mainly result from research and evaluation done in the framework of vector control programmes. Discovery of new tools will find in these operational programmes a point of fall for their application.

  2. Cost-effective malaria control in Brazil. Cost-effectiveness of a Malaria Control Program in the Amazon Basin of Brazil, 1988-1996.

    PubMed

    Akhavan, D; Musgrove, P; Abrantes, A; d'A Gusmão, R

    1999-11-01

    Malaria transmission was controlled elsewhere in Brazil by 1980, but in the Amazon Basin cases increased steadily until 1989, to almost half a million a year and the coefficient of mortality quadrupled in 1977-1988. The government's malaria control program almost collapsed financially in 1987-1989 and underwent a turbulent reorganization in 1991-1993. A World Bank project supported the program from late 1989 to mid-1996, and in 1992-1993, with help from the Pan American Health Organization, facilitated a change toward earlier and more aggressive case treatment and more concentrated vector control. The epidemic stopped expanding in 1990-1991 and reversed in 1992-1996. The total cost of the program from 1989 through mid-1996 was US$616 million: US$526 million for prevention and US$90 million for treatment. Compared to what would have happened in the absence of the program, nearly two million cases of malaria and 231,000 deaths were prevented; the lives saved were due almost equally to preventing infection and to case treatment. Converting the savings in lives and in morbidity into Disability-Adjusted Life Years yields almost nine million DALYs, 5.1 million from treatment and 3.9 million from prevention. Nearly all the gain came from controlling deaths and therefore from controlling falciparum. The overall cost-effectiveness was US$2672 per life saved or US$69 per DALY, which is low compared to most previous estimates and compares favorably to many other disease control interventions. Contrary to much previous experience, case treatment appears more cost-effective than vector control, particularly where falciparum is prevalent and unfocussed insecticide spraying is relatively ineffective. Halting the epidemic by better targeted vector control and emphasizing treatment paid off in much reduced mortality from malaria and in significantly lower costs per life saved.

  3. Opportunities for Improved Chagas Disease Vector Control Based on Knowledge, Attitudes and Practices of Communities in the Yucatan Peninsula, Mexico

    PubMed Central

    Rosecrans, Kathryn; Cruz-Martin, Gabriela; King, Ashley; Dumonteil, Eric

    2014-01-01

    Background Chagas disease is a vector-borne parasitic disease of major public health importance. Current prevention efforts are based on triatomine vector control to reduce transmission to humans. Success of vector control interventions depends on their acceptability and value to affected communities. We aimed to identify opportunities for and barriers to improved vector control strategies in the Yucatan peninsula, Mexico. Methodology/principal findings We employed a sequence of qualitative and quantitative research methods to investigate knowledge, attitudes and practices surrounding Chagas disease, triatomines and vector control in three rural communities. Our combined data show that community members are well aware of triatomines and are knowledgeable about their habits. However, most have a limited understanding of the transmission dynamics and clinical manifestations of Chagas disease. While triatomine control is not a priority for community members, they frequently use domestic insecticide products including insecticide spray, mosquito coils and plug-in repellents. Families spend about $32 US per year on these products. Alternative methods such as yard cleaning and window screens are perceived as desirable and potentially more effective. Screens are nonetheless described as unaffordable, in spite of a cost comparable to the average annual spending on insecticide products. Conclusion/Significance Further education campaigns and possibly financing schemes may lead families to redirect their current vector control spending from insecticide products to window screens. Also, synergism with mosquito control efforts should be further explored to motivate community involvement and ensure sustainability of Chagas disease vector control. PMID:24676038

  4. Containment Studies of Transgenic Mosquitoes in Disease Endemic Countries: The Broad Concept of Facilities Readiness.

    PubMed

    Quinlan, M Megan; Birungi, Josephine; Coulibaly, Mamadou B; Diabaté, Abdoulaye; Facchinelli, Luca; Mukabana, Wolfgang Richard; Mutunga, James Mutuku; Nolan, Tony; Raymond, Peter; Traoré, Sékou F

    2018-01-01

    Genetic strategies for large scale pest or vector control using modified insects are not yet operational in Africa, and currently rely on import of the modified strains to begin preliminary, contained studies. Early involvement of research teams from participating countries is crucial to evaluate candidate field interventions. Following the recommended phased approach for novel strategies, evaluation should begin with studies in containment facilities. Experiences to prepare facilities and build international teams for research on transgenic mosquitoes revealed some important organizing themes underlying the concept of "facilities readiness," or the point at which studies in containment may proceed, in sub-Saharan African settings. First, "compliance" for research with novel or non-native living organisms was defined as the fulfillment of all legislative and regulatory requirements. This is not limited to regulations regarding use of transgenic organisms. Second, the concept of "colony utility" was related to the characteristics of laboratory colonies being produced so that results of studies may be validated across time, sites, and strains or technologies; so that the appropriate candidate strains are moved forward toward field studies. Third, the importance of achieving "defensible science" was recognized, including that study conclusions can be traced back to evidence, covering the concerns of various stakeholders over the long term. This, combined with good stewardship of resources and appropriate funding, covers a diverse set of criteria for declaring when "facilities readiness" has been attained. It is proposed that, despite the additional demands on time and resources, only with the balance of and rigorous achievement of each of these organizing themes can collaborative research into novel strategies in vector or pest control reliably progress past initial containment studies.

  5. Containment Studies of Transgenic Mosquitoes in Disease Endemic Countries: The Broad Concept of Facilities Readiness

    PubMed Central

    Birungi, Josephine; Coulibaly, Mamadou B.; Diabaté, Abdoulaye; Facchinelli, Luca; Mukabana, Wolfgang Richard; Mutunga, James Mutuku; Nolan, Tony; Raymond, Peter; Traoré, Sékou F.

    2018-01-01

    Abstract Genetic strategies for large scale pest or vector control using modified insects are not yet operational in Africa, and currently rely on import of the modified strains to begin preliminary, contained studies. Early involvement of research teams from participating countries is crucial to evaluate candidate field interventions. Following the recommended phased approach for novel strategies, evaluation should begin with studies in containment facilities. Experiences to prepare facilities and build international teams for research on transgenic mosquitoes revealed some important organizing themes underlying the concept of “facilities readiness,” or the point at which studies in containment may proceed, in sub-Saharan African settings. First, “compliance” for research with novel or non-native living organisms was defined as the fulfillment of all legislative and regulatory requirements. This is not limited to regulations regarding use of transgenic organisms. Second, the concept of “colony utility” was related to the characteristics of laboratory colonies being produced so that results of studies may be validated across time, sites, and strains or technologies; so that the appropriate candidate strains are moved forward toward field studies. Third, the importance of achieving “defensible science” was recognized, including that study conclusions can be traced back to evidence, covering the concerns of various stakeholders over the long term. This, combined with good stewardship of resources and appropriate funding, covers a diverse set of criteria for declaring when “facilities readiness” has been attained. It is proposed that, despite the additional demands on time and resources, only with the balance of and rigorous achievement of each of these organizing themes can collaborative research into novel strategies in vector or pest control reliably progress past initial containment studies. PMID:29337664

  6. Evaluation of Commercial Agrochemicals as New Tools for Malaria Vector Control.

    PubMed

    Hoppé, Mark; Hueter, Ottmar F; Bywater, Andy; Wege, Philip; Maienfisch, Peter

    2016-10-01

    Malaria is a vector-borne and life-threatening disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. The vector control insecticide market represents a small fraction of the crop protection market and is estimated to be valued at up to $500 million at the active ingredient level. Insecticide resistance towards the current WHOPES-approved products urgently requires the development of new tools to protect communities against the transmission of malaria. The evaluation of commercial products for malaria vector control is a viable and cost effective strategy to identify new malaria vector control products. Several examples of such spin-offs from crop protection insecticides are already evidencing the success of this strategy, namely pirimiphos-methyl for indoor residual sprays and spinosad, diflubenzuron, novaluron, and pyriproxifen for mosquito larvae control, a supplementary technology for control of malaria vectors. In our study the adulticidal activities of 81 insecticides representing 23 insecticidal modes of action classes, 34 fungicides from 6 fungicidal mode of action classes and 15 herbicides from 2 herbicidal modes of action classes were tested in a newly developed screening system. WHOPES approved insecticides for malaria vector control consistently caused 80-100% mortality of adult Anopheles stephensi at application rates between 0.2 and 20 mg active ingradient (AI) litre -1 . Chlorfenapyr, fipronil, carbosulfan and endosulfan showed the expected good activity. Four new insecticides and three fungicides with promising activity against adult mosquitoes were identified, namely the insecticides acetamiprid, thiamethoxam, thiocyclam and metaflumizone and the fungicides diflumetorin, picoxystrobin, and fluazinam. Some of these compounds certainly deserve to be further evaluated for malaria vector control. This is the first report describing good activity of commercial fungicides against malaria vectors.

  7. Anterograde or Retrograde Transsynaptic Circuit Tracing in Vertebrates with Vesicular Stomatitis Virus Vectors

    PubMed Central

    Beier, Kevin T.; Mundell, Nathan A.; Pan, Y. Albert; Cepko, Constance L.

    2016-01-01

    Viruses have been used as transsynaptic tracers, allowing one to map the inputs and outputs of neuronal populations, due to their ability to replicate in neurons and transmit in vivo only across synaptically connected cells. To date, their use has been largely restricted to mammals. In order to explore the use of such viruses in an expanded host range, we tested the transsynaptic tracing ability of recombinant vesicular stomatitis virus (rVSV) vectors in a variety of organisms. Successful infection and gene expression were achieved in a wide range of organisms, including vertebrate and invertebrate model organisms. Moreover, rVSV enabled transsynaptic tracing of neural circuitry in predictable directions dictated by the viral envelope glycoprotein (G), derived from either VSV or rabies virus (RABV). Anterograde and retrograde labeling, from initial infection and/or viral replication and transmission, was observed in Old and New World monkeys, seahorses, jellyfish, zebrafish, chickens, and mice. These vectors are widely applicable for gene delivery, afferent tract tracing, and/or directional connectivity mapping. Here, we detail the use of these vectors and provide protocols for propagating virus, changing the surface glycoprotein, and infecting multiple organisms using several injection strategies. PMID:26729030

  8. Anterograde or Retrograde Transsynaptic Circuit Tracing in Vertebrates with Vesicular Stomatitis Virus Vectors.

    PubMed

    Beier, Kevin T; Mundell, Nathan A; Pan, Y Albert; Cepko, Constance L

    2016-01-04

    Viruses have been used as transsynaptic tracers, allowing one to map the inputs and outputs of neuronal populations, due to their ability to replicate in neurons and transmit in vivo only across synaptically connected cells. To date, their use has been largely restricted to mammals. In order to explore the use of such viruses in an expanded host range, we tested the transsynaptic tracing ability of recombinant vesicular stomatitis virus (rVSV) vectors in a variety of organisms. Successful infection and gene expression were achieved in a wide range of organisms, including vertebrate and invertebrate model organisms. Moreover, rVSV enabled transsynaptic tracing of neural circuitry in predictable directions dictated by the viral envelope glycoprotein (G), derived from either VSV or rabies virus (RABV). Anterograde and retrograde labeling, from initial infection and/or viral replication and transmission, was observed in Old and New World monkeys, seahorses, jellyfish, zebrafish, chickens, and mice. These vectors are widely applicable for gene delivery, afferent tract tracing, and/or directional connectivity mapping. Here, we detail the use of these vectors and provide protocols for propagating virus, changing the surface glycoprotein, and infecting multiple organisms using several injection strategies. Copyright © 2016 John Wiley & Sons, Inc.

  9. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1

    PubMed Central

    Castello, Raffaele; Borzone, Roberta; D’Aria, Stefania; Annunziata, Patrizia; Piccolo, Pasquale; Brunetti-Pierri, Nicola

    2015-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate which ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Towards this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared to saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with Ethylene Glycol (EG), a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy. PMID:26609667

  10. Patterns of insecticide resistance and knock down resistance (kdr) in malaria vectors An. arabiensis, An. coluzzii and An. gambiae from sympatric areas in Senegal.

    PubMed

    Niang, El Hadji Amadou; Konaté, Lassana; Diallo, Mawlouth; Faye, Ousmane; Dia, Ibrahima

    2016-02-05

    Malaria vector control in Africa relies on insecticides targeting adult mosquito vectors via insecticide treated nets or indoor residual spraying. Despite the proven efficacy of these strategies, the emergence and rapid rise in insecticide resistance in malaria vectors raises many concerns about their sustainability. Therefore, the monitoring of insecticide resistance is essential for resistance management strategies implementation. We investigated the kdr mutation frequencies in 20 sympatric sites of An. arabiensis Patton, An. coluzzii Coetzee & Wilkerson and An. gambiae Giles and its importance in malaria vector control by evaluating the susceptibility to insecticides in four representative sites in Senegal. Sibling species identification and kdr mutation detection were determined using polymerase chain reaction on mosquitoes collected using pyrethrum sprays collection in 20 sites belonging to two transects with differential insecticide selection pressure. The World Health Organization (WHO) tube test was used to determine phenotypic resistance of An. gambiae s.l. to DDT, deltamethrin, lambdacyholothrin, permethrin, bendiocarb and malathion in four representative sites. The L1014F kdr mutation was widely distributed and was predominant in An. gambiae in comparison to An. arabiensis and An. coluzzii. The bioassay tests showed a general trend with a resistance to DDT and pyrethroids and a susceptibility to organophosphate and carbamate according to WHO thresholds. For deltamethrin and permethrin, the two most used insecticides, no significant difference were observed either between the two transects or between mortality rates suggesting no differential selection pressures on malaria vectors. The study of the KD times showed similar trends as comparable levels of resistance were observed, the effect being more pronounced for permethrin. Our study showed a widespread resistance of malaria vectors to DDT and pyrethroids and a widespread distribution of the 1014F kdr allele. These combined observations could suggest the involvement of the kdr mutation. The existence of other resistance mechanisms could not be ruled out as a proportion of mosquitoes did not harbour the kdr allele whereas the populations were fully resistant. The susceptibility to carbamate and organophosphate could be exploited as alternative for insecticide resistance management.

  11. The Interaction between Vector Life History and Short Vector Life in Vector-Borne Disease Transmission and Control.

    PubMed

    Brand, Samuel P C; Rock, Kat S; Keeling, Matt J

    2016-04-01

    Epidemiological modelling has a vital role to play in policy planning and prediction for the control of vectors, and hence the subsequent control of vector-borne diseases. To decide between competing policies requires models that can generate accurate predictions, which in turn requires accurate knowledge of vector natural histories. Here we highlight the importance of the distribution of times between life-history events, using short-lived midge species as an example. In particular we focus on the distribution of the extrinsic incubation period (EIP) which determines the time between infection and becoming infectious, and the distribution of the length of the gonotrophic cycle which determines the time between successful bites. We show how different assumptions for these periods can radically change the basic reproductive ratio (R0) of an infection and additionally the impact of vector control on the infection. These findings highlight the need for detailed entomological data, based on laboratory experiments and field data, to correctly construct the next-generation of policy-informing models.

  12. Ultrastructure of the salivary glands, alimentary canal and bacteria-like organisms in the Asian citrus psyllid, vector of citrus huanglongbing-disease bacteria

    USDA-ARS?s Scientific Manuscript database

    Several psyllids (Hemiptera: Psylloidea) are known as vectors of some economically important viral and bacterial plant pathogens. The Asian citrus psyllid (ACP, Diaphorina citri, Hemiptera, Liviidae) is the principal vector of ‘Candidatus Liberibacter asiaticus’ (Las), the putative bacterial causal ...

  13. Community-Effectiveness of Temephos for Dengue Vector Control: A Systematic Literature Review.

    PubMed

    George, Leyanna; Lenhart, Audrey; Toledo, Joao; Lazaro, Adhara; Han, Wai Wai; Velayudhan, Raman; Runge Ranzinger, Silvia; Horstick, Olaf

    2015-01-01

    The application of the organophosphate larvicide temephos to water storage containers is one of the most commonly employed dengue vector control methods. This systematic literature review is to the knowledge of the authors the first that aims to assess the community-effectiveness of temephos in controlling both vectors and dengue transmission when delivered either as a single intervention or in combination with other interventions. A comprehensive literature search of 6 databases was performed (PubMed, WHOLIS, GIFT, CDSR, EMBASE, Wiley), grey literature and cross references were also screened for relevant studies. Data were extracted and methodological quality of the studies was assessed independently by two reviewers. 27 studies were included in this systematic review (11 single intervention studies and 16 combined intervention studies). All 11 single intervention studies showed consistently that using temephos led to a reduction in entomological indices. Although 11 of the 16 combined intervention studies showed that temephos application together with other chemical vector control methods also reduced entomological indices, this was either not sustained over time or-as in the five remaining studies--failed to reduce the immature stages. The community-effectiveness of temephos was found to be dependent on factors such as quality of delivery, water turnover rate, type of water, and environmental factors such as organic debris, temperature and exposure to sunlight. Timing of temephos deployment and its need for reapplication, along with behavioural factors such as the reluctance of its application to drinking water, and operational aspects such as cost, supplies, time and labour were further limitations identified in this review. In conclusion, when applied as a single intervention, temephos was found to be effective at suppressing entomological indices, however, the same effect has not been observed when temephos was applied in combination with other interventions. There is no evidence to suggest that temephos use is associated with reductions in dengue transmission.

  14. The lost hope of elimination of Kala-azar (visceral leishmaniasis) by 2010 and cyclic occurrence of its outbreak in India, blame falls on vector control practices or co-infection with human immunodeficiency virus or therapeutic modalities?

    PubMed

    Muniaraj, Mayilsamy

    2014-01-01

    The Kala-azar/visceral leishmaniasis (VL) turns epidemic form once in every 15 years in the endemic regions of Indian subcontinent. The goal of elimination of Kala-azar from India by 2010 was lost despite paramount efforts taken by the Government of India and World Health Organization and Regional Office for South East Asia. The main objective of this review was to elucidate the possible reason for the failure of Kala-azar elimination program and to suggest possible remedial measures to achieve the goal in future. The annual numbers of VL cases and deaths recorded in India since 1977 were plotted on a graph, to see if the temporal trends could be associated with changes in the vector control practices or co-infection with human immunodeficiency virus (HIV) or therapeutic modalities used against VL. The VL cases flares up whenever the effect of dichlorodiphenyltrichloroethane (DDT) diminished after the withdrawal of spray. The fading effectiveness was clearly correlated with an increasing number of VL cases. Therapeutic modalities were found to be highly correlating with VL mortality not with VL morbidity. The diminishing efficacy of first and second line drugs and the introduction of new drugs and drugs combination were responsible for ups and downs in the VL mortality. The VL mortality is constantly declining since 1993, but cases started increasing from 2003 to 2007 and then recently again from 2010 to 2011. This shows a serious lacuna in the vector control practices applied. The extent of HIV co-infection did not show any correlation with number/trend of VL cases or death over the study period. It is concluded that, by strict vector control practices, the VL cases can be reduced and by applying proper therapeutic strategies, the VL mortality can be reduced. HIV-VL co-infection does not seem to be in a worried stage.

  15. Community-Effectiveness of Temephos for Dengue Vector Control: A Systematic Literature Review

    PubMed Central

    George, Leyanna; Lenhart, Audrey; Toledo, Joao; Lazaro, Adhara; Han, Wai Wai; Velayudhan, Raman; Runge Ranzinger, Silvia; Horstick, Olaf

    2015-01-01

    The application of the organophosphate larvicide temephos to water storage containers is one of the most commonly employed dengue vector control methods. This systematic literature review is to the knowledge of the authors the first that aims to assess the community-effectiveness of temephos in controlling both vectors and dengue transmission when delivered either as a single intervention or in combination with other interventions. A comprehensive literature search of 6 databases was performed (PubMed, WHOLIS, GIFT, CDSR, EMBASE, Wiley), grey literature and cross references were also screened for relevant studies. Data were extracted and methodological quality of the studies was assessed independently by two reviewers. 27 studies were included in this systematic review (11 single intervention studies and 16 combined intervention studies). All 11 single intervention studies showed consistently that using temephos led to a reduction in entomological indices. Although 11 of the 16 combined intervention studies showed that temephos application together with other chemical vector control methods also reduced entomological indices, this was either not sustained over time or–as in the five remaining studies—failed to reduce the immature stages. The community-effectiveness of temephos was found to be dependent on factors such as quality of delivery, water turnover rate, type of water, and environmental factors such as organic debris, temperature and exposure to sunlight. Timing of temephos deployment and its need for reapplication, along with behavioural factors such as the reluctance of its application to drinking water, and operational aspects such as cost, supplies, time and labour were further limitations identified in this review. In conclusion, when applied as a single intervention, temephos was found to be effective at suppressing entomological indices, however, the same effect has not been observed when temephos was applied in combination with other interventions. There is no evidence to suggest that temephos use is associated with reductions in dengue transmission. PMID:26371470

  16. A Discriminant Distance Based Composite Vector Selection Method for Odor Classification

    PubMed Central

    Choi, Sang-Il; Jeong, Gu-Min

    2014-01-01

    We present a composite vector selection method for an effective electronic nose system that performs well even in noisy environments. Each composite vector generated from a electronic nose data sample is evaluated by computing the discriminant distance. By quantitatively measuring the amount of discriminative information in each composite vector, composite vectors containing informative variables can be distinguished and the final composite features for odor classification are extracted using the selected composite vectors. Using the only informative composite vectors can be also helpful to extract better composite features instead of using all the generated composite vectors. Experimental results with different volatile organic compound data show that the proposed system has good classification performance even in a noisy environment compared to other methods. PMID:24747735

  17. Use of a current varicella vaccine as a live polyvalent vaccine vector.

    PubMed

    Murakami, Kouki; Mori, Yasuko

    2016-01-04

    Varicella-zoster virus (VZV) is the causative agent of varicella and zoster. The varicella vaccine was developed to control VZV infection in children. The currently available Oka vaccine strain is the only live varicella vaccine approved by the World Health Organization. We previously cloned the complete genome of the Oka vaccine strain into a bacterial artificial chromosome vector and then successfully reconstituted the virus. We then used this system to generate a recombinant Oka vaccine virus expressing mumps virus gene(s). The new recombinant vaccine may be an effective polyvalent live vaccine that provides protection against both varicella and mumps viruses. In this review, we discussed about possibility of polyvalent live vaccine(s) using varicella vaccine based on our recent studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. How effective is integrated vector management against malaria and lymphatic filariasis where the diseases are transmitted by the same vector?

    PubMed

    Stone, Christopher M; Lindsay, Steve W; Chitnis, Nakul

    2014-12-01

    The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination.

  19. Thrust vector control of upper stage with a gimbaled thruster during orbit transfer

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Jia, Yinghong; Jin, Lei; Duan, Jiajia

    2016-10-01

    In launching Multi-Satellite with One-Vehicle, the main thruster provided by the upper stage is mounted on a two-axis gimbal. During orbit transfer, the thrust vector of this gimbaled thruster (GT) should theoretically pass through the mass center of the upper stage and align with the command direction to provide orbit transfer impetus. However, it is hard to be implemented from the viewpoint of the engineering mission. The deviations of the thrust vector from the command direction would result in large velocity errors. Moreover, the deviations of the thrust vector from the upper stage mass center would produce large disturbance torques. This paper discusses the thrust vector control (TVC) of the upper stage during its orbit transfer. Firstly, the accurate nonlinear coupled kinematic and dynamic equations of the upper stage body, the two-axis gimbal and the GT are derived by taking the upper stage as a multi-body system. Then, a thrust vector control system consisting of the special attitude control of the upper stage and the gimbal rotation of the gimbaled thruster is proposed. The special attitude control defined by the desired attitude that draws the thrust vector to align with the command direction when the gimbal control makes the thrust vector passes through the upper stage mass center. Finally, the validity of the proposed method is verified through numerical simulations.

  20. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool

    PubMed Central

    2012-01-01

    Background Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR), to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Methods Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. Results The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya) and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. Conclusions VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements on the air travel network. The framework built provides a flexible and robust informatics infrastructure by separating the modules of functionality through an ontological model for vector-borne disease. The VBD‒AIR tool is designed as an evidence base for visualizing the risks of vector-borne disease by air travel for a wide range of users, including planners and decisions makers based in state and local government, and in particular, those at international and domestic airports tasked with planning for health risks and allocating limited resources. PMID:22892045

  1. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool.

    PubMed

    Huang, Zhuojie; Das, Anirrudha; Qiu, Youliang; Tatem, Andrew J

    2012-08-14

    Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR), to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya) and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements on the air travel network. The framework built provides a flexible and robust informatics infrastructure by separating the modules of functionality through an ontological model for vector-borne disease. The VBD‒AIR tool is designed as an evidence base for visualizing the risks of vector-borne disease by air travel for a wide range of users, including planners and decisions makers based in state and local government, and in particular, those at international and domestic airports tasked with planning for health risks and allocating limited resources.

  2. Implementing a vector surveillance-response system for chagas disease control: a 4-year field trial in Nicaragua.

    PubMed

    Yoshioka, Kota; Tercero, Doribel; Pérez, Byron; Nakamura, Jiro; Pérez, Lenin

    2017-03-06

    Chagas disease is one of the neglected tropical diseases (NTDs). International goals for its control involve elimination of vector-borne transmission. Central American countries face challenges in establishing sustainable vector control programmes, since the main vector, Triatoma dimidiata, cannot be eliminated. In 2012, the Ministry of Health in Nicaragua started a field test of a vector surveillance-response system to control domestic vector infestation. This paper reports the main findings from this pilot study. This study was carried out from 2012 to 2015 in the Municipality of Totogalpa. The Japan International Cooperation Agency provided technical cooperation in designing and monitoring the surveillance-response system until 2014. This system involved 1) vector reports by householders to health facilities, 2) data analysis and planning of responses at the municipal health centre and 3) house visits or insecticide spraying by health personnel as a response. We registered all vector reports and responses in a digital database. The collected data were used to describe and analyse the system performance in terms of amount of vector reports as well as rates and timeliness of responses. During the study period, T. dimidiata was reported 396 times. Spatiotemporal analysis identified some high-risk clusters. All houses reported to be infested were visited by health personnel in 2013 and this response rate dropped to 39% in 2015. Rates of insecticide spraying rose above 80% in 2013 but no spraying was carried out in the following 2 years. The timeliness of house visits improved significantly after the responsibility was transferred from a vector control technician to primary health care staff. We argue that the proposed vector surveillance-response system is workable within the resource-constrained health system in Nicaragua. Integration to the primary health care services was a key to improve the system performance. Continual efforts are necessary to keep adapting the surveillance-response system to the dynamic health systems. We also discuss that the goal of eliminating vector-borne transmission remains unachievable. This paper provides lessons not only for Chagas disease control in Central America, but also for control efforts for other NTDs that need a sustainable surveillance-response system to support elimination.

  3. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako

    The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.

  4. Frequent blood feeding enables insecticide-treated nets to reduce transmission by mosquitoes that bite predominately outdoors.

    PubMed

    Russell, Tanya L; Beebe, Nigel W; Bugoro, Hugo; Apairamo, Allan; Chow, Weng K; Cooper, Robert D; Collins, Frank H; Lobo, Neil F; Burkot, Thomas R

    2016-03-10

    The effectiveness of vector control on malaria transmission by long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) depends on the vectors entering houses to blood feed and rest when people are inside houses. In the Solomon Islands, significant reductions in malaria have been achieved in the past 20 years with insecticide-treated bed nets, IRS, improved diagnosis and treatment with artemisinin combination therapies; despite the preference of the primary vector, Anopheles farauti, to feed outdoors and early in the evening and thereby avoid potential exposure to insecticides. Rational development of tools to complement LLINs and IRS by attacking vectors outdoor requires detailed knowledge of the biology and behaviours of the target species. Malaria transmission in Central Province, Solomon Islands was estimated by measuring the components comprising the entomological inoculation rate (EIR) as well as the vectorial capacity of An. farauti. In addition, the daily and seasonal biting behaviour of An. farauti, was examined and the duration of the feeding cycle was estimated with a mark-release-recapture experiment. Anopheles farauti was highly exophagic with 72% captured by human landing catches (HLC) outside of houses. Three-quarters (76%) of blood feeding on humans was estimated to occur before 21.00 h. When the hourly location of humans was considered, the proportion of exposure to mosquito bites on humans occurring indoors (πi) was only 0.130 ± 0.129. Peak densities of host seeking An. farauti occurred between October and January. The annual EIR was estimated to be 2.5 for 2012 and 33.2 for 2013. The length of the feeding cycle was 2.1 days. The short duration of the feeding cycle by this species offers an explanation for the substantial control of malaria that has been achieved in the Solomon Islands by LLINs and IRS. Anopheles farauti is primarily exophagic and early biting, with 13% of mosquitoes entering houses to feed late at night during each feeding cycle. The two-day feeding cycle of An. farauti requires females to take 5-6 blood meals before the extrinsic incubation period (EIP) is completed; and this could translate into substantial population-level mortality by LLINs or IRS before females would be infectious to humans with Plasmodium falciparum and Plasmodium vivax. Although An. farauti is primarily exophagic, the indoor vector control tools recommended by the World Health Organization (LLINs and IRS) can still provide an important level of control. Nonetheless, elimination will likely require vector control tools that target other bionomic vulnerabilities to suppress transmission outdoors and that complement the control provided by LLINs and IRS.

  5. Electromagnetic Monitoring and Control of a Plurality of Nanosatellites

    NASA Technical Reports Server (NTRS)

    Soloway, Donald I. (Inventor)

    2017-01-01

    A method for monitoring position of and controlling a second nanosatellite (NS) relative to a position of a first NS. Each of the first and second NSs has a rectangular or cubical configuration of independently activatable, current-carrying solenoids, each solenoid having an independent magnetic dipole moment vector, .mu.1 and .mu.2. A vector force F and a vector torque are expressed as linear or bilinear combinations of the first set and second set of magnetic moments, and a distance vector extending between the first and second NSs is estimated. Control equations are applied to estimate vectors, .mu.1 and .mu.2, required to move the NSs toward a desired NS configuration. This extends to control of N nanosatellites.

  6. The two time vectors of Nachträglichkeit in the development of ego organization: significance of the concept for the symbolization of nameless traumas and anxieties.

    PubMed

    Dahl, Gerhard

    2010-08-01

    The author describes Freud 's conception of Nachträglichkeit as an active process that bridges the gap between past affective vicissitudes and the cognitive present by way of meaning. Symbolization is thereby subsequently [nachträglich] conferred on early traumatic events, which thus become susceptible to omnipotent control. The two time vectors of Nachträglichkeit are discussed: the first is a causal process operating in the forward direction of time against the background of a factual reality, while the second is a backward movement that permits an understanding of unconscious scenes and phantasies taking place at primary-process level. This twofold temporal motion was observed and described by Freud early on. However, its significance often remained hidden prior to his study of Moses. It was mostly overlooked in English and French translations, thus giving rise to a one-sided understanding of the concept in the various psychoanalytic cultures, as either deferred action or après-coup. Freud 's Moses study addresses both temporal aspects of Nachträglichkeit, seeking not only to reconstruct a past event on a causal, deterministic basis, but also to understand the subjective truth of that event in the transference along the retrograde time line. The decisive criterion for the conceptual and clinical separation of the two time vectors is the development of ego organization and the capacity for symbolization. The two vectors should not be separated on the factual level, as both aspects of Nachträglichkeit are essential to the understanding of unconscious processes, combining as they do in a relationship of circular complementarity. © 2009 Institute of Psychoanalysis.

  7. Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis.

    PubMed

    2012-01-01

    This report provides a review and analysis of the research landscape for three diseases - Chagas disease, human African trypanosomiasis and leishmaniasis - that disproportionately afflict poor and remote populations with limited access to health services. It represents the work of the disease reference group on Chagas Disease, Human African Trypanosomiasis and Leishmaniasis (DRG3) which was established to identify key research priorities through review of research evidence and input from stakeholders' consultations. The diseases, which are caused by related protozoan parasites, are described in terms of their epidemiology and diseases burden, clinical forms and pathogenesis, HIV coinfection, diagnosis, drugs and drug resistance, vaccines, vector control, and health-care interventions. Priority areas for research are identified based on criteria such as public health relevance, benefit and impact on poor populations and equity, and feasibility. The priorities are found in the areas of diagnostics, drugs, vector control, asymptomatic infection, economic analysis of treatment and vector control methods, and in some specific issues such as surveillance methods or transmission-blocking vaccines for particular diseases. This report will be useful to researchers, policy and decision-makers, funding bodies, implementation organizations, and civil society. This is one of ten disease and thematic reference group reports that have come out of the TDR Think Tank, all of which have contributed to the development of the Global Report for Research on Infectious Diseases of Poverty, available at: www.who.int/tdr/stewardship/global_report/en/index.html.

  8. Definitions of state variables and state space for brain-computer interface : Part 2. Extraction and classification of feature vectors.

    PubMed

    Freeman, Walter J

    2007-06-01

    The hypothesis is proposed that the central dynamics of the action-perception cycle has five steps: emergence from an existing macroscopic brain state of a pattern that predicts a future goal state; selection of a mesoscopic frame for action control; execution of a limb trajectory by microscopic spike activity; modification of microscopic cortical spike activity by sensory inputs; construction of mesoscopic perceptual patterns; and integration of a new macroscopic brain state. The basis is the circular causality between microscopic entities (neurons) and the mesoscopic and macroscopic entities (populations) self-organized by axosynaptic interactions. Self-organization of neural activity is bidirectional in all cortices. Upwardly the organization of mesoscopic percepts from microscopic spike input predominates in primary sensory areas. Downwardly the organization of spike outputs that direct specific limb movements is by mesoscopic fields constituting plans to achieve predicted goals. The mesoscopic fields in sensory and motor cortices emerge as frames within macroscopic activity. Part 1 describes the action-perception cycle and its derivative reflex arc qualitatively. Part 2 describes the perceptual limb of the arc from microscopic MSA to mesoscopic wave packets, and from these to macroscopic EEG and global ECoG fields that express experience-dependent knowledge in successive states. These macroscopic states are conceived to embed and control mesoscopic frames in premotor and motor cortices that are observed in local ECoG and LFP of frontoparietal areas. The fields sampled by ECoG and LFP are conceived as local patterns of neural activity in which trajectories of multiple spike activities (MSA) emerge that control limb movements. Mesoscopic frames are located by use of the analytic signal from the Hilbert transform after band pass filtering. The state variables in frames are measured to construct feature vectors by which to describe and classify frame patterns. Evidence is cited to justify use of linear analysis. The aim of the review is to enable researchers to conceive and identify goal-oriented states in brain activity for use as commands, in order to relegate the details of execution to adaptive control devices outside the brain.

  9. System and method employing a self-organizing map load feature database to identify electric load types of different electric loads

    DOEpatents

    Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.

    2014-06-17

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.

  10. Rational design of gene-based vaccines.

    PubMed

    Barouch, Dan H

    2006-01-01

    Vaccine development has traditionally been an empirical discipline. Classical vaccine strategies include the development of attenuated organisms, whole killed organisms, and protein subunits, followed by empirical optimization and iterative improvements. While these strategies have been remarkably successful for a wide variety of viruses and bacteria, these approaches have proven more limited for pathogens that require cellular immune responses for their control. In this review, current strategies to develop and optimize gene-based vaccines are described, with an emphasis on novel approaches to improve plasmid DNA vaccines and recombinant adenovirus vector-based vaccines. Copyright 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. The Vector Space as a Unifying Concept in School Mathematics.

    ERIC Educational Resources Information Center

    Riggle, Timothy Andrew

    The purpose of this study was to show how the concept of vector space can serve as a unifying thread for mathematics programs--elementary school to pre-calculus college level mathematics. Indicated are a number of opportunities to demonstrate how emphasis upon the vector space structure can enhance the organization of the mathematics curriculum.…

  12. Molecular detection and antimicrobial resistance of Klebsiella pneumoniae from house flies (Musca domestica) in kitchens, farms, hospitals and slaughterhouses.

    PubMed

    Ranjbar, Reza; Izadi, Morteza; Hafshejani, Taghi T; Khamesipour, Faham

    2016-01-01

    Identifying disease vectors and pathogens is one of the key steps in controlling vector-borne diseases. This study investigated the possible role of house flies (Musca domestica) as vectors in the transmission of Klebsiella pneumoniae in Chaharmahal VA Bakhtiari and Isfahan provinces of Iran. House flies were captured from household kitchens, cattle farms, chicken farms, animal hospitals, human hospitals and slaughterhouses. Isolation of K. pneumoniae from external surfaces and guts of the flies was performed using MacConkey agar (MA) and thioglycollate broth (TGB). Identification of the isolates was performed with phenotypic techniques and polymerase chain reaction (PCR). A total of 600 house flies were sampled during the study period from different locations in four different seasons. Overall, 11.3% of the captured house flies were positive for K. pneumoniae. In Chaharmahal VA Bakhtiari province, the prevalence was 12.7%, while in Isfahan province, 10.0% of the sampled house flies were infected with K. pneumoniae. Season-wise, the highest prevalence of infections among the house flies was in summer. The organisms were highly resistant to ampicillin, amoxicillin, cefotaxime and piperacillin. A lowest level of resistance was observed for imipenem/cilastatin. The findings of this study demonstrated that house flies are potential vectors of antibiotic-resistant K. pneumoniae in Isfahan and Chaharmahal provinces, Iran. Control efforts for infections caused by this particular bacterium should take M. domestica into account. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  13. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  14. Transformable Rhodobacter strains, method for producing transformable Rhodobacter strains

    DOEpatents

    Laible, Philip D.; Hanson, Deborah K.

    2018-05-08

    The invention provides an organism for expressing foreign DNA, the organism engineered to accept standard DNA carriers. The genome of the organism codes for intracytoplasmic membranes and features an interruption in at least one of the genes coding for restriction enzymes. Further provided is a system for producing biological materials comprising: selecting a vehicle to carry DNA which codes for the biological materials; determining sites on the vehicle's DNA sequence susceptible to restriction enzyme cleavage; choosing an organism to accept the vehicle based on that organism not acting upon at least one of said vehicle's sites; engineering said vehicle to contain said DNA; thereby creating a synthetic vector; and causing the synthetic vector to enter the organism so as cause expression of said DNA.

  15. Naturally occurring minichromosome platforms in chromosome engineering: an overview.

    PubMed

    Raimondi, Elena

    2011-01-01

    Artificially modified chromosome vectors are non-integrating gene delivery platforms that can shuttle very large DNA fragments in various recipient cells: theoretically, no size limit exists for the chromosome segments that an engineered minichromosome can accommodate. Therefore, genetically manipulated chromosomes might be potentially ideal vector systems, especially when the complexity of higher eukaryotic genes is concerned. This review focuses on those chromosome vectors generated using spontaneously occurring small markers as starting material. The definition and manipulation of the centromere domain is one of the main obstacles in chromosome engineering: naturally occurring minichromosomes, due to their inherent small size, were helpful in defining some aspects of centromere function. In addition, several distinctive features of small marker chromosomes, like their appearance as supernumerary elements in otherwise normal karyotypes, have been successfully exploited to use them as gene delivery vectors. The key technologies employed for minichromosome engineering are: size reduction, gene targeting, and vector delivery in various recipient cells. In spite of the significant advances that have been recently achieved in all these fields, several unsolved problems limit the potential of artificially modified chromosomes. Still, these vector systems have been exploited in a number of applications where the investigation of the controlled expression of large DNA segments is needed. A typical example is the analysis of genes whose expression strictly depends on the chromosomal environment in which they are positioned, where engineered chromosomes can be envisaged as epigenetically regulated expression systems. A novel and exciting advance concerns the use of engineered minichromosomes to study the organization and dynamics of local chromatin structures.

