High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics.
Kraus, P M; Rupenyan, A; Wörner, H J
2012-12-07
We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.
NASA Astrophysics Data System (ADS)
Sokkar, T. Z. N.; El-Farahaty, K. A.; El-Bakary, M. A.; Raslan, M. I.; Omar, E. Z.; Hamza, A. A.
2018-03-01
The optical setup of the transport intensity equation (TIE) technique is developed to be valid for measuring the optical properties of the highly-oriented anisotropic fibres. This development is based on the microstructure models of the highly-oriented anisotropic fibres and the principle of anisotropy. We provide the setup of TIE technique with polarizer which is controlled via stepper motor. This developed technique is used to investigate the refractive indices in the parallel and perpendicular polarization directions of light for the highly-oriented poly (ethylene terephthalate) (PET) fibres and hence its birefringence. The obtained results through the developed TIE technique for PET fibre are compared with that determined experimentally using the Mach-Zehnder interferometer under the same conditions. The comparison shows a good agreement between the obtained results from the developed technique and that obtained from the Mach-Zehnder interferometer technique.
Orientation of ripples induced by ultrafast laser pulses on copper in different liquids
NASA Astrophysics Data System (ADS)
Maragkaki, Stella; Elkalash, Abdallah; Gurevich, Evgeny L.
2017-12-01
Formation of laser-induced periodic surface structures (LIPSS or ripples) was studied on a metallic surface of polished copper using irradiation with multiple femtosecond laser pulses in different environmental conditions (air, water, ethanol and methanol). Uniform LIPSS have been achieved by controlling the peak fluence and the overlapping rate. Ripples in both orientations, perpendicular and parallel to laser polarization, were observed in all liquids simultaneously. The orientation of these ripples in the center of the ablated line was changing with the incident light intensity. For low intensities the orientation of the ripples is perpendicular to the laser polarization, whereas for high intensities it turns parallel to it without considerable changes in the period. Multi-directional LIPSS formation was also observed for moderate peak fluence in liquid environments.
Scotti, Dennis J; Harmon, Joel; Behson, Scott J
2009-01-01
This study assesses the importance of customer-contact intensity at the service encounter level as a determinant of service quality assessments. Using data from the U.S. Department of Veterans Affairs, it shows that performance-driven human resources practices play an important role as determinants of employee customer orientation and service capability in both high-contact (outpatient healthcare) and low-contact (benefits claim processing) human service contexts. However, there existed significant differences across service delivery settings in the salience of customer orientation and the congruence between employee and customer perceptions of service quality, depending on the intensity of customer contact. In both contexts, managerial attention to high-performance work systems and customer-orientation has the potential to favorably impact perceptions of service quality, amplify consumer satisfaction, and enhance operational efficiency.
Stöggl, Thomas L; Björklund, Glenn
2017-01-01
The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR) in well-trained endurance athletes. Methods: Thirty-six male ( n = 33) and female ( n = 3) runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO 2peak ): 61.9 ± 8.0 mL·kg -1 ·min -1 ] were randomly assigned to one of three groups (blocked high intensity interval training HIIT; polarized training POL; high volume low intensity oriented control group CG/HVLIT applying no HIIT). A maximal anaerobic running/cycling test (MART/MACT) was performed prior to and following a 9-week training period. Results: Only the HIIT group achieved improvements in peak power/velocity (+6.4%, P < 0.001) and peak lactate ( P = 0.001) during the MART/MACT, while, unexpectedly, in none of the groups the performance at the established lactate concentrations (4, 6, 10 mmol·L -1 ) was changed ( P > 0.05). Acute HRR was improved in HIIT (11.2%, P = 0.002) and POL (7.9%, P = 0.023) with no change in the HVLIT oriented control group. Conclusion: Only a training regime that includes a significant amount of HIIT improves the neuromuscular status, anaerobic power and the acute HRR in well-trained endurance athletes. A training regime that followed more a low and moderate intensity oriented model (CG/HVLIT) had no effect on any performance or HRR outcomes.
Stöggl, Thomas L.; Björklund, Glenn
2017-01-01
The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR) in well-trained endurance athletes. Methods: Thirty-six male (n = 33) and female (n = 3) runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak): 61.9 ± 8.0 mL·kg−1·min−1] were randomly assigned to one of three groups (blocked high intensity interval training HIIT; polarized training POL; high volume low intensity oriented control group CG/HVLIT applying no HIIT). A maximal anaerobic running/cycling test (MART/MACT) was performed prior to and following a 9-week training period. Results: Only the HIIT group achieved improvements in peak power/velocity (+6.4%, P < 0.001) and peak lactate (P = 0.001) during the MART/MACT, while, unexpectedly, in none of the groups the performance at the established lactate concentrations (4, 6, 10 mmol·L−1) was changed (P > 0.05). Acute HRR was improved in HIIT (11.2%, P = 0.002) and POL (7.9%, P = 0.023) with no change in the HVLIT oriented control group. Conclusion: Only a training regime that includes a significant amount of HIIT improves the neuromuscular status, anaerobic power and the acute HRR in well-trained endurance athletes. A training regime that followed more a low and moderate intensity oriented model (CG/HVLIT) had no effect on any performance or HRR outcomes. PMID:28824457
Data Intensive Systems (DIS) Benchmark Performance Summary
2003-08-01
models assumed by today’s conventional architectures. Such applications include model- based Automatic Target Recognition (ATR), synthetic aperture...radar (SAR) codes, large scale dynamic databases/battlefield integration, dynamic sensor- based processing, high-speed cryptanalysis, high speed...distributed interactive and data intensive simulations, data-oriented problems characterized by pointer- based and other highly irregular data structures
Controlling orientational order in block copolymers using low-intensity magnetic fields
Choo, Youngwoo; Kawabata, Kohsuke; Kaufman, Gilad; Feng, Xunda; Di, Xiaojun; Rokhlenko, Yekaterina; Mahajan, Lalit H.; Ndaya, Dennis; Kasi, Rajeswari M.
2017-01-01
The interaction of fields with condensed matter during phase transitions produces a rich variety of physical phenomena. Self-assembly of liquid crystalline block copolymers (LC BCPs) in the presence of a magnetic field, for example, can result in highly oriented microstructures due to the LC BCP’s anisotropic magnetic susceptibility. We show that such oriented mesophases can be produced using low-intensity fields (<0.5 T) that are accessible using permanent magnets, in contrast to the high fields (>4 T) and superconducting magnets required to date. Low-intensity field alignment is enabled by the addition of labile mesogens that coassemble with the system’s nematic and smectic A mesophases. The alignment saturation field strength and alignment kinetics have pronounced dependences on the free mesogen concentration. Highly aligned states with orientation distribution coefficients close to unity were obtained at fields as small as 0.2 T. This remarkable field response originates in an enhancement of alignment kinetics due to a reduction in viscosity, and increased magnetostatic energy due to increases in grain size, in the presence of labile mesogens. These developments provide routes for controlling structural order in BCPs, including the possibility of producing nontrivial textures and patterns of alignment by locally screening fields using magnetic nanoparticles. PMID:29078379
Goal orientation, self-regulation strategies, and job-seeking intensity in unemployed adults.
Creed, Peter A; King, Vivien; Hood, Michelle; McKenzie, Robert
2009-05-01
At Time 1 (T1), the authors surveyed 277 unemployed adults using measures of human capital, goal orientation, self-regulation (emotion control, motivation control, work commitment), and job-seeking intensity. At Time 2 (T2), 4 months later, 155 participants indicated their reemployment outcomes in number of job interviews and number of job offers. Using T1 data, the authors tested the predictors of job-seeking intensity and whether self-regulation mediated between goal orientation and job-seeking intensity. Using T1 and T2 data, they tested for predictors of reemployment outcomes and whether job-seeking intensity mediated the relationship between T1 antecedent variables and the reemployment outcomes. Learning goal orientation and self-regulation predicted job-seeking intensity, and self-regulation mediated between learning goal orientation and job-seeking intensity. Job-seeking intensity did not mediate the relationship among human capital, goal orientation, and self-regulation variables and reemployment outcomes. (c) 2009 APA, all rights reserved.
ORIENTATION AND LOCUS OF TROPIC PHOTORECEPTOR MOLECULES IN SPORES OF BOTRYTIS AND OSMUNDA
Jaffe, Lionel; Etzold, Helmut
1962-01-01
Study of the tropic responses of Botrytis cinerea and Osmunda cinnamomea spores to blue light shows the photoreceptor molecules to be highly dichroic and oriented: in Botrytis their axes of maximum absorption lie perpendicular to the nearby cell surface; in Osmunda, parallel. The chief evidence lies in a comparison of their responses to plane polarized light—both germinate parallel to the vibration planes (defined by the axis of vibration of the electric vector and the axis of light propagation)—with those to partial illumination with unpolarized light: Botrytis grows from its brighter part; Osmunda, from its darker. The degree of orientation produced by polarized light corresponds, at high intensities, to that produced by the imposition of such large (about 100 per cent) intensity differences across a cell as to preclude all alternatives to oriented dichroic receptors. The photoreceptors of the Botrytis spore lie within the cell wall's inner half. The chief evidence lies in the component of its tropic responses to polarized light within the vibration plane: germination peaks about 10° off the vibration axis. This deviation arises from focusing which is effective only in the wall's inner half. At high intensities, anomalies appear in Botrytis which are interpreted as "centering," i.e., a tendency toward growth from the center of two or more equally illuminated points of a cell rather than from one of them. PMID:14450869
NASA Astrophysics Data System (ADS)
Ichinokawa, T.; Le Gressus, C.; Mogami, A.; Pellerin, F.; Massignon, D.
The contrast change of secondary electron images due to the crystal orientations is observed by the ultra high vacuum scanning electron microscope (UHV-SEM) for crystal grains of clean surface of polycrystalline Al in the primary energy Ep of 200 eV to 5 KeV. The low energy electron loss spectra are measured by the cylindrical mirror analyzer. The relative intensity ratio between surface and bulk plasmon loss spectra was dependent on the crystal orientations. The SEM images taken by the surface and bulk plasmon signals at Ep = 230 eV show the inverse contrast depending on the grains. The inversion of the relative intensities between the surface and bulk plasmon losses is explained qualitatively by taking into account of variation of the penetration depth of the incident beam caused by the electron channeling.
NASA Astrophysics Data System (ADS)
Ichinokawa, T.; Le Gressus, C.; Mogami, A.; Pellerin, F.; Massignon, D.
1981-10-01
The contrast change of secondary electron images due to the crystal orientations is observed by the ultra high vacuum scanning electron microscope (UHV-SEM) for crystal grains of clean surface of polycrystalline Al in the primary energy Ep of 200 eV to 5 keV. The low energy electron loss spectra are measured by the cylindrical mirror analyzer. The relative intensity ratio between surface and bulk plasmon loss spectra was dependent on the crystal orientations. The SEM images taken by the surface and bulk plasmon signals at Ep = 230 eV show the inverse contrast depending on the grains. The inversion of the relative intensities between the surface and bulk plasmon losses is explained qualitatively by taking into account of variation of the penetration depth of the incident beam caused by the electron channeling.
Spectroscopic investigations on the orientation of 1,4-dibromonaphthalene on silver nanoparticles.
Geetha, K; Umadevi, M; Sathe, G V; Erenler, R
2013-12-01
Silver nanoparticles (Ag NPs) have been prepared by solution combustion method with glycine as fuel. Silver nanoparticles were characterized by X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and UV-visible spectroscopy. The prepared silver nanoparticles exhibit cubic crystalline structure with grain size of 59 nm. HRTEM image shows that the silver nanoparticles have strain and four-fold symmetry formed by twinning in the crystal structure. The optical adsorption spectrum shows that the surface plasmon resonance peak of silver is observed at 380 nm. The orientation of 1,4-dibromonaphthlaene (1,4-DBrN) on silver nanoparticles has been inferred from nRs and SERS spectral features. The absence of a C-H stretching vibrations, the observed high intense C-H out-of-plane bending modes and high intense C-Br stretching vibration suggest that the 1,4-DBrN molecule may be adsorbed in a 'stand-on' orientation to the surface. Copyright © 2013 Elsevier B.V. All rights reserved.
Weiss, Manfred; Marx, Gernot; Iber, Thomas
2017-01-01
Intensive care medicine remains one of the most cost-driving areas within hospitals with high personnel costs. Under the scope of limited budgets and reimbursement, realistic needs are essential to justify personnel staffing. Unfortunately, all existing staffing models are top-down calculations with a high variability in results. We present a workload-oriented model, integrating quality of care, efficiency of processes, legal, educational, controlling, local, organisational and economic aspects. In our model, the physician’s workload solely related to the intensive care unit depends on three tasks: Patient-oriented tasks, divided in basic tasks (performed in every patient) and additional tasks (necessary in patients with specific diagnostic and therapeutic requirements depending on their specific illness, only), and non patient-oriented tasks. All three tasks have to be taken into account for calculating the required number of physicians. The calculation tool further allows to determine minimal personnel staffing, distribution of calculated personnel demand regarding type of employee due to working hours per year, shift work or standby duty. This model was introduced and described first by the German Board of Anesthesiologists and the German Society of Anesthesiology and Intensive Care Medicine in 2008 and since has been implemented and updated 2012 in Germany. The modular, flexible nature of the Excel-based calculation tool should allow adaption to the respective legal and organizational demands of different countries. After 8 years of experience with this calculation, we report the generalizable key aspects which may help physicians all around the world to justify realistic workload-oriented personnel staffing needs. PMID:28828300
Weiss, Manfred; Marx, Gernot; Iber, Thomas
2017-08-04
Intensive care medicine remains one of the most cost-driving areas within hospitals with high personnel costs. Under the scope of limited budgets and reimbursement, realistic needs are essential to justify personnel staffing. Unfortunately, all existing staffing models are top-down calculations with a high variability in results. We present a workload-oriented model, integrating quality of care, efficiency of processes, legal, educational, controlling, local, organisational and economic aspects. In our model, the physician's workload solely related to the intensive care unit depends on three tasks: Patient-oriented tasks, divided in basic tasks (performed in every patient) and additional tasks (necessary in patients with specific diagnostic and therapeutic requirements depending on their specific illness, only), and non patient-oriented tasks. All three tasks have to be taken into account for calculating the required number of physicians. The calculation tool further allows to determine minimal personnel staffing, distribution of calculated personnel demand regarding type of employee due to working hours per year, shift work or standby duty. This model was introduced and described first by the German Board of Anesthesiologists and the German Society of Anesthesiology and Intensive Care Medicine in 2008 and since has been implemented and updated 2012 in Germany. The modular, flexible nature of the Excel-based calculation tool should allow adaption to the respective legal and organizational demands of different countries. After 8 years of experience with this calculation, we report the generalizable key aspects which may help physicians all around the world to justify realistic workload-oriented personnel staffing needs.
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2013 CFR
2013-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2012 CFR
2012-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2011 CFR
2011-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2014 CFR
2014-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
Electric field controlled emulsion phase contactor
Scott, Timothy C.
1995-01-01
A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.
Method of using an electric field controlled emulsion phase contactor
Scott, Timothy C.
1993-01-01
A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.
Electric field controlled emulsion phase contactor
Scott, T.C.
1995-01-31
A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.
Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithmmore » to reconstruct structural information from singleparticle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.« less
Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.
2017-06-26
Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithmmore » to reconstruct structural information from singleparticle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.« less
Boyle, M; Butcher, R; Kenney, C
1998-03-01
Intensive care orientation programs have become an accepted component of intensive care education. To date, however, there have been no Australian-based standards defining the appropriate level of competence to be attained upon completion of orientation. The aim of this study was to validate a set of aims, competencies and educational objectives that could form the basis of intensive care orientation and which would ensure an outcome standard of safe and effective practice. An initial document containing a statement of the desired outcome goal, six competency statements and 182 educational objectives was developed through a review of the orientation programs developed by the investigators. The Delphi technique was used to gain consensus among 13 nurses recognised for their expertise in intensive care education. The expert group rated the acceptability of each of the study items and provided suggestions for objectives to be included. An approval rating of 80 per cent was required to retain each of the study items, with the document refined through three Delphi rounds. The final document contains a validated statement of outcome goal, competencies and educational objectives for intensive care orientation programs.
Mechanisms of two-color laser-induced field-free molecular orientation.
Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul
2012-09-14
Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of
Method of using an electric field controlled emulsion phase contactor
Scott, T.C.
1993-11-16
A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figures.
Is the perception of 3D shape from shading based on assumed reflectance and illumination?
Todd, James T; Egan, Eric J L; Phillips, Flip
2014-01-01
The research described in the present article was designed to compare three types of image shading: one generated with a Lambertian BRDF and homogeneous illumination such that image intensity was determined entirely by local surface orientation irrespective of position; one that was textured with a linear intensity gradient, such that image intensity was determined entirely by local surface position irrespective of orientation; and another that was generated with a Lambertian BRDF and inhomogeneous illumination such that image intensity was influenced by both position and orientation. A gauge figure adjustment task was used to measure observers' perceptions of local surface orientation on the depicted surfaces, and the probe points included 60 pairs of regions that both had the same orientation. The results show clearly that observers' perceptions of these three types of stimuli were remarkably similar, and that probe regions with similar apparent orientations could have large differences in image intensity. This latter finding is incompatible with any process for computing shape from shading that assumes any plausible reflectance function combined with any possible homogeneous illumination.
Is the perception of 3D shape from shading based on assumed reflectance and illumination?
Todd, James T.; Egan, Eric J. L.; Phillips, Flip
2014-01-01
The research described in the present article was designed to compare three types of image shading: one generated with a Lambertian BRDF and homogeneous illumination such that image intensity was determined entirely by local surface orientation irrespective of position; one that was textured with a linear intensity gradient, such that image intensity was determined entirely by local surface position irrespective of orientation; and another that was generated with a Lambertian BRDF and inhomogeneous illumination such that image intensity was influenced by both position and orientation. A gauge figure adjustment task was used to measure observers' perceptions of local surface orientation on the depicted surfaces, and the probe points included 60 pairs of regions that both had the same orientation. The results show clearly that observers' perceptions of these three types of stimuli were remarkably similar, and that probe regions with similar apparent orientations could have large differences in image intensity. This latter finding is incompatible with any process for computing shape from shading that assumes any plausible reflectance function combined with any possible homogeneous illumination. PMID:26034561
Computational Cardiac Anatomy Using MRI
Beg, Mirza Faisal; Helm, Patrick A.; McVeigh, Elliot; Miller, Michael I.; Winslow, Raimond L.
2005-01-01
Ventricular geometry and fiber orientation may undergo global or local remodeling in cardiac disease. However, there are as yet no mathematical and computational methods for quantifying variation of geometry and fiber orientation or the nature of their remodeling in disease. Toward this goal, a landmark and image intensity-based large deformation diffeomorphic metric mapping (LDDMM) method to transform heart geometry into common coordinates for quantification of shape and form was developed. Two automated landmark placement methods for modeling tissue deformations expected in different cardiac pathologies are presented. The transformations, computed using the combined use of landmarks and image intensities, yields high-registration accuracy of heart anatomies even in the presence of significant variation of cardiac shape and form. Once heart anatomies have been registered, properties of tissue geometry and cardiac fiber orientation in corresponding regions of different hearts may be quantified. PMID:15508155
Determining Object Orientation from a Single Image Using Multiple Information Sources.
1984-06-01
object surface. Location of the image ellipse is accomplished by exploiting knowledge about object boundaries and image intensity gradients . -. The...Using Intensity Gradient Information for Ellipse fitting ........ .51 4.3.7 Orientation From Ellipses .............................. 53 4.3.8 Application...object boundaries and image intensity gradients . The orientation information from each of these three methods is combined using a "plausibility" function
Energetics of oriented nuclei in laser-produced plasma
NASA Astrophysics Data System (ADS)
Belyaev, Vadim S.
2004-06-01
The report presents principal theoretical and experimental results obtained during the first year of the ISTC project # 2155 realization. The mechanisms of high-energy electrons formation in high intensity and short laser pulse interaction with solid targets has been suggested and investigated. Neutron generation (reaction D + D --> 3He + n) from laser-produced plasma at 1017 W/cm2 intensity has been investigated. Neutron yield more than 104 per pulse was received.
100-Fold Enhancement of Charge Transport in Uniaxially Oriented Mesoporous Anatase TiO 2 Films
Li, Ke; Liu, Jie; Sheng, Xia; ...
2017-12-04
Mesoporous semiconductor films are of considerable interest for applications in photoelectrochemical devices, however, despite intensive research till now, their charge transport properties remain significantly lower than their single-crystal counterparts. Herein, we report a novel low-temperature template-free technique for growing high surface area mesoporous anatase TiO2 films with a preferred [001] crystalline-orientation on FTO-coated glass substrate. Compared to mesoporous films that comprised of randomly oriented crystallites, the uniaxial orientation enables a 100-fold increase in the rate of electron transport. The uniaxially oriented mesoporous anatase TiO2 films exhibit should greatly facilitate the development and application of photoelectrochemical and electrochemical devices.
Orientational analysis of planar fibre systems observed as a Poisson shot-noise process.
Kärkkäinen, Salme; Lantuéjoul, Christian
2007-10-01
We consider two-dimensional fibrous materials observed as a digital greyscale image. The problem addressed is to estimate the orientation distribution of unobservable thin fibres from a greyscale image modelled by a planar Poisson shot-noise process. The classical stereological approach is not straightforward, because the point intensities of thin fibres along sampling lines may not be observable. For such cases, Kärkkäinen et al. (2001) suggested the use of scaled variograms determined from grey values along sampling lines in several directions. Their method is based on the assumption that the proportion between the scaled variograms and point intensities in all directions of sampling lines is constant. This assumption is proved to be valid asymptotically for Boolean models and dead leaves models, under some regularity conditions. In this work, we derive the scaled variogram and its approximations for a planar Poisson shot-noise process using the modified Bessel function. In the case of reasonable high resolution of the observed image, the scaled variogram has an approximate functional relation to the point intensity, and in the case of high resolution the relation is proportional. As the obtained relations are approximative, they are tested on simulations. The existing orientation analysis method based on the proportional relation is further experimented on images with different resolutions. The new result, the asymptotic proportionality between the scaled variograms and the point intensities for a Poisson shot-noise process, completes the earlier results for the Boolean models and for the dead leaves models.
Salience of Somatosensory Stimulus Modulating External-to-Internal Orienting Attention.
Peng, Jiaxin; Chan, Sam C C; Chau, Bolton K H; Yu, Qiuhua; Chan, Chetwyn C H
2017-01-01
Shifting between one's external and internal environments involves orienting attention. Studies on differentiating subprocesses associated with external-to-internal orienting attention are limited. This study aimed to reveal the characteristics of the disengagement, shifting and reengagement subprocesses by using somatosensory external stimuli and internally generated images. Study participants were to perceive nociceptive external stimuli (External Low (E L ) or External High (E H )) induced by electrical stimulations (50 ms) followed by mentally rehearsing learned subnociceptive images (Internal Low (I L ) and Internal High (I H )). Behavioral responses and EEG signals of the participants were recorded. The three significant components elicited were: fronto-central negativity (FCN; 128-180 ms), fronto-central P2 (200-260 ms), and central P3 (320-380 ms), which reflected the three subprocesses, respectively. Differences in the FCN and P2 amplitudes during the orienting to the subnociceptive images revealed only in the E H but not E L stimulus condition that are new findings. The results indicated that modulations of the disengagement and shifting processes only happened if the external nociceptive stimuli were of high salience and the external-to-internal incongruence was large. The reengaging process reflected from the amplitude of P3 correlated significantly with attenuation of the pain intensity felt from the external nociceptive stimuli. These findings suggested that the subprocesses underlying external-to-internal orienting attention serve different roles. Disengagement subprocess tends to be stimulus dependent, which is bottom-up in nature. Shifting and reengagement tend to be top-down subprocesses, which taps on cognitive control. This subprocess may account for the attenuation effects on perceived pain intensity after orienting attention.
Salience of Somatosensory Stimulus Modulating External-to-Internal Orienting Attention
Peng, Jiaxin; Chan, Sam C. C.; Chau, Bolton K. H.; Yu, Qiuhua; Chan, Chetwyn C. H.
2017-01-01
Shifting between one’s external and internal environments involves orienting attention. Studies on differentiating subprocesses associated with external-to-internal orienting attention are limited. This study aimed to reveal the characteristics of the disengagement, shifting and reengagement subprocesses by using somatosensory external stimuli and internally generated images. Study participants were to perceive nociceptive external stimuli (External Low (EL) or External High (EH)) induced by electrical stimulations (50 ms) followed by mentally rehearsing learned subnociceptive images (Internal Low (IL) and Internal High (IH)). Behavioral responses and EEG signals of the participants were recorded. The three significant components elicited were: fronto-central negativity (FCN; 128–180 ms), fronto-central P2 (200–260 ms), and central P3 (320–380 ms), which reflected the three subprocesses, respectively. Differences in the FCN and P2 amplitudes during the orienting to the subnociceptive images revealed only in the EH but not EL stimulus condition that are new findings. The results indicated that modulations of the disengagement and shifting processes only happened if the external nociceptive stimuli were of high salience and the external-to-internal incongruence was large. The reengaging process reflected from the amplitude of P3 correlated significantly with attenuation of the pain intensity felt from the external nociceptive stimuli. These findings suggested that the subprocesses underlying external-to-internal orienting attention serve different roles. Disengagement subprocess tends to be stimulus dependent, which is bottom-up in nature. Shifting and reengagement tend to be top-down subprocesses, which taps on cognitive control. This subprocess may account for the attenuation effects on perceived pain intensity after orienting attention. PMID:28970787
NASA Astrophysics Data System (ADS)
Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin
2006-08-01
The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10° greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.
Analyzing Dirac Cone and Phonon Dispersion in Highly Oriented Nanocrystalline Graphene.
Nai, Chang Tai; Xu, Hai; Tan, Sherman J R; Loh, Kian Ping
2016-01-26
Chemical vapor deposition (CVD) is one of the most promising growth techniques to scale up the production of monolayer graphene. At present, there are intense efforts to control the orientation of graphene grains during CVD, motivated by the fact that there is a higher probability for oriented grains to achieve seamless merging, forming a large single crystal. However, it is still challenging to produce single-crystal graphene with no grain boundaries over macroscopic length scales, especially when the nucleation density of graphene nuclei is high. Nonetheless, nanocrystalline graphene with highly oriented grains may exhibit single-crystal-like properties. Herein, we investigate the spectroscopic signatures of graphene film containing highly oriented, nanosized grains (20-150 nm) using angle-resolved photoemission spectroscopy (ARPES) and high-resolution electron energy loss spectroscopy (HREELS). The robustness of the Dirac cone, as well as dispersion of its phonons, as a function of graphene's grain size and before and after film coalescence, was investigated. In view of the sensitivity of atomically thin graphene to atmospheric adsorbates and intercalants, ARPES and HREELS were also used to monitor the changes in spectroscopic signatures of the graphene film following exposure to the ambient atmosphere.
Cavanaugh, Debra A; Huse, Anita L
2004-01-01
The shortage of nurses has reached crisis proportions around the world. In response to a critical shortage of qualified neonatal intensive care nurses, one institution developed an educational program so comprehensive that they were able to increase their nursing staff by 20% and staff the neonatal intensive care unit with well-prepared and proficient nurses. This strategy has also resulted in high retention rates, a decrease in overtime, and a relatively low error rate by new nurses.
Common arc method for diffraction pattern orientation.
Bortel, Gábor; Tegze, Miklós
2011-11-01
Very short pulses of X-ray free-electron lasers opened the way to obtaining diffraction signal from single particles beyond the radiation dose limit. For three-dimensional structure reconstruction many patterns are recorded in the object's unknown orientation. A method is described for the orientation of continuous diffraction patterns of non-periodic objects, utilizing intensity correlations in the curved intersections of the corresponding Ewald spheres, and hence named the common arc orientation method. The present implementation of the algorithm optionally takes into account Friedel's law, handles missing data and is capable of determining the point group of symmetric objects. Its performance is demonstrated on simulated diffraction data sets and verification of the results indicates a high orientation accuracy even at low signal levels. The common arc method fills a gap in the wide palette of orientation methods. © 2011 International Union of Crystallography
RooStatsCms: A tool for analysis modelling, combination and statistical studies
NASA Astrophysics Data System (ADS)
Piparo, D.; Schott, G.; Quast, G.
2010-04-01
RooStatsCms is an object oriented statistical framework based on the RooFit technology. Its scope is to allow the modelling, statistical analysis and combination of multiple search channels for new phenomena in High Energy Physics. It provides a variety of methods described in literature implemented as classes, whose design is oriented to the execution of multiple CPU intensive jobs on batch systems or on the Grid.
Crystalline, Highly Oriented MOF Thin Film: the Fabrication and Application.
Fu, Zhihua; Xu, Gang
2017-05-01
The thin film of metal-organic frameworks (MOFs) is a rapidly developing research area which has tremendous potential applications in many fields. One of the major challenges in this area is to fabricate MOF thin film with good crystallinity, high orientation and well-controlled thickness. In order to address this challenge, different appealing approaches have been studied intensively. Among various oriented MOF films, many efforts have also been devoted to developing novel properties and broad applications, such as in gas separator, thermoelectric, storage medium and photovoltaics. As a result, there has been a large demand for fundamental studies that can provide guidance and experimental data for further applications. In this account, we intend to present an overview of current synthetic methods for fabricating oriented crystalline MOF thin film and bring some updated applications. We give our perspective on the background, preparation and applications that led to the developments in this area and discuss the opportunities and challenges of using crystalline, highly oriented MOF thin film. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biology Intensive Orientation for Students (BIOS): A Biology "Boot Camp"
ERIC Educational Resources Information Center
Wischusen, Sheri Maples; Wischusen, E. William
2007-01-01
The Biology Intensive Orientation for Students (BIOS) Program was designed to assess the impact of a 5-d intensive prefreshman program on success and retention of biological science majors at Louisiana State University. The 2005 pilot program combined content lectures and examinations for BIOL 1201, Introductory Biology for Science Majors, as well…
Ultrafast shock-induced orientation of polycrystalline films: Applications to high explosives
NASA Astrophysics Data System (ADS)
Franken, Jens; Hambir, Selezion A.; Dlott, Dana D.
1999-02-01
Tiny laser-driven shock waves of ˜5 GPa pressure (nanoshocks) are used to study fast mechanical processes occurring in a thin layer of polycrystalline insensitive energetic material, (3-nitro-1,2,4-triazol-5-one) (NTO). Ultrafast coherent Raman spectroscopy of shocked NTO shows the existence of three distinct mechanical processes. Very fast (˜600 ps) changes in intensity and the appearance of new transitions are associated with the uniaxial nature of compression by the shock front. Frequency shifting and broadening processes which track the ˜2 ns duration nanoshock are associated with transient changes in density and temperature. A novel slower process (5-10 ns) starts as the shock begins to unload, and continues for several nanoseconds after the shock is over, resulting in changes of widths and intensities of several vibrational transitions. By comparing ultrafast spectra to static Raman spectra of single NTO crystals in various orientations, it is concluded that this process involves shock-induced partial orientation of the crystals in the NTO layer. The NTO crystals are oriented faster than the time scale for initiating chemical reactions. The sensitivity of explosive crystals to shock initiation may depend dramatically on the orientation of the crystal relative to the direction of shock propagation, so the implications of fast shock-induced orientation for energetic materials initiation are discussed briefly.
NASA Astrophysics Data System (ADS)
Imam, S. K.; Chirayath, V. A.; Chrysler, M. D.; Fairchild, A. J.; Gladen, R. W.; Koymen, A. R.; Weiss, A. H.; UT Arlington Positron Surface Laboratory Team
A time of flight positron annihilation induced Auger electron spectrometer (TOF-PAES) was utilized to measure the reflection of positrons as a function of incident positron energy (0 to 10 eV) from the surface of highly oriented pyrolytic graphite (HOPG) and from a single layer graphene (SLG) on a Cu foil. A NaI scintillation detector was used to measure the annihilation gamma from the reflected positrons as a function of incident positron kinetic energy. The annihilation of the positrons on HOPG and SLG were simultaneously measured using another NaI detector near the sample. The Auger electrons emitted as a result of the annihilation of positrons from the surface of the sample were also measured concurrently. As the positron kinetic energy was increased, the number of reflected positrons calculated from the intensity under the annihilation gamma peak showed a steady decrease. The positronium formation measured at the sample using the gamma spectrum showed a peak at 6 eV. The intensity of the carbon KVV Auger peak showed a dip at the same energy. The correlation of the three signals, intensity of reflected positrons, positrons annihilating at the sample and the Auger intensity are discussed for both samples. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.
Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus
2016-02-01
We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (t<λ; where λ is the absorption constant for graphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.
Zhang, Y; Paris, O; Terrill, N J; Gupta, H S
2016-05-23
The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.
2016-05-01
The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.
Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.
2016-01-01
The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales. PMID:27211574
NASA Astrophysics Data System (ADS)
Skenes, Kevin; Kumar, Arkadeep; Prasath, R. G. R.; Danyluk, Steven
2018-02-01
Near-infrared (NIR) polariscopy is a technique used for the non-destructive evaluation of the in-plane stresses in photovoltaic silicon wafers. Accurate evaluation of these stresses requires correct identification of the stress-optic coefficient, a material property which relates photoelastic parameters to physical stresses. The material stress-optic coefficient of silicon varies with crystallographic orientation. This variation poses a unique problem when measuring stresses in multicrystalline silicon (mc-Si) wafers. This paper concludes that the crystallographic orientation of silicon can be estimated by measuring the transmission of NIR light through the material. The transmission of NIR light through monocrystalline wafers of known orientation were compared with the transmission of NIR light through various grains in mc-Si wafers. X-ray diffraction was then used to verify the relationship by obtaining the crystallographic orientations of these assorted mc-Si grains. Variation of transmission intensity for different crystallographic orientations is further explained by using planar atomic density. The relationship between transmission intensity and planar atomic density appears to be linear.
Tornadogensis within Hurricanes Based on the Orientation of the Rainband to the Coast after Landfall
NASA Astrophysics Data System (ADS)
Etten-Bohm, M.
2015-12-01
The focus of this study is to investigate the development of tornadoes within the rainband of a hurricane for various orientations of the rainband when a hurricane makes landfall. The rainband of a hurricane is a common area where tornadogenesis is found depending on the size, intensity, and orientation of the rain band when the storm makes landfall. As a hurricane approaches a coast line, land-surface roughness contributes to surface friction, which can contribute in tornadogenesis. The orientation of the rainband may play a part in the type of supercells that are formed in that rainband and the number and intensity of the tornadoes produced. This study will investigate if the orientation of the rainband leads to the direction in which the supercells rotate, whether clockwise or counter-clockwise, and the scale and intensity of the tornadoes produced.
Li, Zhengqiu; Zhao, Xiaowen; Ye, Lin; Coates, Phil; Caton-Rose, Fin; Martyn, Michasel
2014-03-01
Highly oriented poly(lactic acid) (PLA)/multi-walled carbon nanotubes (MWNTs) composites were fabricated through solid hot drawing technology in an effort to improve the mechanical properties and blood biocompatibility of PLA as blood-contacting medical devices. It was found that proper MWNTs content and drawing orientation can improve the tensile strength and modulus of PLA dramatically. With the increase in draw ratio, the cold crystallization peak became smaller, and the glass transition and the melting peak of PLA moved to high temperature, while the crystallinity increased, and the grain size decreased, indicating the stress-induced crystallization of PLA during drawing. MWNTs showed a nucleation effect on PLA, leading to the rise in the melting temperature, increase in crystallinity and reduction of spherulite size for the composites. Moreover, the intensity of (002) diffraction of MWNTs increased with draw ratio, indicating that MWNTs were preferentially aligned and oriented during drawing. Microstructure observation demonstrated that PLA matrix had an ordered fibrillar bundle structure, and MWNTs in the composite tended to align parallel to the drawing direction. In addition, the dispersion of MWNTs in PLA was also improved by orientation. Introduction of MWNTs and drawing orientation could significantly enhance the blood compatibility of PLA by prolonging kinetic clotting time, reducing hemolysis ratio and platelet activation.
Redesigning Orientation in an Intensive Care Unit Using 2 Theoretical Models.
Kozub, Elizabeth; Hibanada-Laserna, Maribel; Harget, Gwen; Ecoff, Laurie
2015-01-01
To accommodate a higher demand for critical care nurses, an orientation program in a surgical intensive care unit was revised and streamlined. Two theoretical models served as a foundation for the revision and resulted in clear clinical benchmarks for orientation progress evaluation. The purpose of the project was to integrate theoretical frameworks into practice to improve the unit orientation program. Performance improvement methods served as a framework for the revision, and outcomes were measured before and after implementation. The revised orientation program increased 1- and 2-year nurse retention and decreased turnover. Critical care knowledge increased after orientation for both the preintervention and postintervention groups. Incorporating a theoretical basis for orientation has been shown to be successful in increasing the number of nurses completing orientation and improving retention, turnover rates, and knowledge gained.
Wu, Mengxi; You, Yongsing; Ghimire, Shambhu; ...
2017-12-18
We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems thismore » gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. Here, we address recent experimental results in MgO and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mengxi; You, Yongsing; Ghimire, Shambhu
We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems thismore » gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. Here, we address recent experimental results in MgO and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.« less
Gated Sensor Fusion: A way to Improve the Precision of Ambulatory Human Body Motion Estimation.
Olivares, Alberto; Górriz, J M; Ramírez, J; Olivares, Gonzalo
2014-01-01
Human body motion is usually variable in terms of intensity and, therefore, any Inertial Measurement Unit attached to a subject will measure both low and high angular rate and accelerations. This can be a problem for the accuracy of orientation estimation algorithms based on adaptive filters such as the Kalman filter, since both the variances of the process noise and the measurement noise are set at the beginning of the algorithm and remain constant during its execution. Setting fixed noise parameters burdens the adaptation capability of the filter if the intensity of the motion changes rapidly. In this work we present a conjoint novel algorithm which uses a motion intensity detector to dynamically vary the noise statistical parameters of different approaches of the Kalman filter. Results show that the precision of the estimated orientation in terms of the RMSE can be improved up to 29% with respect to the standard fixed-parameters approaches.
Supramolecular order and structural dynamics: A STM study of 2H-tetraphenylporphycene on Cu(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, Michael; Träg, Johannes; Ditze, Stefanie
2015-03-14
The adsorption of 2H-tetraphenylporphycene (2HTPPc) on Cu(111) was investigated by scanning tunneling microscopy (STM). At medium coverages, supramolecular ordered islands are observed. The individual 2HTPPc molecules appear as two pairs of intense protrusions which are separated by an elongated depression. In the islands, the molecules are organized in rows oriented along one of the close packed Cu(111) substrate rows; the structure is stabilized by T-type interactions of the phenyl substituents of neighboring molecules. Two types of rows are observed, namely, highly ordered rows in which all molecules exhibit the same orientation, and less ordered rows in which the molecules exhibitmore » two perpendicular orientations. Altogether, three different azimuthal orientations of 2HTPPc are observed within one domain, all of them rotated by 15° ± 1° relative to one closed packed Cu direction. The highly ordered rows are always separated by either one or two less ordered rows, with the latter structure being the thermodynamically more stable one. The situation in the islands is highly dynamic, such that molecules in the less ordered rows occasionally change orientation, also complete highly ordered rows can move. The supramolecular order and structural dynamics are discussed on the basis of the specific molecule-substrate and molecule-molecule interactions.« less
NASA Astrophysics Data System (ADS)
Hecht, Chad W.; Cordeira, Jason M.
2017-09-01
Atmospheric rivers (ARs) are long (>2000 km) and narrow (500-1000 km) corridors of enhanced vertically integrated water vapor and enhanced integrated water vapor transport (IVT) that are responsible for a majority of global poleward moisture transport and can result in extreme orographic precipitation. Observational evidence suggests that ARs within different synoptic-scale flow regimes may contain different water vapor source regions, orientations, and intensities and may result in different precipitation distributions. This study uses
Carten, R.B.; Geraghty, E.P.; Walker, B.M.
1988-01-01
The Henderson porphyry molybdenum deposit was formed by the superposition of coupled alteration and mineralization events, of varying intensity and size, that were associated with each of at least 11 intrusions. Deposition of molybdenite was accompanied by time-equivalent silicic and potassic alteration. High-temperature alteration and mineralization are spatially and temporally linked to the crystallization of compositionally zoned magma in the apex of stocks. Differences in hydrothermal features associated with each intrusion (e.g., mass of ore, orientation and type of veins, density of veins, and intensity of alteration) correlate with differences in primary igneous features (e.g., composition, texture, morphology, and size). The systematic relations between hydrothermal and magmatic features suggest that primary magma compositions, including volatile contents, largely control the geometry, volume, level of emplacement, and mechanisms of crystallization of stocks. These elements in turn govern the orientations and densities of fractures, which ultimately determine the distribution patterns of hydrothermal alteration and mineralization. -from Authors
NASA Astrophysics Data System (ADS)
Gann, Eliot; Caironi, Mario; Noh, Yong-Young; Kim, Yun-Hi; McNeill, Christopher R.
The depth dependence of crystalline structure within thin films is critical for many technological applications, but has been impossible to measure directly using common techniques. In this work, by monitoring diffraction peak intensity and location and utilizing the highly angle-dependent waveguiding effects of X-rays near grazing incidence we quantitatively measure the thickness, roughness and orientation of stratified crystalline layers within thin films of a high-performance semiconducting polymer. In particular, this diffractive X-ray waveguiding reveals a self-organized 5-nm-thick crystalline surface layer with crystalline orientation orthogonal to the underlying 65-nm-thick layer. While demonstrated for an organic semiconductor film, this approach is applicable to any thin film material system where stratified crystalline structure and orientation can influence important interfacial processes such as charge injection and field-effect transport.
EMEN2: An Object Oriented Database and Electronic Lab Notebook
Rees, Ian; Langley, Ed; Chiu, Wah; Ludtke, Steven J.
2013-01-01
Transmission electron microscopy and associated methods such as single particle analysis, 2-D crystallography, helical reconstruction and tomography, are highly data-intensive experimental sciences, which also have substantial variability in experimental technique. Object-oriented databases present an attractive alternative to traditional relational databases for situations where the experiments themselves are continually evolving. We present EMEN2, an easy to use object-oriented database with a highly flexible infrastructure originally targeted for transmission electron microscopy and tomography, which has been extended to be adaptable for use in virtually any experimental science. It is a pure object-oriented database designed for easy adoption in diverse laboratory environments, and does not require professional database administration. It includes a full featured, dynamic web interface in addition to APIs for programmatic access. EMEN2 installations currently support roughly 800 scientists worldwide with over 1/2 million experimental records and over 20 TB of experimental data. The software is freely available with complete source. PMID:23360752
Smits, Jasper A. J.; Bonn-Miller, Marcel O.; Tart, Candyce D.; Irons, Jessica G.; Zvolensky, Michael J.
2011-01-01
The present study examined the working hypothesis that moderate-intensity exercise is associated with coping-oriented marijuana use motives through its association with the fear of somatic arousal (i.e., anxiety sensitivity). Using data from 146 young adult current marijuana users we found evidence consistent with this hypothesis. Specifically, moderate-intensity exercise was associated with coping-oriented use motives, even after controlling for frequency of current marijuana use and other co-occurring marijuana use motives. This relationship became non-significant after entering anxiety sensitivity as an additional predictor variable, denoting a putative mediational role for this cognitve factor. These findings extend previous work and offer support for the potential utility of moderate-intensity aerobic exercise for the treatment of marijuana use problems. PMID:21314753
Extracting built-up areas from TerraSAR-X data using object-oriented classification method
NASA Astrophysics Data System (ADS)
Wang, SuYun; Sun, Z. C.
2017-02-01
Based on single-polarized TerraSAR-X, the approach generates homogeneous segments on an arbitrary number of scale levels by applying a region-growing algorithm which takes the intensity of backscatter and shape-related properties into account. The object-oriented procedure consists of three main steps: firstly, the analysis of the local speckle behavior in the SAR intensity data, leading to the generation of a texture image; secondly, a segmentation based on the intensity image; thirdly, the classification of each segment using the derived texture file and intensity information in order to identify and extract build-up areas. In our research, the distribution of BAs in Dongying City is derived from single-polarized TSX SM image (acquired on 17th June 2013) with average ground resolution of 3m using our proposed approach. By cross-validating the random selected validation points with geo-referenced field sites, Quick Bird high-resolution imagery, confusion matrices with statistical indicators are calculated and used for assessing the classification results. The results demonstrate that an overall accuracy 92.89 and a kappa coefficient of 0.85 could be achieved. We have shown that connect texture information with the analysis of the local speckle divergence, combining texture and intensity of construction extraction is feasible, efficient and rapid.
NASA Astrophysics Data System (ADS)
Shi, Lei; Chu, Zhenyu; Dong, Xueliang; Jin, Wanqin; Dempsey, Eithne
2013-10-01
Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors.Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors. Electronic supplementary information (ESI) available: Four-probe method for determining the conductivity of the hybrid crystal (Fig. S1); stability comparisons of the hybrid films (Fig. S2); FESEM images of the hybrid microarray (Fig. S3); electrochemical characterizations of the hybrid films (Fig. S4); DFT simulations (Fig. S5); cross-sectional FESEM image of the hybrid microarray (Fig. S6); regeneration and stability tests of the DNA biosensor (Fig. S7). See DOI: 10.1039/c3nr03097k
Smits, Jasper A J; Bonn-Miller, Marcel O; Tart, Candyce D; Irons, Jessica G; Zvolensky, Michael J
2011-01-01
The present study examined the working hypothesis that moderate-intensity exercise is associated with coping-oriented marijuana use motives through its association with the fear of somatic arousal (ie, anxiety sensitivity). Using data from 146 young adult current marijuana users, we found evidence consistent with this hypothesis. Specifically, moderate-intensity exercise was associated with coping-oriented use motives, even after controlling for frequency of current marijuana use and other co-occurring marijuana use motives. This relationship became nonsignificant after entering anxiety sensitivity as an additional predictor variable, denoting a putative mediational role for this cognitive factor. These findings extend previous work and offer support for the potential utility of moderate-intensity aerobic exercise for the treatment of marijuana use problems. © American Academy of Addiction Psychiatry.
Weinberger, Andrea H; Esan, Hannah; Hunt, Marcia G; Hoff, Rani A
2016-05-01
Veterans comprise a large segment of the U.S. population and smoke at high rates. One significant way to reduce healthcare costs and improve the health of veterans is to reduce smoking-related illnesses for smokers who have high smoking rates and/or face disproportionate smoking consequences (e.g. women, racial/ethnic minorities, sexual orientation minorities). We reviewed published studies of smoking behavior in three demographic subgroups of veterans - women, racial/ethnic minorities, and sexual orientation minorities - to synthesize current knowledge and identify areas in need of more research. A MEDLINE search identified papers on smoking and veterans published through 31 December 2014. Twenty-five studies were identified that focused on gender (n = 17), race/ethnicity (n = 6), or sexual orientation (n = 2). Female and sexual orientation minority veterans reported higher rates of smoking than non-veteran women and sexual orientation majority veterans, respectively. Veterans appeared to be offered VA smoking cessation services equally by gender and race. Few studies examined smoking behavior by race/ethnicity or sexual orientation. Little information was identified examining the outcomes of specific smoking treatments for any group. There is a need for more research on all aspects of smoking and quit behavior for women, racial/ethnic minorities, and sexual orientation minority veterans. The high rates of smoking by these groups of veterans suggest that they may benefit from motivational interventions aimed at increasing quit attempts and longer and more intense treatments to maximize outcomes. Learning more about these veterans can help reduce costs for those who experience greater consequences of smoking.
HIFU procedures at moderate intensities--effect of large blood vessels.
Hariharan, P; Myers, M R; Banerjee, R K
2007-06-21
A three-dimensional computational model is presented for studying the efficacy of high-intensity focused ultrasound (HIFU) procedures targeted near large blood vessels. The analysis applies to procedures performed at intensities below the threshold for cavitation, boiling and highly nonlinear propagation, but high enough to increase tissue temperature a few degrees per second. The model is based upon the linearized KZK equation and the bioheat equation in tissue. In the blood vessel the momentum and energy equations are satisfied. The model is first validated in a tissue phantom, to verify the absence of bubble formation and nonlinear effects. Temperature rise and lesion-volume calculations are then shown for different beam locations and orientations relative to a large vessel. Both single and multiple ablations are considered. Results show that when the vessel is located within about a beam width (few mm) of the ultrasound beam, significant reduction in lesion volume is observed due to blood flow. However, for gaps larger than a beam width, blood flow has no major effect on the lesion formation. Under the clinically representative conditions considered, the lesion volume is reduced about 40% (relative to the no-flow case) when the beam is parallel to the blood vessel, compared to about 20% for a perpendicular orientation. Procedures involving multiple ablation sites are affected less by blood flow than single ablations. The model also suggests that optimally focused transducers can generate lesions that are significantly larger (>2 times) than the ones produced by highly focused beams.
Development of a rotating graphite carbon disk stripper
NASA Astrophysics Data System (ADS)
Hasebe, Hiroo; Okuno, Hiroki; Tatami, Atsushi; Tachibana, Masamitsu; Murakami, Mutsuaki; Kuboki, Hironori; Imao, Hiroshi; Fukunishi, Nobuhisa; Kase, Masayuki; Kamigaito, Osamu
2018-05-01
Highly oriented graphite carbon sheets (GCSs) were successfully used as disk strippers. An irradiation test conducted in 2015 showed that GCS strippers have the longest lifetime and exhibit improved stripping and transmission efficiencies. The problem of disk deformation in previously used Be-disk was solved even with higher beam intensity.
Future of Software Engineering Standards
NASA Technical Reports Server (NTRS)
Poon, Peter T.
1997-01-01
In the new millennium, software engineering standards are expected to continue to influence the process of producing software-intensive systems which are cost-effetive and of high quality. These sytems may range from ground and flight systems used for planetary exploration to educational support systems used in schools as well as consumer-oriented systems.
Knacktive: Answering a Call for More Interdisciplinary, Collaborative, Educational Experiences
ERIC Educational Resources Information Center
Shadinger, David; Toomey, Deborah
2014-01-01
Knacktive is a one-term course that incorporates a highly select group of undergraduate students and replicates the intense teamwork atmosphere of a technology-oriented, professional marketing communication agency. As an interdisciplinary learning opportunity, Knacktive melds students from five disciplines--including art and graphic design,…
Carim, Azhar I.; Batara, Nicolas A.; Premkumar, Anjali; ...
2015-11-23
The template-free growth of well ordered, highly anisotropic lamellar structures has been demonstrated during the photoelectrodeposition of Se–Te films, wherein the orientation of the pattern can be directed by orienting the linear polarization of the incident light. This control mechanism was investigated further herein by examining the morphologies of films grown photoelectrochemically using light from two simultaneous sources that had mutually different linear polarizations. Photoelectrochemical growth with light from two nonorthogonally polarized same-wavelength sources generated lamellar morphologies in which the long axes of the lamellae were oriented parallel to the intensity-weighted average polarization orientation. Simulations of light scattering at themore » solution–film interface were consistent with this observation. Computer modeling of these growths using combined full-wave electromagnetic and Monte Carlo growth simulations successfully reproduced the experimental morphologies and quantitatively agreed with the pattern orientations observed experimentally by considering only the fundamental light-material interactions during growth. Deposition with light from two orthogonally polarized same-wavelength as well as different-wavelength sources produced structures that consisted of two intersecting sets of orthogonally oriented lamellae in which the relative heights of the two sets could be varied by adjusting the relative source intensities. Simulations of light absorption were performed in analogous, idealized intersecting lamellar structures and revealed that the lamellae preferentially absorbed light polarized with the electric field vector along their long axes. In conclusion, these data sets cumulatively indicate that anisotropic light scattering and light absorption generated by the light polarization produces the anisotropic morphology and that the resultant morphology is a function of all illumination inputs despite differing polarizations.« less
NASA Astrophysics Data System (ADS)
Yoshida, Tsuyoshi; Saito, Naoaki; Ohmura, Hideki
2018-03-01
Intense (5.0 × 1012 W cm-2) nanosecond Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light generated by an interferometer-free Fourier-synthesized laser field generator induce orientation-selective ionization based on directionally asymmetric molecular tunneling ionization (TI). The laser field generator ensures adjustment-free operation, high stability, and high reproducibility. Phase-sensitive, orientation-selective molecular TI provides a simple way to estimate the relative phase differences between the fundamental light and each harmonic by data-fitting analysis. This application of Fourier-synthesized laser fields will facilitate not only lightwave engineering but also the control of matter.
Attentional processing of other's facial display of pain: an eye tracking study.
Vervoort, Tine; Trost, Zina; Prkachin, Kenneth M; Mueller, Sven C
2013-06-01
The present study investigated the role of observer pain catastrophizing and personal pain experience as possible moderators of attention to varying levels of facial pain expression in others. Eye movements were recorded as a direct and continuous index of attention allocation in a sample of 35 undergraduate students while viewing slides presenting picture pairs consisting of a neutral face combined with either a low, moderate, or high expressive pain face. Initial orienting of attention was measured as latency and duration of first fixation to 1 of 2 target images (i.e., neutral face vs pain face). Attentional maintenance was measured by gaze duration. With respect to initial orienting to pain, findings indicated that participants reporting low catastrophizing directed their attention more quickly to pain faces than to neutral faces, with fixation becoming increasingly faster with increasing levels of facial pain expression. In comparison, participants reporting high levels of catastrophizing showed decreased tendency to initially orient to pain faces, fixating equally quickly on neutral and pain faces. Duration of the first fixation revealed no significant effects. With respect to attentional maintenance, participants reporting high catastrophizing and pain intensity demonstrated significantly longer gaze duration for all face types (neutral and pain expression), relative to low catastrophizing counterparts. Finally, independent of catastrophizing, higher reported pain intensity contributed to decreased attentional maintenance to pain faces vs neutral faces. Theoretical implications and further research directions are discussed. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Fabrication of oriented hydroxyapatite film by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Hirata, Keishiro; Kubota, Takafumi; Koyama, Daisuke; Takayanagi, Shinji; Matsukawa, Mami
2017-08-01
Hydroxyapatite (HAp) is compatible with bone tissue and is used mainly as a bone prosthetic material, especially as the coating of implants. Oriented HAp film is expected to be a high-quality epitaxial scaffold of the neonatal bone. To fabricate highly oriented HAp thin films via the conventional plasma process, we deposited the HAp film on a Ti coated silica glass substrate using RF magnetron sputtering in low substrate temperature conditions. The X-ray diffraction pattern of the film sample consisted of an intense (002) peak, corresponding to the highly oriented HAp. The (002) peak in XRD diagrams can be attributed either to the monoclinic phase or the hexagonal phase. Pole figure analysis showed that the (002) plane grew parallel to the surface of the substrate, without inclination. Transmission Electron Microscope analysis also showed the fabrication of aligned HAp crystallites. The selected area diffraction patterns indicated the existence of monoclinic phase. The existence of hexagonal phase could not be judged. These results indicate the uniaxial films fabricated by this technique enable to be the epitaxial scaffold of the neonatal bone. This scaffold can be expected to promote connection with the surrounding bone tissue and recovery of the dynamic characteristics of the bone.
The electrophoretic deposition of ZnO on highly oriented pyrolytic graphite
NASA Astrophysics Data System (ADS)
Ghalamboran, Milad; Jahangiri, Mojtaba; Yousefiazari, Ehsan
2017-12-01
Intensive research has been conducted on ZnO thin and thick films in recent years. Such layers, used in different electronic devices, are deposited utilizing various methods, but electrophoretic deposition (EPD) has been chosen because of the advantages like low energy consumption, economical superiority, ecofriendliness, controllability, and high deposition rate. Here, we report electrophoretically depositing ZnO layers onto highly oriented pyrolytic graphite. Well-dispersed and stable ZnO suspensions are used for the deposition of continuous and even layers of ZnO on the substrate. ZnO powder is dispersed in acetone. The electric field applied is in the 250 V/cm to 2000 V/cm range. The morphology of the deposits are studied by SEM at the different stages of the deposition process.
Diffuse Scattering Investigations of Orientational Pair Potentials in C_60
NASA Astrophysics Data System (ADS)
Wochner, Peter
1996-03-01
Premonitory orientational fluctuations above the first order phase transition of C_60 at 260K have been studied by diffuse X-ray scattering experiments. These experiments probe the orientational pair correlations between C_60 molecules as a function of their separation and therefore the orientational pair potential. In addition to the diffuse scattering due to the orientational disorder of single molecules, we have observed zone boundary diffuse scattering at the X-points related to the Pabar 3 low temperature structure up to 300K. An additional set of diffuse peaks, which are even at room temperature comparable in intensity to the former ones, have been found at (0.5,0.5,0.5) positions (L-point). Similar results have recently been reported by P. Launois et al. (P. Launois, S. Ravy, R. Moret, PRB 52), 5414 (1995) and L. Pintschovius et al. (L. Pintschovius, S.L. Chaplot, G. Roth, G. Heger, PRL 75), 2843 (1995) The temperature dependence of the integrated intensity of both sets of diffuse peaks shows only a weak increase in approaching T_c, indicative of a strongly first order transition. Additional intensity with a very weak temperature dependence but similar correlation length has also been found at (0.5,0.5,0) and (0.5,0,0) positions. The diffuse intensity at the L, Σ and Δ points has probably its origin in competing phases which are not stabilized at low temperatures. Recent DSC measurements show close lying transitions at 260K with a separation of ~= 0.2-0.3K which might be related to these competing phases footnote J. Fischer, private communication. The data will be compared with model calculations using orientational pair potentials which have been used in literature to describe the orientational phase transition in C_60.
NASA Technical Reports Server (NTRS)
Cohen, M.; Welch, R.; Deroshia, C.
1992-01-01
It has generally been believed that the perceived intensity of a gravitational-inertial force depends on both the magnitude and orientation of the force with respect to the otolith organs, as does the elevator illusion. In this study, we examine the perceived intensity of Gz force and the elevator illusion as a function of the applied force and the orientation of the subject's head. Methods: Each of 7 male subjects was seated upright in a swinging chair mounted in the Ames 20-G Human Centrifuge while he set a visual target to his apparent horizon and judged the perceived intensity of Gz forces by cross-modal matches on a hand dynamometer. Plateau Gz levels were 1.00 1.25, 1.50, 2.00, 2.25, and 2.50; a 30 second ramp to plateau was used in all cases, and the duration of exposure at each plateau was 120 seconds. All measures were obtained both with the subject's head erect and pitched forward 30 degrees. Results: Although the elevator illusion changed with head orientation (F(6,60) = 7.56; p less than 0.001) the perceived intensity of Gz was essentially the same for both orientations of the head (F (6,60) = 0.61; p greater than 50). Conclusions: The results of this experiment suggest that the perceived intensity of gravitational-inertial force does not depend on otolith mechanisms in the same way as does the elevator illusion and that somesthetic, tactile, and other proprioceptive inputs are important for the psychophysical function.
Laser diode fiber optic apparatus for acupuncture treatment by the Oriental method
NASA Astrophysics Data System (ADS)
Pham, Van Hoi; Phung, Huu A.; Bui, Huy; Hoang, Cao D.; Vu, Duc T.; Tran, Minh T.; Nguyen, Minh H.
1998-08-01
The laser acupuncture equipment using laser diodes of 850, 1300 nm and optical fibers as light needles is presented. The double-frequency modulation of laser beam gives the high efficiency treatment of the low-power laser therapy by the oriental acupuncture method. The laser spot from optical fiber of 50 microns is suitable for the irradiation into special points on body or auricular by the acupuncture treatment schema. The laser intensity in pulse regime of 5 - 40 W/cm2 and irradiation time of 5 - 15 minutes are optimum for treatment of neurosis symptoms and pain-relieving.
Dielectric relaxation of guest molecules in a clathrate structure of syndiotactic polystyrene.
Urakawa, Osamu; Kaneko, Fumitoshi; Kobayashi, Hideo
2012-12-13
Structure and dynamics of semicrystalline polymer films composed of syndiotactic polystyrene (sPS) and 2-butanone were examined through X-ray diffraction, polarized FTIR, and dielectric relaxation measurements. The X-ray and FTIR measurements revealed its crystal structure to be δ-clathrate containing 2-butanone molecules inside. The carbonyl group of 2-butanone in the crystal was found to orient preferentially parallel to the ac plane of the crystal through the polarized ATR FTIR measurements. Dielectric measurements were also conducted on these film samples to see only the relaxation dynamics of 2-butanone thanks to the high dielectric intensity of 2-butanone compared to sPS. Two relaxation modes denoted by slow and fast modes appeared. The former was assigned to the motion of 2-butanone molecules entrapped in the cavities of the crystalline (δ-form) and the latter to those in the amorphous region. We focused on the slow mode in order to elucidate the specific dynamics of the guest molecule confined in the crystalline region. The relaxation time of the slow mode was about 4 orders of magnitude longer than that of liquid 2-butanone. This suggests that the dynamics of guest molecules is highly restricted due to the high barrier to conformational and/or orientational change of the guest molecule in the cavity of δ-crystal. Furthermore, the dielectric intensity Δε of the slow mode was much smaller than the one calculated from that of bulk liquid 2-butanone and the guest concentration in the crystalline region (the intensity was only 10% of the estimated value from the bulk liquid data). This result also indicates that the free rotational motion of 2-butanone molecules is restricted inside the crystal. This will be consistently related to the weak uniplanar orientation of the carbonyl group of 2-butanone parallel to the ac plane revealed by the X-ray and polarized ATR FTIR measurements.
Graphene-Based Polymer Nanocomposites
2015-03-31
Raman band I(δ) X - ray scattering intensity in the azimuthal scan I(r) Raman band intensity within laser spot I(ω...Krenchel orientation factor Θ Angle between the incident and the scattering X - ray θ Angle between the surface normal of graphene and sample λ...Wavelength of laser or X - ray λ2/λ4 Parameter in orientation distribution function µ Molecular dipole moment
Moon orientation in adult and young sandhoppers under artificial light.
Ugolini, Alberto; Boddi, Vieri; Mercatelli, Luca; Castellini, Carlo
2005-10-22
Our experiments, carried out at night and during the day on adults and laboratory-born young of the sandhopper Talitrus saltator, deal with the identification and use of the moon as an orientating factor. Sandhoppers were released in an apparatus (a Plexiglas dome) that produced a scenario similar to the natural one (with artificial sky, moon or sun illuminated at different intensities). When tested at night, the adult and young sandhoppers used the artificial moon like the natural one, independently of the intensity of illumination of the artificial sky and moon. In other words, sandhoppers tested at night always identified the artificial moon as the moon and never as the sun. In daytime releases, the seaward orientation failed at low intensities of artificial sky and sun illumination (3.07 and 1.55 microW cm2, respectively), whereas the sun compass was used effectively at higher levels of artificial sun and sky illumination. The innate ability of moon compass orientation in inexpert young sandhoppers was demonstrated even under artificial light.
Sharks modulate their escape behavior in response to predator size, speed and approach orientation.
Seamone, Scott; Blaine, Tristan; Higham, Timothy E
2014-12-01
Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach. Copyright © 2014 Elsevier GmbH. All rights reserved.
el Jundi, Basil; Smolka, Jochen; Baird, Emily; Byrne, Marcus J; Dacke, Marie
2014-07-01
To escape competition at the dung pile, a ball-rolling dung beetle forms a piece of dung into a ball and rolls it away. To ensure their efficient escape from the dung pile, beetles rely on a 'celestial compass' to move along a straight path. Here, we analyzed the reliability of different skylight cues for this compass and found that dung beetles rely not only on the sun but also on the skylight polarization pattern. Moreover, we show the first evidence of an insect using the celestial light-intensity gradient for orientation. Using a polarizer, we manipulated skylight so that the polarization pattern appeared to turn by 90 deg. The beetles then changed their bearing close to the expected 90 deg. This behavior was abolished if the sun was visible to the beetle, suggesting that polarized light is hierarchically subordinate to the sun. When the sky was depolarized and the sun was invisible, the beetles could still move along straight paths. Therefore, we analyzed the use of the celestial light-intensity gradient for orientation. Artificial rotation of the intensity pattern by 180 deg caused beetles to orient in the opposite direction. This light-intensity cue was also found to be subordinate to the sun and could play a role in disambiguating the polarization signal, especially at low sun elevations. © 2014. Published by The Company of Biologists Ltd.
Strategies of emotion management: not just on, but off the job.
Hammonds, Clare; Cadge, Wendy
2014-06-01
Intensive care nurses, like professionals in other intense occupations characterized by high degrees of uncertainty, manage the emotions that result from their work both on and off the job. We focus on the job strategies - calling-in, sharing their experiences with others and engaging in a range of activities oriented to emotional recovery - that 37 intensive care nurses use to manage their emotions off the job. These strategies show how the social organization and division of labor in intensive care units influences nurses' emotional management outside of them and how organizational troubles for hospitals becomes personal ones for staff. They further support theoretical approaches that view emotions as dynamic elements belonging to individuals rather than aspects of people that can be fully appropriated by organizations. © 2013 John Wiley & Sons Ltd.
Effective Young's modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks.
Tanpichai, Supachok; Quero, Franck; Nogi, Masaya; Yano, Hiroyuki; Young, Robert J; Lindström, Tom; Sampson, William W; Eichhorn, Stephen J
2012-05-14
The deformation micromechanics of bacterial cellulose (BC) and microfibrillated cellulose (MFC) networks have been investigated using Raman spectroscopy. The Raman spectra of both BC and MFC networks exhibit a band initially located at ≈ 1095 cm(-1). We have used the intensity of this band as a function of rotation angle of the specimens to study the cellulose fibril orientation in BC and MFC networks. We have also used the change in this peak's wavenumber position with applied tensile deformation to probe the stress-transfer behavior of these cellulosic materials. The intensity of this Raman band did not change significantly with rotation angle, indicating an in-plane 2D network of fibrils with uniform random orientation; conversely, a highly oriented flax fiber exhibited a marked change in intensity with rotation angle. Experimental data and theoretical analysis shows that the Raman band shift rate arising from deformation of networks under tension is dependent on the angles between the axis of fibrils, the strain axis, the incident laser polarization direction, and the back scattered polarization configurations. From this analysis, the effective moduli of single fibrils of BC and MFC in the networks were estimated to be in the ranges of 79-88 and 29-36 GPa, respectively. It is shown also that for the model to fit the data it is necessary to use a negative Poisson's ratio for MFC networks and BC networks. Discussion of this in-plane "auxetic" behavior is given.
Bats Respond to Very Weak Magnetic Fields
Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang
2015-01-01
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944
Bats respond to very weak magnetic fields.
Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang
2015-01-01
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.
NASA Technical Reports Server (NTRS)
Shbeeb, N.; Binienda, W. K.; Kreider, K.
1999-01-01
The driving forces for a generally oriented crack embedded in a Functionally Graded strip sandwiched between two half planes are analyzed using singular integral equations with Cauchy kernels, and integrated using Lobatto-Chebyshev collocation. Mixed-mode Stress Intensity Factors (SIF) and Strain Energy Release Rates (SERR) are calculated. The Stress Intensity Factors are compared for accuracy with previously published results. Parametric studies are conducted for various nonhomogeneity ratios, crack lengths. crack orientation and thickness of the strip. It is shown that the SERR is more complete and should be used for crack propagation analysis.
The Primacy of Movement in Art Making
ERIC Educational Resources Information Center
Burrill, Rebecca
2010-01-01
The author is naturally a kinesthetic learner. As a child she was steeped in the wilds of seashore, fields, and woods in which she was free to roam, explore, and imagine in a deeply sensual, movement-oriented world. Because of these first experiences of freedom of movement and spontaneity in the highly intense natural world, she found the…
Prospective Relations between Social Comparison Orientation and Weight Loss Outcomes.
Arigo, Danielle; Butryn, Meghan L
2018-06-26
Maintenance of weight loss after behavioral intervention tends to be poor, and there is need for an improved understanding of factors that are associated with successful maintenance. Social comparison is known to be a powerful influence on treatment outcomes for group-based behavioral weight loss programs, but little is known about the role of individual differences in social comparison orientation (i.e., tendency to value comparison information) in this context. The goal of this study was to examine prospective relations between social comparison orientation and long-term weight loss outcomes (percent weight loss, aerobic-intensity physical activity) among participants in behavioral weight loss treatment. Participants (n = 161, M Age = 54, M BMI = 34.4░kg/m 2 ) completed a measure of social comparison orientation at pre-treatment baseline. Height and weight were measured in the research center and aerobic-intensity physical activity was assessed via accelerometer at baseline, mid- and end-of-treatment, and at 6 and 12 months post-treatment (representing maintenance). Multilevel models tested prospective relations between comparison orientation and treatment outcomes over time, with emphasis on differences during the post-treatment maintenance phase. Stronger (vs. weaker) general comparison orientation was associated with better maintenance of aerobic-intensity physical activity. However, stronger (vs. weaker) orientation toward comparisons with better-off others (i.e., upward comparison) was associated with less weight loss success during and after treatment. Social comparison orientation thus shows meaningful relations with long-term maintenance of key outcomes in group-based behavioral weight loss treatment, and warrants further investigation in this context.
NASA Astrophysics Data System (ADS)
Wheeler, Erin R.
There is a national effort to increase the number of undergraduate students graduating in science, math, engineering, and technology (STEM) (National Science Foundation, 2007). The majority of students initially populating these STEM majors ultimately switch to and graduate from non-STEM majors (Seymour & Hewitt, 2000; Seymour, 2002). The source of attrition from STEM fields lies within the difficulty of concepts presented in freshman STEM introductory courses (Jensen & Moore, 2007, 2008, 2009; Seymour & Hewitt, 2000). These gateway courses are considered high-risk because nearly half of students enrolled in these courses receive either a "D" or "F" or completely withdraw from the course (Labov, 2004). Research shows that students who have uncalibrated self-efficacy and an attenuated self-regulated learning are unsuccessful in high-risk courses (Kitsantas et al., 2008; Ross, Green, Salisbury-Glennon, & Tollefson, 2006; Zimmerman, 2002). Traditional academic assistance, such as tutoring, learning to learn courses, and supplemental instruction, does not explicitly develop an undergraduate's self-efficacy and self-regulated learning as it specifically relates to the STEM domains (Cao & Nietfeld, 2007; Dembo & Seli, 2006; Ross et al., 2006; Simpson, Hind, Nist, Burrell, 1997). Some STEM departments have created academic interventions, such as one-credit seminars, orientation programs, and bridge programs, to directly address the needs of STEM majors (Belzer, 2003; Bonner, 2009; Chevalier, Chrisman, & Kelsey, 2001; Hutchison-Green, Follman, & Bodner, 2008; D. J. Minchella, Yazvac, C. W., Fodrea, R. A., Ball G., 2007; Reyes, Anderson-Rowland, & McCartney, 1998). This study focused on the effect of a biology-intensive orientation program on biology majors' self-efficacy and self-regulated learning. The study utilized approximately 300 undergraduate biology majors participating in a biology-intensive orientation that occurred on August 7-12, 2011, at a public state university. The pre-test and post-test measurements of the Motivated Strategies for Learning Questionnaire, as well as observations, interviews, and open-ended email surveys, were employed to evaluate the program as an effective format for developing self-regulated learning and self-efficacy. The Biology Intensive Orientation for Students (BIOS) was found to exhibit four elements that previous research deemed necessary to develop self-efficacy and self-regulation. BIOS were also shown successfully to calibrate students' self-efficacy and self-regulation to a level for optimal performance in Biology 1201. Camp participants exhibited higher self-efficacy, self-regulation, and final Biology 1201 grades than their non-BIOS peers. Self-efficacy was found to contribute more variance to course performance than self-regulation. Together these results offer insight into the mechanism behind the success of science boot camps and the role of motivation in STEM retention initiatives.
NASA Astrophysics Data System (ADS)
Shvetsov, Sergey A.; Emelyanenko, Alexander V.; Boiko, Natalia I.; Liu, Jui-Hsiang; Khokhlov, Alexei R.
2017-06-01
Reversible orientational transitions in the droplets of a nematic liquid crystal (NLC) caused by the change of boundary conditions under the low intensity diode illumination are investigated. Photosensitivity of NLC is achieved by the addition of the dendrimer compound with azobenzene terminal groups. Two types of NLC droplets in glycerol are considered: the spherical droplets in the bulk of glycerol and the droplets laid-down onto the solid substrate. In the second case, the first order phase transition is revealed. The effects described can be useful for the development of highly sensitive chemical detectors and microsized photo-tunable optical devices.
NASA Astrophysics Data System (ADS)
Kunj, Saurabh; Sreenivas, K.
2016-05-01
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunj, Saurabh, E-mail: saurabhkunj22@gmail.com; Sreenivas, K.
2016-05-23
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
Saito, Kei; Otsuru, Naofumi; Inukai, Yasuto; Kojima, Sho; Miyaguchi, Shota; Tsuiki, Shota; Sasaki, Ryoki; Onishi, Hideaki
2018-06-01
Selective afferent activation can be used to improve somatosensory function, possibly by altering cortical inhibitory circuit activity. Peripheral electrical stimulation (PES) is widely used to induce selective afferent activation, and its effect may depend on PES intensity. Therefore, we investigated the effects of high- and low-intensity PES applied to the right index finger on tactile discrimination performance and cortical sensory-evoked potential paired-pulse depression (SEP-PPD) in 25 neurologically healthy subjects. In Experiment 1, a grating orientation task (GOT) was performed before and immediately after local high- and low-intensity PES (both delivered as 1-s, 20-Hz trains of 0.2-ms electrical pulses at 5-s intervals). In Experiment 2, PPD of SEP components N20/P25_SEP-PPD and N20_SEP-PPD, respectively, were assessed before and immediately after high- and low-intensity PES. Improved GOT discrimination performance after high-intensity PES (reduced discrimination threshold) was associated with lower baseline performance (higher baseline discrimination threshold). Subjects were classified into low and high (baseline) GOT performance groups. Improved GOT discrimination performance in the low GOT performance group was significantly associated with a greater N20_SEP-PPD decrease (weaker PPD). Subjects were also classified into GOT improvement and GOT decrement groups. High-intensity PES decreased N20_SEP-PPD in the GOT improvement group but increased N20_SEP-PPD in the GOT decrement group. Furthermore, a greater decrease in GOT discrimination threshold was significantly associated with a greater N20_SEP-PPD decrease in the GOT improvement group. These results suggest that high-intensity PES can improve sensory perception in subjects with low baseline function by modulating cortical inhibitory circuits in primary somatosensory cortex. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Orientation to the Caregiver Role Among Latinas of Mexican Origin
Mendez-Luck, Carolyn A.; John Geldhof, G.; Anthony, Katherine P.; Neil Steers, W.; Mangione, Carol M.; Hays, Ron D.
2016-01-01
Purpose of the Study: To develop the Caregiver Orientation Scale for Mexican-Origin Women and evaluate its psychometric properties. Design and Methods: We developed a questionnaire to measure domains of cultural orientation to the caregiver role based on formative research and on the Cultural Justifications for Caregiving Scale. We conducted a series of exploratory factor analyses (EFAs) on data collected from 163 caregivers. We estimated internal consistency reliability (Cronbach’s coefficient alpha) and assessed construct validity by estimating correlations between all latent factors and self-rated health, interview language, and weekly hours of care. Results: EFAs suggested four factors representing familism, obligation, burden, and caregiving intensity that displayed good fit (χ2 (df = 63) = 70.52, p = .24; RMSEA = .03 [90% CI: 0.00, 0.06]; comparative fit index = .99). Multi-item scales representing the four domains had coefficient alphas ranging from .68 to .86. Obligation was positively associated with burden (.46, p < .001) and intensity (.34, p < .01), which were themselves positively correlated (.63, p < .001). Familism was positively associated with obligation (.25, p < .05) yet negatively associated with burden (−.35, p < .01) and intensity (−.22, p < .05). Weekly hours of care were positively associated with burden (.26, p < .01) and intensity (.18, p < .05), whereas self-rated health and burden (−.21, p < .05) and Spanish language and intensity (−.31, p < .001) were negatively correlated. Implications: The study shows that Mexican-origin caregiver orientation is multidimensional and that caregivers may have conflicting motivations for caregiving. PMID:27342443
Orientation dependence of temporal and spectral properties of high-order harmonics in solids
NASA Astrophysics Data System (ADS)
Wu, Mengxi; You, Yongsing; Ghimire, Shambhu; Reis, David A.; Browne, Dana A.; Schafer, Kenneth J.; Gaarde, Mette B.
2017-12-01
We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems this gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. We address recent experimental results in MgO [Y. S. You et al., Nat. Phys. 13, 345 (2017)., 10.1038/nphys3955] and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.
I'm trying to heal...noise levels in a pediatric intensive care unit.
Milette, Isabelle H; Carnevale, Franco A
2003-01-01
The literature demonstrates clearly that most intensive care units exceed the standard recommendations for noise levels in hospitals, and that high noise levels have negative impacts on patients and staff. The purpose of this study was to evaluate the level of noise in a PICU and compare it to the recommendations of international bodies. We outline recommendations to promote the awareness of this problem and suggest strategies to decrease the level of noise in a PICU. The orientations of these strategies are threefold: 1) architectural-acoustic design, 2) equipment design and, most importantly, 3) staff education.
Axelrod, Daniel
2012-08-01
Microscopic fluorescent samples of interest to cell and molecular biology are commonly embedded in an aqueous medium near a solid surface that is coated with a thin film such as a lipid multilayer, collagen, acrylamide, or a cell wall. Both excitation and emission of fluorescent single molecules near film-coated surfaces are strongly affected by the proximity of the coated surface, the film thickness, its refractive index and the fluorophore's orientation. For total internal reflection excitation, multiple reflections in the film can lead to resonance peaks in the evanescent intensity versus incidence angle curve. For emission, multiple reflections arising from the fluorophore's near field emission can create a distinct intensity pattern in both the back focal plane and the image plane of a high aperture objective. This theoretical analysis discusses how these features can be used to report film thickness and refractive index, and fluorophore axial position and orientation. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grote, D. P.
Forthon generates links between Fortran and Python. Python is a high level, object oriented, interactive and scripting language that allows a flexible and versatile interface to computational tools. The Forthon package generates the necessary wrapping code which allows access to the Fortran database and to the Fortran subroutines and functions. This provides a development package where the computationally intensive parts of a code can be written in efficient Fortran, and the high level controlling code can be written in the much more versatile Python language.
Microstructural evolution and rheology of quartz in a mid-crustal shear zone
NASA Astrophysics Data System (ADS)
Rahl, Jeffrey M.; Skemer, Philip
2016-06-01
We present microstructural and crystallographic preferred orientation (CPO) data on quartz deformed in the middle crust to explore the interaction and feedback between dynamic recrystallization, deformation processes, and CPO evolution. The sample investigated here is a moderately deformed quartz-rich mylonite from the Blue Ridge in Virginia. We have created high-resolution crystallographic orientation maps using electron backscatter diffraction (EBSD) of 51 isolated quartz porphyroclasts with recrystallized grain fractions ranging from 10 to 100%. Recrystallized grains are internally undeformed and display crystallographic orientations dispersed around the orientation of the associated parent porphyroclast. We document a systematic decrease in fabric intensity with recrystallization, suggesting that progressive deformation of the recrystallized domains involves processes that can weaken a pre-existing CPO. Relationships between recrystallization fraction and shear strain suggest that complete microstructural re-equilibration requires strains in excess of γ = 5. Variation in the degree of recrystallization implies that strain was accumulated heterogeneously, and that a steady-state microstructure and rheology were not achieved.
Sabina, Chiara; Cuevas, Carlos A; Schally, Jennifer L
2013-01-01
The current study examined the effect of immigrant status, acculturation, and the interaction of acculturation and immigrant status on self-reported victimization in the United States among Latino women, including physical assault, sexual assault, stalking, and threatened violence. In addition, immigrant status, acculturation, gender role ideology, and religious intensity were examined as predictors of the count of victimization among the victimized subsample. The Sexual Assault Among Latinas (SALAS) Study surveyed 2,000 adult Latino women who lived in high-density Latino neighborhoods in 2008. The present study reports findings for a subsample of women who were victimized in the United States (n = 568). Immigrant women reported significantly less victimization than U.S.-born Latino women in bivariate analyses. Multivariate models showed that Anglo orientation was associated with greater odds of all forms of victimization, whereas both Latino orientation and being an immigrant were associated with lower odds of all forms of victimization. Latino orientation was more protective for immigrant women than for U.S.-born Latino women with regard to sexual victimization. Among the victimized subsample, being an immigrant, Anglo acculturation, and masculine gender role were associated with a higher victimization count, whereas Latino orientation and religious intensity were associated with a lower victimization count. The findings point to the risk associated with being a U.S. minority, the protective value of Latino cultural maintenance, and the need for services to reach out to Anglo acculturated Latino women.
Orientation-dependent surface core-level shifts and chemical shifts on clean and H 2S-covered GaAs
NASA Astrophysics Data System (ADS)
Ranke, W.; Finster, J.; Kuhr, H. J.
1987-08-01
Photoelectron spectra of the As 3d and Ga 3d core levels were studied in situ on a cylindrically shaped GaAs single crystal for the six inequivalent orientations (001), (113), (111), (110), (11¯1) and (11¯3). On the clean surface, prepared by molecular beam epitaxy (MBE), surface core levels are shifted by 0.25 to 0.55 eV towards smaller binding energy (BE) for As 3d and -0.25 to -0.35 eV towards higher BE for Ga, depending on orientation. Additional As causes As 3d contributions shifted between -0.45 and -0.7 eV towards higher BE. The position and intensity of them is influenced by H 2S adsorption. At 150 K, H 2S adsorbs preferentially on As sites. As chemical shifts appear at -0.6 to -0.9 eV towards higher BE. Simultaneously, As accumulation occurs on all orientations with the exception of (110). High temperature adsorption (550 K, 720 K) influences mainly the Ga 3d peaks. Two peaks shifted by about -0.45 and -0.8 eV towards higher Be were found which are attributed to Ga atoms with one or two sulfur ligands, respectively. At 720 K, also As depletion is observed. The compatibility of surface core-level positions and intensities with recent structural models for the (111) and (11¯1) surfaces is discussed.
Nachar, Nadim; Lavoie, Marc E; Marchand, André; O'Connor, Kieron P; Guay, Stéphane
2014-09-30
Individuals with posttraumatic stress disorder (PTSD) commonly make efforts to avoid trauma-oriented conversations with their significant others, which may interfere with the natural recovery process. Trauma-oriented conversations can be experienced as physiologically arousing, depending on the intensity of PTSD symptoms and perceptions of social support. In the current investigation, changes in heart rate responses to a trauma-oriented social interaction with a significant other were assessed. Perceived supportive and unsupportive or negative social interactions were examined as moderators of the association between heart rate changes to this context and intensity of PTSD symptoms. A total of 46 individuals with PTSD completed diagnostic interviews and self-report measures of symptoms and perceived supportive and negative social interactions during a trauma-oriented social interaction with a significant other. Heart rate was continuously measured during this interaction. Results showed that engagement in a trauma-oriented social interaction was predictive of elevations in heart rate that positively correlated with intensity of PTSD symptoms. The moderation hypothesis was partially supported. In addition, perceived negative social interactions positively correlated with elevations in heart rate. These findings can inform social intervention efforts for individuals with PTSD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Loh, Ne-Te Duane
2011-08-01
These 2000 single-shot diffraction patterns include were either background-scattering only or hits (background-scattering plus diffraction signal from sub-micron ellipsoidal particles at random, undetermined orientations). Candidate hits were identified by eye, and the remainder were presumed as background. 54 usable, background-subtracted hits in this set (procedure in referenced article) were used to reconstruct the 3D diffraction intensities of the average ellipsoidal particle.
Cillessen, Felix H J M; de Vries Robbé, Pieter F; Biermans, Marion C J
2017-05-17
To evaluate the use, usability, and physician satisfaction of a locally developed problem-oriented clinical notes application that replaced paper-based records in a large Dutch university medical center. Using a clinical notes database and an application event log file and a cross-sectional survey of usability, authors retrospectively analyzed system usage for medical specialties, users, and patients over 4 years. A standardized questionnaire measured usability. Authors analyzed the effects of sex, age, professional experience, training hours, and medical specialty on user satisfaction via univariate analysis of variance. Authors also examined the correlation between user satisfaction in relation to users' intensity of use of the application. In total 1,793 physicians used the application to record progress notes for 219,755 patients. The overall satisfaction score was 3.2 on a scale from 1 (highly dissatisfied) to 5 (highly satisfied). A statistically significant difference occurred in satisfaction by medical specialty, but no statistically significant differences in satisfaction took place by sex, age, professional experience, or training hours. Intensity of system use did not correlate with physician satisfaction. By two years after the start of the implementation, all medical specialties utilized the clinical notes application. User satisfaction was neutral (3.2 on a 1-5 scale). Authors believe that the significant factors facilitating this transition mirrored success factors reported by other groups: a generic, consistent, and transparent design of the application; intensive collaboration; continuous monitoring; and an incremental rollout.
Proceedings of the First Workshop on Service-Oriented Architectures and Software Product Lines
2008-05-01
Addison-Wesley, Har- low, 2000. [8] Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, S. Feature-Oriented Domain Analysis ( FODA ) Feasibility...Intensive Systems-Description, 2000. [17] K. Kang, S. Cohen, J. Hess, W. No- vak, and S. Peterson. Feature- Oriented Domain Analysis ( FODA ...product models. SPF modeling employs many approaches such as Feature- Oriented Domain Analysis and extensions to existing approaches such as UML
Soft X-Ray Absorption Spectroscopy of High-Abrasion-Furnace Carbon Black
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muramatsu, Yasuji; Harada, Ryusuke; Gullikson, Eric M.
2007-02-02
The soft x-ray absorption spectra of high-abrasion-furnace carbon black were measured to obtain local-structure/chemical-states information of the primary particles and/or crystallites. The soft x-ray absorption spectral features of carbon black represent broader {pi}* and {sigma}* peak structures compared to highly oriented pyrolytic graphite (HOPG). The subtracted spectra between the carbon black and HOPG, (carbon black) - (HOPG), show double-peak structures on both sides of the {pi}* peak. The lower-energy peak, denoted as the 'pre-peak', in the subtracted spectra and the {pi}*/{sigma}* peak intensity ratio in the absorption spectra clearly depend on the specific surface area by nitrogen adsorption (NSA). Therefore,more » it is concluded that the pre-peak intensity and the {pi}*/{sigma}* ratio reflect the local graphitic structure of carbon black.« less
Avian magnetic compass can be tuned to anomalously low magnetic intensities.
Winklhofer, Michael; Dylda, Evelyn; Thalau, Peter; Wiltschko, Wolfgang; Wiltschko, Roswitha
2013-07-22
The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 µT field (i.e. a field of less than 10 per cent of the local intensity of 47 µT). Birds can adjust to this low intensity: they turned out to be disoriented under 4 µT after a pre-exposure time of 8 h to 4 µT, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 µT field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds.
Avian magnetic compass can be tuned to anomalously low magnetic intensities
Winklhofer, Michael; Dylda, Evelyn; Thalau, Peter; Wiltschko, Wolfgang; Wiltschko, Roswitha
2013-01-01
The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 µT field (i.e. a field of less than 10 per cent of the local intensity of 47 µT). Birds can adjust to this low intensity: they turned out to be disoriented under 4 µT after a pre-exposure time of 8 h to 4 µT, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 µT field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds. PMID:23720547
Resolved shear stress intensity coefficient and fatigue crack growth in large crystals
NASA Technical Reports Server (NTRS)
Chen, QI; Liu, Hao-Wen
1988-01-01
Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.
Preparation of multilayer graphene sheets and their applications for particle accelerators
NASA Astrophysics Data System (ADS)
Tatami, Atsushi; Tachibana, Masamitsu; Yagi, Takashi; Murakami, Mutsuaki
2018-05-01
Multilayer graphene sheets were prepared by heat treatment of polyimide films at temperatures of up to 3000 °C. The sheets consist of highly oriented graphite layers with excellent mechanical robustness and flexibility. Key features of these sheets include their high thermal conductivity in the in-plane direction, good mechanical properties, and high carbon purity. The results suggest that the multilayer graphene sheets have great potential for charge stripping foils that persist even under the highest ion beam intensities irradiation and can be used for accelerator applications.
Changes in myosin S1 orientation and force induced by a temperature increase.
Griffiths, Peter J; Bagni, Maria A; Colombini, Barbara; Amenitsch, Heinz; Bernstorff, Sigrid; Ashley, Christopher C; Cecchi, Giovanni; Ameritsch, Heinz
2002-04-16
Force generation in myosin-based motile systems is thought to result from an angular displacement of the myosin subfragment 1 (S1) tail domain with respect to the actin filament axis. In muscle, raised temperature increases the force generated by S1, implying a greater change in tail domain angular displacement. We used time-resolved x-ray diffraction to investigate the structural corollary of this force increase by measuring M3 meridional reflection intensity during sinusoidal length oscillations. This technique allows definition of S1 orientation with respect to the myofilament axis. M3 intensity changes were approximately sinusoid at low temperatures but became increasingly distorted as temperature was elevated, with the formation of a double intensity peak at maximum shortening. This increased distortion could be accounted for by assuming a shift in orientation of the tail domain of actin-bound S1 toward the orientation at which M3 intensity is maximal, which is consistent with a tail domain rotation model of force generation in which the tail approaches a more perpendicular projection from the thin filament axis at higher temperatures. In power stroke simulations, the angle between S1 tail mean position during oscillations and the position at maximum intensity decreased by 4.7 degrees, corresponding to a mean tail displacement toward the perpendicular of 0.73 nm for a temperature-induced force increase of 0.28 P(0) from 4 to 22 degrees C. Our findings suggest that at least 62% of crossbridge compliance is associated with the tail domain.
Orientation to the Caregiver Role Among Latinas of Mexican Origin.
Mendez-Luck, Carolyn A; John Geldhof, G; Anthony, Katherine P; Neil Steers, W; Mangione, Carol M; Hays, Ron D
2016-12-01
To develop the Caregiver Orientation Scale for Mexican-Origin Women and evaluate its psychometric properties. We developed a questionnaire to measure domains of cultural orientation to the caregiver role based on formative research and on the Cultural Justifications for Caregiving Scale. We conducted a series of exploratory factor analyses (EFAs) on data collected from 163 caregivers. We estimated internal consistency reliability (Cronbach's coefficient alpha) and assessed construct validity by estimating correlations between all latent factors and self-rated health, interview language, and weekly hours of care. EFAs suggested four factors representing familism, obligation, burden, and caregiving intensity that displayed good fit (χ 2 (df = 63) = 70.52, p = .24; RMSEA = .03 [90% CI: 0.00, 0.06]; comparative fit index = .99). Multi-item scales representing the four domains had coefficient alphas ranging from .68 to .86. Obligation was positively associated with burden (.46, p < .001) and intensity (.34, p < .01), which were themselves positively correlated (.63, p < .001). Familism was positively associated with obligation (.25, p < .05) yet negatively associated with burden (-.35, p < .01) and intensity (-.22, p < .05). Weekly hours of care were positively associated with burden (.26, p < .01) and intensity (.18, p < .05), whereas self-rated health and burden (-.21, p < .05) and Spanish language and intensity (-.31, p < .001) were negatively correlated. The study shows that Mexican-origin caregiver orientation is multidimensional and that caregivers may have conflicting motivations for caregiving. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Yuan, Kai-Jun; Bandrauk, André D.
2018-02-01
We present symmetry effects of laser fields and molecular geometries in circularly polarized high-order harmonic generation by bichromatic counter-rotating circularly polarized laser pulses. Simulations are performed on oriented molecules by numerically solving time-dependent Schrödinger equations. We discuss how electron recollision trajectories by the orthogonal laser field polarizations influence the harmonic polarization by using a time-frequency analysis of harmonics. It is found that orientation-dependent asymmetric ionization in linear molecules due to Coulomb potentials gives rise to a dependence of the polarization on the harmonic frequency. Effects of Coriolis forces are also presented on harmonic generation. Electron recollision trajectories illustrate the effects of the relative symmetry of the field and the molecule, thus paving a method for circularly polarized attosecond pulse generation and molecular orbital imaging in more complex systems.
Vertical III-V nanowire device integration on Si(100).
Borg, Mattias; Schmid, Heinz; Moselund, Kirsten E; Signorello, Giorgio; Gignac, Lynne; Bruley, John; Breslin, Chris; Das Kanungo, Pratyush; Werner, Peter; Riel, Heike
2014-01-01
We report complementary metal-oxide-semiconductor (CMOS)-compatible integration of compound semiconductors on Si substrates. InAs and GaAs nanowires are selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates of varying crystallographic orientations, including nanocrystalline Si. The nanowires investigated are epitaxially grown, single-crystalline, free from threading dislocations, and with an orientation and dimension directly given by the shape of the template. GaAs nanowires exhibit stable photoluminescence at room temperature, with a higher measured intensity when still surrounded by the template. Si-InAs heterojunction nanowire tunnel diodes were fabricated on Si(100) and are electrically characterized. The results indicate a high uniformity and scalability in the fabrication process.
Ketelhut, R G
1998-12-10
Physical activity in the form of endurance training is highly recommendable for hypertensives. Both suitable and unsuitable forms of sports are identified. From various points of view, two one-hour sessions per week would appear to be optimal. The intensity of the activity should be oriented to the heart rate, and, for safety's sake, prior ergometric evaluation should be carried out. As a rule of thumb, the heart rate should not exceed 70% of the maximum rate during exercise. If the blood pressure should nevertheless increase too much, appropriate pharmacological treatment is indicated.
The impact of transit-oriented development on social capital : [brief].
DOT National Transportation Integrated Search
2016-10-01
Transit-oriented development (TOD), : the clustering of new, more intensive : development near transit stations, : has many advantages. While TODs : can lead to increased public transit use, some have argued that wider community benefits can : accrue...
Ozeki, K; Hoshino, T; Aoki, H; Masuzawa, T
2013-01-01
The adsorption behavior of albumin (BSA) and lysozyme (LSZ) on rod-shaped and plate-shaped hydroxyapatite (HA) was investigated to evaluate the influence of crystal orientation and morphology on the selective protein adsorption of HA. The rod-shaped HA was prepared by hydrothermal treatment from β-tricalcium phosphate (β-TCP) in H3PO4 solution (pH 2.0 and 4.0 for HA-pH 2.0 and HA-pH 4.0). The plate-shaped HA was synthesized by hydrolysis of CaHPO4-2H2O (DCPD) in NaOH solution at 40°C and 80°C (HA-40°C and HA-80°C). The synthesized HA was characterized using scanning electron microscopy (SEM) and X-ray diffractometry (XRD). HA-pH 2.0 and HA-pH 4.0 produced rod-shaped crystals that were highly oriented to the a-face plane, whereas HA-40°C and HA-80°C showed a plate-like shape and a c-face preferred orientation. The peak intensity ratio I(300)/I(002) (a/c intensity ratio) from the XRD patterns increased in the following order: HA-80°C, HA-40°C, HA-pH 2.0 and HA-pH 4.0. It also increased as the Ca/P ratio decreased. The amount of adsorbed BSA increased in the following order: HA-pH 4.0, HA-pH 2.0, HA-40°C and HA-80°C. The amount of adsorbed LSZ on HA increased in the following order--HA-pH 2.0, HA-pH 4.0, HA-40°C and HA-80°C--with a corresponding decrease in the a/c intensity ratio. The BSA/LSA adsorption ratio increased with the a/c intensity ratio in the range of 3.3-8.9, and the BSA and LSZ were selectively adsorbed on HA, depending on the crystal shape.
Effect of the dynamic core-electron polarization of CO molecules on high-order harmonic generation
NASA Astrophysics Data System (ADS)
Le, Cam-Tu; Hoang, Van-Hung; Tran, Lan-Phuong; Le, Van-Hoang
2018-04-01
We theoretically investigate the influence of dynamic core-electron polarization (DCeP) of CO molecules on high-order harmonic generation (HHG) by solving the time-dependent Schrödinger equation (TDSE) within the single-active-electron (SAE) approximation. The effect of DCeP is shown to depend strongly on the molecular orientation angle θ . Particularly, compared to the calculations without DCeP, the inclusion of this effect gives rise to an enhancement of harmonic intensity at θ =0° when the electric field aligns along the O-C direction and to a suppression at θ =180° when the field heads in the opposite direction. Meanwhile, when the electric field is perpendicular to the molecular axis, the effect is almost insignificant. The phenomenon is thought to be linked to the ionization process. However, this picture is not completed yet. By solving the TDSE within the SAE approximation and conducting a classical simulation, we are able to obtain the ionization probability as well as the ionization rate and prove that HHG, in fact, receives a major contribution from electrons ionized at only a certain time interval, rather than throughout the whole pulse propagation. Including DCeP, the variation of the ionization rate in this interval highly correlates to that of the HHG intensity. To better demonstrate the origin of this manifestation, we also show the alternation DCeP makes on the effective potential that corresponds to the observed change in the ionization rate and consequently the HHG intensity. Our results confirm previous studies' observations and, more importantly, provide the missing physical explanation. With the role of DCeP now better understood for the entire range of the orientation angle, this effect can be handled more conveniently for calculating the HHG of other targets.
High-Performance Java Codes for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.
Musculoskeletal Injuries and Training Patterns in Junior Elite Orienteering Athletes
Taube, Wolfgang; Zuest, Peter; Clénin, German; Wyss, Thomas
2015-01-01
Findings about the relation between musculoskeletal injuries and training patterns in orienteering athletes are sparse. Therefore, the musculoskeletal injuries and training patterns of 31 Swiss elite orienteering athletes aged 18-19 years were analyzed in a retrospective study. Individual training diaries and medical records were used to assess training data and injury history, respectively. Group comparisons and a multiple linear regression (MLR) were performed for statistical analysis. The junior elite orienteering athletes performed 7.38 ± 2.00 training sessions weekly, with a total duration of 455.75 ± 98.22 minutes. An injury incidence rate (IIR) of 2.18 ± 2.13 injuries per 1000 hours of training was observed. The lower extremity was affected in 93% of all injuries, and the knee (33%) was the most commonly injured location. The MLR revealed that gender and six training variables explained 60% of the variance in the injury severity index in this study. Supported by the low IIR in the observed age group, the training protocol of the junior elite orienteering athletes was generally adequate. In comparison to elite track, marathon, and orienteering athletes, the junior elite athletes performed less high-intensity interval training (HIIT). However, more frequent HIIT seems to be a protective factor against injuries. PMID:26258134
Wake orientation and its influence on the performance of diffusers with inlet distortion
NASA Astrophysics Data System (ADS)
Coffman, Jesse M.
Distortion at the inlet to diffusers is very common in internal flow applications. Inlet velocity distortion influences the pressure recovery and flow regimes of diffusers. This work introduced a centerline wake at the square inlet of a plane wall diffuser in two orthogonal orientations to investigate its influence on the diffuser performance. Two different wakes were generated. One was from a mesh strip which produced a velocity deficit with low turbulence intensity and two shear layers. The other wake generator was a D-shaped cylinder which produced a wake with high turbulence intensity and large length scales. These inlet conditions were generated for a diffuser with a diffusion angle of 3° and 6°. A pair of RANS simulations were used to investigate the influence of the orthogonal inlet orientations on the solution. The inlet conditions were taken from the inlet velocity field measured for the mesh strip. The flow development and exit conditions showed some similarities and some differences with the experimental results. The performance of a diffuser is typically measured through the static pressure recovery coefficient and the total pressure losses. The definition of these metrics commonly found in the literature were insufficient to discern differences between the wake orientations. New metrics were derived using the momentum flux profile parameter which related the static pressure recovery, the total pressure losses, and the velocity uniformity at the inlet and exit of the diffuser. These metrics revealed a trade-off between the total pressure losses and the uniformity of the velocity field.
ORBIT: A Code for Collective Beam Dynamics in High-Intensity Rings
NASA Astrophysics Data System (ADS)
Holmes, J. A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.
2002-12-01
We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.
HIFU procedures at moderate intensities—effect of large blood vessels
NASA Astrophysics Data System (ADS)
Hariharan, P.; Myers, M. R.; Banerjee, R. K.
2007-07-01
A three-dimensional computational model is presented for studying the efficacy of high-intensity focused ultrasound (HIFU) procedures targeted near large blood vessels. The analysis applies to procedures performed at intensities below the threshold for cavitation, boiling and highly nonlinear propagation, but high enough to increase tissue temperature a few degrees per second. The model is based upon the linearized KZK equation and the bioheat equation in tissue. In the blood vessel the momentum and energy equations are satisfied. The model is first validated in a tissue phantom, to verify the absence of bubble formation and nonlinear effects. Temperature rise and lesion-volume calculations are then shown for different beam locations and orientations relative to a large vessel. Both single and multiple ablations are considered. Results show that when the vessel is located within about a beam width (few mm) of the ultrasound beam, significant reduction in lesion volume is observed due to blood flow. However, for gaps larger than a beam width, blood flow has no major effect on the lesion formation. Under the clinically representative conditions considered, the lesion volume is reduced about 40% (relative to the no-flow case) when the beam is parallel to the blood vessel, compared to about 20% for a perpendicular orientation. Procedures involving multiple ablation sites are affected less by blood flow than single ablations. The model also suggests that optimally focused transducers can generate lesions that are significantly larger (>2 times) than the ones produced by highly focused beams.
Raman tensor elements for tetragonal BaTiO3 and their use for in-plane domain texture assessments
NASA Astrophysics Data System (ADS)
Deluca, Marco; Higashino, Masayuki; Pezzotti, Giuseppe
2007-08-01
A quantitative assessment of c-axis oriented domains in a textured BaTiO3 (BT) single crystal has been carried out by polarized Raman microprobe spectroscopy. The relative intensity modulation of the Raman phonon modes has been theoretically modeled as a function of crystal rotation and linked to the volume fraction of c-axis oriented domains. Raman tensor elements have also been experimentally determined for the Ag and B1 vibrational modes. As an application, the internal in-plane texture and the volume fraction of c-oriented domains in the BT single crystal have been nondestructively visualized by monitoring the relative intensity of Ag and B1 Raman modes.
ERIC Educational Resources Information Center
Chadha, Deesha; Sato, Hiroaki
2015-01-01
In 2004, Ray Land produced extensive literature on the 12 orientations of academic developers. These orientations provided academic developers with a useful tool through which they have been able to better articulate their roles and their place in academia. We have used the orientations model to establish, compare, and contrast the identity of…
Marine Science Training Program for Alaska Native Students
1991-08-01
Seward Marine Center or Kasitsna Bay. In 1989 we decided that a more intensive internship with direct faculty involvement would be more effective ...at UAF provides orientation activities for prospective Native students from the states rural high schools. In addition RSS provides the Alaska Native...opportunity to explore the effects of science upon their daily lives will attract student to careers into oceanic and related sciences and further
NASA Astrophysics Data System (ADS)
Williams, Tammy Kay
The purpose of this investigation was to examine the effects of a year long intensive extracurricular middle school science experience on the self-esteem, career goal orientation, and attitude toward science of eighth grade female students using both quantitative and qualitative methods. Sixteen self-selected eighth grade female students participated in extracurricular science experiences such as camping, rock climbing, specimen collecting and hiking, as well as meeting and interacting with female science role models. Data was collected using pre- and posttest methods using the Children's Attitude Toward Science Survey, the Coopersmith Self-Esteem Inventory, and the Self-Directed Search (SDS) Career Explorer. End of year science course grades were examined for seventh and eighth grades and compared to first semester high school grades. Qualitative data was in the form of: (1) focus group interviews conducted prior to field experiences, at the end of all field experiences, and at the end of the first semester of high school, and (2) journal entries from throughout the project. Qualitative data was examined for changes in student perceptions of science as a discipline, self as scientist, women in science, and social comparison of self in science.
NASA Technical Reports Server (NTRS)
Delcourt, D. C.; Horwitz, J. L.; Swinney, K. R.
1988-01-01
The influence of the interplanetary magnetic field (IMF) orientation on the transport of low-energy ions injected from the ionosphere is investigated using three-dimensional particle codes. It is shown that, unlike the auroral zone outflow, the ions originating from the polar cap region exhibit drastically different drift paths during southward and northward IMF. During southward IMF orientation, a 'two-cell' convection pattern prevails in the ionosphere, and three-dimensional simulations of ion trajectories indicate a preferential trapping of the light ions H(+) in the central plasma sheet, due to the wide azimuthal dispersion of the heavy ions, O(+). In contrast, for northward IMF orientation, the 'four-cell' potential distribution predicted in the ionosphere imposes a temporary ion drift toward higher L shells in the central polar cap. In this case, while the light ions can escape into the magnetotail, the heavy ions can remain trapped, featuring more intense acceleration (from a few electron volts up to the keV range) followed by precipitation at high invariant latitudes, as a consequence of their further travel into the tail.
The grain size(s) of Black Hills Quartzite deformed in the dislocation creep regime
NASA Astrophysics Data System (ADS)
Heilbronner, Renée; Kilian, Rüdiger
2017-10-01
General shear experiments on Black Hills Quartzite (BHQ) deformed in the dislocation creep regimes 1 to 3 have been previously analyzed using the CIP method (Heilbronner and Tullis, 2002, 2006). They are reexamined using the higher spatial and orientational resolution of EBSD. Criteria for coherent segmentations based on c-axis orientation and on full crystallographic orientations are determined. Texture domains of preferred c-axis orientation (Y and B domains) are extracted and analyzed separately. Subdomains are recognized, and their shape and size are related to the kinematic framework and the original grains in the BHQ. Grain size analysis is carried out for all samples, high- and low-strain samples, and separately for a number of texture domains. When comparing the results to the recrystallized quartz piezometer of Stipp and Tullis (2003), it is found that grain sizes are consistently larger for a given flow stress. It is therefore suggested that the recrystallized grain size also depends on texture, grain-scale deformation intensity, and the kinematic framework (of axial vs. general shear experiments).
NASA Astrophysics Data System (ADS)
Yoon, Im Taek; Cho, Hak Dong; Lee, Sejoon; Roshchupkin, Dmitry V.
2018-02-01
We have fabricated as-grown ZnO nanorods (NRs) and carbon-assisted NR arrays on semi-insulating (100)-oriented Si substrates. We compared the structural and luminescent properties of them. High-resolution transmission microscopy, field emission scanning electron microscopy, x-ray diffraction and energy-dispersive x-ray revealed that the as-grown ZnO NRs and carbon-assisted ZnO NRs were single crystals with a hexagonal wurtzite structure, and grew with a c-axis orientation perpendicular to the Si substrate. These measurements show that the carbon-assisted ZnO NRs were better synthesized vertically on an Si substrate compared to the as-grown ZnO NRs. Photoluminescence measurements showed that luminescence intensity of the carbon-assisted ZnO NRs was enhanced compared to the as-grown ZnO NRs. The enhanced luminescence intensity of the carbon-assisted ZnO demonstrates the possible improvement in the performance of photovoltaic nanodevices based on ZnO-like materials. This method can be applied to the fabrication of well-aligned ZnO NRs used widely in optoelectronic devices.
Hawkmoth flight performance in tornado-like whirlwind vortices.
Ortega-Jimenez, Victor Manuel; Mittal, Rajat; Hedrick, Tyson L
2014-06-01
Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack.
NASA Astrophysics Data System (ADS)
Willenweber, A.; Thomas, S.; Burnley, P. C.
2012-12-01
The Berkeley Texture Package BEARTEX is a Windows-based computer software that combines various algorithms to analyze lattice-preferred orientation in polycrystalline materials. BEARTEX was initially designed to interpret diffraction intensity data from pole figure goniometers. Recently it has been successfully used to process synthetic forsterite powder diffraction data from in-situ synchrotron X-ray diffraction taken during deformation (Bollinger et al. 2012). Our study aims to test the practicability of using BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz (novaculite) during deformation. In-situ X-ray diffraction data was collected during the deformation of novaculite at 2.5 GPa and up to 1000 °C in a D-DIA apparatus using the ten-element energy-dispersive detector at the NSLS beamline X17B2. Diffraction intensities are a function of crystal orientation, expressed in azimuth angle η and pole distance ψ. The latter is the angle between the normal of a given diffraction plane and the vertical direction of the D-DIA apparatus - our principal stress direction during compression. Orientation-dependent diffraction intensities were corrected for different responses of the single detectors and x-ray absorption effects of the anvils. Orientation distributions (ODs) and inverse pole figures were calculated using BEARTEX. In addition, electron backscatter diffraction (EBSD) analyses were carried out on the deformed novaculite samples. Generated pole figures were compared with those derived from BEARTEX. Textural properties of our novaculite starting material complicated the BEARTEX analyses. The relatively strong variation of grain sizes in our natural specimens caused non-random diffraction intensity distributions. Those lead to non-random distributions of crystal orientations when analyzed with BEARTEX, although pole figures from EBSD data clearly show random crystal orientations. In an attempt to solve this problem, we employed a scanning routine when recording in-situ synchrotron X-ray diffraction and so collected diffraction from multiple sample volumes rather than from one single spot. Here, we will present a comparison of pole figures derived from independent BEARTEX and EBSD analyses for a series of novaculite experiments and discuss the practicability of BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz. REFERENCES C. BOLLINGER, S. MERKEL AND P. RATERRON (2012): In situ quantitative analysis of stress and texture development in forsterite aggregates deformed at 6 GPa and 1373 K. J. Appl. Cryst., 45, 263-271.
The scaling of urban surface water abundance and impairment with city size
NASA Astrophysics Data System (ADS)
Steele, M. K.
2018-03-01
Urbanization alters surface water compared to nonurban landscapes, yet little is known regarding how basic aquatic ecosystem characteristics, such as the abundance and impairment of surface water, differ with population size or regional context. This study examined the abundance, scaling, and impairment of surface water by quantifying the stream length, water body area, and impaired stream length for 3520 cities in the United States with populations from 2500 to 18 million. Stream length, water body area, and impaired stream length were quantified using the National Hydrography Dataset and the EPA's 303(d) list. These metrics were scaled with population and city area using single and piecewise power-law models and related to biophysical factors (precipitation, topography) and land cover. Results show that abundance of stream length and water body area in cities actually increases with city area; however, the per person abundance decreases with population size. Relative to population, impaired stream length did not increase until city populations were > 25,000 people, then scaled linearly with population. Some variation in abundance and impairment was explained by biophysical context and land cover. Development intensity correlated with stream density and impairment; however, those relationships depended on the orientation of the land covers. When high intensity development occupied the local elevation highs (+ 15 m) and undeveloped land the elevation lows, the percentage of impaired streams was less than the opposite land cover orientation (- 15 m) or very flat land. These results show that surface water abundance and impairment across contiguous US cities are influenced by city size and by biophysical setting interacting with land cover intensity.
Clark, S E; Hill, J Colin; Peek, J E G; Putman, M E; Babler, B L
2015-12-11
Using high-resolution data from the Galactic Arecibo L-Band Feed Array HI (GALFA-Hi) survey, we show that linear structure in Galactic neutral hydrogen (Hi) correlates with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. At high Galactic latitudes, where the Planck data are noise dominated, the Hi data provide an independent constraint on the Galactic magnetic field orientation, and hence the local dust polarization angle. We detect strong cross-correlations between template maps constructed from estimates of dust intensity combined with either Hi-derived angles, starlight polarization angles, or Planck 353 GHz angles. The Hi data thus provide a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination.
Red light-induced suppression of gravitropism in moss protonemata
NASA Astrophysics Data System (ADS)
Kern, V. D.; Sack, F. D.
1999-01-01
Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (≥140nmol m-2s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities ≤100nmol m-2s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities ≥140nmol m-2s-1.
Continuous diffraction of molecules and disordered molecular crystals
Yefanov, Oleksandr M.; Ayyer, Kartik; White, Thomas A.; Barty, Anton; Morgan, Andrew; Mariani, Valerio; Oberthuer, Dominik; Pande, Kanupriya
2017-01-01
The intensities of far-field diffraction patterns of orientationally aligned molecules obey Wilson statistics, whether those molecules are in isolation (giving rise to a continuous diffraction pattern) or arranged in a crystal (giving rise to Bragg peaks). Ensembles of molecules in several orientations, but uncorrelated in position, give rise to the incoherent sum of the diffraction from those objects, modifying the statistics in a similar way as crystal twinning modifies the distribution of Bragg intensities. This situation arises in the continuous diffraction of laser-aligned molecules or translationally disordered molecular crystals. This paper develops the analysis of the intensity statistics of such continuous diffraction to obtain parameters such as scaling, beam coherence and the number of contributing independent object orientations. When measured, continuous molecular diffraction is generally weak and accompanied by a background that far exceeds the strength of the signal. Instead of just relying upon the smallest measured intensities or their mean value to guide the subtraction of the background, it is shown how all measured values can be utilized to estimate the background, noise and signal, by employing a modified ‘noisy Wilson’ distribution that explicitly includes the background. Parameters relating to the background and signal quantities can be estimated from the moments of the measured intensities. The analysis method is demonstrated on previously published continuous diffraction data measured from crystals of photosystem II [Ayyer et al. (2016 ▸), Nature, 530, 202–206]. PMID:28808434
Gountas, Sandra; Gountas, John; Soutar, Geoffrey; Mavondo, Felix
2014-07-01
To explore the complex relationships between nurses' personal resources, job satisfaction and 'customer' (patient) orientation. Previous research has shown that nursing is highly intensive, emotionally charged work, which affects nurses' job performance and their customer orientation as well as patient or 'customer' satisfaction. This study contributes to the literature by examining how nurses' personal resources relate to their personal satisfaction and customer orientation and the relationships between them. Specifically, this study explores the effects of two facets of emotional labour (deep acting and surface acting), empathic concern, self-efficacy and emotional exhaustion on personal job satisfaction and customer orientation. We also test the moderating effects of inauthenticity and emotional contagion. A quantitative survey. Data were collected through a self-completion questionnaire administered to a sample of 159 Australian nurses, in a public teaching hospital, in 2010. The data were analysed using Partial Least Square analysis. Partial Least Square analysis indicates that the final model is a good fit to the data (Goodness of Fit = 0.51). Deep acting and surface acting have different effects (positive and negative) on job satisfaction and 'customer' orientation, self-efficacy has a positive effect on both and emotional exhaustion has a positive effect on customer orientation and a negative effect on job satisfaction. The moderating effects of emotional contagion and empathic concern, in the final model, are discussed. Understanding the complex interactions between personal resources, job satisfaction and customer orientation helps to increase service providers' (nurses in this study) personal satisfaction and 'customer' orientation particularly in difficult contexts. © 2013 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Wiltschko, W.