  16. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain

    PubMed Central

    Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A.; Song, Juan

    2016-01-01

    Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4–/– mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4–/– mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design. PMID:27699236

  17. Direct adenovirus-mediated gene delivery to the temporomandibular joint in guinea-pigs.

    PubMed

    Kuboki, T; Nakanishi, T; Kanyama, M; Sonoyama, W; Fujisawa, T; Kobayashi, K; Ikeda, T; Kubo, T; Yamashita, A; Takigawa, M

    1999-09-01

    Adenovirus vector system is expected to be useful for direct gene therapy for joint disease. This study first sought to confirm that foreign genes can be transferred to articular chondrocytes in primary culture. Next, recombinant adenovirus vectors harbouring beta-galactosidase gene (LacZ) was injected directly into the temporomandibular joints of Hartley guinea-pigs to clarify the in vivo transfer availability of the adenovirus vectors. Specifically, recombinant adenovirus harbouring LacZ gene (AxlCALacZ) was injected into the upper joint cavities of both mandibular joints of four male 6-week-old Hartley guinea-pigs. Either the same amount of recombinant adenovirus without LacZ gene (Axlw) suspension (placebo) or the same amount of phosphate-buffered saline solution (control) were injected into the upper joint cavities of both joints of another four male guinea-pigs. At 1, 2, 3 and 4 weeks after injection, the joints were dissected and the expression of delivered LacZ was examined by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal) staining and reverse transcriptase-polymerase chain reaction (RT-PCR). To investigate the expression of transferred gene in other organs, total RNA was extracted from liver, kidney, heart and brain and the expression of LacZ mRNA and 18 S ribosomal RNA were analysed by RT-PCR. Clear expression of LacZ was observed in the articular surfaces of the temporal tubercle, articular disc and synovium of the temporomandibular joints even 4 weeks after injection in the AxlCALacZ-injected group, while no expression was detected in placebo and control groups. Histological examination confirmed that LacZ activity was clearly detected in a few cell layers of the articular surface tissues, which is much more efficient than in a previously study of the knee joint. In the other organs, expression of the delivered transgene was not observed. Based on these findings, direct gene delivery into the articular surface of the temporomandibular joint using the adenovirus vector is feasible as an effective in vivo method.

  18. Integrated Human Surveillance Systems of West Nile Virus Infections in Italy: The 2012 Experience

    PubMed Central

    Napoli, Christian; Bella, Antonino; Declich, Silvia; Grazzini, Giuliano; Lombardini, Letizia; Nanni Costa, Alessandro; Nicoletti, Loredana; Pompa, Maria Grazia; Pupella, Simonetta; Russo, Francesca; Rizzo, Caterina

    2013-01-01

    In Italy, a West Nile virus (WNV) surveillance plan was firstly implemented in 2008 and 2009 in two affected regions and, since 2010, according to a national plan, a WNV neuroinvasive disease (WNND) surveillance has to be carried out each year during the period 15 June–30 November, in those regions where WNV circulation has been demonstrated among humans, animals or vectors. Moreover, since WNV can be transmitted to humans even by blood transfusions and organ transplants obtained from infected donors, the national surveillance integrates the blood transfusions and organs transplant surveillances too. The paper describes the results of this integrated human surveillance in Italy in 2012. Overall, in 2012, 28 autochthonous confirmed cases of WNND were reported, 14 blood donations were found WNV positive by Nucleic Acid Amplification Test and no solid organ donors tested positive for WNV. Moreover, 17 cases of WNV fever were confirmed in Veneto region. When comparing the number of WNND cases reported to the surveillance system in previous 4 years (43 cases during the period 2008–2011), with those reported in 2012 an important increase was observed in 2012. The geographic distribution of human cases was consistent with the WNV circulation among animals and vectors. Moreover, the implementation of preventive measures for WNV transmission through blood components allowed the detection of blood donors positive for WNV, avoiding the further spread of the disease. Since surveillance strategies and preventive measures are based on the integration among human, animal and vector control activities, the Italian experience could be considered a good example of collaboration among different sectors of public health in a “one health” perspective. PMID:24351740

  19. A Model Framework to Estimate Impact and Cost of Genetics-Based Sterile Insect Methods for Dengue Vector Control

    PubMed Central

    Alphey, Nina; Alphey, Luke; Bonsall, Michael B.

    2011-01-01

    Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US$ 2∼30 per case averted) than the direct and indirect costs of disease (mean US$ 86–190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions. PMID:21998654

  20. Development and Application of Modern Optimal Controllers for a Membrane Structure Using Vector Second Order Form

    NASA Astrophysics Data System (ADS)

    Ferhat, Ipar

    With increasing advancement in material science and computational power of current computers that allows us to analyze high dimensional systems, very light and large structures are being designed and built for aerospace applications. One example is a reflector of a space telescope that is made of membrane structures. These reflectors are light and foldable which makes the shipment easy and cheaper unlike traditional reflectors made of glass or other heavy materials. However, one of the disadvantages of membranes is that they are very sensitive to external changes, such as thermal load or maneuvering of the space telescope. These effects create vibrations that dramatically affect the performance of the reflector. To overcome vibrations in membranes, in this work, piezoelectric actuators are used to develop distributed controllers for membranes. These actuators generate bending effects to suppress the vibration. The actuators attached to a membrane are relatively thick which makes the system heterogeneous; thus, an analytical solution cannot be obtained to solve the partial differential equation of the system. Therefore, the Finite Element Model is applied to obtain an approximate solution for the membrane actuator system. Another difficulty that arises with very flexible large structures is the dimension of the discretized system. To obtain an accurate result, the system needs to be discretized using smaller segments which makes the dimension of the system very high. This issue will persist as long as the improving technology will allow increasingly complex and large systems to be designed and built. To deal with this difficulty, the analysis of the system and controller development to suppress the vibration are carried out using vector second order form as an alternative to vector first order form. In vector second order form, the number of equations that need to be solved are half of the number equations in vector first order form. Analyzing the system for control characteristics such as stability, controllability and observability is a key step that needs to be carried out before developing a controller. This analysis determines what kind of system is being modeled and the appropriate approach for controller development. Therefore, accuracy of the system analysis is very crucial. The results of the system analysis using vector second order form and vector first order form show the computational advantages of using vector second order form. Using similar concepts, LQR and LQG controllers, that are developed to suppress the vibration, are derived using vector second order form. To develop a controller using vector second order form, two different approaches are used. One is reducing the size of the Algebraic Riccati Equation to half by partitioning the solution matrix. The other approach is using the Hamiltonian method directly in vector second order form. Controllers are developed using both approaches and compared to each other. Some simple solutions for special cases are derived for vector second order form using the reduced Algebraic Riccati Equation. The advantages and drawbacks of both approaches are explained through examples. System analysis and controller applications are carried out for a square membrane system with four actuators. Two different systems with different actuator locations are analyzed. One system has the actuators at the corners of the membrane, the other has the actuators away from the corners. The structural and control effect of actuator locations are demonstrated with mode shapes and simulations. The results of the controller applications and the comparison of the vector first order form with the vector second order form demonstrate the efficacy of the controllers.

  1. Attacking the mosquito on multiple fronts: Insights from the Vector Control Optimization Model (VCOM) for malaria elimination.

    PubMed

    Kiware, Samson S; Chitnis, Nakul; Tatarsky, Allison; Wu, Sean; Castellanos, Héctor Manuel Sánchez; Gosling, Roly; Smith, David; Marshall, John M

    2017-01-01

    Despite great achievements by insecticide-treated nets (ITNs) and indoor residual spraying (IRS) in reducing malaria transmission, it is unlikely these tools will be sufficient to eliminate malaria transmission on their own in many settings today. Fortunately, field experiments indicate that there are many promising vector control interventions that can be used to complement ITNs and/or IRS by targeting a wide range of biological and environmental mosquito resources. The majority of these experiments were performed to test a single vector control intervention in isolation; however, there is growing evidence and consensus that effective vector control with the goal of malaria elimination will require a combination of interventions. We have developed a model of mosquito population dynamic to describe the mosquito life and feeding cycles and to optimize the impact of vector control intervention combinations at suppressing mosquito populations. The model simulations were performed for the main three malaria vectors in sub-Saharan Africa, Anopheles gambiae s.s, An. arabiensis and An. funestus. We considered areas having low, moderate and high malaria transmission, corresponding to entomological inoculation rates of 10, 50 and 100 infective bites per person per year, respectively. In all settings, we considered baseline ITN coverage of 50% or 80% in addition to a range of other vector control tools to interrupt malaria transmission. The model was used to sweep through parameters space to select the best optimal intervention packages. Sample model simulations indicate that, starting with ITNs at a coverage of 50% (An. gambiae s.s. and An. funestus) or 80% (An. arabiensis) and adding interventions that do not require human participation (e.g. larviciding at 80% coverage, endectocide treated cattle at 50% coverage and attractive toxic sugar baits at 50% coverage) may be sufficient to suppress all the three species to an extent required to achieve local malaria elimination. The Vector Control Optimization Model (VCOM) is a computational tool to predict the impact of combined vector control interventions at the mosquito population level in a range of eco-epidemiological settings. The model predicts specific combinations of vector control tools to achieve local malaria elimination in a range of eco-epidemiological settings and can assist researchers and program decision-makers on the design of experimental or operational research to test vector control interventions. A corresponding graphical user interface is available for national malaria control programs and other end users.

  2. The use of laterally vectored thrust to counter thrust asymmetry in a tactical jet aircraft

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A nonlinear, six degree-of-freedom flight simulator for a twin engine tactical jet was built on a hybrid computer to investigate lateral vectoring of the remaining thrust component for the case of a single engine failure at low dynamic pressures. Aircraft control was provided by an automatic controller rather than a pilot, and thrust vector control was provided by an open-loop controller that deflected a vane (located on the periphery of each exhaust jet and normally streamlined for noninterference with the flow). Lateral thrust vectoring decreased peak values of lateral control deflections, eliminated the requirement for steady-state lateral aerodynamic control deflections, and decreased the amount of altitude lost for a single engine failure.

  3. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part II

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji

    This paper presents a new unified analysis of estimate errors by model-matching extended-back-EMF estimation methods for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using model-matching extended-back-EMF estimation methods.

  4. Trypanosoma cruzi and Chagas' Disease in the United States

    PubMed Central

    Bern, Caryn; Kjos, Sonia; Yabsley, Michael J.; Montgomery, Susan P.

    2011-01-01

    Summary: Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and causes potentially life-threatening disease of the heart and gastrointestinal tract. The southern half of the United States contains enzootic cycles of T. cruzi, involving 11 recognized triatomine vector species. The greatest vector diversity and density occur in the western United States, where woodrats are the most common reservoir; other rodents, raccoons, skunks, and coyotes are also infected with T. cruzi. In the eastern United States, the prevalence of T. cruzi is highest in raccoons, opossums, armadillos, and skunks. A total of 7 autochthonous vector-borne human infections have been reported in Texas, California, Tennessee, and Louisiana; many others are thought to go unrecognized. Nevertheless, most T. cruzi-infected individuals in the United States are immigrants from areas of endemicity in Latin America. Seven transfusion-associated and 6 organ donor-derived T. cruzi infections have been documented in the United States and Canada. As improved control of vector- and blood-borne T. cruzi transmission decreases the burden in countries where the disease is historically endemic and imported Chagas' disease is increasingly recognized outside Latin America, the United States can play an important role in addressing the altered epidemiology of Chagas' disease in the 21st century. PMID:21976603

  5. Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands.

    PubMed

    Russell, Tanya L; Burkot, Thomas R; Bugoro, Hugo; Apairamo, Allan; Beebe, Nigel W; Chow, Weng K; Cooper, Robert D; Collins, Frank H; Lobo, Neil F

    2016-03-15

    There is an urgent need for vector control tools to supplement long-lasting insecticidal nets (LLINs) and indoor residual spraying; particularly in the Solomon Islands where the primary vector, Anopheles farauti, is highly anthropophagic and feeds mainly outdoors and early in the evening. Currently, the only supplementary tool recommended by the World Health Organization is larval source management (LSM). The feasibility and potential effectiveness of LSM requires information on the distribution of anophelines, the productivity of larval habitats and the potential impacts of larval control on adult fitness. The distribution of anophelines in Central and Western Provinces in the Solomon Islands was mapped from cross-sectional larval habitat surveys. The composition and micro-distribution of larval instars within a large permanent river-mouth lagoon was examined with a longitudinal survey. Density-dependent regulation of An. farauti larvae was investigated by longitudinally following the development and survival of different densities of first instars in floating cages in a river-mouth lagoon. Five anopheline species were molecularly identified from a range of fresh and brackish water habitats: An. farauti s.s., An. hinesorum, An. lungae, An. nataliae and An. solomonis. The most common habitats used by the primary malaria vector, An. farauti, were coastal lagoons and swamps. In the detailed study of lagoon micro-productivity, An. farauti was non-uniformly distributed with highest densities found at collections sites most proximal and distal to the mouth of the lagoon. The survival of An. farauti larvae was more than twofold lower when larvae were held at the highest experimental density (1 larva per 3.8 cm(2)) when compared with the lowest density (1 larva per 38 cm(2)). The only documented major malaria vector collected in larval surveys in both Central and Western Provinces was An. farauti. Lagoons and swamps, the most common, largest and (potentially) most productive larval sites of this malaria vector, were "few, fixed and findable" and theoretically, therefore, amenable to successful LSM. However, the immense scale and complexity of these ecosystems in which An. farauti larvae are found raises questions regarding the ability to effectively control the larvae, as incomplete larviciding could trigger density dependent effects resulting in increased larval survivorship. While LSM has the potential to significantly contribute to malaria control of this early and outdoor biting vector, more information on the distribution of larvae within these extensive habitats is required to maximize the effectiveness of LSM.

  6. Repelling mosquitoes with essential oils

    NASA Astrophysics Data System (ADS)

    Riley, L.

    2017-12-01

    Mosquitoes carry diseases than can lead to serious illness and death. According to the World Health Organization, mosquitoes infect over 300 million people a year with Malaria and Dengue Fever, two life threatening diseases vectored by mosquitoes. Although insecticides are the most effective way to control mosquitoes, they are not always environmentally friendly. Therefore, alternative tactics should be considered. In this study, we looked at the repellency of various essential oils on female Aedes aegypti through a series of laboratory assays.

  7. Tick-borne infections in human and animal population worldwide

    PubMed Central

    Brites-Neto, José; Duarte, Keila Maria Roncato; Martins, Thiago Fernandes

    2015-01-01

    The abundance and activity of ectoparasites and its hosts are affected by various abiotic factors, such as climate and other organisms (predators, pathogens and competitors) presenting thus multiples forms of association (obligate to facultative, permanent to intermittent and superficial to subcutaneous) developed during long co-evolving processes. Ticks are ectoparasites widespread globally and its eco epidemiology are closely related to the environmental conditions. They are obligatory hematophagous ectoparasites and responsible as vectors or reservoirs at the transmission of pathogenic fungi, protozoa, viruses, rickettsia and others bacteria during their feeding process on the hosts. Ticks constitute the second vector group that transmit the major number of pathogens to humans and play a role primary for animals in the process of diseases transmission. Many studies on bioecology of ticks, considering the information related to their population dynamics, to the host and the environment, comes possible the application and efficiency of tick control measures in the prevention programs of vector-borne diseases. In this review were considered some taxonomic, morphological, epidemiological and clinical fundamental aspects related to the tick-borne infections that affect human and animal populations. PMID:27047089

  8. Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities.

    PubMed

    Mendenhall, Ian H; Manuel, Menchie; Moorthy, Mahesh; Lee, Theodore T M; Low, Dolyce H W; Missé, Dorothée; Gubler, Duane J; Ellis, Brett R; Ooi, Eng Eong; Pompon, Julien

    2017-06-01

    Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore's vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.

  9. Engineering species-like barriers to sexual reproduction.

    PubMed

    Maselko, Maciej; Heinsch, Stephen C; Chacón, Jeremy M; Harcombe, William R; Smanski, Michael J

    2017-10-12

    Controlling the exchange of genetic information between sexually reproducing populations has applications in agriculture, eradication of disease vectors, control of invasive species, and the safe study of emerging biotechnology applications. Here we introduce an approach to engineer a genetic barrier to sexual reproduction between otherwise compatible populations. Programmable transcription factors drive lethal gene expression in hybrid offspring following undesired mating events. As a proof of concept, we target the ACT1 promoter of the model organism Saccharomyces cerevisiae using a dCas9-based transcriptional activator. Lethal overexpression of actin results from mating this engineered strain with a strain containing the wild-type ACT1 promoter.Genetic isolation of a genetically modified organism represents a useful strategy for biocontainment. Here the authors use dCas9-VP64-driven gene expression to construct a 'species-like' barrier to reproduction between two otherwise compatible populations.

  10. Insecticide Control of Vector-Borne Diseases: When Is Insecticide Resistance a Problem?

    PubMed Central

    Rivero, Ana; Vézilier, Julien; Weill, Mylène; Read, Andrew F.; Gandon, Sylvain

    2010-01-01

    Many of the most dangerous human diseases are transmitted by insect vectors. After decades of repeated insecticide use, all of these vector species have demonstrated the capacity to evolve resistance to insecticides. Insecticide resistance is generally considered to undermine control of vector-transmitted diseases because it increases the number of vectors that survive the insecticide treatment. Disease control failure, however, need not follow from vector control failure. Here, we review evidence that insecticide resistance may have an impact on the quality of vectors and, specifically, on three key determinants of parasite transmission: vector longevity, competence, and behaviour. We argue that, in some instances, insecticide resistance is likely to result in a decrease in vector longevity, a decrease in infectiousness, or in a change in behaviour, all of which will reduce the vectorial capacity of the insect. If this effect is sufficiently large, the impact of insecticide resistance on disease management may not be as detrimental as previously thought. In other instances, however, insecticide resistance may have the opposite effect, increasing the insect's vectorial capacity, which may lead to a dramatic increase in the transmission of the disease and even to a higher prevalence than in the absence of insecticides. Either way—and there may be no simple generality—the consequence of the evolution of insecticide resistance for disease ecology deserves additional attention. PMID:20700451

  11. Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Naresh Kumar, Arjunan; Vincent, Savariar; Hwang, Jiang-Shiou

    2012-02-01

    The present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C. papaya leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder (500 g) of the leaf was extracted with 1.5 l of organic solvents of methanol for 8 h using a Soxhlet apparatus and then filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; however, the highest larval and pupal mortality was found in the leaf extract of methanol C. papaya against the first- to fourth-instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 440.65 ppm, respectively, and bacterial insecticide, spinosad against the first to fourth instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 93.44 ppm, respectively. Moreover, combined treatment of values of LC(50) = I instar was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar was 92.78 ppm, and pupae was 107.62 ppm, respectively. No mortality was observed in the control. The results that the leaves extract of C. papaya and bacterial insecticide, Spinosad is promising as good larvicidal and pupicidal properties of against chikungunya vector, A. aegypti. This is an ideal eco-friendly approach for the control of chikungunya vector, A. aegypti as target species of vector control programs.

  12. Meta-analysis of studies on chemical, physical and biological agents in the control of Aedes aegypti.

    PubMed

    Lima, Estelita Pereira; Goulart, Marília Oliveira Fonseca; Rolim Neto, Modesto Leite

    2015-09-04

    Aedes aegypti is a vector of international concern because it can transmit to humans three important arboviral diseases: yellow fever, dengue and chikungunya. Epidemics that are repeated year after year in a variety of urban centers indicate that there are control failures, allowing the vector to continue expanding. To identify the most effective vector control strategies and the factors that contributed to the success or failure of each strategy, we carried out a systematic review with meta-analysis of articles published in 12 databases, from 1974 to the month of December 2013. We evaluated the association between the use of whatever chemical substance, mechanical agent, biological or integrated actions against A. aegypti and the control of the vector, as measured by 10 indicators. We found 2,791 articles, but after careful selection, only 26 studies remained for analysis related to control interventions implemented in 15 countries, with 5 biological, 5 chemical, 3 mechanical and 13 integrated strategies. The comparison among all of them, indicated that the control of A. aegypti is significantly associated with the type of strategy used, and that integrated interventions consist of the most effective method for controlling A. aegypti. The most effective control method was the integrated approach, considering the influence of eco-bio-social determinants in the virus-vector-man epidemiological chain, and community involvement, starting with community empowerment as active agents of vector control.

  13. Robust model predictive control for satellite formation keeping with eccentricity/inclination vector separation

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Jung, Youeyun; Bang, Hyochoong

    2018-05-01

    This study presents model predictive formation control based on an eccentricity/inclination vector separation strategy. Alternative collision avoidance can be accomplished by using eccentricity/inclination vectors and adding a simple goal function term for optimization process. Real-time control is also achievable with model predictive controller based on convex formulation. Constraint-tightening approach is address as well improve robustness of the controller, and simulation results are presented to verify performance enhancement for the proposed approach.

  14. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  15. Direct model-based predictive control scheme without cost function for voltage source inverters with reduced common-mode voltage

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin

    2018-04-01

    This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.

  16. Launching the first postgraduate diploma in medical entomology and disease vector control in Pakistan.

    PubMed

    Rathor, H R; Mnzava, A; Bile, K M; Hafeez, A; Zaman, S

    2010-01-01

    The Health Services Academy has launched a 12-month postgraduate diploma course in medical entomology and disease vector control. The objective is to create a core of experts trained to prevent and control vector-borne diseases. The course is a response to the serious health and socioeconomic burden caused by a number of vector-borne diseases in Pakistan. The persistence, emergence and re-emergence of these diseases is mainly attributed to the scarcity of trained vector-control experts. The training course attempts to fill the gap in trained manpower and thus reduce the morbidity and mortality due to these diseases, resulting in incremental gains to public health. This paper aims to outline the steps taken to establish the course and the perceived challenges to be addressed in order to sustain its future implementation.

  17. The impact of insecticide-treated material to reduce flies among pork outlets in Kampala, Uganda.

    PubMed

    Heilmann, Martin; Roesel, Kristina; Grace, Delia; Bauer, Burkhard; Clausen, Peter-Henning

    2017-06-01

    Synanthropic flies have adapted to the mass of decaying organic matter near human settlements. As such, they feed and breed on food, faeces and other organic material and are known vectors for various diseases. Many of these diseases are associated with food, and foodborne diseases are of growing concern in developing countries where human population and food consumption increase. This pilot study aims at investigating the impact of a novel application of insecticide-treated material (ZeroFly®) to reduce flies among pork outlets in Kampala, Uganda. A cross-sectional survey randomly selected 60 of 179 pork outlets in Kampala. A controlled longitudinal trial followed in which 23 out of the 60 pork outlets were recruited for an intervention with insecticide-treated material. The pork outlets were randomly allocated to a group of 18 netted pork outlets (intervention) and five non-netted pork outlets (control). Monitoring took place over 15 weeks including 2 weeks as the baseline survey. The units were monitored for fly abundance using non-attractant sticky traps, which were placed within the pork outlet once per week for 48 consecutive hours. Medians of fly numbers before and after the intervention indicated a decrease of fly numbers of 48% (p = 0.002). Fly bioassays showed that the insecticidal activity of the netting remained active over the entire intervention period and led to a total paralysis of flies within at least 6 h after exposure. Insecticide-treated material provides a practical and sustainable solution in controlling flies and is therefore recommended as a complementary strategy for an integrated vector control and hygiene management.

  18. Dynamic Forms. Part 1: Functions

    NASA Technical Reports Server (NTRS)

    Meyer, George; Smith, G. Allan

    1993-01-01

    The formalism of dynamic forms is developed as a means for organizing and systematizing the design control systems. The formalism allows the designer to easily compute derivatives to various orders of large composite functions that occur in flight-control design. Such functions involve many function-of-a-function calls that may be nested to many levels. The component functions may be multiaxis, nonlinear, and they may include rotation transformations. A dynamic form is defined as a variable together with its time derivatives up to some fixed but arbitrary order. The variable may be a scalar, a vector, a matrix, a direction cosine matrix, Euler angles, or Euler parameters. Algorithms for standard elementary functions and operations of scalar dynamic forms are developed first. Then vector and matrix operations and transformations between parameterization of rotations are developed in the next level in the hierarchy. Commonly occurring algorithms in control-system design, including inversion of pure feedback systems, are developed in the third level. A large-angle, three-axis attitude servo and other examples are included to illustrate the effectiveness of the developed formalism. All algorithms were implemented in FORTRAN code. Practical experience shows that the proposed formalism may significantly improve the productivity of the design and coding process.

  19. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...

  20. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...

  1. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...

  2. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...

  3. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...

  4. Rule-Based Design of Plant Expression Vectors Using GenoCAD.

    PubMed

    Coll, Anna; Wilson, Mandy L; Gruden, Kristina; Peccoud, Jean

    2015-01-01

    Plant synthetic biology requires software tools to assist on the design of complex multi-genic expression plasmids. Here a vector design strategy to express genes in plants is formalized and implemented as a grammar in GenoCAD, a Computer-Aided Design software for synthetic biology. It includes a library of plant biological parts organized in structural categories and a set of rules describing how to assemble these parts into large constructs. Rules developed here are organized and divided into three main subsections according to the aim of the final construct: protein localization studies, promoter analysis and protein-protein interaction experiments. The GenoCAD plant grammar guides the user through the design while allowing users to customize vectors according to their needs. Therefore the plant grammar implemented in GenoCAD will help plant biologists take advantage of methods from synthetic biology to design expression vectors supporting their research projects.

  5. Optimization of Control Strategies for Non-Domiciliated Triatoma dimidiata, Chagas Disease Vector in the Yucatán Peninsula, Mexico

    PubMed Central

    Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien

    2009-01-01

    Background Chagas disease is the most important vector-borne disease in Latin America. Regional initiatives based on residual insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is now a key challenge for disease control. Methodology/Principal Findings A mathematical model was developed to predict the temporal variations in abundance of non-domiciliated vectors inside houses. Demographic parameters were estimated by fitting the model to two years of field data from the Yucatan peninsula, Mexico. The predictive value of the model was tested on an independent data set before simulations examined the efficacy of control strategies based on residual insecticide spraying, insect screens, and bednets. The model accurately fitted and predicted field data in the absence and presence of insecticide spraying. Pyrethroid spraying was found effective when 50 mg/m2 were applied yearly within a two-month period matching the immigration season. The >80% reduction in bug abundance was not improved by larger doses or more frequent interventions, and it decreased drastically for different timing and lower frequencies of intervention. Alternatively, the use of insect screens consistently reduced bug abundance proportionally to the reduction of the vector immigration rate. Conclusion/Significance Control of non-domiciliated vectors can hardly be achieved by insecticide spraying, because it would require yearly application and an accurate understanding of the temporal pattern of immigration. Insect screens appear to offer an effective and sustainable alternative, which may be part of multi-disease interventions for the integrated control of neglected vector-borne diseases. PMID:19365542

  6. A cross-sectional survey of Aedes aegypti immature abundance in urban and rural household containers in central Colombia.

    PubMed

    Overgaard, Hans J; Olano, Víctor Alberto; Jaramillo, Juan Felipe; Matiz, María Inés; Sarmiento, Diana; Stenström, Thor Axel; Alexander, Neal

    2017-07-27

    Aedes aegypti, the major vector of dengue, breeds in domestic water containers. The development of immature mosquitoes in such containers is influenced by various environmental, ecological and socioeconomic factors. Urban and rural disparities in water storage practices and water source supply may affect mosquito immature abundance and, potentially, dengue risk. We evaluated the effect of water and container characteristics on A. aegypti immature abundance in urban and rural areas. Data were collected in the wet season of 2011 in central Colombia from 36 urban and 35 rural containers, which were either mosquito-positive or negative. Immature mosquitoes were identified to species. Data on water and container characteristics were collected from all containers. A total of 1452 Aedes pupae and larvae were collected of which 81% were A. aegypti and 19% A. fluviatilis. Aedes aegypti immatures were found in both urban and rural sites. However, the mean number of A. aegypti pupae was five times higher in containers in the urban sites compared to those in the rural sites. One of the important factors associated with A. aegypti infestation was frequency of container washing. Monthly-washed or never-washed containers were both about four times more likely to be infested than those washed every week. There were no significant differences between urban and rural sites in frequency of washing containers. Aedes aegypti immature infestation was positively associated with total dissolved solids, but negatively associated with dissolved oxygen. Water temperature, total dissolved solids, ammonia, nitrate, and organic matter were significantly higher in urban than in rural containers, which might explain urban-rural differences in breeding of A. aegypti. However, many of these factors vary substantially between studies and in their degree of association with vector breeding, therefore they may not be reliable indices for vector control interventions. Although containers in urban areas were more likely to be infested with A. aegypti, rural containers still provide suitable habitats for A. aegypti. Containers that are washed more frequent are less likely to produce A. aegypti. These results highlight the importance of container washing as an effective vector control tool in both urban and rural areas. In addition, alternative designs of the highly productive washbasins should continue to be explored. To control diseases such as dengue, Zika and chikungunya, effective vector breeding site control must be implemented in addition to other interventions.

  7. Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species.

    PubMed

    Rashidi, Mahnaz; Galetto, Luciana; Bosco, Domenico; Bulgarelli, Andrea; Vallino, Marta; Veratti, Flavio; Marzachì, Cristina

    2015-09-30

    Phytoplasmas are bacterial plant pathogens (class Mollicutes), transmitted by phloem feeding leafhoppers, planthoppers and psyllids in a persistent/propagative manner. Transmission of phytoplasmas is under the control of behavioral, environmental and geographical factors, but molecular interactions between membrane proteins of phytoplasma and vectors may also be involved. The aim of the work was to provide experimental evidence that in vivo interaction between phytoplasma antigenic membrane protein (Amp) and vector proteins has a role in the transmission process. In doing so, we also investigated the topology of the interaction at the gut epithelium and at the salivary glands, the two barriers encountered by the phytoplasma during vector colonization. Experiments were performed on the 'Candidatus Phytoplasma asteris' chrysanthemum yellows strain (CYP), and the two leafhopper vectors Macrosteles quadripunctulatus Kirschbaum and Euscelidius variegatus Kirschbaum. To specifically address the interaction of CYP Amp at the gut epithelium barrier, insects were artificially fed with media containing either the recombinant phytoplasma protein Amp, or the antibody (A416) or both, and transmission, acquisition and inoculation efficiencies were measured. An abdominal microinjection protocol was employed to specifically address the interaction of CYP Amp at the salivary gland barrier. Phytoplasma suspension was added with Amp or A416 or both, injected into healthy E. variegatus adults and then infection and inoculation efficiencies were measured. An internalization assay was developed, consisting of dissected salivary glands from healthy E. variegatus exposed to phytoplasma suspension alone or together with A416 antibody. The organs were then either observed in confocal microscopy or subjected to DNA extraction and phytoplasma quantification by qPCR, to visualize and quantify possible differences among treatments in localization/presence/number of CYP cells. Artificial feeding and abdominal microinjection protocols were developed to address the two barriers separately. The in vivo interactions between Amp of 'Candidatus Phytoplasma asteris' Chrysanthemum yellows strain (CYP) and vector proteins were studied by evaluating their effects on phytoplasma transmission by Euscelidius variegatus and Macrosteles quadripunctulatus leafhoppers. An internalization assay was developed, consisting of dissected salivary glands from healthy E. variegatus exposed to phytoplasma suspension alone or together with anti-Amp antibody. To visualize possible differences among treatments in localization/presence of CYP cells, the organs were observed in confocal microscopy. Pre-feeding of E. variegatus and M. quadripunctulatus on anti-Amp antibody resulted in a significant decrease of acquisition efficiencies in both species. Inoculation efficiency of microinjected E. variegatus with CYP suspension and anti-Amp antibody was significantly reduced compared to that of the control with phytoplasma suspension only. The possibility that this was due to reduced infection efficiency or antibody-mediated inhibition of phytoplasma multiplication was ruled out. These results provided the first indirect proof of the role of Amp in the transmission process. Protocols were developed to assess the in vivo role of the phytoplasma native major antigenic membrane protein in two phases of the vector transmission process: movement through the midgut epithelium and colonization of the salivary glands. These methods will be useful also to characterize other phytoplasma-vector combinations. Results indicated for the first time that native CYP Amp is involved in vivo in specific crossing of the gut epithelium and salivary gland colonization during early phases of vector infection.

  8. Socio-economic inequity in demand for insecticide-treated nets, in-door residual house spraying, larviciding and fogging in Sudan.

    PubMed

    Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham

    2005-12-15

    In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements.

  9. Neurophysiological Study of Vector Responses to Repellents.

    DTIC Science & Technology

    1980-08-01

    vector organisms and of the relationship between the physiologic condition of the organisms and the generation and trans- mission of sensory... hemolymph space at the tip of the antenna and connected to ground. A similar recording electrode was inserted through the cuticle at the base of a...pieces of filter paper of uniform size and placed them in glass tubes, through which the airstream was passed, rather than in the gas bubbler flask

  10. Strengthening tactical planning and operational frameworks for vector control: the roadmap for malaria elimination in Namibia.

    PubMed

    Chanda, Emmanuel; Ameneshewa, Birkinesh; Angula, Hans A; Iitula, Iitula; Uusiku, Pentrina; Trune, Desta; Islam, Quazi M; Govere, John M

    2015-08-05

    Namibia has made tremendous gains in malaria control and the epidemiological trend of the disease has changed significantly over the past years. In 2010, the country reoriented from the objective of reducing disease morbidity and mortality to the goal of achieving malaria elimination by 2020. This manuscript outlines the processes undertaken in strengthening tactical planning and operational frameworks for vector control to facilitate expeditious malaria elimination in Namibia. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Namibia. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. To attain the goal of elimination in Namibia, systems are being strengthened to identify and clear all infections, and significantly reduce human-mosquito contact. Particularly, consolidating vector control for reducing transmission at the identified malaria foci will be critical for accelerated malaria elimination. Thus, guarding against potential challenges and the need for evidence-based and sustainable vector control instigated the strengthening of strategic frameworks by: adopting the integrated vector management (IVM) strategy; initiating implementation of the global plan for insecticide resistance management (GPIRM); intensifying malaria vector surveillance; improving data collection and reporting systems on DDT; updating the indoor residual spraying (IRS) data collection and reporting tool; and, improving geographical reconnaissance using geographical information system-based satellite imagery. Universal coverage with IRS and long-lasting insecticidal nets, supplemented by larval source management in the context of IVM and guided by vector surveillance coupled with rational operationalization of the GPIRM, will enable expeditious attainment of elimination in Namibia. However, national capacity to plan, implement, monitor and evaluate interventions will require adequate and sustained support for technical, physical infrastructure, and human and financial resources for entomology and vector control operations.

  11. Classification of a set of vectors using self-organizing map- and rule-based technique

    NASA Astrophysics Data System (ADS)

    Ae, Tadashi; Okaniwa, Kaishirou; Nosaka, Kenzaburou

    2005-02-01

    There exist various objects, such as pictures, music, texts, etc., around our environment. We have a view for these objects by looking, reading or listening. Our view is concerned with our behaviors deeply, and is very important to understand our behaviors. We have a view for an object, and decide the next action (data selection, etc.) with our view. Such a series of actions constructs a sequence. Therefore, we propose a method which acquires a view as a vector from several words for a view, and apply the vector to sequence generation. We focus on sequences of the data of which a user selects from a multimedia database containing pictures, music, movie, etc... These data cannot be stereotyped because user's view for them changes by each user. Therefore, we represent the structure of the multimedia database as the vector representing user's view and the stereotyped vector, and acquire sequences containing the structure as elements. Such a vector can be classified by SOM (Self-Organizing Map). Hidden Markov Model (HMM) is a method to generate sequences. Therefore, we use HMM of which a state corresponds to the representative vector of user's view, and acquire sequences containing the change of user's view. We call it Vector-state Markov Model (VMM). We introduce the rough set theory as a rule-base technique, which plays a role of classifying the sets of data such as the sets of "Tour".

  12. Management of arthropod pathogen vectors in North America: Minimizing adverse effects on pollinators

    USGS Publications Warehouse

    Ginsberg, Howard; Bargar, Timothy A.; Hladik, Michelle L.; Lubelczyk, Charles

    2017-01-01

    Tick and mosquito management is important to public health protection. At the same time, growing concerns about declines of pollinator species raise the question of whether vector control practices might affect pollinator populations. We report the results of a task force of the North American Pollinator Protection Campaign (NAPPC) that examined potential effects of vector management practices on pollinators, and how these programs could be adjusted to minimize negative effects on pollinating species. The main types of vector control practices that might affect pollinators are landscape manipulation, biocontrol, and pesticide applications. Some current practices already minimize effects of vector control on pollinators (e.g., short-lived pesticides and application-targeting technologies). Nontarget effects can be further diminished by taking pollinator protection into account in the planning stages of vector management programs. Effects of vector control on pollinator species often depend on specific local conditions (e.g., proximity of locations with abundant vectors to concentrations of floral resources), so planning is most effective when it includes collaborations of local vector management professionals with local experts on pollinators. Interventions can then be designed to avoid pollinators (e.g., targeting applications to avoid blooming times and pollinator nesting habitats), while still optimizing public health protection. Research on efficient targeting of interventions, and on effects on pollinators of emerging technologies, will help mitigate potential deleterious effects on pollinators in future management programs. In particular, models that can predict effects of integrated pest management on vector-borne pathogen transmission, along with effects on pollinator populations, would be useful for collaborative decision-making.

  13. Ecotope-Based Entomological Surveillance and Molecular Xenomonitoring of Multidrug Resistant Malaria Parasites in Anopheles Vectors

    PubMed Central

    2014-01-01

    The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria parasites in hotspots or suspected areas established in most endemic GMS countries implementing the National Malaria Control Programs, in addition to what is guided by the World Health Organization. PMID:25349605

  14. Conceptual framework and rationale

    PubMed Central

    Robinson, Alan S; Knols, Bart GJ; Voigt, Gabriella; Hendrichs, Jorge

    2009-01-01

    The sterile insect technique (SIT) has been shown to be an effective and sustainable genetic approach to control populations of selected major pest insects, when part of area-wide integrated pest management (AW-IPM) programmes. The technique introduces genetic sterility in females of the target population in the field following their mating with released sterile males. This process results in population reduction or elimination via embryo lethality caused by dominant lethal mutations induced in sperm of the released males. In the past, several field trials have been carried out for mosquitoes with varying degrees of success. New technology and experience gained with other species of insect pests has encouraged a reassessment of the use of the sterility principle as part of integrated control of malaria vectors. Significant technical and logistic hurdles will need to be overcome to develop the technology and make it effective to suppress selected vector populations, and its application will probably be limited to specific ecological situations. Using sterile males to control mosquito vector populations can only be effective as part of an AW-IPM programme. The area-wide concept entails the targeting of the total mosquito population within a defined area. It requires, therefore, a thorough understanding of the target pest population biology especially as regards mating behaviour, population dynamics, dispersal and level of reproductive isolation. The key challenges for success are: 1) devising methods to monitor vector populations and measuring competitiveness of sterile males in the field, 2) designing mass rearing, sterilization and release strategies that maintain competitiveness of the sterile male mosquitoes, 3) developing methods to separate sexes in order to release only male mosquitoes and 4) adapting suppression measures and release rates to take into account the high reproductive rate of mosquitoes. Finally, success in area-wide implementation in the field can only be achieved if close attention is paid to political, socio-economic and environmental sensitivities and an efficient management organization is established taking into account the interests of all potential stakeholders of an AW-IPM programme. PMID:19917070

  15. Problem of ticks and tick-borne diseases in India with special emphasis on progress in tick control research: a review.