1972-01-01
The directional orientation of migratory European robins in relation to magnetic cues is analyzed. Major efforts were made to determine what information the birds derive from the fields. It was determined that magnetic fields provide: (1) field intensity which determines whether the magnetic field can be used for orientation, (2) a means by which axial direction may be perceived, and (3) a means by which the bird can find the north direction. The north direction is sensed from the angle between gravity and the magnetic field.
Autoshaping of key pecking in pigeons with negative reinforcement.
Rachlin, H
1969-07-01
Pigeons exposed to gradually increasing intensities of pulsing electric shock pecked a key and thereby reduced the intensity of shock to zero for 2 min. Acquisition of key pecking was brought about through an autoshaping process in which periodic brief keylight presentations immediately preceded automatic reduction of the shock. On the occasions of such automatic reduction of shock preceding the first measured key peck, little or no orientation to the key was observed. Observations of pigeons with autoshaping of positive reinforcement also revealed little evidence of orientation toward the key.
Fabrication of photonic crystal microprisms based on artificial opals
NASA Astrophysics Data System (ADS)
Fenollosa, Roberto; Ibisate, Marta; Rubio, Silvia; Lopez, Ceferino; Meseguer, Francisco; Sanchez-Dehesa, Jose
2002-04-01
This paper reports a new method for faceting artificial opals based on micromanipulation techniques. By this means it was possible to fabricate an opal prism in a single domain with different faces: (111), (110) and (100), which were characterized by Scanning Electron Microscopy and Optical Reflectance Spectroscopy. Their spectra exhibit different characteristics depending on the orientation of the facet. While (111)-oriented face gives rise to a high Bragg reflection peak at about a/(lambda) equals 0.66 (where a is the lattice parameter), (110) and (100) faces show much less intense peaks corresponding to features in the band structure at a/(lambda) equals 1.12 and a/(lambda) equals 1.07 respectively. Peaks at higher energies have less obvious explanation.
NASA Astrophysics Data System (ADS)
Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan
2017-08-01
The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.
Paillet, Frederick L.; Hess, A.E.; Cheng, C.H.; Hardin, E.
1987-01-01
The distribution of fracture permeability in granitic rocks was investigated by measuring the distribution of vertical flow in boreholes during periods of steady pumping. Pumping tests were conducted at two sites chosen to provide examples of moderately fractured rocks near Mirror Lake, New Hampshire and intensely fractured rocks near Oracle, Arizona. A sensitive heat-pulse flowmeter was used for accurate measurements of vertical flow as low as 0.2 liter per minute. Results indicate zones of fracture permeability in crystalline rocks are composed of irregular conduits that cannot be approximated by planar fractures of uniform aperture, and that the orientation of permeability zones may be unrelated to the orientation of individual fractures within those zones.-Authors
"Gaikokugo" Communication in an Intensive Course Format: Case Study Report and Recommendations.
ERIC Educational Resources Information Center
Rausch, Anthony; Altizer, Roger, Jr.; Parry, Andrew
2000-01-01
This paper is a pedagogically-oriented case study of a "Gaikokugo" Communication course conducted in an intensive format. After a brief introduction and consideration of the intensive course format, the pedagogical approach guiding the course (together with samples of the materials used in the course provided in the appendix) is…
Exciton localization in (11-22)-oriented semi-polar InGaN multiple quantum wells
NASA Astrophysics Data System (ADS)
Monavarian, Morteza; Rosales, Daniel; Gil, Bernard; Izyumskaya, Natalia; Das, Saikat; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy
2016-02-01
Excitonic recombination dynamics in (11-22) -oriented semipolar In0.2Ga0.8N/In0.06Ga0.94N multiquantum wells (MQWs) grown on GaN/m-sapphire templates have been investigated by temperature-dependent time-resolved photoluminescence (TRPL). The radiative and nonradiative recombination contributions to the PL intensity at different temperatures were evaluated by analysing temperature dependences of PL peak intensity and decay times. The obtained data indicate the existence of exciton localization with a localization energy of Eloc(15K) =7meV and delocalization temperature of Tdeloc = 200K in the semipolar InGaN MQWs. Presence of such exciton localization in semipolar (11-22) -oriented structures could lead to improvement of excitonic emission and internal quantum efficiency.
Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing
NASA Astrophysics Data System (ADS)
Li, Qianli; Liu, Xiaoliln; Gu, Mu; Li, Fengrui; Zhang, Juannan; Wu, Qiang; Huang, Shiming; Liu, Si
2018-03-01
Highly c-axis oriented and densely packed ZnO:Ga nanorod arrays were fabricated on ZnO-seeded substrates by hydrothermal method, and the effect of hydrogen annealing on their morphology, structure and luminescence properties was investigated in detail. Under ultraviolet or X-ray excitation, an intense ultraviolet luminescence appeared in the hydrogen-annealed samples owing to the formation of a shallow hydrogen donor state, which can sharply activate the reconbination radiation. The luminescence intensity increased with the annealing temperature, and then decreased at a higher temperature due to the dissociation of the hydrogen ion. The optimum concentration and time of hydrogen annealing were acquired simultaneously. It is expected that the ZnO:Ga nanorod array is a promising candidate for application in ultrafast and high-spatial-resolution X-ray imaging detector.
Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays
NASA Astrophysics Data System (ADS)
Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim
2017-08-01
Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.
Effects of high temperature and film thicknesses on the texture evolution in Ag thin films
NASA Astrophysics Data System (ADS)
Eshaghi, F.; Zolanvari, A.
2017-04-01
In situ high-temperature X-ray diffraction techniques were used to study the effect of high temperatures (up to 600°C) on the texture evolution in silver thin films. Ag thin films with different thicknesses of 40, 80, 120 and 160nm were sputtered on the Si(100) substrates at room temperature. Then, microstructure of thin films was determined using X-ray diffraction. To investigate the influence of temperature on the texture development in the Ag thin films with different thicknesses, (111), (200) and (220) pole figures were evaluated and orientation distribution functions were calculated. Minimizing the total energy of the system which is affected by competition between surface and elastic strain energy was a key factor in the as-deposited and post annealed thin films. Since sputtering depositions was performed at room temperature and at the same thermodynamic conditions, the competition growth caused the formation of the {122} < uvw \\rangle weak fiber texture in as-deposited Ag thin films. It was significantly observed that the post annealed Ag thin films showed {111} < uvw \\rangle orientations as their preferred orientations, but their preferred fiber texture varied with the thickness of thin films. Increasing thin film thickness from 40nm to 160nm led to decreasing the intensity of the {111} < uvw \\rangle fiber texture.
Denault, Anne-Sophie; Poulin, François
2009-10-01
The goal of this study was to examine initial levels and rates of change in the intensity and breadth of participation in organized activities during the adolescent years, and how these participation practices were related to youth outcomes in later adolescence. The main objectives were (a) to examine growth curves of intensity and breadth of participation from Grades 7 through 11 and their interrelations, and (b) to test the associations between these dimensions of participation and academic orientation, risky behaviors, internalizing problems, and civic development in Grade 11. A homogenous sample of 299 youth (mean age = 13.37, SD = .41; 62% girls) were surveyed annually using questionnaires and phone interviews. The main results revealed that (a) even though both intensity and breadth of participation decreased over time, intensity of participation showed steeper declines by later grades, and (b) initial levels of participation were better predictors of later outcomes than rates of change over time. Regardless of the levels of change taking place over time, results revealed that youth with high initial levels of participation (both intensity and breadth) were more committed to school and developed more positive values towards society by Grade 11 than those who participated less. This might suggest that a high level of participation during early-to-mid-adolescence is particularly important when it comes to later outcomes.
ERIC Educational Resources Information Center
Totaro, Susan; Wise, Mark
2018-01-01
An intensive orientation program gives new teachers in one district and valuable introduction to the instructional culture. The authors argue that by aligning your orientation and onboarding processes to the mission and vision of your school, you are creating stronger relationships among school leaders and teachers and also reducing teacher…
NASA Astrophysics Data System (ADS)
Nakasu, Taizo; Sun, W.; Kobayashi, M.; Asahi, T.
2017-06-01
Zinc telluride layers were grown on highly-lattice-mismatched sapphire substrates by molecular beam epitaxy, and their crystallographic properties were studied by means of X-ray diffraction pole figures. The crystal quality of the ZnTe thin film was further studied by scanning electron microscopy, X-ray rocking curves and low-temperature photoluminescence measurements. These methods show that high-crystallinity (111)-oriented single domain ZnTe layers with the flat surface and good optical properties are realized when the beam intensity ratio of Zn and Te beams is adjusted. The migration of Zn and Te was inhibited by excess surface material and cracks were appeared. In particular, excess Te inhibited the formation of a high-crystallinity ZnTe film. The optical properties of the ZnTe layer revealed that the exciton-related features were dominant, and therefore the film quality was reasonably high even though the lattice constants and the crystal structures were severely mismatched.
Far field emission profile of pure wurtzite InP nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulgarini, Gabriele, E-mail: g.bulgarini@tudelft.nl; Reimer, Michael E.; Zwiller, Val
2014-11-10
We report on the far field emission profile of pure wurtzite InP nanowires in comparison to InP nanowires with predominantly zincblende crystal structure. The emission profile is measured on individual nanowires using Fourier microscopy. The most intense photoluminescence of wurtzite nanowires is collected at small angles with respect to the nanowire growth axis. In contrast, zincblende nanowires present a minimum of the collected light intensity in the direction of the nanowire growth. Results are explained by the orientation of electric dipoles responsible for the photoluminescence, which is different from wurtzite to zincblende. Wurtzite nanowires have dipoles oriented perpendicular to themore » nanowire growth direction, whereas zincblende nanowires have dipoles oriented along the nanowire axis. This interpretation is confirmed by both numerical simulations and polarization dependent photoluminescence spectroscopy. Knowledge of the dipole orientation in nanostructures is crucial for developing a wide range of photonic devices such as light-emitting diodes, photodetectors, and solar cells.« less
Wiltschko, Roswitha; Dehe, Lars; Gehring, Dennis; Thalau, Peter; Wiltschko, Wolfgang
2013-01-01
When magnetic compass orientation of migratory robins was tested, the birds proved well oriented under low intensity monochromatic light of shorter wavelengths up to 565 nm green; from 583 nm yellow onward, they were disoriented. In the present study, we tested robins under bichromatic lights composed (1) of 424 nm blue and 565 nm green and (2) of 565 nm green and 583 nm yellow at two intensities. Under dim blue-green light with a total quantal flux of ca. 8 × 10(15)quanta/sm(2), the birds were well oriented in their migratory direction by their inclination compass; under blue-green light of twice this intensity, their orientation became axial. In both cases, the magnetic directional information was mediated by the radical pair processes in the eye. When green and yellow light were combined, however, the nature of the behavior changed. Under green-yellow light of the higher intensity, the birds showed a 'fixed direction' response that was polar, no longer controlled by the normal inclination compass; under dim green-yellow light, the response became axial. Under these two light conditions, the respective directional information was mediated by the magnetite-based receptors in the skin of the upper beak. Apparently, yellow light leads to a change from one magnetoreception system to the other. How this change is effected is still unknown; it appears to reflect complex interactions between the visual and the two magnetoreception systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Polarization patterns of the twilight sky
NASA Astrophysics Data System (ADS)
Cronin, Thomas W.; Warrant, Eric J.; Greiner, Birgit
2005-08-01
Although natural light sources produce depolarized light, patterns of partially linearly polarized light appear in the sky due to scattering from air molecules, dust, and aerosols. Many animals, including bees and ants, orient themselves to patterns of polarization that are present in daytime skies, when the intensity is high and skylight polarization is strong and predictable. The halicitid bee Megalopta genalis inhabits rainforests in Central America. Unlike typical bees, it forages before sunrise and after sunset, when light intensities under the forest canopy are very low, and must find its way to food sources and return to its nest in visually challenging circumstances. An important cue for the orientation could be patterns of polarization in the twilight sky. Therefore, we used a calibrated digital camera to image skylight polarization in an overhead patch of sky, 87.6° across, before dawn on Barro Colorado Island in Panama, where the bees are found. We simultaneously measured the spectral properties of polarized light in a cloudless patch of sky 15° across centered on the zenith. We also performed full-sky imaging of polarization before dawn and after dusk on Lizard Island in Australia, another tropical island. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. This pattern appears about 45 minutes before local sunrise or disappears 45 minutes after local sunset (about 20 minutes after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period. Such a strong and reliable orientation cue could be used for flight orientation by any animal with polarization sensitivity that navigates during twilight.
NASA Astrophysics Data System (ADS)
Giannini, C.; Tapfer, L.; Zhuang, Y.; de Caro, L.; Marschner, T.; Stolz, W.
1997-02-01
In this work we investigate the structural properties of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of x-ray diffraction, reciprocal-space mapping, and x-ray reflectivity. The multilayers were grown by metalorganic vapor-phase epitaxy on (001) GaAs substrates intentionally off-oriented towards one of the nearest <110> directions. High-resolution triple-crystal reciprocal-space maps recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction clearly show a double periodicity of the x-ray peak intensity that can be ascribed to a lateral and a vertical periodicity occurring parallel and perpendicular to the growth surface. Moreover, from the intensity modulation of the satellite peaks, a lateral-strain gradient within the epilayer unit cell is found, varying from a tensile to a compressive strain. Thus, the substrate off-orientation promotes a lateral modulation of the layer thickness (ordered interface roughness) and of the lattice strain, giving rise to laterally ordered macrosteps. In this respect, contour maps of the specular reflected beam in the vicinity of the (000) reciprocal lattice point were recorded in order to inspect the vertical and lateral interface roughness correlation. A semiquantitative analysis of our results shows that the interface morphology and roughness is greatly influenced by the off-orientation angle and the lateral strain distribution. Two mean spatial wavelengths can be determined, one corresponding exactly to the macrostep periodicity and the other indicating a further interface waviness along the macrosteps. The same spatial periodicities were found on the surface by atomic-force-microscopy images confirming the x-ray results and revealing a strong vertical correlation of the interfaces up to the outer surface.
Spectromicroscopy study of interfacial Co/NiO(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Laan, Gerrit; Telling, Neil; Potenza, Alberto
2010-09-26
Photoemission electron microscopy (PEEM) with linearly polarized x-rays is used to determine the orientation of antiferromagnetic domains by monitoring the relative peak intensities at the 3d transition metal L{sub 2} absorption edge. In such an analysis the orientations of the x-ray polarization E and magnetization H with respect to the crystalline axes has to be taken into account. We address this problem by presenting a general expression of the angular dependence for both x-ray absorption spectroscopy and x-ray magnetic linear dichroism (XMLD) for arbitrary direction of E and H in the (001) cubic plane. In cubic symmetry the angular dependentmore » XMLD is a linear combination of two spectra with different photon energy dependence, which reduces to one spectrum when E or H is along a high-symmetry axis. The angular dependent XMLD can be separated into an isotropic term, which is symmetric along H, and an anisotropic term, which depends on the orientation of the crystal axes. The anisotropic term has maximal intensity when E and H have equal but opposite angles with respect to the [100] direction. The Ni{sup 2+} L{sub 2} edge has the peculiarity that the isotropic term vanishes, which means that the maximum in the XMLD intensity is observed not only for E {parallel} H {parallel} [100] but also for (E {parallel} [110], H {parallel} [110]). We apply the angular dependent theory to determine the spin orientation near the Co/NiO(100) interface. The PEEM images show that the ferromagnetic Co moments and antiferromagnetic NiO moments are aligned perpendicular to each other. By rotating the sample with respect to the linear x-ray polarization we furthermore find that the perpendicular coupling with the ferromagnetic Co layer at the interface causes a canting of the antiferromagnetic Ni moments. This shows that taking into account the angular dependence of the XMLD in the detailed analysis of PEEM images leads to an accurate retrieval of the spin axes of the antiferromagnetic domains.« less
NASA Astrophysics Data System (ADS)
Voth, Greg A.; Kramel, Stefan; Menon, Udayshankar K.; Koch, Donald L.
2017-11-01
We experimentally measure the sedimentation of non-spherical particles in isotropic turbulence. We obtain time-resolved 3D orientations of the particles along with the fluid velocity field around them in a vertical water tunnel. An active jet array with 40 individually controllable jets enables us to adjust the turbulence intensity and observe the transition from strongly aligned to randomized particle orientations. We focus on the orientation statistics of ramified particles formed from several slender arms, including fibers and particles with three arms in planar symmetry (triads), which allows us to study alignment of both fibers and disk-like particles. We can predict the turbulent intensity at which the transition from aligned to randomized particle orientations occurs using a non-dimensional settling factor given by the ratio of rotation timescale of the turbulence at the scale of the particle to the rotation timescale of a particles in quiescent flow due to inertial torques. A model of ramified particle motion based on slender body theory provides accurate predictions of the vertical and horizontal particle velocities relative to the turbulent fluid. Supported by Army Research Office Grant W911NF1510205.
NASA Astrophysics Data System (ADS)
Sakashita, Tatsuo; Chazono, Hirokazu; Pezzotti, Giuseppe
2007-12-01
A quantitative determination of domain distribution in polycrystalline barium titanate (BaTiO3, henceforth BT) ceramics has been pursued with the aid of a microprobe polarized Raman spectrometer. The crystallographic texture and domain orientation distribution of BT ceramics, which switched upon applying stress according to ferroelasticity principles, were determined from the relative intensity of selected phonon modes, taking into consideration a theoretical analysis of the angular dependence of phonon mode intensity for the tetragonal BT phase. Furthermore, the angular dependence of Raman intensity measured in polycrystalline BT depended on the statistical distribution of domain angles in the laser microprobe, which was explicitly taken into account in this work for obtaining a quantitative analysis of domain orientation for in-plane textured BT polycrystalline materials.
Directional orientation of birds by the magnetic field under different light conditions
Wiltschko, Roswitha; Stapput, Katrin; Thalau, Peter; Wiltschko, Wolfgang
2010-01-01
This paper reviews the directional orientation of birds with the help of the geomagnetic field under various light conditions. Two fundamentally different types of response can be distinguished. (i) Compass orientation controlled by the inclination compass that allows birds to locate courses of different origin. This is restricted to a narrow functional window around the total intensity of the local geomagnetic field and requires light from the short-wavelength part of the spectrum. The compass is based on radical-pair processes in the right eye; magnetite-based receptors in the beak are not involved. Compass orientation is observed under ‘white’ and low-level monochromatic light from ultraviolet (UV) to about 565 nm green light. (ii) ‘Fixed direction’ responses occur under artificial light conditions such as more intense monochromatic light, when 590 nm yellow light is added to short-wavelength light, and in total darkness. The manifestation of these responses depends on the ambient light regime and is ‘fixed’ in the sense of not showing the normal change between spring and autumn; their biological significance is unclear. In contrast to compass orientation, fixed-direction responses are polar magnetic responses and occur within a wide range of magnetic intensities. They are disrupted by local anaesthesia of the upper beak, which indicates that the respective magnetic information is mediated by iron-based receptors located there. The influence of light conditions on the two types of response suggests complex interactions between magnetoreceptors in the right eye, those in the upper beak and the visual system. PMID:19864263
Autoshaping of key pecking in pigeons with negative reinforcement1
Rachlin, Howard
1969-01-01
Pigeons exposed to gradually increasing intensities of pulsing electric shock pecked a key and thereby reduced the intensity of shock to zero for 2 min. Acquisition of key pecking was brought about through an autoshaping process in which periodic brief keylight presentations immediately preceded automatic reduction of the shock. On the occasions of such automatic reduction of shock preceding the first measured key peck, little or no orientation to the key was observed. Observations of pigeons with autoshaping of positive reinforcement also revealed little evidence of orientation toward the key. ImagesFig. 3.Fig. 4. PMID:16811371
Implementation of critical care response team.
Al Shimemeri, Abdullah
2014-04-01
Analyses of hospital deaths have indicated that a significant proportion of the reported deaths might have been prevented had the patients received intensive level care early enough. Over the past few decades the critical care response team has become an important means of preventing these deaths. As the proactive arm of intensive care delivery, the critical care response team places emphasis on early identification of signs of clinical deterioration, which then prompts the mobilization of intensive care brought right to the patient's bedside. However, the setting up of a critical care response team is a difficult undertaking involving different levels of cooperation between all service stakeholders, and a bringing together of professional expertise and experience in its operations. The implementation of a critical care response team often involves a high-level restructuring of a hospital's service orientation. In the present work, the various factors and different models to be considered in implementing a critical care response team are addressed.
Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.
Wang, Nian; Badar, Farid; Xia, Yang
2018-01-01
Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.
NASA Astrophysics Data System (ADS)
Tomimatsu, Toru; Takigawa, Ryo
2018-06-01
Owing to its high spatial resolution, near-field spectroscopy is a useful method for sensing the stress in a narrow region of submicron order. Here, on the basis of the highly resolved images obtained by near-field luminescence spectroscopy, we propose a statistical method of analyzing grain anisotropy-induced stress in polycrystalline Al2O3. We focus on two characteristics of a spectra: the intensity ratio and peak shift of luminescence of two lines (R1 and R2) from Al2O3 to discuss crystal orientation and stress, respectively. By incorporating the concept of the crystal misorientation parameter using intensity ratio, an apparent correlation between the magnitude of stress and the misorientation is found. This correlation analysis provides an important insight for the investigation of local thermal stress in Al2O3.
Writing-Intensive Astronomy Classes in a Liberal Arts Setting
NASA Astrophysics Data System (ADS)
Schmidtke, P. C.
2013-04-01
The Integrative Studies Program at Arizona State University is a modern adaptation of a traditional liberal arts degree. An important component of the curriculum is the requirement for a course in the area of “math and science perspectives.” Among the options are two classes on Life in the Universe and Black Holes and Beyond. These classes present contemporary astronomy topics in a format designed for humanities-oriented students. Course material is developed via class discussion of readings, augmented by a wide range of hands-on activities, and organized within the BlackBoard course management system. Almost all assignments are writing intensive: daily journals, formal papers, and an essay-type exam. The design of these courses makes them highly interactive between the instructor and students.
Texture Evolution in a Ti-Ta-Nb Alloy Processed by Severe Plastic Deformation
NASA Astrophysics Data System (ADS)
Cojocaru, Vasile-Danut; Raducanu, Doina; Gloriant, Thierry; Cinca, Ion
2012-05-01
Titanium alloys are extensively used in a variety of applications because of their good mechanical properties, high biocompatibility, and corrosion resistance. Recently, β-type Ti alloys containing Ta and Nb have received much attention because they feature not only high specific strength but also biocorrosion resistance, no allergic problems, and biocompatibility. A Ti-25Ta-25Nb β-type titanium alloy was subjected to severe plastic deformation (SPD) processing by accumulative roll bonding and investigated with the aim to observe the texture developed during SPD processing. Texture data expressed by pole figures, inverse pole figures, and orientation distribution functions for the (110), (200), and (211) β-Ti peaks were obtained by XRD investigations. The results showed that it is possible to obtain high-intensity share texture modes ({001}<110>) and well-developed α and γ-fibers; the most important fiber is the α-fiber ({001} < {1bar{1}0} > to {114} < {1bar{1}0} > to {112} < {1bar{1}0} > ). High-intensity texture along certain crystallographic directions represents a way to obtain materials with high anisotropic properties.
Tailoring the morphology of electrodeposited ZnO and its photoluminescence properties
NASA Astrophysics Data System (ADS)
Cui, H.; Mollar, M.; Marí, B.
2011-01-01
High density ZnO columnar films with well-aligned and well-perpendicular to the surface of film were electrodeposited on ITO substrates by using an electrolyte consisting of a mix of water and organic solvent namely dimethylsulfoxide (DMSO). The effect of mixing ratio of water and DMSO on the growth of film has been examined critically. SEM images have shown that well-oriented ZnO quasi-nano columns were formed perpendicular to the substrate. At the same time we found there are three kinds of competitions for growth of ZnO crystalmorphology i.e. column, rod and needle like. The needle like morphology has high density with well-aligned structure. The reasons for the growth of films of different morphology and their photoluminescence (PL) properties have been presented and discussed. It has been found that the three-dimensional (3D) ordered ZnO structure exhibits high intensity PL band which may shift their position and intensity with the varying conditions of depositions.
Robb, Paul D; Craven, Alan J
2008-12-01
An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.
Bonded half planes containing an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Aksogan, O.
1973-01-01
The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin transforms, the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given include the stress intensity factors, tHe strain energy release rates, and tHe probable cleavage angles giving the direction of crack propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, Hilary M.; Chen, Shunli; Fu, Li
2017-09-01
Inferring molecular orientations from vibrational sum frequency generation (SFG) spectra is challenging in polarization combinations that result in low signal intensities, or when the local point group symmetry approximation fails. While combining experiments with density functional theory (DFT) could overcome this problem, the scope of the combined method has yet to be established. Here, we assess its feasibility of determining the distributions of molecular orientations for one monobasic ester, two epoxides and three alcohols at the vapor/fused silica interface. We find that molecular orientations of nonlocal vibrational modes cannot be determined using polarization-resolved SFG measurements alone.
Outcome evaluation of a new model of critical care orientation.
Morris, Linda L; Pfeifer, Pamela; Catalano, Rene; Fortney, Robert; Nelson, Greta; Rabito, Robb; Harap, Rebecca
2009-05-01
The shortage of critical care nurses and the service expansion of 2 intensive care units provided a unique opportunity to create a new model of critical care orientation. The goal was to design a program that assessed critical thinking, validated competence, and provided learning pathways that accommodated diverse experience. To determine the effect of a new model of critical care orientation on satisfaction, retention, turnover, vacancy, preparedness to manage patient care assignment, length of orientation, and cost of orientation. A prospective, quasi-experimental design with both quantitative and qualitative methods. The new model improved satisfaction scores, retention rates, and recruitment of critical care nurses. Length of orientation was unchanged. Cost was increased, primarily because a full-time education consultant was added. A new model for nurse orientation that was focused on critical thinking and competence validation improved retention and satisfaction and serves as a template for orientation of nurses throughout the medical center.
Interaction between a circular inclusion and an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Gupta, G. D.; Ratwani, M.
1975-01-01
The plane interaction problem for a circular elastic inclusion embedded in an elastic matrix which contains an arbitrarily oriented crack is considered. Using the existing solutions for the edge dislocations as Green's functions, first the general problem of a through crack in the form of an arbitrary smooth arc located in the matrix in the vicinity of the inclusion is formulated. The integral equations for the line crack are then obtained as a system of singular integral equations with simple Cauchy kernels. The singular behavior of the stresses around the crack tips is examined and the expressions for the stress-intensity factors representing the strength of the stress singularities are obtained in terms of the asymptotic values of the density functions of the integral equations. The problem is solved for various typical crack orientations and the corresponding stress-intensity factors are given.
Spatial Instability of the Linearly Polarized Plane Wave in a Cubic Crystal
NASA Astrophysics Data System (ADS)
Kuz'mina, M. S.; Khazanov, E. A.
2016-12-01
We study theoretically the development of a small-scale spatial instability of a plane wave in a cubic crystal with [111], [001] and [101] orientations. It is shown that in the [111] oriented crystals the instability develops at lower intensities than in the [001] and [101] oriented crystals. In the latter two crystals, the instability can significantly be suppressed by choosing the optimal radiation polarization. It is found that in the case of a small B integral, the method of temporal contrast enhancement of laser pulses by generating an orthogonal polarization achieves the largest efficiency with the [101] orientation, while the [001] orientation is more preferable for B > 3.
Ehmke, Tobias; Nitzsche, Tim Heiko; Knebl, Andreas; Heisterkamp, Alexander
2014-01-01
We demonstrate the possibility to switch the z-polarization component of the illumination in the vicinity of the focus of high-NA objective lenses by applying radially and azimuthally polarized incident light. The influence of the field distribution on nonlinear effects was first investigated by the means of simulations. These were performed for high-NA objective lenses commonly used in nonlinear microscopy. Special attention is paid to the influence of the polarization of the incoming field. For linearly, circularly and radially polarized light a considerable polarization component in z-direction is generated by high NA focusing. Azimuthal polarization is an exceptional case: even for strong focusing no z-component arises. Furthermore, the influence of the input polarization on the intensity contributing to the nonlinear signal generation was computed. No distinct difference between comparable input polarization states was found for chosen thresholds of nonlinear signal generation. Differences in signal generation for radially and azimuthally polarized vortex beams were experimentally evaluated in native collagen tissue (porcine cornea). The findings are in good agreement with the theoretical predictions and display the possibility to probe the molecular orientation along the optical axis of samples with known nonlinear properties. The combination of simulations regarding the nonlinear response of materials and experiments with different sample orientations and present or non present z-polarization could help to increase the understanding of nonlinear signal formation in yet unstudied materials. PMID:25071961
Analyzing shear band formation with high resolution X-ray diffraction
Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; ...
2018-01-10
Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of ‘signatures’ of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientationmore » within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation.« less
Type D personality, stress coping strategies and self-efficacy as predictors of Facebook intrusion.
Błachnio, Agata; Przepiorka, Aneta; Czuczwar, Stanisław Jerzy
2017-07-01
Recently, Facebook has become one of the most popular social networking sites. People use it more and more often. A number of studies have recently addressed the issue of excessive Facebook use, showing this phenomenon to be a spreading problem. The main aim of the present study was to examine whether Type D personality, self-efficacy and coping strategies are related to Facebook intrusion. The participants were 882 students of Polish universities, all of them Facebook users (72% women, mean age: 22.25 years, SD =2.06). We used the Facebook Intrusion Questionnaire, the Facebook Intensity Scale, the General Self-Efficacy Scale, the Coping Inventory for Stressful Situations, and the Type D Scale. We applied the pen-and-paper procedure. Our results indicate that emotion-oriented and avoidance-oriented strategies of coping in stressful situations are predictors of Facebook intrusion and Facebook intensity. The relations between both Facebook intrusion and intensity and social inhibition are significant only when emotion-oriented coping strategy is controlled. The knowledge of whether coping strategies in stressful situations, such as focus on emotions or avoidance, are related to Facebook intrusion might be useful for clinical purposes. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Lemmens, Ryanne J. M.; Timmermans, Annick A. A.; Janssen-Potten, Yvonne J. M.; Pulles, Sanne A. N. T. D.; Geers, Richard P. J.; Bakx, Wilbert G. M.; Smeets, Rob J. E. M.; Seelen, Henk A. M.
2014-01-01
Purpose This study aims to assess the extent to which accelerometers can be used to determine the effect of robot-supported task-oriented arm-hand training, relative to task-oriented arm-hand training alone, on the actual amount of arm-hand use of chronic stroke patients in their home situation. Methods This single-blind randomized controlled trial included 16 chronic stroke patients, randomly allocated using blocked randomization (n = 2) to receive task-oriented robot-supported arm-hand training or task-oriented (unsupported) arm-hand training. Training lasted 8 weeks, 4 times/week, 2×30 min/day using the (T-)TOAT ((Technology-supported)-Task-Oriented-Arm-Training) method. The actual amount of arm-hand use, was assessed at baseline, after 8 weeks training and 6 months after training cessation. Duration of use and intensity of use of the affected arm-hand during unimanual and bimanual activities were calculated. Results Duration and intensity of use of the affected arm-hand did not change significantly during and after training, with or without robot-support (i.e. duration of use of unimanual use of the affected arm-hand: median difference of −0.17% in the robot-group and −0.08% in the control group between baseline and after training cessation; intensity of the affected arm-hand: median difference of 3.95% in the robot-group and 3.32% in the control group between baseline and after training cessation). No significant between-group differences were found. Conclusions Accelerometer data did not show significant changes in actual amount of arm-hand use after task-oriented training, with or without robot-support. Next to the amount of use, discrimination between activities performed and information about quality of use of the affected arm-hand are essential to determine actual arm-hand performance. Trial Registration Controlled-trials.com ISRCTN82787126 PMID:24823925
All-fiber intensity bend sensor based on photonic crystal fiber with asymmetric air-hole structure
NASA Astrophysics Data System (ADS)
Budnicki, Dawid; Szostkiewicz, Lukasz; Szymanski, Michal O.; Ostrowski, Lukasz; Holdynski, Zbigniew; Lipinski, Stanislaw; Murawski, Michal; Wojcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Pawel; Napierala, Marek; Nasilowski, Tomasz
2017-10-01
Monitoring the geometry of an moving element is a crucial task for example in robotics. The robots equipped with fiber bend sensor integrated in their arms can be a promising solution for medicine, physiotherapy and also for application in computer games. We report an all-fiber intensity bend sensor, which is based on microstructured multicore optical fiber. It allows to perform a measurement of the bending radius as well as the bending orientation. The reported solution has a special airhole structure which makes the sensor only bend-sensitive. Our solution is an intensity based sensor, which measures power transmitted along the fiber, influenced by bend. The sensor is based on a multicore fiber with the special air-hole structure that allows detection of bending orientation in range of 360°. Each core in the multicore fiber is sensitive to bend in specified direction. The principle behind sensor operation is to differentiate the confinement loss of fundamental mode propagating in each core. Thanks to received power differences one can distinguish not only bend direction but also its amplitude. Multicore fiber is designed to utilize most common light sources that operate at 1.55 μm thus ensuring high stability of operation. The sensitivity of the proposed solution is equal 29,4 dB/cm and the accuracy of bend direction for the fiber end point is up to 5 degrees for 15 cm fiber length. Such sensitivity allows to perform end point detection with millimeter precision.
Wang, Nian; Kahn, David; Badar, Farid; Xia, Yang
2014-01-01
Purpose To investigate the molecular origin of an unusual low-intensity layer in the deep region of articular cartilage as seen in MRI when the tissue is imaged under compression and oriented at the magic angle. Materials and Methods Microscopic MRI (μMRI) T2 and T1ρ experiments were carried out for both native and degraded (treated with trypsin) 18 specimens. The glycosaminoglycan (GAG) concentrations in the specimens were quantified by both sodium ICP-OES and μMRI Gd(DTPA)2--contrast methods. The mechanical modulus of the specimens was also measured. Results Native tissue shows no load-induced layer, while the trypsin-degraded tissue shows clearly the low-intensity line at the deep part of tissue. The GAG reductions are confirmed by the sodium ICP-OES (from 81.7 ± 5.4 mg/ml to 9.2 ± 3.4 mg/ml), MRI GAG quantification (from 72.4 ± 6.7 mg/ml to 11.2 ± 2.9 mg/ml). The modulus reduction is confirmed by biomechanics (from 4.3 ± 0.7 MPa to 0.3 ± 0.1 MPa). Conclusion Both T2 and T1ρ profiles in native and degraded cartilage show strongly strain-, depth-, and angle-dependent using high resolution MRI. The GAG reduction is responsible for the visualization of a low-intensity layer in deep cartilage when it is loaded and orientated at 55°. PMID:24833266
Epitaxial Growth of YBa2Cu3O7 Films onto LaAlO3 (100) by Using Oxalates
NASA Astrophysics Data System (ADS)
Dominguez, A. Bustamante; Felix, L. León; Garcia, J.; Santibañez, J. Flores; Valladares, L. De Los Santos; Gonzalez, J. C.; Anaya, A. Osorio; Pillaca, M.
Due to the current necessity to obtain epitaxial superconductor films at low cost, we report the growth of YBa2Cu3O7 (Y123) films by chemical deposition. The procedure involved simple steps such as precipitation of stoichiometric amounts of yttrium, barium and copper acetates in oxalic acid (H2C2O4). The precursor solution was dripped onto LaAlO3 (100) substrates with the help of a Fisher pipette. The films were annealed in oxygen atmosphere during 12 h at three different temperatures: 820 °C, 840 °C and 860 °C. After 820 °C and 860 °C annealing, X-ray diffraction (XRD) analysis revealed high intensity of the (00l) reflections denoting that most of the Y123 grains were c-axis oriented. In addition, we also observed a-axis oriented grains ((h00) reflexion), minor randomly oriented grains and other phases (such as Y2BaCuO5 and CuO). In contrast, the sample treated at 840 °C, we noticed c - and a-axis oriented grains, very small amounts of randomly oriented grains without formation of other phases. From the magnetization versus temperature measurements, the critical temperatures were estimated at 70K and 90K for the samples annealed at 820 °C and 860 °C respectively.
NASA Astrophysics Data System (ADS)
Jing, R.; Lin, N.; Emanuel, K.; Vecchi, G. A.; Knutson, T. R.
2017-12-01
A Markov environment-dependent hurricane intensity model (MeHiM) is developed to simulate the climatology of hurricane intensity given the surrounding large-scale environment. The model considers three unobserved discrete states representing respectively storm's slow, moderate, and rapid intensification (and deintensification). Each state is associated with a probability distribution of intensity change. The storm's movement from one state to another, regarded as a Markov chain, is described by a transition probability matrix. The initial state is estimated with a Bayesian approach. All three model components (initial intensity, state transition, and intensity change) are dependent on environmental variables including potential intensity, vertical wind shear, midlevel relative humidity, and ocean mixing characteristics. This dependent Markov model of hurricane intensity shows a significant improvement over previous statistical models (e.g., linear, nonlinear, and finite mixture models) in estimating the distributions of 6-h and 24-h intensity change, lifetime maximum intensity, and landfall intensity, etc. Here we compare MeHiM with various dynamical models, including a global climate model [High-Resolution Forecast-Oriented Low Ocean Resolution model (HiFLOR)], a regional hurricane model (Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model), and a simplified hurricane dynamic model [Coupled Hurricane Intensity Prediction System (CHIPS)] and its newly developed fast simulator. The MeHiM developed based on the reanalysis data is applied to estimate the intensity of simulated storms to compare with the dynamical-model predictions under the current climate. The dependences of hurricanes on the environment under current and future projected climates in the various models will also be compared statistically.
NASA Astrophysics Data System (ADS)
Ohaeri, Enyinnaya; Omale, Joseph; Eduok, Ubong; Szpunar, Jerzy
2018-04-01
This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111||ND-oriented grains, while WE showed a more random distribution of 111||ND-, 011||ND-, and 001||ND-oriented grains with a lower intensity.
NASA Astrophysics Data System (ADS)
Ohaeri, Enyinnaya; Omale, Joseph; Eduok, Ubong; Szpunar, Jerzy
2018-06-01
This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111|| ND-oriented grains, while WE showed a more random distribution of 111|| ND-, 011|| ND-, and 001|| ND-oriented grains with a lower intensity.
Defect characterization by inductive heated thermography
NASA Astrophysics Data System (ADS)
Noethen, Matthias; Meyendorf, Norbert
2012-05-01
During inductive-thermographic inspection, an eddy current of high intensity is induced into the inspected material and the thermal response is detected by an infrared camera. Anomalies in the surface temperature during and after inductive heating correspond to inhomogeneities in the material. A finite element simulation of the surface crack detection process using active thermography with inductive heating has been developed. The simulation model is based on the finite element software ANSYS. The simulation tool was tested and used for investigations on steel components with different longitudinal orientated cracks, varying in shape, width and height. This paper focuses on surface connected longitudinal orientated cracks in austenitic steel. The results show that depending on the excitation frequency the temperature distribution of the material under test are different and a possible way to measure the depth of the crack will be discussed.
One-step manufacturing of innovative flat-knitted 3D net-shape preforms for composite applications
NASA Astrophysics Data System (ADS)
Bollengier, Quentin; Wieczorek, Florian; Hellmann, Sven; Trümper, Wolfgang; Cherif, Chokri
2017-10-01
Mostly due to the cost-intensive manually performed processing operations, the production of complex-shaped fibre reinforced plastic composites (FRPC) is currently very expensive and therefore either restricted to sectors with high added value or for small batch applications (e.g. in the aerospace or automotive industry). Previous works suggest that the successful integration of conventional textile manufacturing processes in the FRPC-process chain is the key to a cost-efficient manufacturing of complex three-dimensional (3D) FRPC-components with stress-oriented fibre arrangement. Therefore, this work focuses on the development of the multilayer weft knitting technology for the one-step manufacturing of complex 3D net-shaped preforms for high performance FRPC applications. In order to highlight the advantages of net-shaped multilayer weft knitted fabrics for the production of complex FRPC parts, seamless preforms such as 3D skin-stringer structures and tubular fabrics with load oriented fibre arrangement are realised. In this paper, the development of the textile bindings and performed technical modifications on flat knitting machines are presented. The results show that the multilayer weft knitting technology meets perfectly the requirements for a fully automated and reproducible manufacturing of complex 3D textile preforms with stress-oriented fibre arrangement.
Shioya, Nobutaka; Shimoaka, Takafumi; Murdey, Richard; Hasegawa, Takeshi
2017-06-01
Infrared (IR) p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) is a powerful tool for analyzing the molecular orientation in an organic thin film. In particular, pMAIRS works powerfully for a thin film with a highly rough surface irrespective of degree of the crystallinity. Recently, the optimal experimental condition has comprehensively been revealed, with which the accuracy of the analytical results has largely been improved. Regardless, some unresolved matters still remain. A structurally isotropic sample, for example, yields different peak intensities in the in-plane and out-of-plane spectra. In the present study, this effect is shown to be due to the refractive index of the sample film and a correction factor has been developed using rigorous theoretical methods. As a result, with the use of the correction factor, organic materials having atypical refractive indices such as perfluoroalkyl compounds ( n = 1.35) and fullerene ( n = 1.83) can be analyzed with high accuracy comparable to a compound having a normal refractive index of approximately 1.55. With this improved technique, we are also ready for discriminating an isotropic structure from an oriented sample having the magic angle of 54.7°.
Siciliano, Mattia; Santangelo, Gabriella; Trojsi, Francesca; Di Somma, Carmela; Patrone, Manila; Femiano, Cinzia; Monsurrò, Maria Rosaria; Trojano, Luigi; Tedeschi, Gioacchino
2017-08-01
Amyotrophic lateral sclerosis (ALS) causes distress in caregivers. The present study aims to examine the association between coping strategies and psychological distress in caregivers of ALS patients. Coping strategies were assessed in 96 ALS informal caregivers by means of the Coping Inventory for Stressful Situations. Data about caregivers' demographic characteristics, levels of burden, depression and anxiety (psychological distress) were also gathered by standardised questionnaires. Patients' clinical, cognitive and behavioural disturbances were evaluated by ALS specific assessment tools. Sequential logistic regression analysis showed that emotion-oriented coping strategy was significantly associated with high levels of depressive (p < 0.01) and anxiety (p < 0.05) symptoms and high levels of burden (p < 0.05), after controlling for all other variables. Moreover, a significant relationship of patients' functional dependence levels with burden experienced by caregivers was observed. No relationships were detected between task-oriented and avoidance-oriented coping strategies and caregivers' levels of psychological distress. The present study supported the mediating effects of coping strategies on intensity of burden, depression and anxiety experienced by ALS caregivers. These findings suggest that interventions aimed at reducing utilisation of maladaptive coping strategies may improve well-being in ALS caregivers, and, possibly, management of symptoms in ALS patients.
Measuring Filament Orientation: A New Quantitative, Local Approach
NASA Astrophysics Data System (ADS)
Green, C.-E.; Dawson, J. R.; Cunningham, M. R.; Jones, P. A.; Novak, G.; Fissel, L. M.
2017-09-01
The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”
Orienting Student Using a Case-Based Instructional Approach: A Case Study
ERIC Educational Resources Information Center
Agbor-Baiyee, W.
2009-01-01
Purpose: Orientation facilitates the transition to a new academic program to meet the need of new students to know programmatic items such as academic expectations, courses, policies and procedures. We used a problem based learning (PBL) approach to introduce our students to the expectations of our intensive 10-week Medical College Admission Test…
Leadership Style of School Head-Teachers and Their Colleague's Work-Family Conflict
ERIC Educational Resources Information Center
Tatlah, Ijaz Ahmed; Quraishi, Uzma
2010-01-01
This paper aims to investigate the relationship of people-oriented and task-oriented leadership styles with the work-family and family-work conflicts and the intensity of mutual relationship between work-family and family-work conflicts. Data for the research were collected through a survey of public sector elementary and secondary school teachers…
Structural Equation Modeling of Writing Proficiency Using Can-Do Questionnaires
ERIC Educational Resources Information Center
Kobayashi, Wakako
2017-01-01
The purposes of this study were to validate the writing section of the Eiken Can-Do Questionnaires used in this study and the second purpose was to determine the effects of ten affective orientations (i.e., Desire to Write English, Attitude Toward Learning to Write English, Motivational Intensity, Instrumental Orientation for Writing in English,…
Use of fire-impacted trees for oriented strandboards
Laura Moya; Jerrold E. Winandy; William T. Y. Tze; Shri Ramaswamy
2008-01-01
This study evaluates the potential use of currently unexploited burnt timber from prescribed burns and wildfires for oriented strandboard (OSB). The research was performed in two phases: in Phase I, the effect of thermal exposure of timber on OSB properties was evaluated. Jack pine (Pinus banksiana) trees variously damaged by a moderately intense prescribed burn in a...
ADOLESCENT WORK INTENSITY, SCHOOL PERFORMANCE, AND ACADEMIC ENGAGEMENT.
Staff, Jeremy; Schulenberg, John E; Bachman, Jerald G
2010-07-01
Teenagers working over 20 hours per week perform worse in school than youth who work less. There are two competing explanations for this association: (1) that paid work takes time and effort away from activities that promote achievement, such as completing homework, preparing for examinations, getting help from parents and teachers, and participating in extracurricular activities; and (2) that the relationship between paid work and school performance is spurious, reflecting preexisting differences between students in academic ability, motivation, and school commitment. Using longitudinal data from the ongoing national Monitoring the Future project, this research examines the impact of teenage employment on school performance and academic engagement during the 8th, 10th, and 12th grades. We address issues of spuriousness by using a two-level hierarchical model to estimate the relationships of within-individual changes in paid work to changes in school performance and other school-related measures. Unlike prior research, we also compare youth school performance and academic orientation when they are actually working in high-intensity jobs to when they are jobless and wish to work intensively. Results indicate that the mere wish for intensive work corresponds with academic difficulties in a manner similar to actual intensive work.
ADOLESCENT WORK INTENSITY, SCHOOL PERFORMANCE, AND ACADEMIC ENGAGEMENT*
Staff, Jeremy; Schulenberg, John E.; Bachman, Jerald G.
2010-01-01
Teenagers working over 20 hours per week perform worse in school than youth who work less. There are two competing explanations for this association: (1) that paid work takes time and effort away from activities that promote achievement, such as completing homework, preparing for examinations, getting help from parents and teachers, and participating in extracurricular activities; and (2) that the relationship between paid work and school performance is spurious, reflecting preexisting differences between students in academic ability, motivation, and school commitment. Using longitudinal data from the ongoing national Monitoring the Future project, this research examines the impact of teenage employment on school performance and academic engagement during the 8th, 10th, and 12th grades. We address issues of spuriousness by using a two-level hierarchical model to estimate the relationships of within-individual changes in paid work to changes in school performance and other school-related measures. Unlike prior research, we also compare youth school performance and academic orientation when they are actually working in high-intensity jobs to when they are jobless and wish to work intensively. Results indicate that the mere wish for intensive work corresponds with academic difficulties in a manner similar to actual intensive work. PMID:20802795
NASA Astrophysics Data System (ADS)
Farrell, K.; Lloyd, G. E. E.; Wallis, D.; Phillips, R. J.
2015-12-01
Understanding the behaviour of active continental-scale fault zones at depth, and in particular how displacements observed at the Earth's surface are accommodated through the crust, is crucial to improving understanding of the earthquake cycle. This behaviour can be inferred by study of exhumed portions of ductile shear zones using methods such as recording strain profile(s) across the fault zone. However, due to the nature of mid-crustal rocks, strain markers tend to be rare and/or discontinuously distributed. The intensity (I) of crystallographic preferred orientation (CPO) of deformed minerals provides a proxy for strain that is continuous across fault zones. CPO are collected via electron back scattered diffraction in the scanning electron microscope. The strength of the CPO can be quantified using eigenvalue-based intensity parameters. Calibration of intensity with strain is achieved via comparison with visco-plastic self-consistency models of CPO evolution, although the temperature-dependent critical resolved shear stresses of potential crystal slip systems must be known. As an example, we consider the dextral strike-slip Eskişehir shear zone, NW Turkey, which was active during the Oligocene and accommodated ~100km of displacement, including a component of late oblique-normal slip. An exhumed mid-crustal section of this fault zone is exposed in the Uludağ Massif, comprising of high-grade metamorphic rocks of the Uludağ Group, intruded by the Central and South Uludağ granites. Sample transects focussed on the pure calcic marbles that dominate the stratigraphy. Fortunately, the availability of experimental data for calcite crystal slip behaviour at different temperatures makes the application of the CPO intensity strain proxy method relatively straightforward. The Uludağ Massif and Eskişehir shear zone provide a field based analogue for the ductile shear zone beneath the currently active North Anatolian Fault. The results of our CPO intensity-based strain profiles allow us to speculate on the current behaviour of the North Anatolian Fault, a major seismogenic feature, at depth.
Multiscale vector fields for image pattern recognition
NASA Technical Reports Server (NTRS)
Low, Kah-Chan; Coggins, James M.
1990-01-01
A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.
Salty Anomalies Forced by Central American Gap Winds: Aquarius Observations
NASA Astrophysics Data System (ADS)
Grodsky, S. A.; Carton, J.; Bentamy, A.
2014-12-01
Although upwelling normally doesn't have direct impact on the sea surface salinity (SSS), we present observational evidence of upwelling-induced SSS patterns off the Pacific Central American coast. This area is characterized by stable near-surface salinity stratification that is produced by the mixed layer dilution by local rainfall. Here the fresh and warm mixed layer is periodically disrupted by the gap wind-induced uplifts of colder and saltier water. Aquarius SSS data capture these high SSS events. In boreal winter when the intense gap winds are frequent, two tongues of anomalously salty water develop off the Gulfs of Tehuantepec and Papagayo. During that season the average SSS in the meridionally oriented Tehuantepec tongue is about 0.4 psu saltier than background SSS. The zonally elongated Papagayo tongue stands out even more strongly, being 1 to 2 psu saltier than SSS in the neighboring Panama Bight. The spatial locations and orientations of these salty tongues closely correspond to the locations and orientations of the cool SST tongues suggesting they have similar governing mechanisms.
Optical spin orientation of minority holes in a modulation-doped GaAs/(Ga,Al)As quantum well
NASA Astrophysics Data System (ADS)
Koudinov, A. V.; Dzhioev, R. I.; Korenev, V. L.; Sapega, V. F.; Kusrayev, Yu. G.
2016-04-01
The optical spin orientation effect in a GaAs/(Ga,Al)As quantum well containing a high-mobility two-dimensional electron gas was found to be due to spin-polarized minority carriers, the holes. The observed oscillations of both the intensity and polarization of the photoluminescence in a magnetic field are well described in a model whose main elements are resonant absorption of the exciting light by the Landau levels and mixing of the heavy- and light-hole subbands. After subtraction of these effects, the observed influence of magnetic fields on the spin polarization can be well interpreted by a standard approach of the optical orientation method. The spin relaxation of holes is controlled by the Dyakonov-Perel' mechanism. Deceleration of the spin relaxation by the magnetic field occurs through the Ivchenko mechanism—due to the cyclotron motion of holes. Mobility of holes was found to be two orders of magnitude smaller than that of electrons, being determined by the scattering of holes by the electron gas.
Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veluraja, K., E-mail: veluraja@msuniv.ac.in; Vennila, K.N.; Umamakeshvari, K.
Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of themore » homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.« less
Neutron Time-of-Flight Diffractometer HIPPO at LANSCE
NASA Astrophysics Data System (ADS)
Vogel, Sven; Williams, Darrick; Zhao, Yusheng; Bennett, Kristin; von Dreele, Bob; Wenk, Hans-Rudolf
2004-03-01
The High-Pressure Preferred Orientation (HIPPO) neutron diffractometer is the first third-generation neutron time-of-flight powder diffractometer to be constructed in the United States. It produces extremely high intensity by virtue of a short (9 m) initial flight path on a high intensity water moderator and 1380 3He detector tubes covering 4.5 m2 of detector area from 10' to 150' in scattering angles. HIPPO was designed and manufactured as a joint effort between LANSCE and University of California with the goals of attaining world-class science and making neutron powder diffractometry an accessible and available tool to the national user community. Over two decades of momentum transfer are available (0.1-30 A-1) to support studies of amorphous solids; magnetic diffraction; small crystalline samples; and samples subjected to extreme environments such as temperature, pressure, or magnetic fields. The exceptionally high data rates of HIPPO also make it useful for time-resolved studies. In addition to the standard ancillary equipment (100-position sample/texture changer, closed-cycle He refrigerator, furnace), HIPPO has unique high-pressure cells capable of achieving pressures of 30 GPA at ambient and high (2000 K) temperature with samples up to 100 mm3 in volume.
Gender expression, sexual orientation and pain sensitivity in women.
Vigil, Jacob M; Rowell, Lauren N; Lutz, Charlotte
2014-01-01
Despite a growing body of literature investigating sex differences with regard to pain, surprisingly little research has been conducted on the influence of various aspects of self-identity, including gender expression and sexual orientation, on pain sensitivity within each sex, particularly among women. In men, dispositional femininity is linked to greater clinical pain and trait masculinity is associated with higher pain thresholds. To examine whether gender expression and sexual orientation are associated with within-sex differences in ischemic pain sensitivity in healthy young women. A convenience sample of 172 females (mean age 21.4 years; range 18 to 30 years of age; 56.0% white, 89% heterosexual) performed an ischemic pain task in counterbalanced order. Desired levels of dispositional femininity for a preferred romantic partner and self-described levels of personal dispositional femininity were measured. Compared with heterosexual women, lesbian and bisexual women reported lower pain intensity ratings early in the discomfort task. Irrespective of sexual orientation, attraction to more feminine romantic partners and dispositional masculinity were correlated with lower pain intensity, and with higher pain thresholds and tolerance levels. These preliminary findings suggest that within-sex differences in sexual orientation and other aspects of identity, irrespective of biological sex, may be important to consider when examining experimental pain performance and clinical pain experiences. Larger investigations of the psychophysiological relationships among sexual orientation, gender expression and pain sensitivity are warranted. These findings may have implications for differences in clinical pain sensitivity of lesbian and bisexual women compared with heterosexual women.
Control of liquid crystal molecular orientation using ultrasound vibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, Satoki; Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321; Koyama, Daisuke
2016-03-07
We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distributionmore » of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.« less
Estimation of Local Orientations in Fibrous Structures With Applications to the Purkinje System
Plank, Gernot; Trayanova, Natalia A.; Vidal, René
2011-01-01
The extraction of the cardiac Purkinje system (PS) from intensity images is a critical step toward the development of realistic structural models of the heart. Such models are important for uncovering the mechanisms of cardiac disease and improving its treatment and prevention. Unfortunately, the manual extraction of the PS is a challenging and error-prone task due to the presence of image noise and numerous fiber junctions. To deal with these challenges, we propose a framework that estimates local fiber orientations with high accuracy and reconstructs the fibers via tracking. Our key contribution is the development of a descriptor for estimating the orientation distribution function (ODF), a spherical function encoding the local geometry of the fibers at a point of interest. The fiber/branch orientations are identified as the modes of the ODFs via spherical clustering and guide the extraction of the fiber centerlines. Experiments on synthetic data evaluate the sensitivity of our approach to image noise, width of the fiber, and choice of the mode detection strategy, and show its superior performance compared to those of the existing descriptors. Experiments on the free-running PS in an MR image also demonstrate the accuracy of our method in reconstructing such sparse fibrous structures. PMID:21335301
Cavalcanti-de-Albuquerque, Joao Paulo; Kincheski, Grasielle Clotildes; Louzada, Ruy Andrade; Galina, Antônio; Pierucci, Anna Paola Trindade Rocha; Carvalho, Denise P
2018-06-12
What is the central question of this study? Physical exercise has emerged as a non-pharmacological treatment for obesity by promoting changes in energy balance. Despite the accumulated knowledge about exercise effects on energy expenditure, the central question of this study is to understand how an acute session of exercise might affect food intake of male Wistar rats. What is the main finding? The main finding of this work is that food intake in male Wistar rats is decreased in the first hour after physical exercise independent of the intensity. Moreover, high-intensity exercise potentiates the anorexic effect of peripheral glucose administration. Obesity has emerged as a critical metabolic disorder in modern society. An adequate lifestyle with good-oriented programs of diet and physical exercise (PE) can prevent or potentially even cure obesity. Additionally, PE might lead to weight loss by increasing energy expenditure and decreasing hunger perception. In this manuscript, we hypothesize that an acute exercise session with different intensities would potentiate the glucose inhibitory effects on food intake in male Wistar rats. Our data show that moderate- (MOD) or high-intensity (HIGH) PE significantly decreased food intake, although no changes in the expression of feeding-related neuropeptide in the arcuate nucleus of the hypothalamus were found. Exercised animals demonstrated a reduced glucose tolerance and increased blood insulin concentration. Intraperitoneal administration of glucose decreased food intake in control animals. In the animals submitted to MOD, the decrease in food intake promoted by glucose was similar to controls; however, an interaction was observed when glucose was injected in the HIGH group, in which food intake was significantly lower than the effect produced by glucose alone. A different pattern of expression was observed for the monocarboxylate transporter isoforms (MCT1, 2 and 4) and the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKBP3) in the hypothalamus, which was dependent on the exercise intensity. In conclusion, PE decreases food intake independently of the intensity. However, an interaction between PE and the anorexic effect of glucose is only observed when a high-intensity exercise is performed. These data show an essential role of exercise intensity in the modulation of glucose inhibitory effect on food intake. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Stanton, N.; Schmitt, R.; Galdeano, A.; Maia, M.; Mane, M.