    PubMed

    Ghosh, Srikant; Nagar, Gaurav

    2014-12-01

    Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as vectors. The diseases spread by ticks are a major constraint to animal productivity while causing morbidity and mortality in both animals and humans. A number of tick species have been recognised since long as vectors of lethal pathogens, viz. Crimean-Congo haemorrhagic fever virus (CCHFV), Kyasanur forest disease virus (KFDV), Babesia spp, Theileria, Rickettsia conorii, Anaplasma marginale, etc. and the damages caused by them are well-recognised. There is a need to reassess the renewed threat posed by the tick vectors and to prioritize the tick control research programme. This review is focused on the major tick-borne human and animal diseases in India and the progress in vector control research with emphasis on acaricide resistance, tick vaccine and the development of potential phytoacaricides as an integral part of integrated tick control programme.

  16. Vector control of wind turbine on the basis of the fuzzy selective neural net*

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.

  17. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part I

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji; Sano, Kousuke

    This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.

  18. The Cost of Dengue Vector Control Activities in Malaysia by Different Service Providers.

    PubMed

    Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Venugopalan, B; Halasa, Yara A; Shepard, Donald S

    2015-11-01

    We examined variations in dengue vector control costs and resource consumption between the District Health Departments (DHDs) and Local Authorities (LAs) to assist informed decision making as to the future roles of these agencies in the delivery of dengue vector control services in Malaysia. Data were collected from the vector control units of DHDs and LAs in 8 selected districts. We captured costs and resource consumption in 2010 for premise inspection for mosquito breeding sites, fogging to destroy adult mosquitoes and larviciding of potential breeding sites. Overall, DHDs spent US$5.62 million or US$679 per case and LAs spent US$2.61 million or US$499 per case. The highest expenditure for both agencies was for fogging, 51.0% and 45.8% of costs for DHDs and LAs, respectively. The DHDs had higher resource costs for human personnel, vehicles, pesticides, and equipment. The findings provide some evidence to rationalize delivery of dengue vector control services in Malaysia. © 2015 APJPH.

  19. Efficacy of Two Common Methods of Application of Residual Insecticide for Controlling the Asian Tiger Mosquito, Aedes albopictus (Skuse), in Urban Areas.

    PubMed

    Marini, Lorenzo; Baseggio, Alberto; Drago, Andrea; Martini, Simone; Manella, Paolo; Romi, Roberto; Mazzon, Luca

    2015-01-01

    After its first introduction in the 1980's the Asian tiger mosquito, Aedes albopictus (Skuse), has spread throughout Southern Europe. Ae. albopictus is considered an epidemiologically important vector for the transmission of many viral pathogens such as the yellow fever virus, dengue fever and Chikungunya fever, as well as several filarial nematodes such as Dirofilaria immitis or D. repens. It is therefore crucial to develop measures to reduce the risks of disease transmission by controlling the vector populations. The aim of the study was to compare the efficacy of two application techniques (mist vs. stretcher sprayer) and two insecticides (Etox based on the nonester pyrethroid Etofenprox vs. Microsin based on the pyrethroid type II Cypermetrin) in controlling adult tiger mosquito populations in highly populated areas. To test the effect of the two treatments pre- and post-treatment human landing rate counts were conducted for two years. After one day from the treatment we observed a 100% population decrease in mosquito abundance with both application methods and both insecticides. However, seven and 14 days after the application the stretcher sprayer showed larger population reductions than the mist sprayer. No effect of insecticide type after one day and 14 days was found, while Etox caused slightly higher population reduction than Microsin after seven days. Emergency measures to locally reduce the vector populations should adopt adulticide treatments using stretcher sprayers. However, more research is still needed to evaluate the potential negative effects of adulticide applications on non-target organisms.

  20. Sustainability of vector control strategies in the Gran Chaco Region: current challenges and possible approaches

    PubMed Central

    Gürtler, Ricardo E

    2011-01-01

    Sustainability has become a focal point of the international agenda. At the heart of its range of distribution in the Gran Chaco Region, the elimination of Triatoma infestans has failed, even in areas subject to intensive professional vector control efforts. Chagas disease control programs traditionally have been composed of two divorced entities: a vector control program in charge of routine field operations (bug detection and insecticide spraying) and a disease control program in charge of screening blood donors, diagnosis, etiologic treatment and providing medical care to chronic patients. The challenge of sustainable suppression of bug infestation and Trypanosoma cruzi transmission can be met through integrated disease management, in which vector control is combined with active case detection and treatment to increase impact, cost-effectiveness and public acceptance in resource-limited settings. Multi-stakeholder involvement may add sustainability and resilience to the surveillance system. Chagas vector control and disease management must remain a regional effort within the frame of sustainable development rather than being viewed exclusively as a matter of health pertinent to the health sector. Sustained and continuous coordination between governments, agencies, control programs, academia and the affected communities is critical. PMID:19753458

  1. Flight-Determined Subsonic Longitudinal Stability and Control Derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1997-01-01

    The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.

  2. An optimal control strategies using vaccination and fogging in dengue fever transmission model

    NASA Astrophysics Data System (ADS)

    Fitria, Irma; Winarni, Pancahayani, Sigit; Subchan

    2017-08-01

    This paper discussed regarding a model and an optimal control problem of dengue fever transmission. We classified the model as human and vector (mosquito) population classes. For the human population, there are three subclasses, such as susceptible, infected, and resistant classes. Then, for the vector population, we divided it into wiggler, susceptible, and infected vector classes. Thus, the model consists of six dynamic equations. To minimize the number of dengue fever cases, we designed two optimal control variables in the model, the giving of fogging and vaccination. The objective function of this optimal control problem is to minimize the number of infected human population, the number of vector, and the cost of the controlling efforts. By giving the fogging optimally, the number of vector can be minimized. In this case, we considered the giving of vaccination as a control variable because it is one of the efforts that are being developed to reduce the spreading of dengue fever. We used Pontryagin Minimum Principle to solve the optimal control problem. Furthermore, the numerical simulation results are given to show the effect of the optimal control strategies in order to minimize the epidemic of dengue fever.

  3. Will integrated surveillance systems for vectors and vector-borne diseases be the future of controlling vector-borne diseases? A practical example from China.

    PubMed

    Wu, Y; Ling, F; Hou, J; Guo, S; Wang, J; Gong, Z

    2016-07-01

    Vector-borne diseases are one of the world's major public health threats and annually responsible for 30-50% of deaths reported to the national notifiable disease system in China. To control vector-borne diseases, a unified, effective and economic surveillance system is urgently needed; all of the current surveillance systems in China waste resources and/or information. Here, we review some current surveillance systems and present a concept for an integrated surveillance system combining existing vector and vector-borne disease monitoring systems. The integrated surveillance system has been tested in pilot programmes in China and led to a 21·6% cost saving in rodent-borne disease surveillance. We share some experiences gained from these programmes.

  4. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis.

    PubMed

    Sugio, Akiko; Kingdom, Heather N; MacLean, Allyson M; Grieve, Victoria M; Hogenhout, Saskia A

    2011-11-29

    Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect performance. Previously, we sequenced and mined the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) and identified 56 candidate effectors. Here, we report that the secreted AY-WB protein 11 (SAP11) effector modulates plant defense responses to the advantage of the AY-WB insect vector Macrosteles quadrilineatus. SAP11 binds and destabilizes Arabidopsis CINCINNATA (CIN)-related TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2 (TCP) transcription factors, which control plant development and promote the expression of lipoxygenase (LOX) genes involved in jasmonate (JA) synthesis. Both the Arabidopsis SAP11 lines and AY-WB-infected plants produce less JA on wounding. Furthermore, the AY-WB insect vector produces more offspring on AY-WB-infected plants, SAP11 transgenic lines, and plants impaired in CIN-TCP and JA synthesis. Thus, SAP11-mediated destabilization of CIN-TCPs leads to the down-regulation of LOX2 expression and JA synthesis and an increase in M. quadrilineatus progeny. Phytoplasmas are obligate inhabitants of their plant host and insect vectors, in which the latter transmits AY-WB to a diverse range of plant species. This finding demonstrates that pathogen effectors can reach beyond the pathogen-host interface to modulate a third organism in the biological interaction.

  5. Diagnostic Doses of Insecticides for Adult Aedes aegypti to Assess Insecticide Resistance in Cuba.

    PubMed

    Rodríguez, María Magdalena; Crespo, Ariel; Hurtado, Daymi; Fuentes, Ilario; Rey, Jorge; Bisset, Juan Andrés

    2017-06-01

    The objective of this study was to determine diagnostic doses (DDs) of 5 insecticides for the Rockefeller susceptible strain of Aedes aegypti , using the Centers for Disease Control and Prevention (CDC) bottle bioassay as a tool for monitoring insecticide resistance in the Cuban vector control program. The 30-min DD values determined in this study were 13.5 μg/ml, 6.5 μg/ml, 6 μg/ml, 90.0 μg/ml, and 15.0 μg/ml for cypermethrin, deltamethrin, lambda-cyhalothrin, chlorpyrifos, and propoxur, respectively. To compare the reliability of CDC bottle bioassay with the World Health Organization susceptible test, 3 insecticide-resistant strains were evaluated for deltamethrin and lambda-cyhalothrin. Results showed that the bottles can be used effectively from 21 to 25 days after treatment and reused up to 4 times, depending on the storage time. The CDC bottle bioassay is an effective tool to assess insecticide resistance in field populations of Ae. aegypti in Cuba and can be incorporated into vector management programs using the diagnostic doses determined in this study.

  6. Cholinergic alterations by exposure to pesticides used in control vector: Guppies fish (Poecilia reticulta) as biological model.

    PubMed

    Toledo-Ibarra, G A; Rodríguez-Sánchez, E J; Ventura-Ramón, H G; Díaz-Resendiz, K J G; Girón-Pérez, M I

    2018-02-01

    Spinosad and temephos are two of the most used pesticides in Mexico for the control of vector causing disease such as dengue, chikungunya and Zika. The aim of this study was to compare the neurotoxic effects of these two pesticides using guppy fish (Poecilia reticulata) as a model organism. Guppies were exposed for 7 and 21 days to technical grade temephos and spinosad at 1.0 and 0.07 g/L, respectively, (10 and 0.5 mg/L of active substance; concentrations recommended by the Ministery of Health of the State (Secretaría de Salud de Nayarit (SSN) Mexico)). Subsequently, acetylcholinesterase activity (AChE) and acetylcholine concentrations (ACh) in muscle tissue were determined. Temephos exposure decreased AChE activity and increased ACh concentration, whereas exposure to spinosad only increased ACh concentration. Though cholinergic alterations were more severe in fish exposed to temephos, both pesticides were equally lethal during the first seven days after exposure. Nonetheless, temephos was more lethal after 21 days.

  7. Implementation of a new fuzzy vector control of induction motor.

    PubMed

    Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2014-05-01

    The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Return of epidemic dengue in the United States: implications for the public health practitioner.

    PubMed

    Bouri, Nidhi; Sell, Tara Kirk; Franco, Crystal; Adalja, Amesh A; Henderson, D A; Hynes, Noreen A

    2012-01-01

    Conditions that facilitate sustained dengue transmission exist in the United States, and outbreaks have occurred during the past decade in Texas, Hawaii, and Florida. More outbreaks can also be expected in years to come. To combat dengue, medical and public health practitioners in areas with mosquito vectors that are competent to transmit the virus must be aware of the threat of reemergent dengue, and the need for early reporting and control to reduce the impact of dengue outbreaks. Comprehensive dengue control includes human and vector surveillance, vector management programs, and community engagement efforts. Public health, medical, and vector-control communities must collaborate to prevent and control disease spread. Policy makers should understand the role of mosquito abatement and community engagement in the prevention and control of the disease.

  9. Lack of Humoral Immune Response to the Tetracycline (Tet) Activator in Rats Injected Intracranially with Tet-off rAAV Vectors

    PubMed Central

    Han, Ye; Chang, Qin A.; Virag, Tamas; West, Neva C.; George, David; Castro, Maria G.; Bohn, Martha C.

    2010-01-01

    The ability to safely control transgene expression from viral vectors is a long-term goal in the gene therapy field. We have previously reported tight regulation of GFP expression in rat brain using a self-regulating tet-off rAAV vector. The immune responses against tet regulatory elements observed by other groups in nonhuman primates after intramuscular injection of tet-on encoding vectors raise concerns about the clinical value of tet-regulated vectors. However, previous studies have not examined immune responses following injection of AAV vectors into brain. Therefore, rat striatum was injected with tet-off rAAV harboring a therapeutic gene for Parkinson's disease, either hAADC or hGDNF. The expression of each gene was tightly controlled by the tet-off regulatory system. Using an ELISA developed with purified GST-tTA protein, no detectable immunogenicity against tTA was observed in sera of rats that received an intrastriatal injection of either vector. In contrast, sera from rats intradermally injected with an adenovirus containing either tTA or rtTA, as positive controls, had readily detectable antibodies. These observations suggest that tet-off rAAV vectors do not elicit an immune response when injected into rat brain and that these may offer safer vectors for Parkinson's disease than vectors with constitutive expression. PMID:20164859

  10. Experimental control of Triatoma infestans in poor rural villages of Bolivia through community participation.

    PubMed

    Lardeux, Frédéric; Depickère, Stéphanie; Aliaga, Claudia; Chavez, Tamara; Zambrana, Lilian

    2015-02-01

    Triatoma infestans is the main vector of Chagas disease in the southern cone countries. Present control strategies based on indoor and outdoor residual insecticide spraying are not sufficient to control disease transmission, particularly in Bolivia. Techniques based on the management of the human environment may be good alternatives or supplements. Social and entomological surveys were carried out in four villages of Bolivia situated in the dry inter-Andean Valleys and the Chaco region. Risk factors for house infestation by T. infestans were identified, and an eco-health intervention based on education and community participation was carried out to reduce the risks of house infestation. It consisted of implementing simple and low cost vector control techniques such as coating of mud walls, cleaning activities and removal of poultry that enter rooms to lay eggs. The eco-health intervention significantly reduced the number of infested bedrooms, the mean abundance of T. infestans in bedrooms and beds, especially in the Chaco region. Mud wall coating was well accepted and could be proposed as a supplementary tool to the National Program of Chagas Disease Control to enhance the effects of insecticide sprayings. Even if cleaning activities were still neglected, community participation proved to be effective in reducing house infestation. © The author 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  11. Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean

    PubMed Central

    Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto

    2015-01-01

    Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951

  12. Socio-economic inequity in demand for insecticide-treated nets, in-door residual house spraying, larviciding and fogging in Sudan

    PubMed Central

    Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham

    2005-01-01

    Background In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. Objectives To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Methods Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. Results IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. Conclusion People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements. PMID:16356177

  13. Transgenesis and paratransgenesis to control insect-borne diseases: Current status and future challenges

    PubMed Central

    Coutinho-Abreu, Iliano V.; Zhu, Kun Yan; Ramalho-Ortigao, Marcelo

    2009-01-01

    Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases. PMID:19819346

  14. Controlling Malaria Using Livestock-Based Interventions: A One Health Approach

    PubMed Central

    Franco, Ana O.; Gomes, M. Gabriela M.; Rowland, Mark; Coleman, Paul G.

    2014-01-01

    Where malaria is transmitted by zoophilic vectors, two types of malaria control strategies have been proposed based on animals: using livestock to divert vector biting from people (zooprophylaxis) or as baits to attract vectors to insecticide sources (insecticide-treated livestock). Opposing findings have been obtained on malaria zooprophylaxis, and despite the success of an insecticide-treated livestock trial in Pakistan, where malaria vectors are highly zoophilic, its effectiveness is yet to be formally tested in Africa where vectors are more anthropophilic. This study aims to clarify the different effects of livestock on malaria and to understand under what circumstances livestock-based interventions could play a role in malaria control programmes. This was explored by developing a mathematical model and combining it with data from Pakistan and Ethiopia. Consistent with previous work, a zooprophylactic effect of untreated livestock is predicted in two situations: if vector population density does not increase with livestock introduction, or if livestock numbers and availability to vectors are sufficiently high such that the increase in vector density is counteracted by the diversion of bites from humans to animals. Although, as expected, insecticide-treatment of livestock is predicted to be more beneficial in settings with highly zoophilic vectors, like South Asia, we find that the intervention could also considerably decrease malaria transmission in regions with more anthropophilic vectors, like Anopheles arabiensis in Africa, under specific circumstances: high treatment coverage of the livestock population, using a product with stronger or longer lasting insecticidal effect than in the Pakistan trial, and with small (ideally null) repellency effect, or if increasing the attractiveness of treated livestock to malaria vectors. The results suggest these are the most appropriate conditions for field testing insecticide-treated livestock in an Africa region with moderately zoophilic vectors, where this intervention could contribute to the integrated control of malaria and livestock diseases. PMID:25050703

  15. Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities

    PubMed Central

    Manuel, Menchie; Low, Dolyce H. W.; Missé, Dorothée; Gubler, Duane J.; Ellis, Brett R.; Ooi, Eng Eong; Pompon, Julien

    2017-01-01

    Background Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. Methods We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. Results We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Conclusions Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore’s vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management. PMID:28650959

  16. The neural network classification of false killer whale (Pseudorca crassidens) vocalizations.

    PubMed

    Murray, S O; Mercado, E; Roitblat, H L

    1998-12-01

    This study reports the use of unsupervised, self-organizing neural network to categorize the repertoire of false killer whale vocalizations. Self-organizing networks are capable of detecting patterns in their input and partitioning those patterns into categories without requiring that the number or types of categories be predefined. The inputs for the neural networks were two-dimensional characterization of false killer whale vocalization, where each vocalization was characterized by a sequence of short-time measurements of duty cycle and peak frequency. The first neural network used competitive learning, where units in a competitive layer distributed themselves to recognize frequently presented input vectors. This network resulted in classes representing typical patterns in the vocalizations. The second network was a Kohonen feature map which organized the outputs topologically, providing a graphical organization of pattern relationships. The networks performed well as measured by (1) the average correlation between the input vectors and the weight vectors for each category, and (2) the ability of the networks to classify novel vocalizations. The techniques used in this study could easily be applied to other species and facilitate the development of objective, comprehensive repertoire models.

  17. Initial preclinical safety of non-replicating human endogenous retrovirus envelope protein-coated baculovirus vector-based vaccines against human papillomavirus.

    PubMed

    Han, Su-Eun; Kim, Mi-Gyeong; Lee, Soondong; Cho, Hee-Jeong; Byun, Youngro; Kim, Sujeong; Kim, Young Bong; Choi, Yongseok; Oh, Yu-Kyoung

    2013-12-01

    Human endogenous retrovirus (HERV) envelope protein-coated, baculovirus vector-based HPV 16 L1 (AcHERV-HPV16L1) is a non-replicating recombinant baculoviral vaccine. Here, we report an initial evaluation of the preclinical safety of AcHERV-HPV16L1 vaccine. In an acute toxicity study, a single administration of AcHERV-HPV16L1 DNA vaccine given intramuscularly (i.m.) to mice at a dose of 1 × 10(8) plaque-forming units (PFU) did not cause significant changes in body weight compared with vehicle-treated controls. It did cause a brief increase in the weights of some organs on day 15 post-treatment, but by day 30, all organ weights were not significantly different from those in the vehicle-treated control group. No hematological changes were observed on day 30 post-treatment. In a range-finding toxicity study with three doses of 1 × 10(7) , 2 × 10(7) and 5 × 10(7) PFU once daily for 5 days, the group treated with 5 × 10(7) PFU showed a transient decrease in the body weights from day 5 to day 15 post-treatment, but recovery to the levels similar to those in the vehicle-treated control group by post-treatment day 20. Organ weights were slightly higher for lymph nodes, spleen, thymus and liver after repeated dosing with 5 × 10(7) PFU on day 15, but had normalized by day 30. Moreover, repeated administration of AcHERV-HPV16L1 did not induce myosin-specific autoantibody in serum, and did not cause immune complex deposition or tissue damage at injection sites. Taken together, these results provide preliminary evidence of the preclinical safety of AcHERV-based HPV16L1 DNA vaccines in mice. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Effective reduction of the interleukin-1β transcript in osteoarthritis-prone guinea pig chondrocytes via short hairpin RNA mediated RNA interference influences gene expression of mediators implicated in disease pathogenesis

    PubMed Central

    Santangeloyz, K.S.; Bertoneyz, A.L.

    2011-01-01

    summary Objective To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Methods Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RTPCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2−ΔΔCT) method. Results Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P= 0.0045) or >90% (P= 0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Conclusions Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. PMID:21945742

  19. Development of novel types of plastid transformation vectors and evaluation of factors controlling expression.

    PubMed

    Herz, Stefan; Füssl, Monika; Steiger, Sandra; Koop, Hans-Ulrich

    2005-12-01

    Two new vector types for plastid transformation were developed and uidA reporter gene expression was compared to standard transformation vectors. The first vector type does not contain any plastid promoter, instead it relies on extension of existing plastid operons and was therefore named "operon-extension" vector. When a strongly expressed plastid operon like psbA was extended by the reporter gene with this vector type, the expression level was superior to that of a standard vector under control of the 16S rRNA promoter. Different insertion sites, promoters and 5'-UTRs were analysed for their effect on reporter gene expression with standard and operon-extension vectors. The 5'-UTR of phage 7 gene 10 in combination with a modified N-terminus was found to yield the highest expression levels. Expression levels were also strongly dependent on external factors like plant or leaf age or light intensity. In the second vector type, named "split" plastid transformation vector, modules of the expression cassette were distributed on two separate vectors. Upon co-transformation of plastids with these vectors, the complete expression cassette became inserted into the plastome. This result can be explained by successive co-integration of the split vectors and final loop-out recombination of the duplicated sequences. The split vector concept was validated with different vector pairs.

  20. Community Participation in Chagas Disease Vector Surveillance: Systematic Review

    PubMed Central

    Abad-Franch, Fernando; Vega, M. Celeste; Rolón, Miriam S.; Santos, Walter S.; Rojas de Arias, Antonieta

    2011-01-01

    Background Vector control has substantially reduced Chagas disease (ChD) incidence. However, transmission by household-reinfesting triatomines persists, suggesting that entomological surveillance should play a crucial role in the long-term interruption of transmission. Yet, infestation foci become smaller and harder to detect as vector control proceeds, and highly sensitive surveillance methods are needed. Community participation (CP) and vector-detection devices (VDDs) are both thought to enhance surveillance, but this remains to be thoroughly assessed. Methodology/Principal Findings We searched Medline, Web of Knowledge, Scopus, LILACS, SciELO, the bibliographies of retrieved studies, and our own records. Data from studies describing vector control and/or surveillance interventions were extracted by two reviewers. Outcomes of primary interest included changes in infestation rates and the detection of infestation/reinfestation foci. Most results likely depended on study- and site-specific conditions, precluding meta-analysis, but we re-analysed data from studies comparing vector control and detection methods whenever possible. Results confirm that professional, insecticide-based vector control is highly effective, but also show that reinfestation by native triatomines is common and widespread across Latin America. Bug notification by householders (the simplest CP-based strategy) significantly boosts vector detection probabilities; in comparison, both active searches and VDDs perform poorly, although they might in some cases complement each other. Conclusions/Significance CP should become a strategic component of ChD surveillance, but only professional insecticide spraying seems consistently effective at eliminating infestation foci. Involvement of stakeholders at all process stages, from planning to evaluation, would probably enhance such CP-based strategies. PMID:21713022

  1. Mosquito vector biology and control in latin america-a 24th symposium.

    PubMed

    Clark, Gary G; Fernández-Salas, Ildefonso

    2014-09-01

    The 24th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 80th Annual Meeting in Seattle, WA, in February 2014. The principal objective, for the previous 23 symposia, was to promote participation in the AMCA by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 26 presentations that were given orally in Spanish or presented as posters by participants from Colombia, Mexico, and the USA. Topics addressed in the symposium included: surveillance, ecology, chemical control, studies of dengue viruses, and insecticide resistance associated with Aedes aegypti; Anopheles vectors of malaria; essential oils; and ethnic groups and vector-borne diseases.

  2. Entomological impact and social participation in dengue control: a cluster randomized trial in Fortaleza, Brazil

    PubMed Central

    Caprara, Andrea; De Oliveira Lima, José Wellington; Rocha Peixoto, Ana Carolina; Vasconcelos Motta, Cyntia Monteiro; Soares Nobre, Joana Mary; Sommerfeld, Johannes; Kroeger, Axel

    2015-01-01

    Background This study intended to implement a novel intervention strategy, in Brazil, using an ecohealth approach and analyse its effectiveness and costs in reducing Aedes aegypti vector density as well as its acceptance, feasibility and sustainability. The intervention was conducted from 2012 to 2013 in the municipality of Fortaleza, northeast Brazil. Methodology A cluster randomized controlled trial was designed by comparing ten intervention clusters with ten control clusters where routine vector control activities were conducted. The intervention included: community workshops; community involvement in clean-up campaigns; covering the elevated containers and in-house rubbish disposal without larviciding; mobilization of schoolchildren and senior inhabitants; and distribution of information, education and communication (IEC) materials in the community. Results Differences in terms of social participation, commitment and leadership were present in the clusters. The results showed the effectiveness of the intervention package in comparison with the routine control programme. Differences regarding the costs of the intervention were reasonable and could be adopted by public health services. Conclusions Embedding social participation and environmental management for improved dengue vector control was feasible and significantly reduced vector densities. Such a participatory ecohealth approach offers a promising alternative to routine vector control measures. PMID:25604760

  3. Malaria Vector Control Still Matters despite Insecticide Resistance.

    PubMed

    Alout, Haoues; Labbé, Pierrick; Chandre, Fabrice; Cohuet, Anna

    2017-08-01

    Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Wolbachia: A biological control strategy against arboviral diseases.

    PubMed

    Mohanty, Ipsita; Rath, Animesha; Mahapatra, Namita; Hazra, Rupenangshu K

    2016-01-01

    Vector-borne diseases particularly those transmitted by mosquitoes like Dengue are among the leading causes of mortality and morbidity in human population. There are no effective vaccines or treatment against dengue fever till date and the control methods are limited. So, new approaches are urgently in need to reverse these trends. Vector control is currently the primary intervention tool. Strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. Wolbachia an endosymbiont of arthropod vectors is being explored as a novel ecofriendly control strategy. Studies in Drosophila have shown that Wolbachia can confer resistance to diverse RNA viruses and protect flies from virus-induced mortality. This review was focused on biology of the Wolbachia and its implication as a control measure for arboviral diseases mainly Dengue and Chikungunya.

  5. Thrust Vectoring Nozzle for Modern Military Aircraft

    DTIC Science & Technology

    2000-05-11

    Thrust Vectoring Nozzle for Modern Military Aircraft Daniel Ikaza Industria de Turbo Propulsores S.A. (ITP) Parque Tecnol6gico, edificio 300 48170...programme has only been possible with the contribution of partners and organizations, namely: Spanish Ministries of Industry and Defence, with

  6. Mathematical solution of multilevel fractional programming problem with fuzzy goal programming approach

    NASA Astrophysics Data System (ADS)

    Lachhwani, Kailash; Poonia, Mahaveer Prasad

    2012-08-01

    In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels as well as the control vectors of the higher level decision makers are respectively defined by determining individual optimal solutions of each of the level decision makers. A possible relaxation of the higher level decision is considered for avoiding decision deadlock due to the conflicting nature of objective functions. Then, fuzzy goal programming approach is used for achieving the highest degree of each of the membership goal by minimizing negative deviational variables. We also provide sensitivity analysis with variation of tolerance values on decision vectors to show how the solution is sensitive to the change of tolerance values with the help of a numerical example.

  7. Coffee husk waste for fermentation production of mosquitocidal bacteria.

    PubMed

    Poopathi, Subbiah; Abidha, S

    2011-12-01

    Coffee husk waste (CHW) discarded as bio-organic waste, from coffee industries, is rich in carbohydrates. The current study emphasizes the management of solid waste from agro-industrial residues for the production of biopesticides (Bacillus sphaericus, and B. thuringiensis subsp. israelensis), to control disease transmitting mosquito vectors. An experimental culture medium was prepared by extracting the filtrates from coffee husk. A conventional culture medium (NYSM) also was prepared. The studies revealed that the quantity of mosquitocidal toxins produced from CHW is at par with NYSM. The bacteria produced in these media, were bioassayed against mosquito vectors (Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti) and it was found that the toxic effect was statistically comparable. Cost-effective analysis have revealed that, production of biopesticides from CHW is highly economical. Therefore, the utilization of CHW provides dual benefits of effective utilization of environmental waste and efficient production of mosquitocidal toxins.

  8. MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors.

    PubMed

    Murugaiyan, Jayaseelan; Roesler, Uwe

    2017-01-01

    Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors.

  9. MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors

    PubMed Central

    Murugaiyan, Jayaseelan; Roesler, Uwe

    2017-01-01

    Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors. PMID:28555175

  10. Integrated vector management: the Zambian experience.

    PubMed

    Chanda, Emmanuel; Masaninga, Fred; Coleman, Michael; Sikaala, Chadwick; Katebe, Cecilia; Macdonald, Michael; Baboo, Kumar S; Govere, John; Manga, Lucien

    2008-08-27

    The Zambian Malaria Control Programme with the Roll Back Malaria (RBM) partners have developed the current National Malaria Strategic Plan (NMSP 2006-2011) which focuses on prevention based on the Integrated Vector Management (IVM) strategy. The introduction and implementation of an IVM strategy was planned in accordance with the World Health Organization (WHO) steps towards IVM implementation namely Introduction Phase, Consolidation Phase and Expansion Phase. IVM has created commitment for Legal and Regulatory policy review, monitoring, Research and a strong stewardship by the chemical suppliers. It has also leveraged additional resources, improved inter-sectoral collaboration, capacity building and enhanced community participation which facilitated a steady scaling up in coverage and utilisation of key preventive interventions. Thus, markedly reducing malaria incidence and case fatalities in the country. Zambia has successfully introduced, consolidated and expanded IVM activities. Resulting in increased coverage and utilization of interventions and markedly reducing malaria-related morbidity and mortality while ensuring a better protection of the environment.

  11. Tailless Vectored Fighters Theory. Laboratory and Flight Tests, Including Vectorable Inlets/Nozzles and Tailless Flying Models vs. Pilot’s Tolerances Affecting Maximum Post-Stall Vectoring Agility.

    DTIC Science & Technology

    1991-07-01

    nose bodyj Top view of velocity probe PropllerRotating shaft ’V Generator Aerodynamic shape like a small elevator RPV’s attitude Irrespctiveduring...28 Part It: Maximizing Thrust-Vectoring Control Power and Agility Metrics ............ 29 Laboratory & Flight...8217Ideal Standards’ - Ba- ror maximizing PST-TV-aglilty/rIlght-control power , iI - Extracting new TV-potentials to further reduce any righter’s optical

  12. Use of insecticide-treated house screens to reduce infestations of dengue virus vectors, Mexico.

    PubMed

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J; Kroeger, Axel; Arredondo-Jimenez, Juan I

    2015-02-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control.

  13. Improvement in vehicle agility and stability by G-Vectoring control

    NASA Astrophysics Data System (ADS)

    Yamakado, Makoto; Takahashi, Jyunya; Saito, Shinjiro; Yokoyama, Atsushi; Abe, Masato

    2010-12-01

    We extracted a trade-off strategy between longitudinal traction/braking force and cornering force by using jerk information through observing an expert driver's voluntary braking and turning action. Using the expert driver's strategy, we developed a new control concept, called 'G-Vectoring control', which is an automatic longitudinal acceleration control (No DYC) in accordance with the vehicle's lateral jerk caused by the driver's steering manoeuvres. With the control, the direction of synthetic acceleration (G) changes seamlessly (i.e. vectoring). The improvements in vehicle agility and stability were evaluated by theoretical analysis and through computer simulation. We then introduced a 'G-Vectoring' equipped test vehicle realised by brake-by-wire technology and executed a detailed examination on a test track. We have confirmed that the vehicle motion in view of both handling and ride quality has improved dramatically.

  14. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-11-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Earth observation in support of malaria control and epidemiology: MALAREO monitoring approaches.

    PubMed

    Franke, Jonas; Gebreslasie, Michael; Bauwens, Ides; Deleu, Julie; Siegert, Florian

    2015-06-03

    Malaria affects about half of the world's population, with the vast majority of cases occuring in Africa. National malaria control programmes aim to reduce the burden of malaria and its negative, socioeconomic effects by using various control strategies (e.g. vector control, environmental management and case tracking). Vector control is the most effective transmission prevention strategy, while environmental factors are the key parameters affecting transmission. Geographic information systems (GIS), earth observation (EO) and spatial modelling are increasingly being recognised as valuable tools for effective management and malaria vector control. Issues previously inhibiting the use of EO in epidemiology and malaria control such as poor satellite sensor performance, high costs and long turnaround times, have since been resolved through modern technology. The core goal of this study was to develop and implement the capabilities of EO data for national malaria control programmes in South Africa, Swaziland and Mozambique. High- and very high resolution (HR and VHR) land cover and wetland maps were generated for the identification of potential vector habitats and human activities, as well as geoinformation on distance to wetlands for malaria risk modelling, population density maps, habitat foci maps and VHR household maps. These products were further used for modelling malaria incidence and the analysis of environmental factors that favour vector breeding. Geoproducts were also transferred to the staff of national malaria control programmes in seven African countries to demonstrate how EO data and GIS can support vector control strategy planning and monitoring. The transferred EO products support better epidemiological understanding of environmental factors related to malaria transmission, and allow for spatio-temporal targeting of malaria control interventions, thereby improving the cost-effectiveness of interventions.

  16. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  17. Variable Speed CMG Control of a Dual-Spin Stabilized Unconventional VTOL Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Moerder, Daniel D.; Shin, J-Y.

    2004-01-01

    This paper describes an approach based on using both bias momentum and multiple control moment gyros for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The stabilization approach described in this paper uses these internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other outer loop control functions, including CMG stabilization/ desaturation under persistent external disturbances. Simulation results show the feasibility of (1) improved vehicle performance beyond bias momentum assisted vector thrusting control, and (2) using control moment gyros to significantly reduce the external torque required from the vector thrusting machinery.

  18. Application of three controls optimally in a vector-borne disease - a mathematical study

    NASA Astrophysics Data System (ADS)

    Kar, T. K.; Jana, Soovoojeet

    2013-10-01

    We have proposed and analyzed a vector-borne disease model with three types of controls for the eradication of the disease. Four different classes for the human population namely susceptible, infected, recovered and vaccinated and two different classes for the vector populations namely susceptible and infected are considered. In the first part of our analysis the disease dynamics are described for fixed controls and some inferences have been drawn regarding the spread of the disease. Next the optimal control problem is formulated and solved considering control parameters as time dependent. Different possible combination of controls are used and their effectiveness are compared by numerical simulation.

  19. Human IgG Antibody Response to Aedes Nterm-34kDa Salivary Peptide, an Epidemiological Tool to Assess Vector Control in Chikungunya and Dengue Transmission Area

    PubMed Central

    Elanga Ndille, Emmanuel; Doucoure, Souleymane; Poinsignon, Anne; Mouchet, François; Cornelie, Sylvie; D’Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck

    2016-01-01

    Background Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Methodology/Principal findings Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Conclusion/Significance Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species. PMID:27906987

  20. Human IgG Antibody Response to Aedes Nterm-34kDa Salivary Peptide, an Epidemiological Tool to Assess Vector Control in Chikungunya and Dengue Transmission Area.

    PubMed

    Elanga Ndille, Emmanuel; Doucoure, Souleymane; Poinsignon, Anne; Mouchet, François; Cornelie, Sylvie; D'Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck

    2016-12-01

    Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species.

  1. 78 FR 732 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Initial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... announced below concerns Identification, Surveillance, and Control of Vector-Borne and Zoonotic Infectious... in response to ``Identification, Surveillance, and Control of Vector- Borne and Zoonotic Infectious... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease...

  2. Thrust vectoring of broad ion beams for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Collett, C. R.; King, H. J.

    1973-01-01

    Thrust vectoring is shown to increase the attractiveness of ion thrusters for satellite control applications. Incorporating beam deflection into ion thrusters makes it possible to achieve attitude control without adding any thrusters. Two beam vectoring systems are described that can provide up to 10-deg beam deflection in any azimuth. Both systems have been subjected to extended life tests on a 5-cm thruster which resulted in projected life times of from 7500 to 20,000 hours.

  3. Family leader empowerment program using participatory learning process for dengue vector control.

    PubMed

    Pengvanich, Veerapong

    2011-02-01

    Assess the performance of the empowerment program using participatory learning process for the control of Dengue vector The program focuses on using the leaders of families as the main executer of the vector control protocol. This quasi-experimental research utilized the two-group pretest-posttest design. The sample group consisted of 120 family leaders from two communities in Mueang Municipality, Chachoengsao Province. The research was conducted during an 8-week period between April and June 2010. The data were collected and analyzed based on frequency, percentage, mean, paired t-test, and independent t-test. The result was evaluated by comparing the difference between the mean prevalence index of mosquito larvae before and after the process implementation in terms of the container index (CI) and the house index (HI). After spending eight weeks in the empowerment program, the family leader's behavior in the aspect of Dengue vector control has improved. The Container Index and the House Index were found to decrease with p = 0.05 statistical significance. The reduction of CI and HI suggested that the program worked well in the selected communities. The success of the Dengue vector control program depended on cooperation and participation of many groups, especially the families in the community When the family leaders have good attitude and are capable of carrying out the vector control protocol, the risk factor leading to the incidence of Dengue rims infection can be reduced.

  4. Viruses vector control proposal: genus Aedes emphasis.

    PubMed

    Reis, Nelson Nogueira; Silva, Alcino Lázaro da; Reis, Elma Pereira Guedes; Silva, Flávia Chaves E; Reis, Igor Guedes Nogueira

    The dengue fever is a major public health problem in the world. In Brazil, in 2015, there were 1,534,932 cases, being 20,320 cases of severe form, and 811 deaths related to this disease. The distribution of Aedes aegypti, the vector, is extensive. Recently, Zika and Chikungunya viruses had arisen, sharing the same vector as dengue and became a huge public health issue. Without specific treatment, it is urgently required as an effective vector control. This article is focused on reviewing vector control strategies, their effectiveness, viability and economical impact. Among all, the Sterile Insect Technique is highlighted as the best option to be adopted in Brazil, once it is largely effectively used in the USA and Mexico for plagues related to agribusiness. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Exploring the potential of using cattle for malaria vector surveillance and control: a pilot study in western Kenya.