2010-07-01
The continental and adjacent marginal features along southeast Brazil were investigated, focusing on the basement structural relationships between onshore and offshore provinces. Lateral and vertical variations in the magnetic anomalies provided a good correlation with the regional tectonic features. The sin-rift dykes and faults are associated with the magnetic lineaments and lie sub parallel to the Precambrian N45E-S45W basement structure of the Ribeira Belt, but orthogonally to the Cabo Frio Tectonic Domain (CFTD) basement, implying that: (1) the upper portion of the continental crust was widely affected by Mesozoic extensional deformation; and (2) tectonic features related to the process of break up of the Gondwana at the CFTD were form regardless of the preexisting structural basement orientation being controlled by the stress orientation during the rift phase. The deep crustal structure (5 km depth) is characterized by NE-SW magnetic "provinces" related to the Ribeira Belt tectonic units, while deep suture zones are defined by magnetic lows. The offshore Campos structural framework is N30E-S30W oriented and resulted from a main WNW-ESE direction of extension in Early Cretaceous. Transfer zones are represented by NW-SE and E-W oriented discontinuities. A slight difference in orientation between onshore (N45E) and offshore (N30E) structural systems seems to reflect a re-orientation of stress during rifting. We proposed a kinematical model to explain the structural evolution of this portion of the margin, characterized by polyphase rifting, associated with the rotation of the South American plate. The Campos Magnetic High (CMH), an important tectonic feature of the Campos Basin corresponds to a wide area of high crustal magnetization. The CMH wass interpreted as a magmatic feature, mafic to ultramafic in composition that extends down to 14 km depth and constitutes an evidence of intense crustal extension at 60 km from the coast.
Shock-Induced phase transition of single crystal copper
NASA Astrophysics Data System (ADS)
Neogi, Anupam; Mitra, Nilanjan
2017-05-01
We have carried out a series of multi-million atoms non-equilibrium molecular dynamics simulations to investigate the effect of crystal orientation over the shock induced plasticity and phase transformation in single crystal copper. Crystallographic orientation of [100], [110] and [111] has been studied for various intensity of shock ranging from 1.0 km/s to 3.0 km/s. During shock wave propagation along <100> and <110>, a FCC-to-BCC phase transformation has been observed to occur behind the shock front at higher intensity of shock. Nucleated body centered phase is identified through common neighbor analysis, polyhedral matching template method, radial distribution function and also from the energetic of the particles.
Jackman, Michelle; Novak, Iona; Lannin, Natasha; Froude, Elspeth
2017-05-01
The purpose of this study was to explore the experience of parents of children with cerebral palsy (CP) who participated in an intensive cognitive orientation to daily occupational performance (CO-OP) group program addressing child chosen goals. Participants were six parents of children with CP who participated in a CO-OP upper limb task-specific training program. Parents participated in semi-structured interviews conducted via phone. A grounded theory approach was used. Interviews were transcribed verbatim and coded to identify categories and overarching themes of the parent experience of CO-OP. The theory of CO-OP for children with CP was one of offering a unique and motivating learning experience for both the child and the parent, differing from other therapeutic approaches that families had previously been involved in. Five categories were identified: the unique benefits of CO-OP; the importance of intensity; the child's motivation; challenging the parent role; and the benefits and challenges of therapy within a group context. Parents felt that CO-OP was a worthwhile intervention that leads to achievement of goals involving upper limb function and had the capacity to be transferred to future goals. Intensity of therapy and a child's motivation were identified as important factors in improvements. Further studies using quantitative research methods are warranted to investigate the benefits of CO-OP for children with neurological conditions. Implications for rehabilitation The cognitive orientation to daily occupational performance (CO-OP) is a promising upper limb cognitive motor training intervention for children with cerebral palsy. In a small sample, parents perceived that CO-OP leads to achievement of upper limb goals. Intensity of therapy, the child's motivation and the parents' ability to "step-back" were identified as important to the success of CO-OP.
A task-oriented circuit training in multiple sclerosis: a feasibility study
2014-01-01
Background The aim of this study was to evaluate the safety, feasibility and preliminary effects of a high-intensity rehabilitative task-oriented circuit training (TOCT) in a sample of multiple sclerosis (MS) subjects on walking competency, mobility, fatigue and health-related quality of life (HRQoL). Methods 24 MS subjects (EDSS 4.89 ± 0.54, 17 female and 7 male, 52.58 ± 11.21 years, MS duration 15.21 ± 8.68 years) have been enrolled and randomly assigned to 2 treatment groups: (i) experimental group received 10 TOCT sessions over 2 weeks (2 hours/each session) followed by a 3 months home exercise program, whereas control group did not receive any specific rehabilitation intervention. A feasibility patient-reported questionnaire was administered after TOCT. Functional outcome measures were: walking endurance (Six Minute Walk Test), gait speed (10 Meter Walk Test), mobility (Timed Up and Go test) and balance (Dynamic Gait Index). Furthermore, self-reported questionnaire of motor fatigue (Fatigue Severity Scale), walking ability (Multiple Sclerosis Walking Scale – 12) and health-related quality of life (Multiple Sclerosis Impact Scale – 29) were included. Subjects’ assessments were delivered at baseline (T0), after TOCT (T1) and 3 months of home-based exercise program (T2). Results After TOCT subjects reported a positive global rating on the received treatment. At 3 months, we found a 58.33% of adherence to the home-exercise program. After TOCT, walking ability and health-related quality of life were improved (p < 0.05) with minor retention after 3 months. The control group showed no significant changes in any variables. Conclusions This two weeks high-intensity task-oriented circuit class training followed by a three months home-based exercise program seems feasible and safe in MS people with moderate mobility impairments; moreover it might improve walking abilities. Trial registration NCT01464749 PMID:24906545
Assigning Main Orientation to an EOH Descriptor on Multispectral Images.
Li, Yong; Shi, Xiang; Wei, Lijun; Zou, Junwei; Chen, Fang
2015-07-01
This paper proposes an approach to compute an EOH (edge-oriented histogram) descriptor with main orientation. EOH has a better matching ability than SIFT (scale-invariant feature transform) on multispectral images, but does not assign a main orientation to keypoints. Alternatively, it tends to assign the same main orientation to every keypoint, e.g., zero degrees. This limits EOH to matching keypoints between images of translation misalignment only. Observing this limitation, we propose assigning to keypoints the main orientation that is computed with PIIFD (partial intensity invariant feature descriptor). In the proposed method, SIFT keypoints are detected from images as the extrema of difference of Gaussians, and every keypoint is assigned to the main orientation computed with PIIFD. Then, EOH is computed for every keypoint with respect to its main orientation. In addition, an implementation variant is proposed for fast computation of the EOH descriptor. Experimental results show that the proposed approach performs more robustly than the original EOH on image pairs that have a rotation misalignment.
NASA Astrophysics Data System (ADS)
Mikeš, J.; Pekárek, S.; Soukup, I.
2016-11-01
This study examines the effect of airflow orientation with respect to the strip active electrode on concentration of ozone and nitrogen dioxide produced in a planar generator based on the surface dielectric barrier discharge. The orientation of the airflow was tested in parallel and perpendicular with respect to the strips. It was found that in the investigated range of average discharge power, the ozone concentration increases approximately by 25% when airflow was oriented in parallel with respect to the strips in comparison with perpendicular orientation of the airflow. Similarly the increase of nitrogen dioxide concentration was observed for parallel orientation of the airflow with respect to the strips in comparison with the perpendicular orientation of the airflow. Within the range of wavelengths from 250 to 1100 nm, the changes of intensities of spectral lines associated with airflow orientation have been observed. A 3D numerical model describing ion trajectories and airflow patterns have also been developed.
ERIC Educational Resources Information Center
Nelson, Timothy D.; Mashunkashey, Joanna O.; Mitchell, Montserrat C.; Benson, Eric R.; Vernberg, Eric M.; Roberts, Michael C.
2008-01-01
We describe cases from the clinical records in the Intensive Mental Health Program to illustrate the diverse presenting problems, intervention strategies, therapeutic process, and outcomes for children receiving services in this school-based, community-oriented treatment model. Cases reflect varying degrees of treatment response and potential…
Design optimization of ultra-precise elliptical mirrors for hard x-ray nanofocusing at Nanoscopium
NASA Astrophysics Data System (ADS)
Kewish, Cameron M.; Polack, François; Signorato, Riccardo; Somogyi, Andrea
2013-09-01
The design and implementation of a pair of 100 mm-long grazing-incidence total-reflection mirrors for the hard X-ray beamline Nanoscopium at Synchrotron Soleil is presented. A vertically and horizontally nanofocusing mirror pair, oriented in Kirkpatrick-Baez geometry, has been designed and fabricated with the aim of creating a diffraction-limited high-intensity 5 - 20 keV beam with a focal spot size as small as 50 nm. We describe the design considerations, including wave-optical calculations of figures-of-merit that are relevant for spectromicroscopy, such as the focal spot size, depth of field and integrated intensity. The mechanical positioning tolerance in the pitch angle that is required to avoid introducing high-intensity features in the neighborhood of the focal spot is demonstrated with simulations to be of the order of microradians, becoming tighter for shorter focal lengths and therefore directly affecting all nanoprobe mirror systems. Metrology results for the completed mirrors are presented, showing that better than 1.5 °A-rms figure error has been achieved over the full mirror lengths with respect to the designed elliptical surfaces, with less than 60 nrad-rms slope errors.
NASA Astrophysics Data System (ADS)
Wittman, David M.; Benson, Bryant
2018-06-01
Weak lensing analyses use the image---the intensity field---of a distant galaxy to infer gravitational effects on that line of sight. What if we analyze the velocity field instead? We show that lensing imprints much more information onto a highly ordered velocity field, such as that of a rotating disk galaxy, than onto an intensity field. This is because shuffling intensity pixels yields a post-lensed image quite similar to an unlensed galaxy with a different orientation, a problem known as "shape noise." We show that velocity field analysis can eliminate shape noise and yield much more precise lensing constraints. Furthermore, convergence as well as shear can be constrained using the same target, and there is no need to assume the weak lensing limit of small convergence. We present Fisher matrix forecasts of the precision achievable with this method. Velocity field observations are expensive, so we derive guidelines for choosing suitable targets by exploring how precision varies with source parameters such as inclination angle and redshift. Finally, we present simulations that support our Fisher matrix forecasts.
Emotion, gender, and gender typical identity in autobiographical memory.
Grysman, Azriel; Merrill, Natalie; Fivush, Robyn
2017-03-01
Gender differences in the emotional intensity and content of autobiographical memory (AM) are inconsistent across studies, and may be influenced as much by gender identity as by categorical gender. To explore this question, data were collected from 196 participants (age 18-40), split evenly between men and women. Participants narrated four memories, a neutral event, high point event, low point event, and self-defining memory, completed ratings of emotional intensity for each event, and completed four measures of gender typical identity. For self-reported emotional intensity, gender differences in AM were mediated by identification with stereotypical feminine gender norms. For narrative use of affect terms, both gender and gender typical identity predicted affective expression. The results confirm contextual models of gender identity (e.g., Diamond, 2012 . The desire disorder in research on sexual orientation in women: Contributions of dynamical systems theory. Archives of Sexual Behavior, 41, 73-83) and underscore the dynamic interplay between gender and gender identity in the emotional expression of autobiographical memories.
Sasaki, Kei; Sasaki, Hiroto; Takahashi, Atsuki; Kang, Siu; Yuasa, Tetsuya; Kato, Ryuji
2016-02-01
In recent years, cell and tissue therapy in regenerative medicine have advanced rapidly towards commercialization. However, conventional invasive cell quality assessment is incompatible with direct evaluation of the cells produced for such therapies, especially in the case of regenerative medicine products. Our group has demonstrated the potential of quantitative assessment of cell quality, using information obtained from cell images, for non-invasive real-time evaluation of regenerative medicine products. However, image of cells in the confluent state are often difficult to evaluate, because accurate recognition of cells is technically difficult and the morphological features of confluent cells are non-characteristic. To overcome these challenges, we developed a new image-processing algorithm, heterogeneity of orientation (H-Orient) processing, to describe the heterogeneous density of cells in the confluent state. In this algorithm, we introduced a Hessian calculation that converts pixel intensity data to orientation data and a statistical profiling calculation that evaluates the heterogeneity of orientations within an image, generating novel parameters that yield a quantitative profile of an image. Using such parameters, we tested the algorithm's performance in discriminating different qualities of cellular images with three types of clinically important cell quality check (QC) models: remaining lifespan check (QC1), manipulation error check (QC2), and differentiation potential check (QC3). Our results show that our orientation analysis algorithm could predict with high accuracy the outcomes of all types of cellular quality checks (>84% average accuracy with cross-validation). Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Szidarovszky, Tamás; Jono, Maho; Yamanouchi, Kaoru
2018-07-01
A user-friendly and cross-platform software called Laser-Induced Molecular Alignment and Orientation simulator (LIMAO) has been developed. The program can be used to simulate within the rigid rotor approximation the rotational dynamics of gas phase molecules induced by linearly polarized intense laser fields at a given temperature. The software is implemented in the Java and Mathematica programming languages. The primary aim of LIMAO is to aid experimental scientists in predicting and analyzing experimental data representing laser-induced spatial alignment and orientation of molecules.
Development of Specific Aspects of Spirituality during a 6-Month Intensive Yoga Practice
Büssing, Arndt; Hedtstück, Anemone; Khalsa, Sat Bir S.; Ostermann, Thomas; Heusser, Peter
2012-01-01
The majority of research on yoga focuses on its psychophysiological and therapeutic benefits, while the spiritual aspects are rarely addressed. Changes of specific aspects of spirituality were thus investigated among 160 individuals (91% women, mean age 40.9 ± 8.3 years; 57% Christians) starting a 2-year yoga teacher training. We used standardized questionnaires to measure aspects of spirituality (ASP), mindfulness (FMI—Freiburg Mindfulness Inventory), life satisfaction (BMLSS—Brief Multidimensional Life Satisfaction Scale), and positive mood (lightheartedness/relief). At the start of the course, scores of the respective ASP subscales for search for insight/wisdom, transcendence conviction, and conscious interactions/compassion were high, while those for religious orientation were low. Within the 6 month observation period, both conscious interactions/compassion (effect size, Cohen's d = .33), Religious orientation (d = .21), Lightheartedness/Relief (d = .75) and mindfulness (d = .53) increased significantly. Particularly non-religious/non-spiritual individuals showed moderate effects for an increase of conscious interactions/compassion. The results from this study suggest that an intensive yoga practice (1) may significantly increase specific aspects of practitioners' spirituality, mindfulness, and mood, (2) that these changes are dependent in part on their original spiritual/religious self-perception, and (3) that there are strong correlations amongst these constructs (i.e., conscious interactions/compassion, and mindfulness). PMID:22852023
Tectonic evolution of the northeastern part of the African continental margin, Egypt
NASA Astrophysics Data System (ADS)
Hussein, I. M.; Abd-Allah, A. M. A.
2001-07-01
The area between Manzalah Lake and the southern Galala Plateau in northeast Egypt constitutes the Galalas, Cairo-Suez, southern Nile Delta and northern Nile Delta structural provinces. The northern Galala Fault separates the Galalas Province from the Cairo-Suez Province and is considered to be the westward extension of the Themed Fault in central Sinai. The pre-Eocene rocks are affected by northeast to east-northeast-orientated folds and reverse faults, as well as east-west-orientated oblique-slip faults with dextral and normal components. Some folds and reverse faults are interpreted to have been formed by northwest to north-northwest-orientated compression related to the Syrian Arc movement, whereas the others by the secondary northwest orientated shortening, which accompanied dextral strike-slip component along the planes of the east-west-orientated faults. The east-west-orientated faults were initially formed during the Late Triassic/Early Jurassic extension related to the drifting of the African/Arabian Plate away from the Eurasian Plate as a result of opening of the Neotethyan Sea. The Neotethyan began to close due to convergence between the two plates, leading to the Syrian Arc deformation. This deformation mildly started in Late Cenomanian and followed by a more intensive phase in Conacian/Santonian. It mildly continued in the Maastrichtian, Early Palæocene and Late Palæocene/Early Eocene. The southward thinning of the pre-Eocene rocks controlled the intensity and style of deformation. Two deformational mechanisms are proposed for the Nile Delta hinge zone. The first is related to Late Oligocene—Early Miocene north-northwest-orientated Alpine compression. The second is related to northward gravitational sliding of the post-Oligocene shale and sandstone over Cretaceous-Eocene carbonates.
NASA Astrophysics Data System (ADS)
Lancaster, N.; LeBlanc, D.; Bebis, G.; Nicolescu, M.
2015-12-01
Dune-field patterns are believed to behave as self-organizing systems, but what causes the patterns to form is still poorly understood. The most obvious (and in many cases the most significant) aspect of a dune system is the pattern of dune crest lines. Extracting meaningful features such as crest length, orientation, spacing, bifurcations, and merging of crests from image data can reveal important information about the specific dune-field morphological properties, development, and response to changes in boundary conditions, but manual methods are labor-intensive and time-consuming. We are developing the capability to recognize and characterize patterns of sand dunes on planetary surfaces. Our goal is to develop a robust methodology and the necessary algorithms for automated or semi-automated extraction of dune morphometric information from image data. Our main approach uses image processing methods to extract gradient information from satellite images of dune fields. Typically, the gradients have a dominant magnitude and orientation. In many cases, the images have two major dominant gradient orientations, for the sunny and shaded side of the dunes. A histogram of the gradient orientations is used to determine the dominant orientation. A threshold is applied to the image based on gradient orientations which agree with the dominant orientation. The contours of the binary image can then be used to determine the dune crest-lines, based on pixel intensity values. Once the crest-lines have been extracted, the morphological properties can be computed. We have tested our approach on a variety of images of linear and crescentic (transverse) dunes and compared dune detection algorithms with manually-digitized dune crest lines, achieving true positive values of 0.57-0.99; and false positives values of 0.30-0.67, indicating that out approach is generally robust.
Verhalten und Neurobiologie von stimmbegabten Insekten
NASA Astrophysics Data System (ADS)
Huber, Franz
1992-09-01
Crickets, tettigoniids (bush crickets or long-horned grasshoppers) and acridids (short-horned grasshoppers) are well-suited animals to study acoustically mediated behavior and to search for the underlying sensory, nervous, and effector mechanisms. Several behavioral tactics are described which improve reproductive success, serve to avoid predators such as bats, or have been developed for defence against parasitic insects. Phonotactic orientation of female crickets toward the calling male was chosen, since for this behavior the underlying sensory and nervous mechanisms have been intensively studied. Song recognition was found to be based on one critical parameter of the song, the syllable period, and the females show a bandpass behavior for which a correlate exists in local brain neurons. Sound orientation is based on a pressure gradient mechanism in each ear, and it needs a binaural intensity comparison within the central nervous system. With intracellular recordings from auditory interneurons during phonotactic orientation and their manipulation, a cellular correlate could be found which obeys the rule “ turn to the side most strongly stimulated”.
The crack-inclusion interaction problem
NASA Technical Reports Server (NTRS)
Liu, X.-H.; Erdogan, F.
1986-01-01
The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.
The crack-inclusion interaction problem
NASA Technical Reports Server (NTRS)
Xue-Hui, L.; Erdogan, F.
1984-01-01
The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.
Martins, Roseny Flávia; Pinto e Silva, João Luiz
2014-01-01
Pregnancy-related lumbopelvic pain is a major problem for the majority of pregnant women. Complementary medicine has been used to alleviate pain, and yoga is one of the most commonly chosen alternative methods. The objective of this study was to assess the effectiveness of Hatha yoga in the reduction of lumbopelvic pain in pregnancy. A randomized controlled trial with 60 pregnant women (age range, 14-40 years) who reported lumbopelvic pain at 12 to 32 weeks of gestation was conducted from June 2009 to June 2011. Pregnant women who had twin pregnancies, had medical restrictions for exercise, used analgesics, and participated in physical therapy were excluded from the study. Pregnant women were divided into two groups: the yoga group, practicing exercises guided by this method, and the postural orientation group, performing standardized posture orientation according to instructions provided in a pamphlet. Treatment in each group lasted 10 weeks. A visual analog scale (VAS) was used to measure pain intensity. Lumbar pain and posterior pelvic pain provocation tests were used to confirm the presence of pain. Statistical analysis included the Mann-Whitney test, the McNemar test, a paired Wilcoxon test, and analysis of covariance. The median pain score was lower in the yoga group (p<.0058) than the postural orientation group. Lumbar pain provocation tests showed a decreased response in relation to posterior pelvic pain provocation tests and a gradual reduction in pain intensity during 10 yoga sessions (p<.024). The yoga method was more effective at reducing lumbopelvic pain intensity compared with postural orientation.
Analyzing shear band formation with high resolution X-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang
Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientationmore » within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
CISP: Simulation Platform for Collective Instabilities in the BRing of HIAF project
NASA Astrophysics Data System (ADS)
Liu, J.; Yang, J. C.; Xia, J. W.; Yin, D. Y.; Shen, G. D.; Li, P.; Zhao, H.; Ruan, S.; Wu, B.
2018-02-01
To simulate collective instabilities during the complicated beam manipulation in the BRing (Booster Ring) of HIAF (High Intensity heavy-ion Accelerator Facility) or other high intensity accelerators, a code, named CISP (Simulation Platform for Collective Instabilities), is designed and constructed in China's IMP (Institute of Modern Physics). The CISP is a scalable multi-macroparticle simulation platform that can perform longitudinal and transverse tracking when chromaticity, space charge effect, nonlinear magnets and wakes are included. And due to its well object-oriented design, the CISP is also a basic platform used to develop many other applications (like feedback). Several simulations, completed by the CISP in this paper, agree with analytical results very well, which shows that the CISP is fully functional now and it is a powerful platform for the further collective instability research in the BRing or other accelerators. In the future, the CISP can also be extended easily into a physics control system for HIAF or other facilities.
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source
NASA Astrophysics Data System (ADS)
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
NASA Astrophysics Data System (ADS)
Schulze, C. S.; Huang, X.; Prohl, C.; Füllert, V.; Rybank, S.; Maddox, S. J.; March, S. D.; Bank, S. R.; Lee, M. L.; Lenz, A.
2016-04-01
The atomic structure and stoichiometry of InAs/InGaAs quantum-dot-in-a-well structures grown on exactly oriented GaP/Si(001) are revealed by cross-sectional scanning tunneling microscopy. An averaged lateral size of 20 nm, heights up to 8 nm, and an In concentration of up to 100% are determined, being quite similar compared with the well-known quantum dots grown on GaAs substrates. Photoluminescence spectra taken from nanostructures of side-by-side grown samples on GaP/Si(001) and GaAs(001) show slightly blue shifted ground-state emission wavelength for growth on GaP/Si(001) with an even higher peak intensity compared with those on GaAs(001). This demonstrates the high potential of GaP/Si(001) templates for integration of III-V optoelectronic components into silicon-based technology.
Design and evaluation of a service oriented architecture for paperless ICU tarification.
Steurbaut, Kristof; Colpaert, Kirsten; Van Hoecke, Sofie; Steurbaut, Sabrina; Danneels, Chris; Decruyenaere, Johan; De Turck, Filip
2012-06-01
The computerization of Intensive Care Units provides an overwhelming amount of electronic data for both medical and financial analysis. However, the current tarification, which is the process to tick and count patients' procedures, is still a repetitive, time-consuming process on paper. Nurses and secretaries keep track manually of the patients' medical procedures. This paper describes the design methodology and implementation of automated tarification services. In this study we investigate if the tarification can be modeled in service oriented architecture as a composition of interacting services. Services are responsible for data collection, automatic assignment of records to physicians and application of rules. Performance is evaluated in terms of execution time, cost evaluation and return on investment based on tracking of real procedures. The services provide high flexibility in terms of maintenance, integration and rules support. It is shown that services offer a more accurate, less time-consuming and cost-effective tarification.
Evaluation Study of a Wireless Multimedia Traffic-Oriented Network Model
NASA Astrophysics Data System (ADS)
Vasiliadis, D. C.; Rizos, G. E.; Vassilakis, C.
2008-11-01
In this paper, a wireless multimedia traffic-oriented network scheme over a fourth generation system (4-G) is presented and analyzed. We conducted an extensive evaluation study for various mobility configurations in order to incorporate the behavior of the IEEE 802.11b standard over a test-bed wireless multimedia network model. In this context, the Quality of Services (QoS) over this network is vital for providing a reliable high-bandwidth platform for data-intensive sources like video streaming. Therefore, the main issues concerned in terms of QoS were the metrics for bandwidth of both dropped and lost packets and their mean packet delay under various traffic conditions. Finally, we used a generic distance-vector routing protocol which was based on an implementation of Distributed Bellman-Ford algorithm. The performance of the test-bed network model has been evaluated by using the simulation environment of NS-2.
NASA Astrophysics Data System (ADS)
Tang, Huiqin; Zhu, Kaicheng
2013-12-01
Based on the generalized Huygens-Fresnel diffraction integral, a closed-form propagation equation related to sine-Gaussian beams through a cylindrical lens and a focusing lens is derived and illustrated with numerical methods. It is found that a sine-Gaussian beam through such a system may be converted into a dark hollow beam (DHB) with topological charge index one and its bright enclosure is approximately an elongated ellipse with very high ellipticity. Moreover, the parameter values at which the DHBs have perfect intensity patterns are designed. The optimal relative orientation between the dislocation line of the input sine-Gaussian beam and the axial orientation of the cylindrical lens is specified. And the ellipticity of the elliptical DHBs is mainly defined by the focal length of the cylindrical lens and the Fresnel number of the optical system.
NASA Astrophysics Data System (ADS)
Fu, Qiu-ping; Zheng, Ze-yuan; Lin, Nan-xi; Liu, Xiao-feng; Hong, Can-huang; Hu, Xiao-lin; Zhuang, Nai-feng; Chen, Jian-zhong
2016-11-01
Thin films of Ce1Gd2Fe5-xGaxO12 (Ce,Ga:GIG) were prepared on Gd3Ga5O12 (GGG) and Ca2.90Li0.30Nb1.93Ga2.76O12 (CLNGG) substrates by using radio frequency magnetron sputtering technique. The phase, grain orientation, surface morphology, transmittance, magnetism and magnetic circular dichroism (MCD) properties of films were analyzed. And the effects of lattice mismatch and non-magnetic Ga3+-doping were discussed. The results show that the films with higher crystallized quality and lower stress can be obtained by growing on CLNGG than on GGG. Moreover, the coercive force, magnetization, magneto-optical effect intensity and orientation of film can be effectively regulated by adjusting Ga3+-doped concentration.
The value of art-oriented pedagogical approaches to the teaching of optics and photonics
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Regens, Nancy L.
2017-08-01
Art-oriented pedagogical approaches have been successfully applied to optics and photonics education. We will describe how art-based programs that incorporate a Visual Thinking Strategies (VTS) approach can be used by optics and photonics educators. VTS encourages both a deep appreciation of the content of optics images and phenomena and a highly participatory approach to understanding them. This type of approach has been used by the authors in a variety of educational settings including teacher professional development workshops, museum and science center-based programs, after school programs and in two-week intensive summer academies for students. These approaches work well with multiple age groups including primary and secondary grade students, university students, and adults who may have little apparent connection to optics and photonics. This art-science hybrid approach can be used by university professors, optics/photonics professionals who do public programs, museum educators, and classroom science teachers.
Thunderstorm intensity as determined from satellite data
NASA Technical Reports Server (NTRS)
Adler, R. F.; Fenn, D. D.
1979-01-01
Digital infrared data from SMS 2 obtained on May 6, 1975 are used to study thunderstorm vertical growth rates and cloud top structure in relation to the occurrence of severe weather (tornadoes, hail, and high wind) on the ground. All thunderstorms from South Dakota to Texas along a N-S oriented cold front were monitored for a 4 h period with 5 min interval data. Thunderstorm growth rate, as determined by the rate of blackbody temperature isotherm expansion and minimum cloud top temperature, are shown to be correlated with reports of severe weather on the ground.
Dynamical characteristics of Rydberg electrons released by a weak electric field
Diesen, Elias; Saalmann, Ulf; Richter, Martin; ...
2016-04-08
This paper discuss the dynamics of ultraslow electrons in the combined potential of an ionic core and a static electric field. With state-of-the-art detection it is possible to create such electrons through strong intense-field photoabsorption and to detect them via high-resolution time-of-flight spectroscopy despite their very low kinetic energy. The characteristic feature of their momentum spectrum, which emerges at the same position for different laser orientations, is derived and could be revealed experimentally with an energy resolution of the order of 1 meV.
Measuring Filament Orientation: A New Quantitative, Local Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, C.-E.; Cunningham, M. R.; Jones, P. A.
The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitativelymore » on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”.« less
Wang, Wenchao; Li, Zhiyuan; Liu, Juanjuan; Yang, Xingxing; Ji, Xinmiao; Luo, Yan; Hu, Chen; Hou, Yubin; He, Qianqian; Fang, Jun; Wang, Junfeng; Liu, Qingsong; Li, Guohui; Lu, Qingyou; Zhang, Xin
2016-01-01
Static magnetic fields (SMFs) can affect cell proliferation in a cell-type and intensity-dependent way but the mechanism remains unclear. At the same time, although the diamagnetic anisotropy of proteins has been proposed decades ago, the behavior of isolated proteins in magnetic fields has not been directly observed. Here we show that SMFs can affect isolated proteins at the single molecular level in an intensity-dependent manner. We found that Epidermal Growth Factor Receptor (EGFR), a protein that is overexpressed and highly activated in multiple cancers, can be directly inhibited by SMFs. Using Liquid-phase Scanning Tunneling Microscopy (STM) to examine pure EGFR kinase domain proteins at the single molecule level in solution, we observed orientation changes of these proteins in response to SMFs. This may interrupt inter-molecular interactions between EGFR monomers, which are critical for their activation. In molecular dynamics (MD) simulations, 1-9T SMFs caused increased probability of EGFR in parallel with the magnetic field direction in an intensity-dependent manner. A superconducting ultrastrong 9T magnet reduced proliferation of CHO-EGFR cells (Chinese Hamster Ovary cells with EGFR overexpression) and EGFR-expressing cancer cell lines by ~35%, but minimally affected CHO cells. We predict that similar effects of magnetic fields can also be applied to some other proteins such as ion channels. Our paper will help clarify some dilemmas in this field and encourage further investigations in order to achieve a better understanding of the biological effects of SMFs. PMID:27223425
Bats Can Use Magnetic Compass in Foraging Behavior
NASA Astrophysics Data System (ADS)
Tian, L.; Zhang, B.; Pan, Y.; Zhu, R.
2016-12-01
Foraging plays an important role in an animal's ability to survive and reproduce. It is widely recognized that many animals and microorganisms can use geomagnetic compass in migration or homing orientation. Among them, bats, the only flying mammals, can use the magnetic compass in migrating orientations. For instance, we found the migratory microbat, Nyctalus plancyi, could use the magnetic polarity compass in roosting orientation under the strength range at least from a much weaker magnetic field than the present-day geomagnetic field (as low as 10 μT) to up to stronger magnetic field (100 μT). This high sensitivity to magnetic fields intensity may explain how magnetic orientation could have long-term evolved in bats even as the Earth's magnetic field strength varied as the polarity reversed many times in the past. Recently, we carried out foraging behavioral experiments on N. plancyi under various magnetic field conditions. Interestingly, it has shown that, although the auditory including echolocation, or olfactory sense may be the primary methods for seeking food under totally dark circumstance, the bats showed preferred foraging orientations at the magnetic north-south directions when any other sensory cues are insufficient for location of the food. It confirmed that bats could optimally use multiple directional cues including the geomagnetic field in their foraging in field. When bats foraging, they would navigate along the magnetic field direction if there were no direct sensory cues. As it gets close, the direct cues from food would guide them to the food.
Analysis of crystallographic preferred orientations of experimentally deformed Black Hills Quartzite
NASA Astrophysics Data System (ADS)
Kilian, Rüdiger; Heilbronner, Renée
2017-10-01
The crystallographic preferred orientations (textures) of three samples of Black Hills Quartzite (BHQ) deformed experimentally in the dislocation creep regimes 1, 2 and 3 (according to Hirth and Tullis, 1992) have been analyzed using electron backscatter diffraction (EBSD). All samples were deformed to relatively high strain at temperatures of 850 to 915 °C and are almost completely dynamically recrystallized. A texture transition from peripheral [c] axes in regime 1 to a central [c] maximum in regime 3 is observed. Separate pole figures are calculated for different grain sizes, aspect ratios and long-axis trends of grains, and high and low levels of intragranular deformation intensity as measured by the mean grain kernel average misorientation (gKAM). Misorientation relations are analyzed for grains of different texture components (named Y, B, R and σ grains, with reference to previously published prism, basal, rhomb and σ1 grains). Results show that regimes 1 and 3 correspond to clear end-member textures, with regime 2 being transitional. Texture strength and the development of a central [c]-axis maximum from a girdle distribution depend on deformation intensity at the grain scale and on the contribution of dislocation creep, which increases towards regime 3. Adding to this calculations of resolved shear stresses and misorientation analysis, it becomes clear that the peripheral [c]-axis maximum in regime 1 is not due to deformation by basal a slip. Instead, we interpret the texture transition as a result of different texture forming processes, one being more efficient at high stresses (nucleation or growth of grains with peripheral [c] axes), the other depending on strain (dislocation glide involving prism and rhomb a slip systems), and not as a result of temperature-dependent activity of different slip systems.
Automated Detection of Solar Loops by the Oriented Connectivity Method
NASA Technical Reports Server (NTRS)
Lee, Jong Kwan; Newman, Timothy S.; Gary, G. Allen
2004-01-01
An automated technique to segment solar coronal loops from intensity images of the Sun s corona is introduced. It exploits physical characteristics of the solar magnetic field to enable robust extraction from noisy images. The technique is a constructive curve detection approach, constrained by collections of estimates of the magnetic fields orientation. Its effectiveness is evaluated through experiments on synthetic and real coronal images.
ERIC Educational Resources Information Center
Gooch, S.; Pringle, M. L. Kellmer
Beginning in 1956 about 250 students in two London, England junior schools were intensively studied over a 4-year period for intellectual, educational, emotional, and social development. The schools approached instruction differently; one was child-oriented; the other was subject-oriented. In 1964 this followup study was conducted with some of the…
Gender expression, sexual orientation and pain sensitivity in women
Vigil, Jacob M; Rowell, Lauren N; Lutz, Charlotte
2014-01-01
BACKGROUND: Despite a growing body of literature investigating sex differences with regard to pain, surprisingly little research has been conducted on the influence of various aspects of self-identity, including gender expression and sexual orientation, on pain sensitivity within each sex, particularly among women. In men, dispositional femininity is linked to greater clinical pain and trait masculinity is associated with higher pain thresholds. OBJECTIVES: To examine whether gender expression and sexual orientation are associated with within-sex differences in ischemic pain sensitivity in healthy young women. METHODS: A convenience sample of 172 females (mean age 21.4 years; range 18 to 30 years of age; 56.0% white, 89% heterosexual) performed an ischemic pain task in counterbalanced order. Desired levels of dispositional femininity for a preferred romantic partner and self-described levels of personal dispositional femininity were measured. RESULTS: Compared with heterosexual women, lesbian and bisexual women reported lower pain intensity ratings early in the discomfort task. Irrespective of sexual orientation, attraction to more feminine romantic partners and dispositional masculinity were correlated with lower pain intensity, and with higher pain thresholds and tolerance levels. DISCUSSION: These preliminary findings suggest that within-sex differences in sexual orientation and other aspects of identity, irrespective of biological sex, may be important to consider when examining experimental pain performance and clinical pain experiences. CONCLUSION: Larger investigations of the psychophysiological relationships among sexual orientation, gender expression and pain sensitivity are warranted. These findings may have implications for differences in clinical pain sensitivity of lesbian and bisexual women compared with heterosexual women. PMID:24575419
Surface immobilized antibody orientation determined using ToF-SIMS and multivariate analysis.
Welch, Nicholas G; Madiona, Robert M T; Payten, Thomas B; Easton, Christopher D; Pontes-Braz, Luisa; Brack, Narelle; Scoble, Judith A; Muir, Benjamin W; Pigram, Paul J
2017-06-01
Antibody orientation at solid phase interfaces plays a critical role in the sensitive detection of biomolecules during immunoassays. Correctly oriented antibodies with solution-facing antigen binding regions have improved antigen capture as compared to their randomly oriented counterparts. Direct characterization of oriented proteins with surface analysis methods still remains a challenge however surface sensitive techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) provide information-rich data that can be used to probe antibody orientation. Diethylene glycol dimethyl ether plasma polymers (DGpp) functionalized with chromium (DGpp+Cr) have improved immunoassay performance that is indicative of preferential antibody orientation. Herein, ToF-SIMS data from proteolytic fragments of anti-EGFR antibody bound to DGpp and DGpp+Cr are used to construct artificial neural network (ANN) and principal component analysis (PCA) models indicative of correctly oriented systems. Whole antibody samples (IgG) test against each of the models indicated preferential antibody orientation on DGpp+Cr. Cross-reference between ANN and PCA models yield 20 mass fragments associated with F(ab') 2 region representing correct orientation, and 23 mass fragments associated with the Fc region representing incorrect orientation. Mass fragments were then compared to amino acid fragments and amino acid composition in F(ab') 2 and Fc regions. A ratio of the sum of the ToF-SIMS ion intensities from the F(ab') 2 fragments to the Fc fragments demonstrated a 50% increase in intensity for IgG on DGpp+Cr as compared to DGpp. The systematic data analysis methodology employed herein offers a new approach for the investigation of antibody orientation applicable to a range of substrates. Controlled orientation of antibodies at solid phases is critical for maximizing antigen detection in biosensors and immunoassays. Surface-sensitive techniques (such as ToF-SIMS), capable of direct characterization of surface immobilized and oriented antibodies, are under-utilized in current practice. Selection of a small number of mass fragments for analysis, typically pertaining to amino acids, is commonplace in literature, leaving the majority of the information-rich spectra unanalyzed. The novelty of this work is the utilization of a comprehensive, unbiased mass fragment list and the employment of principal component analysis (PCA) and artificial neural network (ANN) models in a unique methodology to prove antibody orientation. This methodology is of significant and broad interest to the scientific community as it is applicable to a range of substrates and allows for direct, label-free characterization of surface bound proteins. Copyright © 2017 Acta Materialia Inc. All rights reserved.
A Compatible Stem Taper-Volume-Weight System For Intensively Managed Fast Growing Loblolly Pine
Yugia Zhang; Bruce E. Borders; Robert L Bailey
2002-01-01
eometry-oriented methodology yielded a compatible taper-volume-weight system of models whose parameters were estimated using data from intensively managed loblolly pine (Pinus taeda L.) plantations in the lower coastal plain of Georgia. Data analysis showed that fertilization has significantly reduced taper (inside and outside bark) on the upper...
Charge dynamics of MgO single crystals subjected to KeV electron irradiation
NASA Astrophysics Data System (ADS)
Boughariou, A.; Blaise, G.; Braga, D.; Kallel, A.
2004-04-01
A scanning electron microscope has been equipped to study the fundamental aspects of charge trapping in insulating materials, by measuring the secondary electron emission (SEE) yield σ with a high precision (a few percent), as a function of energy, electron current density, and dose. The intrinsic secondary electron emission yield σ0 of uncharged MgO single crystals annealed at 1000 °C, 2 h, has been studied at four energies 1.1, 5, 15, and 30 keV on three different crystal orientations (100), (110), and (111). At low energies (1.1 and 5 keV) σ0 depends on the crystalline orientation wheras at high energies (30 keV) no differentiation occurs. It is shown that the value of the second crossover energy E2, for which the intrinsic SEE yield σ0=1, is extremely delicate to measure with precision. It is about 15 keV±500 eV for the (100) orientation, 13.5 keV±500 eV for the (110), and 18.5 keV±500 eV for the (111) one. At low current density J⩽105 pA/cm2, the variation of σ with the injected dose makes possible the observation of a self-regulated regime characterized by a steady value of the SEE yield σst=1. At low energies 1.1 and 5 keV, there is no current density effects in MgO, but at high energies ≈30 keV, apparent current density effects come from a bad collect of secondary electrons, due to very high negative surface potential. At 30 keV energy, an intense erratic electron exoemission was observed on the MgO (110) orientation annealed at 1500 °C. This phenomenon is the result of a disruptive process similar to flashover, which takes place at the surface of the material.
Hunley, Matthew T; Pötschke, Petra; Long, Timothy E
2009-12-16
Nanoscale fibers with embedded, aligned, and percolated non-functionalized multiwalled carbon nanotubes (MWCNTs) were fabricated through electrospinning dispersions based on melt-compounded thermoplastic polyurethane/MWCNT nanocomposite, with up to 10 wt.-% MWCNTs. Transmission electron microscopy indicated that the nanotubes were highly oriented and percolated throughout the fibers, even at high MWCNT concentrations. The coupling of efficient melt compounding with electrospinning eliminated the need for intensive surface functionalization or sonication of the MWCNTs, and the high aspect ratio as well as the electrical and mechanical properties of the nanotubes were retained. This method provides a more efficient technique to generate one-dimensional nanofibers with aligned MWCNTs. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two modes of longe-range orientation of DNA bases realized upon compaction.
Yevdokimov YuM; Salyanov, V I; Berg, H
1981-01-01
Formation of compact particles from linear DNA-anthracycline complexes is accompanied by appearance of intense bands in the CD spectra in the region of absorption of DNA bases (UV-region) and in the region of absorption of anthracycline chromophores (visible region). The intense (positive or negative) bands in the region of anthracycline absorption demonstrate an ordered helical location of anthracycline molecules on the DNA template. This fact, in its turn, is related to formation of the DNA superstructure in PEG-containing water-salt solutions with a long-range orientation of nitrogen bases. Possible types of DNA superstructures and the relation between the local- and the long-range order of bases in the DNA superstructure are discussed. PMID:6938929
Texture orientation-based algorithm for detecting infrared maritime targets.
Wang, Bin; Dong, Lili; Zhao, Ming; Wu, Houde; Xu, Wenhai
2015-05-20
Infrared maritime target detection is a key technology for maritime target searching systems. However, in infrared maritime images (IMIs) taken under complicated sea conditions, background clutters, such as ocean waves, clouds or sea fog, usually have high intensity that can easily overwhelm the brightness of real targets, which is difficult for traditional target detection algorithms to deal with. To mitigate this problem, this paper proposes a novel target detection algorithm based on texture orientation. This algorithm first extracts suspected targets by analyzing the intersubband correlation between horizontal and vertical wavelet subbands of the original IMI on the first scale. Then the self-adaptive wavelet threshold denoising and local singularity analysis of the original IMI is combined to remove false alarms further. Experiments show that compared with traditional algorithms, this algorithm can suppress background clutter much better and realize better single-frame detection for infrared maritime targets. Besides, in order to guarantee accurate target extraction further, the pipeline-filtering algorithm is adopted to eliminate residual false alarms. The high practical value and applicability of this proposed strategy is backed strongly by experimental data acquired under different environmental conditions.
Isotropic image in structured illumination microscopy patterned with a spatial light modulator.
Chang, Bo-Jui; Chou, Li-Jun; Chang, Yun-Ching; Chiang, Su-Yu
2009-08-17
We developed a structured illumination microscopy (SIM) system that uses a spatial light modulator (SLM) to generate interference illumination patterns at four orientations - 0 degrees, 45 degrees, 90 degrees, and 135 degrees, to reconstruct a high-resolution image. The use of a SLM for pattern alterations is rapid and precise, without mechanical calibration; moreover, our design of SLM patterns allows generating the four illumination patterns of high contrast and nearly equivalent periods to achieve a near isotropic enhancement in lateral resolution. We compare the conventional image of 100-nm beads with those reconstructed from two (0 degrees +90 degrees or 45 degrees +135 degrees) and four (0 degrees +45 degrees +90 degrees +135 degrees) pattern orientations to show the differences in resolution and image, with the support of simulations. The reconstructed images of 200-nm beads at various depths and fine structures of actin filaments near the edge of a HeLa cell are presented to demonstrate the intensity distributions in the axial direction and the prospective application to biological systems. (c) 2009 Optical Society of America
Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites
NASA Astrophysics Data System (ADS)
Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun
2016-04-01
This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.
NASA Astrophysics Data System (ADS)
Vishnu, C. S.; Lahiri, Sivaji; Mamtani, Manish A.
2018-01-01
In this study the importance of rock strength and its anisotropy in controlling vein emplacement is evaluated by integrating anisotropy of magnetic susceptibility (AMS) with rock mechanics data from massive (visibly isotropic) metabasalts of Gadag region (Dharwar Craton, South India). Orientation of magnetic foliation (MF) is first recognized from AMS. Subsequently, rock mechanics tests viz. ultrasonic P-wave velocity (Vp), uniaxial compressive strength (UCS) and point load strength (Is(50)) are done in cores extracted parallel and perpendicular to MF. Vp is found to be higher in direction parallel to MF than perpendicular to it. In contrast rock strength (UCS and Is(50)) is greater in direction perpendicular to MF, than parallel to it. This proves that rocks from the gold mineralized belt of Gadag have rock strength anisotropy. Orientation of MF in Gadag region is NW-SE, which is also the mean orientation of quartz veins. Previous studies indicate that emplacement of veins in the region took place during regional D3 (NW-SE shortening). Based on the present study, it is concluded that vein emplacement took place in NW-SE orientation because the rocks have strength anisotropy and are weaker in this direction (orientation of MF), which dilated to accommodate fluid flow. In addition, vein intensities are measured along three traverses and found to be variable. It is argued that since mineralization is favoured when the system gets saturated with fluid, variation in fluid flow could not have been responsible for variation in vein intensities in the study area. Since the rock strength of the different blocks investigated here is not uniform, it is envisaged that variation in rock strength played an important role in controlling the vein intensities. It is concluded that rock strength variation controlled strain partitioning and channelized fluid flow thus influencing vein emplacement and mineralization and formation of lodes.
Santisteban, Daniel A; Mena, Maite P; Muir, Joan; McCabe, Brian E; Abalo, Clara; Cummings, Amanda M
2015-03-01
The purpose of this randomized trial was to investigate the efficacy of 2 behavioral treatments focusing on different change mechanisms in ameliorating a borderline personality disorder constellation of behaviors and substance use in adolescents referred by juvenile diversion programs. Forty adolescents 14-17 years of age and meeting Diagnostic and Statistical Manual of Mental Disorders (4th ed.) criteria for borderline personality disorder and substance use disorders were randomized to integrative borderline personality disorder-oriented adolescent family therapy (I-BAFT) or individual drug counseling. This design allowed a comparison of 2 manualized interventions, 1 family based and 1 individually oriented. Profiles of clinical change were used to detect impact and estimate treatment effect sizes. Primary analyses showed that both interventions had a clinically significant impact on borderline personality disorder behaviors 12 months after baseline but with no differential treatment effects. The impact on substance use was more complex. Subgroup analyses revealed that adolescents with depression had significantly more severe profiles of borderline personality disorder and substance use. These youths were the only group to show reductions in substance use, but they only did so if they received the I-BAFT intervention. Study data also documented the high dosage of intensive residential treatment needed by this population. Results highlight the intensive treatment needs of juvenile justice-involved youths with co-occurring substance use and borderline personality disorder including depression, the hybrid outpatient and residential treatment often required by this population, and the promise of a family-oriented approach, particularly for youths with severe symptoms and co-occurring depression. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Spatial variations of the Sr I 4607 Å scattering polarization peak
NASA Astrophysics Data System (ADS)
Bianda, M.; Berdyugina, S.; Gisler, D.; Ramelli, R.; Belluzzi, L.; Carlin, E. S.; Stenflo, J. O.; Berkefeld, T.
2018-06-01
Context. The scattering polarization signal observed in the photospheric Sr I 4607 Å line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims: We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods: Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results: Spatial variations of the scattering polarization in the Sr I 4607 Å line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.
Intensity statistics in the presence of translational noncrystallographic symmetry.
Read, Randy J; Adams, Paul D; McCoy, Airlie J
2013-02-01
In the case of translational noncrystallographic symmetry (tNCS), two or more copies of a component in the asymmetric unit of the crystal are present in a similar orientation. This causes systematic modulations of the reflection intensities in the diffraction pattern, leading to problems with structure determination and refinement methods that assume, either implicitly or explicitly, that the distribution of intensities is a function only of resolution. To characterize the statistical effects of tNCS accurately, it is necessary to determine the translation relating the copies, any small rotational differences in their orientations, and the size of random coordinate differences caused by conformational differences. An algorithm to estimate these parameters and refine their values against a likelihood function is presented, and it is shown that by accounting for the statistical effects of tNCS it is possible to unmask the competing statistical effects of twinning and tNCS and to more robustly assess the crystal for the presence of twinning.
Terahertz spectroscopic analysis of crystal orientation in polymers
NASA Astrophysics Data System (ADS)
Azeyanagi, Chisato; Kaneko, Takuya; Ohki, Yoshimichi
2018-05-01
Terahertz time-domain spectroscopy (THz-TDS) is attracting keen attention as a new spectroscopic tool for characterizing various materials. In this research, the possibility of analyzing the crystal orientation in a crystalline polymer by THz-TDS is investigated by measuring angle-resolved THz absorption spectra for sheets of poly(ethylene terephthalate), poly(ethylene naphthalate), and poly(phenylene sulfide). The resultant angle dependence of the absorption intensity of each polymer is similar to that of the crystal orientation examined using pole figures of X-ray diffraction. More specifically, THz-TDS can indicate the alignment of molecules in polymers.
Design, innovation, and rural creative places: Are the arts the cherry on top, or the secret sauce?
Wojan, Timothy R; Nichols, Bonnie
2018-01-01
Creative class theory explains the positive relationship between the arts and commercial innovation as the mutual attraction of artists and other creative workers by an unobserved creative milieu. This study explores alternative theories for rural settings, by analyzing establishment-level survey data combined with data on the local arts scene. The study identifies the local contextual factors associated with a strong design orientation, and estimates the impact that a strong design orientation has on the local economy. Data on innovation and design come from a nationally representative sample of establishments in tradable industries. Latent class analysis allows identifying unobserved subpopulations comprised of establishments with different design and innovation orientations. Logistic regression allows estimating the association between an establishment's design orientation and local contextual factors. A quantile instrumental variable regression allows assessing the robustness of the logistic regression results with respect to endogeneity. An estimate of design orientation at the local level derived from the survey is used to examine variation in economic performance during the period of recovery from the Great Recession (2010-2014). Three distinct innovation (substantive, nominal, and non-innovators) and design orientations (design-integrated, "design last finish," and no systematic approach to design) are identified. Innovation- and design-intensive establishments were identified in both rural and urban areas. Rural design-integrated establishments tended to locate in counties with more highly educated workforces and containing at least one performing arts organization. A quantile instrumental variable regression confirmed that the logistic regression result is robust to endogeneity concerns. Finally, rural areas characterized by design-integrated establishments experienced faster growth in wages relative to rural areas characterized by establishments using no systematic approach to design.
Mechanisms of optical orientation of an individual Mn2+ ion spin in a II-VI quantum dot
NASA Astrophysics Data System (ADS)
Smoleński, T.; Cywiński, Ł.; Kossacki, P.
2018-02-01
We provide a theoretical description of the optical orientation of a single Mn2+ ion spin under quasi-resonant excitation demonstrated experimentally by Goryca et al (2009 Phys. Rev. Lett. 103 087401). We build and analyze a hierarchy of models by starting with the simplest assumptions (transfer of perfectly spin-polarized excitons from Mn-free dot to the other dot containing a single Mn2+ spin, followed by radiative recombination) and subsequently adding more features, such as spin relaxation of electrons and holes. Particular attention is paid to the role of the influx of the dark excitons and the process of biexciton formation, which are shown to contribute significantly to the orientation process in the quasi-resonant excitation case. Analyzed scenarios show how multiple features of the excitonic complexes in magnetically-doped quantum dots, such as the values of exchange integrals, spin relaxation times, etc, lead to a plethora of optical orientation processes, characterized by distinct dependencies on light polarization and laser intensity, and occurring on distinct timescales. Comparison with experimental data shows that the correct description of the optical orientation mechanism requires taking into account Mn2+ spin-flip processes occurring not only when the exciton is already in the orbital ground state of the light-emitting dot, but also those that happen during the exciton transfer from high-energy states to the ground state. Inspired by the experimental results on energy relaxation of electrons and holes in nonmagnetic dots, we focus on the process of biexciton creation allowed by mutual spin-flip of an electron and the Mn2+ spin, and we show that by including it in the model, we obtain good qualitative and quantitative agreement with the experimental data on quasi-resonantly driven Mn2+ spin orientation.
Design, innovation, and rural creative places: Are the arts the cherry on top, or the secret sauce?
Nichols, Bonnie
2018-01-01
Objective Creative class theory explains the positive relationship between the arts and commercial innovation as the mutual attraction of artists and other creative workers by an unobserved creative milieu. This study explores alternative theories for rural settings, by analyzing establishment-level survey data combined with data on the local arts scene. The study identifies the local contextual factors associated with a strong design orientation, and estimates the impact that a strong design orientation has on the local economy. Method Data on innovation and design come from a nationally representative sample of establishments in tradable industries. Latent class analysis allows identifying unobserved subpopulations comprised of establishments with different design and innovation orientations. Logistic regression allows estimating the association between an establishment’s design orientation and local contextual factors. A quantile instrumental variable regression allows assessing the robustness of the logistic regression results with respect to endogeneity. An estimate of design orientation at the local level derived from the survey is used to examine variation in economic performance during the period of recovery from the Great Recession (2010–2014). Results Three distinct innovation (substantive, nominal, and non-innovators) and design orientations (design-integrated, “design last finish,” and no systematic approach to design) are identified. Innovation- and design-intensive establishments were identified in both rural and urban areas. Rural design-integrated establishments tended to locate in counties with more highly educated workforces and containing at least one performing arts organization. A quantile instrumental variable regression confirmed that the logistic regression result is robust to endogeneity concerns. Finally, rural areas characterized by design-integrated establishments experienced faster growth in wages relative to rural areas characterized by establishments using no systematic approach to design. PMID:29489884
Vertically Oriented Graphene Electrochemical Double Layer Capacitor with Very Fast Dynamic Response
2013-01-01
cauliflower type of morphology (see Figure A-2c). Figure A-3. (a) The intensity of D to G peak ratio in Raman spectra and the thickness (height) of...in a random, cauliflower type of morphology (see Figure A-2c). Figure A-2. (a) The intensity of D to G peak ratio in Raman spectra and the
Electron spin resonance in the superconducting state of Ba0.6K0.4Fe2As2
NASA Astrophysics Data System (ADS)
Dlamini, Zolile Wiseman; Srinivasan, A.; Ma, Yanwei; Srinivasu, V. V.
2018-05-01
We report the observation of electron spin resonance (ESR) signals in a single crystal of Ba0.6K0.4Fe2As2 grown by self-flux method. We observed two narrow resonant absorption signals at g-values of 4.3 and 1.99. Significantly, these signals are stronger in intensity at 5 K. They become weaker as the temperature is increased and finally vanish at Tc. The resonance at g = 4.3 (signal I) shows different temperature dependence of intensity for parallel and perpendicular orientations of the magnetic field to the iron arsenide plane. However, the resonance at g = 1.99 (signal 2) does not show much difference in temperature dependence of intensity for the two orientations. Further, temperature dependence of the linewidth of the two signals are also different. We propose that these two signals have their origin in fluctuations in the spin system as magnetic fluctuations are believed to be the origin of superconductivity in iron pnictides. Temperature dependence of intensity of signal I is indicative of Fe cluster formation in the scenario of coexistence of spin density wave and superconducting phase for this composition of the crystal.
NASA Technical Reports Server (NTRS)
Suarez, G.; Gagnepain, J. J.; Cisternas, A.; Hatzfeld, D.; Molnar, P.; Ocola, L.; Roecker, S. W.; Viode, J. P.
1983-01-01
The vast majority of the microearthquakes recorded occurred to the east: on the Huaytapallana fault in the Eastern Cordillera or in the western margin of the sub-Andes. The sub-Andes appear to be the physiographic province subjected to the most intense seismic deformation. Focal depths for the crustal events here are as deep as 50 km, and the fault plane solutions, show thrust faulting on steep planes oriented roughly north-south. The Huaytapallana fault in the Cordillera Oriental also shows relatively high seismicity along a northeast-southwest trend that agrees with the fault scarp and the east dipping nodal plane of two large earthquakes that occurred on this fault in 1969. The recorded microearthquakes of intermediate depth show a flat seismic zone about 25 km thick at a depth of about 100 km. This agrees with the suggestion that beneath Peru the slab first dips at an angle of 30 deg to a depth of 100 km and then flattens following a quasi-horizontal trajectory. Fault plane solutions of intermediate depth microearthquakes have horizontal T axes oriented east-west.
NASA Astrophysics Data System (ADS)
Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Izyumskaya, N.; Monavarian, M.; Zhang, F.; Okur, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2014-09-01
Optical properties of GaN/Al0.2Ga0.8N multiple quantum wells grown with semi-polar (10-11) orientation on patterned 7°-off Si (001) substrates have been investigated. Studies performed at 8 K reveal the in-plane anisotropic behavior of the QW photoluminescence (PL) intensity for this semi-polar orientation. The time resolved PL measurements were carried out in the temperature range from 8 to 295 K to deduce the effective recombination decay times, with respective radiative and non-radiative contributions. The non-radiative component remains relatively weak with increasing temperature, indicative of high crystalline quality. The radiative decay time is a consequence of contribution from both localized and free excitons. We report an effective density of interfacial defects of 2.3 × 1012 cm-2 and a radiative recombination time of τloc = 355 ps for the localized excitons. This latter value is significantly larger than those reported for the non-polar structures, which we attribute to the presence of a weak residual electric field in the semi-polar QW layers.