    PubMed

    Njoroge, Margaret M; Tirados, Inaki; Lindsay, Steven W; Vale, Glyn A; Torr, Stephen J; Fillinger, Ulrike

    2017-01-10

    Malaria vector mosquitoes with exophilic and zoophilic tendencies, or with a high acceptance of alternative blood meal sources when preferred human blood-hosts are unavailable, may help maintain low but constant malaria transmission in areas where indoor vector control has been scaled up. This residual transmission might be addressed by targeting vectors outside the house. Here we investigated the potential of insecticide-treated cattle, as routinely used for control of tsetse and ticks in East Africa, for mosquito control. The malaria vector population in the study area was investigated weekly for 8 months using two different trapping tools: light traps indoors and cattle-baited traps (CBTs) outdoors. The effect of the application of the insecticide deltamethrin and the acaricide amitraz on cattle on host-seeking Anopheles arabiensis was tested experimentally in field-cages and the impact of deltamethrin-treated cattle explored under field conditions on mosquito densities on household level. CBTs collected on average 2.8 (95% CI: 1.8-4.2) primary [Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.)] and 6.3 (95% CI: 3.6-11.3) secondary malaria vectors [An. ivulorum and An. coustani (s.l.)] per trap night and revealed a distinct, complementary seasonality. At the same time on average only 1.4 (95% CI: 0.8-2.3) primary and 1.1 (95% CI: 0.6-2.0) secondary malaria vectors were collected per trap night with light traps indoors. Amitraz had no effect on survival of host-seeking An. arabiensis under experimental conditions but deltamethrin increased mosquito mortality (OR 19, 95% CI: 7-50), but only for 1 week. In the field, vector mortality in association with deltamethrin treatment was detected only with CBTs and only immediately after the treatment (OR 0.25, 95% CI: 0.13-0.52). Entomological sampling with CBTs highlights that targeting cattle for mosquito control has potential since it would not only target naturally zoophilic malaria vectors but also opportunistic feeders that lack access to human hosts as is expected in residual malaria transmission settings. However, the deltamethrin formulation tested here although used widely to treat cattle for tsetse and tick control, is not suitable for the control of malaria vectors since it causes only moderate initial mortality and has little residual activity.

  6. Application of Genomics for Understanding Plant Virus-Insect Vector Interactions and Insect Vector Control.

    PubMed

    Kaur, Navneet; Hasegawa, Daniel K; Ling, Kai-Shu; Wintermantel, William M

    2016-10-01

    The relationships between plant viruses and their vectors have evolved over the millennia, and yet, studies on viruses began <150 years ago and investigations into the virus and vector interactions even more recently. The advent of next generation sequencing, including rapid genome and transcriptome analysis, methods for evaluation of small RNAs, and the related disciplines of proteomics and metabolomics offer a significant shift in the ability to elucidate molecular mechanisms involved in virus infection and transmission by insect vectors. Genomic technologies offer an unprecedented opportunity to examine the response of insect vectors to the presence of ingested viruses through gene expression changes and altered biochemical pathways. This review focuses on the interactions between viruses and their whitefly or thrips vectors and on potential applications of genomics-driven control of the insect vectors. Recent studies have evaluated gene expression in vectors during feeding on plants infected with begomoviruses, criniviruses, and tospoviruses, which exhibit very different types of virus-vector interactions. These studies demonstrate the advantages of genomics and the potential complementary studies that rapidly advance our understanding of the biology of virus transmission by insect vectors and offer additional opportunities to design novel genetic strategies to manage insect vectors and the viruses they transmit.

  7. HSV as a vector in vaccine development and gene therapy.

    PubMed

    Marconi, Peggy; Argnani, Rafaela; Epstein, Alberto L; Manservigi, Roberto

    2009-01-01

    The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), major human pathogen whose lifestyle is based on a long-term dual interaction with the infected host characterized by the existence of lytic and latent infections, has allowed the development of potential vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous system, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases and targeted infection of specific tissues or organs. Three different classes of vectors can be derived from HSV-1: replication-competent attenuated vectors, replication-incompetent recombinant vectors and defective helper-dependent vectors known as amplicons. This chapter highlights the current knowledge concerning design, construction and recent applications, as well as the potential and current limitations of the three different classes of HSV-1-based vectors.

  8. Temporo-spatial distribution of insecticide-resistance in Indian malaria vectors in the last quarter-century: Need for regular resistance monitoring and management.

    PubMed

    Raghavendra, Kamaraju; Velamuri, Poonam Sharma; Verma, Vaishali; Elamathi, Natarajan; Barik, Tapan Kumar; Bhatt, Rajendra Mohan; Dash, Aditya Prasad

    2017-01-01

    The Indian vector control programme similar to other programmes in the world is still reliant on chemical insecticides. Anopheles culicifacies is the major vector out of six primary malaria vectors in India and alone contributes about 2/3 malaria cases annually; and per se its control is actually control of malaria in India. For effective management of vectors, current information on their susceptibility status to different insecticides is essential. In this review, an attempt was made to compile and present the available data on the susceptibility status of different malaria vector species in India from the last 2.5 decades. Literature search was conducted by different means mainly web and library search; susceptibility data was collated from 62 sources for the nine malaria vector species from 145 districts in 21 states and two union territories between 1991 and 2016. Interpretation of the susceptibility/resistance status was made on basis of the recent WHO criteria. Comprehensive analysis of the data indicated that An. culicifacies, a major vector species was resistant to at least one insecticide in 70% (101/145) of the districts. It was reported mostly resistant to DDT and malathion whereas, its resistant status against deltamethrin varied across the districts. The major threat for the malaria control programmes is multiple-insecticide-resistance in An. culicifacies which needs immediate attention for resistance management in order to sustain the gains achieved so far, as the programmes have targeted malaria elimination by 2030.

  9. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach.

    PubMed

    Mitsakakis, Konstantinos; Hin, Sebastian; Müller, Pie; Wipf, Nadja; Thomsen, Edward; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-02-03

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium , is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.

  10. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach

    PubMed Central

    Mitsakakis, Konstantinos; Hin, Sebastian; Wipf, Nadja; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-01-01

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach. PMID:29401670

  11. Vector Blood Meals Are an Early Indicator of the Effectiveness of the Ecohealth Approach in Halting Chagas Transmission in Guatemala

    PubMed Central

    Pellecer, Mariele J.; Dorn, Patricia L.; Bustamante, Dulce M.; Rodas, Antonieta; Monroy, M. Carlota

    2013-01-01

    A novel method using vector blood meal sources to assess the impact of control efforts on the risk of transmission of Chagas disease was tested in the village of El Tule, Jutiapa, Guatemala. Control used Ecohealth interventions, where villagers ameliorated the factors identified as most important for transmission. First, after an initial insecticide application, house walls were plastered. Later, bedroom floors were improved and domestic animals were moved outdoors. Only vector blood meal sources revealed the success of the first interventions: human blood meals declined from 38% to 3% after insecticide application and wall plastering. Following all interventions both vector blood meal sources and entomological indices revealed the reduction in transmission risk. These results indicate that vector blood meals may reveal effects of control efforts early on, effects that may not be apparent using traditional entomological indices, and provide further support for the Ecohealth approach to Chagas control in Guatemala. PMID:23382165

  12. Reanalyzing the "far medial" (transcondylar-transtubercular) approach based on three anatomical vectors: the ventral posterolateral corridor.

    PubMed

    Chakravarthi, Srikant; Monroy-Sosa, Alejandro; Gonen, Lior; Fukui, Melanie; Rovin, Richard; Kojis, Nathaniel; Lindsay, Mark; Khalili, Sammy; Celix, Juanita; Corsten, Martin; Kassam, Amin B

    2018-06-01

    Endoscopic endonasal access to the jugular foramen and occipital condyle - the transcondylar-transtubercular approach - is anatomically complex and requires detailed knowledge of the relative position of critical neurovascular structures, in order to avoid inadvertent injury and resultant complications. However, access to this region can be confusing as the orientation and relationships of osseous, vascular, and neural structures are very much different from traditional dorsal approaches. This review aims at providing an organizational construct for a more understandable framework in accessing the transcondylar-transtubercular window. The region can be conceptualized using a three-vector coordinate system: vector 1 represents a dorsal or ventral corridor, vector 2 represents the outer and inner circumferential anatomical limits; in an "onion-skin" fashion, key osseous, vascular, and neural landmarks are organized based on a 360-degree skull base model, and vector 3 represents the final core or target of the surgical corridor. The creation of an organized "global-positioning system" may better guide the surgeon in accessing the far-medial transcondylar-transtubercular region, and related pathologies, and help understand the surgical limits to the occipital condyle and jugular foramen - the ventral posterolateral corridor - via the endoscopic endonasal approach.

  13. Evaluation of attractive toxic sugar bait (ATSB)—barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida

    PubMed Central

    Qualls, Whitney A.; Müller, Günter C.; Revay, Edita E.; Allan, Sandra A.; Arheart, Kristopher L.; Beier, John C.; Smith, Michal L.; Scott, Jodi M.; Kravchenko, Vasiliy D.; Hausmann, Axel; Yefremova, Zoya A.; Xue, Rui-De

    2014-01-01

    The efficacy of attractive toxic sugar baits (ATSB) with the active ingredient eugenol, an Environmental Protection Agency exempt compound, was evaluated against vector and nuisance mosquitoes in both laboratory and field studies. In the laboratory, eugenol combined in attractive sugar bait (ASB) solution provided high levels of mortality for Aedes aegypti, Culex quinquefasciatus, and Anopheles quadrimaculatus. Field studies demonstrated significant control: > 70% reduction for Aedes atlanticus, Ae. infirmatus, and Culex nigripalpus and > 50% reduction for An. crucians, Uranotaenia sapphirina, Culiseta melanura, and Cx. erraticus three weeks post ATSB application. Furthermore, non-target feeding of six insect orders, Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, and Orthoptera, was evaluated in the field after application of a dyed-ASB to flowering and non-flowering vegetation. ASB feeding (staining) was determined by dissecting the guts and searching for food dye with a dissecting microscope. The potential impact of ATSB on non-targets, applied on green non-flowering vegetation was low for all non-target groups (0.9%). However, application of the ASB to flowering vegetation resulted in significant staining of the non-target insect orders. This highlights the need for application guidelines to reduce non-target effects. No mortality was observed in laboratory studies with predatory non-targets, spiders, praying mantis, or ground beetles, after feeding for three days on mosquitoes engorged on ATSB. Overall, our laboratory and field studies support the use of eugenol as an active ingredient for controlling important vector and nuisance mosquitoes when used as an ATSB toxin. This is the first study demonstrating effective control of anophelines in non-arid environments which suggest that even in highly competitive sugar rich environments this method could be used for control of malaria in Latin American countries. PMID:24361724

  14. Sowing the seeds of economic entomology: houseflies and the emergence of medical entomology in Britain.

    PubMed

    Clark, J F M

    2008-12-01

    The golden age of medical entomology, 1870-1920, is often celebrated for the elucidation of the aetiology of vector-borne diseases within the rubric of the emergent discipline of tropical medicine. Within these triumphal accounts, the origins of vector control science and technology remain curiously underexplored; yet vector control and eradication constituted the basis of the entomologists' expertise within the emergent specialism of medical entomology. New imperial historians have been sensitive to the ideological implications of vector control policies in the colonies and protectorates, but the reciprocal transfer of vector-control knowledge, practices and policies between periphery and core have received little attention. This paper argues that medical entomology arose in Britain as an amalgam of tropical medicine and agricultural entomology under the umbrella of "economic entomology". An examination of early twentieth-century anti-housefly campaigns sheds light on the relative importance of medical entomology as an imperial science for the careers, practices, and policies of economic entomologists working in Britain. Moreover, their sensitivity to vector ecology provides insight into late nineteenth- and early twentieth-century urban environments and environmental conditions of front-line war.

  15. Eco-bio-social determinants for house infestation by non-domiciliated Triatoma dimidiata in the Yucatan Peninsula, Mexico.

    PubMed

    Dumonteil, Eric; Nouvellet, Pierre; Rosecrans, Kathryn; Ramirez-Sierra, Maria Jesus; Gamboa-León, Rubi; Cruz-Chan, Vladimir; Rosado-Vallado, Miguel; Gourbière, Sébastien

    2013-01-01

    Chagas disease is a vector-borne disease of major importance in the Americas. Disease prevention is mostly limited to vector control. Integrated interventions targeting ecological, biological and social determinants of vector-borne diseases are increasingly used for improved control. We investigated key factors associated with transient house infestation by T. dimidiata in rural villages in Yucatan, Mexico, using a mixed modeling approach based on initial null-hypothesis testing followed by multimodel inference and averaging on data from 308 houses from three villages. We found that the presence of dogs, chickens and potential refuges, such as rock piles, in the peridomicile as well as the proximity of houses to vegetation at the periphery of the village and to public light sources are major risk factors for infestation. These factors explain most of the intra-village variations in infestation. These results underline a process of infestation distinct from that of domiciliated triatomines and may be used for risk stratification of houses for both vector surveillance and control. Combined integrated vector interventions, informed by an Ecohealth perspective, should aim at targeting several of these factors to effectively reduce infestation and provide sustainable vector control.

  16. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China.

    PubMed

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun; Chen, Xiao-Guang

    2017-07-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.

  17. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China

    PubMed Central

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun

    2017-01-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies. PMID:28430562

  18. Multineuronal vectorization is more efficient than time-segmental vectorization for information extraction from neuronal activities in the inferior temporal cortex.

    PubMed

    Kaneko, Hidekazu; Tamura, Hiroshi; Tate, Shunta; Kawashima, Takahiro; Suzuki, Shinya S; Fujita, Ichiro

    2010-08-01

    In order for patients with disabilities to control assistive devices with their own neural activity, multineuronal spike trains must be efficiently decoded because only limited computational resources can be used to generate prosthetic control signals in portable real-time applications. In this study, we compare the abilities of two vectorizing procedures (multineuronal and time-segmental) to extract information from spike trains during the same total neuron-seconds. In the multineuronal vectorizing procedure, we defined a response vector whose components represented the spike counts of one to five neurons. In the time-segmental vectorizing procedure, a response vector consisted of components representing a neuron's spike counts for one to five time-segment(s) of a response period of 1 s. Spike trains were recorded from neurons in the inferior temporal cortex of monkeys presented with visual stimuli. We examined whether the amount of information of the visual stimuli carried by these neurons differed between the two vectorizing procedures. The amount of information calculated with the multineuronal vectorizing procedure, but not the time-segmental vectorizing procedure, significantly increased with the dimensions of the response vector. We conclude that the multineuronal vectorizing procedure is superior to the time-segmental vectorizing procedure in efficiently extracting information from neuronal signals. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. IDOMAL: an ontology for malaria.

    PubMed

    Topalis, Pantelis; Mitraka, Elvira; Bujila, Ioana; Deligianni, Elena; Dialynas, Emmanuel; Siden-Kiamos, Inga; Troye-Blomberg, Marita; Louis, Christos

    2010-08-10

    Ontologies are rapidly becoming a necessity for the design of efficient information technology tools, especially databases, because they permit the organization of stored data using logical rules and defined terms that are understood by both humans and machines. This has as consequence both an enhanced usage and interoperability of databases and related resources. It is hoped that IDOMAL, the ontology of malaria will prove a valuable instrument when implemented in both malaria research and control measures. The OBOEdit2 software was used for the construction of the ontology. IDOMAL is based on the Basic Formal Ontology (BFO) and follows the rules set by the OBO Foundry consortium. The first version of the malaria ontology covers both clinical and epidemiological aspects of the disease, as well as disease and vector biology. IDOMAL is meant to later become the nucleation site for a much larger ontology of vector borne diseases, which will itself be an extension of a large ontology of infectious diseases (IDO). The latter is currently being developed in the frame of a large international collaborative effort. IDOMAL, already freely available in its first version, will form part of a suite of ontologies that will be used to drive IT tools and databases specifically constructed to help control malaria and, later, other vector-borne diseases. This suite already consists of the ontology described here as well as the one on insecticide resistance that has been available for some time. Additional components are being developed and introduced into IDOMAL.

  20. Steering of Frequency Standards by the Use of Linear Quadratic Gaussian Control Theory

    NASA Technical Reports Server (NTRS)

    Koppang, Paul; Leland, Robert

    1996-01-01

    Linear quadratic Gaussian control is a technique that uses Kalman filtering to estimate a state vector used for input into a control calculation. A control correction is calculated by minimizing a quadratic cost function that is dependent on both the state vector and the control amount. Different penalties, chosen by the designer, are assessed by the controller as the state vector and control amount vary from given optimal values. With this feature controllers can be designed to force the phase and frequency differences between two standards to zero either more or less aggressively depending on the application. Data will be used to show how using different parameters in the cost function analysis affects the steering and the stability of the frequency standards.

  1. Parasites of domestic and wild animals in South Africa. L. Ixodid ticks infesting horses and donkeys.

    PubMed

    Horak, Ivan G; Heyne, Heloise; Halajian, Ali; Booysen, Shalaine; Smit, Willem J

    2017-02-28

    The aim of the study was to determine the species spectrum of ixodid ticks that infest horses and donkeys in South Africa and to identify those species that act as vectors of disease to domestic livestock. Ticks were collected opportunistically from 391 horses countrywide by their owners or grooms, or by veterinary students and staff at the Faculty of Veterinary Science, University of Pretoria. Ticks were also collected from 76 donkeys in Limpopo Province, 2 in Gauteng Province and 1 in North West province. All the ticks were identified by means of a stereoscopic microscope. Horses were infested with 17 tick species, 72.1% with Rhipicephalus evertsi evertsi, 19.4% with Amblyomma hebraeum and 15.6% with Rhipicephalus decoloratus. Rhipicephalus evertsi evertsi was recovered from horses in all nine provinces of South Africa and R. decoloratus in eight provinces. Donkeys were infested with eight tick species, and 81.6% were infested with R. evertsi evertsi, 23.7% with A. hebraeum and 10.5% with R. decoloratus. Several tick species collected from the horses and donkeys are the vectors of economically important diseases of livestock. Rhipicephalus evertsi evertsi is the vector of Theileria equi, the causative organism of equine piroplasmosis. It also transmits Anaplasma marginale, the causative organism of anaplasmosis in cattle. Amblyomma hebraeum is the vector of Ehrlichia ruminantium, the causative organism of heartwater in cattle, sheep and goats, whereas R. decoloratus transmits Babesia bigemina, the causative organism of babesiosis in cattle.

  2. An agent-vector-host-environment model for controlling small arms and light weapons.

    PubMed

    Pinto, Andrew D; Sharma, Malika; Muggah, Robert

    2011-05-01

    Armed violence is a significant public health problem. It results in fatal and non-fatal injuries and disrupts social and economic processes that are essential to the health of individuals and communities. We argue that an agent-vector-host-environment model can be helpful in understanding and describing the availability and misuse of small arms and light weapons. Moreover, such a model can assist in identifying potential control points and in developing mitigation strategies. These concepts have been developed from analogous vector control programs and are applied to controlling arms to reduce their misuse. So-called 'denormalization' and 'de-legitimization' campaigns that focus on the vector - including the industry producing these commodities - can be based on the experience of public health in controlling tobacco use and exposure. This model can assist health professionals, civil society and governments in developing comprehensive strategies to limit the production, distribution and misuse of small arms and light weapons.

  3. High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing.

    PubMed

    Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei

    2015-01-01

    Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

  4. Dengue: Vector Biology, Transmission and Control Options in Mexico (El Dengue: Binomia Del Vector, Transmision y Opciones Para su Control en Mexico)

    DTIC Science & Technology

    1990-01-01

    on August 2, 1989. Filiberto Reyes Villanueva, M.S., studied biology at the School of Biological Sciences of the Autonomous Universi- ty of Nueva Le6n...experts (1987), are the entomopathogenic bacteria Bacillus thuringiensis, serotype H-14 and B. sphaericus. These microorgan- isms can operate only...the country, as is the case with A. aegypti. These bacteria offer a potential for the control of those vectors which have already developed a

  5. Recent Developments In Theory Of Balanced Linear Systems

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek

    1994-01-01

    Report presents theoretical study of some issues of controllability and observability of system represented by linear, time-invariant mathematical model of the form. x = Ax + Bu, y = Cx + Du, x(0) = xo where x is n-dimensional vector representing state of system; u is p-dimensional vector representing control input to system; y is q-dimensional vector representing output of system; n,p, and q are integers; x(0) is intial (zero-time) state vector; and set of matrices (A,B,C,D) said to constitute state-space representation of system.

  6. A CRISPR-Cas9 sex-ratio distortion system for genetic control

    PubMed Central

    Galizi, Roberto; Hammond, Andrew; Kyrou, Kyros; Taxiarchi, Chrysanthi; Bernardini, Federica; O’Loughlin, Samantha M.; Papathanos, Philippos-Aris; Nolan, Tony; Windbichler, Nikolai; Crisanti, Andrea

    2016-01-01

    Genetic control aims to reduce the ability of insect pest populations to cause harm via the release of modified insects. One strategy is to bias the reproductive sex ratio towards males so that a population decreases in size or is eliminated altogether due to a lack of females. We have shown previously that sex ratio distortion can be generated synthetically in the main human malaria vector Anopheles gambiae, by selectively destroying the X-chromosome during spermatogenesis, through the activity of a naturally-occurring endonuclease that targets a repetitive rDNA sequence highly-conserved in a wide range of organisms. Here we describe a CRISPR-Cas9 sex distortion system that targets ribosomal sequences restricted to the member species of the Anopheles gambiae complex. Expression of Cas9 during spermatogenesis resulted in RNA-guided shredding of the X-chromosome during male meiosis and produced extreme male bias among progeny in the absence of any significant reduction in fertility. The flexibility of CRISPR-Cas9 combined with the availability of genomic data for a range of insects renders this strategy broadly applicable for the species-specific control of any pest or vector species with an XY sex-determination system by targeting sequences exclusive to the female sex chromosome. PMID:27484623

  7. Detection of Onchocerca volvulus (Nematoda: Onchocercidae) infection in vectors from Amazonian Brazil following mass Mectizan distribution.

    PubMed

    Marchon-Silva, Verônica; Caër, Julien Charles; Post, Rory James; Maia-Herzog, Marilza; Fernandes, Octavio

    2007-05-01

    Detection of Onchocerca volvulus in Simulium populations is of primary importance in the assessment of the effectiveness of onchocerciasis control programs. In Brazil, the main focus of onchocerciasis is in the Amazon region, in a Yanomami reserve. The main onchocerciasis control strategy in Brazil is the semi-annually mass distribution of the microfilaricide ivermectin. In accordance with the control strategy for the disease, polymerase chain reaction (PCR) was applied in pools of simuliids from the area to detect the helminth infection in the vectors, as recommended by the Onchocerciasis Elimination Program for the Americas and the World Health Organization. Systematic sampling was performed monthly from September 1998 to October 1999, and a total of 4942 blackflies were collected from two sites (2576 from Balawaú and 2366 from Toototobi). The molecular methodology was found to be highly sensitive and specific for the detection of infected and/or infective blackflies in pools of 50 blackflies. The results from the material collected under field conditions showed that after the sixth cycle of distribution of ivermectin, the prevalence of infected blackflies with O. volvulus had decreased from 8.6 to 0.3% in Balawaú and from 4 to 0.1% in Toototobi.

  8. A Critical Assessment of Vector Control for Dengue Prevention

    PubMed Central

    Achee, Nicole L.; Gould, Fred; Perkins, T. Alex; Reiner, Robert C.; Morrison, Amy C.; Ritchie, Scott A.; Gubler, Duane J.; Teyssou, Remy; Scott, Thomas W.

    2015-01-01

    Recently, the Vaccines to Vaccinate (v2V) initiative was reconfigured into the Partnership for Dengue Control (PDC), a multi-sponsored and independent initiative. This redirection is consistent with the growing consensus among the dengue-prevention community that no single intervention will be sufficient to control dengue disease. The PDC's expectation is that when an effective dengue virus (DENV) vaccine is commercially available, the public health community will continue to rely on vector control because the two strategies complement and enhance one another. Although the concept of integrated intervention for dengue prevention is gaining increasingly broader acceptance, to date, no consensus has been reached regarding the details of how and what combination of approaches can be most effectively implemented to manage disease. To fill that gap, the PDC proposed a three step process: (1) a critical assessment of current vector control tools and those under development, (2) outlining a research agenda for determining, in a definitive way, what existing tools work best, and (3) determining how to combine the best vector control options, which have systematically been defined in this process, with DENV vaccines. To address the first step, the PDC convened a meeting of international experts during November 2013 in Washington, DC, to critically assess existing vector control interventions and tools under development. This report summarizes those deliberations. PMID:25951103

  9. Effective reduction of the interleukin-1β transcript in osteoarthritis-prone guinea pig chondrocytes via short hairpin RNA mediated RNA interference influences gene expression of mediators implicated in disease pathogenesis.

    PubMed

    Santangelo, K S; Bertone, A L

    2011-12-01

    To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2(-ΔΔCT)) method. Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P=0.0045) or >90% (P=0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  10. Community-based biological control of malaria mosquitoes using Bacillus thuringiensis var. israelensis (Bti) in Rwanda: community awareness, acceptance and participation.

    PubMed

    Ingabire, Chantal Marie; Hakizimana, Emmanuel; Rulisa, Alexis; Kateera, Fredrick; Van Den Borne, Bart; Muvunyi, Claude Mambo; Mutesa, Leon; Van Vugt, Michelle; Koenraadt, Constantianus J M; Takken, Willem; Alaii, Jane

    2017-10-03

    Targeting the aquatic stages of malaria vectors via larval source management (LSM) in collaboration with local communities could accelerate progress towards malaria elimination when deployed in addition to existing vector control strategies. However, the precise role that communities can assume in implementing such an intervention has not been fully investigated. This study investigated community awareness, acceptance and participation in a study that incorporated the socio-economic and entomological impact of LSM using Bacillus thuringiensis var. israelensis (Bti) in eastern Rwanda, and identified challenges and recommendations for future scale-up. The implementation of the community-based LSM intervention took place in Ruhuha, Rwanda, from February to July 2015. The intervention included three arms: control, community-based (CB) and project-supervised (PS). Mixed methods were used to collect baseline and endline socio-economic data in January and October 2015. A high perceived safety and effectiveness of Bti was reported at the start of the intervention. Being aware of malaria symptoms and perceiving Bti as safe on other living organisms increased the likelihood of community participation through investment of labour time for Bti application. On the other hand, the likelihood for community participation was lower if respondents: (1) perceived rice farming as very profitable; (2) provided more money to the cooperative as a capital; and, (3) were already involved in rice farming for more than 6 years. After 6 months of implementation, an increase in knowledge and skills regarding Bti application was reported. The community perceived a reduction in mosquito density and nuisance biting on treated arms. Main operational, seasonal and geographical challenges included manual application of Bti, long working hours, and need for transportation for reaching the fields. Recommendations were made for future scale-up, including addressing above-mentioned concerns and government adoption of LSM as part of its vector control strategies. Community awareness and support for LSM increased following Bti application. A high effectiveness of Bti in terms of reduction of mosquito abundance and nuisance biting was perceived. The study confirmed the feasibility of community-based LSM interventions and served as evidence for future scale-up of Bti application and adoption into Rwandan malaria vector control strategies.

  11. wFlu: Characterization and Evaluation of a Native Wolbachia from the Mosquito Aedes fluviatilis as a Potential Vector Control Agent

    PubMed Central

    Gonçalves, Daniela da Silva; Moreira, Luciano Andrade

    2013-01-01

    There is currently considerable interest and practical progress in using the endosymbiotic bacteria Wolbachia as a vector control agent for human vector-borne diseases. Such vector control strategies may require the introduction of multiple, different Wolbachia strains into target vector populations, necessitating the identification and characterization of appropriate endosymbiont variants. Here, we report preliminary characterization of wFlu, a native Wolbachia from the neotropical mosquito Aedes fluviatilis, and evaluate its potential as a vector control agent by confirming its ability to cause cytoplasmic incompatibility, and measuring its effect on three parameters determining host fitness (survival, fecundity and fertility), as well as vector competence (susceptibility) for pathogen infection. Using an aposymbiotic strain of Ae. fluviatilis cured of its native Wolbachia by antibiotic treatment, we show that in its natural host wFlu causes incomplete, but high levels of, unidirectional cytoplasmic incompatibility, has high rates of maternal transmission, and no detectable fitness costs, indicating a high capacity to rapidly spread through host populations. However, wFlu does not inhibit, and even enhances, oocyst infection with the avian malaria parasite Plasmodium gallinaceum. The stage- and sex-specific density of wFlu was relatively low, and with limited tissue distribution, consistent with the lack of virulence and pathogen interference/symbiont-mediated protection observed. Unexpectedly, the density of wFlu was also shown to be specifically-reduced in the ovaries after bloodfeeding Ae. fluviatilis. Overall, our observations indicate that the Wolbachia strain wFlu has the potential to be used as a vector control agent, and suggests that appreciable mutualistic coevolution has occurred between this endosymbiont and its natural host. Future work will be needed to determine whether wFlu has virulent host effects and/or exhibits pathogen interference when artificially-transfected to the novel mosquito hosts that are the vectors of human pathogens. PMID:23555728

  12. International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil.

    PubMed

    Corbel, Vincent; Fonseca, Dina M; Weetman, David; Pinto, João; Achee, Nicole L; Chandre, Fabrice; Coulibaly, Mamadou B; Dusfour, Isabelle; Grieco, John; Juntarajumnong, Waraporn; Lenhart, Audrey; Martins, Ademir J; Moyes, Catherine; Ng, Lee Ching; Raghavendra, Kamaraju; Vatandoost, Hassan; Vontas, John; Muller, Pie; Kasai, Shinji; Fouque, Florence; Velayudhan, Raman; Durot, Claire; David, Jean-Philippe

    2017-06-02

    Vector-borne diseases transmitted by insect vectors such as mosquitoes occur in over 100 countries and affect almost half of the world's population. Dengue is currently the most prevalent arboviral disease but chikungunya, Zika and yellow fever show increasing prevalence and severity. Vector control, mainly by the use of insecticides, play a key role in disease prevention but the use of the same chemicals for more than 40 years, together with the dissemination of mosquitoes by trade and environmental changes, resulted in the global spread of insecticide resistance. In this context, innovative tools and strategies for vector control, including the management of resistance, are urgently needed. This report summarizes the main outputs of the first international workshop on Insecticide resistance in vectors of arboviruses held in Rio de Janeiro, Brazil, 5-8 December 2016. The primary aims of this workshop were to identify strategies for the development and implementation of standardized insecticide resistance management, also to allow comparisons across nations and across time, and to define research priorities for control of vectors of arboviruses. The workshop brought together 163 participants from 28 nationalities and was accessible, live, through the web (> 70,000 web-accesses over 3 days).

  13. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing).

    PubMed

    Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame

    2014-04-20

    A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.

  14. 9 CFR 101.7 - Seed organisms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Seed organisms. 101.7 Section 101.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.7 Seed organisms. When...

  15. 9 CFR 101.7 - Seed organisms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Seed organisms. 101.7 Section 101.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.7 Seed organisms. When...

  16. 9 CFR 101.7 - Seed organisms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Seed organisms. 101.7 Section 101.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.7 Seed organisms. When...

  17. 9 CFR 101.7 - Seed organisms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Seed organisms. 101.7 Section 101.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.7 Seed organisms. When...

  18. 9 CFR 101.7 - Seed organisms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Seed organisms. 101.7 Section 101.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.7 Seed organisms. When...

  19. A New Model of Progressive Visceral Leishmaniasis in Hamsters by Natural Transmission via Bites of Vector Sand Flies

    PubMed Central

    Aslan, Hamide; Dey, Ranadhir; Meneses, Claudio; Castrovinci, Philip; Jeronimo, Selma Maria Bezerra; Oliva, Gætano; Fischer, Laurent; Duncan, Robert C.; Nakhasi, Hira L.; Valenzuela, Jesus G.; Kamhawi, Shaden

    2013-01-01

    Background. Visceral leishmaniasis (VL) is transmitted by sand flies. Protection of needle-challenged vaccinated mice was abrogated in vector-initiated cutaneous leishmaniasis, highlighting the importance of developing natural transmission models for VL. Methods. We used Lutzomyia longipalpis to transmit Leishmania infantum or Leishmania donovani to hamsters. Vector-initiated infections were monitored and compared with intracardiac infections. Body weights were recorded weekly. Organ parasite loads and parasite pick-up by flies were assessed in sick hamsters. Results. Vector-transmitted L. infantum and L. donovani caused ≥5-fold increase in spleen weight compared with uninfected organs and had geometric mean parasite loads (GMPL) comparable to intracardiac inoculation of 107–108 parasites, although vector-initiated disease progression was slower and weight loss was greater. Only vector-initiated L. infantum infections caused cutaneous lesions at transmission and distal sites. Importantly, 45.6%, 50.0%, and 33.3% of sand flies feeding on ear, mouth, and testicular lesions, respectively, were parasite-positive. Successful transmission was associated with a high mean percent of metacyclics (66%–82%) rather than total GMPL (2.0 × 104–8.0 × 104) per midgut. Conclusions. This model provides an improved platform to study initial immune events at the bite site, parasite tropism, and pathogenesis and to test drugs and vaccines against naturally acquired VL. PMID:23288926

  20. Puromycin-resistant lentiviral control shRNA vector, pLKO.1 induces unexpected cellular differentiation of P19 embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanungo, Jyotshna

    RNA silencing is used as a common method for investigating loss-of-function effects of genes of interest. In mammalian cells, RNA interference (RNAi) or RNA silencing can be achieved by transient siRNA (small or short interfering RNA) transfection or by stable shRNA (short hairpin RNA) systems. Various vectors are used for efficient delivery of shRNA. Lentiviral vectors offer an efficient delivery system for stable and long-term expression of the shRNA in mammalian cells. The widely used lentiviral pLKO.1 plasmid vector is very popular in RNAi studies. A large RNAi database, a TRC (the RNAi Consortium) library, was established based on themore » pLKO.1-TRC plasmid vector. This plasmid (also called pLKO.1-puro) has a puromycin-resistant gene for selection in mammalian cells along with designs for generating lentiviral particles as well for RNA silencing. While using the pLKO.1-puro TRC control shRNA plasmid for transfection in murine P19 embryonic stem (ES) cells, it was unexpectedly discovered that this plasmid vector induced robust endodermal differentiation. Since P19 ES cells are pluripotent and respond to external stimuli that have the potential to alter the phenotype and thus its stemness, other cell types used in RNA silencing studies do not display the obvious effect and therefore, may affect experiments in subtle ways that would go undetected. This study for the first time provides evidence that raises concern and warrants extreme caution while using the pLKO.1-puro control shRNA vector because of its unexpected non-specific effects on cellular integrity. - Highlights: • In P19 ES cells the pLKO.1-puro lentiviral control shRNA vector induced endodermal differentiation. • P19 ES cells harboring the pCDNA3 plasmid vector retained their stem-ness as opposed to those harboring the pLKO.1-puro vector. • P19 ES cells can serve as a sensor to determine vector safety. • Extreme caution is warranted while using the widely used pLKO.1-puro lentiviral vector for experimental and therapeutic designs.« less

  1. Density-dependent host choice by disease vectors: epidemiological implications of the ideal free distribution.

    PubMed

    Basáñez, María-Gloria; Razali, Karina; Renz, Alfons; Kelly, David

    2007-03-01

    The proportion of vector blood meals taken on humans (the human blood index, h) appears as a squared term in classical expressions of the basic reproduction ratio (R(0)) for vector-borne infections. Consequently, R(0) varies non-linearly with h. Estimates of h, however, constitute mere snapshots of a parameter that is predicted, from evolutionary theory, to vary with vector and host abundance. We test this prediction using a population dynamics model of river blindness assuming that, before initiation of vector control or chemotherapy, recorded measures of vector density and human infection accurately represent endemic equilibrium. We obtain values of h that satisfy the condition that the effective reproduction ratio (R(e)) must equal 1 at equilibrium. Values of h thus obtained decrease with vector density, decrease with the vector:human ratio and make R(0) respond non-linearly rather than increase linearly with vector density. We conclude that if vectors are less able to obtain human blood meals as their density increases, antivectorial measures may not lead to proportional reductions in R(0) until very low vector levels are achieved. Density dependence in the contact rate of infectious diseases transmitted by insects may be an important non-linear process with implications for their epidemiology and control.

  2. Tightly regulated, high-level expression from controlled copy number vectors based on the replicon of temperate phage N15.

    PubMed

    Mardanov, Andrey V; Strakhova, Taisia S; Smagin, Vladimir A; Ravin, Nikolai V

    2007-06-15

    A new Escherichia coli host/vector system has been developed to allow a dual regulation of both the plasmid copy number and gene expression. The new pN15E vectors are low copy number plasmids based on the replicon of temperate phage N15, comprising the repA replicase gene and cB repressor gene, controlling the plasmid copy number. Regulation of pN15E copy number is achieved through arabinose-inducible expression of phage N15 antirepressor protein, AntA, whose gene was integrated into the chromosome of the host strain under control of the PBAD promoter. The host strain also carried phage N15 partition operon, sop, allowing stable inheritance of pN15E vectors in the absence of selection pressure. In the first vector, pN15E4, the same PBAD promoter controls expression of a cloned gene. The second vector, pN15E6, carries the phage T5 promoter with a double lac operator repression module thus allowing independent regulation of promoter activity and copy number. Using the lacZ gene to monitor expression in these vectors, we show that the ratio of induction/repression can be about 7600-fold for pN15E4 and more than 15,000-fold for pN15E6. The low copy number of these vectors ensures very low basal level of expression allowing cloning genes encoding toxic products that was demonstrated by the stable maintenance of a gene encoding a restriction endonuclease in pN15E4. The tight control of transcription and the potential to regulate gene activities quantitatively over wide ranges will open up new approaches in the study of gene function in vivo and controlled expression of heterologous genes.

  3. Targeted Screening Strategies to Detect Trypanosoma cruzi Infection in Children

    PubMed Central

    Levy, Michael Z.; Kawai, Vivian; Bowman, Natalie M.; Waller, Lance A.; Cabrera, Lilia; Pinedo-Cancino, Viviana V.; Seitz, Amy E.; Steurer, Frank J.; Cornejo del Carpio, Juan G.; Cordova-Benzaquen, Eleazar; Maguire, James H.; Gilman, Robert H.; Bern, Caryn

    2007-01-01

    Background Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy. Methods and Findings We performed a serological survey in children 2–18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4–7.9]) children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child's risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child's house. Receiver operator characteristic (ROC) plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children. Conclusions We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings. PMID:18160979

  4. Construction of fusion vectors of corynebacteria: expression of glutathione-S-transferase fusion protein in Corynebacterium acetoacidophilum ATCC 21476.

    PubMed

    Srivastava, Preeti; Deb, J K

    2002-07-02

    A series of fusion vectors containing glutathione-S-transferase (GST) were constructed by inserting GST fusion cassette of Escherichia coli vectors pGEX4T-1, -2 and -3 in corynebacterial vector pBK2. Efficient expression of GST driven by inducible tac promoter of E. coli was observed in Corynebacterium acetoacidophilum. Fusion of enhanced green fluorescent protein (EGFP) and streptokinase genes in this vector resulted in the synthesis of both the fusion proteins. The ability of this recombinant organism to produce several-fold more of the product in the extracellular medium than in the intracellular space would make this system quite attractive as far as the downstream processing of the product is concerned.