Perera, Piyumali K; Gasser, Robin B; Pulford, David J; Stevenson, Mark A; Firestone, Simon M; McFadden, Andrew M J; Jabbar, Abdul
2015-03-31
Oriental theileriosis is a tick-borne disease of bovines caused by the members of the Theileria orientalis complex. Recently, we developed a multiplexed tandem (MT) PCR to detect, differentiate and quantitate four genotypes (i.e., buffeli, chitose, ikeda and type 5) of T. orientalis. In this study, we used MT PCR to assess the prevalence and infection intensity of four T. orientalis genotypes in selected cattle herds that experienced oriental theileriosis outbreaks in New Zealand, and compared the sensitivities and specificities of MT PCR, PCR-high resolution melting (PCR-HRM) and a TaqMan qPCR. MT PCR, PCR-HRM analysis for T. orientalis and a TaqMan qPCR assay for ikeda genotype were employed to test 154 and 88 cattle blood samples from North (where oriental theileriosis outbreaks had occurred; designated as Group 1) and South (where no outbreaks had been reported; Group 2) Islands of New Zealand, respectively. Quantitative data from MT PCR assay were analyzed using generalized linear model and paired-sample t-test. The diagnostic specificity and sensitivity of the assays were estimated using a Bayesian latent class modeling approach. In Group 1, 99.4% (153/154) of cattle were test-positive for T. orientalis in both the MT PCR and PCR-HRM assays. The apparent prevalences of genotype ikeda in Group 1 were 87.6% (134/153) and 87.7% (135/154) using the MT PCR and Ikeda TaqMan qPCR assays, respectively. Using the MT PCR test, all four genotypes of T. orientalis were detected. The infection intensity estimated for genotype ikeda was significantly higher (P = 0.009) in severely anaemic cattle than in those without anaemia, and this intensity was significantly higher than that of buffeli (P < 0.001) in the former cattle. Bayesian latent class analysis showed that the diagnostic sensitivities (97.1-98.9%) and specificities (96.5-98.9%) of the three PCR assays were very comparable. The present findings show the advantages of using the MT PCR assay as a useful tool for in-depth epidemiological and transmission studies of T. orientalis worldwide.
NASA Astrophysics Data System (ADS)
Martín-González, Fidel; Perez-Lopez, Raul; Rodrigez-Pascua, Miguel Angel; Martin-Velazquez, Silvia
2014-05-01
The intensity scales determined the damage caused by an earthquake. However, a new methodology takes into account not only the damage but the type of damage "Earthquake Archaeological Effects" EAE's, and its orientation (e.g. displaced masonry blocks, impact marks, conjugated fractures, fallen and oriented columns, dipping broken corners, etc.). It focuses not only on the amount of damage but also in its orientation, giving information about the ground motion during the earthquake. In 2010 an earthquake of magnitude 6.2 took place in Christchurch (New Zealand) (22-2-2010), 185 casualties, making it the second-deadliest natural disaster in New Zealand. Due to the magnitude of the catastrophe, the city centre (CBD) was closed and the most damaged buildings were closed and later demolished. For this reason it could not be possible to access to sampling or make observations in the most damaged areas. However, the cemeteries were not closed and a year later still remained intact since the financial means to recover were used to reconstruct infrastructures and housing the city. This peculiarity of the cemeteries made measures of the earthquake effects possible. Orientation damage was measured on the tombs, crosses and headstones of the cemeteries (mainly on falling objects such as fallen crosses, obelisks, displaced tombstones, etc.). 140 data were taken in the most important cemeteries (Barbadoes, Addington, Pebleton, Woodston, Broomley and Linwood cemeteries) covering much of the city area. The procedure involved two main phases: a) inventory and identification of damages, and b) analysis of the damage orientations. The orientation was calculated for each element and plotted in a map and statistically in rose diagrams. The orientation dispersion is high in some cemeteries but damage orientation S-N and E-W is observed. However, due to the multiple seismogenic faults responsible for earthquakes and damages in Christchurch during the year after the 2010 earthquake, a more detailed correlation of the ground acceleration and the damages is being carried out. The orientation of the damage is not usually recorded after an earthquake; however, it can provide information on the orientation of the peak ground acceleration. Thus, when an earthquake occurs, the analysis of the damage orientation can provide information about the seismic source.
The Perils of Electron Microprobe Analysis of Apatite
NASA Astrophysics Data System (ADS)
Henderson, C. E.; Essene, E. J.; Wang, K. L.; Zhang, Y.
2010-12-01
Accurate electron microprobe analysis of apatite is problematic, especially for F and Cl, whose concentrations are essential in calculating a non-analyzable OH component. The issues include beam-induced sample damage and temporal variation of F and Cl X-rays; both effects are mainly dependent on beam current, beam spot size and apatite orientation [1]. To establish a rigorous analytical procedure, several oriented apatite samples, including the well-known Durango and Wilberforce fluorapatites, were analyzed for a large suite of elements, including oxygen. Careful X-ray spectroscopy was performed, including selection of appropriate analytical standards, background measurement positions and comparison of area peak factors. Polarized infrared spectra on oriented apatite samples were also collected for complementary information. The results show that when apatite samples are oriented with the c-axis parallel to the electron beam, there is significant nonlinear variation (an increase or decrease, depending on measurement conditions) of F and Cl X-ray intensities during analyses, and systematically higher-than-expected F apparent concentrations, despite the careful selection of electron beam conditions from a series of X-ray time scans and zero-time count rate extrapolation. On the other hand, when the electron beam is oriented perpendicular to the c-axis, with a ≤ 15 nA beam current and a ≥ 5 µm diameter defocused beam, F and Cl X-ray intensities do not vary or vary slowly and predictably with time, yielding quantitative analysis results for the Durango and Wilberforce apatites (both containing little OH) which are in good agreement with published wet chemical analyses. Furthermore, the OH and CO2 contents inferred for three other analyzed apatite samples are roughly consistent with infrared analyses. For example, for an apatite from Silver Crater Mine in Ontario, significant deficiency in the P site, as well as extra F, was inferred from microprobe analyses. Infrared spectra show a strong band of (CO3)2- for this apatite, which indicates a possible substitution of (CO3)2-(F)- for (PO4)3-. Other techniques to mitigate temporal variation of F and Cl, including alternative metal coatings, concurrent stage movement, and cryogenic sample-cooling were attempted, but did not eliminate the disparity in measured F concentrations between the two sample orientations. Thus, we believe that F measurements on F-rich apatite samples of unknown orientation are immediately suspect and should be regarded as upper limits of true F concentration. X-ray mapping, CL imaging and subsequent quantitative analyses show compositional variations in Na, S, Si, and REE in the Durango and Wilberforce fluorapatite samples used in this study. Problems of electron beam sensitivity, X-ray intensity anisotropy due to sample orientation, and compositional heterogeneity call into question their continued use as routine microanalysis reference materials. Microanalysts are encouraged to use more robust calibration standards, such as Cl-rich or other F-poor apatites for Ca, P, O and Cl, and MgF2 for F measurements. [1] Stormer, J.C., Pierson, M.L, and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am. Min., 78, 641-648.
Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation
Gopalsami, Nachappa; Raptis, Apostolos C.
1991-01-01
A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.
Promoting vision and hearing aids use in an intensive care unit.
Zhou, Qiaoling; Faure Walker, Nicholas
2015-01-01
Vision and hearing impairments have long been recognised as modifiable risk factors for delirium.[1,2,3] Delirium in critically ill patients is a frequent complication (reported as high as 60% to 80% of intensive care patients), and is associated with a three-fold increase in mortality and prolonged hospital stay.[1] Guidelines by the UK Clinical Pharmacy Association recommend minimising risk factors to prevent delirium, rather than to treat it with pharmacological agents which may themselves cause delirium.[4] To address risk factors is a measure of multi-system management, such as sleep-wake cycle correction, orientation and use of vision and hearing aids, etc.[5] We designed an audit to survey the prevalence and availability of vision and hearing aids use in the intensive care unit (ICU) of one university hospital. The baseline data demonstrated a high level of prevalence and low level of availability of vision /hearing aid use. We implemented changes to the ICU Innovian assessment system, which serves to remind nursing staff performing daily checks on delirium reduction measures. This has improved practice in promoting vision and hearing aids use in ICU as shown by re-audit at six month. Further amendments to the Innovian risk assessments have increased the rate of assessment to 100% and vision aid use to near 100%.
NASA Astrophysics Data System (ADS)
Saha, Ankur; SenGupta, Sumana; Kumar, Awadhesh; Choudhury, Sipra; Naik, Prakash D.
2016-08-01
The structure and orientation of room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [PF3(C2F5)3], commonly known as [bmim][fap], have been investigated at the air-[bmim][fap] and air-water interfaces, employing vibrational sum-frequency generation (VSFG) spectroscopy. The VSFG spectra in the CH stretch region suggest presence of the [bmim] cation at the interfaces. Studies reveal that the butyl chain protrudes out into air, and the imidazolium ring lies almost planar to the interface. The CH stretch intensities get enhanced at the air-water interface, mainly because of polar orientation of imidazolium cation induced by interfacial water molecules. The OH stretch intensities are also enhanced at the air-water interface due to polar orientation of interfacial water molecules induced by [bmim][fap]. The Brewster angle microscopy suggests self aggregation of [bmim][fap] in the presence of water, and the aggregation becomes extensive showing dense surface domains with time. However, the surface pressure is almost unaffected due to aggregation.
Engelmann, L; Schneider, D
1989-01-15
Issuing from the accomplishments of Köhler for the development of the intensive medicine in internal medicine-in 1964 he performed the first long-term respiration at the then Medical Clinic of the Karl Marx University, in 1969 he institutionalized the young subdiscipline at the clinic, in 1978 he founded the department for intensive medicine and is at work by his decisions concerning the development of young scientists, by the handbook "Intensive Medicine. Internal Medicine and Adjacent Subjects" as well as a member of the presidium of the GDR Society for Internal Medicine for the development of the internal intensive medicine-a description of the development of the department, its achievements and problems is given. The promotion of the intensive medicine by Köhler results, as we think, also from the comprehension that it has the duty to perform a function integrating the subdisciplines, which the modern internal medicine oriented to organs and systems threatens to lose, which, however, makes its self-apprehension, which the patient wishes and the teaching is demanding. From this and from the charge for a highly specialized care of patients who life-threateningly fell ill with internal diseases as well as from the duty to create a scientific forerunning results the stringent necessity of the development of the non-operative, in reality internal intensive medicine in the clinics for internal medicine of the county hospitals and university institutions as well as the greater identification of the internist with the subdiscipline in the district hospitals dealing with multidisciplinary intensive medicine.
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...
2016-02-09
The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. In this paper, we present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF),more » we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2° (corresponding to 3.5 pc in length for a typical distance of 100 pc). Thesefilaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C ℓ TE/C ℓ EE ratio, reported in the power spectra analysis of the Planck353 GHz polarization maps. Finally, future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aghanim, N.; Arnaud, M.
The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. In this paper, we present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF),more » we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2° (corresponding to 3.5 pc in length for a typical distance of 100 pc). Thesefilaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C ℓ TE/C ℓ EE ratio, reported in the power spectra analysis of the Planck353 GHz polarization maps. Finally, future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter.« less
NASA Astrophysics Data System (ADS)
Salawu, Emmanuel Oluwatobi; Hesse, Evelyn; Stopford, Chris; Davey, Neil; Sun, Yi
2017-11-01
Better understanding and characterization of cloud particles, whose properties and distributions affect climate and weather, are essential for the understanding of present climate and climate change. Since imaging cloud probes have limitations of optical resolution, especially for small particles (with diameter < 25 μm), instruments like the Small Ice Detector (SID) probes, which capture high-resolution spatial light scattering patterns from individual particles down to 1 μm in size, have been developed. In this work, we have proposed a method using Machine Learning techniques to estimate simulated particles' orientation-averaged projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, and root mean square contrast as inputs to the advanced Machine Learning methods. We created one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) support vector classification models for predicting the prism aspect-ratios, 133 OS support vector regression models for estimating prism sizes, and another 133 OS Support Vector Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 for estimating the particle's size and size PADs.
Zhou, Sheng-Yang; Huang, Hua-Dong; Ji, Xu; Yan, Ding-Xiang; Zhong, Gan-Ji; Hsiao, Benjamin S; Li, Zhong-Ming
2016-03-01
Remarkable combination of excellent gas barrier performance, high strength, and toughness was realized in polylactide (PLA) composite films by constructing the supernetworks of oriented and pyknotic crystals with the assistance of ductile in situ nanofibrils of poly(butylene adipate-co-terephthalate) (PBAT). On the basis that the permeation of gas molecules through polymer materials with anisotropic structure would be more frustrated, we believe that oriented crystalline textures cooperating with inerratic amorphism can be favorable for the enhancement of gas barrier property. By taking full advantage of intensively elongational flow field, the dispersed phase of PBAT in situ forms into nanofibrils, and simultaneously sufficient row-nuclei for PLA are induced. After appropriate thermal treatment with the acceleration effect of PBAT on PLA crystallization, oriented lamellae of PLA tend to be more perfect in a preferential direction and constitute into a kind of network interconnecting with each other. At the same time, the molecular chains between lamellae tend to be more extended. This unique structure manifests superior ability in ameliorating the performance of PLA film. The oxygen permeability coefficient can be achieved as low as 2 × 10(-15) cm(3) cm cm(-2) s(-1) Pa(-1), combining with the high strength, modulus, and ductility (104.5 MPa, 3484 MPa, and 110.6%, respectively). The methodology proposed in this work presents an industrially scalable processing method to fabricate super-robust PLA barrier films. It would indeed push the usability of biopolymers forward, and certainly prompt wider application of biodegradable polymers in the fields of environmental protection such as food packaging, medical packaging, and biodegradable mulch.
Cytomics in predictive medicine
NASA Astrophysics Data System (ADS)
Tarnok, Attila; Valet, Guenther K.
2004-07-01
Predictive Medicine aims at the detection of changes in patient's disease state prior to the manifestation of deterioration or improvement of the current status. Patient-specific, disease-course predictions with >95% or >99% accuracy during therapy would be highly valuable for everyday medicine. If these predictors were available, disease aggravation or progression, frequently accompanied by irreversible tissue damage or therapeutic side effects, could then potentially be avoided by early preventive therapy. The molecular analysis of heterogeneous cellular systems (Cytomics) by cytometry in conjunction with pattern-oriented bioinformatic analysis of the multiparametric cytometric and other data provides a promising approach to individualized or personalized medical treatment or disease management. Predictive medicine is best implemented by cell oriented measurements e.g. by flow or image cytometry. Cell oriented gene or protein arrays as well as bead arrays for the capture of solute molecules form serum, plasma, urine or liquor are equally of high value. Clinical applications of predictive medicine by Cytomics will include multi organ failure in sepsis or non infectious posttraumatic shock in intensive care, or the pretherapeutic identification of high risk patients in cancer cytostatic. Early individualized therapy may provide better survival chances for individual patient at concomitant cost containment. Predictive medicine guided early reduction or stop of therapy may lower or abrogate potential therapeutic side effects. Further important aspects of predictive medicine concern the preoperative identification of patients with a tendency for postoperative complications or coronary artery disease patients with an increased tendency for restenosis. As a consequence, better patient care and new forms of inductive scientific hypothesis development based on the interpretation of predictive data patterns are at reach.
NASA Astrophysics Data System (ADS)
Su, Weizhong
2017-03-01
There is growing interest in using the urban landscape for stormwater management studies, where land patterns and processes can be important controls for the sustainability of urban development and planning. This paper proposes an original index of Major Hazard Oriented Level (MHOL) and investigates the structure distribution, driving factors, and controlling suggestions of urban-rural land growth in flood-prone areas in the Taihu Lake watershed, China. The MHOL of incremental urban-rural land increased from M 31.51 during the years 1985-1995 to M 38.37 during the years 1995-2010 (M for medium structure distribution, and the number for high-hazard value). The index shows that urban-rural land was distributed uniformly in flood hazard levels and tended to move rapidly to high-hazard areas, where 72.68% of incremental urban-rural land was aggregated maximally in new urban districts along the Huning traffic line and the Yangtze River. Thus, the current accelerating growth of new urban districts could account for the ampliative exposure to high-hazard areas. New districts are driven by the powerful link between land financial benefits and political achievements for local governments and the past unsustainable process of "single objective" oriented planning. The correlation categorical analysis of the current development intensity and carrying capacity of hydrological ecosystems for sub-basins was used to determine four types of development areas and provide decision makers with indications on the future watershed-scale subdivision of Major Function Oriented Zoning implemented by the Chinese government.
NASA Astrophysics Data System (ADS)
Boichenko, Stepan
2018-04-01
We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.
NASA Astrophysics Data System (ADS)
Wilkinson, S. J.; Hukins, D. W. L.
1999-08-01
Elastic scattering of X-rays can provide the following information on the fibrous protein collagen: its molecular structure, the axial arrangement of rod-like collagen molecules in a fibril, the lateral arrangement of molecules within a fibril, and the orientation of fibrils within a biological tissue. The first part of the paper reviews the principles involved in deducing this information. The second part describes a new computer program for measuring the equatorial intensity distribution, that provides information on the lateral arrangement of molecules within a fibril, and the angular distribution of the equatorial peaks that provides information on the orientation of fibrils. Orientation of fibrils within a tissue is quantified by the orientation distribution function, g( φ), which represents the probability of finding a fibril oriented between φ and φ+ δφ. The application of the program is illustrated by measurement of g( φ) for the collagen fibrils in demineralised cortical bone from cow tibia.
Tam, Leona; Bagozzi, Richard P; Spanjol, Jelena
2010-05-01
This study examined whether matching implementation intentions to people's regulatory orientation affects the effectiveness of changing unhealthy snacking habits. Participants' regulatory orientation was either measured (as a chronic trait) or manipulated (as a situational state), and participants were randomly assigned to implementation intention conditions to eat more healthy snacks or avoid eating unhealthy ones. A self-reported online food diary of healthy and unhealthy snacks over a 2-day period. Participants with weak unhealthy snacking habits consumed more healthy snacks when forming any type of implementation intentions (regardless of match or mismatch with their regulatory orientation), while participants with strong unhealthy snacking habits consumed more healthy snacks only when forming implementation intentions that matched their regulatory orientations. RESULTS suggest that implementation intentions that match regulatory orientation heighten motivation intensity and put snacking under intentional control for people with strong unhealthy snacking habits. (c) 2010 APA, all rights reserved.
Carrier-envelope phase-dependent field-free molecular orientation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu Chuancun; Yuan Kaijun; Hu Wenhui
2009-07-15
We present a strategy to achieve carrier-envelope phase-dependent field-free molecular orientation with the use of carrier-envelope phase (CEP) stabilization and asymmetric few-cycle terahertz (THz) laser pulses. The calculations are performed on the LiH molecule by an exact solution of the full time-dependent Schroedinger equation including both the vibrational and the rotational degrees of freedom. Our calculations show that an efficient field-free molecular orientation can be obtained even at considerable temperatures. Moreover, we find a simple dependence of the field-free orientation on the CEP, which implies that the CEP becomes an important parameter for control of molecular orientation. More importantly, themore » realization of this scenario is appealing based on the fact that the intense few-cycle THz pulse with duration as short as a few optical cycles is available as a research tool.« less
SU-E-J-81: Beveled Needle Tip Detection Error in Ultrasound-Guided Prostate Brachytherapy.
Leu, S; Ruiz, B; Podder, T
2012-06-01
To quantify the needle tip detection errors in ultrasound images due to bevel-tip orientation in relation to the location on template grid. Transrectal ultrasound (TRUS) system (BK Medical) with physical template grid and 18-gauge bevel-tip (20-deg beveled angle) brachytherapy needle (Bard Medical, Covington, GA) were used. The TRUS was set at 6.5MHz in water phantom at 40°C and measurements were taken with 50% and 100% TRUS gains. Needles were oriented with bevel-tip facing up (0-degree) and inserted through template grid-holes. Reference needle depths were measured when needle tip image intensity was bright enough for potentially consistent readings. High-resolution digital vernier caliper was used to measure needle depth. Needle bevel-tip orientation was then changed to bevel down (by rotating 180-degree) and needle depth was adjusted by retracting so that the needle-tip image intensity appeared similar to when the needle bevel-tip was at 0-degree orientation. Clinically relevant locations were considered for needle placement on the template grids (1st row to 9th row, and 'a-f' columns). For 50% TRUS gain, bevel tip detection errors/differences were 0.69±0.30mm (1st row) to 3.23±0.22mm (9th row) and 0.78±0.71mm (1st row) to 4.14±0.56mm (9th row) in columns 'a' and 'D', respectively. The corresponding errors for 100% TRUS gain were 0.57±0.25mm to 5.24±0.36mm and 0.84±0.30mm to 4.2±0.20mm in columns 'a' and 'D', respectively. These errors/differences varied linearly for grid-hole locations on the rows and columns in between, smaller to large depending on distance from the TRUS probe. Observed no effect of gains (50% vs. 100%) along 'D' column, which was directly above the TRUS probe. Experiment results revealed that the beveled needle tip orientation could significantly impact the detection accuracy of the needle tips, based on which the seeds might be delivered. These errors may lead to considerable dosimetric deviations in prostate brachytherapy seed implantation. © 2012 American Association of Physicists in Medicine.
Castaño-Díez, Daniel
2017-01-01
Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance. PMID:28580909
Castaño-Díez, Daniel
2017-06-01
Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance.
Radio emission in Mercury magnetosphere
NASA Astrophysics Data System (ADS)
Varela, J.; Reville, V.; Brun, A. S.; Pantellini, F.; Zarka, P.
2016-10-01
Context. Active stars possess magnetized wind that has a direct impact on planets that can lead to radio emission. Mercury is a good test case to study the effect of the solar wind and interplanetary magnetic field (IMF) on radio emission driven in the planet magnetosphere. Such studies could be used as proxies to characterize the magnetic field topology and intensity of exoplanets. Aims: The aim of this study is to quantify the radio emission in the Hermean magnetosphere. Methods: We use the magnetohydrodynamic code PLUTO in spherical coordinates with an axisymmetric multipolar expansion for the Hermean magnetic field, to analyze the effect of the IMF orientation and intensity, as well as the hydrodynamic parameters of the solar wind (velocity, density and temperature), on the net power dissipated on the Hermean day and night side. We apply the formalism derived by Zarka et al. (2001, Astrophys. Space Sci., 277, 293), Zarka (2007, Planet. Space Sci., 55, 598) to infer the radio emission level from the net dissipated power. We perform a set of simulations with different hydrodynamic parameters of the solar wind, IMF orientations and intensities, that allow us to calculate the dissipated power distribution and infer the existence of radio emission hot spots on the planet day side, and to calculate the integrated radio emission of the Hermean magnetosphere. Results: The obtained radio emission distribution of dissipated power is determined by the IMF orientation (associated with the reconnection regions in the magnetosphere), although the radio emission strength is dependent on the IMF intensity and solar wind hydro parameters. The calculated total radio emission level is in agreement with the one estimated in Zarka et al. (2001, Astrophys. Space Sci., 277, 293) , between 5 × 105 and 2 × 106 W.
Terrestrial Gamma-Ray Flashes (TGFs) Above Thunderstorms
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2012-01-01
Intense of gamma rays have been observed by five different space-borne detectors. The TGFs have hard spectra, with photons extending to over 50 MeV. Most of these flashes last less than a millisecond. Relativistic electrons and positrons associated with TGFs are also seen by orbiting instruments In a special mode of operation, the Fermi-GBM detectors are now detecting an average of about one TGF every two hours. The Fermi spacecraft has been performing special orientations this year which has allowed the Fermi-LAT instrument also detect TGFs. The most likely origin of these high energy photons is bremsstrahlung radiation from electrons, produced by relativistic runaway electrons in intense electric fields within or above thunderstorm regions; the altitude of origin is uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. The observational aspects of TGFs will be the main focus of this talk; theoretical aspects remain speculative.
University-Industry Collaboration in China and the USA: A Bibliometric Comparison.
Zhou, Ping; Tijssen, Robert; Leydesdorff, Loet
2016-01-01
In this study, university-industry collaborations in China and the USA are analyzed in terms of co-authored publications indexed in the Web of Science (WoS). Results show a wide gap between China and the USA: Chinese universities are much less active in collaborations with industry in terms of either publication productivity or collaboration intensity. In selecting local and foreign industrial partners, however, more variation exists among Chinese universities than among US universities. The US system is domestically oriented more than that of China. In the USA, the intensity of university-industry collaboration is determined by research quality, whereas in China this is not the case. In both China and the USA, distance is not critical for the establishment of domestic university-industry collaboration. A high correlation is found between productivity indicators including total publications and university-industry co-authored publications. However, the productivity indicators are less correlated with the intensity of university-industry collaboration. Large research universities with strong ties to domestic industry play critical roles in both national publication systems.
University-Industry Collaboration in China and the USA: A Bibliometric Comparison
2016-01-01
In this study, university-industry collaborations in China and the USA are analyzed in terms of co-authored publications indexed in the Web of Science (WoS). Results show a wide gap between China and the USA: Chinese universities are much less active in collaborations with industry in terms of either publication productivity or collaboration intensity. In selecting local and foreign industrial partners, however, more variation exists among Chinese universities than among US universities. The US system is domestically oriented more than that of China. In the USA, the intensity of university-industry collaboration is determined by research quality, whereas in China this is not the case. In both China and the USA, distance is not critical for the establishment of domestic university-industry collaboration. A high correlation is found between productivity indicators including total publications and university-industry co-authored publications. However, the productivity indicators are less correlated with the intensity of university-industry collaboration. Large research universities with strong ties to domestic industry play critical roles in both national publication systems. PMID:27832084
Jarrott, L. C.; Wei, M. S.; McGuffey, C.; ...
2017-04-27
Here, we have built an absolutely calibrated, highly efficient, Bragg crystal spectrometer in von Hamos geometry. This zinc von Hamos spectrometer uses a crystal made from highly oriented pyrolytic graphite that is cylindrically bent along the non-dispersive axis. It is tuned to measure x-ray spectra in the 7–10 keV range and has been designed to be used on a Ten Inch Manipulator for the Omega and OmegaEP target chambers at the Laboratory for Laser Energetics in Rochester, USA. Significant shielding strategies and fluorescence mitigation have been implemented in addition to an imaging plate detector making it well suited for experimentsmore » in high-intensity environments. Here we present the design and absolute calibration as well as mosaicity and integrated reflectivity measurements.« less
Dung beetles use the Milky Way for orientation.
Dacke, Marie; Baird, Emily; Byrne, Marcus; Scholtz, Clarke H; Warrant, Eric J
2013-02-18
When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gajda, Agnieszka; Wójtowicz-Nowakowska, Anna
2013-04-01
A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data Land cover maps are generally produced on the basis of high resolution imagery. Recently, LiDAR (Light Detection and Ranging) data have been brought into use in diverse applications including land cover mapping. In this study we attempted to assess the accuracy of land cover classification using both high resolution aerial imagery and LiDAR data (airborne laser scanning, ALS), testing two classification approaches: a pixel-based classification and object-oriented image analysis (OBIA). The study was conducted on three test areas (3 km2 each) in the administrative area of Kraków, Poland, along the course of the Vistula River. They represent three different dominating land cover types of the Vistula River valley. Test site 1 had a semi-natural vegetation, with riparian forests and shrubs, test site 2 represented a densely built-up area, and test site 3 was an industrial site. Point clouds from ALS and ortophotomaps were both captured in November 2007. Point cloud density was on average 16 pt/m2 and it contained additional information about intensity and encoded RGB values. Ortophotomaps had a spatial resolution of 10 cm. From point clouds two raster maps were generated: intensity (1) and (2) normalised Digital Surface Model (nDSM), both with the spatial resolution of 50 cm. To classify the aerial data, a supervised classification approach was selected. Pixel based classification was carried out in ERDAS Imagine software. Ortophotomaps and intensity and nDSM rasters were used in classification. 15 homogenous training areas representing each cover class were chosen. Classified pixels were clumped to avoid salt and pepper effect. Object oriented image object classification was carried out in eCognition software, which implements both the optical and ALS data. Elevation layers (intensity, firs/last reflection, etc.) were used at segmentation stage due to proper wages usage. Thus a more precise and unambiguous boundaries of segments (objects) were received. As a results of the classification 5 classes of land cover (buildings, water, high and low vegetation and others) were extracted. Both pixel-based image analysis and OBIA were conducted with a minimum mapping unit of 10m2. Results were validated on the basis on manual classification and random points (80 per test area), reference data set was manually interpreted using ortophotomaps and expert knowledge of the test site areas.
NASA Astrophysics Data System (ADS)
Baltuck, Miriam
1987-02-01
Paleomagnetics was used in an attempt to improve chronostratigraphy in the Middle and Upper Jurassic radiolarian chert and siliceous mudstone of the Pindos Zone, Greece. Remanent magnetism studies showed strong magnetic intensity but scattered orientation. Orientation of some pressure solution features in the radiolarities indicates their formation under horizontal pressure, a condition which in Pindos geologic history would only have occurred during early Cretaceous or Cenozoic tectonics, indicating very late diagenesis in these parts of the section. From time of deposition to later time at which diagenesis can be documented, the Earth's magnetic field would have reversed many times. Remagnetization during solution-precipitation steps of silica diagenesis could complicate the rock magnetics. Oxygen isotopic and major element analyses of radiolarite lithologies show a systematic variation of rate of silica diagenesis in different host lithologies, thus solution-precipitation would occur at widely differing times throughout the section lithologies. If the dissolution of the silica cement were physically to free magnetic material from an earlier orientation, the result could be a partial shift toward alignment with the ambient magnetic field. Alternatively, complete reorientation of particles could have occurred at varying times in different parts of the section as a function of host lithology. During the northward movement and clockwise rotation of the Apulian subplate (including Pindos) these different lithologies could completely reorient during different stages of silica diagenesis, locking the orientation of iron magnetic moments into alignment with the ambient magnetic field at time of precipitation to result in a strong intensity but scattered orientation of Pindos rock magnetics.
NASA Astrophysics Data System (ADS)
Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.
2009-02-01
Recently, the use of Second Harmonic Generation (SHG) for imaging biological samples has been explored with regard to intrinsic SHG in highly ordered biological samples. As shown by fractional extraction of proteins, myosin is the source of SHG signal in skeletal muscle. SHG is highly dependent on symmetries and provides selective information on the structural order and orientation of the emitting proteins and the dynamics of myosin molecules responsible for the mechano-chemical transduction during contraction. We characterise the polarization-dependence of SHG intensity in three different physiological states: resting, rigor and isometric tetanic contraction in a sarcomere length range between 2.0 μm and 4.0 μm. The orientation of motor domains of the myosin molecules is dependent on their physiological states and modulate the SHG signal. We can discriminate the orientation of the emitting dipoles in four different molecular conformations of myosin heads in intact fibers during isometric contraction, in resting and rigor. We estimate the contribution of the myosin motor domain to the total second order bulk susceptibility from its molecular structure and its functional conformation. We demonstrate that SHG is sensitive to the fraction of ordered myosin heads by disrupting the order of myosin heads in rigor with an ATP analog. We estimate the fraction of myosin motors generating the isometric force in the active muscle fiber from the dependence of the SHG modulation on the degree of overlap between actin and myosin filaments during an isometric contraction.
Java Performance for Scientific Applications on LLNL Computer Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapfer, C; Wissink, A
2002-05-10
Languages in use for high performance computing at the laboratory--Fortran (f77 and f90), C, and C++--have many years of development behind them and are generally considered the fastest available. However, Fortran and C do not readily extend to object-oriented programming models, limiting their capability for very complex simulation software. C++ facilitates object-oriented programming but is a very complex and error-prone language. Java offers a number of capabilities that these other languages do not. For instance it implements cleaner (i.e., easier to use and less prone to errors) object-oriented models than C++. It also offers networking and security as part ofmore » the language standard, and cross-platform executables that make it architecture neutral, to name a few. These features have made Java very popular for industrial computing applications. The aim of this paper is to explain the trade-offs in using Java for large-scale scientific applications at LLNL. Despite its advantages, the computational science community has been reluctant to write large-scale computationally intensive applications in Java due to concerns over its poor performance. However, considerable progress has been made over the last several years. The Java Grande Forum [1] has been promoting the use of Java for large-scale computing. Members have introduced efficient array libraries, developed fast just-in-time (JIT) compilers, and built links to existing packages used in high performance parallel computing.« less
Vuolo, Mike; Staff, Jeremy; Mortimer, Jeylan T.
2011-01-01
Studies of career development highlight the importance of finding a good “fit” between individual values, needs, and abilities and the experiences and rewards to be found in particular occupations. Rapid economic change and labor market turbulence make career choice and development life-long processes. Still, early careers are particularly unstable, as young workers move from “survival jobs” to “career jobs” in their quest for a good person-job fit. Little is known, however, about the psychological orientations and behaviors in the post-adolescent period that foster longer-term success in the world of work. The maintenance of high aspirations, crystallization of career goals, and intensive job search may be particularly important. Using multilevel latent class analysis applied to longitudinal data obtained from 1,010 youth surveyed by the ongoing Youth Development Study (YDS), this article examines the interrelations of psychological orientations and behaviors indicative of agentic striving from age 18 to 31. In addition, we assess how these trajectories influence adaptation to declining labor market conditions during the severe economic recession that began in 2007. We find that those who maintain high aspiration and certainty over career goals are better insulated against unemployment between 2007 and 2009 (age 33 to 35), even when educational and self-identified career attainments, adolescent achievement orientations, and social background variables indicative of advantage are controlled. They also have higher hourly wages in 2009. PMID:22059449
NASA Astrophysics Data System (ADS)
Iyyappa Rajan, P.; Judith Vijaya, J.; Jesudoss, S. K.; Kaviyarasu, K.; Lee, Seung-Cheol; John Kennedy, L.; Jothiramalingam, R.; Al-Lohedan, Hamad A.; Mahamad Abdullah, M.
2018-03-01
The theme of this work is to highlight the significance of green plant extracts in the synthesis of nanostructures. In asserting this statement, herein, we report our obtained results on the synthesis of hexagonal CdSe nanorods preferably oriented along (0002) plane through henna leaf extract-mediated reaction along with a discussion about the structural, morphological and optical properties of the synthesized nanorods. The possible mechanism for the synthesis of CdSe nanorods was explored. The formation of nanorods along (0002) plane was confirmed by the relatively high intensity of the (0002) peak in X-ray diffraction pattern. To account for the experimentally realistic condition, we have calculated the surface energies of hexagonal CdSe surface slabs along the low indexed (0002), (10 1 ¯ 0 ) and (11 2 ¯ 0 ) plane surfaces using density functional theory approach and the calculated surface energy value for (0002) surface is 802.7 mJ m-2, which is higher than (11 2 ¯ 0 ) and (10 1 ¯ 0 ) surfaces. On realizing the calculated surface energies of these slabs, we determined that the combination of (11 2 ¯ 0 ) and (10 1 ¯ 0 ) planes with lower surface energies will lead to the formation of CdSe nanorods growth along (0002) orientation. Finally, we argue that the design of new greener route for the synthesis of novel functional nanomaterials is highly desired.
NASA Astrophysics Data System (ADS)
De Michelis, Paola; Consolini, Giuseppe; Tozzi, Roberta; Marcucci, Maria Federica
2017-10-01
This paper attempts to explore the statistical scaling features of high-latitude geomagnetic field fluctuations at Swarm altitude. Data for this study are low-resolution (1 Hz) magnetic data recorded by the vector field magnetometer on board Swarm A satellite over 1 year (from 15 April 2014 to 15 April 2015). The first- and second-order structure function scaling exponents and the degree of intermittency of the fluctuations of the intensity of the horizontal component of the magnetic field at high northern latitudes have been evaluated for different interplanetary magnetic field orientations in the GSM Y-Z plane and seasons. In the case of the first-order structure function scaling exponent, a comparison between the average spatial distributions of the obtained values and the statistical convection patterns obtained using a Super Dual Auroral Radar Network dynamic model (CS10 model) has been also considered. The obtained results support the idea that the knowledge of the scaling features of the geomagnetic field fluctuations can help in the characterization of the different ionospheric turbulence regimes of the medium crossed by Swarm A satellite. This study shows that different turbulent regimes of the geomagnetic field fluctuations exist in the regions characterized by a double-cell convection pattern and in those regions near the border of the convective structures.
Deep-level traps in lightly Si-doped n-GaN on free-standing m-oriented GaN substrates
NASA Astrophysics Data System (ADS)
Yamada, H.; Chonan, H.; Takahashi, T.; Yamada, T.; Shimizu, M.
2018-04-01
In this study, we investigated the deep-level traps in Si-doped GaN epitaxial layers by metal-organic chemical vapor deposition on c-oriented and m-oriented free-standing GaN substrates. The c-oriented and m-oriented epitaxial layers, grown at a temperature of 1000 °C and V/III ratio of 1000, contained carbon atomic concentrations of 1.7×1016 and 4.0×1015 cm-3, respectively. A hole trap was observed at about 0.89 eV above the valence band maximum by minority carrier transient spectroscopy. The trap concentrations in the c-oriented and m-oriented GaN epitaxial layers were consistent with the carbon atomic concentrations from secondary ion mass spectroscopy and the yellow luminescence intensity at 2.21 eV from photoluminescence. The trap concentrations in the m-oriented GaN epitaxial layers were lower than those in the c-oriented GaN. Two electron traps, 0.24 and 0.61 eV below the conduction band (EC) minimum, were observed in the c-oriented GaN epitaxial layer. In contrast, the m-oriented GaN epitaxial layer was free from the electron trap at EC - 0.24 eV, and the trap concentration at EC - 0.61 eV in the m-oriented GaN epitaxial layer was lower than that in the c-oriented GaN epitaxial layer. The m-oriented GaN epitaxial layer exhibited fewer hole and electron traps compared to the c-oriented GaN epitaxial layers.
Hetero-Interfaces for Extreme Electronic Environments
2014-07-23
ELECTRONIC ENVIRONMENTS Quasi-two-dimensional electron gas (Q- 2D -EG) forms at the interface between two perovskite band insulators; LaAlO3 (LAO) and...physical origins of the Q- 2D -EG formed at the interface have been under intensive debate to date. Several mechanisms have been proposed, such as the...discontinuity. The Q- 2D - EG was only observed when films were deposited on Ti-terminated > oriented STO crystals. The >- orientation provides AO
Neural coding underlying the cue preference for celestial orientation
el Jundi, Basil; Warrant, Eric J.; Byrne, Marcus J.; Khaldy, Lana; Baird, Emily; Smolka, Jochen; Dacke, Marie
2015-01-01
Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity. PMID:26305929
Neural coding underlying the cue preference for celestial orientation.
el Jundi, Basil; Warrant, Eric J; Byrne, Marcus J; Khaldy, Lana; Baird, Emily; Smolka, Jochen; Dacke, Marie
2015-09-08
Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity.
Yamamura, Shigeo; Momose, Yasunori
2003-06-18
The purpose of this study is to characterize the monoclinic crystals in tablets by using X-ray powder diffraction data and to evaluate the deformation feature of crystals during compression. The monoclinic crystals of acetaminophen and benzoic acid were used as the samples. The observed X-ray diffraction intensities were fitted to the analytic expression, and the fitting parameters, such as the lattice parameters, the peak-width parameters, the preferred orientation parameter and peak asymmetric parameter were optimized by a non-linear least-squares procedure. The Gauss and March distribution functions were used to correct the preferred orientation of crystallites in the tablet. The March function performed better in correcting the modification of diffraction intensity by preferred orientation of crystallites, suggesting that the crystallites in the tablets had fiber texture with axial orientation. Although a broadening of diffraction peaks was observed in acetaminophen tablets with an increase of compression pressure, little broadening was observed in the benzoic tablets. These results suggest that "acetaminophen is a material consolidating by fragmentation of crystalline particles and benzoic acid is a material consolidating by plastic deformation then occurred rearrangement of molecules during compression". A pattern-fitting procedure is the superior method for characterizing the crystalline drugs of monoclinic crystals in the tablets, as well as orthorhombic isoniazid and mannitol crystals reported in the previous paper.
Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie
2011-04-01
Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies. © 2010 Elsevier Ltd. All rights reserved.
On the Convection of a Binary Mixture in a Horizontal Layer Under High-frequency Vibrations
NASA Astrophysics Data System (ADS)
Smorodin, B. L.; Ishutov, S. M.; Myznikova, B. I.
2018-02-01
The convective instability and non-linear flows are considered in a horizontal, binary-mixture layer with negative Soret coupling, subjected to the high-frequency vibration whose axis is directed at an arbitrary angle to the layer boundaries. The limiting case of long-wave disturbances is studied using the perturbation method. The influence of the intensity and direction of vibration on the spatially-periodic traveling wave solution is analyzed. It is shown that the shift in the Rayleigh number range, in which the traveling wave regime exists, toward higher values is a response to a horizontal-to-vertical transition in the vibration axis orientation. The characteristics of amplitude- and phase-modulated traveling waves are obtained and discussed.
Channel morphology effect on water transport through graphene bilayers.
Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun
2016-12-08
The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology.
Integration of a neuroimaging processing pipeline into a pan-canadian computing grid
NASA Astrophysics Data System (ADS)
Lavoie-Courchesne, S.; Rioux, P.; Chouinard-Decorte, F.; Sherif, T.; Rousseau, M.-E.; Das, S.; Adalat, R.; Doyon, J.; Craddock, C.; Margulies, D.; Chu, C.; Lyttelton, O.; Evans, A. C.; Bellec, P.
2012-02-01
The ethos of the neuroimaging field is quickly moving towards the open sharing of resources, including both imaging databases and processing tools. As a neuroimaging database represents a large volume of datasets and as neuroimaging processing pipelines are composed of heterogeneous, computationally intensive tools, such open sharing raises specific computational challenges. This motivates the design of novel dedicated computing infrastructures. This paper describes an interface between PSOM, a code-oriented pipeline development framework, and CBRAIN, a web-oriented platform for grid computing. This interface was used to integrate a PSOM-compliant pipeline for preprocessing of structural and functional magnetic resonance imaging into CBRAIN. We further tested the capacity of our infrastructure to handle a real large-scale project. A neuroimaging database including close to 1000 subjects was preprocessed using our interface and publicly released to help the participants of the ADHD-200 international competition. This successful experiment demonstrated that our integrated grid-computing platform is a powerful solution for high-throughput pipeline analysis in the field of neuroimaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze, C. S.; Prohl, C.; Füllert, V.
2016-04-04
The atomic structure and stoichiometry of InAs/InGaAs quantum-dot-in-a-well structures grown on exactly oriented GaP/Si(001) are revealed by cross-sectional scanning tunneling microscopy. An averaged lateral size of 20 nm, heights up to 8 nm, and an In concentration of up to 100% are determined, being quite similar compared with the well-known quantum dots grown on GaAs substrates. Photoluminescence spectra taken from nanostructures of side-by-side grown samples on GaP/Si(001) and GaAs(001) show slightly blue shifted ground-state emission wavelength for growth on GaP/Si(001) with an even higher peak intensity compared with those on GaAs(001). This demonstrates the high potential of GaP/Si(001) templates for integration ofmore » III-V optoelectronic components into silicon-based technology.« less
Channel morphology effect on water transport through graphene bilayers
Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun
2016-01-01
The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology. PMID:27929106
Anisotropic ultrafast response of MoS2 on rippled substrates
NASA Astrophysics Data System (ADS)
Cinquanta, Eugenio; Camellini, Andrea; Martella, Christian; Mennucci, Carlo; Lamperti, Alessio; Della Valle, Giuseppe; Zavelani Rossi, Margherita; Buatier de Mongeot, Francesco; Molle, Alessandro; Stagira, Salvatore
TMDs represent one of the most promising option for new devices characterized by high performances for opto- and nanoelectronics applications. Top-down schemes have been fruitfully exploited for the tuning of TMDs physics by stain engineering in exfoliated flakes. We propose an original bottom-up strategy based on the CVD growth of MoS2 on anisotropic substrates and its characterization by means of pump-probe spectroscopy. The ultrafast response of the rippled MoS2 reveals strongly anisotropic. While the transient absorption emerges as independent from the orientation of the pump beam polarization, the angle between the probe beam polarization and the ripples induces remarkable effects. Within an orthogonal geometry, both the overall intensity of the transient spectrum and the el-ph scattering decay time are halved while the photo-bleaching at 450 nm is blueshifted with respect to the parallel orientation case. Our results demonstrate that the coupling of TMDs with anisotropic substrates is a promising way for the integration of TMDs photonics devices.
Lan, Ti-Yen; Wierman, Jennifer L.; Tate, Mark W.; Philipp, Hugh T.; Elser, Veit
2017-01-01
Recently, there has been a growing interest in adapting serial microcrystallography (SMX) experiments to existing storage ring (SR) sources. For very small crystals, however, radiation damage occurs before sufficient numbers of photons are diffracted to determine the orientation of the crystal. The challenge is to merge data from a large number of such ‘sparse’ frames in order to measure the full reciprocal space intensity. To simulate sparse frames, a dataset was collected from a large lysozyme crystal illuminated by a dim X-ray source. The crystal was continuously rotated about two orthogonal axes to sample a subset of the rotation space. With the EMC algorithm [expand–maximize–compress; Loh & Elser (2009). Phys. Rev. E, 80, 026705], it is shown that the diffracted intensity of the crystal can still be reconstructed even without knowledge of the orientation of the crystal in any sparse frame. Moreover, parallel computation implementations were designed to considerably improve the time and memory scaling of the algorithm. The results show that EMC-based SMX experiments should be feasible at SR sources. PMID:28808431
X-ray microtomography study of the compaction process of rods under tapping.
Fu, Yang; Xi, Yan; Cao, Yixin; Wang, Yujie
2012-05-01
We present an x-ray microtomography study of the compaction process of cylindrical rods under tapping. The process is monitored by measuring the evolution of the orientational order parameter, local, and overall packing densities as a function of the tapping number for different tapping intensities. The slow relaxation dynamics of the orientational order parameter can be well fitted with a stretched-exponential law with stretching exponents ranging from 0.9 to 1.6. The corresponding relaxation time versus tapping intensity follows an Arrhenius behavior which is reminiscent of the slow dynamics in thermal glassy systems. We also investigated the boundary effect on the ordering process and found that boundary rods order faster than interior ones. In searching for the underlying mechanism of the slow dynamics, we estimated the initial random velocities of the rods under tapping and found that the ordering process is compatible with a diffusion mechanism. The average coordination number as a function of the tapping number at different tapping intensities has also been measured, which spans a range from 6 to 8.
Positron Interactions with Oriented Polymers and with Chiral Quartz Crystals
NASA Astrophysics Data System (ADS)
Wu, Fei
Positron annihilation in various materials has been applied to characterize microstructure for decades. In this work, PALS was used to study material nanostructure, with a focus on the size and density of free volume and hole relaxation properties in polycarbonate (PC) and polymethylmethacrylate (PMMA); fundamental studies of polarized positron interaction with chiral crystals were also studied. Free volume relaxation in PC and PMMA with different levels of simple shear orientation was studied by PALS. Effects of applied pressure on the free volume recovery were evaluated. Combining the bulk- and pressure-dependent PALS analyses, the removal of applied pressure led to free-volume relaxation in all samples studied. The alignment of the polymer chains and free-volume holes imposes molecular restrictions on the molecular mobility of both PC and PMMA in their glassy states. Results indicated that the relaxation of the free volume holes at temperatures below glass transition is mostly reversible. Longitudinally polarized positron particles were used to reveal asymmetric interactions in chiral quartz crystals. Experimental results showed a significant intensity difference in free positronium annihilation for left handed (LH) and right handed (RH) chiral quartz crystals. Doppler broadening energy spectra (DBES) of z-cut LH or RH quartz disks at different angles were also measured by an "S parameter" to probe the observed difference. It was found that obtained annihilation energy difference of DBES was in agreement with the result of positron annihilation in bulk chiral crystals. PALS was used to compare different orientations and confirm asymmetric interactions in natural versus synthetic quartz LH and RH crystals in z and non-z orientations. Significant lifetime and intensity differences in free positronium annihilation for LH and RH quartz crystals were observed. The trend was found to be same in the related crystallographic orientations of the LH or RH crystals; the direction of incident positrons, z or non-z, did not affect the observed differences in lifetime and intensity trends. The results confirmed the existence of differential interactions of positronium with the asymmetric lattice structures of LH and RH quartz crystals.
Super-resolved Mirau digital holography by structured illumination
NASA Astrophysics Data System (ADS)
Ganjkhani, Yasaman; Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Moradi, Ali-Reza
2017-12-01
In this paper, we apply structured illumination toward super-resolved 3D imaging in a common-path digital holography arrangement. Digital holographic microscopy (DHM) provides non-invasive 3D images of transparent samples as well as 3D profiles of reflective surfaces. A compact and vibration-immune arrangement for DHM may be obtained through the use of a Mirau microscope objective. However, high-magnification Mirau objectives have a low working distance and are expensive. Low-magnification ones, on the other hand, suffer from low lateral resolution. Structured illumination has been widely used for resolution improvement of intensity images, but the technique can also be readily applied to DHM. We apply structured illumination to Mirau DHM by implementing successive sinusoidal gratings with different orientations onto a spatial light modulator (SLM) and forming its image on the specimen. Moreover, we show that, instead of different orientations of 1D gratings, alternative single 2D gratings, e.g. checkerboard or hexagonal patterns, can provide resolution enhancement in multiple directions. Our results show a 35% improvement in the resolution power of the DHM. The presented arrangement has the potential to serve as a table-top device for high resolution holographic microscopy.
NASA Astrophysics Data System (ADS)
Wang, Jing; Wu, Shizhe; Ma, Ji; Xie, Lishan; Wang, Chuanshou; Malik, Iftikhar Ahmed; Zhang, Yuelin; Xia, Ke; Nan, Ce-Wen; Zhang, Jinxing
2018-02-01
Stripe-ordered domains with perpendicular magnetic anisotropy have been intensively investigated due to their potential applications in high-density magnetic data-storage devices. However, the conventional control methods (e.g., epitaxial strain, local heating, magnetic field, and magnetoelectric effect) of the stripe-ordered domain walls either cannot meet the demands for miniaturization and low power consumption of spintronic devices or require high strength of the electric field due to the small value of the magnetoelectric effect at room temperature. Here, a domain-wall resistive effect of 0.1% was clarified in La0.67Sr0.33MnO3 thin films between the configurations of current in the plane and perpendicular to the plane of walls. Furthermore, a reversible nanoscale control of the domain-wall re-orientation by vertical spin transfer torque across the probe/film interface was achieved, where a probe voltage of 0.1 V was applied on a manganite-based capacitor. We also demonstrated that the stripe-ordered magnetic domain-wall re-orientation strongly depends on the AC frequency of the scanning probe voltage which was applied on the capacitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, Sabine; Lee, Eleanor
Exterior shades are highly efficient for reducing solar load in commercial buildings. Their impact on net energy use depends on the annual energy balance of heating, cooling, fan and lighting energy. This paper discusses the overall energy use intensity of various external shading systems for a prototypical large office building split into the different types of energy use and for different orientations and window sizes. Lighting energy was calculated for a constant lighting power as well as for dimmed lighting fixtures (daylighting control). In Section 3, slat angles and solar cut-off angles were varied for fixed exterior slat shading systems.more » While the most light-blocking shades performed best for the case without daylighting controls, the optimum cut-off angle with daylighting controls was found to be 30 deg for the office building prototype used in Chicago and Houston. For large window-to-wall (WWR) ratios, window related annual energy use could be reduced by at least 70 % without daylighting control and by a minimum of 86 % with daylighting control in average over all orientations. The occurrence of discomfort glare was is considered in Section 4 of the paper, which looks at the performance of commercially available exterior shading systems when an interior shade is used in addition to the exterior shade during hours when occupants would experience discomfort glare. Glare control impacts overall energy use intensity significantly for exterior shades with high transmittance, especially when daylighting controls are used. In these cases, exterior shades are only beneficial for window-to-wall areas ≥ 45% in the hot Houston climate. For smaller windows and in a heating/cooling climate like Chicago, exterior shades can increase energy consumption« less
NASA Astrophysics Data System (ADS)
Hou, T.; Filley, T. R.; Berry, T.; Singh, S.; Hughes, M.; Tong, Y.; Papanicolaou, T.; Wacha, K.; Wilson, C. G.; Chaubey, I.
2017-12-01
The dynamics of raindrop-induced breakdown of soil aggregates, a critical factor in the initial process of surface erosion and lateral redistribution of soil, are strongly tied to land use intensity. What is unclear however is the relative control of rain and mechanical disturbance on the development of landscape-level heterogeneity in surface soil geochemistry. We used artificial rainfall simulated experiments including an aggregate stability test and time course rainfall-erosional test to evaluate the role of management intensity and micro-topography on the geochemistry of raindrop-liberated/mobilized particles from landscapes in southeastern Iowa. Comparing restored prairie, conservation tillage, and conventional tillage sites we found, and with a trend toward increasing tillage intensity, a decrease in aggregate stability and raindrop-liberated particles that were lower in organic carbon, nitrogen, and plant-derived biopolymers, while containing higher proportions of microbially-processed nitrogen than the raindrop stable aggregates. Time evolution of the geochemistry (e.g. elemental, stable isotope, and biopolymer composition) of transported soil particles exhibited distinct patterns based upon both position of the hillslope and oriented soil roughness. Additionally, in the restored prairie, raindrop liberated particles had identical geochemical composition to the raindrop stable aggregates. Our results demonstrate that agricultural sites under intensive tillage have not only a greater potential to liberate and mobilize soil particles during storms, but the mobilized particles will have a distinct chemical character based on tillage intensity, hillslope position and oriented roughness thus lead to a greater potential for landscape level heterogeneity in surface and buried soil chemistry upon mobilization and burial.
Mason-Jones, Amanda J; Flisher, Alan J; Mathews, Catherine
2013-01-01
To evaluate the effects of a high school peer educator training programme on the sexual behaviour and related psychosocial outcomes of peer educators. A total of 728 students from 15 randomly selected public high schools in the Western Cape, South Africa, with a peer education programme and 15 matched comparison schools were recruited, comprising 295 students in the intervention group and 433 students in the comparison arms of the study respectively. Age of sexual debut, use of condom at last sex and psychosocial outcomes such as decision making, goal orientation, critical thinking and self-esteem were measured at baseline and follow-up 18 months later. At follow-up, there were no significant differences in the age of sexual debut, use of condom at last sex, goal orientation, critical thinking and self-esteem scores of the peer educators compared to students in the comparison group. Decision-making scores were significantly higher in the peer educators, compared to students in the comparison group (adjusted difference between means 0.14, 95% CI 0.02 to 0.26). Even a highly intensive peer education training programme had limited effects for the peer educators themselves. It is clear that community factors, gendered power relations and poverty need to be addressed to have a lasting impact.
Timmermans, Annick A A; Lemmens, Ryanne J M; Monfrance, Maurice; Geers, Richard P J; Bakx, Wilbert; Smeets, Rob J E M; Seelen, Henk A M
2014-03-31
Over fifty percent of stroke patients experience chronic arm hand performance problems, compromising independence in daily life activities and quality of life. Task-oriented training may improve arm hand performance after stroke, whereby augmented therapy may lead to a better treatment outcome. Technology-supported training holds opportunities for increasing training intensity. However, the effects of robot-supported task-oriented training with real life objects in stroke patients are not known to date. The aim of the present study was to investigate the effectiveness and added value of the Haptic Master robot combined with task-oriented arm hand training in chronic stroke patients. In a single-blind randomized controlled trial, 22 chronic stroke patients were randomly allocated to receive either task-oriented robot-assisted arm-hand training (experimental group) or task-oriented non-robotic arm-hand training (control group). For training, the T-TOAT (Technology-supported Task-Oriented Arm Training) method was applied. Training was provided during 8 weeks, 4 times/week, 2 × 30 min/day. A significant improvement after training on the Action Research Arm Test (ARAT) was demonstrated in the experimental group (p = 0.008). Results were maintained until 6 months after cessation of the training. On the perceived performance measure (Motor Activity Log (MAL)), both, the experimental and control group improved significantly after training (control group p = 0.008; experimental group p = 0.013). The improvements on MAL in both groups were maintained until 6 months after cessation of the training. With regard to quality of life, only in the control group a significant improvement after training was found (EuroQol-5D p = 0.015, SF-36 physical p = 0.01). However, the improvement on SF-36 in the control group was not maintained (p = 0.012). No between-group differences could be demonstrated on any of the outcome measures. Arm hand performance improved in chronic stroke patients, after eight weeks of task oriented training. The use of a Haptic Master robot in support of task-oriented arm training did not show additional value over the video-instructed task-oriented exercises in highly functional stroke patients. Current Controlled Trials ISRCTN82787126.
Cardiac Deceleration in Newborns: Habituation, Dishabituation, and Offset Responses
ERIC Educational Resources Information Center
Adkinson, Cheryl D.; Berg, W. Keith
1976-01-01
A total of 20 neonates were presented with mild intensity blue or blue-green light during presentation of habituation and dishabituation stimuli. Orienting and defensive responses were measured by monitoring heart rate deceleration. (GO)
Cooper, Robert F.; Lombardo, Marco; Carroll, Joseph; Sloan, Kenneth R.; Lombardo, Giuseppe
2016-01-01
The ability to non-invasively image the cone photoreceptor mosaic holds significant potential as a diagnostic for retinal disease. Central to the realization of this potential is the development of sensitive metrics for characterizing the organization of the mosaic. Here we evaluated previously-described (Pum et al., 1990) and newly-developed (Fourier- and Radon-based) methods of measuring cone orientation in both simulated and real images of the parafoveal cone mosaic. The proposed algorithms correlated well across both simulated and real mosaics, suggesting that each algorithm would provide an accurate description of individual photoreceptor orientation. Despite the high agreement between algorithms, each performed differently in response to image intensity variation and cone coordinate jitter. The integration property of the Fourier transform allowed the Fourier-based method to be resistant to cone coordinate jitter and perform the most robustly of all three algorithms. Conversely, when there is good image quality but unreliable cone identification, the Radon algorithm performed best. Finally, in cases where both the image and cone coordinate reliability was excellent, the method of Pum et al. (1990) performed best. These descriptors are complementary to conventional descriptive metrics of the cone mosaic, such as cell density and spacing, and have the potential to aid in the detection of photoreceptor pathology. PMID:27484961
Oduyemi, Rachael O; Ayegboyin, Matthew; Salami, Kabiru K
2016-06-01
The 2014 Ebola virus disease (EVD) outbreak was officially declared in the West Africa region by the World Health Organization (WHO) on 23 March 2014. This first episode of EVD in Nigeria on 20 July 2014 raised more intense panic globally than the seven occurrences of the disease in Zaire. Although Nigeria was declared Ebola free by the WHO within 3 months, it is imperative to understand people's perceptions of the disease in the country. A discussion of peoples' perception of EVD in Nigeria is the aim of this article. This discussion paper complements secondary data with grey literature to explore how peoples' imagination and personification of thoughts influence their health orientation. Data are sourced from secondary information compiled from 'The Nation Newspaper, 2014'; 'Nairaland online forum, 2014' and 'Giftedgreen online magazine, 2014'. Ebola virus disease was perceived as a spiritual manipulation of witchcraft activities and described as biological terrorism and a means of creating a drug market, among other issues, in the country. Public health professionals should consider the sociocultural milieu to understand and offer health-care services in epidemics. Public health orientation work is urgently required in Nigeria to forestall future occurrence of EVD and other highly infectious diseases. © 2016 John Wiley & Sons Australia, Ltd.
Zhou, Min; Zhang, Shudong; Sun, Yongfu; Wu, Changzheng; Wang, Mingtai; Xie, Yi
2010-12-03
Vertically aligned BiVO(4) nanowall films on indium tin oxide (ITO) glass have been fabricated through a template-free hydrothermal method for the first time. Based on the structural understanding of both BiVO(4) and ITO, the lattice matches ({020}(BiVO4) and {040}(ITO), {200}(BiVO4) and {004}(ITO), respectively) and the similarity of metal atomic arrangement parallel to {001} planes turn out to be crucial for the fabrication of the nanowalls. Consequently, the growth of a BiVO(4) film begins from heteroepitaxy and undergoes an Ostwald ripening process to form an extended network, resulting in a c-orientation and exposing {010} facets. Through this process, it is much easier to obtain a range of nanowall films with different packing densities, as the surface state of ITO glass is alterable by adjusting the concentration of acid. The films can be directly used as an electrode, which exhibits an excellent response to visible light, especially light with low intensity, allowing for the electrical interconnection, highly active surface, appropriate orientation, and a good contact with the substrate. There are great benefits in improving the technique for detecting the weak light source signals.
Oriented epitaxial TiO2 nanowires for water splitting
NASA Astrophysics Data System (ADS)
Hou, Wenting; Cortez, Pablo; Wuhrer, Richard; Macartney, Sam; Bozhilov, Krassimir N.; Liu, Rong; Sheppard, Leigh R.; Kisailus, David
2017-06-01
Highly oriented epitaxial rutile titanium dioxide (TiO2) nanowire arrays have been hydrothermally grown on polycrystalline TiO2 templates with their orientation dependent on the underlying TiO2 grain. Both the diameter and areal density of the nanowires were tuned by controlling the precursor concentration, and the template surface energy and roughness. Nanowire tip sharpness was influenced by precursor solubility and diffusivity. A new secondary ion mass spectrometer technique has been developed to install additional nucleation sites in single crystal TiO2 templates and the effect on nanowire growth was probed. Using the acquired TiO2 nanowire synthesis knowhow, an assortment of nanowire arrays were installed upon the surface of undoped TiO2 photo-electrodes and assessed for their photo-electrochemical water splitting performance. The key result obtained was that the presence of short and dispersed nanowire arrays significantly improved the photocurrent when the illumination intensity was increased from 100 to 200 mW cm-2. This is attributed to the alignment of the homoepitaxially grown nanowires to the [001] direction, which provides the fastest charge transport in TiO2 and an improved pathway for photo-holes to find water molecules and undertake oxidation. This result lays a foundation for achieving efficient water splitting under conditions of concentrated solar illumination.
Van der Lubbe, Rob H J; Blom, Jorian H G; De Kleine, Elian; Bohlmeijer, Ernst T
2017-02-01
We examined whether sustained vs. transient spatial attention differentially affect the processing of electrical nociceptive stimuli. Cued nociceptive stimuli of a relevant intensity (low or high) on the left or right forearm required a foot pedal press. The cued side varied trial wise in the transient attention condition, while it remained constant during a series of trials in the sustained attention condition. The orienting phase preceding the nociceptive stimuli was examined by focusing on lateralized EEG activity. ERPs were computed to examine the influence of spatial attention on the processing of the nociceptive stimuli. Results for the orienting phase showed increased ipsilateral alpha and beta power above somatosensory areas in both the transient and the sustained attention conditions, which may reflect inhibition of ipsilateral and/or disinhibition of contralateral somatosensory areas. Cued nociceptive stimuli evoked a larger N130 than uncued stimuli, both in the transient and the sustained attention conditions. Support for increased efficiency of spatial attention in the sustained attention condition was obtained for the N180 and the P540 component. We concluded that spatial attention is more efficient in the case of sustained than in the case of transient spatial attention. Copyright © 2016 Elsevier B.V. All rights reserved.
High-efficiency, deep-junction, epitaxial InP solar cells on (100) and (111)B InP substrates
NASA Technical Reports Server (NTRS)
Venkatasubramanian, R.; Timmons, M. L.; Hutchby, J. A.; Walters, Robert J.; Summers, Geoffrey P.
1994-01-01
We report on the development and performance of deep-junction (approximately 0.25 micron), graded-emitter-doped, n(sup +)-p InP solar cells grown by metallorganic chemical vapor deposition (MOCVD). A novel, diffusion-transport process for obtaining lightly-doped p-type base regions of the solar cell is described. The I-V data and external quantum-efficiency response of these cells are presented. The best active-area AMO efficiency for these deep-junction cells on (100)-oriented InP substrates is 16.8 percent, with a J(sub SC) of 31.8 mA/sq cm, a V(sub OC) of 0.843 V, and a fill-factor of 0.85. By comparison, the best cell efficiency on the (111)B-oriented InP substrates was 15.0 percent. These efficiency values for deep-junction cells are encouraging and compare favorably with performance of thin-emitter (0.03 micron) epitaxial cells as well as that of deep-emitter diffused cells. The cell performance and breakdown voltage characteristics of a batch of 20 cells on each of the orientations are presented, indicating the superior breakdown voltage properties and other characteristics of InP cells on the (111)B orientation. Spectral response, dark I-V data, and photoluminescence (PL) measurements on the InP cells are presented with an analysis on the variation in J(sub SC) and V(sub OC) of the cells. It is observed, under open-circuit conditions, that lower-V(sub OC) cells exhibit higher band-edge PL intensity for both the (100) and (111)B orientations. This anomalous behavior suggests that radiative recombination in the heavily-doped n(sup +)-InP emitter may be detrimental to achieving higher V(sub OC) in n(sup +)-p InP solar cells.
Navigational potential of e-vector sensing by marine animals
NASA Astrophysics Data System (ADS)
Waterman, Talbot H.
1993-02-01
This essay documents an informal talk about the central theme in the author's research career. That has mainly related to the visual physiology and orientation of aquatic animals, particularly with regard to underwater polarized light. This required pioneer measurements of underwater polarized light patterns, proof that oriented behavior could be determined by e- vector direction independently of intensity patterns or other secondary clues and a demonstration of the retinal dichroic mechanism involved, at least in crustacean compound eyes. The relevant visual data processing by two orthogonal channels was also analyzed with regard to oriented swimming behavior. Some current research by others and major unsolved problems are mentioned and the relevant part of the author's bibliography is appended.
Theory of liquid crystal orientation under action of light wave field and aligning surfaces
NASA Astrophysics Data System (ADS)
Dadivanyan, A. K.; Chausov, D. N.; Belyaev, V. V.; Barabanova, N. N.; Chausova, O. V.; Kuleshova, Yu D.
2018-03-01
Theoretical models developed in the MRSU group under leadership of Professor Artem Dadivanyan in area of the LC orientation and photo-induced effects are presented. Angular distribution functions of the dye and liquid crystal molecules under action of intensive light beam have been derived. The number of molecules in cluster is estimated. A model of dimers formation in the photoalignment dye is suggested that explains influence of the dye molecular structure on both polar and azimuthal anchoring energy.
Effect of Annealing on Microstructure, Texture and Tensile Properties of Twin-Roll Cast AZ31B
NASA Astrophysics Data System (ADS)
Masoumi, Mohsen; Zarandi, Faramarz; Pekguleryuz, Mihriban O.
Twin-roll cast (TRC) AZ31 alloy (Mg-3wt.%Al-1wt.%Zn) was subjected to heat treatment at 420 °C. As a result, the intensity of the original basal texture was reduced considerably. Crystallographic orientation analysis revealed that such a change in the texture is due to particle-stimulated nucleation of new grains with random orientations. The tensile test results indicate that annealing slightly increases ultimate tensile strength (UTS), however, dramatically improves the elongation.
Studies on Relaxation Behavior of Corona Poled Aromatic Dipolar Molecules in a Polymer Matrix
1990-08-03
concentration upto 30 weight percent. Orientation As expected optically responsive molecules are randomly oriented in the polymer matrix although a small amount...INSERT Figure 4 The retention of SH intensity of the small molecule such as MNA was found to be very poor in the PMMA matrix while the larger rodlike...Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem. 24(2), 309 (1983). 16.- H. Ringsdorf and H. W. Schmidt. Makromol. Chem. 185, 1327 (1984). 17. S. Musikant
Accurate estimation of human body orientation from RGB-D sensors.
Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao
2013-10-01
Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.
Ellipticity of near-threshold harmonics from stretched molecules.
Li, Weiyan; Dong, Fulong; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun
2015-11-30
We study the ellipticity of near-threshold harmonics (NTH) from aligned molecules with large internuclear distances numerically and analytically. The calculated harmonic spectra show a broad plateau for NTH which is several orders of magnitude higher than that for high-order harmonics. In particular, the NTH plateau shows high ellipticity at small and intermediate orientation angles. Our analyses reveal that the main contributions to the NTH plateau come from the transition of the electron from continuum states to these two lowest bound states of the system, which are strongly coupled together by the laser field. Besides continuum states, higher excited states also play a role in the NTH plateau, resulting in a large phase difference between parallel and perpendicular harmonics and accordingly high ellipticity of the NTH plateau. The NTH plateau with high intensity and large ellipticity provides a promising manner for generating strong elliptically-polarized extreme-ultraviolet (EUV) pulses.
Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis
NASA Astrophysics Data System (ADS)
Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.
2016-07-01
Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.
Zhang, Qian; Yang, Dong; Qi, Jia; Cheng, Ya; Gong, Qihuang; Li, Yan
2017-06-12
We report single scan transverse writing of depressed cladding waveguides inside ZBLAN glass with the longitudinally oriented annular ring-shaped focal intensity distribution of the femtosecond laser. The entire region of depressed cladding at the cross section, where a negative change of refraction index is induced, can be modified simultaneously with the ring-shaped focal intensity profile. The fabricated waveguides exhibit good single guided mode.
Guisado-Pintado, Emilia; Jackson, Derek W T
2018-07-15
Low frequency, high magnitude storm events can dramatically alter coastlines, helping to relocate large volumes of sediments and changing the configuration of landforms. Increases in the number of intense cyclones occurring in the Northern Hemisphere since the 1970s is evident with more northward tracking patterns developing. This brings added potential risk to coastal environments and infrastructure in northwest Europe and therefore understanding how these high-energy storms impact sandy coasts in particular is important for future management. This study highlights the evolution of Storm (formally Hurricane) Ophelia in October 2017 as it passed up and along the western seaboard of Ireland. The largest ever recorded Hurricane to form in the eastern Atlantic, we describe, using a range of environmental measurements and wave modelling, its track and intensity over its duration whilst over Ireland. The impact on a stretch of sandy coast in NW Ireland during Storm Ophelia, when the winds were at their peak, is examined using terrestrial laser scanning surveys pre- and post-storm to describe local changes of intertidal and dune edge dynamics. During maximum wind conditions (>35 knots) waves no >2m were recorded with an oblique to parallel orientation and coincident with medium to low tide (around 0.8m). Therefore, we demonstrate that anticipated widespread coastal erosion and damage may not always unfold as predicted. In fact, around 6000m 3 of net erosion occurred along the 420m stretch of coastline with maximum differences in beach topographic changes of 0.8m. The majority of the sediment redistribution occurred within the intertidal and lower beach zone with some limited dune trimming in the southern section (10% of the total erosion). Asynchronous high water (tide levels), localised offshore winds as well as coastline orientation relative to the storm winds and waves plays a significant role in reducing coastal erosional impact. Copyright © 2018 Elsevier B.V. All rights reserved.
Khan, Fasihullah; Ajmal, Hafiz Muhammad Salman; Huda, Noor Ul; Kim, Ji Hyun; Kim, Sam-Dong
2018-01-01
In this study, the ambient condition for the as-coated seed layer (SL) annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs). The NR crystals of high surface density (~240 rods/μm2) and aspect ratio (~20.3) show greatly enhanced (002) degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002) and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360–400 nm) of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors. PMID:29373523
Gaps in Protoplanetary Disks as Signatures of Planets. III. Polarization
NASA Astrophysics Data System (ADS)
Jang-Condell, Hannah
2017-01-01
Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected by polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.
Als, Heidelise; McAnulty, Gloria B.
2014-01-01
State-of-the-art Newborn Intensive Care Units (NICUs), instrumental in the survival of high-risk and ever-earlier-born preterm infants, often have costly human repercussions. The developmental sequelae of newborn intensive care are largely misunderstood. Developed countries eager to export their technologies must also transfer the knowledge-base that encompasses all high-risk and preterm infants’ personhood as well as the neuro-essential importance of their parents. Without such understanding, the best medical care, while assuring survival jeopardizes infants’ long-term potential and deprives parents of their critical role. Exchanging the womb for the NICU environment at a time of rapid brain growth compromises preterm infants’ early development, which results in long-term physical and mental health problems and developmental disabilities. The Newborn Individualized Developmental Care and Assessment Program (NIDCAP) aims to prevent the iatrogenic sequelae of intensive care and to maintain the intimate connection between parent and infant, one expression of which is Kangaroo Mother Care. NIDCAP embeds the infant in the natural parent niche, avoids over-stimulation, stress, pain, and isolation while it supports self-regulation, competence, and goal orientation. Research demonstrates that NIDCAP improves brain development, functional competence, health, and life quality. It is cost effective, humane, and ethical, and promises to become the standard for all NICU care. PMID:25473384
Als, Heidelise; McAnulty, Gloria B
2011-08-01
State-of-the-art Newborn Intensive Care Units (NICUs), instrumental in the survival of high-risk and ever-earlier-born preterm infants, often have costly human repercussions. The developmental sequelae of newborn intensive care are largely misunderstood. Developed countries eager to export their technologies must also transfer the knowledge-base that encompasses all high-risk and preterm infants' personhood as well as the neuro-essential importance of their parents. Without such understanding, the best medical care, while assuring survival jeopardizes infants' long-term potential and deprives parents of their critical role. Exchanging the womb for the NICU environment at a time of rapid brain growth compromises preterm infants' early development, which results in long-term physical and mental health problems and developmental disabilities. The Newborn Individualized Developmental Care and Assessment Program (NIDCAP) aims to prevent the iatrogenic sequelae of intensive care and to maintain the intimate connection between parent and infant, one expression of which is Kangaroo Mother Care. NIDCAP embeds the infant in the natural parent niche, avoids over-stimulation, stress, pain, and isolation while it supports self-regulation, competence, and goal orientation. Research demonstrates that NIDCAP improves brain development, functional competence, health, and life quality. It is cost effective, humane, and ethical, and promises to become the standard for all NICU care.
Future orientation and suicide ideation and attempts in depressed adults ages 50 and over.
Hirsch, Jameson K; Duberstein, Paul R; Conner, Kenneth R; Heisel, Marnin J; Beckman, Anthony; Franus, Nathan; Conwell, Yeates
2006-09-01
The objective of this study was to test the hypothesis that future orientation is associated with lower levels of suicide ideation and lower likelihood of suicide attempt in a sample of patients in treatment for major depression. Two hundred two participants (116 female, 57%) ages 50-88 years were recruited from inpatient and outpatient settings. All were diagnosed with major depression using a structured diagnostic interview. Suicide ideation was assessed with the Scale for Suicide Ideation (both current and worst point ratings), and a measure of future orientation was created to assess future expectancies. The authors predicted that greater future orientation would be associated with less current and worst point suicide ideation, and would distinguish current and lifetime suicide attempters from nonattempters. Hypotheses were tested using multivariate logistic regression and linear regression analyses that accounted for age, gender, hopelessness, and depression. As hypothesized, higher future orientation scores were associated with lower current suicidal ideation, less intense suicidal ideation at its worst point, and lower probability of a history of attempted suicide after accounting for covariates. Future orientation was not associated with current attempt status. Future orientation holds promise as a cognitive variable associated with decreased suicide risk; a better understanding of its putative protective role is needed. Treatments designed to enhance future orientation might decrease suicide risk.
Detection of alterations in human sperm using magnetic orientation techniques
NASA Astrophysics Data System (ADS)
Sakhnini, Lama; Dairi, Maheen; Manaa, Hacene
2007-09-01
In this study we report on magnetic orientation of human sperms. Samples were taken from 17 donors. Normal human sperms became oriented with their long axis perpendicular to the magnetic field ( 1 Tesla maximum). Total orientation was achieved with magnetic field at about one Tesla, while for abnormal sperms the magnetic behavior was different. The dependence of the measured degree of orientation on the intensity of the magnetic field was in good agreement with the theoretical equation for the magnetic orientation of diamagnetic substances. As a result for a numerical analysis based on the equation, the anisotropic diamagnetic susceptibility of normal sperm was found to be ▵ χ= 8×10 -20 J/T2. The degree of orientation was influenced by the alterations in the shape of the head, body or the tail. It has been suggested that the DNA in the sperm head retain the strong magnetic anisotropy to counter balance the magnetic anisotropy retained by flagellum microtubules. Recent studies demonstrated a well-defined nuclear architecture in human sperm nucleus, where the head morphology has significant correlation with sperm chromatin structure assay SCSA. Then as the methods to evaluate SCSA can be difficult and expensive our simple magnetic orientation technique can be an alternative to diagnose alteration in DNA.
Two-Photon Luminescence and Second Harmonic Generation from Gold Micro-Plates
Wang, Xu; Shi, Hao; Wang, Naiyin; Cheng, Lianghui; Gao, Ying; Huang, Lu; Jiang, Yuqiang
2014-01-01
Micron-sized gold plates were prepared by reducing chloroauric acid with lemongrass extract. Their two-photon luminescence (TPL) and second harmonic generation (SHG) were investigated. The results show that the TPL and SHG intensity of gold plates is dependent on the wavelength and polarization of excitation laser. The TPL intensity of gold plates decreases with the increase of the excitation wavelength except for a small peak around 820–840 nm, while SHG intensity increases with the excitation wavelength redshift. In addition, it is found that the TPL intensity of the gold plate’s edge is related with the angle between the edge orientation and the polarization direction of the excitation light. The TPL intensity increases with the angle increase from 0° to 90°. PMID:25268923
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisner, L. L., E-mail: llm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru; Poletika, T. M., E-mail: poletm@ispms.tsc.ru
Using the EBSD, SEM and TEM methods, the structure of surface layer of polycrystalline NiTi alloy samples was examined after the modification of material surface by the pulsed action of mean-energy silicon ion beam. It was found that the ion beam treatment would cause grain fragmentation of the near-surface layer to a depth 5÷50 μm; a higher extent of fragmentation was observed in grains whose close-packed planes were oriented approximately in the same direction as the ion beam was. The effect of high-intensity ion beam treatment on the anisotropic behavior of polycrystalline NiTi alloy and the mechanisms involved were alsomore » examined.« less
Building HR capability in health care organizations.
Khatri, Naresh
2006-01-01
The current human resource (HR) management practices in health care are consistent with the industrial model of management. However, health care organizations are not factories. They are highly knowledge-intensive and service-oriented entities and thus require a different set of HR practices and systems to support them. Drawing from the resource-based theory, I argue that HRs are a potent weapon of competitive advantage for health care organizations and propose a five-dimensional conception of HR capability for harnessing HRs in health care organizations. The significant complementarities that exist between HRs and information technologies for delivering safer and better quality of patient care are also discussed.
Ebersbach, Georg; Grust, Ute; Ebersbach, Almut; Wegner, Brigitte; Gandor, Florin; Kühn, Andrea A
2015-02-01
LSVT-BIG is an exercise for patients with Parkinson's disease (PD) comprising of 16 1-h sessions within 4 weeks. LSVT-BIG was compared with a 2-week short protocol (AOT-SP) consisting of 10 sessions with identical exercises in 42 patients with PD. UPDRS-III-score was reduced by -6.6 in LSVT-BIG and -5.7 in AOT-SP at follow-up after 16 weeks (p < 0.001). Measures of motor performance were equally improved by LSVT-BIG and AOT-SP but high-intensity LSVT-BIG was more effective to obtain patient-perceived benefit.
Metallocarbohedrenes: Transmission Electron Microscopy of Mass Gated Deposits
NASA Astrophysics Data System (ADS)
Castleman, M. E. Lyn, Jr.
2002-03-01
Titanium and zirconium Met-Car cluster ions have been detected from the direct laser vaporization of metal-graphite mixtures using time-of-flight mass spectrometry. Optimization of the production conditions enabled sufficient intensities to mass select and deposit Met-Cars on surfaces. High-resolution transmission electron microscopy images of mass gated Met-Car species reveals deposited nanocrystals 2 nm in diameter. Diffraction patterns indicate the presence of multiple species and shows that the deposits have spatial orientation. Lattice parameters have been extracted. The implication of the findings will be discussed. Support for the work has been from the AFOSR F49620-01-1-0122.
Robert J. Warren
2009-01-01
In the Northern Hemisphere, the surface of south-facing slopes orients toward the sun and thus receives a greater duration and intensity of solar irradiation, resulting in a relatively warmer, drier...
NASA Astrophysics Data System (ADS)
Arellano-Baeza, A. A.; Soto-Pinto, C. A.
2014-12-01
Over the last decades strong efforts have been made to apply new spaceborn technologies to the study of volcanic activity. Recent studies have shown that the high resolution satellite images can be very useful for tracking of evolution of the stress patterns related to the volcanic activity. It can be done by observing the changes in density and orientation of lineaments extracted from satellite images. A lineament is generally defined as a straight or a somewhat curved feature in the landscape visible in a satellite image as an aligned sequence of pixels of a contrasting intensity compared to the background. The system of lineaments extracted from the satellite images is not identical to the geological lineaments which are usually determined by land-based surveys, nevertheless, it generally reflects the structure of the faults and fractures in the Earth's crust. For this study the lineaments were detected using the ADALGEO software, based on the Hough transform (Soto-Pinto et al, 2013). A temporal sequence of the Landsat 8 multispectral images of the Lascar volcano, located in the North of Chile, was used to study changes in lineament configuration during 2013-2014. It was found that, the number and orientation of lineaments is affected by microseimicity. In particular, it was found that often the density of lineaments decreases with the intensity of microseisms, which could be related to the volcano inflation.
Olivares, Alberto; Górriz, J M; Ramírez, J; Olivares, G
2016-05-01
With the advent of miniaturized inertial sensors many systems have been developed within the last decade to study and analyze human motion and posture, specially in the medical field. Data measured by the sensors are usually processed by algorithms based on Kalman Filters in order to estimate the orientation of the body parts under study. These filters traditionally include fixed parameters, such as the process and observation noise variances, whose value has large influence in the overall performance. It has been demonstrated that the optimal value of these parameters differs considerably for different motion intensities. Therefore, in this work, we show that, by applying frequency analysis to determine motion intensity, and varying the formerly fixed parameters accordingly, the overall precision of orientation estimation algorithms can be improved, therefore providing physicians with reliable objective data they can use in their daily practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Binienda, W. K.; Tan, H. Q.; Xu, M. H.
1992-01-01
Analytical derivations of stress intensity factors (SIF's) of a multicracked plate can be complex and tedious. Recent advances, however, in intelligent application of symbolic computation can overcome these difficulties and provide the means to rigorously and efficiently analyze this class of problems. Here, the symbolic algorithm required to implement the methodology described in Part 1 is presented. The special problem-oriented symbolic functions to derive the fundamental kernels are described, and the associated automatically generated FORTRAN subroutines are given. As a result, a symbolic/FORTRAN package named SYMFRAC, capable of providing accurate SIF's at each crack tip, was developed and validated. Simple illustrative examples using SYMFRAC show the potential of the present approach for predicting the macrocrack propagation path due to existing microcracks in the vicinity of a macrocrack tip, when the influence of the microcrack's location, orientation, size, and interaction are taken into account.
SALUTE Grid Application using Message-Oriented Middleware
NASA Astrophysics Data System (ADS)
Atanassov, E.; Dimitrov, D. Sl.; Gurov, T.
2009-10-01
Stochastic ALgorithms for Ultra-fast Transport in sEmiconductors (SALUTE) is a grid application developed for solving various computationally intensive problems which describe ultra-fast carrier transport in semiconductors. SALUTE studies memory and quantum effects during the relaxation process due to electronphonon interaction in one-band semiconductors or quantum wires. Formally, SALUTE integrates a set of novel Monte Carlo, quasi-Monte Carlo and hybrid algorithms for solving various computationally intensive problems which describe the femtosecond relaxation process of optically excited carriers in one-band semiconductors or quantum wires. In this paper we present application-specific job submission and reservation management tool named a Job Track Server (JTS). It is developed using Message-Oriented middleware to implement robust, versatile job submission and tracing mechanism, which can be tailored to application specific failover and quality of service requirements. Experience from using the JTS for submission of SALUTE jobs is presented.
Stress intensity factors for an inclined crack in an orthotropic strip
NASA Technical Reports Server (NTRS)
Delale, F.; Bakirtas, I.; Erdogan, F.
1978-01-01
The elastostatic problem for an infinite orthotropic strip containing a crack is considered. It is assumed that the orthogonal axes of material orthotropy may have an arbitrary angular orientation with respect to the orthogonal axes of geometric symmetry of the uncracked strip. The crack is located along an axis of orthotropy, hence at an arbitrary angle with respect to the sides of the strip. The general problem is formulated in terms of a system of singular integral equations for arbitrary crack surface tractions. As examples Modes I and II stress intensity factors are calculated for the strip having an internal or an edge crack with various lengths and angular orientations. In most calculations uniform tension or uniform bending away from the crack region is used as the external load. Limited results are also given for uniform normal or shear tractions on the crack surface.
Theory of fluorescence polarization in magnetically oriented photosynthetic systems.
Knox, R S; Davidovich, M A
1978-01-01
Many cells and cell fragments are known to assume specific alignments with respect to an applied magnetic field. One indicator of this alignment is a difference between the intensities of fluorescence observed in polarizations parallel and perpendicular to the magnetic filed. We calculate these two intensities using a model that assumes axially symmetric membranes and that covers a wide variety of shapes from flat disk to right cylinder. The fluorescence is assumed to originate at chromophores randomly exicted but nonrandomly oriented in the membranes. The membrane alignment is assumed to be due to the net torque on a nonrandom distribution of diamagnetically anisotropic molecules. The predicted results are consistent with most magnetoorientation data from green cells, but we are able to show that Chlorella data are not consistent with the hypothesis that the membranes have, and maintain, a cuplike configuration. Images FIGURE 4 FIGURE 5 PMID:737283
Employing Theories Far beyond Their Limits - Linear Dichroism Theory.
Mayerhöfer, Thomas G
2018-05-15
Using linear polarized light, it is possible in case of ordered structures, such as stretched polymers or single crystals, to determine the orientation of the transition moments of electronic and vibrational transitions. This not only helps to resolve overlapping bands, but also assigning the symmetry species of the transitions and to elucidate the structure. To perform spectral evaluation quantitatively, a sometimes "Linear Dichroism Theory" called approach is very often used. This approach links the relative orientation of the transition moment and polarization direction to the quantity absorbance. This linkage is highly questionable for several reasons. First of all, absorbance is a quantity that is by its definition not compatible with Maxwell's equations. Furthermore, absorbance seems not to be the quantity which is generally compatible with linear dichroism theory. In addition, linear dichroism theory disregards that it is not only the angle between transition moment and polarization direction, but also the angle between sample surface and transition moment, that influences band shape and intensity. Accordingly, the often invoked "magic angle" has never existed and the orientation distribution influences spectra to a much higher degree than if linear dichroism theory would hold strictly. A last point that is completely ignored by linear dichroism theory is the fact that partially oriented or randomly-oriented samples usually consist of ordered domains. It is their size relative to the wavelength of light that can also greatly influence a spectrum. All these findings can help to elucidate orientation to a much higher degree by optical methods than currently thought possible by the users of linear dichroism theory. Hence, it is the goal of this contribution to point out these shortcomings of linear dichroism theory to its users to stimulate efforts to overcome the long-lasting stagnation of this important field. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The contribution of forward masking to saccadic inhibition of return.
Souto, David; Born, Sabine; Kerzel, Dirk
2018-03-08
Inhibition of return is the name typically given to the prolonged latency of motor responses directed to a previously cued target location. There is intense debate about the origins of this effect and its function, but most take for granted (despite lack of evidence) that it depends little on forward masking. Therefore, we re-examined the role of forward masking in inhibition of return. Forward masking was indexed by slower saccadic reaction times (SRTs) when the target orientation repeated the cue orientation at the same location. We confirmed effects of orientation repetition in the absence of an attentional bias when cues were presented on both sides of fixation (bilateral presentation). The effect of orientation repetition was reduced with high target contrast, consistent with a low-level origin such as contrast gain control in early visual areas. When presenting cues on only one side of fixation (unilateral presentation), we obtained inhibition of return with longer cue-target intervals and facilitation with targets presented shortly after the cue. The effect of orientation repetition was reduced when facilitation was observed, but was as strong as with bilateral cues when inhibition of return was observed. Therefore, forward masking may contribute to the inhibition of return effect by delaying reaction times to repeated features at the same location, but is not a principal cause of inhibition of return; in agreement with previous views. The saccadic inhibition of return effect is a reaction-time cost when responding to a pre-cued location. Additional object updating costs are typically invoked to explain reaction-time costs observed when cue and target have the same shape. Yet, lower-level, forward masking of the target by the cue can not be ruled out. Importantly, we show an effect of orientation repetition that is consistent with low-level forward masking rather than object updating costs and that does not interact with inhibition of return.
Zbik, Marek S; Frost, Ray L
2010-06-15
The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using atomic force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concentrations and larger particle diameters (up to 5 microm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 001/020 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction. 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Akazawa, Housei; Ueno, Yuko
2014-10-01
We report how the crystallinity and orientation of hydroxyapatite (HAp) films deposited on sapphire substrates depend on the crystallographic planes. Both solid-phase crystallization of amorphous HAp films and crystallization during sputter deposition at elevated temperatures were examined. The low-temperature epitaxial phase on C-plane sapphire substrates has c-axis orientated HAp crystals regardless of the crystallization route, whereas the preferred orientation switches to the (310) direction at higher temperatures. Only the symmetric stretching mode (ν1) of PO43- units appears in the Raman scattering spectra, confirming well-ordered crystalline domains. In contrast, HAp crystals grown on A-plane sapphire substrates are always oriented toward random orientations. Exhibiting all vibrational modes (ν1, ν3, and ν4) of PO43- units in the Raman scattering spectra reflects random orientation, violating the Raman selection rule. If we assume that Raman intensities of PO43- units represent the crystallinity of HAp films, crystallization terminating the surface with the C-plane is hindered by the presence of excess H2O and OH species in the film, whereas crystallization at random orientations on the A-plane sapphire is rather promoted by these species. Such contrasting behaviors between C-plane and A-plane substrates will reflect surface-plane dependent creation of crystalline seeds and eventually determine the orientation of resulting HAp films.
The effect of short-term training on cardinal and oblique orientation discrimination: an ERP study.
Song, Yan; Sun, Li; Wang, You; Zhang, Xuemin; Kang, Jing; Ma, Xiaoli; Yang, Bin; Guan, Yijie; Ding, Yulong
2010-03-01
The adult brain shows remarkable plasticity, as demonstrated by the improvement in most visual discrimination tasks after intensive practice. However, previous studies have demonstrated that practice improved the discrimination only around oblique orientations, while performance around cardinal orientations (vertical or horizontal orientations) remained stable despite extensive training. The two experiments described here used event-related potentials (ERPs) to investigate the neural substrates underlying different training effects in the two kinds of orientation. Event-related potentials were recorded from subjects when they were trained with a grating orientation discrimination task. Psychophysical threshold measurements were performed before and after the training. For oblique gratings, psychophysical thresholds decreased significantly across training sessions. ERPs showed larger P2 and P3 amplitudes and smaller N1 amplitudes over the parietal/occipital areas with more practice. In line with the psychophysical thresholds, the training effect on the P2 and P3 was specific to stimulus orientation. However, the N1 effect was generalized over differently oriented gratings stimuli. For cardinally oriented gratings, no significant changes were found in the psychophysical thresholds during the training. ERPs still showed similar generalized N1 effect as the oblique gratings. However, the amplitudes of P2 and P3 were unchanged during the whole training. Compared with cardinal orientations, more visual processing stages and later ERP components were involved in the training of oblique orientation discrimination. These results contribute to understanding the neural basis of the asymmetry between cardinal and oblique orientation training effects. Copyright 2009 Elsevier B.V. All rights reserved.
Hirschmann, Michael T; Mathis, Dominic; Rasch, Helmut; Amsler, Felix; Friederich, Niklaus F; Arnold, Markus P
2013-02-01
SPECT/CT is a hybrid imaging modality, which combines a 3D scintigraphy (SPECT) and a conventional computerised tomography (CT). SPECT/CT allows accurate anatomical localisation of metabolic tracer activity. It allows the correlation of surgical factors such as tunnel position and orientation with mechanical alignment, clinical outcome and biological factors. The purpose of this study was to investigate whether the SPECT/CT tracer uptake (intensity and distribution) correlates with the stability and laxity of the knee joint and the position and orientation of the tibial and femoral tunnels in patients after anterior cruciate ligament (ACL) reconstruction. A consecutive series of knees (n=66), with symptoms of pain and/or instability after ACL reconstruction were prospectively evaluated using clinical examination and 99mTc-HDP-SPECT/CT. Clinical laxity testing was performed using the Rolimeter (Ormed, Freiburg, Germany) including Lachman testing (0-2 mm, 3-5 mm, 6-10 mm, >10 mm), anterior drawer test (0-2 mm, 3-5 mm, 6-10 mm, >10 mm), pivot shift test (positive versus negative) and patient-based subjective instability (yes versus no). For analysis of SPECT/CT tracer uptake a previously validated SPECT/CT localisation scheme consisting of 17 tibial, nine femoral and four patellar regions on standardised axial, coronal, and sagittal slices was used. The tracer activity on SPECT/CT was localised and recorded using a 3D volumetric and quantitative analysis software. Mean, standard deviation, minimum and maximum of grading for each area of the localisation scheme were recorded. The position and orientation of the tibial and femoral tunnel was assessed using a previously published method on 3D-CT. Correlation of instability, pivot shift as well as clinical laxity testing with 99mTc-HDP-SPECT/CT tracer uptake intensity and distribution showed no significant correlation. 99mTc-HDP-SPECT/CT tracer uptake correlated significantly with the position and orientation of the ACL graft. A more horizontal femoral graft position showed significantly increased tracer uptake within the superior and posterior femoral regions. A more posteriorly-placed femoral insertion site showed significantly more tracer uptake within the femoral and tibial tunnel regions. A more vertical or a less medial tibial tunnel orientation showed significant increased uptake within the tibial and femoral tunnel regions. A more anterior tibial tunnel position showed significantly more tracer uptake in the femoral and tibial tunnel regions as well as the entire tibiofemoral joint. SPECT/CT tracer uptake intensity and distribution showed a significant correlation with the femoral and tibial tunnel position and orientation in patients with symptomatic knees after ACL reconstruction. No correlation was found with stability or clinical laxity. SPECT/CT tracer uptake distribution has the potential to give us important information on joint homeostasis and remodelling after ACL reconstruction. It might help to predict ACL graft failure and improve our surgical ACL reconstruction technique in finding the optimal tunnel and graft position and orientation.
NASA Astrophysics Data System (ADS)
Feng, H.; Liu, J.
2017-12-01
During the Early Cretaceous tectonic lithosphere extension, the pre-mesozoic rocks from the Western Hills in the central part of the North China Craton suffered from weak metamorphism but intense shear deformation. The prominent features of the deformation structures are the coexisting layer-parallel shear zones and intrafolia folds, and the along-strike thickness variations of the marble layers from the highly sheared Mesoproterozoic Jing'eryu Formation. Platy marbles are well-developed in the thinner layers, while intrafolia folds are often observed in the thicker layers. Most folds are tight recumbent folds and their axial planes are parallel to the foliations and layerings of the marbles. The folds are A-type folds with hinges being always paralleling to the stretching lineations consistently oriented at 130°-310° directions throughout the entire area. SPO and microstructural analyses of the sheared marbles suggest that the thicker layers suffered from deformations homogeneously, while strain localization can be distinguished in the thinner layers. Calcite twin morphology and CPO analysis indicate that the deformation of marbles from both thinner and thicker layers happened at temperatures of 300 to 500°C. The above analysis suggests that marbles in the thicker layers experienced a progressive sequence of thermodynamic events: 1) regional metamorphism, 2) early ductile deformation dominated by relatively higher temperature conditions, during which all the mineral particles elongated and oriented limitedly and the calcite grains are deformed mainly by mechanical twinning, and 3) late superimposition of relatively lower temperature deformation and recrystallization, which superposed the early deformation, and made the calcites finely granulated, elongated and oriented by dynamical recrystallization along with other grains. Marbles from the thinner layers, however, experienced a similar, but different sequence of thermo-dynamic events, i.e. regional metamorphism, early ductile deformation and weak superimposition by subsequent deformation, which caused the development of the strain localization. It is also shown that the intensity of progressive superimposition deformation contributed to the thinning and thickening of the marble layers.
Simmons, Cameron S.; Knouf, Emily Christine; Tewari, Muneesh; Lin, Lih Y.
2011-01-01
A method to manipulate the position and orientation of submicron particles nondestructively would be an incredibly useful tool for basic biological research. Perhaps the most widely used physical force to achieve noninvasive manipulation of small particles has been dielectrophoresis(DEP).1 However, DEP on its own lacks the versatility and precision that are desired when manipulating cells since it is traditionally done with stationary electrodes. Optical tweezers, which utilize a three dimensional electromagnetic field gradient to exert forces on small particles, achieve this desired versatility and precision.2 However, a major drawback of this approach is the high radiation intensity required to achieve the necessary force to trap a particle which can damage biological samples.3 A solution that allows trapping and sorting with lower optical intensities are optoelectronic tweezers (OET) but OET's have limitations with fine manipulation of small particles; being DEP-based technology also puts constraint on the property of the solution.4,5 This video article will describe two methods that decrease the intensity of the radiation needed for optical manipulation of living cells and also describe a method for orientation control. The first method is plasmonic tweezers which use a random gold nanoparticle (AuNP) array as a substrate for the sample as shown in Figure 1. The AuNP array converts the incident photons into localized surface plasmons (LSP) which consist of resonant dipole moments that radiate and generate a patterned radiation field with a large gradient in the cell solution. Initial work on surface plasmon enhanced trapping by Righini et al and our own modeling have shown the fields generated by the plasmonic substrate reduce the initial intensity required by enhancing the gradient field that traps the particle.6,7,8 The plasmonic approach allows for fine orientation control of ellipsoidal particles and cells with low optical intensities because of more efficient optical energy conversion into mechanical energy and a dipole-dependent radiation field. These fields are shown in figure 2 and the low trapping intensities are detailed in figures 4 and 5. The main problems with plasmonic tweezers are that the LSP's generate a considerable amount of heat and the trapping is only two dimensional. This heat generates convective flows and thermophoresis which can be powerful enough to expel submicron particles from the trap.9,10 The second approach that we will describe is utilizing periodic dielectric nanostructures to scatter incident light very efficiently into diffraction modes, as shown in figure 6.11 Ideally, one would make this structure out of a dielectric material to avoid the same heating problems experienced with the plasmonic tweezers but in our approach an aluminum-coated diffraction grating is used as a one-dimensional periodic dielectric nanostructure. Although it is not a semiconductor, it did not experience significant heating and effectively trapped small particles with low trapping intensities, as shown in figure 7. Alignment of particles with the grating substrate conceptually validates the proposition that a 2-D photonic crystal could allow precise rotation of non-spherical micron sized particles.10 The efficiencies of these optical traps are increased due to the enhanced fields produced by the nanostructures described in this paper. PMID:21988841
Leverage hadoop framework for large scale clinical informatics applications.
Dong, Xiao; Bahroos, Neil; Sadhu, Eugene; Jackson, Tommie; Chukhman, Morris; Johnson, Robert; Boyd, Andrew; Hynes, Denise
2013-01-01
In this manuscript, we present our experiences using the Apache Hadoop framework for high data volume and computationally intensive applications, and discuss some best practice guidelines in a clinical informatics setting. There are three main aspects in our approach: (a) process and integrate diverse, heterogeneous data sources using standard Hadoop programming tools and customized MapReduce programs; (b) after fine-grained aggregate results are obtained, perform data analysis using the Mahout data mining library; (c) leverage the column oriented features in HBase for patient centric modeling and complex temporal reasoning. This framework provides a scalable solution to meet the rapidly increasing, imperative "Big Data" needs of clinical and translational research. The intrinsic advantage of fault tolerance, high availability and scalability of Hadoop platform makes these applications readily deployable at the enterprise level cluster environment.
Method for obtaining structure and interactions from oriented lipid bilayers
Lyatskaya, Yulia; Liu, Yufeng; Tristram-Nagle, Stephanie; Katsaras, John; Nagle, John F.
2009-01-01
Precise calculations are made of the scattering intensity I(q) from an oriented stack of lipid bilayers using a realistic model of fluctuations. The quantities of interest include the bilayer bending modulus Kc , the interbilayer interaction modulus B, and bilayer structure through the form factor F(qz). It is shown how Kc and B may be obtained from data at large qz where fluctuations dominate. Good estimates of F(qz) can be made over wide ranges of qz by using I(q) in q regions away from the peaks and for qr≠0 where details of the scattering domains play little role. Rough estimates of domain sizes can also be made from smaller qz data. Results are presented for data taken on fully hydrated, oriented DOPC bilayers in the Lα phase. These results illustrate the advantages of oriented samples compared to powder samples. PMID:11304287
Yang, Pei; Liu, Liying; Xu, Lei
2008-02-28
Transient evolution of light-induced molecular reorientation both in 1-amino-anthraquinone (1AAQ) dye and azobenzene doped isotropic liquid crystals (LCs) were studied by time-resolved optically heterodyned optical Kerr effect method. The results give clear direct experimental proof that under short pulse (30 ps) excitation, LC molecules orientate toward the excitation light polarization direction in the 1AAQ/LC system. However, LC molecular orientation becomes orthogonal to the light polarization in azobenzene/LC system. Time-resolved excited-state absorption of 1AAQ and wavelength dependent excited-state absorption of azobenzene were also observed and their contributions to the early dynamics of the third order optical responses of the two systems were confirmed. A simplified two-level mean-field theory was derived to reveal the intensity dependence of orientation enhancement factor in azobenzene/LC system considering the photoisomerization process.
Sexual orientation and professional dance.
Bailey, J M; Oberschneider, M
1997-08-01
The stereotypical professional male dancer is a gay man. However, little if any systematic research has investigated the validity of this stereotype, much less the reasons why male sexual orientation would be associated with interest in dance. We interviewed 136 professional dancers about the prevalence of homosexuality among dancers, the dancers' own sexual development, and relationships between dancers of different sexual orientations. Dancers estimated that over half of male dancers are gay, but that only a small minority of female dancers are lesbian. Gay men recalled more intense early interest in dance compared to heterosexual men and women, and were more feminine as boys than were heterosexual men. Gay men's homosexual feelings typically preceded their dance experience, and only one gay man felt that his dance experiences may have influenced his sexual orientation. Heterosexual men voiced some mild complaints about gay male dancers, but these were balanced by positive sentiments.
Gender role orientation and fearfulness in children with anxiety disorders.
Ginsburg, G S; Silverman, W K
2000-01-01
Research on gender differences in children's fears has generally shown that girls are more fearful than boys. A common hypothesis offered for this finding is that gender role orientations or expectations may be operating. However, this hypothesis has not been directly investigated in child samples. The present study examined the relation between a self-report measure of gender role orientation (i.e., masculinity/femininity) and the intensity of self-reported fears in a clinic sample of children (N = 66; ages 6-11; 41 boys and 25 girls) with anxiety disorders. Results revealed that masculinity was negatively related to overall levels of fearfulness as well as specific fears of failure and criticism, medical fears, and fears of the unknown. In contrast, no relation was found between femininity and fearfulness. These findings suggest that gender role orientation, especially masculinity, may play a role in the development and/or maintenance of fearfulness in children.
NASA Astrophysics Data System (ADS)
Brosnan, Kristen H.
In this study, XRD and electron backscatter diffraction (EBSD) techniques were used to characterize the fiber texture in oriented PMN-28PT and the intensity data were fit with a texture model (the March-Dollase equation) that describes the texture in terms of texture fraction (f), and the width of the orientation distribution (r). EBSD analysis confirmed the <001> orientation of the microstructure, with no distinguishable randomly oriented, fine grain matrix. Although XRD rocking curve and EBSD data analysis gave similar f and r values, XRD rocking curve analysis was the most efficient and gave a complete description of texture fraction and texture orientation (f = 0.81 and r = 0.21, respectively). XRD rocking curve analysis was the preferred approach for characterization of the texture volume and the orientation distribution of texture in fiber-oriented PMN-PT. The dielectric, piezoelectric and electromechanical properties for random ceramic, 69 vol% textured, 81 vol% textured, and single crystal PMN-28PT were fully characterized and compared. The room temperature dielectric constant at 1 kHz for highly textured PMN-28PT was epsilonr ≥ 3600 with low dielectric loss (tan delta = 0.004). The temperature dependence of the dielectric constant for 81 vol% textured ceramic followed a similar trend as the single crystal PMN-28PT up to the rhombohedral to tetragonal transition temperature (TRT) at 104°C. 81 vol% textured PMN-28PT consistently displayed 60 to 65% of the single crystal PMN-28PT piezoelectric coefficient (d33) and 1.5 to 3.0 times greater than the random ceramic d33 (measured by Berlincourt meter, unipolar strain-field curves, IEEE standard resonance method, and laser vibrometry). The 81 vol% textured PMN-28PT displayed similarly low piezoelectric hysteresis as single crystal PMN-28PT measured by strain-field curves at 5 kV/cm. 81 vol% textured PMN-28PT and single crystal PMN-28PT displayed similar mechanical quality factors of QM = 74 and 76, respectively. The electromechanical coupling (k 33) of 81 vol% textured PMN-28PT (k33 = 0.79) was a significant fraction of single crystal (k33 = 0.91) and was higher than a commercial PMN-PT ceramic (k33 ˜ 0.74). The nonlinearity of the dielectric and piezoelectric response were investigated in textured ceramics and single crystal PMN-28PT using the Rayleigh approach. The reversible piezoelectric coefficient was found to increase significantly and the hysteretic contribution to the piezoelectric coefficient decreased significantly with an increase in texture volume. This indicates that increasing the texture volume decreases the non-180° domain wall contribution to the piezoelectric response in PMN-28PT. Finally, 81 vol% textured ceramics were also integrated into a Navy SONAR transducer design. In-water characterization of the transducers showed higher source levels, higher in-water coupling, higher acoustic intensity, and more bandwidth for the 81 vol% textured PMN-28PT tonpilz single elements compared to the ceramic PMN-28PT tonpilz element. In addition, an 81 vol% textured PMN-28PT tonpilz element showed large scale linearity in sound pressure levels as a function of drive level under high drive conditions (up to 2.33 kV/cm). The maximum electromechanical coupling obtained by the 81 vol% textured PMN-28PT transducer under high drive conditions was keff = 0.69. However, the resonance frequency shifted significantly during high drive tests (Deltafs = -19% at 3.7 kV/cm), evidence of a "soft" characteristic of the 81 vol% textured PMN-28PT, possibly caused by Sr2+ from the template particles. The results suggest there are limitations on the preload compressive stress (and thus drive level) for these textured ceramics, but this could be addressed with compositional modifications. The dielectric, piezoelectric and electromechanical properties have been significantly improved in textured PMN-PT ceramics of this study. Furthermore, scale-up in processing for incorporation into devices of highly textured ceramics with reproducible texture (and hence narrow properties distribution) was achieved in these materials. SONAR applications could benefit from textured ceramic parts because of their ease of processing, compositional homogeneity and potentially lower cost. (Abstract shortened by UMI.)
Peláez-Ballestas, Ingris; Granados, Ysabel; Silvestre, Adriana; Alvarez-Nemegyei, José; Valls, Evart; Quintana, Rosana; Figuera, Yemina; Santiago, Flor Julian; Goñi, Mario; González, Rosa; Santana, Natalia; Nieto, Romina; Brito, Irais; García, Imelda; Barrios, Maria Cecilia; Marcano, Manuel; Loyola-Sánchez, Adalberto; Stekman, Ivan; Jorfen, Marisa; Goycochea-Robles, Maria Victoria; Midauar, Fadua; Chacón, Rosa; Martin, Maria Celeste; Pons-Estel, Bernardo A
2014-09-01
The purpose of the study is to validate a culturally sensitive adaptation of the community-oriented program for the control of rheumatic diseases (COPCORD) methodology in several Latin American indigenous populations. The COPCORD Spanish questionnaire was translated and back-translated into seven indigenous languages: Warao, Kariña and Chaima (Venezuela), Mixteco, Maya-Yucateco and Raramuri (Mexico) and Qom (Argentina). The questionnaire was administered to almost 100 subjects in each community with the assistance of bilingual translators. Individuals with pain, stiffness or swelling in any part of the body in the previous 7 days and/or at any point in life were evaluated by physicians to confirm a diagnosis according to criteria for rheumatic diseases. Overall, individuals did not understand the use of a 0-10 visual analog scale for pain intensity and severity grading and preferred a Likert scale comprising four items for pain intensity (no pain, minimal pain, strong pain, and intense pain). They were unable to discriminate between pain intensity and pain severity, so only pain intensity was included. For validation, 702 subjects (286 male, 416 female, mean age 42.7 ± 18.3 years) were interviewed in their own language. In the last 7 days, 198 (28.2 %) subjects reported having musculoskeletal pain, and 90 (45.4 %) of these had intense pain. Compared with the physician-confirmed diagnosis, the COPCORD questionnaire had 73.8 % sensitivity, 72.9 % specificity, a positive likelihood ratio of 2.7 and area under the receiver operating characteristic curve of 0.73. The COPCORD questionnaire is a valid screening tool for rheumatic diseases in indigenous Latin American populations.
Development of Humane Interpersonal Relationships
ERIC Educational Resources Information Center
Kleptsova, Elena Yuryevna; Balabanov, Anton Anatolyevich
2016-01-01
The article reflects some theoretical aspects of humanization of interpersonal relationships in the sphere of education. The notion "humanization of interpersonal relationships" is being analyzed. The authors offer a characterization of some parameters of relationships: orientation, modality, valence, intensity, awareness,…
Magneto-optical visualization of three spatial components of inhomogeneous stray fields
NASA Astrophysics Data System (ADS)
Ivanov, V. E.
2012-08-01
The article deals with the physical principles of magneto-optical visualization (MO) of three spatial components of inhomogeneous stray fields with the help of FeCo metal indicator films in the longitudinal Kerr effect geometry. The inhomogeneous field is created by permanent magnets. Both p- and s-polarization light is used for obtaining MO images with their subsequent summing, subtracting and digitizing. As a result, the MO images and corresponding intensity coordinate dependences reflecting the distributions of the horizontal and vertical magnetization components in pure form have been obtained. Modeling of both the magnetization distribution in the indicator film and the corresponding MO images shows that corresponding to polar sensitivity the intensity is proportional to the normal field component, which permits normal field component mapping. Corresponding to longitudinal sensitivity, the intensity of the MO images reflects the angular distribution of the planar field component. MO images have singular points in which the planar component is zero and their movement under an externally homogeneous planar field permits obtaining of additional information on the two planar components of the field under study. The intensity distribution character in the vicinity of sources and sinks (singular points) remains the same under different orientations of the light incidence plane. The change of incident plane orientation by π/2 alters the distribution pattern in the vicinity of the saddle points.
Integration of polarization and chromatic cues in the insect sky compass.
el Jundi, Basil; Pfeiffer, Keram; Heinze, Stanley; Homberg, Uwe
2014-06-01
Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way.
Mothers Coping With Bereavement in the 2008 China Earthquake: A Dual Process Model Analysis.
Chen, Lin; Fu, Fang; Sha, Wei; Chan, Cecilia L W; Chow, Amy Y M
2017-01-01
The purpose of this study is to explore the grief experiences of mothers after they lost their children in the 2008 China earthquake. Informed by the dual process model, this study conducted in-depth interviews to explore how six bereaved mothers coped with such grief over a 2-year period. Right after the earthquake, these mothers suffered from intensive grief. They primarily coped with loss-oriented stressors. As time passed, these mothers began to focus on restoration-oriented stressors to face changes in life. This coping trajectory was a dynamic and integral process, which bereaved mothers oscillated between loss- and restoration-oriented stressors. This study offers insight in extending the existing empirical evidence of the dual process model.
Mothers Coping With Bereavement in the 2008 China Earthquake: A Dual Process Model Analysis.
Chen, Lin; Fu, Fang; Sha, Wei; Chan, Cecilia L W; Chow, Amy Y M
2017-01-01
The purpose of this study is to explore the grief experiences of mothers after they lost their children in the 2008 China earthquake. Informed by the Dual Process Model, this study conducted in-depth interviews to explore how six bereaved mothers coped with such grief over a 2-year period. Right after the earthquake, these mothers suffered from intensive grief. They primarily coped with loss-oriented stressors. As time passed, these mothers began to focus on restoration-oriented stressors to face changes in life. This coping trajectory was a dynamic and integral process, which bereaved mothers oscillated between loss- and restoration-oriented stressors. This study offers insight in extending the existing empirical evidence of the Dual Process Model.
Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation.
Dutta, Sourav; Zografos, Odysseas; Gurunarayanan, Surya; Radu, Iuliana; Soree, Bart; Catthoor, Francky; Naeemi, Azad
2017-12-19
Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality - the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 μm 2 for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.
Distract or reappraise? Age-related differences in emotion-regulation choice.
Scheibe, Susanne; Sheppes, Gal; Staudinger, Ursula M
2015-12-01
Does aging impact strategy choice with regard to regulating negative emotions? Based on the assumption that older adults are highly motivated to quickly defuse negative states, we predicted that older adults, relative to young adults, would show an increased preference for distraction (a cognitive disengagement strategy) over reappraisal (a cognitive engagement strategy) in the face of negative material. A stronger preference for distraction, in turn, should be associated with higher affective well-being at older ages, as it helps to avoid high physiological arousal. Young (19-28 years, n = 38) and older (65-75 years, n = 39) adults completed a laboratory task of emotion-regulation choice in which they viewed negative pictures of high and low intensity and chose between distraction and reappraisal to regulate their emotional response. Confirming predictions, age was associated with an increased preference to choose distraction over reappraisal. Among older but not young adults, the relative preference for distraction to reappraisal predicted higher state-affective well-being. In addition, across age groups, the preference for distraction over reappraisal was positively predicted by stimulus intensity and negatively by cognitive resources. Findings support the notion of an age-related shift toward disengagement strategies to regulate negative emotions, which maps onto older adults' prohedonic orientation and holds affective benefits. (c) 2015 APA, all rights reserved).
Toward Realistic Dynamics of Rotating Orbital Debris, and Implications for Lightcurve Interpretation
NASA Technical Reports Server (NTRS)
Ojakangas, Gregory W.; Cowardin, H.; Hill, N.