  5. UDE-based control of variable-speed wind turbine systems

    NASA Astrophysics Data System (ADS)

    Ren, Beibei; Wang, Yeqin; Zhong, Qing-Chang

    2017-01-01

    In this paper, the control of a PMSG (permanent magnet synchronous generator)-based variable-speed wind turbine system with a back-to-back converter is considered. The uncertainty and disturbance estimator (UDE)-based control approach is applied to the regulation of the DC-link voltage and the control of the RSC (rotor-side converter) and the GSC (grid-side converter). For the rotor-side controller, the UDE-based vector control is developed for the RSC with PMSG control to facilitate the application of the MPPT (maximum power point tracking) algorithm for the maximum wind energy capture. For the grid-side controller, the UDE-based vector control is developed to control the GSC with the power reference generated by a UDE-based DC-link voltage controller. Compared with the conventional vector control, the UDE-based vector control can achieve reliable current decoupling control with fast response. Moreover, the UDE-based DC-link voltage regulation can achieve stable DC-link voltage under model uncertainties and external disturbances, e.g. wind speed variations. The effectiveness of the proposed UDE-based control approach is demonstrated through extensive simulation studies in the presence of coupled dynamics, model uncertainties and external disturbances under varying wind speeds. The UDE-based control is able to generate more energy, e.g. by 5% for the wind profile tested.

  6. Twenty-Five year (1982-2007) history of lodgepole pine dwarf mistletoe animal vectors and ethephon control on the Fraser Experimental Forest in Colorado

    Treesearch

    Thomas Nicholls

    2009-01-01

    This is a summary of the 25-year history of studies of mammal and bird vectors of lodgepole pine dwarf mistletoe (Arceuthobium americanum), ethephon control of dwarf mistletoe, and the ecology of the most important dwarf mistletoe vector, the gray jay (Persisoreus canadensis), on the USDA Forest Service, Fraser Experimental Forest...

  7. 76 FR 13619 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Funding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... Institute Pasteur of Madagascar and the Centers for Disease Control and Prevention on Malaria and Vector... Malaria Prevention and Control in the Republic of Uganda as Part of the President's Malaria Initiative... Institute Pasteur of Madagascar and the Centers for Disease Control and Prevention on Malaria and Vector...

  8. Design Specification for a Thrust-Vectoring, Actuated-Nose-Strake Flight Control Law for the High-Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bacon, Barton J.; Carzoo, Susan W.; Davidson, John B.; Hoffler, Keith D.; Lallman, Frederick J.; Messina, Michael D.; Murphy, Patrick C.; Ostroff, Aaron J.; Proffitt, Melissa S.; Yeager, Jessie C.; hide

    1996-01-01

    Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.

  9. Temporal characterization of the organ-specific Rhipicephalus microplus transcriptional response to Anaplasma marginale infection

    USDA-ARS?s Scientific Manuscript database

    Arthropods transmit a variety of important infectious diseases of humans and animals. Importantly, replication and development of pathogen infectivity is tightly linked to vector feeding on the mammalian host; thus analysis of the transcriptomes of both vector and pathogen during feeding is fundamen...

  10. Elliptic-symmetry vector optical fields.

    PubMed

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2014-08-11

    We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.

  11. Evaluation of chemical spraying and environmental management efficacy in areas with minor previous application of integrated control actions for visceral leishmaniasis in Brazil.

    PubMed

    Lara-Silva, Fabiana de Oliveira; Michalsky, Érika Monteiro; Fortes-Dias, Consuelo Latorre; Fiuza, Vanessa de Oliveira Pires; Dias, Edelberto Santos

    2017-12-01

    Leishmaniases are vector-borne diseases that are transmitted to humans through the bite of Leishmania-infected phlebotomine sand flies (Diptera:Psychodidae). The main proved vector of visceral leishmaniais (VL) in the New World - Lutzomyia longipalpis - is well-adapted to urban areas and has extensive distribution within the five geographical regions of Brazil. Integrated public health actions directed for the vector, domestic reservoir and humans for the control of VL are preferentially applied in municipalities with higher epidemiological risk of transmission. In this study, we evaluated the individual impact of two main vector control actions - chemical spraying and environmental management - in two districts with no reported cases of human VL. Although belonging to an endemic municipality for VL in Brazil, the integrated control actions have not been applied in these districts due to the absence of human cases. The number of L. longipalpis captured in a two-year period was used as indicator of the population density of the vector. After chemical spraying a tendency of reduction in L. longipalpis was observed but with no statistical significance compared to the control. Environmental management was effective in that reduction and it may help in the control of VL by reducing the population density of the vector in a preventive and more permanent action, perhaps associated with chemical spraying. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    PubMed

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  13. The Effects of City Streets on an Urban Disease Vector

    PubMed Central

    Barbu, Corentin M.; Hong, Andrew; Manne, Jennifer M.; Small, Dylan S.; Quintanilla Calderón, Javier E.; Sethuraman, Karthik; Quispe-Machaca, Víctor; Ancca-Juárez, Jenny; Cornejo del Carpio, Juan G.; Málaga Chavez, Fernando S.; Náquira, César; Levy, Michael Z.

    2013-01-01

    With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p<0.05). With the Gaussian Field Latent Class model we confirm that streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies. PMID:23341756

  14. Leishmaniasis sand fly vector density reduction is less marked in destitute housing after insecticide thermal fogging.

    PubMed

    Chaves, Luis Fernando; Calzada, Jose E; Rigg, Chystrie; Valderrama, Anayansi; Gottdenker, Nicole L; Saldaña, Azael

    2013-06-06

    Insecticide thermal fogging (ITF) is a tool to control vector borne diseases. Insecticide application success for vector control has been associated with housing materials and architecture. Vector abundance is correlated with weather changes. Nevertheless, housing quality and weather impacts on vector abundance have been unaccounted for in most New World insecticide control trials for leishmaniasis vectors. We conducted a 15 month insecticide control trial that included two deltamethrin [6 mg a.i.m-2] based ITF interventions in 12 of 24 monitored houses at Trinidad de Las Minas, a hyperendemic cutaneous leishmaniasis transmission village in western Panamá. During the study we followed sand fly (SF) abundance, keeping track of rainfall and quantified housing quality using an index based on architecture and construction materials. We found a 50 to 80% reduction in SF density in the fogged houses when compared with control houses, while controlling for seasonal changes in SF abundance associated with rainfall. We found heterogeneities in the reductions, as abundance changed according to SF species: Lutzomyia gomezi, Lu. panamensis, Lu. dysponeta and Lu. triramula reduced in density between 40% and 90% after ITF. In contrast, Lu. trapidoi density increased 5% after ITF. Differences in the impact of ITF were associated with housing quality, the most destitute houses, i.e., those with features that ease insect entrance, had a disproportionally larger SF abundance, in some cases with increased domiciliary SF density following the ITF. Our results suggest the potential of insecticide application to control SF density and leishmaniasis transmission could depend on housing quality beyond insecticide efficiency.

  15. Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs.

    PubMed

    Busquets, Núria; Lorenzo, Gema; López-Gil, Elena; Rivas, Raquel; Solanes, David; Galindo-Cardiel, Iván; Abad, F Xavier; Rodríguez, Fernando; Bensaid, Albert; Warimwe, George; Gilbert, Sarah C; Domingo, Mariano; Brun, Alejandro

    2014-08-01

    The present study has evaluated the protection conferred by a single subcutaneous dose of a modified vaccinia virus Ankara (MVA) vectored vaccine encoding the Rift Valley Fever virus (RVFV) glycoproteins Gn and Gc in lambs. Three groups of six to seven lambs were immunized as follows: one group received the vaccine (termed rMVA-GnGc), a second group received an MVA vector (vector control) and a third group received saline solution (non-vaccinated control). Fourteen days later, all animals were subcutaneously challenged with 10(5) TCID50 of the virulent RVFV isolate 56/74 and vaccine efficacy assessed using standard endpoints. Two lambs (one from the vaccine group and one from the vector control group) succumbed to RVFV challenge, showing characteristic liver lesions. Lambs from both the vector control and non-vaccinated groups were febrile from days 2 to 5 post challenge (pc) while those in the rMVA-GnGc group showed a single peak of pyrexia at day 3 pc. RVFV RNA was detected in both nasal and oral swabs from days 3 to 7 pc in some lambs from the vector control and non-vaccinated groups, but no viral shedding could be detected in the surviving lambs vaccinated with rMVA-GnGc. Together, the data suggest that a single dose of the rMVA-GnGc vaccine may be sufficient to reduce RVFV shedding and duration of viremia but does not provide sterile immunity nor protection from disease. Further optimization of this vaccine approach in lambs is warranted. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Cloning of Pf3, a filamentous bacteriophage of Pseudomonas aeruginosa, into the pBD214 vector of Bacillus subtilis.

    PubMed Central

    Putterman, D G; Gryczan, T J; Dubnau, D; Day, L A

    1983-01-01

    The genome of Pf3, a filamentous single-stranded DNA bacteriophage of Pseudomonas aeruginosa (a gram-negative organism) was cloned into pBD214, a plasmid cloning vector of Bacillus subtilis (a gram-positive organism). Cloning in the gram-positive organism was done to avoid anticipated lethal effects. The entire Pf3 genome was inserted in each orientation at a unique Bc/I site within a thymidylate synthetase gene (from B. subtilis phage beta 22) on the plasmid. Additional clones were made by inserting EcoRI fragments of Pf3 DNA into a unique EcoRI site within this gene. Images PMID:6306273

  17. The Influence Function of Principal Component Analysis by Self-Organizing Rule.

    PubMed

    Higuchi; Eguchi

    1998-07-28

    This article is concerned with a neural network approach to principal component analysis (PCA). An algorithm for PCA by the self-organizing rule has been proposed and its robustness observed through the simulation study by Xu and Yuille (1995). In this article, the robustness of the algorithm against outliers is investigated by using the theory of influence function. The influence function of the principal component vector is given in an explicit form. Through this expression, the method is shown to be robust against any directions orthogonal to the principal component vector. In addition, a statistic generated by the self-organizing rule is proposed to assess the influence of data in PCA.

  18. Methods and apparatus for non-acoustic speech characterization and recognition

    DOEpatents

    Holzrichter, John F.

    1999-01-01

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  19. Methods and apparatus for non-acoustic speech characterization and recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, J.F.

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  20. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs.

    PubMed

    Wong, Gwendolyn K L; Jim, C Y

    2016-12-15

    Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes to improve disease control efficacy amidst surging urbanization and changing climate. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. 9 CFR 103.2 - Disposition of animals administered experimental biological products or live organisms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXPERIMENTAL PRODUCTION, DISTRIBUTION, AND EVALUATION OF BIOLOGICAL...

  2. Genetics and evolution of triatomines: from phylogeny to vector control

    PubMed Central

    Gourbière, S; Dorn, P; Tripet, F; Dumonteil, E

    2012-01-01

    Triatomines are hemipteran bugs acting as vectors of the protozoan parasite Trypanosoma cruzi. This parasite causes Chagas disease, one of the major parasitic diseases in the Americas. Studies of triatomine genetics and evolution have been particularly useful in the design of rational vector control strategies, and are reviewed here. The phylogeography of several triatomine species is now slowly emerging, and the struggle to reconcile the phenotypic, phylogenetic, ecological and epidemiological species concepts makes for a very dynamic field. Population genetic studies using different markers indicate a wide range of population structures, depending on the triatomine species, ranging from highly fragmented to mobile, interbreeding populations. Triatomines transmit T. cruzi in the context of complex interactions between the insect vectors, their bacterial symbionts and the parasites; however, an integrated view of the significance of these interactions in triatomine biology, evolution and in disease transmission is still lacking. The development of novel genetic markers, together with the ongoing sequencing of the Rhodnius prolixus genome and more integrative studies, will provide key tools to expanding our understanding of these important insect vectors and allow the design of improved vector control strategies. PMID:21897436

  3. Thrust vectoring for lateral-directional stability

    NASA Technical Reports Server (NTRS)

    Peron, Lee R.; Carpenter, Thomas

    1992-01-01

    The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented.

  4. Predictive control strategies for wind turbine system based on permanent magnet synchronous generator.

    PubMed

    Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba

    2016-05-01

    In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease

    PubMed Central

    Waleckx, Etienne; Gourbière, Sébastien; Dumonteil, Eric

    2015-01-01

    Chagas disease prevention remains mostly based on triatomine vector control to reduce or eliminate house infestation with these bugs. The level of adaptation of triatomines to human housing is a key part of vector competence and needs to be precisely evaluated to allow for the design of effective vector control strategies. In this review, we examine how the domiciliation/intrusion level of different triatomine species/populations has been defined and measured and discuss how these concepts may be improved for a better understanding of their ecology and evolution, as well as for the design of more effective control strategies against a large variety of triatomine species. We suggest that a major limitation of current criteria for classifying triatomines into sylvatic, intrusive, domiciliary and domestic species is that these are essentially qualitative and do not rely on quantitative variables measuring population sustainability and fitness in their different habitats. However, such assessments may be derived from further analysis and modelling of field data. Such approaches can shed new light on the domiciliation process of triatomines and may represent a key tool for decision-making and the design of vector control interventions. PMID:25993504

  6. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa.

    PubMed

    Gnankiné, Olivier; Bassolé, Imael H N; Chandre, Fabrice; Glitho, Isabelle; Akogbeto, Martin; Dabiré, Roch K; Martin, Thibaud

    2013-10-01

    Insecticides from the organophosphate (OP) and pyrethroid (PY) chemical families, have respectively, been in use for 50 and 30 years in West Africa, mainly against agricultural pests, but also against vectors of human disease. The selection pressure, with practically the same molecules year after year (mainly on cotton), has caused insecticide resistance in pest populations such as Bemisia tabaci, vector of harmful phytoviruses on vegetables. The evolution toward insecticide resistance in malaria vectors such as Anopheles gambiae sensus lato (s.l.) is probably related to the current use of these insecticides in agriculture. Thus, successful pest and vector control in West Africa requires an investigation of insect susceptibility, in relation to the identification of species and sub species, such as molecular forms or biotypes. Identification of knock down resistance (kdr) and acetylcholinesterase gene (Ace1) mutations modifying insecticide targets in individual insects and measure of enzymes activity typically involved in insecticide metabolism (oxidase, esterase and glutathion-S-transferase) are indispensable in understanding the mechanisms of resistance. Insecticide resistance is a good example in which genotype-phenotype links have been made successfully. Insecticides used in agriculture continue to select new resistant populations of B. tabaci that could be from different biotype vectors of plant viruses. As well, the evolution of insecticide resistance in An. gambiae threatens the management of malaria vectors in West Africa. It raises the question of priority in the use of insecticides in health and/or agriculture, and more generally, the question of sustainability of crop protection and vector control strategies in the region. Here, we review the susceptibility tests, biochemical and molecular assays data for B. tabaci, a major pest in cotton and vegetable crops, and An. gambiae, main vector of malaria. The data reviewed was collected in Benin and Burkina Faso between 2008 and 2010 under the Corus 6015 research program. This review aims to show: (i) the insecticide resistance in B. tabaci as well as in An. gambiae; and (ii) due to this, the impact of selection of resistant populations on malaria vector control strategies. Some measures that could be beneficial for crop protection and vector control strategies in West Africa are proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Hydroxyurea therapy requires HbF induction for clinical benefit in a sickle cell mouse model

    PubMed Central

    Lebensburger, Jeffrey D.; Pestina, Tamara I.; Ware, Russell E.; Boyd, Kelli L.; Persons, Derek A.

    2010-01-01

    Hydroxyurea has proven clinical efficacy in patients with sickle cell disease. Potential mechanisms for the beneficial effects include fetal hemoglobin induction and the reduction of cell adhesive properties, inflammation and hypercoagulability. Using a murine model of sickle cell disease in which fetal hemoglobin induction does not occur, we evaluated whether hydroxyurea administration would still yield improvements in hematologic parameters and reduce end-organ damage. Animals given a maximally tolerated dose of hydroxyurea that resulted in significant reductions in the neutrophil and platelet counts showed no improvement in hemolytic anemia and end-organ damage compared to control mice. In contrast, animals having high levels of fetal hemoglobin due to gene transfer with a γ-globin lentiviral vector showed correction of anemia and organ damage. These data suggest that induction of fetal hemoglobin by hydroxyurea is an essential mechanism for its clinical benefits. PMID:20378564

  8. Plant response to gravity: towards a biosystems view of root gravitropism

    NASA Astrophysics Data System (ADS)

    Palme, Klaus; Volkmann, Dieter; Bennett, Malcolm J.; Gausepohl, Heinrich

    2005-10-01

    Plants are sessile organisms that originated and evolved in Earth's environment. They monitor a wide range of disparate external and internal signals and compute appropriate developmental responses. How do plant cells process these myriad signals into an appropriate response? How do they integrate these signals to reach a finely balanced decision on how to grow, how to determine the direction of growth and how to develop their organs to exploit the environment? As plant responses are generally irreversible growth responses, their signalling systems must compute each developmental decision with extreme care. One stimulus to which plants are continuously exposed is the gravity vector. Gravity affects adaptive growth responses that reorient organs towards light and nutrient resources. The MAP team was established by ESA to study in the model plant Arabidopsis thaliana the role of the hormone auxin in gravity-mediated growth control. Another goal was to dissect gravity perception and gravity signal transduction pathways.

  9. New Materials, Techniques and Device Concepts for Organic NLO Chromophore-based Electrooptic Devices. Part 1

    DTIC Science & Technology

    2006-08-23

    polarization the electric field vector is parallel to the substrate, for TM polarization the magnetic field vector is parallel to the substrate. Figure...section can be obtained for the case of the two electromagnetic field polarization vectors λ and µ describing the two photons being absorbed (of the same or... polarization effects on two-photon absorption as investigated by the technique of thermal lensing detected absorption of a mode- locked laser beam. This

  10. Construction of New Campylobacter Cloning Vectors and a New Mutational Cat Cassette

    DTIC Science & Technology

    1993-01-01

    mutational cat cassette PE - 61102A PR - 3M161102 6. AUTHOR(S) TA - BS13AK Yao R, Aim RA, Trust TJ, Guerry P WU- 1291 7. PERFORMING ORGANIZATION NAME(S) AND...mutational cat cassette %~ccesion For (Site-specific mutagenesis; recombinant DNA; multiple cloning site; PCR; shuttle vectors) NTIS CRA&I OTIC TAB E...campylobacter portion of these vectors, only three CAT , Cm acetyllraaseriase; car, gene encoding CAT , Cm, restriction sites in the IacZ MCS remain unique

  11. [Adeno-associated viral vectors: methods for production and purification for gene therapy applications].

    PubMed

    Mena-Enriquez, Mayra; Flores-Contreras, Lucia; Armendáriz-Borunda, Juan

    2012-01-01

    Viral vectors based on adeno-associated virus (AAV) are widely used in gene therapy protocols, because they have characteristics that make them valuable for the treatment of genetic and chronic degenerative diseases. AAV2 serotype had been the best characterized to date. However, the AAV vectors developed from other serotypes is of special interest, since they have organ-specific tropism which increases their potential for transgene delivery to target cells for performing their therapeutic effects. This article summarizes AAV generalities, methods for their production and purification. It also discusses the use of these vectors in vitro, in vivo and their application in gene therapy clinical trials.

  12. Humanlike agents with posture planning ability

    NASA Astrophysics Data System (ADS)

    Jung, Moon R.; Badler, Norman I.

    1992-11-01

    Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend versus squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of `lumped' control parameters, that is, control points and vectors.

  13. Human-like agents with posture planning ability

    NASA Technical Reports Server (NTRS)

    Jung, Moon R.; Badler, Norman

    1992-01-01

    Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend vs. squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of 'lumped' control parameters, that is, control points and vectors.

  14. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families.

    PubMed

    Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V

    2017-02-01

    Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas' disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas' disease. The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas' disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high levels of pyrethroid resistance detected in triatomines from the Gran Chaco ecoregion. Our results help to elucidate the potential insecticide resistance mechanisms in vectors of Chagas' disease and provide new relevant information for this field. This study shows that metabolic resistance might be a contributing cause of the high pyrethroid resistance observed in wild T. infestans populations from the Gran Chaco ecoregion, area in which although subjected to intense pyrethroid treatments, vector control has failed. This study opens new avenues for further functional studies on triatomine detoxification mechanisms.

  15. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families

    PubMed Central

    Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G.; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V.

    2017-01-01

    Background Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas’ disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas’ disease. Methods and findings The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas’ disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high levels of pyrethroid resistance detected in triatomines from the Gran Chaco ecoregion. Conclusions and significance Our results help to elucidate the potential insecticide resistance mechanisms in vectors of Chagas’ disease and provide new relevant information for this field. This study shows that metabolic resistance might be a contributing cause of the high pyrethroid resistance observed in wild T. infestans populations from the Gran Chaco ecoregion, area in which although subjected to intense pyrethroid treatments, vector control has failed. This study opens new avenues for further functional studies on triatomine detoxification mechanisms. PMID:28199333

  16. Under-Expression of Chemosensory Genes in Domiciliary Bugs of the Chagas Disease Vector Triatoma brasiliensis

    PubMed Central

    Marchant, Axelle; Mougel, Florence; Jacquin-Joly, Emmanuelle; Costa, Jane; Almeida, Carlos Eduardo; Harry, Myriam

    2016-01-01

    Background In Latin America, the bloodsucking bugs Triatominae are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical elimination programs have been launched to control Chagas disease vectors. However, the disease persists because native vectors from sylvatic habitats are able to (re)colonize houses—a process called domiciliation. Triatoma brasiliensis is one example. Because the chemosensory system allows insects to interact with their environment and plays a key role in insect adaption, we conducted a descriptive and comparative study of the chemosensory transcriptome of T. brasiliensis samples from different ecotopes. Methodology/Principal Finding In a reference transcriptome built using de novo assembly, we found transcripts encoding 27 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), 3 odorant receptors (ORs), 5 transient receptor potential channel (TRPs), 1 sensory neuron membrane protein (SNMPs), 25 takeout proteins, 72 cytochrome P450s, 5 gluthatione S-transferases, and 49 cuticular proteins. Using protein phylogenies, we showed that most of the OBPs and CSPs for T. brasiliensis had well supported orthologs in the kissing bug Rhodnius prolixus. We also showed a higher number of these genes within the bloodsucking bugs and more generally within all Hemipterans compared to the other species in the super-order Paraneoptera. Using both DESeq2 and EdgeR software, we performed differential expression analyses between samples of T. brasiliensis, taking into account their environment (sylvatic, peridomiciliary and domiciliary) and sex. We also searched clusters of co-expressed contigs using HTSCluster. Among differentially expressed (DE) contigs, most were under-expressed in the chemosensory organs of the domiciliary bugs compared to the other samples and in females compared to males. We clearly identified DE genes that play a role in the chemosensory system. Conclusion/Significance Chemosensory genes could be good candidates for genes that contribute to adaptation or plastic rearrangement to an anthropogenic system. The domiciliary environment probably includes less diversity of xenobiotics and probably has more stable abiotic parameters than do sylvatic and peridomiciliary environments. This could explain why both detoxification and cuticle protein genes are less expressed in domiciliary bugs. Understanding the molecular basis for how vectors adapt to human dwellings may reveal new tools to control disease vectors; for example, by disrupting chemical communication. PMID:27792774

  17. Under-Expression of Chemosensory Genes in Domiciliary Bugs of the Chagas Disease Vector Triatoma brasiliensis.

    PubMed

    Marchant, Axelle; Mougel, Florence; Jacquin-Joly, Emmanuelle; Costa, Jane; Almeida, Carlos Eduardo; Harry, Myriam

    2016-10-01

    In Latin America, the bloodsucking bugs Triatominae are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical elimination programs have been launched to control Chagas disease vectors. However, the disease persists because native vectors from sylvatic habitats are able to (re)colonize houses-a process called domiciliation. Triatoma brasiliensis is one example. Because the chemosensory system allows insects to interact with their environment and plays a key role in insect adaption, we conducted a descriptive and comparative study of the chemosensory transcriptome of T. brasiliensis samples from different ecotopes. In a reference transcriptome built using de novo assembly, we found transcripts encoding 27 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), 3 odorant receptors (ORs), 5 transient receptor potential channel (TRPs), 1 sensory neuron membrane protein (SNMPs), 25 takeout proteins, 72 cytochrome P450s, 5 gluthatione S-transferases, and 49 cuticular proteins. Using protein phylogenies, we showed that most of the OBPs and CSPs for T. brasiliensis had well supported orthologs in the kissing bug Rhodnius prolixus. We also showed a higher number of these genes within the bloodsucking bugs and more generally within all Hemipterans compared to the other species in the super-order Paraneoptera. Using both DESeq2 and EdgeR software, we performed differential expression analyses between samples of T. brasiliensis, taking into account their environment (sylvatic, peridomiciliary and domiciliary) and sex. We also searched clusters of co-expressed contigs using HTSCluster. Among differentially expressed (DE) contigs, most were under-expressed in the chemosensory organs of the domiciliary bugs compared to the other samples and in females compared to males. We clearly identified DE genes that play a role in the chemosensory system. Chemosensory genes could be good candidates for genes that contribute to adaptation or plastic rearrangement to an anthropogenic system. The domiciliary environment probably includes less diversity of xenobiotics and probably has more stable abiotic parameters than do sylvatic and peridomiciliary environments. This could explain why both detoxification and cuticle protein genes are less expressed in domiciliary bugs. Understanding the molecular basis for how vectors adapt to human dwellings may reveal new tools to control disease vectors; for example, by disrupting chemical communication.

  18. Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck; Raschke, Markus B.

    2018-05-01

    Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.

  19. Vector and reservoir control for preventing leishmaniasis

    PubMed Central

    González, Urbà; Pinart, Mariona; Sinclair, David; Firooz, Alireza; Enk, Claes; Vélez, Ivan D; Esterhuizen, Tonya M; Tristan, Mario; Alvar, Jorge

    2015-01-01

    Background Leishmaniasis is caused by the Leishmania parasite, and transmitted by infected phlebotomine sandflies. Of the two distinct clinical syndromes, cutaneous leishmaniasis (CL) affects the skin and mucous membranes, and visceral leishmaniasis (VL) affects internal organs. Approaches to prevent transmission include vector control by reducing human contact with infected sandflies, and reservoir control, by reducing the number of infected animals. Objectives To assess the effects of vector and reservoir control interventions for cutaneous and for visceral leishmaniasis. Search methods We searched the following databases to 13 January 2015: Cochrane Infectious Diseases Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS and WHOLIS, Web of Science, and RePORTER. We also searched trials registers for ongoing trials. Selection criteria Randomized controlled trials (RCTs) evaluating the effects of vector and reservoir control interventions in leishmaniasis-endemic regions. Data collection and analysis Two review authors independently searched for trials and extracted data from included RCTs. We resolved any disagreements by discussion with a third review author. We assessed the quality of the evidence using the GRADE approach. Main results We included 14 RCTs that evaluated a range of interventions across different settings. The study methods were generally poorly described, and consequently all included trials were judged to be at high or unclear risk of selection and reporting bias. Only seven trials reported clinical outcome data which limits our ability to make broad generalizations to different epidemiological settings and cultures. Cutaneous leishmaniasis One four-arm RCT from Afghanistan compared indoor residual spraying (IRS), insecticide-treated bednets (ITNs), and insecticide-treated bedsheets, with no intervention. Over 15 months follow-up, all three insecticide-based interventions had a lower incidence of CL than the control area (IRS: risk ratio (RR) 0.61, 95% confidence interval (CI) 0.38 to 0.97, 2892 participants, moderate quality evidence; ITNs: RR 0.32, 95% CI 0.18 to 0.56, 2954 participants, low quality evidence; ITS: RR 0.34, 95% CI 0.20 to 0.57, 2784 participants, low quality evidence). No difference was detected between the three interventions (low quality evidence). One additional trial of ITNs from Iran was underpowered to show a difference. Insecticide treated curtains were compared with no intervention in one RCT from Venezuela, where there were no CL episodes in the intervention areas over 12 months follow-up compared to 142 in control areas (RR 0.00, 95% CI 0.00 to 0.49, one trial, 2938 participants, low quality evidence). Personal protection using insecticide treated clothing was evaluated by two RCTs in soldiers, but the trials were underpowered to reliably detect effects on the incidence of CL (RR 0.40, 95% CI 0.13 to 1.20, two trials, 558 participants, low quality evidence). Visceral leishmaniasis In a single RCT of ITNs versus no intervention from India and Nepal, the incidence of VL was low in both groups and no difference was detected (RR 0.99, 95% CI 0.46 to 2.15, one trial, 19,810 participants, moderate quality evidence). Two trials from Brazil evaluated the effects of culling infected dogs compared to no intervention or IRS. Although they report a reduction in seroconversion over 18 months follow-up, they did not measure or report effects on clinical disease. Authors' conclusions Using insecticides to reduce phlebotomine sandfly numbers may be effective at reducing the incidence of CL, but there is insufficient evidence from trials to know whether it is better to spray the internal walls of houses or to treat bednets, curtains, bedsheets or clothing. PLAIN LANGUAGE SUMMARY Vector and reservoir control for preventing leishmaniasis This review summarises trials evaluating different measures to prevent leishmaniasis. After searching for relevant trials up to January 2015, we included 14 randomized controlled trials. What is vector and reservoir control and how might they prevent leishmaniasis? Leishmaniasis is a group of infectious diseases caused by Leishmania parasites, which are transmitted between humans and animals by the bite of infected phlebotomine sandflies. There are two main clinical diseases: cutaneous leishmaniasis (CL), where parasites infect the skin, and visceral leishmaniasis (VL), where they infect the internal organs. Leishmaniasis could be prevented by reducing human contact with infected phlebotomine sandflies (the vector), or by reducing the number of infected animals (the reservoir). What the research says? Cutaneous leishmaniasis Using insecticides to reduce the number of sandflies may be effective at reducing the number of new cases of cutaneous leishmaniasis (low quality evidence). However, there is not enough evidence to know whether it is better to use insecticides to spray the internal walls of houses, or use insecticide treated bednets, bedsheets, or curtains. Personal protection using insecticide treated clothing was also evaluated in two small trials in soldiers, but the trials were too small to know whether this was effective (low quality evidence). Visceral leishmaniasis Insecticide treated nets may not be effective at preventing visceral leishmaniasis but this has only been tested in a single trial from India and Nepal (low quality evidence). Although culling dogs is sometimes discussed as a potential way to reduce visceral leishmaniasis, this has not been tested in trials measuring clinical disease. PMID:26246011

  20. Eco-Bio-Social Determinants for House Infestation by Non-domiciliated Triatoma dimidiata in the Yucatan Peninsula, Mexico

    PubMed Central

    Dumonteil, Eric; Nouvellet, Pierre; Rosecrans, Kathryn; Ramirez-Sierra, Maria Jesus; Gamboa-León, Rubi; Cruz-Chan, Vladimir; Rosado-Vallado, Miguel; Gourbière, Sébastien

    2013-01-01

    Background Chagas disease is a vector-borne disease of major importance in the Americas. Disease prevention is mostly limited to vector control. Integrated interventions targeting ecological, biological and social determinants of vector-borne diseases are increasingly used for improved control. Methodology/principal findings We investigated key factors associated with transient house infestation by T. dimidiata in rural villages in Yucatan, Mexico, using a mixed modeling approach based on initial null-hypothesis testing followed by multimodel inference and averaging on data from 308 houses from three villages. We found that the presence of dogs, chickens and potential refuges, such as rock piles, in the peridomicile as well as the proximity of houses to vegetation at the periphery of the village and to public light sources are major risk factors for infestation. These factors explain most of the intra-village variations in infestation. Conclusions/significance These results underline a process of infestation distinct from that of domiciliated triatomines and may be used for risk stratification of houses for both vector surveillance and control. Combined integrated vector interventions, informed by an Ecohealth perspective, should aim at targeting several of these factors to effectively reduce infestation and provide sustainable vector control. PMID:24086790

  1. Age- and bite-structured models for vector-borne diseases.

    PubMed

    Rock, K S; Wood, D A; Keeling, M J

    2015-09-01

    The biology and behaviour of biting insects is a vitally important aspect in the spread of vector-borne diseases. This paper aims to determine, through the use of mathematical models, what effect incorporating vector senescence and realistic feeding patterns has on disease. A novel model is developed to enable the effects of age- and bite-structure to be examined in detail. This original PDE framework extends previous age-structured models into a further dimension to give a new insight into the role of vector biting and its interaction with vector mortality and spread of disease. Through the PDE model, the roles of the vector death and bite rates are examined in a way which is impossible under the traditional ODE formulation. It is demonstrated that incorporating more realistic functions for vector biting and mortality in a model may give rise to different dynamics than those seen under a more simple ODE formulation. The numerical results indicate that the efficacy of control methods that increase vector mortality may not be as great as predicted under a standard host-vector model, whereas other controls including treatment of humans may be more effective than previously thought. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Expanding integrated vector management to promote healthy environments

    PubMed Central

    Lizzi, Karina M.; Qualls, Whitney A.; Brown, Scott C.; Beier, John C.

    2014-01-01

    Integrated Vector Management (IVM) strategies are intended to protect communities from pathogen transmission by arthropods. These strategies target multiple vectors and different ecological and socioeconomic settings, but the aggregate benefits of IVM are limited by the narrow focus of its approach; IVM strategies only aim to control arthropod vectors. We argue that IVM should encompass environmental modifications at early stages, for instance, infrastructural development and sanitation services, to regulate not only vectors but also nuisance-biting arthropods. An additional focus on nuisance-biting arthropods will improve public health, quality of life, and minimize social disparity issues fostered by pests. Optimally, IVM could incorporate environmental awareness and promotion of control methods in order to proactively reduce threats of serious pest situations. PMID:25028090

  3. Spray characterization of ULV sprayers typically used in vector control

    USDA-ARS?s Scientific Manuscript database

    Numerous spray machines are used to apply products for the control of human disease vectors, such as mosquitoes and flies. However, the selection and setup of these machines significantly affect the level of control achieved during an application. The droplet spectra produced by nine different ULV...

  4. Modeling Dengue Vector Dynamics under Imperfect Detection: Three Years of Site-Occupancy by Aedes aegypti and Aedes albopictus in Urban Amazonia

    PubMed Central

    Padilla-Torres, Samael D.; Ferraz, Gonçalo; Luz, Sergio L. B.; Zamora-Perea, Elvira; Abad-Franch, Fernando

    2013-01-01

    Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. To date, Aedes ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to quantify the effects of municipality/state control interventions on Aedes site-occupancy dynamics, considering meteorological and dwelling-level covariates. Ae. aegypti site-occupancy estimates (mean 0.91; range 0.79–0.97) were much higher than reported by routine surveillance based on ‘rapid larval surveys’ (0.03; 0.02–0.11) and moderately higher than directly ascertained with oviposition traps (0.68; 0.50–0.91). Regular control campaigns based on breeding-site elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high maximum (Ae. aegypti) and minimum (Ae. albopictus) summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The marked contrast between our estimates of adult vector presence and the results from ‘rapid larval surveys’ suggests, together with the lack of effect of local control campaigns on infestation, that many Aedes breeding sites were overlooked by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to that crucial aim. PMID:23472194

  5. Public Health Interventions for Aedes Control in the Time of Zikavirus– A Meta-Review on Effectiveness of Vector Control Strategies

    PubMed Central

    Bouzid, Maha; Brainard, Julii; Hooper, Lee; Hunter, Paul R.

    2016-01-01

    Background There is renewed interest in effective measures to control Zika and dengue vectors. A synthesis of published literature with a focus on the quality of evidence is warranted to determine the effectiveness of vector control strategies. Methodology We conducted a meta-review assessing the effectiveness of any Aedes control measure. We searched Scopus and Medline for relevant reviews through to May 2016. Titles, abstracts and full texts were assessed independently for inclusion by two authors. Data extraction was performed in duplicate and validity of the evidence was assessed using GRADE criteria. Findings 13 systematic reviews that investigated the effect of control measures on entomological parameters or disease incidence were included. Biological controls seem to achieve better reduction of entomological indices than chemical controls, while educational campaigns can reduce breeding habitats. Integrated vector control strategies may not always increase effectiveness. The efficacy of any control programme is dependent on local settings, intervention type, resources and study duration, which may partly explain the varying degree of success between studies. Nevertheless, the quality of evidence was mostly low to very low due to poor reporting of study design, observational methodologies, heterogeneity, and indirect outcomes, thus hindering an evidence-based recommendation. Conclusions The evidence for the effectiveness of Aedes control measures is mixed. Chemical control, which is commonly used, does not appear to be associated with sustainable reductions of mosquito populations over time. Indeed, by contributing to a false sense of security, chemical control may reduce the effectiveness of educational interventions aimed at encouraging local people to remove mosquito breeding sites. Better quality studies of the impact of vector control interventions on the incidence of human infections with Dengue or Zika are still needed. PMID:27926934

  6. The Zika Virus Epidemic in Brazil: From Discovery to Future Implications

    PubMed Central

    Barcellos, Christovam; Brasil, Patrícia; Cruz, Oswaldo G.; Honório, Nildimar Alves; Kuper, Hannah; Carvalho, Marilia Sá

    2018-01-01

    The first confirmed case of Zika virus infection in the Americas was reported in Northeast Brazil in May 2015, although phylogenetic studies indicate virus introduction as early as 2013. Zika rapidly spread across Brazil and to more than 50 other countries and territories on the American continent. The Aedes aegypti mosquito is thought to be the principal vector responsible for the widespread transmission of the virus. However, sexual transmission has also been reported. The explosively emerging epidemic has had diverse impacts on population health, coinciding with cases of Guillain–Barré Syndrome and an unexpected epidemic of newborns with microcephaly and other neurological impairments. This led to Brazil declaring a national public health emergency in November 2015, followed by a similar decision by the World Health Organization three months later. While dengue virus serotypes took several decades to spread across Brazil, the Zika virus epidemic diffused within months, extending beyond the area of permanent dengue transmission, which is bound by a climatic barrier in the south and low population density areas in the north. This rapid spread was probably due to a combination of factors, including a massive susceptible population, climatic conditions conducive for the mosquito vector, alternative non-vector transmission, and a highly mobile population. The epidemic has since subsided, but many unanswered questions remain. In this article, we provide an overview of the discovery of Zika virus in Brazil, including its emergence and spread, epidemiological surveillance, vector and non-vector transmission routes, clinical complications, and socio-economic impacts. We discuss gaps in the knowledge and the challenges ahead to anticipate, prevent, and control emerging and re-emerging epidemics of arboviruses in Brazil and worldwide. PMID:29315224

  7. The Zika Virus Epidemic in Brazil: From Discovery to Future Implications.

    PubMed

    Lowe, Rachel; Barcellos, Christovam; Brasil, Patrícia; Cruz, Oswaldo G; Honório, Nildimar Alves; Kuper, Hannah; Carvalho, Marilia Sá

    2018-01-09

    The first confirmed case of Zika virus infection in the Americas was reported in Northeast Brazil in May 2015, although phylogenetic studies indicate virus introduction as early as 2013. Zika rapidly spread across Brazil and to more than 50 other countries and territories on the American continent. The Aedes aegypti mosquito is thought to be the principal vector responsible for the widespread transmission of the virus. However, sexual transmission has also been reported. The explosively emerging epidemic has had diverse impacts on population health, coinciding with cases of Guillain-Barré Syndrome and an unexpected epidemic of newborns with microcephaly and other neurological impairments. This led to Brazil declaring a national public health emergency in November 2015, followed by a similar decision by the World Health Organization three months later. While dengue virus serotypes took several decades to spread across Brazil, the Zika virus epidemic diffused within months, extending beyond the area of permanent dengue transmission, which is bound by a climatic barrier in the south and low population density areas in the north. This rapid spread was probably due to a combination of factors, including a massive susceptible population, climatic conditions conducive for the mosquito vector, alternative non-vector transmission, and a highly mobile population. The epidemic has since subsided, but many unanswered questions remain. In this article, we provide an overview of the discovery of Zika virus in Brazil, including its emergence and spread, epidemiological surveillance, vector and non-vector transmission routes, clinical complications, and socio-economic impacts. We discuss gaps in the knowledge and the challenges ahead to anticipate, prevent, and control emerging and re-emerging epidemics of arboviruses in Brazil and worldwide.

  8. Deciphering Babesia-Vector Interactions.

    PubMed

    Antunes, Sandra; Rosa, Catarina; Couto, Joana; Ferrolho, Joana; Domingos, Ana

    2017-01-01

    Understanding host-pathogen-tick interactions remains a vitally important issue that might be better understood by basic research focused on each of the dyad interplays. Pathogens gain access to either the vector or host during tick feeding when ticks are confronted with strong hemostatic, inflammatory and immune responses. A prominent example of this is the Babesia spp.-tick-vertebrate host relationship. Babesia spp. are intraerythrocytic apicomplexan organisms spread worldwide, with a complex life cycle. The presence of transovarial transmission in almost all the Babesia species is the main difference between their life cycle and that of other piroplasmida. With more than 100 species described so far, Babesia are the second most commonly found blood parasite of mammals after trypanosomes. The prevalence of Babesia spp. infection is increasing worldwide and is currently classified as an emerging zoonosis. Babesia microti and Babesia divergens are the most frequent etiological agents associated with human babesiosis in North America and Europe, respectively. Although the Babesia -tick system has been extensively researched, the currently available prophylactic and control methods are not efficient, and chemotherapeutic treatment is limited. Studying the molecular changes induced by the presence of Babesia in the vector will not only elucidate the strategies used by the protozoa to overcome mechanical and immune barriers, but will also contribute toward the discovery of important tick molecules that have a role in vector capacity. This review provides an overview of the identified molecules involved in Babesia -tick interactions, with an emphasis on the fundamentally important ones for pathogen acquisition and transmission.

  9. Deciphering Babesia-Vector Interactions

    PubMed Central

    Antunes, Sandra; Rosa, Catarina; Couto, Joana; Ferrolho, Joana; Domingos, Ana

    2017-01-01

    Understanding host-pathogen-tick interactions remains a vitally important issue that might be better understood by basic research focused on each of the dyad interplays. Pathogens gain access to either the vector or host during tick feeding when ticks are confronted with strong hemostatic, inflammatory and immune responses. A prominent example of this is the Babesia spp.—tick—vertebrate host relationship. Babesia spp. are intraerythrocytic apicomplexan organisms spread worldwide, with a complex life cycle. The presence of transovarial transmission in almost all the Babesia species is the main difference between their life cycle and that of other piroplasmida. With more than 100 species described so far, Babesia are the second most commonly found blood parasite of mammals after trypanosomes. The prevalence of Babesia spp. infection is increasing worldwide and is currently classified as an emerging zoonosis. Babesia microti and Babesia divergens are the most frequent etiological agents associated with human babesiosis in North America and Europe, respectively. Although the Babesia-tick system has been extensively researched, the currently available prophylactic and control methods are not efficient, and chemotherapeutic treatment is limited. Studying the molecular changes induced by the presence of Babesia in the vector will not only elucidate the strategies used by the protozoa to overcome mechanical and immune barriers, but will also contribute toward the discovery of important tick molecules that have a role in vector capacity. This review provides an overview of the identified molecules involved in Babesia-tick interactions, with an emphasis on the fundamentally important ones for pathogen acquisition and transmission. PMID:29034218

  10. Malaria in selected non-Amazonian countries of Latin America.

    PubMed

    Arevalo-Herrera, Myriam; Quiñones, Martha Lucia; Guerra, Carlos; Céspedes, Nora; Giron, Sandra; Ahumada, Martha; Piñeros, Juan Gabriel; Padilla, Norma; Terrientes, Zilka; Rosas, Angel; Padilla, Julio Cesar; Escalante, Ananias A; Beier, John C; Herrera, Socrates

    2012-03-01

    Approximately 170 million inhabitants of the American continent live at risk of malaria transmission. Although the continent's contribution to the global malaria burden is small, at least 1-1.2 million malaria cases are reported annually. Sixty percent of the malaria cases occur in Brazil and the other 40% are distributed in 20 other countries of Central and South America. Plasmodium vivax is the predominant species (74.2%) followed by P. falciparum (25.7%) and P. malariae (0.1%), and no less than 10 Anopheles species have been identified as primary or secondary malaria vectors. Rapid deforestation and agricultural practices are directly related to increases in Anopheles species diversity and abundance, as well as in the number of malaria cases. Additionally, climate changes profoundly affect malaria transmission and are responsible for malaria epidemics in some regions of South America. Parasite drug resistance is increasing, but due to bio-geographic barriers there is extraordinary genetic differentiation of parasites with limited dispersion. Although the clinical spectrum ranges from uncomplicated to severe malaria cases, due to the generally low to middle transmission intensity, features such as severe anemia, cerebral malaria and other complications appear to be less frequent than in other endemic regions and asymptomatic infections are a common feature. Although the National Malaria Control Programs (NMCP) of different countries differ in their control activities these are all directed to reduce morbidity and mortality by using strategies like health promotion, vector control and impregnate bed nets among others. Recently, international initiatives such as the Malaria Control Program in Andean-country Border Regions (PAMAFRO) (implemented by the Andean Organism for Health (ORAS) and sponsored by The Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)) and The Amazon Network for the Surveillance of Antimalarial Drug Resistance (RAVREDA) (sponsored by the Pan American Health Organization/World Health Organization (PAHO/WHO) and several other partners), have made great investments for malaria control in the region. We describe here the current status of malaria in a non-Amazonian region comprising several countries of South and Central America participating in the Centro Latino Americano de Investigación en Malaria (CLAIM), an International Center of Excellence for Malaria Research (ICEMR) sponsored by the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID). Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Malaria in selected non-Amazonian countries of Latin America

    PubMed Central

    Arevalo-Herrera, Myriam; Quiñones, Martha Lucia; Guerra, Carlos; Céspedes, Nora; Giron, Sandra; Ahumada, Martha; Piñeros, Juan Gabriel; Padilla, Norma; Terrientes, Zilka; Rosas, Ángel; Padilla, Julio Cesar; Escalante, Ananias A.; Beier, John C.; Herrera, Socrates

    2011-01-01

    Approximately 170 million inhabitants of the American continent live at risk of malaria transmission. Although the continent’s contribution to the global malaria burden is small, at least 1 to 1.2 million malaria cases are reported annually. Sixty per cent of the malaria cases occur in Brazil and the other 40% are distributed in 20 other countries of Central and South America. Plasmodium vivax is the predominant species (74.2 %) followed by P. falciparum (25.7 %) and P. malariae (0.1%), and no less than 10 Anopheles species have been identified as primary or secondary malaria vectors. Rapid deforestation and agricultural practices are directly related to increases in Anopheles species diversity and abundance, as well as in the number of malaria cases. Additionally, climate changes profoundly affect malaria transmission and are responsible for malaria epidemics in some regions of South America. Parasite drug resistance is increasing, but due to bio-geographic barriers there is extraordinary genetic differentiation of parasites with limited dispersion. Although the clinical spectrum ranges from uncomplicated to severe malaria cases, due to the generally low to middle transmission intensity, features such as severe anemia, cerebral malaria and other complications appear to be less frequent than in other endemic regions and asymptomatic infections are a common feature. Although the National Malaria Control Programs (NMCP) of different countries differ in their control activities these are all directed to reduce morbidity and mortality by using strategies like health promotion, vector control and impregnate bed nets among others. Recently, international initiatives such as the Malaria Control Program in Andean-country Border Regions (PAMAFRO) (implemented by the Andean Organism for Health (ORAS) and sponsored by The Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)) and The Amazon Network for the Surveillance of Antimalarial Drug Resistance (RAVREDA) (sponsored by the Pan American Health Organization/World Health Organization (PAHO/WHO) and several other partners), have made great investments for malaria control in the region. We describe here the current status of malaria in a non-Amazonian region comprising several countries of South and Central America participating in the Centro Latino Americano de Investigación en Malaria (CLAIM), an International Center of Excellence for Malaria Research (ICEMR) sponsored by the National Institutes of Health’s (NIH) National Institute of Allergy and Infectious Diseases (NIAID). PMID:21741349

  12. Cost-Effectiveness of the Strategies to Reduce the Incidence of Dengue in Colima, México

    PubMed Central

    Ochoa Diaz-Lopez, Héctor; Lugo-Radillo, Agustin; Espinoza-Gomez, Francisco; de la Cruz-Ruiz, Miriam; Sánchez-Piña, Ramón Alberto; Murillo-Zamora, Efrén

    2017-01-01

    Dengue fever is considered to be one of the most important arboviral diseases globally. Unsuccessful vector-control strategies might be due to the lack of sustainable community participation. The state of Colima, located in the Western region of Mexico, is a dengue-endemic area despite vector-control activities implemented, which may be due to an insufficient health economic analysis of these interventions. A randomized controlled community trial took place in five urban municipalities where 24 clusters were included. The study groups (n = 4) included an intervention to improve the community participation in vector control (A), ultra-low volume (ULV) spraying (B), both interventions (AB), and a control group. The main outcomes investigated were dengue cumulative incidence, disability-adjusted life years (DALYs), and the direct costs per intervention. The cumulative incidence of dengue was 17.4%, A; 14.3%, B; 14.4%, AB; and 30.2% in the control group. The highest efficiency and effectiveness were observed in group B (0.526 and 6.97, respectively) and intervention A was more likely to be cost-effective ($3952.84 per DALY avoided) followed by intervention B ($4472.09 per DALY avoided). Our findings suggest that efforts to improve community participation in vector control and ULV-spraying alone are cost-effective and may be useful to reduce the vector density and dengue incidence. PMID:28786919

  13. Cost-Effectiveness of the Strategies to Reduce the Incidence of Dengue in Colima, México.

    PubMed

    Mendoza-Cano, Oliver; Hernandez-Suarez, Carlos Moisés; Trujillo, Xochitl; Ochoa Diaz-Lopez, Héctor; Lugo-Radillo, Agustin; Espinoza-Gomez, Francisco; de la Cruz-Ruiz, Miriam; Sánchez-Piña, Ramón Alberto; Murillo-Zamora, Efrén

    2017-08-08

    Dengue fever is considered to be one of the most important arboviral diseases globally. Unsuccessful vector-control strategies might be due to the lack of sustainable community participation. The state of Colima, located in the Western region of Mexico, is a dengue-endemic area despite vector-control activities implemented, which may be due to an insufficient health economic analysis of these interventions. A randomized controlled community trial took place in five urban municipalities where 24 clusters were included. The study groups ( n = 4) included an intervention to improve the community participation in vector control (A), ultra-low volume (ULV) spraying (B), both interventions (AB), and a control group. The main outcomes investigated were dengue cumulative incidence, disability-adjusted life years (DALYs), and the direct costs per intervention. The cumulative incidence of dengue was 17.4%, A; 14.3%, B; 14.4%, AB; and 30.2% in the control group. The highest efficiency and effectiveness were observed in group B (0.526 and 6.97, respectively) and intervention A was more likely to be cost-effective ($3952.84 per DALY avoided) followed by intervention B ($4472.09 per DALY avoided). Our findings suggest that efforts to improve community participation in vector control and ULV-spraying alone are cost-effective and may be useful to reduce the vector density and dengue incidence.

  14. Ecology of Anopheles darlingi Root with respect to vector importance: a review

    PubMed Central

    2011-01-01

    Anopheles darlingi is one of the most important malaria vectors in the Americas. In this era of new tools and strategies for malaria and vector control it is essential to have knowledge on the ecology and behavior of vectors in order to evaluate appropriateness and impact of control measures. This paper aims to provide information on the importance, ecology and behavior of An. darlingi. It reviews publications that addressed ecological and behavioral aspects that are important to understand the role and importance of An. darlingi in the transmission of malaria throughout its area of distribution. The results show that Anopheles darlingi is especially important for malaria transmission in the Amazon region. Although numerous studies exist, many aspects determining the vectorial capacity of An. darlingi, i.e. its relation to seasons and environmental conditions, its gonotrophic cycle and longevity, and its feeding behavior and biting preferences, are still unknown. The vector shows a high degree of variability in behavioral traits. This makes it difficult to predict the impact of ongoing changes in the environment on the mosquito populations. Recent studies indicate a good ability of An. darlingi to adapt to environments modified by human development. This allows the vector to establish populations in areas where it previously did not exist or had been controlled to date. The behavioral variability of the vector, its adaptability, and our limited knowledge of these impede the establishment of effective control strategies. Increasing our knowledge of An. darlingi is necessary. PMID:21923902

  15. A country bug in the city: urban infestation by the Chagas disease vector Triatoma infestans in Arequipa, Peru

    PubMed Central

    2013-01-01

    Background Interruption of vector-borne transmission of Trypanosoma cruzi remains an unrealized objective in many Latin American countries. The task of vector control is complicated by the emergence of vector insects in urban areas. Methods Utilizing data from a large-scale vector control program in Arequipa, Peru, we explored the spatial patterns of infestation by Triatoma infestans in an urban and peri-urban landscape. Multilevel logistic regression was utilized to assess the associations between household infestation and household- and locality-level socio-environmental measures. Results Of 37,229 households inspected for infestation, 6,982 (18.8%; 95% CI: 18.4 – 19.2%) were infested by T. infestans. Eighty clusters of infestation were identified, ranging in area from 0.1 to 68.7 hectares and containing as few as one and as many as 1,139 infested households. Spatial dependence between infested households was significant at distances up to 2,000 meters. Household T. infestans infestation was associated with household- and locality-level factors, including housing density, elevation, land surface temperature, and locality type. Conclusions High levels of T. infestans infestation, characterized by spatial heterogeneity, were found across extensive urban and peri-urban areas prior to vector control. Several environmental and social factors, which may directly or indirectly influence the biology and behavior of T. infestans, were associated with infestation. Spatial clustering of infestation in the urban context may both challenge and inform surveillance and control of vector reemergence after insecticide intervention. PMID:24171704

  16. The Extinction of Dengue through Natural Vulnerability of Its Vectors

    PubMed Central

    Williams, Craig R.; Bader, Christie A.; Kearney, Michael R.; Ritchie, Scott A.; Russell, Richard C.

    2010-01-01

    Background Dengue is the world's most important mosquito-borne viral illness. Successful future management of this disease requires an understanding of the population dynamics of the vector, especially in the context of changing climates. Our capacity to predict future dynamics is reflected in our ability to explain the significant historical changes in the distribution and abundance of the disease and its vector. Methodology/Principal Findings Here we combine daily weather records with simulation modelling techniques to explain vector (Aedes aegypti (L.)) persistence within its current and historic ranges in Australia. We show that, in regions where dengue presently occurs in Australia (the Wet Tropics region of Far North Queensland), conditions are persistently suitable for year-round adult Ae. aegypti activity and oviposition. In the historic range, however, the vector is vulnerable to periodic extinction due to the combined influence of adult activity constraints and stochastic loss of suitable oviposition sites. Conclusions/Significance These results, together with changes in water-storage behaviour by humans, can explain the observed historical range contraction of the disease vector. For these reasons, future eradication of dengue in wet tropical regions will be extremely difficult through classical mosquito control methods alone. However, control of Ae. aegypti in sub-tropical and temperate regions will be greatly facilitated by government policy regulating domestic water-storage. Exploitation of the natural vulnerabilities of dengue vectors (e.g., habitat specificity, climatic limitations) should be integrated with the emerging novel transgenic and symbiotic bacterial control techniques to develop future control and elimination strategies. PMID:21200424

  17. First insights into the protective effects of a recombinant swinepox virus expressing truncated MRP of Streptococcus suis type 2 in mice.

    PubMed

    Huang, Dongyan; Zhu, Haodan; Lin, Huixing; Xu, Jiarong; Lu, Chengping

    2012-01-01

    To explore the potential of the swinepox virus (SPV) as vector for Streptococcus suis vaccines, a vector system was developed for the construction of a recombinant SPV carrying bacterial genes. Using this system, a recombinant virus expressing truncated muramidase-released protein (MRP) of S. suis type 2 (SS2), designated rSPV-MRP, was produced and identified by PCR, western blotting and immunofluorescence assays. The rSPV-MRP was found to be only slightly attenuated in PK-15 cells, when compared with the wild-type virus. After immunization intramuscularly with rSPV-MRP, SS2 inactive vaccine (positive control), wild-type SPV (negative control) and PBS (blank control) respectively, all CD1 mice were challenged with a lethal dose or a sublethal dose of SS2 highly virulent strain ZY05719. While SS2 inactive vaccine protected all mice, immunization with rSPV-MRP resulted in 60% survival and protected mice against a lethal dose of the highly virulent SS2 strain, compared with the negative control (P < 0.05). Our data indicate that animals immunized with rSPV-MRP had a significantly reduced bacterial burden in all organs examined, compared to negative controls and blank controls (P <0.05). Antibody titers of the rSPV-MRP-vaccinated group were significantly higher (P <0.001), when compared to negative controls and blank controls. Antibody titers were also significantly higher in the vaccinated group at all time points post-vaccination (P <0.001), compared with the positive controls. These initial results demonstrated that the rSPV-MRP provided mice with protection from systemic SS2 infection. If SPV recombinants have the potential as S. suis vaccines for the use in pigs has to be evaluated in further studies.

  18. Vectors, hosts, and control measures for Zika virus in the Americas

    USGS Publications Warehouse

    Thompson, Sarah J.; Pearce, John; Ramey, Andy M.

    2017-01-01

    We examine Zika virus (ZIKV) from an ecological perspective and with a focus on the Americas. We assess (1) the role of wildlife in ZIKV disease ecology, (2) how mosquito behavior and biology influence disease dynamics, and (3) how nontarget species and ecosystems may be impacted by vector control programs. Our review suggests that free-ranging, non-human primates may be involved in ZIKV transmission in the Old World; however, other wildlife species likely play a limited role in maintaining or transmitting ZIKV. In the Americas, a zoonotic cycle has not yet been definitively established. Understanding behaviors and habitat tolerances of Aedes aegypti and Aedes albopictus, two ZIKV competent vectors in the Americas, will allow more accurate modeling of disease spread and facilitate targeted and effective control efforts. Vector control efforts may have direct and indirect impacts to wildlife, particularly invertebrate feeding species; however, strategies could be implemented to limit detrimental ecological effects.

  19. VectorBase: a data resource for invertebrate vector genomics

    PubMed Central

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Hammond, Martin; Hill, Catherine A.; Konopinski, Nathan; Lobo, Neil F.; MacCallum, Robert M.; Madey, Greg; Megy, Karine; Meyer, Jason; Redmond, Seth; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2009-01-01

    VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data. PMID:19028744

  20. Unsymmetric Lanczos model reduction and linear state function observer for flexible structures

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1991-01-01

    This report summarizes part of the research work accomplished during the second year of a two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to use Lanczos vectors and Krylov vectors to obtain reduced-order mathematical models for use in the dynamic response analyses and in control design studies. This report presents a one-sided, unsymmetric block Lanczos algorithm for model reduction of structural dynamics systems with unsymmetric damping matrix, and a control design procedure based on the theory of linear state function observers to design low-order controllers for flexible structures.

  1. Inventory of potential vectors of trypanosoma and infection rate of the Tsetse fly in the National Park of Ivindo, Gabon.

    PubMed

    Mbang Nguema, O A; Mavoungou, J F; Mawili-Mboumba, D P; Zinga Koumba, R C; Bouyou-Akotet, M K; M'batchi, B

    2015-09-01

    Trypanosoma's vectors distribution is poorly investigated in Gabon, where Trypanosomiasis historical foci exist. Thus, an active detection of Trypanosoma sp transmission needs to be assessed. The present study aims to identify potential vectors of Trypanosoma sp and to evaluate the infection rate of the Tsetse fly in an area of Gabon. An entomological survey was conducted in the National Park of Ivindo in May 2012 using Vavoua traps. All captured insects were identified. Tsetse were dissected and organs were microscopically observed to detect the presence of Trypanosoma sp. 247 biting flies known as vectors of Trypanosomiasis were caught including 189 tsetse flies, 32 Tabanid and 26 Stomoxys. Tsetse flies had the highest bulk densities per trap per day (ADT = 3 tsetse / trap / day), while the lowest density was found among Stomoxys (ADT= 0.41 Stomoxys / trap / day). The infection rate of flies was 6.3%. Infectious organs were midguts and to a lesser extent salivary glands and proboscis. The presence of Tsetse infected by Trypanosoma highlights an existing risk of trypanosomiasis infection in the National Park of Ivindo.

  2. The expanding role of military entomologists in stability and counterinsurgency operations.

    PubMed

    Robert, Leon L; Rankin, Steven E

    2011-01-01

    Military entomologists function as part of medical civil-military operations and are an essential combat multiplier direction supporting COIN operations. They not only directly support US and coalition military forces by performing their traditional wartime mission of protecting personnel from vector-borne and rodent-borne diseases but also enhance the legitimacy of medical services by the host nation government such as controlling diseases promulgated by food, water, vectors, and rodents. These unique COIN missions demand a new skill set required of military entomologists that are not learned from existing training courses and programs. New training opportunities must be afforded military entomologists to familiarize them with how to interact with and synergize the efforts of host nation assets, other governmental agencies, nongovernmental organizations, and international military partners. Teamwork with previously unfamiliar groups and organizations is an essential component of working in the COIN environment and can present unfamiliar tasks for entomologists. This training should start with initial entry training and be a continual process throughout a military entomologist's career. Current COIN operations require greater tactical and operational flexibility and diverse entomological expertise. The skills required for today's full spectrum medical operations are different from those of the past. Counterinsurgency medical operations demand greater agility, rapid task-switching, and the ability to adequately address unfamiliar situations and challenges.

  3. Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China.

    PubMed

    Qin, Qian; Li, Yiji; Zhong, Daibin; Zhou, Ning; Chang, Xuelian; Li, Chunyuan; Cui, Liwang; Yan, Guiyun; Chen, Xiao-Guang

    2014-03-03

    Malaria is one of the most important public health problems in Southeast Asia, including Hainan Island, China. Vector control is the main malaria control measure, and insecticide resistance is a major concern for the effectiveness of chemical insecticide control programs. The objective of this study is to determine the resistance status of the main malaria vector species to pyrethroids and other insecticides recommended by the World Health Organization (WHO) for indoor residual sprays. The larvae and pupae of Anopheles mosquitoes were sampled from multiple sites in Hainan Island, and five sites yielded sufficient mosquitoes for insecticide susceptibility bioassays. Bioassays of female adult mosquitoes three days after emergence were conducted in the two most abundant species, Anopheles sinensis and An. vagus, using three insecticides (0.05% deltamethrin, 4% DDT, and 5% malathion) and following the WHO standard tube assay procedure. P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were measured. Mutations at the knockdown resistance (kdr) gene and the ace-1 gene were detected by DNA sequencing and PCR-RFLP analysis, respectively. An. sinensis and An. vagus were the predominant Anopheles mosquito species. An. sinensis was found to be resistant to DDT and deltamethrin. An. vagus was susceptible to deltamethrin but resistant to DDT and malathion. Low kdr mutation (L1014F) frequency (<10%) was detected in An. sinensis, but no kdr mutation was detected in An. vagus populations. Modest to high (45%-75%) ace-1 mutation frequency was found in An. sinensis populations, but no ace-1 mutation was detected in An. vagus populations. Significantly higher P450 monooxygenase and carboxylesterase activities were detected in deltamethrin-resistant An. sinensis, and significantly higher P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were found in malathion-resistant An. vagus mosquitoes. Multiple insecticide resistance was found in An. sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Cost-effective integrated vector control programs that go beyond synthetic insecticides are urgently needed.

  4. Multi Objective Controller Design for Linear System via Optimal Interpolation

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay

    1996-01-01

    We propose a methodology for the design of a controller which satisfies a set of closed-loop objectives simultaneously. The set of objectives consists of: (1) pole placement, (2) decoupled command tracking of step inputs at steady-state, and (3) minimization of step response transients with respect to envelope specifications. We first obtain a characterization of all controllers placing the closed-loop poles in a prescribed region of the complex plane. In this characterization, the free parameter matrix Q(s) is to be determined to attain objectives (2) and (3). Objective (2) is expressed as determining a Pareto optimal solution to a vector valued optimization problem. The solution of this problem is obtained by transforming it to a scalar convex optimization problem. This solution determines Q(O) and the remaining freedom in choosing Q(s) is used to satisfy objective (3). We write Q(s) = (l/v(s))bar-Q(s) for a prescribed polynomial v(s). Bar-Q(s) is a polynomial matrix which is arbitrary except that Q(O) and the order of bar-Q(s) are fixed. Obeying these constraints bar-Q(s) is now to be 'shaped' to minimize the step response characteristics of specific input/output pairs according to the maximum envelope violations. This problem is expressed as a vector valued optimization problem using the concept of Pareto optimality. We then investigate a scalar optimization problem associated with this vector valued problem and show that it is convex. The organization of the report is as follows. The next section includes some definitions and preliminary lemmas. We then give the problem statement which is followed by a section including a detailed development of the design procedure. We then consider an aircraft control example. The last section gives some concluding remarks. The Appendix includes the proofs of technical lemmas, printouts of computer programs, and figures.

  5. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    PubMed Central

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  6. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1995-01-01

    During this year, we concentrated our efforts on the design of controllers for lateral/directional control using mu synthesis. This proved to be a more difficult task than we anticipated and we are still working on the designs. In the lateral-directional control problem, the inputs are pilot lateral stick and pedal commands and the outputs are roll rate about the velocity vector and side slip angle. The control effectors are ailerons, rudder deflection, and directional thrust vectoring vane deflection which produces a yawing moment about the body axis. Our math model does not contain any provision for thrust vectoring of rolling moment. This has resulted in limitations of performance at high angles of attack. During 1994-95, the following tasks for the lateral-directional controllers were accomplished: (1) Designed both inner and outer loop dynamic inversion controllers. These controllers are implemented using accelerometer outputs rather than an a priori model of the vehicle aerodynamics; (2) Used classical techniques to design controllers for the system linearized by dynamics inversion. These controllers acted to control roll rate and Dutch roll response; (3) Implemented the inner loop dynamic inversion and classical controllers on the six DOF simulation; (4) Developed a lateral-directional control allocation scheme based on minimizing required control effort among the ailerons, rudder, and directional thrust vectoring; and (5) Developed mu outer loop controllers combined with classical inner loop controllers.

  7. A Data-Driven, Integrated Flare Model Based on Self-Organized Criticality

    NASA Astrophysics Data System (ADS)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.

    2013-09-01

    We interpret solar flares as events originating in solar active regions having reached the self-organized critical state, by alternatively using two versions of an "integrated flare model" - one static and one dynamic. In both versions the initial conditions are derived from observations aiming to investigate whether well-known scaling laws observed in the distribution functions of characteristic flare parameters are reproduced after the self-organized critical state has been reached. In the static model, we first apply a nonlinear force-free extrapolation that reconstructs the three-dimensional magnetic fields from two-dimensional vector magnetograms. We then locate magnetic discontinuities exceeding a threshold in the Laplacian of the magnetic field. These discontinuities are relaxed in local diffusion events, implemented in the form of cellular-automaton evolution rules. Subsequent loading and relaxation steps lead the system to self-organized criticality, after which the statistical properties of the simulated events are examined. In the dynamic version we deploy an enhanced driving mechanism, which utilizes the observed evolution of active regions, making use of sequential vector magnetograms. We first apply the static cellular automaton model to consecutive solar vector magnetograms until the self-organized critical state is reached. We then evolve the magnetic field inbetween these processed snapshots through spline interpolation, acting as a natural driver in the dynamic model. The identification of magnetically unstable sites as well as their relaxation follow the same rules as in the static model after each interpolation step. Subsequent interpolation/driving and relaxation steps cover all transitions until the end of the sequence. Physical requirements, such as the divergence-free condition for the magnetic field vector, are approximately satisfied in both versions of the model. We obtain robust power laws in the distribution functions of the modelled flaring events with scaling indices in good agreement with observations. We therefore conclude that well-known statistical properties of flares are reproduced after active regions reach self-organized criticality. The significant enhancement in both the static and the dynamic integrated flare models is that they initiate the simulation from observations, thus facilitating energy calculation in physical units. Especially in the dynamic version of the model, the driving of the system is based on observed, evolving vector magnetograms, allowing for the separation between MHD and kinetic timescales through the assignment of distinct MHD timestamps to each interpolation step.

  8. Visceral Leishmaniasis on the Indian Subcontinent: Modelling the Dynamic Relationship between Vector Control Schemes and Vector Life Cycles.

    PubMed

    Poché, David M; Grant, William E; Wang, Hsiao-Hsuan

    2016-08-01

    Visceral leishmaniasis (VL) is a disease caused by two known vector-borne parasite species (Leishmania donovani, L. infantum), transmitted to man by phlebotomine sand flies (species: Phlebotomus and Lutzomyia), resulting in ≈50,000 human fatalities annually, ≈67% occurring on the Indian subcontinent. Indoor residual spraying is the current method of sand fly control in India, but alternative means of vector control, such as the treatment of livestock with systemic insecticide-based drugs, are being evaluated. We describe an individual-based, stochastic, life-stage-structured model that represents a sand fly vector population within a village in India and simulates the effects of vector control via fipronil-based drugs orally administered to cattle, which target both blood-feeding adults and larvae that feed on host feces. Simulation results indicated efficacy of fipronil-based control schemes in reducing sand fly abundance depended on timing of drug applications relative to seasonality of the sand fly life cycle. Taking into account cost-effectiveness and logistical feasibility, two of the most efficacious treatment schemes reduced population peaks occurring from April through August by ≈90% (applications 3 times per year at 2-month intervals initiated in March) and >95% (applications 6 times per year at 2-month intervals initiated in January) relative to no control, with the cumulative number of sand fly days occurring April-August reduced by ≈83% and ≈97%, respectively, and more specifically during the summer months of peak human exposure (June-August) by ≈85% and ≈97%, respectively. Our model should prove useful in a priori evaluation of the efficacy of fipronil-based drugs in controlling leishmaniasis on the Indian subcontinent and beyond.

  9. Leishmaniasis sand fly vector density reduction is less marked in destitute housing after insecticide thermal fogging

    PubMed Central

    2013-01-01

    Background Insecticide thermal fogging (ITF) is a tool to control vector borne diseases. Insecticide application success for vector control has been associated with housing materials and architecture. Vector abundance is correlated with weather changes. Nevertheless, housing quality and weather impacts on vector abundance have been unaccounted for in most New World insecticide control trials for leishmaniasis vectors. Methods We conducted a 15 month insecticide control trial that included two deltamethrin [6 mg a.i.m-2] based ITF interventions in 12 of 24 monitored houses at Trinidad de Las Minas, a hyperendemic cutaneous leishmaniasis transmission village in western Panamá. During the study we followed sand fly (SF) abundance, keeping track of rainfall and quantified housing quality using an index based on architecture and construction materials. Results We found a 50 to 80% reduction in SF density in the fogged houses when compared with control houses, while controlling for seasonal changes in SF abundance associated with rainfall. We found heterogeneities in the reductions, as abundance changed according to SF species: Lutzomyia gomezi, Lu. panamensis, Lu. dysponeta and Lu. triramula reduced in density between 40% and 90% after ITF. In contrast, Lu. trapidoi density increased 5% after ITF. Differences in the impact of ITF were associated with housing quality, the most destitute houses, i.e., those with features that ease insect entrance, had a disproportionally larger SF abundance, in some cases with increased domiciliary SF density following the ITF. Conclusion Our results suggest the potential of insecticide application to control SF density and leishmaniasis transmission could depend on housing quality beyond insecticide efficiency. PMID:23742709

  10. Chagas disease: national survey of seroprevalence in children under five years of age conducted in 2008.

    PubMed

    Russomando, Graciela; Cousiño, Blanca; Sanchez, Zunilda; Franco, Laura X; Nara, Eva M; Chena, Lilian; Martínez, Magaly; Galeano, María E; Benitez, Lucio

    2017-05-01

    Since the early 1990s, programs to control Chagas disease in South America have focused on eradicating domiciliary Triatoma infestans, the main vector. Seroprevalence studies of the chagasic infection are included as part of the vector control programs; they are essential to assess the impact of vector control measures and to monitor the prevention of vector transmission. To assess the interruption of domiciliary vector transmission of Chagas disease by T. infestans in Paraguay by evaluating the current state of transmission in rural areas. A survey of seroprevalence of Chagas disease was carried out in a representative sample group of Paraguayans aged one to five years living in rural areas of Paraguay in 2008. Blood samples collected on filter paper from 12,776 children were tested using an enzyme-linked immunosorbent assay. Children whose serology was positive or undetermined (n = 41) were recalled to donate a whole blood sample for retesting. Their homes were inspected for current triatomine infestation. Blood samples from their respective mothers were also collected and tested to check possible transmission of the disease by a congenital route. A seroprevalence rate of 0.24% for Trypanosoma cruzi infection was detected in children under five years of age among the country's rural population. Our findings indicate that T. cruzi was transmitted to these children vertically. The total number of infected children, aged one to five years living in these departments, was estimated at 1,691 cases with an annual incidence of congenital transmission of 338 cases per year. We determined the impact of vector control in the transmission of T. cruzi, following uninterrupted vector control measures employed since 1999 in contiguous T. infestans-endemic areas of Paraguay, and this allowed us to estimate the degree of risk of congenital transmission in the country.

  11. Mapping the magnetic field vector in a fountain clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertsvolf, Marina; Marmet, Louis

    2011-12-15

    We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.

  12. Progress in malaria vector control.

    PubMed

    Pant, C P; Rishikesh, N; Bang, Y H; Smith, A

    1981-01-01

    Malaria control, except in tropical Africa, will probably continue to be based to a large extent on the use of insecticides for many years. However, the development of resistance to insecticides in the vectors has caused serious difficulties and it is necessary to change the strategy of insecticide use to maximize their efficacy. A thorough knowledge of the ecology and behaviour of each vector species is required before the control strategy can be adapted to different epidemiological situations. The behavioural differences between sibling species have been recognized for several years, but study of this problem has recently been simplified by improved means of identification that involve chromosomal banding patterns and electrophoretic analysis. Behavioural differences have also been associated with certain chromosomal rearrangements.New records of insecticide resistance among anophelines continue to appear and the impact of this on antimalaria operations has been seriously felt in Central America (multi-resistance in Anopheles albimanus), Turkey (A. sacharovi), India and several Asian countries (A. culicifacies and A. stephensi), and some other countries. Work continues on the screening and testing of newer insecticides that can be used as alternatives, but DDT, malathion, temephos, fenitrothion, and propoxur continue to be used as the main insecticides in many malaria control projects. The search for simpler and innovative approaches to insecticide application also continues.Biological control of vectors is receiving increased attention, as it could become an important component of integrated vector control strategies, and most progress has been made with the spore-forming bacterium, serotype H-14 of Bacillus thuringiensis. Larvivorous fish such as Gambusia spp. and Poecilia spp. continue to be used in some programmes.Application of environmental management measures, such as source reduction, source elimination, flushing of drainage and irrigation channels, and intermittent irrigation have been re-examined and currently a great deal of interest is being shown in these approaches.There has been limited interest in the genetic control of mosquitos and the phenomenon of refractoriness in some strains of the disease vectors, with the idea of replacing the vector species with the refractory strain. More research is needed before this approach can become a practical tool.It is apparent that in future a more integrated approach will have to be used for vector control within the context of antimalaria programmes. Training of staff, research, and cooperation at all levels will be an essential requirement for this approach.

  13. A New Approach to Attitude Stability and Control for Low Airspeed Vehicles

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.

    2004-01-01

    This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.

  14. Control of pome and stone fruit virus diseases.

    PubMed

    Barba, Marina; Ilardi, Vincenza; Pasquini, Graziella

    2015-01-01

    Many different systemic pathogens, including viruses, affect pome and stone fruits causing diseases with adverse effects in orchards worldwide. The significance of diseases caused by these pathogens on tree health and fruit shape and quality has resulted in the imposition of control measures both nationally and internationally. Control measures depend on the identification of diseases and their etiological agents. Diagnosis is the most important aspect of controlling fruit plant viruses. Early detection of viruses in fruit trees or in the propagative material is a prerequisite for their control and to guarantee a sustainable agriculture. Many quarantine programs are in place to reduce spread of viruses among countries during international exchange of germplasm. All these phytosanitary measures are overseen by governments based on agreements produced by international organizations. Also certification schemes applied to fruit trees allow the production of planting material of known variety and plant health status for local growers by controlling the propagation of pathogen-tested mother plants. They ensure to obtain propagative material not only free of "quarantine" organisms under the national legislation but also of important "nonquarantine" pathogens. The control of insect vectors plays an important role in the systemic diseases management, but it must be used together with other control measures as eradication of infected plants and use of certified propagation material. Apart from the control of the virus vector and the use of virus-free material, the development of virus-resistant cultivars appears to be the most effective approach to achieve control of plant viruses, especially for perennial crops that are more exposed to infection during their long life span. The use of resistant or tolerant cultivars and/or rootstocks could be potentially the most important aspect of virus disease management, especially in areas in which virus infections are endemic. The conventional breeding for virus-tolerant or resistant fruit tree cultivars using available germplasm is a long-term strategy, and the development and production of these cultivars may take decades, if successful. Genetic engineering allows the introduction of specific DNA sequences offering the opportunity to obtain existing fruit tree cultivars improved for the desired resistance trait. Unfortunately, genetic transformation of pome and stone fruits is still limited to few commercial genotypes. Research carried out and the new emerging biotechnological approaches to obtain fruit tree plants resistant or tolerant to viruses are discussed. © 2015 Elsevier Inc. All rights reserved.

  15. X-31 Unloading Returning from Paris Air Show

    NASA Technical Reports Server (NTRS)

    1995-01-01

    After being flown in the Paris Air Show in June 1995, the X-31 Enhanced Fighter Maneuverability Technology Demonstrator Aircraft, based at the NASA Dryden Flight Research Center, Edwards Air Force Base, California, is off-loaded from an Air Force Reserve C-5 transport after the ferry flight back to Edwards. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  16. X-31 in flight - Double Reversal

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an airplane with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while he aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This understanding is expected to lead to design methods that provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the international test organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident Jan. 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. This 39-second clip begins as the X-31 performs a short loop at the top of a stall maneuver, then quickly reverses its course first left, then right by means of thrust vectoring -- thereby gaining a tactical advantage over a putative opponent in air-to-air combat.