2011-01-01
Optical observations of rotating space debris near GEO contain important information on size, shape, composition, and rotational states, but these aspects are difficult to extract due to data limitations and the high number of degrees of freedom in the modeling process. For tri-axial rigid debris objects created by satellite fragmentations, the most likely initial rotation state has a large component of initial angular velocity directed along the intermediate axis of inertia, leading to large angular reorientations of the body on the timescale of the rotation period. This lends some support to the simplest possible interpretation of light curves -- that they represent sets of random orientations of the objects of study. However, effects of internal friction and solar radiation are likely to cause significant modification of rotation states within a time as short as a few orbital periods. In order to examine the rotational dynamics of debris objects under the influences of these effects, a set of seven first-order coupled equations of motion were assembled in state form: three are Euler equations describing the rates of change of the components of angular velocity in the body frame, and four describe the rates of change of the components of the unit quaternion. Quaternions are a four-dimensional extension of complex numbers that form a seamless, singularity-free representation of body orientation on S3. The Euler equations contain explicit terms describing torque from solar radiation in terms of spherical harmonics, and terms representing effects of a prescribed rate of internal friction. Numerical integrations of these equations of motion are being performed, and results will be presented. Initial tests show that internal friction without solar radiation torque leads to rotation about the maximum principal axis of inertia, as required, and solar radiation torque is expected to lead to spin-up of objects. Because the axis of maximum rotational inertia tends to be roughly coincident with the normal to the largest projected cross-sectional area, internal friction is expected to lead to reduced variation of light curve amplitudes at a given phase angle, but a large dependence of the same on phase angle. At a given phase angle, databases are generated which contain reflected intensities for comprehensive sets of equally-likely orientations, represented as unit quaternions. When projected onto three dimensions (S2) and color-coded by intensity, the set is depicted as points within a solid, semi-transparent unit sphere, within which all possible reflected intensities for an object at a given phase angle may be inspected simultaneously. Rotational sequences are represented by trajectories through the sphere. Databases are generated for each of a set of phase angles separately, forming a comprehensive dataset of reflected intensities spanning all object orientations and solar phase angles. Symmetries in the problem suggest that preferred rotation states are likely, defined relative to the object-sun direction in inertial space and relative to the maximum principal axis of inertia in the body coordinate system. Such rotation states may greatly simplify the problem of light curve interpretation by reducing the number of degrees of freedom in the problem.
Anisotropic Hydrogen Etching of Chemical Vapor Deposited Graphene
NASA Astrophysics Data System (ADS)
Zhang, Yi; Li, Zhen; Zhang, Luyao; Kim, Pyojae; Zhou, Chongwu
2012-02-01
In terms of the preparation of graphene, chemical vapor deposition (CVD) has raised its popularity as a scalable and cost effective approach for graphene synthesis. While the formation of graphene on copper foil has been intensively studied, the reverse reaction of graphene reacts with hydrogen has not been systematically studied. In this talk we will present a simple, clean, and highly anisotropic hydrogen etching method for CVD graphene catalyzed by the copper substrate. By exposing CVD graphene on copper foil to hydrogen flow around 800 ^oC, we observed that the initially continuous graphene can be etched to have many hexagonal openings. In addition, we found that the etching is temperature dependent and the etching of graphene at 800 oC is most efficient and anisotropic. 80% of the angles of graphene edges after etching are 120^o, indicating the etching is highly anisotropic. No increase of D band along the etched edges indicates that the crystallographic orientation of etching is zigzag direction. Furthermore, we observed that copper played an important role in catalyzing the etching reaction, as no etching was observed for graphene transferred to Si/SiO2 under similar conditions. This highly anisotropic hydrogen etching technology may work as a simple and convenient way to determine graphene crystal orientation and grain size, and may enable the etching of graphene into nanoribbons for electronic applications.
Intracochlear pressure measurements during acoustic shock wave exposure.
Greene, Nathaniel T; Alhussaini, Mohamed A; Easter, James R; Argo, Theodore F; Walilko, Tim; Tollin, Daniel J
2018-05-19
Injuries to the peripheral auditory system are among the most common results of high intensity impulsive acoustic exposure. Prior studies of high intensity sound transmission by the ossicular chain have relied upon measurements in animal models, measurements at more moderate sound levels (i.e. < 130 dB SPL), and/or measured responses to steady-state noise. Here, we directly measure intracochlear pressure in human cadaveric temporal bones, with fiber optic pressure sensors placed in scala vestibuli (SV) and tympani (ST), during exposure to shock waves with peak positive pressures between ∼7 and 83 kPa. Eight full-cephalic human cadaver heads were exposed, face-on, to acoustic shock waves in a 45 cm diameter shock tube. Specimens were exposed to impulses with nominal peak overpressures of 7, 28, 55, & 83 kPa (171, 183, 189, & 192 dB pSPL), measured in the free field adjacent to the forehead. Specimens were prepared bilaterally by mastoidectomy and extended facial recess to expose the ossicular chain. Ear canal (EAC), middle ear, and intracochlear sound pressure levels were measured with fiber-optic pressure sensors. Surface-mounted sensors measured SPL and skull strain near the opening of each EAC and at the forehead. Measurements on the forehead showed incident peak pressures approximately twice that measured by adjacent free-field and EAC entrance sensors, as expected based on the sensor orientation (normal vs tangential to the shock wave propagation). At 7 kPa, EAC pressure showed gain, calculated from the frequency spectra, consistent with the ear canal resonance, and gain in the intracochlear pressures (normalized to the EAC pressure) were consistent with (though somewhat lower than) previously reported middle ear transfer functions. Responses to higher intensity impulses tended to show lower intracochlear gain relative to EAC, suggesting sound transmission efficiency along the ossicular chain is reduced at high intensities. Tympanic membrane (TM) rupture was observed following nearly every exposure 55 kPa or higher. Intracochlear pressures reveal lower middle-ear transfer function magnitudes (i.e. reduced gain relative to the ear canal) for high sound pressure levels, thus revealing lower than expected cochlear exposure based on extrapolation from cochlear pressures measured at more moderate sound levels. These results are consistent with lowered transmissivity of the ossicular chain at high intensities, and are consistent with our prior report measuring middle ear transfer functions in human cadaveric temporal bones with high intensity tone pips. Copyright © 2018 Elsevier B.V. All rights reserved.
Shades of yellow: interactive effects of visual and odour cues in a pest beetle
Stevenson, Philip C.; Belmain, Steven R.
2016-01-01
Background: The visual ecology of pest insects is poorly studied compared to the role of odour cues in determining their behaviour. Furthermore, the combined effects of both odour and vision on insect orientation are frequently ignored, but could impact behavioural responses. Methods: A locomotion compensator was used to evaluate use of different visual stimuli by a major coleopteran pest of stored grains (Sitophilus zeamais), with and without the presence of host odours (known to be attractive to this species), in an open-loop setup. Results: Some visual stimuli—in particular, one shade of yellow, solid black and high-contrast black-against-white stimuli—elicited positive orientation behaviour from the beetles in the absence of odour stimuli. When host odours were also present, at 90° to the source of the visual stimulus, the beetles presented with yellow and vertical black-on-white grating patterns changed their walking course and typically adopted a path intermediate between the two stimuli. The beetles presented with a solid black-on-white target continued to orient more strongly towards the visual than the odour stimulus. Discussion: Visual stimuli can strongly influence orientation behaviour, even in species where use of visual cues is sometimes assumed to be unimportant, while the outcomes from exposure to multimodal stimuli are unpredictable and need to be determined under differing conditions. The importance of the two modalities of stimulus (visual and olfactory) in food location is likely to depend upon relative stimulus intensity and motivational state of the insect. PMID:27478707
Biggi, Marianna; Dyson, Sue J
2018-03-01
OBJECTIVE To use high-field and low-field MRI to describe the anatomy of the proximal portion of the tarsal region (proximal tarsal region) of nonlame horses. SAMPLE 25 cadaveric equine tarsi. PROCEDURES The proximal portion of 1 tarsus from each of 25 nonlame horses with no history of tarsal lameness underwent high-field (1.5-T) and low-field (0.27-T) MRI. Resulting images were used to subjectively describe the anatomy of that region and obtain measurements of the collateral ligaments of the tarsocrural joint. RESULTS Long and short components of the lateral and medial collateral ligaments of the tarsocrural joint were identified. Various bundles of the short collateral ligaments were difficult to delineate on low-field images. Ligaments typically had low signal intensity in all sequences; however, multiple areas of increased signal intensity were identified at specific locations in most tarsi. This signal intensity was attributed to focal magic angle effect associated with orientation of collagen fibers within the ligaments at those locations. Subchondral bone of the distal aspect of the tibia was uniform in thickness, whereas that of the medial trochlear ridge of the talus was generally thicker than that of the lateral trochlear ridge. In most tarsi, subchondral bone of the talocalcaneal joint decreased in thickness from proximal to distal. CONCLUSIONS AND CLINICAL RELEVANCE Results generated in this study can be used as a reference for interpretation of MRI images of the proximal tarsal region in horses.
NASA Astrophysics Data System (ADS)
Zhao, Tao; Crosta, Giovanni Battista; Dattola, Giuseppe; Utili, Stefano
2018-04-01
The dynamic fragmentation of jointed rock blocks during rockslide avalanches has been investigated by discrete element method simulations for a multiple arrangement of a rock block sliding over a simple slope geometry. The rock blocks are released along an inclined sliding plane and subsequently collide onto a flat horizontal plane at a sharp kink point. The contact force chains generated by the impact appear initially at the bottom frontal corner of the rock block and then propagate radially upward to the top rear part of the block. The jointed rock blocks exhibit evident contact force concentration and discontinuity of force wave propagation near the joint, associating with high energy dissipation of granular dynamics. The corresponding force wave propagation velocity can be less than 200 m/s, which is much smaller than that of an intact rock (1,316 m/s). The concentration of contact forces at the bottom leads to high rock fragmentation intensity and momentum boosts, facilitating the spreading of many fine fragments to the distal ends. However, the upper rock block exhibits very low rock fragmentation intensity but high energy dissipation due to intensive friction and damping, resulting in the deposition of large fragments near the slope toe. The size and shape of large fragments are closely related to the orientation and distribution of the block joints. The cumulative fragment size distribution can be well fitted by the Weibull's distribution function, with very gentle and steep curvatures at the fine and coarse size ranges, respectively. The numerical results of fragment size distribution can match well some experimental and field observations.
NASA Astrophysics Data System (ADS)
Dzhioev, R. I.; Korenev, V. L.; Lazarev, M. V.; Sapega, V. F.; Gammon, D.; Bracker, A. S.
2007-01-01
We report electric field induced increase of spin orientation of negatively charged excitons (trions) localized in n -type GaAs/AlGaAs quantum well. Under resonant excitation of free neutral heavy-hole excitons, the polarization of trions increases dramatically with electrical injection of electrons. The polarization enhancement correlates strongly with trion/exciton luminescence intensity ratio. This effect results from a very efficient trapping of free neutral excitons by the quantum well interfacial fluctuations (“natural” quantum dots) containing resident electrons.
1988-02-19
phosphatase with BCIP/NBT appears to produce the most clearly visible spot on the membrane. The spot is a purple-blue color, but one must orient the membrane...phosphatase-labeled antibodies. With any of these reagents, we can produce a discrete and clearly visible spot on nitrocellulose membranes. The intensity of...substrate systems are used; however, one has to orient the membrane towards the light in such a manner that the spot is clearly visible . We have found
Ferroelectrics under the Synchrotron Light: A Review.
Fuentes-Cobas, Luis E; Montero-Cabrera, María E; Pardo, Lorena; Fuentes-Montero, Luis
2015-12-30
Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO₃ perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure-function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.
Synthetic-Aperture Silhouette Imaging (SASI)
NASA Astrophysics Data System (ADS)
Paxman, R.
2016-09-01
The problem of ground-based fine-resolution imaging of geosynchronous satellites continues to be an important unsolved space-surveillance problem. We are investigating a passive-illumination approach that is radically different from amplitude, intensity, or heterodyne interferometry approaches. The approach, called Synthetic-Aperture Silhouette Imaging (SASI), produces a fine-resolution image of the satellite silhouette. When plane-wave radiation emanating from a bright star is occluded by a GEO satellite, then the light is diffracted and a moving diffraction pattern (shadow) is cast on the surface of the earth. With prior knowledge of the satellite orbit and star location, the track of the moving shadow can be predicted with high precision. A linear array of inexpensive hobby telescopes can be deployed roughly perpendicular to the shadow track to collect a time history of the star intensity as the shadow passes by. A phase-retrieval algorithm, using the strong constraint that the occlusion of the satellite is a binary-valued silhouette, allows us to retrieve the missing phase and reconstruct a fine-resolution image of the silhouette. Silhouettes are highly informative, providing diagnostic information about deployment of antennas and solar panels, enabling satellite pose estimation, and revealing the presence and orientation of neighboring satellites in rendezvous and proximity operations.
Branched hybrid vessel: in vitro loaded hydrodynamic forces influence the tissue architecture.
Kobashi, T; Matsuda, T
2000-01-01
This study was conducted to investigate how a continuous load of hydrodynamic stresses influences the tissue architecture of a branched hybrid vessel in vitro. Tubular hybrid medial tissue of small (3 mm) and large (6 mm) diameters, prepared by thermal gelation of a cold mixed solution of bovine smooth muscle cells (SMCs) and type I collagen in glass molds, was assembled into a branched hybrid medial tissue by end-to-side anastomosis. After a 2-week culture period, bovine endothelial cells (ECs) were seeded onto the luminal surface. The branched hybrid vessel was connected to a mock circulatory loop system and tested for two modes of flow: 1) low flow rate for 24 h, 2) high flow rate for 24 or 72 h. After exposure to a low flow rate for 24 h, cobblestone appearance of the ECs was dominant. After exposure to a high flow rate, EC alignment in the direction of flow was observed in the branch region, except at the region of predicted flow separation where ECs retained their polygonal configuration. Elongation of SMCs with no preferential orientation was observed in the case of vessels exposed to a high flow rate for 24 h, and circumferential orientation was prominent in those exposed to a high flow rate for 72 h. On the other hand, collagen fibrils exhibited no preferential orientation in either case. After injection of Evans blue-albumin conjugate into the circulating medium, the luminal surface of the hybrid vessel exposed to a high flow rate for 24 h was examined by confocal laser scanning microscopy. The fluorescence intensity was low at the high shear zone in the branch region, while at the flow separation region it was very high, indicating the increased albumin permeability at the latter region. These findings reflect region-specific tissue architecture in the branch region, in response to the local flow pattern, and may provide an in vitro atherosclerosis model as well as a fundamental basis for the development of functional branched hybrid grafts.
Kremeike, Kerstin; Eulitz, Nina; Sens, Brigitte; Geraedts, Max; Reinhardt, Dirk
2012-01-01
To provide comprehensive high-quality health care is a great challenge in the context of high specialisation and intensive costs. This problem becomes further aggravated in service areas with low patient numbers and low numbers of specialists. Therefore, a multidimensional approach to quality development was chosen in order to optimise the care of children and adolescents with life-limiting conditions in Lower Saxony, a German federal state with a predominantly rural infrastructure. Different service structures were implemented and a classification of service provider's specialisation was defined on the basis of existing references of professional associations. Measures to optimise care were implemented in a process-oriented manner. High-quality health care can be facilitated by carefully worded requirements concerning the quality of structures combined with optimally designed processes. Parts of the newly implemented paediatric palliative care structures are funded by the statutory health insurance. Copyright © 2012. Published by Elsevier GmbH.
Patzak, Alexandra; Kollmayer, Marlene; Schober, Barbara
2017-01-01
The impostor phenomenon (IP) refers to high-achievers who underestimate their abilities and thus fear being unmasked as impostors. IP sufferers attribute their success to factors other than their abilities, entailing negative emotions, unfavorable motivations, and reduced well-being. The IP was originally conceptualized as a predominantly female experience, and is thus seen as an important psychological barrier for female academic careers. Empirical findings of gender differences in the IP are equivocal, but sparse research on associations between gender-role orientation and the IP indicates that feminine students suffer more intensely from the IP than masculine students. Femininity and masculinity are also related to self-compassion, a rather young construct that enhances emotional resilience, well-being, and academic achievement. Self-compassion involves being kind to oneself when failing, perceiving one’s inadequacies as part of the human condition, and being mindful about negative aspects of oneself. It reduces fear of failure, denial of competences, and self-doubts which are central components of the IP. However, relations between self-compassion and the IP have not been investigated to date. In this study, we examine self-compassion as a potential resilience factor against the IP, taking gender and gender-role orientation into account. In a cross-sectional online survey, we investigated 459 (315 female) high-achieving first-year undergraduate students. Results include: Female, feminine, and undifferentiated students score higher on measures of the IP and lower on measures of self-compassion than male, masculine, or androgynous students. Higher levels of the IP are associated with lower levels of self-compassion across all students tested. Self-compassion further mediates the relationship between gender-role orientation and the IP. Interventions to enhance self-compassion might thus be an effective way to overcome impostor feelings. Female, feminine, and undifferentiated students might benefit most from facilitation of self-compassion in education. PMID:28798714
NASA Astrophysics Data System (ADS)
Boyd, J. D.
2017-12-01
The study of pluton emplacement and growth history offers a window into the evolution of the continental crust. Plutons, however, are often largely homogeneous in outcrop, lacking reliable structural markers for tracking their emplacement and growth through time. The ladder structures exposed on the glacially polished surfaces of the Tuolumne Intrusive Suite (TIS) in Yosemite National Park, California are an exception. Ladder structures (LS) are eye-catching concentrations of alternating mafic and felsic mineral assemblages in dominantly cresent-shaped, meter to sub-meter scale bands in outcrop that locally terminate into a mafic band forming a circular-shaped enclosure. Their geochemistry and modal mineralogy diverge sharply from host rock trends with large quantities of magnetite, titanite, and zircon in the mafic assemblages. The limited exposure of LS in outcrops has led to much debate as to their true geometries and orientations. The high concentration of magnetite in the LS is fortuitous in that it allows these features to be investigated by magnetic techniques. The preliminary results of new high resolution magnetic surveys of these LS are presented here. A grid of total magnetic intensity (TMI) was collected across the ladder structures. The TMI's were then inverted and modeled to determine the orientation of the magnetic bodies with depth using PyGMI freeware. With sufficient contrast in the magnetic susceptibility (Km) between the feature being imaged and the host rock, meter to sub-meter scale features can be resolved. The average Km of the LS mafic bands and the host rock is approximately 200-850 x10-3 and 15-20×10-3 SI units respectively. These measurements along with oriented samples were collected to determine input parameters (e.g. anisotropy and remanence) for the geocellular model used in this study.
Auger electron intensity variations in oxygen-exposed large grain polycrystalline silver
NASA Technical Reports Server (NTRS)
Lee, W. S.; Outlaw, R. A.; Hoflund, G. B.; Davidson, M. R.
1989-01-01
Auger electron spectroscopic studies of the grains in oxygen-charged polycrystal-line silver show significant intensity variations as a function of crystallographic orientation. These intensity variations were observed by studies of the Auger images and line scans of the different grains (randomly selected) for each silver transition energy. The results can be attributed to the diffraction of the ejected Auger electrons and interpreted by corresponding changes in the electron mean-free path for inelastic scattering and by oxygen atom accumulation in the subsurface. The subsurface (second layer) octahedral sites increased in size because of surface relaxation and serve as a stable reservoir for the dissolved oxygen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higginson, D. P.; Revet, G.; Khiar, B.
We report that the collimation of astrophysically-relevant plasma ejecta in the form of narrow jets via a poloidal magnetic field is studied experimentally by irradiating a target situated in a 20 T axial magnetic field with a 40 J, 0.6 ns, 0.7 mm diameter, high-power laser. The dynamics of the plasma shaping by the magnetic field are studied over 70 ns and up to 20 mm from the source by diagnosing the electron density, temperature and optical self-emission. These show that the initial expansion of the plasma is highly magnetized, which leads to the formation of a cavity structure whenmore » the kinetic plasma pressure compresses the magnetic field, resulting in an oblique shock [A. Ciardi et al., Phys. Rev. Lett. 110, 025002 (2013)]. The resulting poloidal magnetic nozzle collimates the plasma into a narrow jet [B. Albertazzi et al., Science 346, 325 (2014)]. At distances far from the target, the jet is only marginally magnetized and maintains a high aspect ratio due to its high Mach-number (M~20) and not due to external magnetic pressure. The formation of the jet is evaluated over a range of laser intensities (10 12–10 13 W/cm 2), target materials and orientations of the magnetic field. Lastly, plasma cavity formation is observed in all cases and the viability of long-range jet formation is found to be dependent on the orientation of the magnetic field.« less
Higginson, D. P.; Revet, G.; Khiar, B.; ...
2017-02-24
We report that the collimation of astrophysically-relevant plasma ejecta in the form of narrow jets via a poloidal magnetic field is studied experimentally by irradiating a target situated in a 20 T axial magnetic field with a 40 J, 0.6 ns, 0.7 mm diameter, high-power laser. The dynamics of the plasma shaping by the magnetic field are studied over 70 ns and up to 20 mm from the source by diagnosing the electron density, temperature and optical self-emission. These show that the initial expansion of the plasma is highly magnetized, which leads to the formation of a cavity structure whenmore » the kinetic plasma pressure compresses the magnetic field, resulting in an oblique shock [A. Ciardi et al., Phys. Rev. Lett. 110, 025002 (2013)]. The resulting poloidal magnetic nozzle collimates the plasma into a narrow jet [B. Albertazzi et al., Science 346, 325 (2014)]. At distances far from the target, the jet is only marginally magnetized and maintains a high aspect ratio due to its high Mach-number (M~20) and not due to external magnetic pressure. The formation of the jet is evaluated over a range of laser intensities (10 12–10 13 W/cm 2), target materials and orientations of the magnetic field. Lastly, plasma cavity formation is observed in all cases and the viability of long-range jet formation is found to be dependent on the orientation of the magnetic field.« less
NASA Astrophysics Data System (ADS)
Randrianalisoa, Jaona; Haussener, Sophia; Baillis, Dominique; Lipiński, Wojciech
2017-11-01
Radiative heat transfer is analyzed in participating media consisting of long cylindrical fibers with a diameter in the limit of geometrical optics. The absorption and scattering coefficients and the scattering phase function of the medium are determined based on the discrete-level medium geometry and optical properties of individual fibers. The fibers are assumed to be randomly oriented and positioned inside the medium. Two approaches are employed: a volume-averaged two-intensity approach referred to as multi-RTE approach and a homogenized single-intensity approach referred to as the single-RTE approach. Both approaches require effective properties, determined using direct Monte Carlo ray tracing techniques. The macroscopic radiative transfer equations (for single intensity or two volume-averaged intensities) with the corresponding effective properties are solved using Monte Carlo techniques and allow for the determination of the radiative flux distribution as well as overall transmittance and reflectance of the medium. The results are compared against predictions by the direct Monte Carlo simulation on the exact morphology. The effects of fiber volume fraction and optical properties on the effective radiative properties and the overall slab radiative characteristics are investigated. The single-RTE approach gives accurate predictions for high porosity fibrous media (porosity about 95%). The multi-RTE approach is recommended for isotropic fibrous media with porosity in the range of 79-95%.
Photostop of iodine atoms from electrically oriented ICl molecules
NASA Astrophysics Data System (ADS)
Bao, Da-Xiao; Deng, Lian-Zhong; Xu, Liang; Yin, Jian-Ping
2015-11-01
The dynamics of photostopping iodine atoms from electrically oriented ICl molecules was numerically studied based on their orientational probability distribution functions. Velocity distributions of the iodine atoms and their production rates were investigated for orienting electrical fields of various intensities. For the ICl precursor beams with an initial rotational temperature of ∼ 1 K, the production of the iodine atoms near zero speed will be improved by about ∼ 5 times when an orienting electrical field of ∼ 200 kV/cm is present. A production rate of ∼ 0.5‰ is obtained for photostopped iodine atoms with speeds less than 10 m/s, which are suitable for magnetic trapping. The electrical orientation of ICl precursors and magnetic trapping of photostopped iodine atoms in situ can be conveniently realized with a pair of charged ring magnets. With the maximal value of the trapping field being ∼ 0.28 T, the largest trapping speed is ∼ 7.0 m/s for the iodine atom. Project supported by the National Natural Science Foundation of China (Grant Nos. 11034002, 61205198, and 11274114) and the National Key Basic Research and Development Program of China (Grant No. 2011CB921602).
NASA Astrophysics Data System (ADS)
Huang, Tao; Lühr, Hermann; Wang, Hui
2017-11-01
On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation, the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types determined simultaneously by the same spacecraft in both hemispheres. The FAC distribution, derived from the novel Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their flow direction, up or down, depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. The eastward electrojet is about 1.5 times stronger in local summer than in winter. Conversely, the westward electrojet shows less dependence on season. As to higher latitudes, part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. During local summer of the Northern Hemisphere, there is a clear channeling of return currents over the polar cap. For positive (negative) IMF By a dominant eastward (westward) Hall current circuit is formed from the afternoon (morning) electrojet towards the dawn side (dusk side) polar cap return current. The direction of polar cap Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. Comparable Hall current distributions can be observed in the Southern Hemisphere but for opposite IMF By signs. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but it shows only little response to season and IMF By polarity. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.
NASA Astrophysics Data System (ADS)
Viswanath, Satish; Rosen, Mark; Madabhushi, Anant
2008-03-01
Current techniques for localization of prostatic adenocarcinoma (CaP) via blinded trans-rectal ultrasound biopsy are associated with a high false negative detection rate. While high resolution endorectal in vivo Magnetic Resonance (MR) prostate imaging has been shown to have improved contrast and resolution for CaP detection over ultrasound, similarity in intensity characteristics between benign and cancerous regions on MR images contribute to a high false positive detection rate. In this paper, we present a novel unsupervised segmentation method that employs manifold learning via consensus schemes for detection of cancerous regions from high resolution 1.5 Tesla (T) endorectal in vivo prostate MRI. A significant contribution of this paper is a method to combine multiple weak, lower-dimensional representations of high dimensional feature data in a way analogous to classifier ensemble schemes, and hence create a stable and accurate reduced dimensional representation. After correcting for MR image intensity artifacts, such as bias field inhomogeneity and intensity non-standardness, our algorithm extracts over 350 3D texture features at every spatial location in the MR scene at multiple scales and orientations. Non-linear dimensionality reduction schemes such as Locally Linear Embedding (LLE) and Graph Embedding (GE) are employed to create multiple low dimensional data representations of this high dimensional texture feature space. Our novel consensus embedding method is used to average object adjacencies from within the multiple low dimensional projections so that class relationships are preserved. Unsupervised consensus clustering is then used to partition the objects in this consensus embedding space into distinct classes. Quantitative evaluation on 18 1.5 T prostate MR data against corresponding histology obtained from the multi-site ACRIN trials show a sensitivity of 92.65% and a specificity of 82.06%, which suggests that our method is successfully able to detect suspicious regions in the prostate.
Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology.
Canon-Rubio, Karen A; Sharp, Christine E; Bergerson, Joule; Strous, Marc; De la Hoz Siegler, Hector
2016-02-01
Phototrophic microorganisms have been proposed as an alternative to capture carbon dioxide (CO2) and to produce biofuels and other valuable products. Low CO2 absorption rates, low volumetric productivities, and inefficient downstream processing, however, currently make algal biotechnology highly energy intensive, expensive, and not economically competitive to produce biofuels. This mini-review summarizes advances made regarding the cultivation of phototrophic microorganisms at highly alkaline conditions, as well as other innovations oriented toward reducing the energy input into the cultivation and processing stages. An evaluation, in terms of energy requirements and energy return on energy invested, is performed for an integrated high-pH, high-alkalinity growth process that uses biofilms. Performance in terms of productivity and expected energy return on energy invested is presented for this process and is compared to previously reported life cycle assessments (LCAs) for systems at near-neutral pH. The cultivation of alkaliphilic phototrophic microorganisms in biofilms is shown to have a significant potential to reduce both energy requirements and capital costs.
[Dose-intensive chemotherapy with continuous infusion 5-fluorouracil].
Tichler, T; Ghodsizade, E; Katz, A; Rath, P; Berger, R; Brenner, H
1999-11-01
54 patients with advanced malignancy refractory to chemotherapy were studied to evaluate efficacy and toxicity of continuous infusion of 5-fluorouracil (5FU) given for 3 weeks. We report results of the first 156 courses given in combination with other drugs. 19 (37%) of the 54 responded, including 3 (6%) with complete response. Toxicity was acceptable, with mucositis in 13 (26%) and 3 (6%) with grade II-III toxicity. Results and toxicity profile were compatible with further disease-oriented studies using this dose-intensive program.
Myosin head orientation: a structural determinant for the Frank-Starling relationship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farman, Gerrie P.; Gore, David; Allen, Edward
The cellular mechanism underlying the Frank-Starling law of the heart is myofilament length-dependent activation. The mechanism(s) whereby sarcomeres detect changes in length and translate this into increased sensitivity to activating calcium has been elusive. Small-angle X-ray diffraction studies have revealed that the intact myofilament lattice undergoes numerous structural changes upon an increase in sarcomere length (SL): lattice spacing and the I{sub 1,1}/I{sub 1,0} intensity ratio decreases, whereas the M3 meridional reflection intensity (I{sub M3}) increases, concomitant with increases in diastolic and systolic force. Using a short ({approx}10 ms) X-ray exposure just before electrical stimulation, we were able to obtain detailedmore » structural information regarding the effects of external osmotic compression (with mannitol) and obtain SL on thin intact electrically stimulated isolated rat right ventricular trabeculae. We show that over the same incremental increases in SL, the relative changes in systolic force track more closely to the relative changes in myosin head orientation (as reported by IM3) than to the relative changes in lattice spacing. We conclude that myosin head orientation before activation determines myocardial sarcomere activation levels and that this may be the dominant mechanism for length-dependent activation.« less
NASA Astrophysics Data System (ADS)
Mailen, Russell W.; Dickey, Michael D.; Genzer, Jan; Zikry, Mohammed
2017-11-01
Shape memory polymer (SMP) sheets patterned with black ink hinges change shape in response to external stimuli, such as absorbed thermal energy from an infrared (IR) light. The geometry of these hinges, including size, orientation, and location, and the applied thermal loads significantly influence the final folded shape of the sheet, but these variables have not been fully investigated. We perform a systematic study on SMP sheets to fundamentally understand the effects of single and double hinge geometries, hinge orientation and spacing, initial temperature, heat flux intensity, and pattern width on the folding behavior. We have developed thermo-viscoelastic finite element models to characterize and quantify the stresses, strains, and temperatures as they relate to SMP shape changes. Our predictions indicate that hinge orientation can be used to reduce the total bending angle, which is the angle traversed by the folding face of the sheet. Two parallel hinges increase the total bending angle, and heat conduction between the hinges affects the transient folding response. IR intensity and initial temperatures can also influence the transient folding behavior. These results can provide guidelines to optimize the transient folding response and the three-dimensional folded structure obtained from self-folding polymer origami sheets that can be applied for myriad applications.
van der Waals epitaxial ZnTe thin film on single-crystalline graphene
NASA Astrophysics Data System (ADS)
Sun, Xin; Chen, Zhizhong; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Washington, Morris; Lu, Toh-Ming
2018-01-01
Graphene template has long been promoted as a promising host to support van der Waals flexible electronics. However, van der Waals epitaxial growth of conventional semiconductors in planar thin film form on transferred graphene sheets is challenging because the nucleation rate of film species on graphene is significantly low due to the passive surface of graphene. In this work, we demonstrate the epitaxy of zinc-blende ZnTe thin film on single-crystalline graphene supported by an amorphous glass substrate. Given the amorphous nature and no obvious remote epitaxy effect of the glass substrate, this study clearly proves the van der Waals epitaxy of a 3D semiconductor thin film on graphene. X-ray pole figure analysis reveals the existence of two ZnTe epitaxial orientational domains on graphene, a strong X-ray intensity observed from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [10] orientation domain, and a weaker intensity from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [11] orientation domain. Furthermore, this study systematically investigates the optoelectronic properties of this epitaxial ZnTe film on graphene using temperature-dependent Raman spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and fabrication and characterization of a ZnTe-graphene photodetector. The research suggests an effective approach towards graphene-templated flexible electronics.
Changes in running pattern due to fatigue and cognitive load in orienteering.
Millet, Guillaume Y; Divert, Caroline; Banizette, Marion; Morin, Jean-Benoit
2010-01-01
The aim of this study was to examine the influence of fatigue on running biomechanics in normal running, in normal running with a cognitive task, and in running while map reading. Nineteen international and less experienced orienteers performed a fatiguing running exercise of duration and intensity similar to a classic distance orienteering race on an instrumented treadmill while performing mental arithmetic, an orienteering simulation, and control running at regular intervals. Two-way repeated-measures analysis of variance did not reveal any significant difference between mental arithmetic and control running for any of the kinematic and kinetic parameters analysed eight times over the fatiguing protocol. However, these parameters were systematically different between the orienteering simulation and the other two conditions (mental arithmetic and control running). The adaptations in orienteering simulation running were significantly more pronounced in the elite group when step frequency, peak vertical ground reaction force, vertical stiffness, and maximal downward displacement of the centre of mass during contact were considered. The effects of fatigue on running biomechanics depended on whether the orienteers read their map or ran normally. It is concluded that adding a cognitive load does not modify running patterns. Therefore, all changes in running pattern observed during the orienteering simulation, particularly in elite orienteers, are the result of adaptations to enable efficient map reading and/or potentially prevent injuries. Finally, running patterns are not affected to the same extent by fatigue when a map reading task is added.
Petaminer: Using ROOT for efficient data storage in MySQL database
NASA Astrophysics Data System (ADS)
Cranshaw, J.; Malon, D.; Vaniachine, A.; Fine, V.; Lauret, J.; Hamill, P.
2010-04-01
High Energy and Nuclear Physics (HENP) experiments store Petabytes of event data and Terabytes of calibration data in ROOT files. The Petaminer project is developing a custom MySQL storage engine to enable the MySQL query processor to directly access experimental data stored in ROOT files. Our project is addressing the problem of efficient navigation to PetaBytes of HENP experimental data described with event-level TAG metadata, which is required by data intensive physics communities such as the LHC and RHIC experiments. Physicists need to be able to compose a metadata query and rapidly retrieve the set of matching events, where improved efficiency will facilitate the discovery process by permitting rapid iterations of data evaluation and retrieval. Our custom MySQL storage engine enables the MySQL query processor to directly access TAG data stored in ROOT TTrees. As ROOT TTrees are column-oriented, reading them directly provides improved performance over traditional row-oriented TAG databases. Leveraging the flexible and powerful SQL query language to access data stored in ROOT TTrees, the Petaminer approach enables rich MySQL index-building capabilities for further performance optimization.
Advanced fabrication of single-crystalline silver nanopillar on SiO{sub 2} substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Tomohiro, E-mail: tomohiro-mori@wakayama-kg.jp, E-mail: kenzo@eng.kagawa-u.ac.jp; Industrial Technology Center of Wakayama Prefecture, Ogura 60, Wakayama 649-6261; Tanaka, Yasuhiro
2016-01-25
Nanoscale crystallographic textures have received very little attention in research on surface plasmons using metallic nanostructures. A single-crystalline metallic nanostructure with a controlled crystallographic texture is expected to reduce optical losses. We elucidated the grain growth mechanism in silver thin films deposited on a highly transparent SiO{sub 2} substrate by electron backscatter diffraction methods with nanoscale resolution. At higher substrate temperatures, the grain growth was facilitated but the preferred orientation was not achieved. Moreover, we fabricated a single-crystalline silver nanopillar in a (111)-oriented large growing grain, which was controlled by varying the substrate temperature during film deposition by focused ion-beammore » milling. Furthermore, the light intensity of the scattering spectrum was measured for a single-crystalline silver nanopillar (undersurface diameter: 200 nm) for which surface plasmon resonance was observed. The single-crystalline silver nanopillar exhibits a stronger and sharper spectrum than the polycrystalline silver nanopillar. These results can be applied to the direct fabrication of a single-crystalline silver nanopillar using only physical processing.« less
Stellar performance: mechanisms underlying Milky Way orientation in dung beetles
el Jundi, Basil; Smolka, Jochen; Khaldy, Lana; Nilsson, Dan-Eric; Byrne, Marcus J.; Dacke, Marie
2017-01-01
Nocturnal dung beetles (Scarabaeus satyrus) are currently the only animals that have been demonstrated to use the Milky Way for reliable orientation. In this study, we tested the capacity of S. satyrus to orient under a range of artificial celestial cues, and compared the properties of these cues with images of the Milky Way simulated for a beetle's visual system. We find that the mechanism that permits accurate stellar orientation under the Milky Way is based on an intensity comparison between different regions of the Milky Way. We determined the beetles' contrast sensitivity for this task in behavioural experiments in the laboratory, and found that the resulting threshold of 13% is sufficient to detect the contrast between the southern and northern arms of the Milky Way under natural conditions. This mechanism should be effective under extremely dim conditions and on nights when the Milky Way forms a near symmetrical band that crosses the zenith. These findings are discussed in the context of studies of stellar orientation in migratory birds and itinerant seals. This article is part of the themed issue ‘Vision in dim light’. PMID:28193823
Light-dependent magnetoreception: orientation behaviour of migratory birds under dim red light.
Wiltschko, Roswitha; Munro, Ursula; Ford, Hugh; Stapput, Katrin; Wiltschko, Wolfgang
2008-10-01
Magnetic compass orientation in migratory birds has been shown to be based on radical pair processes and to require light from the short wavelength part of the spectrum up to 565 nm Green. Under dim red light of 645 nm wavelength and 1 mW m(-2) intensity, Australian silvereyes and European robins showed a westerly tendency that did not change between spring and autumn, identifying it as a 'fixed direction' response. A thorough analysis revealed that this orientation did not involve the inclination compass, but was a response based on the polarity of the magnetic field. Furthermore, in contrast to the orientation under short-wavelength light, it could be disrupted by local anaesthesia of the upper beak where iron-containing receptors are located, indicating that it is controlled by these receptors. The similarity of the response under dim red light to the response in total darkness suggests that the two responses may be identical. These findings indicate that the observed 'fixed direction' response under dim red light is fundamentally different from the normal compass orientation, which is based on radical pair processes.
An Investigation of Automatic Change Detection for Topographic Map Updating
NASA Astrophysics Data System (ADS)
Duncan, P.; Smit, J.
2012-08-01
Changes to the landscape are constantly occurring and it is essential for geospatial and mapping organisations that these changes are regularly detected and captured, so that map databases can be updated to reflect the current status of the landscape. The Chief Directorate of National Geospatial Information (CD: NGI), South Africa's national mapping agency, currently relies on manual methods of detecting changes and capturing these changes. These manual methods are time consuming and labour intensive, and rely on the skills and interpretation of the operator. It is therefore necessary to move towards more automated methods in the production process at CD: NGI. The aim of this research is to do an investigation into a methodology for automatic or semi-automatic change detection for the purpose of updating topographic databases. The method investigated for detecting changes is through image classification as well as spatial analysis and is focussed on urban landscapes. The major data input into this study is high resolution aerial imagery and existing topographic vector data. Initial results indicate the traditional pixel-based image classification approaches are unsatisfactory for large scale land-use mapping and that object-orientated approaches hold more promise. Even in the instance of object-oriented image classification generalization of techniques on a broad-scale has provided inconsistent results. A solution may lie with a hybrid approach of pixel and object-oriented techniques.
Vonderlin, Eva; Ropeter, Anna; Pauen, Sabina
2012-09-01
The Infant Behavior Questionnaire Revised (IBQ-R; Gartstein & Rothbart, 2003) is one of the most common parent-report instruments for assessing infant temperament. This study evaluated the psychometric properties of a German version. We studied item characteristics, internal consistency, and descriptive statistics for all 14 scales in a sample of 7- to 9-month-old infants and their mothers (N = 119). Factor analysis was conducted to identify higher-order relationships between the scales. Item analysis showed mixed corrected item-total correlations. Internal consistencies were all moderate to high. Results of the factor analysis confirmed the two dimensions of Surgency/Extraversion and Negative Affectivity, whereas the dimension Orienting/Regulation was not replicated. In contrast to the American sample, activity level in the German sample loaded on the factor Negative Affectivity. The scales low intensity pleasure and soothability, which loaded on factor Orienting/Regulation in the original version, showed substantial loadings on both dimensions Surgency/Extraversion and Negative Affectivity (inverted), whereas the scale duration of orienting was located on the factor Surgency/Extraversion. The German version of the IBQ-R provides a satisfying instrument for investigating infant temperament. However, further work is needed to improve the methodological quality of the questionnaire. Further research should especially focus on the factor structure of infant temperament. We suggest developing a shorter version and testing it with a larger and more diverse sample.
Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates.
Linnanto, Juha M; Korppi-Tommola, Jouko E I
2008-06-01
Molecular mechanics calculations and exciton theory have been used to study pigment organization in chlorosomes of green bacteria. Single and double rod, multiple concentric rod, lamella, and Archimedean spiral macrostructures of bacteriochlorophyll c molecules were created and their spectral properties evaluated. The effects of length, width, diameter, and curvature of the macrostructures as well as orientations of monomeric transition dipole moment vectors on the spectral properties of the aggregates were studied. Calculated absorption, linear dichroism, and polarization dependent fluorescence-excitation spectra of the studied long macrostructures were practically identical, but circular dichroism spectra turned out to be very sensitive to geometry and monomeric transition dipole moment orientations of the aggregates. The simulations for long multiple rod and spiral-type macrostructures, observed in recent high-resolution electron microscopy images (Oostergetel et al., FEBS Lett 581:5435-5439, 2007) gave shapes of circular dichroism spectra observed experimentally for chlorosomes. It was shown that the ratio of total circular dichroism intensity to integrated absorption of the Q(y) transition is a good measure of degree of tubular structures in the chlorosomes. Calculations suggest that the broad Q(y) line width of chlorosomes of sulfur bacteria could be due to (1) different orientations of the transition moment vectors in multi-walled rod structures or (2) a variety of Bchl-aggregate structures in the chlorosomes.
Mid-latency evoked potentials in self-reported impulsive aggression.
Houston, R J; Stanford, M S
2001-02-01
The present study was conducted to examine psychophysiological differences in arousability among individuals who display impulsive aggressive outbursts. Amplitude and latency for the mid-latency evoked potentials (P1, N1 and P2) were obtained at scalp electrode sites. The evoking stimuli were three intensities (low, medium, high) of photic stimulation. Compared to non-aggressive controls, impulsive aggressive subjects showed significantly reduced P1 amplitude, which is indicative of an inefficient sensory gating mechanism. In addition, these subjects exhibited significantly larger N1 amplitude implying an enhanced orienting of attention to stimuli. Impulsive aggressive subjects also exhibited shorter P1, N1 and P2 peak latency. These results suggest that impulsive aggressive individuals may display quicker orienting and processing of stimuli in an attempt to compensate for low resting arousal levels. Finally, impulsive aggressive subjects augmented the P1-N1 component more frequently than controls, which is consistent with previous studies examining impulsivity and sensation seeking. Together, these findings extend previous work concerning the underlying physiology of impulsive aggression. It has been suggested that impulsive aggressive individuals may attempt to compensate for low resting arousal levels by engaging in stimulus seeking behaviors. Accordingly, the present findings imply similar physiological compensatory responses as demonstrated by heightened orienting of attention, processing and arousability. In addition, a compromised sensory gating system in impulsive aggressors may exacerbate such circumstances, and lead to later cognitive processing deficits.
Sriram, S; Bhaskaran, M; du Plessis, J; Short, K T; Sivan, V P; Holland, A S
2009-01-01
The influence of oxygen partial pressure during the deposition of piezoelectric strontium-doped lead zirconate titanate thin films is reported. The thin films have been deposited by RF magnetron sputtering in an atmosphere of high purity argon and oxygen (in the ratio of 9:1), on platinum-coated silicon substrates (heated to 650 degrees C). The influence of oxygen partial pressure is studied to understand the manner in which the stoichiometry of the thin films is modified, and to understand the influence of stoichiometry on the perovskite orientation. This article reports on the results obtained from films deposited at oxygen partial pressures of 1-5 mTorr. The thin films have been studied using a combination of X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GA-XRD), and atomic force microscopy (AFM). XPS analysis highlights the marked influence of variations in oxygen pressure during sputtering, observed by variations in oxygen concentration in the thin films, and in some cases by the undesirable decrease in lead concentration in the thin films. GA-XRD is used to study the relative variations in perovskite peak intensities, and has been used to determine the deposition conditions to attain the optimal combination of stoichiometry and orientation. AFM scans show the marked influence of the oxygen partial pressure on the film morphology.
Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes
Klymchenko, Andrey S.; Duportail, Guy; Mély, Yves; Demchenko, Alexander P.
2003-01-01
The principle of electrochromic modulation of excited-state intramolecular proton-transfer reaction was applied for the design of fluorescence probes with high two-color sensitivity to dipole potential, Ψd, in phospholipid bilayers. We report on the effect of Ψd variation on excitation and fluorescence spectra of two new 3-hydroxyflavone probes, which possess opposite orientations of the fluorescent moiety in the lipid bilayer. The dipole potential in the bilayer was modulated by the addition of 6-ketocholestanol or phloretin and by substitution of dimyristoyl phosphatidylcholine lipid with its ether analog 1,2-di-o-tetradecyl-sn-glycero-3-phosphocholine, and its value was estimated by the reference styryl dye 1-(3-sulfonatopropyl)-4-{β[2-(di-n-octylamino)-6-naphthyl]vinyl}pyridinium betaine. We demonstrate that after Ψd changes, the probe orienting in the bilayer similarly to the reference dye shows similar shifts in the excitation spectra, whereas the probe with the opposite orientation shows the opposite shifts. The new observation is that the response of 3-hydroxyflavone probes to Ψd in excitation spectra is accompanied by and quantitatively correlated with dramatic changes of relative intensities of the two well separated emission bands that belong to the initial normal and the product tautomer forms of the excited-state intramolecular proton-transfer reaction. This provides a strong response to Ψd by change in emission color. PMID:12972636
Effect of NICU Department Orientation Program on Mother’s Anxiety: a Randomized Clinical Trial
Valizadeh, Leila; Hosseini, Mohammad Bager; Heydarpoor Damanabad, Zhilla; Rahkar Farshi, Mahni; Asgari Jafarabadi, Mohammad; Ranjbar Kochaksaraie, Fatemeh
2016-01-01
Introduction: Neonatal intensive care unit induces the high level of anxiety for mothers. The aim of this study was to evaluate the effectiveness of NICU orientation program on the anxiety of mothers who had preterm newborns hospitalized in NICU. Methods: This study was a randomized clinical trial (three parallel groups). Participants included 99 mothers with preterm newborns hospitalized in NICU of Al- Zahra hospital, affiliated to Tabriz University of Medical Sciences in 2015. Mothers were randomly assigned to one of three groups (film, booklet, and control). Mothers completed the State- Trait Anxiety Inventory before entering to the NICU, and then mothers in the experiment groups became familiar with the NICU environment through watching a film or reading booklet. After the first NICU visit, all mothers completed the STAI and Cattell's Anxiety Questionnaires. Data were analyzed using SPSS ver. 13 software. Results: There was no significant difference between three groups regarding state- trait anxiety before the intervention. After the first NICU visit, a significant reduction in maternal state anxiety was seen in the both experiment groups. There was no statistical significant difference regarding trait anxiety. Data obtained from Cattell's anxiety questionnaire after intervention, showed significant difference in state anxiety between groups. Conclusion: Employing film and booklet orientation strategy after preterm delivery can reduce the mother’s anxiety and beneficent for the mother, baby, family and health care system. PMID:27752486
The Importance of Group Process in Gestalt Therapy.
ERIC Educational Resources Information Center
Korb, Margaret Patton; Themis, Sharon
1980-01-01
Discusses the Gestalt therapy group process and its roots in theory and therapeutic orientation. Indicates that the process itself, particularly the role of the therapist, is a key factor in the intensity and power of the group experience for the participants. (Author)
NASA Astrophysics Data System (ADS)
Lee, S. M.; Parq, J. H.; Kim, H.; Moe, K.; Lee, C. S.; Kanamatsu, T.; Kim, K. J.; Bahk, K. S.
2017-12-01
Determining the azimuthal orientation of core samples obtained from deep drilling is extremely difficult because the core itself could have rotated during drilling operations. Several indirect methods have been devised to address this issue, but have certain limitations. Thus it is still a challenge to determine the azimuthal orientation consistently over the entire length of the hole. Provided that the recovery rate is high and thus all the other magnetic properties such as magnetization intensity and inclination are measured from the recovered cores, one possible method for ascertaining magnetic declination information is to measure the magnetic field inside the empty borehole and invert for the best fitting declination. However, there are two major problems: one is that present-day borehole magnetometers are not precise enough to resolve changes in direction of magnetization, and the other is that in most rock drilling experiments the rate of recovery is low. To overcome the first major problem which is technical, scientists from Korea and Japan jointly conducted the development for the next-generation borehole magnetometer, namely 3GBM (3rd Generation Borehole Magnetometer). The borehole magnetometer which uses fiber-optic laser gyro promises to provide accurate information on not only the magnetic field itself but also the orientation of the instrument inside the borehole. Our goal is to deploy this borehole magnetometer in the ICDP Oman Drilling Project Phase 2 drilling experiment early 2018. The site may be suitable for the investigation because, as recent Phase 1 of the Oman Samail Ophiolite drilling has demonstrated, the recovery rate was very high. Also the post-drilling measurements onboard DV Chikyu have shown that much of the recovered samples has moderate magnetization intensity on the order of 0.1 and 1 A/m. Here, we present the results of numerical simulation of magnetic field inside the borehole using finite element method to show that magnetic declination may be obtained systematically from the top to the bottom of the holes. The results will help us to fine tune the magnetometer before the actual deployment. It will also be useful in interpreting the obtained results together with resistivity images from conventional wireline logging and post-drilling paleomagnetic lab measurements results.
Garnet zoning and metamorphism of the Barrovian type area, Scotland
NASA Astrophysics Data System (ADS)
Dempster, T. J.
1985-03-01
A microprobe investigation of the high grade metamorphic zones from the Barrovian type area in Angus, Scotland, shows the importance of local zones of retrograde cation exchange between garnet, staurolite and biotite. The interpretation of this zoning, established during a slow cooling history, is critical to any study of metamorphic reactions or conditions. The extent and intensity of these diffusion effects are dependent on a number of parameters including grainsize, fabric orientation, heating and cooling history, and the modal abundance of the phases. Increasing diffusion within garnets with metamorphic grade, and the subsequent retrograde effects are modelled using Temperature-Time-Transformation diagrams and provide information on the activation energy for Fe-Mg diffusion in garnet.
Corporate social responsibility and the future health care manager.
Collins, Sandra K
2010-01-01
The decisions and actions of health care managers are oftentimes heavily scrutinized by the public. Given the current economic climate, managers may feel intense pressure to produce higher results with fewer resources. This could inadvertently test their moral fortitude and their social consciousness. A study was conducted to determine what corporate social responsibility orientation and viewpoint future health care managers may hold. The results of the study indicate that future health care managers may hold patient care in high regard as opposed to profit maximization. However, the results of the study also show that future managers within the industry may continue to need rules, laws, regulations, and legal sanctions to guide their actions and behavior.
Interaction of proflavine with DNA studied by colloid surface enhanced resonance Raman spectroscopy
NASA Astrophysics Data System (ADS)
Koglin, E.; Séquaris, J.-M.
1986-03-01
The interaction of the mutagenic highly fluourescing proflavine (3,6-diaminoacridine: PF) dye with calf thymus DNA has been studied by Surface Enhanced Resonance Raman Scattering (SERRS). Since the Ag-colloids almost completely quenche the strong fluorescence it is possible to obtain excellent vibrational spectra in a wide frequency range providing valuable information about the intercalation. The intercalation does not affect the vibrational frequencies of the proflavine dye. On the other hand, intensity changes are observed in some of the ring- and NH 2-modes of proflavine upon intercalation. This Raman hypochromism is characteristic for ring stacking interactions and in the SERRS spetroscopy for an additional effects of the dye orientation to the surface.
Modeling a Shallow Rock Tunnel Using Terrestrial Laser Scanning and Discrete Fracture Networks
NASA Astrophysics Data System (ADS)
Cacciari, Pedro Pazzoto; Futai, Marcos Massao
2017-05-01
Discontinuity mapping and analysis are extremely important for modeling shallow tunnels constructed in fractured rock masses. However, the limited exposure and variability of rock face orientation in tunnels must be taken into account. In this paper, an automatic method is proposed to generate discrete fracture networks (DFNs) using terrestrial laser scanner (TLS) geological mapping and to continuously calculate the volumetric intensities ( P 32) along a tunnel. The number of fractures intersecting rectangular sampling planes with different orientations, fitted in tunnel sections of finite lengths, is used as the program termination criteria to create multiple DFNs and to calculate the mean P 32. All traces and orientations from three discontinuity sets of the Monte Seco tunnel (Vitória Minas Railway) were mapped and the present method applied to obtain the continuous variation in P 32 along the tunnel. A practical approach to creating single and continuous DFNs (for each discontinuity set), considering the P 32 variations, is also presented, and the results are validated by comparing the trace intensities ( P 21) from the TLS mapping and DFNs generated. Three examples of 3DEC block models generated from different sections of the tunnel are shown, including the ground surface and the bedrock topographies. The results indicate that the proposed method is a practical and powerful tool for modeling fractured rock masses of uncovered tunnels. It is also promising for application during tunnel construction when TLS mapping is a daily task (for as-built tunnel controls), and the complete geological mapping (traces and orientations) is available.
Mol, André; Dunn, Stanley M
2003-06-01
To assess the effect of the orientation of arbitrarily shaped bone chips on the correlation between radiographic estimates of bone loss and true mineral loss using digital subtraction radiography. Twenty arbitrarily shaped bone chips (dry weight 1-10 mg) were placed individually on the superior lingual aspect of the interdental alveolar bone of a dry dentate hemi-mandible. After acquiring the first baseline image, each chip was rotated 90 degrees and a second radiograph was captured. Follow-up images were created without the bone chips and after rotating the mandible 0, 1, 2, 4, and 6 degrees around a vertical axis. Aluminum step tablet intensities were used to normalize image intensities for each image pair. Follow-up images were registered and geometrically standardized using projective standardization. Bone chips were dry ashed and analyzed for calcium content using atomic absorption. No significant difference was found between the radiographic estimates of bone loss from the different bone chip orientations (Wilcoxon: P > 0.05). The correlation between the two series of estimates for all rotations was 0.93 (Spearman: P < 0.05). Linear regression analysis indicated that both correlates did not differ appreciably ( and ). It is concluded that the spatial orientation of arbitrarily shaped bone chips does not have a significant impact on quantitative estimates of changes in bone mass in digital subtraction radiography. These results were obtained in the presence of irreversible projection errors of up to six degrees and after application of projective standardization for image reconstruction and image registration.
Psychophysiological responses of junior orienteers under competitive pressure.
Robazza, Claudio; Izzicupo, Pascal; D'Amico, Maria Angela; Ghinassi, Barbara; Crippa, Maria Chiara; Di Cecco, Vincenzo; Ruiz, Montse C; Bortoli, Laura; Di Baldassarre, Angela
2018-01-01
The purpose of the study was to examine psychobiosocial states, cognitive functions, endocrine responses (i.e., salivary cortisol and chromogranin A), and performance under competitive pressure in orienteering athletes. The study was grounded in the individual zones of optimal functioning (IZOF) and biopsychosocial models. Fourteen junior orienteering athletes (7 girls and 7 boys), ranging in age from 15 to 20 years (M = 16.93, SD = 1.77) took part in a two-day competitive event. To enhance competitive pressure, emphasis was placed on the importance of the competition and race outcome. Psychophysiological and performance data were collected at several points before, during, and after the races. Results showed that an increase in cortisol levels was associated with competitive pressure and reflected in higher perceived exertion (day 1, r = .32; day 2, r = .46), higher intensity of dysfunctional states (day 1, r = .59; day 2, r = .55), lower intensity of functional states (day 1, r = -.36; day 2, r = -.33), and decay in memory (day 1, r = -.27; day 2, r = -.35), visual attention (day 1, r = -.56; day 2, r = -.35), and attention/mental flexibility (day 1, r = .16; day 2, r = .26) tasks. The second day we observed better performance times, lower intensity of dysfunctional states, lower cortisol levels, improved visual attention and attention/mental flexibility (p < .050). Across the two competition days, chromogranin A levels were higher (p < .050) on the most difficult loops of the race in terms of both physical and psychological demands. Findings suggest emotional, cognitive, psychophysiological, and performance variables to be related and to jointly change across different levels of cognitive and physical load. Overall results are discussed in light of the IZOF and biopsychosocial models. The procedure adopted in the study also supports the feasibility of including additional cognitive load for possible practical applications.