  17. X-31 in flight - Post Stall Maneuver

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at Rockwell International's Palmdale, Calif., facility and the NASA Dryden Flight Research Center, Edwards, Calif., to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on Oct. 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft's body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust vectoring paddles made of graphite epoxy mounted on the X-31's exhaust nozzle directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31s were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplyied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This is expected to lead to design methods providing better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at Dryden, to which flight research was moved in February 1992 at the request of the Advanced Research Projects Agency (ARPA). In addition to ARPA and NASA, the International Test Organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident Jan. 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. This 34-second movie clip shows the aircraft as it slides backwards, thrust vectoring the tail over the top, turning the stall into a loop in which the aircraft then reverses it's heading and resumes level flight.

  18. X-31 in flight - Herbst Turn

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an airplane with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This understanding is expected to lead to design methods that provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the international test organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident January 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. This 32-second clip shows the aircraft at the top of a stall and then thrust vectoring itself around to attain a new heading, thereby allowing the aircraft to gain the advantage over a putative opponent in air-to-air combat. This maneuver is also known as a 'J turn.'

  19. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-12-01

    Dengue fever is a serious problem in Mexico and vector control has not been effective enough at preventing outbreaks. Malaria is largely under control, but it is important that new control measures continue to be developed. Novaluron, a novel host-specific insect growth regulator and chitin synthesis inhibitor, has proved to be effective against agricultural pests, but its efficacy against larval mosquito vectors under field conditions remains unknown. In accordance with the World Health Organization Pesticide Evaluation Scheme, phase I, II and III studies were conducted to evaluate the efficacy and residual effect of Novaluron (Rimon 10 EC, Makhteshim, Beer-Sheva, Israel) on the malaria vectors Anopheles albimanus Wiedemann (Diptera: Culicidae) and Anopheles pseudopunctipennis Theobald, the dengue vectors Aedes aegypti (L) and Aedes albopictus Skuse and the nuisance mosquito Culex quinquefasciatus Say. Laboratory susceptibility tests yielded diagnostic concentrations for all five target species. Field trials to identify the optimum field dosage of Novaluron against Anopheles mosquitoes were carried out under semi-natural conditions in artificial plots and in vessels with wild mosquitoes. Efficacy was measured by monitoring mortality of larvae and pupae and the percentage of inhibition of emergence from floating cages. Dosages of Novaluron for field tests were based on pupal LC(99) (lethal concentration 99%) of An. pseudopunctipennis (0.166 mg/L) in plots and average pupal LC(99) of Ae. aegypti and Ae. albopictus (0.55 mg/L). At all dosages tested, Novaluron significantly reduced larval populations of An. albimanus, Culex coronator Dyar & Knab, Ae. albopictus and Cx. quinquefasciatus by approximately 90%, inhibited adult emergence of An. albimanus and An. pseudopunctipennis by approximately 97% for almost 4 months in experimental plots, and inhibited adult emergence of Ae. aegypti and Ae. albopictus by approximately 97% for up to 14 weeks. Recommended dosages of Novaluron for non-container breeding and container breeding mosquitoes are 0.166 mg/L and 0.55 mg/L, respectively. Overall, the residual effect was more sustained than that of temephos. The lowest dosage of Novaluron had less of an impact on non-target organisms than did temephos. Small-scale field trials in natural breeding sites treated with Novaluron at 0.6 L/ha eliminated adult emergence of An. albimanus and Cx. coronator for 8 weeks. For phase III studies, Novaluron was tested at the local and village levels, applying the optimum field rate to all natural breeding habitats within 1 km of a pair of neighbouring villages. Village-scale trials of Novaluron at 0.6 L/ha reduced An. albimanus larval populations for at least 8 weeks and, more importantly, sharply reduced the densities of adult host-seeking mosquitoes approaching houses. We conclude that Novaluron is effective and environmentally safer than temephos.

  20. Mosquito vector biology and control in Latin America - A 25th Symposium

    USDA-ARS?s Scientific Manuscript database

    The 25th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 81st Annual Meeting in New Orleans, LA, in March 2015. The principal objective, for the previous 24 symposia, was to promote participation in the AMCA by vector control spec...

  1. Mosquito vector biology and control in Latin America - a 24th symposium

    USDA-ARS?s Scientific Manuscript database

    The 24th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 80th Annual Meeting in Seattle, WA in February 2014. The principal objective, as for the previous 23 symposia, was to promote participation in the AMCA by vector control spe...

  2. MOSQUITO VECTOR CONTROL AND BIOLOGY IN LATIN AMERICA- An 18TH SYMPOSIUM

    USDA-ARS?s Scientific Manuscript database

    The 18th Annual Latin American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 74th Annual Meeting in Sparks, NV, in March 2008. The principal objective, as for the previous 17 symposia, was to promote participation in the AMCA by vector control speci...

  3. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-moa; Kwak, Dochan (Technical Monitor)

    2002-01-01

    In this paper we have reviewed the basics of tensor analysis in an attempt to clarify some misconceptions regarding contravariant and covariant vector components as used in fluid dynamics. We have indicated that contravariant components are components of a given vector expressed as a unique combination of the covariant base vector system and, vice versa, that the covariant components are components of a vector expressed with the contravariant base vector system. Mathematically, expressing a vector with a combination of base vector is a decomposition process for a specific base vector system. Hence, the contravariant velocity components are decomposed components of velocity vector along the directions of coordinate lines, with respect to the covariant base vector system. However, the contravariant (and covariant) components are not physical quantities. Their magnitudes and dimensions are controlled by their corresponding covariant (and contravariant) base vectors.

  4. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L.

    PubMed

    Sundaravadivelan, Chandran; Padmanabhan, Madanagopal Nalini

    2014-03-01

    Mosquitoes transmit dreadful diseases, causing millions of deaths every year. Therefore, screening for larvicidal and pupicidal activity of microbial extracts attributes could lead to development of new and improved mosquito control methods that are economical and safe for nontarget organisms and are ecofriendly. Synthetic chemical insecticides occupy predominant position in control strategies. These hazardous chemicals exert unwarranted toxicity and lethal effects on nontarget organisms, develop physiological resistance in target, and cause adverse environmental effect. For vector control, fungal-mediated natural products have been a priority in this area at present. In the current study, effective larvicidal and pupicidal effect of mycosynthesized silver nanoparticles (Ag NPs) using an entomopathogenic fungi Trichoderma harzianum against developmental stages of the dengue vector Aedes aegypti was investigated. An attractive possibility of green nanotechnology is to use microorganisms in the synthesis of nanosilver especially Ag NPs. The mycosynthesized Ag NPs were characterized to find their unique properties through UV-visible spectrophotometer, X-ray diffraction analysis, Fourier transform infrared, and surface characteristics by scanning electron microscopy. To analyze the bioefficacy, different test concentrations for extracellular filtrate (0.2, 0.4, 0.6, 0.8, and 1.0 %) and Ag NPs (0.05, 0.10, 0.15, 0.20, and 0.25 %) were prepared to a final volume of 200 mL using deionized water; 20 larvae of each instars (I-IV) and pupa were exposed to each test concentration separately which included a set of control (distilled water) group with five replicates. Characterization of the synthesized Ag NPs were about 10-20 nm without aggregation. Susceptibility of larval instars to synthesized Ag NPs was higher than the extracellular filtrate of T. harzianum alone after 24-h exposure, where the highest mortality was recorded as 92 and 96 % for first and second instars and 100 % for third, fourth instars, and pupa. Lethal concentration 50 values of 0.079, 0.084, 0.087, 0.068, and 0.026 % were recorded for I-IV instars and pupa, respectively, when exposed to Ag NPs at 0.25 % concentration. Toxicity was exhibited against first (1.076 %), second (0.912 %), third (0.770 %), fourth (0.914 %) instars larvae, and pupa (0.387 %) with extracellular filtrate at a concentration of 1 % that was three- to fourfold higher compared to Ag NPs; no mortality was observed in the control. The present study is the first report on effective larvicidal and pupicidal activity of Ag NPs synthesized from an entomopathogenic fungi T. harzianum extracellular filtrate and could be an ideal ecofriendly, single-step, and inexpensive approach for the control of A. aegypti.

  5. Design and test of a high power electromechanical actuator for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Myers, W. N.

    1992-01-01

    NASA-Marshall is involved in the development of electromechanical actuators (EMA) for thrust-vector control (TVC) system testing and implementation in spacecraft control/gimballing systems, with a view to the replacement of hydraulic hardware. TVC system control is furnished by solid state controllers and power supplies; a pair of resolvers supply position feedback to the controller for precise positioning. Performance comparisons between EMA and hydraulic TVC systems are performed.

  6. Design and test of a high power electromechanical actuator for thrust vector control

    NASA Astrophysics Data System (ADS)

    Cowan, J. R.; Myers, W. N.

    1992-07-01

    NASA-Marshall is involved in the development of electromechanical actuators (EMA) for thrust-vector control (TVC) system testing and implementation in spacecraft control/gimballing systems, with a view to the replacement of hydraulic hardware. TVC system control is furnished by solid state controllers and power supplies; a pair of resolvers supply position feedback to the controller for precise positioning. Performance comparisons between EMA and hydraulic TVC systems are performed.

  7. Precomputed state dependent digital control of a nuclear rocket engine

    NASA Technical Reports Server (NTRS)

    Johnson, M. R.

    1972-01-01

    A control method applicable to multiple-input multiple-output nonlinear time-invariant systems in which desired behavior can be expressed explicitly as a trajectory in system state space is developed. The precomputed state dependent control method is basically a synthesis technique in which a suboptimal control law is developed off-line, prior to system operation. This law is obtained by conducting searches at a finite number of points in state space, in the vicinity of some desired trajectory, to obtain a set of constant control vectors which tend to return the system to the desired trajectory. These vectors are used to evaluate the unknown coefficients in a control law having an assumed hyperellipsoidal form. The resulting coefficients constitute the heart of the controller and are used in the on-line computation of control vectors. Two examples of PSDC are given prior to the more detailed description of the NERVA control system development.

  8. Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia.

    PubMed

    Corbel, Vincent; Nosten, Francois; Thanispong, Kanutcharee; Luxemburger, Christine; Kongmee, Monthathip; Chareonviriyaphap, Theeraphap

    2013-12-01

    Despite significant advances in the search for potential dengue vaccines and new therapeutic schemes for malaria, the control of these diseases remains difficult. In Thailand, malaria incidence is falling whereas that of dengue is rising, with an increase in the proportion of reported severe cases. In the absence of antiviral therapeutic options for acute dengue, appropriate case management reduces mortality. However, the interruption of transmission still relies on vector control measures that are currently insufficient to curtail the cycle of epidemics. Drug resistance in malaria parasites is increasing, compromising malaria control and elimination. Deficiencies in our knowledge of vector biology and vectorial capacity also hinder public health efforts for vector control. Challenges to dengue and malaria control are discussed, and research priorities identified. Copyright © 2013. Published by Elsevier Ltd.

  9. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR.

    PubMed

    D'Costa, Susan; Blouin, Veronique; Broucque, Frederic; Penaud-Budloo, Magalie; François, Achille; Perez, Irene C; Le Bec, Christine; Moullier, Philippe; Snyder, Richard O; Ayuso, Eduard

    2016-01-01

    Clinical trials using recombinant adeno-associated virus (rAAV) vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs) can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR) is now the most common method to titer vector genomes (vg); however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs) sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new "Free-ITR" qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field.

  10. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria.

    PubMed

    Thomas, Shalu; Ravishankaran, Sangamithra; Justin, N A Johnson Amala; Asokan, Aswin; Mathai, Manu Thomas; Valecha, Neena; Montgomery, Jacqui; Thomas, Matthew B; Eapen, Alex

    2017-03-10

    The Indian city of Chennai is endemic for malaria and the known local malaria vector is Anopheles stephensi. Plasmodium vivax is the predominant malaria parasite species, though Plasmodium falciparum is present at low levels. The urban ecotype of malaria prevails in Chennai with perennial transmission despite vector surveillance by the Urban Malaria Scheme (UMS) of the National Vector Borne Disease Control Programme (NVBDCP). Understanding the feeding and resting preferences, together with the transmission potential of adult vectors in the area is essential in effective planning and execution of improved vector control measures. A yearlong survey was carried out in cattle sheds and human dwellings to check the resting, feeding preferences and transmission potential of An. stephensi. The gonotrophic status, age structure, resting and host seeking preferences were studied. The infection rate in An. stephensi and Anopheles subpictus were analysed by circumsporozoite ELISA (CS-ELISA). Adult vectors were found more frequently and at higher densities in cattle sheds than human dwellings. The overall Human Blood Index (HBI) was 0.009 indicating the vectors to be strongly zoophilic. Among the vectors collected from human dwellings, 94.2% were from thatched structures and the remaining 5.8% from tiled and asbestos structures. 57.75% of the dissected vectors were nulliparous whereas, 35.83% were monoparous and the rest 6.42% biparous. Sporozoite positivity rate was 0.55% (4/720) and 1.92% (1/52) for An. stephensi collected from cattle sheds and human dwellings, respectively. One adult An. subpictus (1/155) was also found to be infected with P. falciparum. Control of the adult vector populations can be successful only by understanding the resting and feeding preferences. The present study indicates that adult vectors predominantly feed on cattle and cattle sheds are the preferred resting place, possibly due to easy availability of blood meal source and lack of any insecticide or repellent pressure. Hence targeting these resting sites with cost effective, socially acceptable intervention tools, together with effective larval source management to reduce vector breeding, could provide an improved integrated vector management strategy to help drive down malaria transmission and assist in India's plan to eliminate malaria by 2030.

  11. Salmon as drivers of physical and biological disturbance in river channels

    NASA Astrophysics Data System (ADS)

    Albers, S. J.; Petticrew, E. L.

    2012-04-01

    Large migrations across landscapes and ecosystem boundaries combined with disturbances of riverine spawning habitats through nest construction indicate the huge potential that Pacific salmon (Onchorhynchus sp.) have to disturb and alter regional energy flow. Nutrients derived from ocean-reared dead and decaying salmon are released into surrounding aquatic ecosystems fertilizing the water column, recently disturbed by increased suspended sediments due to nest construction. These opposing forces of disturbance and fertilization on spawning habitat have been demonstrated to impact local geomorphic and ecological cycles within salmon streams. An often cited, yet not fully tested, hypothesis is that this pulse of nutrients provided by decaying salmon can shift freshwater habitats to higher production levels. This hypothesis, however, remains contested and uncertain. Fine sediments are increasingly being recognized as important delivery and storage vectors for marine-derived nutrients (MDNs) in spawning streams. The temporal and spatial significance of these sediment vectors on gravelbed storage of MDN have not been quantified thereby restricting our ability to estimate the impact of gravelbed storage of MDNs on the riverine habitats. The objectives of this study were to i) quantify the magnitude of sediment deposition and retention in an active spawning area and ii) determine the contribution of MDN associated with the fine sediment storage. The Horsefly River spawning channel (HFC), an artificial salmon stock enhancement stream, was used to examine the biogeomorphic impacts of salmon spawning. We organized the HFC in an upstream-downstream paired treatment approach where the upstream enclosure was kept free of salmon and the downstream enclosure was loaded with actively spawning salmon. We used the difference in suspended sediment concentration between the salmon enclosure and the control enclosure to determine the contribution of salmon nest construction to suspended sediment concentration. To monitor sediment infiltration into the gravelbed we used modified infiltration bag samplers. Lastly, to examine the contribution of salmon nutrients to the infiltrated sediment we sampled for the presence of a marine isotope signature (15N) in the sediment. Increased sediment in the water column of the salmon enclosure during the active spawn period indicated salmon-mediated sediment resuspension. A gravelbed response to this water column disturbance was detected via increased sediment infiltration during salmon spawning. This stored sediment was enriched in organic matter and 15N indicating a marine salmon signal. Significant relationships between sediment infiltration and salmon enrichment provided further evidence that salmon organic matter, using resuspended sediment as a vector, was infiltrating into the gravelbed. During the post-spawn period organic sediment was elevated in the water column and gravelbed infiltration was reduced reflecting respectively, the release of decay products from salmon carcasses and MDN release from temporary gravelbed storage. This study demonstrated that localized patterns of sediment deposition are regulated by salmon activity, which control gravelbed MDN storage and release. Salmon-mediated, sediment vector influences on riverine habitat have been quantified here on a small experimental scale, but we expect that the effect is replicated and magnified, as it occurs regionally throughout the spawning grounds, with significant ecosystem implications.

  12. The Repellent DEET Potentiates Carbamate Effects via Insect Muscarinic Receptor Interactions: An Alternative Strategy to Control Insect Vector-Borne Diseases.

    PubMed

    Abd-Ella, Aly; Stankiewicz, Maria; Mikulska, Karolina; Nowak, Wieslaw; Pennetier, Cédric; Goulu, Mathilde; Fruchart-Gaillard, Carole; Licznar, Patricia; Apaire-Marchais, Véronique; List, Olivier; Corbel, Vincent; Servent, Denis; Lapied, Bruno

    2015-01-01

    Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a non-pyrethroid insecticide will lead to improvement in the efficiency treatments thus reducing both the concentration of active ingredients and side effects for non-target organisms. The discovery of this insect specific site may pave the way for the development of new strategies essential in the management of chemical use against resistant mosquitoes.

  13. The Repellent DEET Potentiates Carbamate Effects via Insect Muscarinic Receptor Interactions: An Alternative Strategy to Control Insect Vector-Borne Diseases

    PubMed Central

    Abd-Ella, Aly; Stankiewicz, Maria; Mikulska, Karolina; Nowak, Wieslaw; Pennetier, Cédric; Goulu, Mathilde; Fruchart-Gaillard, Carole; Licznar, Patricia; Apaire-Marchais, Véronique; List, Olivier; Corbel, Vincent; Servent, Denis; Lapied, Bruno

    2015-01-01

    Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a non-pyrethroid insecticide will lead to improvement in the efficiency treatments thus reducing both the concentration of active ingredients and side effects for non-target organisms. The discovery of this insect specific site may pave the way for the development of new strategies essential in the management of chemical use against resistant mosquitoes. PMID:25961834

  14. Assessment of changes of vector borne diseases with wetland characteristics using multivariate analysis.

    PubMed

    Sheela, A M; Sarun, S; Justus, J; Vineetha, P; Sheeja, R V

    2015-04-01

    Vector borne diseases are a threat to human health. Little attention has been paid to the prevention of these diseases. We attempted to identify the significant wetland characteristics associated with the spread of chikungunya, dengue fever and malaria in Kerala, a tropical region of South West India using multivariate analyses (hierarchical cluster analysis, factor analysis and multiple regression). High/medium turbid coastal lagoons and inland water-logged wetlands with aquatic vegetation have significant effect on the incidence of chikungunya while dengue influenced by high turbid coastal beaches and malaria by medium turbid coastal beaches. The high turbidity in water is due to the urban waste discharge namely sewage, sullage and garbage from the densely populated cities and towns. The large extent of wetland is low land area favours the occurrence of vector borne diseases. Hence the provision of pollution control measures at source including soil erosion control measures is vital. The identification of vulnerable zones favouring the vector borne diseases will help the authorities to control pollution especially from urban areas and prevent these vector borne diseases. Future research should cover land use cover changes, climatic factors, seasonal variations in weather and pollution factors favouring the occurrence of vector borne diseases.

  15. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection

    PubMed Central

    Mesquita, Rafael D.; Vionette-Amaral, Raquel J.; Lowenberger, Carl; Rivera-Pomar, Rolando; Monteiro, Fernando A.; Minx, Patrick; Spieth, John; Carvalho, A. Bernardo; Panzera, Francisco; Lawson, Daniel; Torres, André Q.; Ribeiro, Jose M. C.; Sorgine, Marcos H. F.; Waterhouse, Robert M.; Abad-Franch, Fernando; Alves-Bezerra, Michele; Amaral, Laurence R.; Araujo, Helena M.; Aravind, L.; Atella, Georgia C.; Azambuja, Patricia; Berni, Mateus; Bittencourt-Cunha, Paula R.; Braz, Gloria R. C.; Calderón-Fernández, Gustavo; Carareto, Claudia M. A.; Christensen, Mikkel B.; Costa, Igor R.; Costa, Samara G.; Dansa, Marilvia; Daumas-Filho, Carlos R. O.; De-Paula, Iron F.; Dias, Felipe A.; Dimopoulos, George; Emrich, Scott J.; Esponda-Behrens, Natalia; Fampa, Patricia; Fernandez-Medina, Rita D.; da Fonseca, Rodrigo N.; Fontenele, Marcio; Fronick, Catrina; Fulton, Lucinda A.; Gandara, Ana Caroline; Garcia, Eloi S.; Genta, Fernando A.; Giraldo-Calderón, Gloria I.; Gomes, Bruno; Gondim, Katia C.; Granzotto, Adriana; Guarneri, Alessandra A.; Guigó, Roderic; Harry, Myriam; Hughes, Daniel S. T.; Jablonka, Willy; Jacquin-Joly, Emmanuelle; Juárez, M. Patricia; Koerich, Leonardo B.; Lange, Angela B.; Latorre-Estivalis, José Manuel; Lavore, Andrés; Lawrence, Gena G.; Lazoski, Cristiano; Lazzari, Claudio R.; Lopes, Raphael R.; Lorenzo, Marcelo G.; Lugon, Magda D.; Marcet, Paula L.; Mariotti, Marco; Masuda, Hatisaburo; Megy, Karine; Missirlis, Fanis; Mota, Theo; Noriega, Fernando G.; Nouzova, Marcela; Nunes, Rodrigo D.; Oliveira, Raquel L. L.; Oliveira-Silveira, Gilbert; Ons, Sheila; Orchard, Ian; Pagola, Lucia; Paiva-Silva, Gabriela O.; Pascual, Agustina; Pavan, Marcio G.; Pedrini, Nicolás; Peixoto, Alexandre A.; Pereira, Marcos H.; Pike, Andrew; Polycarpo, Carla; Prosdocimi, Francisco; Ribeiro-Rodrigues, Rodrigo; Robertson, Hugh M.; Salerno, Ana Paula; Salmon, Didier; Santesmasses, Didac; Schama, Renata; Seabra-Junior, Eloy S.; Silva-Cardoso, Livia; Silva-Neto, Mario A. C.; Souza-Gomes, Matheus; Sterkel, Marcos; Taracena, Mabel L.; Tojo, Marta; Tu, Zhijian Jake; Tubio, Jose M. C.; Ursic-Bedoya, Raul; Venancio, Thiago M.; Walter-Nuno, Ana Beatriz; Wilson, Derek; Warren, Wesley C.; Wilson, Richard K.; Huebner, Erwin; Dotson, Ellen M.; Oliveira, Pedro L.

    2015-01-01

    Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods. PMID:26627243

  16. Nanoformulation of poly(ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control.

    PubMed

    Balaji, A P B; Mishra, Prabhakar; Suresh Kumar, R S; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-04-01

    The utilization of increased dosage of insect repellents to overcome mosquito resistance has raised environmental concerns globally. In accord to this, we have formulated an efficacious, water-dispersive, nanometric formulation of a poor water-soluble insect repellent, diethylphenylacetamide (DEPA) by poly(ethylene glycol) (PEG) polymerization followed by PIT emulsification method. The critical micelle concentration of PEG in the spontaneously emulsified conventional DEPA droplets was determined, based on the droplets physical stability. Subjecting them to PIT emulsification yielded monodispersed polymeric nanomicelles of DEPA (Nano DEPA) with hydrodynamic mean diameter of 153.74 nm. The high-resolution scanning and transmission electron microscopic studies revealed the characteristic core-shell structure of micelle. The comparative efficacy of Bulk DEPA and Nano DEPA was evaluated by larvicidal and WHO cone bioassay against the Japanese encephalitis vector Culex tritaeniorhynchus. The median lethal concentrations (48 h) for 3rd instars C. tritaeniorhynchus larvae were found to be 0.416 mg/L for Bulk DEPA and 0.052 mg/L for Nano DEPA, respectively. The median knockdown concentrations (60 min) for the two to three-day-old, sucrose-fed, female adult mosquitoes were 5.372% (v/v) and 3.471% (v/v) for Bulk and Nano DEPA, respectively. Further investigation by histopathological and biochemical studies propound that Nano DEPA exerted better bioefficacy as comparative to its bulk form even at minimal exposure concentrations. Hence, Nano DEPA will serve as an effective alternate in controlling the vector expansion with reduced dosage. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection.

    PubMed

    Mesquita, Rafael D; Vionette-Amaral, Raquel J; Lowenberger, Carl; Rivera-Pomar, Rolando; Monteiro, Fernando A; Minx, Patrick; Spieth, John; Carvalho, A Bernardo; Panzera, Francisco; Lawson, Daniel; Torres, André Q; Ribeiro, Jose M C; Sorgine, Marcos H F; Waterhouse, Robert M; Montague, Michael J; Abad-Franch, Fernando; Alves-Bezerra, Michele; Amaral, Laurence R; Araujo, Helena M; Araujo, Ricardo N; Aravind, L; Atella, Georgia C; Azambuja, Patricia; Berni, Mateus; Bittencourt-Cunha, Paula R; Braz, Gloria R C; Calderón-Fernández, Gustavo; Carareto, Claudia M A; Christensen, Mikkel B; Costa, Igor R; Costa, Samara G; Dansa, Marilvia; Daumas-Filho, Carlos R O; De-Paula, Iron F; Dias, Felipe A; Dimopoulos, George; Emrich, Scott J; Esponda-Behrens, Natalia; Fampa, Patricia; Fernandez-Medina, Rita D; da Fonseca, Rodrigo N; Fontenele, Marcio; Fronick, Catrina; Fulton, Lucinda A; Gandara, Ana Caroline; Garcia, Eloi S; Genta, Fernando A; Giraldo-Calderón, Gloria I; Gomes, Bruno; Gondim, Katia C; Granzotto, Adriana; Guarneri, Alessandra A; Guigó, Roderic; Harry, Myriam; Hughes, Daniel S T; Jablonka, Willy; Jacquin-Joly, Emmanuelle; Juárez, M Patricia; Koerich, Leonardo B; Lange, Angela B; Latorre-Estivalis, José Manuel; Lavore, Andrés; Lawrence, Gena G; Lazoski, Cristiano; Lazzari, Claudio R; Lopes, Raphael R; Lorenzo, Marcelo G; Lugon, Magda D; Majerowicz, David; Marcet, Paula L; Mariotti, Marco; Masuda, Hatisaburo; Megy, Karine; Melo, Ana C A; Missirlis, Fanis; Mota, Theo; Noriega, Fernando G; Nouzova, Marcela; Nunes, Rodrigo D; Oliveira, Raquel L L; Oliveira-Silveira, Gilbert; Ons, Sheila; Orchard, Ian; Pagola, Lucia; Paiva-Silva, Gabriela O; Pascual, Agustina; Pavan, Marcio G; Pedrini, Nicolás; Peixoto, Alexandre A; Pereira, Marcos H; Pike, Andrew; Polycarpo, Carla; Prosdocimi, Francisco; Ribeiro-Rodrigues, Rodrigo; Robertson, Hugh M; Salerno, Ana Paula; Salmon, Didier; Santesmasses, Didac; Schama, Renata; Seabra-Junior, Eloy S; Silva-Cardoso, Livia; Silva-Neto, Mario A C; Souza-Gomes, Matheus; Sterkel, Marcos; Taracena, Mabel L; Tojo, Marta; Tu, Zhijian Jake; Tubio, Jose M C; Ursic-Bedoya, Raul; Venancio, Thiago M; Walter-Nuno, Ana Beatriz; Wilson, Derek; Warren, Wesley C; Wilson, Richard K; Huebner, Erwin; Dotson, Ellen M; Oliveira, Pedro L

    2015-12-01

    Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.

  18. [The new methods in gerontology for life expectancy prediction of the indigenous population of Yugra].

    PubMed

    Gavrilenko, T V; Es'kov, V M; Khadartsev, A A; Khimikova, O I; Sokolova, A A

    2014-01-01

    The behavior of the state vector of human cardio-vascular system in different age groups according to methods of theory of chaos-self-organization and methods of classical statistics was investigated. Observations were made on the indigenous people of North of the Russian Federation. Using methods of the theory of chaos-self-organization the differences in the parameters of quasi-attractors of the human state vector of cardio-vascular system of the people of Russian Federation North were shown. Comparison with the results obtained by classical statistics was made.

  19. Organization model for Mobile Wireless Sensor Networks inspired in Artificial Bee Colony

    NASA Astrophysics Data System (ADS)

    Freire Roberto, Guilherme; Castilho Maschi, Luis Fernando; Pigatto, Daniel Fernando; Jaquie Castelo Branco, Kalinka Regina Lucas; Alves Neves, Leandro; Montez, Carlos; Sandro Roschildt Pinto, Alex

    2015-01-01

    The purpose of this study is to find a self-organizing model for MWSN based on bee colonies in order to reduce the number of messages transmitted among nodes, and thus reduce the overall consumption energy while maintaining the efficiency of message delivery. The results obtained in this article are originated from simulations carried out with SINALGO software, which demonstrates the effectiveness of the proposed approach. The BeeAODV (Bee Ad-Hoc On Demand Distance Vector) proposed in this paper allows to considerably reduce message exchanges whether compared to AODV (Ad-Hoc On Demand Distance Vector).

  20. Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.

    PubMed Central

    Bond, J. Guillermo; Rojas, Julio C.; Arredondo-Jiménez, Juan I.; Quiroz-Martínez, Humberto; Valle, Javier; Williams, Trevor

    2004-01-01

    Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica. PMID:15475337

  1. Insecticidal and repellent activity of Hiptage benghalensis L. Kruz (Malpighiaceae) against mosquito vectors.

    PubMed

    Lalrotluanga; Ngente, Lalchawimawii; Nachimuthu, Senthil Kumar; Guruswami, Gurusubramanian

    2012-09-01

    Plant-based insecticides for vector control are urgently needed for Anopheles barbirostris, Culex quinquefasciatus, and Aedes albopictus which are the primary vectors of malaria, lymphatic filariasis, and dengue, respectively, in India and other South East Asian countries. In the present study, larvicidal, adulticidal, and repellent activities of acetone root bark extract of Hiptage benghalensis were tested against the larvae and adults of the three mosquito vectors. The acetone root bark extracts of H. benghalensis was more effective as larvicides with low LC(50) (11.15-16.78 ppm) and LT50 (1.25-4.84 h at 200 and 400 ppm) values. Results of log probit analysis (at 95 % confidence level) and regression analysis of crude acetone root bark extract of H. benghalensis revealed that lethal concentration (LC(50)) values gradually decreased with the exposure periods; lethal time (LT(50)) decreased with the concentration, and the mortality is positively correlated with the concentration. The order of susceptibility of the three mosquito species was as follows: A. albopictus > A. barbirostris > C. quinquefascitus. Biochemical changes were also evidenced in third instar larvae of three mosquito species following a sublethal exposure for 24 h. The level of sugar, glycogen, lipids, and proteins was significantly (P < 0.05) reduced in larvae treated with H. benghalensis. The acetone root bark extracts of H. benghalensis is less toxic to adults and repelled laboratory-reared female A. barbirostris, A. albopictus, and C. quinquefascitus with the short median protection times of 57.66-135, 72.41-134.16, and 47.66-93 min, respectively. The present investigation proves it as a potent larvicide against A. albopictus, A. barbirostris, and C. quinquefascitus, which can be recommended to control these mosquito species on its breeding site. However, further investigations are needed to confirm the lethal effects of H. benghalensis in field conditions and its impact on the nontarget organisms.

  2. A Method for Integrating Thrust-Vectoring and Actuated Forebody Strakes with Conventional Aerodynamic Controls on a High-Performance Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Lallman, Frederick J.; Davidson, John B.; Murphy, Patrick C.

    1998-01-01

    A method, called pseudo controls, of integrating several airplane controls to achieve cooperative operation is presented. The method eliminates conflicting control motions, minimizes the number of feedback control gains, and reduces the complication of feedback gain schedules. The method is applied to the lateral/directional controls of a modified high-performance airplane. The airplane has a conventional set of aerodynamic controls, an experimental set of thrust-vectoring controls, and an experimental set of actuated forebody strakes. The experimental controls give the airplane additional control power for enhanced stability and maneuvering capabilities while flying over an expanded envelope, especially at high angles of attack. The flight controls are scheduled to generate independent body-axis control moments. These control moments are coordinated to produce stability-axis angular accelerations. Inertial coupling moments are compensated. Thrust-vectoring controls are engaged according to their effectiveness relative to that of the aerodynamic controls. Vane-relief logic removes steady and slowly varying commands from the thrust-vectoring controls to alleviate heating of the thrust turning devices. The actuated forebody strakes are engaged at high angles of attack. This report presents the forward-loop elements of a flight control system that positions the flight controls according to the desired stability-axis accelerations. This report does not include the generation of the required angular acceleration commands by means of pilot controls or the feedback of sensed airplane motions.

  3. Coarse-resolution Ecology of Etiological Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya.

    PubMed

    Samy, Abdallah M; Annajar, Badereddin B; Dokhan, Mostafa Ramadhan; Boussaa, Samia; Peterson, A Townsend

    2016-02-01

    Cutaneous leishmaniasis ranks among the tropical diseases least known and most neglected in Libya. World Health Organization reports recognized associations of Phlebotomus papatasi, Psammomys obesus, and Meriones spp., with transmission of zoonotic cutaneous leishmaniasis (ZCL; caused by Leishmania major) across Libya. Here, we map risk of ZCL infection based on occurrence records of L. major, P. papatasi, and four potential animal reservoirs (Meriones libycus, Meriones shawi, Psammomys obesus, and Gerbillus gerbillus). Ecological niche models identified limited risk areas for ZCL across the northern coast of the country; most species associated with ZCL transmission were confined to this same region, but some had ranges extending to central Libya. All ENM predictions were significant based on partial ROC tests. As a further evaluation of L. major ENM predictions, we compared predictions with 98 additional independent records provided by the Libyan National Centre for Disease Control (NCDC); all of these records fell inside the belt predicted as suitable for ZCL. We tested ecological niche similarity among vector, parasite, and reservoir species and could not reject any null hypotheses of niche similarity. Finally, we tested among possible combinations of vector and reservoir that could predict all recent human ZCL cases reported by NCDC; only three combinations could anticipate the distribution of human cases across the country.

  4. Coarse-resolution Ecology of Etiological Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya

    PubMed Central

    Samy, Abdallah M.; Annajar, Badereddin B.; Dokhan, Mostafa Ramadhan; Boussaa, Samia; Peterson, A. Townsend

    2016-01-01

    Abstract Cutaneous leishmaniasis ranks among the tropical diseases least known and most neglected in Libya. World Health Organization reports recognized associations of Phlebotomus papatasi, Psammomys obesus, and Meriones spp., with transmission of zoonotic cutaneous leishmaniasis (ZCL; caused by Leishmania major) across Libya. Here, we map risk of ZCL infection based on occurrence records of L. major, P. papatasi, and four potential animal reservoirs (Meriones libycus, Meriones shawi, Psammomys obesus, and Gerbillus gerbillus). Ecological niche models identified limited risk areas for ZCL across the northern coast of the country; most species associated with ZCL transmission were confined to this same region, but some had ranges extending to central Libya. All ENM predictions were significant based on partial ROC tests. As a further evaluation of L. major ENM predictions, we compared predictions with 98 additional independent records provided by the Libyan National Centre for Disease Control (NCDC); all of these records fell inside the belt predicted as suitable for ZCL. We tested ecological niche similarity among vector, parasite, and reservoir species and could not reject any null hypotheses of niche similarity. Finally, we tested among possible combinations of vector and reservoir that could predict all recent human ZCL cases reported by NCDC; only three combinations could anticipate the distribution of human cases across the country. PMID:26863317

  5. Developing an expanded vector control toolbox for malaria elimination

    PubMed Central

    Tatarsky, Allison; Diabate, Abdoulaye; Chaccour, Carlos J; Marshall, John M; Okumu, Fredros O; Brunner, Shannon; Newby, Gretchen; Williams, Yasmin A; Malone, David; Tusting, Lucy S; Gosling, Roland D

    2017-01-01

    Vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) accounts for most of the malaria burden reductions achieved recently in low and middle-income countries (LMICs). LLINs and IRS are highly effective, but are insufficient to eliminate malaria transmission in many settings because of operational constraints, growing resistance to available insecticides and mosquitoes that behaviourally avoid contact with these interventions. However, a number of substantive opportunities now exist for rapidly developing and implementing more diverse, effective and sustainable malaria vector control strategies for LMICs. For example, mosquito control in high-income countries is predominantly achieved with a combination of mosquito-proofed housing and environmental management, supplemented with large-scale insecticide applications to larval habitats and outdoor spaces that kill off vector populations en masse, but all these interventions remain underused in LMICs. Programmatic development and evaluation of decentralised, locally managed systems for delivering these proactive mosquito population abatement practices in LMICs could therefore enable broader scale-up. Furthermore, a diverse range of emerging or repurposed technologies are becoming available for targeting mosquitoes when they enter houses, feed outdoors, attack livestock, feed on sugar or aggregate into mating swarms. Global policy must now be realigned to mobilise the political and financial support necessary to exploit these opportunities over the decade ahead, so that national malaria control and elimination programmes can access a much broader, more effective set of vector control interventions. PMID:28589022

  6. Community effectiveness of copepods for dengue vector control: systematic review.

    PubMed

    Lazaro, A; Han, W W; Manrique-Saide, P; George, L; Velayudhan, R; Toledo, J; Runge Ranzinger, S; Horstick, O

    2015-06-01

    Vector control remains the only available method for primary prevention of dengue. Several interventions exist for dengue vector control, with limited evidence of their efficacy and community effectiveness. This systematic review compiles and analyses the existing global evidence for community effectiveness of copepods for dengue vector control. The systematic review follows the PRISMA statement, searching six relevant databases. Applying all inclusion and exclusion criteria, 11 articles were included. There is evidence that cyclopoid copepods (Mesocyclops spp.) could potentially be an effective vector control option, as shown in five community effectiveness studies in Vietnam. This includes long-term effectiveness for larval and adult control of Ae. aegypti, as well as dengue incidence. However, this success has so far not been replicated elsewhere (six studies, three community effectiveness studies--Costa Rica, Mexico and USA, and three studies analysing both efficacy and community effectiveness--Honduras, Laos and USA), probably due to community participation, environmental and/or biological factors. Judging by the quality of existing studies, there is a lack of good study design, data quality and appropriate statistics. There is limited evidence for the use of cyclopoid copepods as a single intervention. There are very few studies, and more are needed in other communities and environments. Clear best practice guidelines for the methodology of entomological studies should be developed. © 2015 John Wiley & Sons Ltd.

  7. The transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) male reproductive organs.

    PubMed

    Azevedo, Renata V D M; Dias, Denise B S; Bretãs, Jorge A C; Mazzoni, Camila J; Souza, Nataly A; Albano, Rodolpho M; Wagner, Glauber; Davila, Alberto M R; Peixoto, Alexandre A

    2012-01-01

    It has been suggested that genes involved in the reproductive biology of insect disease vectors are potential targets for future alternative methods of control. Little is known about the molecular biology of reproduction in phlebotomine sand flies and there is no information available concerning genes that are expressed in male reproductive organs of Lutzomyia longipalpis, the main vector of American visceral leishmaniasis and a species complex. We generated 2678 high quality ESTs ("Expressed Sequence Tags") of L. longipalpis male reproductive organs that were grouped in 1391 non-redundant sequences (1136 singlets and 255 clusters). BLAST analysis revealed that only 57% of these sequences share similarity with a L. longipalpis female EST database. Although no more than 36% of the non-redundant sequences showed similarity to protein sequences deposited in databases, more than half of them presented the best-match hits with mosquito genes. Gene ontology analysis identified subsets of genes involved in biological processes such as protein biosynthesis and DNA replication, which are probably associated with spermatogenesis. A number of non-redundant sequences were also identified as putative male reproductive gland proteins (mRGPs), also known as male accessory gland protein genes (Acps). The transcriptome analysis of L. longipalpis male reproductive organs is one step further in the study of the molecular basis of the reproductive biology of this important species complex. It has allowed the identification of genes potentially involved in spermatogenesis as well as putative mRGPs sequences, which have been studied in many insect species because of their effects on female post-mating behavior and physiology and their potential role in sexual selection and speciation. These data open a number of new avenues for further research in the molecular and evolutionary reproductive biology of sand flies.

  8. The Transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) Male Reproductive Organs

    PubMed Central

    Bretãs, Jorge A. C.; Mazzoni, Camila J.; Souza, Nataly A.; Albano, Rodolpho M.; Wagner, Glauber; Davila, Alberto M. R.; Peixoto, Alexandre A.

    2012-01-01

    Background It has been suggested that genes involved in the reproductive biology of insect disease vectors are potential targets for future alternative methods of control. Little is known about the molecular biology of reproduction in phlebotomine sand flies and there is no information available concerning genes that are expressed in male reproductive organs of Lutzomyia longipalpis, the main vector of American visceral leishmaniasis and a species complex. Methods/Principal Findings We generated 2678 high quality ESTs (“Expressed Sequence Tags”) of L. longipalpis male reproductive organs that were grouped in 1391 non-redundant sequences (1136 singlets and 255 clusters). BLAST analysis revealed that only 57% of these sequences share similarity with a L. longipalpis female EST database. Although no more than 36% of the non-redundant sequences showed similarity to protein sequences deposited in databases, more than half of them presented the best-match hits with mosquito genes. Gene ontology analysis identified subsets of genes involved in biological processes such as protein biosynthesis and DNA replication, which are probably associated with spermatogenesis. A number of non-redundant sequences were also identified as putative male reproductive gland proteins (mRGPs), also known as male accessory gland protein genes (Acps). Conclusions The transcriptome analysis of L. longipalpis male reproductive organs is one step further in the study of the molecular basis of the reproductive biology of this important species complex. It has allowed the identification of genes potentially involved in spermatogenesis as well as putative mRGPs sequences, which have been studied in many insect species because of their effects on female post-mating behavior and physiology and their potential role in sexual selection and speciation. These data open a number of new avenues for further research in the molecular and evolutionary reproductive biology of sand flies. PMID:22496818

  9. Status of Insecticide Resistance in Papua New Guinea: An Update from Nation-Wide Monitoring of Anopheles Mosquitoes.

    PubMed

    Koimbu, Gussy; Czeher, Cyrille; Katusele, Michelle; Sakur, Muker; Kilepak, Lemen; Tandrapah, Anthony; Hetzel, Manuel W; Pulford, Justin; Robinson, Leanne; Karl, Stephan

    2018-01-01

    Insecticide resistance (IR) monitoring is an important component of vector-borne disease control. The last assessment of IR in Papua New Guinea (PNG) was conducted in 2010. Since then, vector populations have been exposed to higher levels of pyrethroids with the continued nation-wide distribution of insecticide-treated nets. Here, we provide an update on phenotypic IR in four highly malaria-endemic areas of PNG. IR against deltamethrin, lambda-cyhalothrin, and dichlorodiphenyltrichloroethane was assessed using World Health Organization bioassays. A total of 108 bioassays for each insecticide were conducted screening 2,290 adult female anopheline mosquitoes. No phenotypic resistance was observed. Bioassay parameters agreed well with those observed in other studies that used the same assays and insecticides. These results indicate that the three tested insecticides are still universally effective in PNG. Continued IR monitoring (every 1-2 years) in PNG is recommended to detect reduced susceptibility early and adjust guidelines to prevent widespread resistance.

  10. Current Perspectives on Plague Vector Control in Madagascar: Susceptibility Status of Xenopsylla cheopis to 12 Insecticides.

    PubMed

    Miarinjara, Adélaïde; Boyer, Sébastien

    2016-02-01

    Plague is a rodent disease transmissible to humans by infected flea bites, and Madagascar is one of the countries with the highest plague incidence in the world. This study reports the susceptibility of the main plague vector Xenopsylla cheopis to 12 different insecticides belonging to 4 insecticide families (carbamates, organophosphates, pyrethroids and organochlorines). Eight populations from different geographical regions of Madagascar previously resistant to deltamethrin were tested with a World Health Organization standard bioassay. Insecticide susceptibility varied amongst populations, but all of them were resistant to six insecticides belonging to pyrethroid and carbamate insecticides (alphacypermethrin, lambdacyhalothrin, etofenprox, deltamethrin, bendiocarb and propoxur). Only one insecticide (dieldrin) was an efficient pulicide for all flea populations. Cross resistances were suspected. This study proposes at least three alternative insecticides (malathion, fenitrothion and cyfluthrin) to replace deltamethrin during plague epidemic responses, but the most efficient insecticide may be different for each population studied. We highlight the importance of continuous insecticide susceptibility surveillance in the areas of high plague risk in Madagascar.

  11. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes

    PubMed Central

    Capewell, Paul; Cren-Travaillé, Christelle; Marchesi, Francesco; Johnston, Pamela; Clucas, Caroline; Benson, Robert A; Gorman, Taylor-Anne; Calvo-Alvarez, Estefania; Crouzols, Aline; Jouvion, Grégory; Jamonneau, Vincent; Weir, William; Stevenson, M Lynn; O'Neill, Kerry; Cooper, Anneli; Swar, Nono-raymond Kuispond; Bucheton, Bruno; Ngoyi, Dieudonné Mumba; Garside, Paul

    2016-01-01

    The role of mammalian skin in harbouring and transmitting arthropod-borne protozoan parasites has been overlooked for decades as these pathogens have been regarded primarily as blood-dwelling organisms. Intriguingly, infections with low or undetected blood parasites are common, particularly in the case of Human African Trypanosomiasis caused by Trypanosoma brucei gambiense. We hypothesise, therefore, the skin represents an anatomic reservoir of infection. Here we definitively show that substantial quantities of trypanosomes exist within the skin following experimental infection, which can be transmitted to the tsetse vector, even in the absence of detectable parasitaemia. Importantly, we demonstrate the presence of extravascular parasites in human skin biopsies from undiagnosed individuals. The identification of this novel reservoir requires a re-evaluation of current diagnostic methods and control policies. More broadly, our results indicate that transmission is a key evolutionary force driving parasite extravasation that could further result in tissue invasion-dependent pathology. DOI: http://dx.doi.org/10.7554/eLife.17716.001 PMID:27653219

  12. Tissue Distribution of the Ehrlichia muris-Like Agent in a Tick Vector

    PubMed Central

    Lynn, Geoffrey E.; Oliver, Jonathan D.; Nelson, Curtis M.; Felsheim, Roderick F.; Kurtti, Timothy J.; Munderloh, Ulrike G.

    2015-01-01

    Human pathogens transmitted by ticks undergo complex life cycles alternating between the arthropod vector and a mammalian host. While the latter has been investigated to a greater extent, examination of the biological interactions between microbes and the ticks that carry them presents an equally important opportunity for disruption of the disease cycle. In this study, we used in situ hybridization to demonstrate infection by the Ehrlichia muris-like organism, a newly recognized human pathogen, of Ixodes scapularis ticks, a primary vector for several important human disease agents. This allowed us to assess whole sectioned ticks for the patterns of tissue invasion, and demonstrate generalized dissemination of ehrlichiae in a variety of cell types and organs within ticks infected naturally via blood feeding. Electron microscopy was used to confirm these results. Here we describe a strong ehrlichial affinity for epithelial cells, neuronal cells of the synganglion, salivary glands, and male accessory glands. PMID:25781930

  13. Experimental model to evaluate the human body louse as a vector of plague.

    PubMed

    Houhamdi, Linda; Lepidi, Hubert; Drancourt, Michel; Raoult, Didier

    2006-12-01

    Yersinia pestis has been found in human body lice during plague outbreaks. To evaluate the role that the human body louse plays as a vector of plague, we allowed lice to feed on rabbits made bacteremic by intravenous inoculation of 10(9) colony-forming units of 3 strains of Y. pestis. High mortality rates were observed in all lice 2 and 3 days after infection. The lice remained infected with the strains for their life span and excreted viable organisms in their feces from day 1, although they were unable to lay eggs. The lice infected with 2 virulent strains of Y. pestis transmitted the organisms during feeding to uninfected rabbits, which became septicemic and died of plague (with 1 exception) 1 day later. Infections were transmitted to naive lice that were fed on these rabbits, showing that lice can be vectors of Y. pestis in an experimental model.

  14. Monitoring Seasonal Changes in Winery-Resident Microbiota.

    PubMed

    Bokulich, Nicholas A; Ohta, Moe; Richardson, Paul M; Mills, David A

    2013-01-01

    During the transformation of grapes to wine, wine fermentations are exposed to a large area of specialized equipment surfaces within wineries, which may serve as important reservoirs for two-way transfer of microbes between fermentations. However, the role of winery environments in shaping the microbiota of wine fermentations and vectoring wine spoilage organisms is poorly understood at the systems level. Microbial communities inhabiting all major equipment and surfaces in a pilot-scale winery were surveyed over the course of a single harvest to track the appearance of equipment microbiota before, during, and after grape harvest. Results demonstrate that under normal cleaning conditions winery surfaces harbor seasonally fluctuating populations of bacteria and fungi. Surface microbial communities were dependent on the production context at each site, shaped by technological practices, processing stage, and season. During harvest, grape- and fermentation-associated organisms populated most winery surfaces, acting as potential reservoirs for microbial transfer between fermentations. These surfaces harbored large populations of Saccharomyces cerevisiae and other yeasts prior to harvest, potentially serving as an important vector of these yeasts in wine fermentations. However, the majority of the surface communities before and after harvest comprised organisms with no known link to wine fermentations and a near-absence of spoilage-related organisms, suggesting that winery surfaces do not overtly vector wine spoilage microbes under normal operating conditions.

  15. Monitoring Seasonal Changes in Winery-Resident Microbiota

    PubMed Central

    Bokulich, Nicholas A.; Ohta, Moe; Richardson, Paul M.; Mills, David A.

    2013-01-01

    During the transformation of grapes to wine, wine fermentations are exposed to a large area of specialized equipment surfaces within wineries, which may serve as important reservoirs for two-way transfer of microbes between fermentations. However, the role of winery environments in shaping the microbiota of wine fermentations and vectoring wine spoilage organisms is poorly understood at the systems level. Microbial communities inhabiting all major equipment and surfaces in a pilot-scale winery were surveyed over the course of a single harvest to track the appearance of equipment microbiota before, during, and after grape harvest. Results demonstrate that under normal cleaning conditions winery surfaces harbor seasonally fluctuating populations of bacteria and fungi. Surface microbial communities were dependent on the production context at each site, shaped by technological practices, processing stage, and season. During harvest, grape- and fermentation-associated organisms populated most winery surfaces, acting as potential reservoirs for microbial transfer between fermentations. These surfaces harbored large populations of Saccharomyces cerevisiae and other yeasts prior to harvest, potentially serving as an important vector of these yeasts in wine fermentations. However, the majority of the surface communities before and after harvest comprised organisms with no known link to wine fermentations and a near-absence of spoilage-related organisms, suggesting that winery surfaces do not overtly vector wine spoilage microbes under normal operating conditions. PMID:23840468

  16. Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms.

    PubMed

    Mundell, Nathan A; Beier, Kevin T; Pan, Y Albert; Lapan, Sylvain W; Göz Aytürk, Didem; Berezovskii, Vladimir K; Wark, Abigail R; Drokhlyansky, Eugene; Bielecki, Jan; Born, Richard T; Schier, Alexander F; Cepko, Constance L

    2015-08-01

    Current limitations in technology have prevented an extensive analysis of the connections among neurons, particularly within nonmammalian organisms. We developed a transsynaptic viral tracer originally for use in mice, and then tested its utility in a broader range of organisms. By engineering the vesicular stomatitis virus (VSV) to encode a fluorophore and either the rabies virus glycoprotein (RABV-G) or its own glycoprotein (VSV-G), we created viruses that can transsynaptically label neuronal circuits in either the retrograde or anterograde direction, respectively. The vectors were investigated for their utility as polysynaptic tracers of chicken and zebrafish visual pathways. They showed patterns of connectivity consistent with previously characterized visual system connections, and revealed several potentially novel connections. Further, these vectors were shown to infect neurons in several other vertebrates, including Old and New World monkeys, seahorses, axolotls, and Xenopus. They were also shown to infect two invertebrates, Drosophila melanogaster, and the box jellyfish, Tripedalia cystophora, a species previously intractable for gene transfer, although no clear evidence of transsynaptic spread was observed in these species. These vectors provide a starting point for transsynaptic tracing in most vertebrates, and are also excellent candidates for gene transfer in organisms that have been refractory to other methods. © 2015 Wiley Periodicals, Inc.

  17. PlasmoGEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites.

    PubMed

    Schwach, Frank; Bushell, Ellen; Gomes, Ana Rita; Anar, Burcu; Girling, Gareth; Herd, Colin; Rayner, Julian C; Billker, Oliver

    2015-01-01

    The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Cascading effect of economic globalization on human risks of scrub typhus and tick-borne rickettsial diseases.

    PubMed

    Kuo, Chi-Chien; Huang, Jing-Lun; Shu, Pei-Yun; Lee, Pei-Lung; Kelt, Douglas A; Wang, Hsi-Chieh

    2012-09-01

    The increase in global travel and trade has facilitated the dissemination of disease vectors. Globalization can also indirectly affect vector-borne diseases through the liberalization of cross-border trade, which has far-reaching, worldwide effects on agricultural practices and may in turn influence vectors through the modification of the ecological landscape. While the cascading effect of economic globalization on vector-borne diseases, sometimes acting synergistically with regional agricultural policy, could be substantial and have significant economic, agricultural, and public health implications, research into this remains very limited. We evaluated how abandonment of rice paddies in Taiwan after joining the World Trade Organization, along with periodic plowing, an agricultural policy to reduce farm pests in abandoned fields can unexpectedly influence risks to diseases transmitted by ticks and chiggers (larval trombiculid mites), which we collected from their small-mammal hosts. Sampling was limited to abandoned (fallow) and plowed fields due to the challenge of trapping small mammals in flooded rice paddies. Striped field mice (Apodemus agrarius) are the main hosts for both vectors. They harbored six times more ticks and three times more chiggers in fallow than in plowed plots. The proportion of ticks infected with Rickettsia spp. (etiologic agent of spotted fever) was three times higher in fallow plots, while that of Orientia tsutsugamushi (scrub typhus) in chiggers was similar in both treatments. Fallow plots had more ground cover and higher vegetation than plowed ones. Moreover, ticks and chiggers in both field types were dominated by species known to infest humans. Because ticks and chiggers should exhibit very low survival in flooded rice paddies, we propose that farm abandonment in Taiwan, driven by globalization, may have inadvertently led to increased risks of spotted fever and scrub typhus. However, periodic plowing can unintentionally mitigate vector burdens. Economic globalization can have unexpected consequences on disease risk through modification of the agricultural landscape, but the outcome may also be influenced by agricultural policies, calling for further research on vector-borne diseases and their control from broader perspectives.

  19. Overexpression of SASH1 related to the decreased invasion ability of human glioma U251 cells.

    PubMed

    Yang, Liu; Liu, Mei; Gu, Zhikai; Chen, Jianguo; Yan, Yaohua; Li, Jian

    2012-12-01

    The purpose of this study was to investigate the impact of SAM- and SH3-domain containing 1 (SASH1) on the biological behavior of glioma cells, including its effects on cellular growth, proliferation, apoptosis, invasion, and metastasis, and thereby to provide an experimental basis for future therapeutic treatments. A pcDNA3.1-SASH1 eukaryotic expression vector was constructed and transfected into the U251 human glioma cell line. Using the tetrazolium-based colorimetric (MTT) assay, flow cytometry analyses, transwell invasion chamber experiments, and other methods, we examined the impact of SASH1 on the biological behaviors of U251 cells, including effects on viability, cell cycle, apoptosis, and invasion. Furthermore, the effect of SASH1 on the expression of cyclin D1, caspase-3, matrix metalloproteinase (MMP)-2, MMP-9, and other proteins was observed. Compared to the empty vector and blank control groups, the pcDNA3.1-SASH1 group of U251 cells exhibited significantly reduced cell viability, proliferation, and invasion (p < 0.05), although there was no difference between the empty vector and blank control groups. The pcDNA3.1-SASH1 group demonstrated a significantly higher apoptotic index than did the empty vector and blank control groups (p < 0.05), and the percentage of apoptotic cells was similar between the empty vector and blank control groups. In addition, the pcDNA3.1-SASH1 group expressed significantly lower protein levels of cyclin D1 and MMP-2/9 compared to the control and empty vector groups (p < 0.05) and significantly higher protein levels of caspase-3 than the other two groups (p < 0.05). Cyclin D1, caspase-3, and MMP-2/9 expression was unchanged between the empty vector and blank control groups. SASH1 gene expression might be related to the inhibition of the growth, proliferation, and invasion of U251 cells and the promotion of U251 cells apoptosis.

  20. DNA encoding for plant digalactosyldiacylglycerol galactosyltransferase and methods of use

    DOEpatents

    Benning, Christoph; Doermann, Peter

    2003-11-04

    The cDNA encoding digalactosyldiacylglycerol galactosyltransferase (DGD1) is provided. The deduced amino acid sequence is also provided. Methods of making and using DGD1 to screen for new herbicides and alter a plant's leaf lipid composition are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors.

  1. 42 CFR 71.54 - Import regulations for infectious biological agents, infectious substances, and vectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... segmented configuration and may be positive sense (same polarity as mRNA), negative sense, or ambisense... material. Deoxyribonucleic acid (DNA) or Ribonucleic acid (RNA) comprising the genome or organism's... threat to public health and safety as listed in 42 CFR 73.3 and 73.4. Vector. Any animals (vertebrate or...

  2. 42 CFR 71.54 - Import regulations for infectious biological agents, infectious substances, and vectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... segmented configuration and may be positive sense (same polarity as mRNA), negative sense, or ambisense... material. Deoxyribonucleic acid (DNA) or Ribonucleic acid (RNA) comprising the genome or organism's... threat to public health and safety as listed in 42 CFR 73.3 and 73.4. Vector. Any animals (vertebrate or...

  3. Limited impacts of truck-based ultra-low-volume applications of mosquito adulticides on mortality in honey bees (Apis mellifera).

    PubMed

    Rinkevich, F D; Margotta, J W; Pokhrel, V; Walker, T W; Vaeth, R H; Hoffman, W C; Fritz, B K; Danka, R G; Rinderer, T E; Aldridge, R L; Linthicum, K J; Ottea, J A; Healy, K B

    2017-12-01

    Adulticides applied against mosquitoes can reduce vector populations during times of high arbovirus transmission. However, impacts of these insecticides on pollinators and other non-target organisms are of concern to mosquito control professionals, beekeepers and others. We evaluated mortality of Culex quinquefasciatus and Apis mellifera when caged insects were exposed to low and high label rates of four common adulticides (Aqua-Pursuit™ [permethrin], Duet® [prallethrin + sumithrin], Fyfanon® [malathion] and Scourge® [resmethrin]) at six distances up to 91.4 m from a truck-mounted ultra-low-volume sprayer. Honey bee mortality was both absolutely low (61 m had limited impacts on honey bee mortality while providing effective mosquito control.

  4. Vista/F-16 Multi-Axis Thrust Vectoring (MATV) control law design and evaluation

    NASA Technical Reports Server (NTRS)

    Zwerneman, W. D.; Eller, B. G.

    1994-01-01

    For the Multi-Axis Thrust Vectoring (MATV) program, a new control law was developed using multi-axis thrust vectoring to augment the aircraft's aerodynamic control power to provide maneuverability above the normal F-16 angle of attack limit. The control law architecture was developed using Lockheed Fort Worth's offline and piloted simulation capabilities. The final flight control laws were used in flight test to demonstrate tactical benefits gained by using thrust vectoring in air-to-air combat. Differences between the simulator aerodynamics data base and the actual aircraft aerodynamics led to significantly different lateral-directional flying qualities during the flight test program than those identified during piloted simulation. A 'dial-a-gain' flight test control law update was performed in the middle of the flight test program. This approach allowed for inflight optimization of the aircraft's flying qualities. While this approach is not preferred over updating the simulator aerodynamic data base and then updating the control laws, the final selected gain set did provide adequate lateral-directional flying qualities over the MATV flight envelope. The resulting handling qualities and the departure resistance of the aircraft allowed the 422nd_squadron pilots to focus entirely on evaluating the aircraft's tactical utility.

  5. Video Vectorization via Tetrahedral Remeshing.

    PubMed

    Wang, Chuan; Zhu, Jie; Guo, Yanwen; Wang, Wenping

    2017-02-09

    We present a video vectorization method that generates a video in vector representation from an input video in raster representation. A vector-based video representation offers the benefits of vector graphics, such as compactness and scalability. The vector video we generate is represented by a simplified tetrahedral control mesh over the spatial-temporal video volume, with color attributes defined at the mesh vertices. We present novel techniques for simplification and subdivision of a tetrahedral mesh to achieve high simplification ratio while preserving features and ensuring color fidelity. From an input raster video, our method is capable of generating a compact video in vector representation that allows a faithful reconstruction with low reconstruction errors.

  6. Preliminary efficacy investigations of oral fipronil against Anopheles arabiensis when administered to Zebu cattle (Bos indicus) under field conditions.

    PubMed

    Poché, Richard M; Githaka, Naftaly; van Gool, Frans; Kading, Rebekah C; Hartman, Daniel; Polyakova, Larisa; Abworo, Edward Okoth; Nene, Vishvanath; Lozano-Fuentes, Saul

    2017-12-01

    Globally, malaria remains one of the most important vector-borne diseases despite the extensive use of vector control, including indoor residual spraying (IRS) and insecticide-treated nets (ITNs). These control methods target endophagic vectors, whereas some malaria vectors, such as Anopheles arabiensis, preferentially feed outdoors on cattle, making it a complicated vector to control using conventional strategies. Our study evaluated whether treating cattle with a capsule containing the active ingredient (AI) fipronil could reduce vector density and sporozoite rates, and alter blood feeding behavior, when applied in a small-scale field study. A pilot field study was carried out in the Samia District, Western Kenya, from May to July 2015. Four plots, each comprised of 50 huts used for sleeping, were randomly designated to serve as control or treatment. A week before cattle treatment, baseline mosquito collections were performed inside the houses using mechanical aspirators. Animals in the treatment (and buffer) were administered a single oral application of fipronil at ∼0.5mg/kg of body weight. Indoor mosquito collections were performed once a week for four weeks following treatment. Female mosquitoes were first identified morphologically to species complex, followed by PCR-based methods to obtain species identity, sporozoite presence, and the host source of the blood meal. All three species of anophelines found in the study area (An. gambiae s.s., An. arabiensis, An. funestus s.s.) were actively transmitting Plasmodium falciparum during the study period. The indoor resting density of An. arabiensis was significantly reduced in treatment plot one at three weeks post-treatment (T1) (efficacy=89%; T1 density=0.08, 95% credibility intervals [0.05, 0.10]; control plot density=0.78 [0.22, 0.29]) and at four weeks post-treatment (efficacy=64%; T1 density=0.16 [0.08, 0.14]; control plot density=0.48 [0.17, 0.22]). The reduction of An. arabiensis mosquitoes captured in the treatment plot two was higher: zero females were collected after treatment. The indoor resting density of An. gambiae s.s. was not significantly different between the treatment (T1, T2) and their corresponding control plots (C1, C2). An. funestus s.s. showed an increase in density over time. The results of this preliminary study suggest that treating cattle orally with fipronil, to target exophagic and zoophagic malaria vectors, could be a valuable control strategy to supplement existing vector control interventions which target endophilic anthropophilic species. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser.

    PubMed

    Ning, Qiu-Yi; Liu, Hao; Zheng, Xu-Wu; Yu, Wei; Luo, Ai-Ping; Huang, Xu-Guang; Luo, Zhi-Chao; Xu, Wen-Cheng; Xu, Shan-Hui; Yang, Zhong-Min

    2014-05-19

    The vector nature of multi-soliton dynamic patterns was investigated in a passively mode-locked figure-eight fiber laser based on the nonlinear amplifying loop mirror (NALM). By properly adjusting the cavity parameters such as the pump power level and intra-cavity polarization controllers (PCs), in addition to the fundamental vector soliton, various vector multi-soliton regimes were observed, such as the random static distribution of vector multiple solitons, vector soliton cluster, vector soliton flow, and the state of vector multiple solitons occupying the whole cavity. Both the polarization-locked vector solitons (PLVSs) and the polarization-rotating vector solitons (PRVSs) were observed for fundamental soliton and each type of multi-soliton patterns. The obtained results further reveal the fundamental physics of multi-soliton patterns and demonstrate that the figure-eight fiber lasers are indeed a good platform for investigating the vector nature of different soliton types.

  8. In sickness or in health: TDR's partners. 6. The French Development Research Institute (ORSTOM).

    PubMed

    1997-10-01

    One of the partner agencies working with the UN Development Program/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (TDR) is the French development research agency, ORSTOM. ORSTOM has been conducting research in intertropical regions for approximately 50 years with a particular focus on entomoparasitological aspects of vector-borne diseases. ORSTOM's close collaboration with TDR since the TDR Special Program was launched in 1975 has led to 1) improved knowledge about various aspects of trypanosomiasis that allowed identification of ways to control the epidemic; 2) reappraisal of the taxonomy of the parasitic protozoa responsible for Chagas disease and leishmaniasis; 3) improvements in the strategy to fight malaria; 4) assessment of the efficacy of ivermectin as a form of mass treatment for onchocerciasis; 5) improved knowledge about dracunculiasis that contributed to an eradication campaign; 6) expansion of the scope of biological control of bancroftian filariasis and other parasites; and 7) improved knowledge about ways to control two schistosome species. ORSTOM also participated in a training and structural enhancement initiative that resulted in creation of the Boake Medical and Veterinary Entomology Training Center. ORSTOM is currently undergoing a complete restructuring to respond to changes in international tropical disease research and to changing priorities that focus on vector-borne diseases, nutrition, AIDS, and health systems.

  9. Effectiveness of Large-Scale Chagas Disease Vector Control Program in Nicaragua by Residual Insecticide Spraying Against Triatoma dimidiata.

    PubMed

    Yoshioka, Kota; Nakamura, Jiro; Pérez, Byron; Tercero, Doribel; Pérez, Lenin; Tabaru, Yuichiro

    2015-12-01

    Chagas disease is one of the most serious health problems in Latin America. Because the disease is transmitted mainly by triatomine vectors, a three-phase vector control strategy was used to reduce its vector-borne transmission. In Nicaragua, we implemented an indoor insecticide spraying program in five northern departments to reduce house infestation by Triatoma dimidiata. The spraying program was performed in two rounds. After each round, we conducted entomological evaluation to compare the vector infestation level before and after spraying. A total of 66,200 and 44,683 houses were sprayed in the first and second spraying rounds, respectively. The entomological evaluation showed that the proportion of houses infested by T. dimidiata was reduced from 17.0% to 3.0% after the first spraying, which was statistically significant (P < 0.0001). However, the second spraying round did not demonstrate clear effectiveness. Space-time analysis revealed that reinfestation of T. dimidiata is more likely to occur in clusters where the pre-spray infestation level is high. Here we discuss how large-scale insecticide spraying is neither effective nor affordable when T. dimidiata is widely distributed at low infestation levels. Further challenges involve research on T. dimidiata reinfestation, diversification of vector control strategies, and implementation of sustainable vector surveillance. © The American Society of Tropical Medicine and Hygiene.

  10. MOSQUITO VECTOR CONTROL AND BIOLOGY IN LATIN AMERICA - A 19TH SYMPOSIUM

    USDA-ARS?s Scientific Manuscript database

    The 19th Annual Latin American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 75th Annual Meeting in New Orleans, LA, in April 2009. The principal objective, as for the previous 18 symposia, was to promote participation in the AMCA by vector control s...

  11. Malaria entomological profile in Tanzania from 1950 to 2010: a review of mosquito distribution, vectorial capacity and insecticide resistance.

    PubMed

    Kabula, Bilali; Derua, Yahya A; Tungui, Patrick; Massue, Dennis J; Sambu, Edward; Stanley, Grades; Mosha, Franklin W; Kisinza, William N

    2011-12-01

    In Sub Saharan Africa where most of the malaria cases and deaths occur, members of the Anopheles gambiae species complex and Anophelesfunestus species group are the important malaria vectors. Control efforts against these vectors in Tanzania like in most other Sub Saharan countries have failed to achieve the set objectives of eliminating transmission due to scarcity of information about the enormous diversity of Anopheles mosquito species and their susceptibility status to insecticides used for malaria vector control. Understanding the diversity and insecticide susceptibility status of these vectors and other factors relating to their importance as vectors (such as malaria transmission dynamics, vector biology, ecology, behaviour and population genetics) is crucial to developing a better and sound intervention strategies that will reduce man-vector contact and also manage the emergency of insecticide resistance early and hence .a success in malaria control. The objective of this review was therefore to obtain the information from published and unpublished documents on spatial distribution and composition of malaria vectors, key features of their behaviour, transmission indices and susceptibility status to insecticides in Tanzania. All data available were collated into a database. Details recorded for each data source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, species identification methods, insecticide resistance status, including evidence of the kdr allele, and Plasmodium falciparum sporozoite rate. This collation resulted in a total of 368 publications, encompassing 806,273 Anopheles mosquitoes from 157 georeferenced locations being collected and identified across Tanzania from 1950s to 2010. Overall, the vector species most often reported included An. gambiae complex (66.8%), An. funestus complex (21.8%), An. gambiae s.s. (2.1%) and An. arabiensis (9%). A variety of sampling/ collection and species identification methods were used with an increase in molecular techniques in recent decades. Only 32.2% and 8.4% of the data sets reported on sporozoite analysis and entomological inoculation rate (EIR), respectively which highlights the paucity of such important information in the country. Studies demonstrated efficacy of all four major classes of insecticides against malaria vectors in Tanzania with focal points showing phenotypic resistance. About 95% of malaria entomological data was obtained from northeastern Tanzania. This shows the disproportionate nature of the available information with the western part of the country having none. Therefore it is important for the country to establish entomological surveillance system with state of the art to capture all vitally important entomological indices including vector bionomics in areas of Tanzania where very few or no studies have been done. This is vital in planning and implementing evidence based malaria vector control programmes as well as in monitoring the current malaria control interventions.

  12. Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression.

    PubMed

    Trinh, Alice T; Ball, Bret G; Weber, Erin; Gallaher, Timothy K; Gluzman-Poltorak, Zoya; Anderson, French; Basile, Lena A

    2009-12-30

    Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements in T-cell specific gene expression were observed with the incorporation of additional cis-regulatory elements, such as a human polyadenylation signal and intron 7 from the human ADA gene. These studies suggest that the combination of an authentically regulated ADA gene in a murine retroviral vector, together with additional locus-specific regulatory refinements, will yield a vector with a safer profile and greater efficacy in terms of high-level, therapeutic, regulated gene expression for the treatment of ADA-deficient severe combined immunodeficiency.

  13. Modelling strategies to break transmission of lymphatic filariasis--aggregation, adherence and vector competence greatly alter elimination.

    PubMed

    Irvine, M A; Reimer, L J; Njenga, S M; Gunawardena, S; Kelly-Hope, L; Bockarie, M; Hollingsworth, T D

    2015-10-22

    With ambitious targets to eliminate lymphatic filariasis over the coming years, there is a need to identify optimal strategies to achieve them in areas with different baseline prevalence and stages of control. Modelling can assist in identifying what data should be collected and what strategies are best for which scenarios. We develop a new individual-based, stochastic mathematical model of the transmission of lymphatic filariasis. We validate the model by fitting to a first time point and predicting future timepoints from surveillance data in Kenya and Sri Lanka, which have different vectors and different stages of the control programme. We then simulate different treatment scenarios in low, medium and high transmission settings, comparing once yearly mass drug administration (MDA) with more frequent MDA and higher coverage. We investigate the potential impact that vector control, systematic non-compliance and different levels of aggregation have on the dynamics of transmission and control. In all settings, increasing coverage from 65 to 80 % has a similar impact on control to treating twice a year at 65 % coverage, for fewer drug treatments being distributed. Vector control has a large impact, even at moderate levels. The extent of aggregation of parasite loads amongst a small portion of the population, which has been estimated to be highly variable in different settings, can undermine the success of a programme, particularly if high risk sub-communities are not accessing interventions. Even moderate levels of vector control have a large impact both on the reduction in prevalence and the maintenance of gains made during MDA, even when parasite loads are highly aggregated, and use of vector control is at moderate levels. For the same prevalence, differences in aggregation and adherence can result in very different dynamics. The novel analysis of a small amount of surveillance data and resulting simulations highlight the need for more individual level data to be analysed to effectively tailor programmes in the drive for elimination.

  14. Malaria control and eradication in Taiwan

    PubMed Central

    1958-01-01

    An intensive programme of residual spraying with DDT carried out over a period of 5 years in Taiwan has reduced malaria morbidity to a very low level. Since 1955, the goal has been complete eradication. Some foci of transmission and/or infection remain, however, and although no resistance problems have been encountered, the principal vector, A. minimus minimus, is still widely distributed. An elaborate surveillance organization is now in the process of creation, with the object of detecting and eliminating all residual foci of transmission and preventing the importation of fresh cases. It is hoped to complete eradication in another 3-5 years. PMID:13596886

  15. Regioregular narrow-bandgap-conjugated polymers for plastic electronics

    NASA Astrophysics Data System (ADS)

    Ying, Lei; Huang, Fei; Bazan, Guillermo C.

    2017-03-01

    Progress in the molecular design and processing protocols of semiconducting polymers has opened significant opportunities for the fabrication of low-cost plastic electronic devices. Recent studies indicate that field-effect transistors and organic solar cells fabricated using narrow-bandgap regioregular polymers with translational symmetries in the direction of the backbone vector often outperform those containing analogous regiorandom polymers. This review addresses the cutting edge of regioregularity chemistry, in particular how to control the spatial distribution in the molecular structures and how this order translates to more ordered bulk morphologies. The effect of regioregularity on charge transport and photovoltaic properties is also outlined.

  16. Epigenetic Control of Prostate Cancer Metastasis: Role of Runx2 Phosphorylation

    DTIC Science & Technology

    2014-04-01

    prostate cancer cells. In the third budget year, we achieved the following: a. Generation of retrovirus and lentivirus vectors expressing WT RUNX2 and S301A... retrovirus vectors will be developed that express β-galactosidase (negative control), wild type Runx2, S301A/S319A (non-phosphorylated) or S301E/S310E...constitutively active) Runx2 mutants. As described last year, retrovirus and lentivirus vectors were constructed to stably introduce wild type and mutant

  17. Development of Peritoneal Tumor-Targeting Vector by In Vivo Screening with a Random Peptide-Displaying Adenovirus Library

    PubMed Central

    Yoshida, Kimiko; Goto, Naoko; Ohnami, Shumpei; Aoki, Kazunori

    2012-01-01

    The targeting of gene transfer at the cell-entry level is one of the most attractive challenges in vector development. However, attempts to redirect adenovirus vectors to alternative receptors by engineering the capsid-coding region have shown limited success, because the proper targeting ligands on the cells of interest are generally unknown. To overcome this limitation, we have constructed a random peptide library displayed on the adenoviral fiber knob, and have successfully selected targeted vectors by screening the library on cancer cell lines in vitro. The infection of targeted vectors was considered to be mediated by specific receptors on target cells. However, the expression levels and kinds of cell surface receptors may be substantially different between in vitro culture and in vivo tumor tissue. Here, we screened the peptide display-adenovirus library in the peritoneal dissemination model of AsPC-1 pancreatic cancer cells. The vector displaying a selected peptide (PFWSGAV) showed higher infectivity in the AsPC-1 peritoneal tumors but not in organs and other peritoneal tumors as compared with a non-targeted vector. Furthermore, the infectivity of the PFWSGAV-displaying vector for AsPC-1 peritoneal tumors was significantly higher than that of a vector displaying a peptide selected by in vitro screening, indicating the usefulness of in vivo screening in exploring the targeting vectors. This vector-screening system can facilitate the development of targeted adenovirus vectors for a variety of applications in medicine. PMID:23029088

  18. Noise-induced hearing loss and associated factors among vector control workers in a Malaysian state.

    PubMed

    Masilamani, Retneswari; Rasib, Abdul; Darus, Azlan; Ting, Anselm Su

    2014-11-01

    This study aims to determine the prevalence and associated factors of noise-induced hearing loss (NIHL) among vector control workers in the state of Negeri Sembilan, Malaysia. This was an analytical cross-sectional study conducted on 181 vector control workers who were working in district health offices in a state in Malaysia. Data were collected using a self-administered questionnaire and audiometry. Prevalence of NIHL was 26% among this group of workers. NIHL was significantly associated with the age-group of 40 years and older, length of service of 10 or more years, current occupational noise exposure, listening to loud music, history of firearms use, and history of mumps/measles infection. Following logistic regression, age of more than 40 years and noise exposure in current occupation were associated with NIHL with an odds ratio of 3.45 (95% confidence interval = 1.68-7.07) and 6.87 (95% confidence interval = 1.54-30.69), respectively, among this group of vector control workers. © 2012 APJPH.

  19. Chemosterilants for Control of Insects and Insect Vectors of Disease.

    PubMed

    Baxter, Richard H G

    2016-10-01

    Both historically and at present, vector control is the most generally effective means of controlling malaria transmission. Insecticides are the predominant method of vector control, but the sterile insect technique (SIT) is a complementary strategy with a successful track record in both agricultural and public health sectors. Strategies of genetic and radiation-induced sterilization of Anopheles have to date been limited by logistical and/or regulatory hurdles. A safe and effective mosquito chemosterilant would therefore be of major utility to future deployment of SIT for malaria control. Here we review the prior and current use of chemosterilants in SIT, and assess the potential for future research. Recent genomic and proteomic studies reveal opportunities for specific targeting of seminal fluid proteins, and the capacity to interfere with sperm motility and storage in the female.

  20. Policy-based secure communication with automatic key management for industrial control and automation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernoguzov, Alexander; Markham, Thomas R.; Haridas, Harshal S.

    A method includes generating at least one access vector associated with a specified device in an industrial process control and automation system. The specified device has one of multiple device roles. The at least one access vector is generated based on one or more communication policies defining communications between one or more pairs of devices roles in the industrial process control and automation system, where each pair of device roles includes the device role of the specified device. The method also includes providing the at least one access vector to at least one of the specified device and one ormore » more other devices in the industrial process control and automation system in order to control communications to or from the specified device.« less

Top