Radovanović, Mirjana; Rus-Makovec, Maja
2018-03-01
Using the modified Theory of Planned Behaviour (mTPB), different indicators of therapeutic success were studied to understand pro-abstinence behavioural orientation during an 18-year after-care period following a 3-month intensive alcoholism treatment. The indicators were: perceived needs satisfaction (NS), normative differential (ND), perceived alcohol utility (UT), beliefs about treatment programme benefits (BE) and behavioural intentions (BI). The sample of 167 patients who consecutively started an intensive alcoholism treatment programme has been followed-up for 18 years, using standardised ailed instruments at the end of the treatment, and in the years 4-5, 9 and 18 of follow-up. The last data collection was completed by 32 subjects in 2010. The analysis followed the standard explore-analyse-explore approach. After the initial descriptive exploration of data, multivariate analysis of variance (MANOVA) in SPSS statistical package was set to explore between-groups and within-groups differences over time. At the between-group level, BI remained stable at the same level as at the end of the treatment programme, whereas BE and UT robustly changed over time and levelled off after 10 years of follow-up. NS and ND show a trend of pro-abstinent orientation and level off after 10 years of follow-up, although the trend is not significant. The same results were confirmed by the within-subject level. Studied constructs stabilised after ten years of follow-up, apart from BI. The latter suggests that BI level needed for completion of an intensive treatment programme suffices for the maintenance of abstinence when accompanied by the change in perception of alcohol usefulness.
Psychophysiological responses of junior orienteers under competitive pressure
Izzicupo, Pascal; D’Amico, Maria Angela; Ghinassi, Barbara; Crippa, Maria Chiara; Di Cecco, Vincenzo; Ruiz, Montse C.; Bortoli, Laura; Di Baldassarre, Angela
2018-01-01
The purpose of the study was to examine psychobiosocial states, cognitive functions, endocrine responses (i.e., salivary cortisol and chromogranin A), and performance under competitive pressure in orienteering athletes. The study was grounded in the individual zones of optimal functioning (IZOF) and biopsychosocial models. Fourteen junior orienteering athletes (7 girls and 7 boys), ranging in age from 15 to 20 years (M = 16.93, SD = 1.77) took part in a two-day competitive event. To enhance competitive pressure, emphasis was placed on the importance of the competition and race outcome. Psychophysiological and performance data were collected at several points before, during, and after the races. Results showed that an increase in cortisol levels was associated with competitive pressure and reflected in higher perceived exertion (day 1, r = .32; day 2, r = .46), higher intensity of dysfunctional states (day 1, r = .59; day 2, r = .55), lower intensity of functional states (day 1, r = -.36; day 2, r = -.33), and decay in memory (day 1, r = -.27; day 2, r = -.35), visual attention (day 1, r = -.56; day 2, r = -.35), and attention/mental flexibility (day 1, r = .16; day 2, r = .26) tasks. The second day we observed better performance times, lower intensity of dysfunctional states, lower cortisol levels, improved visual attention and attention/mental flexibility (p < .050). Across the two competition days, chromogranin A levels were higher (p < .050) on the most difficult loops of the race in terms of both physical and psychological demands. Findings suggest emotional, cognitive, psychophysiological, and performance variables to be related and to jointly change across different levels of cognitive and physical load. Overall results are discussed in light of the IZOF and biopsychosocial models. The procedure adopted in the study also supports the feasibility of including additional cognitive load for possible practical applications. PMID:29698498
GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. III. POLARIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang-Condell, Hannah
2017-01-20
Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected bymore » polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.« less
Intense laser field effects on a Woods-Saxon potential quantum well
NASA Astrophysics Data System (ADS)
Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.
2015-11-01
This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Sova, J. A.
1980-01-01
The fracture toughness of boron/aluminum laminates was measured on sheet specimens containing central slits of various lengths that represent cracks. The specimens were loaded axially and had various widths. The sheets were made with five laminate orientation. Fracture toughness was calculated for each laminate orientation. Specimens began failing at the ends of the slit with what appeared to be tensile failures of fibers in the primary load carrying laminae. A general fracture toughness parameter independent of laminate orientation was derived on the basis of fiber failure in the principal load carrying laminae. The value of this parameter was proportional to the critical value of the stress intensity factor. The constant of proportionality depended only on the elastic constants of the laminates.
Effect of Ply Orientation and Crack Location on SIFs in Finite Multilayers with Aligned Cracks
NASA Astrophysics Data System (ADS)
Chen, Linfeng; Pindera, Marek-Jerzy
2008-02-01
An exact elasticity solution is presented for arbitrarily laminated finite multilayers in a state of generalized plane deformation under horizontally pinned end constraints that are weakened by aligned cracks. Based on half-range Fourier series and the local/global stiffness matrix approach, the mixed boundary-value problem is reduced to Cauchy-type singular integral equations in the unknown displacement discontinuities. Solution to these equations is obtained using the approach developed by Erdogan and co-workers. Numerical results quantify the thus-far undocumented geometric and material effects on Mode I, II and III stress intensity factors in composite multilayers with interacting cracks under uniform vertical displacement. These effects include finite dimensions, crack location, material anisotropy due to a unidirectional fiber-reinforced layer/s orientation, and orientational grading.
Plastic Deformation of Magnesium Alloy Subjected to Compression-First Cyclic Loading
NASA Astrophysics Data System (ADS)
Lee, Soo Yeol; Gharghouri, Michael A.; Root, John H.
In-situ neutron diffraction has been employed to study the deformation mechanisms in a precipitation-hardened and extruded Mg-8.5wt.% Al alloy subjected to compression followed by reverse tension. The starting texture is such that the basal poles of most grains are oriented normal to the extrusion axis and a small portion of grains are oriented with the basal pole parallel to the extrusion axis. Diffraction peak intensities for several grain orientations monitored in-situ during deformation show that deformation twinning plays an important role in the elastic-plastic transition and subsequent plastic deformation behavior. Significant non-linear behavior is observed during unloading after compression and appears to be due to detwinning. This effect is much stronger after compressive loading than after tensile loading.
Goal-oriented networks and capacity building for natural hazards - examples in the Dresden region
NASA Astrophysics Data System (ADS)
Hutter, G.
2013-04-01
Networks and networking are important to build social capacities for natural hazards. However, up to now, it is an open question which types of networks contribute to capacity building under certain circumstances. The paper focuses on the type of a goal-oriented network. The distinction between goal orientation and goal directedness is used to show the following: goal directedness of networks to build capacities for natural hazards involves intensive and continuous processes of sensemaking (Weick, 1995) to specify the network goal. This process of specifying an initial goal statement is important in small and large networks. The governance form of a lead organization network facilitates goal specification. The paper illustrates these findings through evidence from two case studies conducted in the Dresden region in Germany.
Scheffold, N; Paoli, A; Gross, J; Riemann, U; Hennersdorf, M
2012-10-01
Ethical problems, such as medical end-of-life decisions or withdrawing life-sustaining treatment are viewed as an essential task in intensive care units. This article presents the ethics rounds as an instrument for evaluation of ethical problems in intensive care medicine units. The benchmarks of ethical reflection during the ethics rounds are considerations of ethical theory of principle-oriented medical ethics. Besides organizational aspects and the institutional framework, the role of the ethicist is described. The essential evaluation steps, as a basis of the ethics rounds are presented. In contrast to the clinical ethics consultation, the ethicist in the ethics rounds model is integrated as a member of the ward round team. Therefore ethical problems may be identified and analyzed very early before the conflict escalates. This preventive strategy makes the ethics rounds a helpful instrument in intensive care units.
Fatigue Crack Growth Characteristics of Thin Sheet Titanium Alloy Ti 6-2-2-2-2
NASA Technical Reports Server (NTRS)
Smith, Stephen W.; Piascik, Robert S.
2001-01-01
Fatigue crack growth rates of Ti 6-2-2-2-2 as a function of stress ratio, temperature (24 or 177 C), tensile orientation and environment (laboratory air or ultrahigh vacuum) are presented. Fatigue crack growth rates of Ti 6-2-2-2-2 are also compared with two more widely used titanium alloys (Timetal 21S and Ti 6Al-4V). The fatigue crack growth rate (da/dN) of Ti 6-2-2-2-2 in laboratory air is dependent upon stress ratio (R), particularly in the near-threshold and lower-Paris regimes. For low R (less than approximately 0.5), da/dN is influenced by crack closure behavior. At higher R (> 0.5), a maximum stress-intensity factor (K(sub max)) dependence is observed. Fatigue crack growth behavior is affected by test temperature between 24 and 177 C. For moderate to high applied cyclic-stress-intensity factors (delta-K), the slope of the log da/dN versus log delta-K curve is lower in 177 C laboratory air than 24 C laboratory air. The difference in slope results in lower values of da/dN for exposure to 177 C laboratory air compared to room temperature laboratory air. The onset of this temperature effect is dependent upon the applied R. This temperature effect has not been observed in ultrahigh vacuum. Specimen orientation has been shown to affect the slope of the log da/dN versus log delta-K curve in the Paris regime.
Blas, Julio; Abaurrea, Teresa; D’Amico, Marcello; Barcellona, Francesca; Revilla, Eloy; Román, Jacinto; Carrete, Martina
2016-01-01
Traffic is often acknowledged as a threat to biodiversity, but its effects have been mostly studied on roads subjected to high traffic intensity. The impact of lower traffic intensity such as those affecting protected areas is generally neglected, but conservation-oriented activities entailing motorized traffic could paradoxically transform suitable habitats into ecological traps. Here we questioned whether roadside-nesting bee-eaters Merops apiaster perceived low traffic intensity as a stressor eliciting risk-avoidance behaviors (alarm calls and flock flushes) and reducing parental care. Comparisons were established within Doñana National Park (Spain), between birds exposed to either negligible traffic (ca. 0–10 vehicles per day) or low traffic intensity (ca. 10–90 vehicles per day) associated to management and research activities. The frequencies of alarm calls and flock flushes were greater in areas of higher traffic intensity, which resulted in direct mortality at moderate vehicle speeds (≤ 40 km/h). Parental feeding rates paralleled changes in traffic intensity, but contrary to our predictions. Indeed, feeding rates were highest in traffic-exposed nests, during working days and traffic rush-hours. Traffic-avoidance responses were systematic and likely involved costs (energy expenditure and mortality), but vehicle transit positively influenced the reproductive performance of bee-eaters through an increase of nestling feeding rates. Because the expected outcome of traffic on individual performance can be opposed when responses are monitored during mating (i.e. negative effect by increase of alarm calls and flock flushes) or nestling-feeding period (i.e. at least short-term positive effect by increase of nestling feeding rates), caution should be taken before inferring fitness consequences only from isolated behaviors or specific life history stages. PMID:27706229
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s –1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution ofmore » diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ~1.5–2 compared with those observed at conventional dose rates. As a result, improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Blas, Julio; Abaurrea, Teresa; D'Amico, Marcello; Barcellona, Francesca; Revilla, Eloy; Román, Jacinto; Carrete, Martina
2016-01-01
Traffic is often acknowledged as a threat to biodiversity, but its effects have been mostly studied on roads subjected to high traffic intensity. The impact of lower traffic intensity such as those affecting protected areas is generally neglected, but conservation-oriented activities entailing motorized traffic could paradoxically transform suitable habitats into ecological traps. Here we questioned whether roadside-nesting bee-eaters Merops apiaster perceived low traffic intensity as a stressor eliciting risk-avoidance behaviors (alarm calls and flock flushes) and reducing parental care. Comparisons were established within Doñana National Park (Spain), between birds exposed to either negligible traffic (ca. 0-10 vehicles per day) or low traffic intensity (ca. 10-90 vehicles per day) associated to management and research activities. The frequencies of alarm calls and flock flushes were greater in areas of higher traffic intensity, which resulted in direct mortality at moderate vehicle speeds (≤ 40 km/h). Parental feeding rates paralleled changes in traffic intensity, but contrary to our predictions. Indeed, feeding rates were highest in traffic-exposed nests, during working days and traffic rush-hours. Traffic-avoidance responses were systematic and likely involved costs (energy expenditure and mortality), but vehicle transit positively influenced the reproductive performance of bee-eaters through an increase of nestling feeding rates. Because the expected outcome of traffic on individual performance can be opposed when responses are monitored during mating (i.e. negative effect by increase of alarm calls and flock flushes) or nestling-feeding period (i.e. at least short-term positive effect by increase of nestling feeding rates), caution should be taken before inferring fitness consequences only from isolated behaviors or specific life history stages.
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.; ...
2017-10-13
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s –1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution ofmore » diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ~1.5–2 compared with those observed at conventional dose rates. As a result, improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-02-09
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wiesemeyer, H.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-02-01
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm-2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less
Middle East Studies Teacher Training Program. Final Report.
ERIC Educational Resources Information Center
Sefein, Naim A.
This guide presents a teacher training program in Middle Eastern studies and procedures for program implementation. Details concerning program announcement, participant selection, and travel accommodations are included. Participants attended an orientation and registration workshop and an intensive academic workshop before flying to Egypt for the…
The International Mathematical Olympiad Training Session.
ERIC Educational Resources Information Center
Rousseau, Cecil; Patruno, Gregg
1985-01-01
The Mathematical Olympiad Training Session is designed to give United States students a problem-oriented exposure to subject areas (algebra, geometry, number theory, combinatorics, and inequalities) through an intensive three-week course. Techniques used during the session, with three sample problems and their solutions, are presented. (JN)
The anomalous demagnetization behaviour of chondritic meteorites
NASA Astrophysics Data System (ADS)
Morden, S. J.
1992-06-01
Alternating field (AF) demagnetization of chondritic samples often shows anomalous results such as large directional and intensity changes; 'saw-tooth' intensity vs. demagnetizing field curves are also prevalent. An attempt to explain this behaviour is presented, using a computer model in which individual 'mineral grains' can be 'magnetized' in a variety of different ways. A simulated demagnetization can then be carried out to examine the results. It was found that the experimental behaviour of chondrites can be successfully mimicked by loading the computer model with a series of randomly orientated and sized vectors. The parameters of the model can be changed to reflect different trends seen in experimental data. Many published results can be modelled using this method. A known magnetic mineralogy can be modelled, and an unknown mineralogy deduced from AF demagnetization curves. Only by comparing data from mutually orientated samples can true stable regions for palaeointensity measurements be identified, calling into question some previous estimates of field strength from meteorites.
Song, Ju-Hyun; Colasante, Tyler; Malti, Tina
2018-06-01
Although emotionally well-regulated children are more likely to behave prosocially, the psychological processes that connect their emotion regulation abilities and prosocial behavior are less clear. We tested if other-oriented sympathy and trust mediated the links between emotion regulation capacities (i.e., resting respiratory sinus arrhythmia [RSA], negative emotional intensity, and sadness regulation) and prosocial behavior in an ethnically diverse sample of 4- and 8-year-olds (N = 131; 49% girls). Resting RSA was calculated from children's electrocardiogram data in response to a nondescript video. Sympathy was child and caregiver reported, whereas negative emotional intensity, sadness regulation, trust, and prosocial behavior were caregiver reported. Regardless of age, higher resting RSA was linked to higher sympathy, which was associated with higher prosocial behavior. The positive link between sadness regulation and prosocial behavior was mediated by higher sympathy and trust. Children's other-oriented psychological processes may play important roles in translating certain emotion regulation capacities into prosocial behavior. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator.
Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu
2015-09-01
In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.
Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator
NASA Astrophysics Data System (ADS)
Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu
2015-09-01
In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.
Gefen, Amit
2008-01-01
Pressure-related deep tissue injury (DTI) is a severe form of pressure ulcer that initiates in compressed muscle tissues under bony prominences, and progresses superficially towards the skin. Patients with impaired motosensory capacities are at high risk of developing DTI. There is a critical medical need for developing risk assessment tools for DTI. A new anatomical index, the Compression Intensity Index: CII=(BW/Rt);[1/2], which depends on the body weight (BW), radius of curvature of the ischial tuberosities (R) and thickness of the underlying gluteus muscles (t), is suggested for approximating the loading intensity in muscle tissue during sitting in permanent wheelchair users, as part of a clinically-oriented risk assessment for DTI. Preliminary CII data were calculated for 6 healthy and 4 paraplegic subjects following MRI scans, and data were compared between the groups and with respect to a gold standard, being a previously developed subject-specific MRI-finite-element (MRI-FE) method of calculating muscle tissue stresses (Linder-Ganz et al., J. Biomech. 2007). Marked differences between the R and t parameters of the two groups caused the CII values of the paraplegics to be approximately 1.6-fold higher than for the healthy (p<0.001), thereby indicating on the sensitivity of this parameter to the pathoanatomical changes that occur in the buttocks with paraplegia. Data of CII correlated reasonably with the gold standard calculations of MRI-FE muscle stresses (correlation coefficient 0.65). Since CII measurements do not require highly-specialized biomechanical numerical analyses such as MRI-FE, CII has the potential to serve as a practical, quick, and cost-effective approximation of the loading intensity in muscles of wheelchair-bound or bedridden patients. Hence, CII measurements can be integrated into DTI-risk-assessment tools, the need of which is now being discussed intensively in the American and European Pressure Ulcer Advisory Panel meetings.
Public budgets for energy RD&D and the effects on energy intensity and pollution levels.
Balsalobre, Daniel; Álvarez, Agustín; Cantos, José María
2015-04-01
This study, based on the N-shaped cubic model of the environmental Kuznets curve, analyzes the evolution of per capita greenhouse gas emissions (GHGpc) using not just economic growth but also public budgets dedicated to energy-oriented research development and demonstration (RD&D) and energy intensity. The empirical evidence, obtained from an econometric model of fixed effects for 28 OECD countries during 1994-2010, suggests that energy innovations help reduce GHGpc levels and mitigate the negative impact of energy intensity on environmental quality. When countries develop active energy RD&D policies, they can reduce both the rates of energy intensity and the level of GHGpc emissions. This paper incorporates a moderating variable to the econometric model that emphasizes the effect that GDP has on energy intensity. It also adds a variable that reflects the difference between countries that have made a greater economic effort in energy RD&D, which in turn corrects the GHG emissions resulting from the energy intensity of each country.
Optimally resolving Lambertian surface orientation
NASA Astrophysics Data System (ADS)
Bertsatos, Ioannis; Makris, Nicholas C.
2003-10-01
Sonar images of remote surfaces are typically corrupted by signal-dependent noise known as speckle. Relative motion between source, surface, and receiver causes the received field to fluctuate over time with circular complex Gaussian random (CCGR) statistics. In many cases of practical importance, Lambert's law is appropriate to model radiant intensity from the surface. In a previous paper, maximum likelihood estimators (MLE) for Lambertian surface orientation have been derived based on CCGR measurements [N. C. Makris, SACLANT Conference Proceedings Series CP-45, 1997, pp. 339-346]. A Lambertian surface needs to be observed from more than one illumination direction for its orientation to be properly constrained. It is found, however, that MLE performance varies significantly with illumination direction due to the inherently nonlinear nature of this problem. It is shown that a large number of samples is often required to optimally resolve surface orientation using the optimality criteria of the MLE derived in Naftali and Makris [J. Acoust. Soc. Am. 110, 1917-1930 (2001)].
Delaine-Smith, Robin M; Green, Nicola H; Matcher, Stephen J; MacNeil, Sheila; Reilly, Gwendolen C
2014-01-01
The biological and mechanical function of connective tissues is largely determined by controlled cellular alignment and therefore it seems appropriate that tissue-engineered constructs should be architecturally similar to the in vivo tissue targeted for repair or replacement. Collagen organisation dictates the tensile properties of most tissues and so monitoring the deposition of cell-secreted collagen as the construct develops is essential for understanding tissue formation. In this study, electrospun fibres with a random or high degree of orientation, mimicking two types of tissue architecture found in the body, were used to culture human fibroblasts for controlling cell alignment. The minimally-invasive technique of second harmonic generation was used with the aim of monitoring and profiling the deposition and organisation of collagen at different construct depths over time while construct mechanical properties were also determined over the culture period. It was seen that scaffold fibre organisation affected cell migration and orientation up to 21 days which in turn had an effect on collagen organisation. Collagen in random fibrous constructs was deposited in alternating configurations at different depths however a high degree of organisation was observed throughout aligned fibrous constructs orientated in the scaffold fibre direction. Three-dimensional second harmonic generation images showed that deposited collagen was more uniformly distributed in random constructs but aligned constructs were more organised and had higher intensities. The tensile properties of all constructs increased with increasing collagen deposition and were ultimately dictated by collagen organisation. This study highlights the importance of scaffold architecture for controlling the development of well-organised tissue engineered constructs and the usefulness of second harmonic generation imaging for monitoring collagen maturation in a minimally invasive manner.
NASA Astrophysics Data System (ADS)
Han, Taehee
A new technology to perform a minimally invasive cornea reshaping procedure has been developed. This can eliminate the incidence of the flap-related complications of the conventional eye refractive procedures by multiphoton processes using a very high-intensity (I ≥ 1013 W/cm 2), but low energy (Ep ˜ 100-200 microJ) femtosecond laser pulses. Due to much lower energy than that of the nanosecond laser pulses for the thermal photoablation, the multiphoton processes cause almost no collateral damage by heat and shock wave generation. In this method, a series of femtosecond laser pulses is used to create very narrow (< 30 microm) and sufficiently long (≥ 2.5 mm) micro-channels in the cornea. The micro-channels are oriented almost perpendicular to the eye's optical axis. Once the micro-channel reaches a desired length, another series of femtosecond pulses with higher intensity is efficiently delivered through the micro-channel to the endpoint where a certain amount of the stromal tissue is disintegrated by the multiphoton processes. The disintegrated fragments are ejected out of the cornea via the same micro-channel, allowing the corneal surface to collapse, and changing its refractive power. This new corneal reshaping method obviates any process of damaging the corneal surface layer, while retaining the advantages of the conventional refractive procedures such as Laser in situ keratomileusis (LASIK) and Photorefractive keratectomy (PRK). In order to demonstrate the flapless cornea reshaping procedure, we have conducted ex-vivo experiments on fresh porcine eyes. The reshaped corneas were evaluated by using optical coherence tomography (OCT). The test results have shown that this flapless intrastromal procedure can reshape the cornea as intended with almost no surface damage. We have also performed a series of experiments to demonstrate the multiphoton processes in the corneal tissue by very high-intensity femtosecond laser pulses. Through the optical emission spectroscopy, we investigated the spectral lines of calcium atom and ions from the femtosecond laser-induced plasma from the porcine corneal tissue. The experimental results have shown the intensity-dependence of ablation rate, which qualitatively verifies the characteristics of the multiphoton processes.
Rams, Thomas E; Alwaqyan, Abdulaziz Y
2017-10-01
This study assessed the reproducibility of a red diode laser device, and its capability to detect dental calculus in vitro on human tooth root surfaces. On each of 50 extracted teeth, a calculus-positive and calculus-free root surface was evaluated by two independent examiners with a low-power indium gallium arsenide phosphide diode laser (DIAGNOdent) fitted with a periodontal probe-like sapphire tip and emitting visible red light at 655 nm wavelength. Laser autofluorescence intensity readings of examined root surfaces were scored on a 0-99 scale, with duplicate assessments performed using the laser probe tip directed both perpendicular and parallel to evaluated tooth root surfaces. Pearson correlation coefficients of untransformed measurements, and kappa analysis of data dichotomized with a >40 autofluorescence intensity threshold, were calculated to assess intra- and inter-examiner reproducibility of the laser device. Mean autofluorescence intensity scores of calculus-positive and calculus-free root surfaces were evaluated with the Student's t -test. Excellent intra- and inter-examiner reproducibility was found for DIAGNOdent laser autofluorescence intensity measurements, with Pearson correlation coefficients above 94%, and kappa values ranging between 0.96 and 1.0, for duplicate readings taken with both laser probe tip orientations. Significantly higher autofluorescence intensity values were measured when the laser probe tip was directed perpendicular, rather than parallel, to tooth root surfaces. However, calculus-positive roots, particularly with calculus in markedly-raised ledges, yielded significantly greater mean DIAGNOdent laser autofluorescence intensity scores than calculus-free surfaces, regardless of probe tip orientation. DIAGNOdent autofluorescence intensity values >40 exhibited a stronger association with calculus (36.6 odds ratio) then measurements of ≥5 (20.1 odds ratio) when the laser probe tip was advanced parallel to root surfaces. Excellent intra- and inter-examiner reproducibility of autofluorescence intensity measurements was obtained with the DIAGNOdent laser fluorescence device on human tooth roots. Calculus-positive root surfaces exhibited significantly greater DIAGNOdent laser autofluorescence than calculus-free tooth roots, even with the laser probe tip directed parallel to root surfaces. These findings provide further in vitro validation of the potential utility of a DIAGNOdent laser fluorescence device for identifying dental calculus on human tooth root surfaces.
Zhang, Shishu; Mao, Nannan; Zhang, Na; Wu, Juanxia; Tong, Lianming; Zhang, Jin
2017-10-24
The Raman tensor of a crystal is the derivative of its polarizability tensor and is dependent on the symmetries of the crystal and the Raman-active vibrational mode. The intensity of a particular mode is determined by the Raman selection rule, which involves the Raman tensor and the polarization configurations. For anisotropic two-dimensional (2D) layered crystals, polarized Raman scattering has been used to reveal the crystalline orientations. However, due to its complicated Raman tensors and optical birefringence, the polarized Raman scattering of triclinic 2D crystals has not been well studied yet. Herein, we report the anomalous polarized Raman scattering of 2D layered triclinic rhenium disulfide (ReS 2 ) and show a large circular intensity differential (CID) of Raman scattering in ReS 2 of different thicknesses. The origin of CID and the anomalous behavior in polarized Raman scattering were attributed to the appearance of nonzero off-diagonal Raman tensor elements and the phase factor owing to optical birefringence. This can provide a method to identify the vertical orientation of triclinic layered materials. These findings may help to further understand the Raman scattering process in 2D materials of low symmetry and may indicate important applications in chiral recognition by using 2D materials.
Müller, Anne D; Artemyev, Anton N; Demekhin, Philipp V
2018-06-07
Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.
NASA Astrophysics Data System (ADS)
Müller, Anne D.; Artemyev, Anton N.; Demekhin, Philipp V.
2018-06-01
Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simimol, A.; Department of Physics, National Institute of Technology, Calicut 673601; Manikandanath, N. T.
Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (T{sub A} = 100–500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (V{sub O}), zinc interstitial (Zn{sub i}), and oxygen interstitial (O{sub i}) defects and these can be reduced significantlymore » by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for T{sub A} greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for T{sub A} ≥ 450 °C in the oxygen and air environments, the density of O{sub i} defects increased, whereas, the green emission associated with V{sub O} is dominant in the vacuum annealed (T{sub A} = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications.« less
Sport-Specific Physiological Adaptations in Highly Trained Endurance Athletes.
Lundgren, Kari Margrethe; Karlsen, Trine; Sandbakk, Øyvind; James, Philip E; Tjønna, Arnt Erik
2015-10-01
This study aims to compare maximal oxygen uptake (V˙O2max), blood volume (BV), hemoglobin mass (Hbmass), and brachial endothelial function, measured as flow-mediated dilatation (FMD), in international-level endurance athletes primarily exercising with the whole body (cross-country skiing), lower body (orienteering), or upper body (flatwater kayak). Seventeen cross-country skiers, 15 orienteers, and 11 flatwater kayakers were tested for V˙O2max, BV, Hbmass, and FMD. Additionally, body composition and annual training (type, volume, and intensity of training) were analyzed. Absolute and body-mass-normalized V˙O2max values were 11.3% and 9.9% higher, respectively, in skiers (5.83 ± 0.60 L·min and 77.9 ± 4.2 mL·min·kg) compared to orienteers (5.24 ± 0.45 L·min and 70.9 ± 3.5 mL·min·kg) (P < 0.01), whereas kayakers (5.78 ± 0.56 L·min and 73.7 ± 6.3 mL·min·kg) did not differ from skiers. BV was 9.9%-11.8% higher in skiers and orienteers compared to kayakers when normalized for total body mass and fat-free mass, and skiers had 9.2% and 9.9% higher Hbmass normalized for total body mass and fat-free mass compared to kayakers (all P < 0.05). Arterial diameter was 11.8%-15.0% larger in kayakers (4.38 ± 0.63 mm) and skiers (4.22 ± 0.36 mm) compared to orienteers (3.81 ± 0.32 mm) (P < 0.05), whereas FMD did not differ between groups. This study indicates that higher V˙O2max in cross-country skiers and greater arterial diameters in the arms of skiers and kayakers are sport-specific physiological adaptations to chronic endurance training in whole-body and upper-body exercise modes. However, variations in these variables are not associated with BV or Hbmass.
Mechanical signals in plant development: a new method for single cell studies
NASA Technical Reports Server (NTRS)
Lynch, T. M.; Lintilhac, P. M.
1997-01-01
Cell division, which is critical to plant development and morphology, requires the orchestration of hundreds of intracellular processes. In the end, however, cells must make critical decisions, based on a discrete set of mechanical signals such as stress, strain, and shear, to divide in such a way that they will survive the mechanical loads generated by turgor pressure and cell enlargement within the growing tissues. Here we report on a method whereby tobacco protoplasts swirled into a 1.5% agarose entrapment medium will survive and divide. The application of a controlled mechanical load to agarose blocks containing protoplasts orients the primary division plane of the embedded cells. Photoelastic analysis of the agarose entrapment medium can identify the lines of principal stress within the agarose, confirming the hypothesis that cells divide either parallel or perpendicular to the principal stress tensors. The coincidence between the orientation of the new division wall and the orientation of the principal stress tensors suggests that the perception of mechanical stress is a characteristic of individual plant cells. The ability of a cell to determine a shear-free orientation for a new partition wall may be related to the applied load through the deformation of the matrix material. In an isotropic matrix a uniaxial load will produce a rotationally symmetric strain field, which will define a shear-free plane. Where high stress intensities combine with the loading geometry to produce multiaxial loads there will be no axis of rotational symmetry and hence no shear free plane. This suggests that two mechanisms may be orienting the division plane, one a mechanism that works in rotationally symmetrical fields, yielding divisions perpendicular to the compressive tensor, parallel to the long axis of the cell, and one in asymmetric fields, yielding divisions parallel to the short axis of the cell and the compressive tensor.
Shah, Furqan A; Zanghellini, Ezio; Matic, Aleksandar; Thomsen, Peter; Palmquist, Anders
2016-02-01
The orientation of nanoscale mineral platelets was quantitatively evaluated in relation to the shape of lacunae associated with partially embedded osteocytes (osteoblastic-osteocytes) on the surface of deproteinised trabecular bone of adult sheep. By scanning electron microscopy and image analysis, the mean orientation of mineral platelets at the osteoblastic-osteocyte lacuna (Ot.Lc) floor was found to be 19° ± 14° in the tibia and 20° ± 14° in the femur. Further, the mineral platelets showed a high degree of directional coherency: 37 ± 7% in the tibia and 38 ± 9% in the femur. The majority of Ot.Lc in the tibia (69.37%) and the femur (74.77%) exhibited a mean orientation of mineral platelets between 0° and 25°, with the largest fraction within a 15°-20° range, 17.12 and 19.8% in the tibia and femur, respectively. Energy dispersive X-ray spectroscopy and Raman spectroscopy were used to characterise the features observed on the anorganic bone surface. The Ca/P (atomic %) ratio was 1.69 ± 0.1 within the Ot.Lc and 1.68 ± 0.1 externally. Raman spectra of NaOCl-treated bone showed peaks associated with carbonated apatite: ν1, ν2 and ν4 PO4(3-), and ν1 CO3(2-), while the collagen amide bands were greatly reduced in intensity compared to untreated bone. The apatite-to-collagen ratio increased considerably after deproteinisation; however, the mineral crystallinity and the carbonate-to-phosphate ratios were unaffected. The ~19°-20° orientation of mineral platelets in at the Ot.Lc floor may be attributable to a gradual rotation of osteoblasts in successive layers relative to the underlying surface, giving rise to the twisted plywood-like pattern of lamellar bone.
Composition and structure of porcine digital flexor tendon-bone insertion tissues.
Chandrasekaran, Sandhya; Pankow, Mark; Peters, Kara; Huang, Hsiao-Ying Shadow
2017-11-01
Tendon-bone insertion is a functionally graded tissue, transitioning from 200 MPa tensile modulus at the tendon end to 20 GPa tensile modulus at the bone, across just a few hundred micrometers. In this study, we examine the porcine digital flexor tendon insertion tissue to provide a quantitative description of its collagen orientation and mineral concentration by using Fast Fourier Transform (FFT) based image analysis and mass spectrometry, respectively. Histological results revealed uniformity in global collagen orientation at all depths, indicative of mechanical anisotropy, although at mid-depth, the highest fiber density, least amount of dispersion, and least cellular circularity were evident. Collagen orientation distribution obtained through 2D FFT of histological imaging data from fluorescent microscopy agreed with past measurements based on polarized light microscopy. Results revealed global fiber orientation across the tendon-bone insertion to be preserved along direction of physiologic tension. Gradation in the fiber distribution orientation index across the insertion was reflective of a decrease in anisotropy from the tendon to the bone. We provided elemental maps across the fibrocartilage for its organic and inorganic constituents through time-of-flight secondary ion mass spectrometry (TOF-SIMS). The apatite intensity distribution from the tendon to bone was shown to follow a linear trend, supporting past results based on Raman microprobe analysis. The merit of this study lies in the image-based simplified approach to fiber distribution quantification and in the high spatial resolution of the compositional analysis. In conjunction with the mechanical properties of the insertion tissue, fiber, and mineral distribution results for the insertion from this may potentially be incorporated into the development of a structural constitutive approach toward computational modeling. Characterizing the properties of the native insertion tissue would provide the microstructural basis for developing biomimetic scaffolds to recreate the graded morphology of a fibrocartilaginous insertion. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3050-3058, 2017. © 2017 Wiley Periodicals, Inc.
Chopik, A; Pasechnik, S; Semerenko, D; Shmeliova, D; Dubtsov, A; Srivastava, A K; Chigrinov, V
2014-03-15
The results of investigation of electro-optical properties of porous polyethylene terephthalate films filled with a nematic liquid crystal (5 CB) are presented. It is established that the optical response of the samples on the applied voltage drastically depends on the frequency range. At low frequencies of applied electrical field (f
Globalisation and Its Impact on VET. Review of Research.
ERIC Educational Resources Information Center
Hobart, Barry
The impact of globalization on vocational education and training (VET) in Australia was examined through a literature review. Special attention was paid to the following topics: the growing export orientation in Australian industry (industrial growth in Australia's economy, growth in Australian exports, "knowledge intensity" in the…
Kaddoura, Mahmoud A
2010-09-01
It is essential for nurses to develop critical thinking skills to ensure their ability to provide safe and effective care to patients with complex and variable needs in ever-changing clinical environments. To date, very few studies have been conducted to examine how nursing orientation programs develop the critical thinking skills of novice critical care nurses. Strikingly, no research studies could be found about the American Association of Critical Care Nurses Essentials of Critical Care Orientation (ECCO) program and specifically its effect on the development of nurses' critical thinking skills. This study explored the perceptions of new graduate nurses regarding factors that helped to develop their critical thinking skills throughout their 6-month orientation program in the intensive care unit. A convenient non-probability sample of eight new graduates was selected from a hospital that used the ECCO program. Data were collected with demographic questionnaires and semi-structured interviews. An exploratory qualitative research method with content analysis was used to analyze the data. The study findings showed that new graduate nurses perceived that they developed critical thinking skills that improved throughout the orientation period, although there were some challenges in the ECCO program. This study provides data that could influence the development and implementation of future nursing orientation programs. Copyright 2010, SLACK Incorporated.
Study of vortex generator influence on the flow in the wake of high-lift system wing
NASA Astrophysics Data System (ADS)
Bragin, N. N.; Ryabov, D. I.; Skomorokhov, S. I.; Slitinskaya, A. Yu.
2016-10-01
Passive vortex generators (VG) are known as one of the ways to improve the flow of the wings and other surfaces in the presence of flow separation. In particular, the VG are installed on the wings and nacelles of many foreign airplanes, including the most recent ones (for example, Boeing 787, Airbus A-350). The principle of the passive VG effects on flow is to transfer the kinetic energy of the external flow separation region by the vortices system arising from the flow VG themselves. For example, by increasing the angle of attack of the wing separation it is highly three-dimensional picture of the flow and sufficiently sensitive to external influences. Thus separated flow can be controlled when using the VG destroy large separation vortices. The VG effectiveness depends on many parameters. This is primarily the relative position of the second harmonic and the separation region on the wing and their size and position relative to each other, the orientation of the second harmonic relative to the local flow direction of the external flow, etc. Obviously, the VG effect will depend essentially on the intensity ratio of the second harmonic vortexes and nature of flow separation in the separation area. In the presence of intense flow separation the effect of conventional VG may be reduced or not occur at all. Until recently, investigations and selection of position of conventional VG were made only experimentally. Currently, the possibilities of calculation methods allow estimating the VG effect on the flow in the separation area. However, due to the phenomenon complexity the accuracy of these calculations is low. The experimental data are required to validate the computational methods, including information not only about the total impact, but also about the flow structure in the separation area. To obtain such information is the subject of this paper. In the test model of high-lift devices swept wing with modern supercritical profile the parametric studies were performed on the VG effects on the flow in the intensive separation zone on flaps. A number of VG types is considered that differ by configuration, size, location in relation to the area of flow separation on the flap, as well as the orientation relative to the incoming flow. The major part of standard of VG positions is investigated. The VG influence on head velocity loss and the characteristics of the amplitude-frequency spectra of pressure fluctuations in the wake of the wing are obtained, as well as the flow spectra are obtained by means of fluorescent mini-tufts.
NASA Astrophysics Data System (ADS)
Hanzel, Jason
The use of lidar (light detection and ranging), a remote sensing tool based on principles of laser optometry, in mapping complex, multi-scale fracture networks had not been rigorously tested prior to this study despite its foreseeable utility in interpreting rock fabric with imprints of complex tectonic evolution. This thesis demonstrates lidar-based characterization of the Woodford Shale where intense fracturing could be due to both tectonism and mineralogy. The study area is the McAlister Shale Pit in south-central Oklahoma where both the upper and middle sections of the Woodford Shale are exposed and can be lidar-mapped. Lidar results are validated using hand-measured strike and dips of fracture planes, thin sections and mineral chemistry of selected samples using X-ray diffraction (XRD). Complexity of the fracture patterns as well as inaccessibility of multiple locations within the shale pit makes hand-measurement prone to errors and biases; lidar provides an opportunity for less biased and more efficient field mapping. Fracture mapping with lidar is a multi-step process. The lidar data are converted from point clouds into a mesh through triangulation. User-defined parameters such as size and orientation of the individual triangular elements are then used to group similar elements into surfaces. The strike and dip attribute of the simulated surfaces are visualized in an equal area lower hemisphere projection stereonet. Three fracture sets were identified in the upper and middle sections with common orientation but substantially different spatial density. Measured surface attributes and spatial density relations from lidar were validated using their hand-measured counterparts. Thin section analysis suggests that high fracture density in the upper Woodford measured by both the lidar and the hand-measured data could be due to high quartz. A significant finding of this study is the reciprocal relation between lidar intensity and gamma-ray (GR), which is generally used to infer outcrop mineralogy. XRD analysis of representative samples along the common profiles show that both GR and lidar intensity were influenced by the same minerals in essentially opposite ways. Results strongly suggest that the lidar cannot only remotely map the geomorphology, but also the relative mineralogical variations to the first order of approximation.
Feng, Shijie; Chen, Qian; Zuo, Chao; Tao, Tianyang; Hu, Yan; Asundi, Anand
2017-01-23
Fringe projection is an extensively used technique for high speed three-dimensional (3-D) measurements of dynamic objects. To precisely retrieve a moving object at pixel level, researchers prefer to project a sequence of fringe images onto its surface. However, the motion often leads to artifacts in reconstructions due to the sequential recording of the set of patterns. In order to reduce the adverse impact of the movement, we present a novel high speed 3-D scanning technique combining the fringe projection and stereo. Firstly, promising measuring speed is achieved by modifying the traditional aperiodic sinusoidal patterns so that the fringe images can be cast at kilohertz with the widely used defocusing strategy. Next, a temporal intensity tracing algorithm is developed to further alleviate the influence of motion by accurately tracing the ideal intensity for stereo matching. Then, a combined cost measure is suggested to robustly estimate the cost for each pixel and lastly a three-step framework of refinement follows not only to eliminate outliers caused by the motion but also to obtain sub-pixel disparity results for 3-D reconstructions. In comparison with the traditional method where the effect of motion is not considered, experimental results show that the reconstruction accuracy for dynamic objects can be improved by an order of magnitude with the proposed method.
NASA Astrophysics Data System (ADS)
Zíková, Markéta; Hospodková, Alice; Pangrác, Jiří; Oswald, Jiří; Krčil, Pavel; Hulicius, Eduard; Komninou, Philomela; Kioseoglou, Joseph
2015-03-01
Preparation and properties of InAs/GaAs quantum dots (QDs) prepared by the MOVPE technology covered by GaAsSb strain reducing layer (SRL) with extremely long emission wavelength at 1.8 μm will be presented. Increase of the emission wavelength was achieved by the introduction of GaAsSb SRL with Sb content of about 30% in the solid phase. The high Sb concentration in the SRL causes the preservation of QD size, which is about 15 nm wide at the base and 5 nm high. Increased QD size increases the photoluminescence (PL) wavelength. Furthermore, high content of antimony leads to a creation of type II heterostructure for which a redshift of the PL wavelength and decrease of the PL intensity are typical. Low PL intensity may complicate light emitting applications; however fast separation of carriers in the type II structure is an advantage for detector or solar cell application, especially with the long working wavelength. With respect to the perspective application of this structure, the photocurrent (PC) measurement was chosen as the complementary characterization method. A depression of PC for quantum well wavelength region (approximately 900-1200 nm) was observed for positive bias, while the PC from QDs (over 1200 nm) is not sensitive to the electric field orientation at all. An explanation of this unexpected phenomenon is suggested.
Fluorescence from polystyrene - Photochemical processes in polymeric systems, 7
NASA Technical Reports Server (NTRS)
Gupta, M. C.; Gupta, A.
1983-01-01
Results are presented for measurements of the fluorescence spectra of polystyrene in dilute solution and in pure solid films. It is determined that a major potential source of experimental error is the concurrent photooxidative degradation in air which may obscure fluorescence emission from monomeric sites in solid films at 25 C. The fluorescence spectra of oriented films are evaluated in terms of the monomer to excimer fluorescence intensity ratio and the excimer 'red shift'. The monomer to excimer fluorescence intensity ratio is determined to be significantly higher in fluid solution than in solid film.
Fatigue crack growth in unidirectional metal matrix composite
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Telesman, Jack; Kantzos, Peter
1990-01-01
The weight function method was used to determine the effective stress intensity factor and the crack opening profile for a fatigue tested composite which exhibited fiber bridging. The bridging mechanism was modeled using two approaches; the crack closure approach and the shear lag approach. The numerically determined stress intensity factor values from both methods were compared and correlated with the experimentally obtained crack growth rates for SiC/Ti-15-3 (0)(sub 8) oriented composites. The near crack tip opening profile was also determined for both methods and compared with the experimentally obtained measurements.
NASA Astrophysics Data System (ADS)
Kuwabara, Hiroki; Menou, Nicolas; Funakubo, Hiroshi
2007-05-01
The growth and characterization of epitaxial (111)-oriented Pb(Zr0.35Ti0.65)O3 films deposited by metal organic chemical vapor deposition on (100)-oriented silicon substrates [(111)SrRuO3‖(111)Pt ‖(100)yttria-stabilizedzirconia‖(100)Si] are reported. The orientation, microstructure, and electric properties of these films are compared to those of fiber-textured highly (111)-oriented lead zirconate titanate (PZT) films deposited on (111)SrRuO3/(111)Pt/TiOx/SiO2/(100)Si substrates and epitaxial (111)-oriented PZT films deposited on (111)SrRuO3‖(111)SrTiO3 substrates. The ferroelectric properties of these films are not drastically influenced by the in-plane orientation of the film and by the strain state imposed by the underlying substrate. These results support the use of fiber-textured highly (111)-oriented films in highly stable ferroelectric capacitors.
Elastic light scattering from single cells: orientational dynamics in optical trap.
Watson, Dakota; Hagen, Norbert; Diver, Jonathan; Marchand, Philippe; Chachisvilis, Mirianas
2004-08-01
Light-scattering diagrams (phase functions) from single living cells and beads suspended in an optical trap were recorded with 30-ms time resolution. The intensity of the scattered light was recorded over an angular range of 0.5-179.5 degrees using an optical setup based on an elliptical mirror and rotating aperture. Experiments revealed that light-scattering diagrams from biological cells exhibit significant and complex time dependence. We have attributed this dependence to the cell's orientational dynamics within the trap. We have also used experimentally measured phase function information to calculate the time dependence of the optical radiation pressure force on the trapped particle and show how it changes depending on the orientation of the particle. Relevance of these experiments to potential improvement in the sensitivity of label-free flow cytometry is discussed.
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1983-01-01
A general theory of intensity scattering from small particles of arbitrary shape has been developed based on the radiative transfer theory. Upon permitting the particles to orient in accordance with any prescribed distribution, scattering models can be derived. By making an appropriate choice of the particle size, the scattering model may be used to estimate scattering from media such as snow, vegetation and sea ice. For the purpose of illustration only comparisons with measurements from a vegetated medium are shown. The difference in scattering between elliptic- and circular-shaped leaves is demonstrated. In the low-frequency limit, the major factors on backscattering from vegetation are found to be the depth of the vegetation layer and the orientation distribution of the leaves. The shape of the leaf is of secondary importance.
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1984-01-01
A general theory of intensity scattering from small particles of arbitrary shape was developed based on the radiative transfer theory. Upon permitting the particles to orient in accordance with any prescribed distribution, scattering models can be derived. By making an appropriate choice of the particle size, the scattering model may be used to estimate scattering from media such as snow, vegetation and sea ice. For the purpose of illustration only comparisons with measurements from a vegetated medium are shown. The difference in scattering between elliptic and circular shaped leaves is demonstrated. In the low frequency limit, the major factors on backscattering from vegetation are found to be the depth of the vegetation layer and the orientation distribution of the leaves. The shape of the leaf is of secondary importance.
Goal-oriented networks and capacity building for natural hazards - examples in the Dresden region
NASA Astrophysics Data System (ADS)
Hutter, G.
2014-01-01
Networks and networking are important for building social capacities for natural hazards. However, up to now, it has been an open question which types of networks contribute to capacity building under certain circumstances. The paper focuses on the type of a goal-oriented network. The distinction between goal orientation and goal directedness is used to show the following: goal directedness of networks to build capacities for natural hazards involves intensive and continuous processes of "sensemaking" (Weick, 1995) to specify the network goal. This process of specifying an initial goal statement is important in small and large networks at the regional level. The governance form of a lead organization network facilitates goal specification. The paper illustrates these findings through evidence from two case studies conducted in the Dresden region in Germany.
Optimized multi-electrode stimulation increases focality and intensity at target
NASA Astrophysics Data System (ADS)
Dmochowski, Jacek P.; Datta, Abhishek; Bikson, Marom; Su, Yuzhuo; Parra, Lucas C.
2011-08-01
Transcranial direct current stimulation (tDCS) provides a non-invasive tool to elicit neuromodulation by delivering current through electrodes placed on the scalp. The present clinical paradigm uses two relatively large electrodes to inject current through the head resulting in electric fields that are broadly distributed over large regions of the brain. In this paper, we present a method that uses multiple small electrodes (i.e. 1.2 cm diameter) and systematically optimize the applied currents to achieve effective and targeted stimulation while ensuring safety of stimulation. We found a fundamental trade-off between achievable intensity (at the target) and focality, and algorithms to optimize both measures are presented. When compared with large pad-electrodes (approximated here by a set of small electrodes covering 25cm2), the proposed approach achieves electric fields which exhibit simultaneously greater focality (80% improvement) and higher target intensity (98% improvement) at cortical targets using the same total current applied. These improvements illustrate the previously unrecognized and non-trivial dependence of the optimal electrode configuration on the desired electric field orientation and the maximum total current (due to safety). Similarly, by exploiting idiosyncratic details of brain anatomy, the optimization approach significantly improves upon prior un-optimized approaches using small electrodes. The analysis also reveals the optimal use of conventional bipolar montages: maximally intense tangential fields are attained with the two electrodes placed at a considerable distance from the target along the direction of the desired field; when radial fields are desired, the maximum-intensity configuration consists of an electrode placed directly over the target with a distant return electrode. To summarize, if a target location and stimulation orientation can be defined by the clinician, then the proposed technique is superior in terms of both focality and intensity as compared to previous solutions and is thus expected to translate into improved patient safety and increased clinical efficacy.
Martinent, Guillaume; Cece, Valérian; Elferink-Gemser, Marije Titia; Faber, Irene Renate; Decret, Jean-Claude
2018-05-15
This study examined the prognostic relevance of self-determined motivation, coping, burnout, perceived stress and recovery experienced by 159 youth table-tennis players involved in intensive training centers with regard to their participation and success six years later. Results of ANCOVAs showed that players who still practiced at time 2 (T2; six years later; n = 130) reported lower time 1 (T1; while they were involved in intensive training centers) amotivation (large effect), disengagement-oriented coping, sport devaluation and reduced accomplishment (moderate effects) than their counterparts who dropped out at T2 (n = 29). Results of ANCOVAs also showed that international (n = 18) and/or national players (n = 86) at T2 reported significantly lower T1 amotivation (large effect), disengagement-oriented coping and sport devaluation (moderate effects) in comparison to regional (n = 26) players at T2. Finally results of correlational analyses showed that T2 performance and/or six-year performance progress were significantly and weakly correlated with introjected and external regulations, perceived stress and perceived recovery, and significantly and moderately correlated with amotivation, disengagement-oriented coping, sport devaluation, and reduced accomplishment. Overall, this study provided insights into the role played by self-determined motivation, coping, burnout, perceived stress and recovery in the table-tennis players' dropout and performance level six years later.
NASA Astrophysics Data System (ADS)
Feng, Judy J.; Ip, Horace H.; Cheng, Shuk H.
2004-05-01
Many grey-level thresholding methods based on histogram or other statistic information about the interest image such as maximum entropy and so on have been proposed in the past. However, most methods based on statistic analysis of the images concerned little about the characteristics of morphology of interest objects, which sometimes could provide very important indication which can help to find the optimum threshold, especially for those organisms which have special texture morphologies such as vasculature, neuro-network etc. in medical imaging. In this paper, we propose a novel method for thresholding the fluorescent vasculature image series recorded from Confocal Scanning Laser Microscope. After extracting the basic orientation of the slice of vessels inside a sub-region partitioned from the images, we analysis the intensity profiles perpendicular to the vessel orientation to get the reasonable initial threshold for each region. Then the threshold values of those regions near the interest one both in x-y and optical directions have been referenced to get the final result of thresholds of the region, which makes the whole stack of images look more continuous. The resulting images are characterized by suppressing both noise and non-interest tissues conglutinated to vessels, while improving the vessel connectivities and edge definitions. The value of the method for idealized thresholding the fluorescence images of biological objects is demonstrated by a comparison of the results of 3D vascular reconstruction.
The Effects of Purpose Orientations on Recent High School Graduates' College Application Decisions
ERIC Educational Resources Information Center
Sharma, Gitima; Kim, Jungnam; Bryan, Julia
2017-01-01
Using the 2002 Educational Longitudinal Study database, the authors examined the different types of purpose orientations amongst a nationally representative sample of adolescents and the effect of these purpose orientations on high school graduates' college application decisions. Results indicated four types of purpose orientations: career,…
Object-Oriented Programming in High Schools the Turing Way.
ERIC Educational Resources Information Center
Holt, Richard C.
This paper proposes an approach to introducing object-oriented concepts to high school computer science students using the Object-Oriented Turing (OOT) language. Students can learn about basic object-oriented (OO) principles such as classes and inheritance by using and expanding a collection of classes that draw pictures like circles and happy…
Xu, Ming; Fei, Linfeng; Zhang, Weibing; Li, Tao; Lu, Wei; Zhang, Nian; Lai, Yanqing; Zhang, Zhian; Fang, Jing; Zhang, Kai; Li, Jie; Huang, Haitao
2017-03-08
High-performance Li-rich layered oxide (LRLO) cathode material is appealing for next-generation Li-ion batteries owing to its high specific capacity (>300 mAh g -1 ). Despite intense studies in the past decade, the low initial Coulombic efficiency and unsatisfactory cycling stability of LRLO still remain as great challenges for its practical applications. Here, we report a rational design of the orthogonally arranged {010}-oriented LRLO nanoplates with built-in anisotropic Li + ion transport tunnels. Such a novel structure enables fast Li + ion intercalation and deintercalation kinetics and enhances structural stability of LRLO. Theoretical calculations and experimental characterizations demonstrate the successful synthesis of target cathode material that delivers an initial discharge capacity as high as 303 mAh g -1 with an initial Coulombic efficiency of 93%. After 200 cycles at 1.0 C rate, an excellent capacity retention of 92% can be attained. Our method reported here opens a door to the development of high-performance Ni-Co-Mn-based cathode materials for high-energy density Li-ion batteries.
NASA Astrophysics Data System (ADS)
Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Qaeed, M. A.
2016-12-01
In this study, ZnO nanofibers (ZnO NFs) were successfully grown for the first time on Teflon substrates using CBD technique. The well-aligned ZnO nanorods (ZnO NRs) were transformed to ZnO nanofibers (NFs) by varying growth temperature and growth time. The high intensity and distinct growth orientation of peaks observed in the XRD spectra of the NFs indicate high crystal quality. The field emission scanning electron microscopy (FESEM) revealed high density of small diameter sized and long ZnO nanofibers (NFs) that are distributed in random directions. Raman analyses revealed a high E2 (high) peak at 436 nm, which indicates the wurtzite structure of ZnO. A flexible ZnO nanofiber (NFs)-based metal-semiconductor-metal UV detector was fabricated and analyzed for photo response and sensitivity under low power illumination (375 nm, 1.5 mW/cm2). The results showed a sensitivity of 4045% which can be considered a relatively high response and baseline recovery for UV detection.
Wu, Bin; Pan, Jiefeng; Ge, Liang; Wu, Liang; Wang, Huanting; Xu, Tongwen
2014-01-01
The novel oriented electrospun nanofiber membrane composed of MOFs and SPPESK has been synthesized for proton exchange membrane fuel cell operating at high temperature and anhydrous conditions. It is clear that the oriented nanofiber membrane displays the higher proton conductivity than that of the disordered nanofiber membrane or the membrane prepared by conventional solvent-casting method (without nanofibers). Nanofibers within the membranes are significantly oriented. The proton conductivity of the oriented nanofiber membrane can reach up to (8.2 ± 0.16) × 10−2 S cm−1 at 160°C under anhydrous condition for the highly orientation of nanofibers. Moreover, the oxidative stability and resistance of methanol permeability of the nanofibers membrane are obviously improved with an increase in orientation of nanofibers. The observed methanol permeability of 0.707 × 10−7 cm2 s−1 is about 6% of Nafion-115. Consequently, orientated nanofibers membrane is proved to be a promising material as the proton exchange membrane for potential application in direct methanol fuel cells. PMID:25082522
Depolarized FRET (depolFRET) on the cell surface: FRET control by photoselection.
Bene, László; Gogolák, Péter; Ungvári, Tamás; Bagdány, Miklós; Nagy, István; Damjanovich, László
2016-02-01
Sensitivity of FRET in hetero- and homo-FRET systems on the photoselected orientation distribution of donors has been proven by using polarized and depolarized light for excitation. FRET as well as donor and acceptor anisotropies have been simultaneously measured in a dual emission-polarization scheme realized in a conventional flow cytometer by using single laser excitation and applying fluorophore-conjugated mAbs against the MHCI and MHCII cell surface receptors. Depolarization of the originally polarized light have been achieved by using crystal depolarizers based on Cornu's principle, a quarter-wave plate for circular polarization, and a parallel beam splitter acting as a diagonal-polarizer for dual-polarization excitation. Simultaneous analysis of intensity-based FRET efficiency and acceptor depolarization equivocally report that depolarization of light may increase FRET in an amount depending on the acceptor-to-donor concentration ratio. Acceptor depolarization turned to be more sensitive to FRET than donor hyper-polarization and even than intensity-based FRET efficiency. It can be used as a sensitive tool for monitoring changes in the dynamics of the donor-acceptor pairs. The basic observations of FRET enhancement and increased acceptor depolarization obtained for hetero-FRET are paralleled by analog observations of homo-FRET enhancements under depolarized excitation. In terms of the orientation factor for FRET, the FRET enhancements on depolarization in the condition of the macroscopically isotropic orientation distributions such as those of the cell surface bound fluorophores report on the presence of local orientation mismatches of the donor and acceptor preventing the optimal FRET in the polarized case, which may be eliminated by the excitation depolarization. A theory of fluorescence anisotropy for depolarized excitation is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Hayes, D.B.; Baylis, J.R.; Carl, L.M.; Dodd, H.R.; Goldstein, J.D.; McLaughlin, R.L.; Noakes, D.L.G.; Porto, L.M.
2003-01-01
Four sampling designs for quantifying the effect of low-head sea lamprey (Petromyzon marinus) barriers on fish communities were evaluated, and the contribution of process-oriented research to the overall confidence of results obtained was discussed. The designs include: (1) sample barrier streams post-construction; (2) sample barrier and reference streams post-construction; (3) sample barrier streams pre- and post-construction; and (4) sample barrier and reference streams pre- and post-construction. In the statistical literature, the principal basis for comparison of sampling designs is generally the precision achieved by each design. In addition to precision, designs should be compared based on the interpretability of results and on the scale to which the results apply. Using data collected in a broad survey of streams with and without sea lamprey barriers, some of the tradeoffs that occur among precision, scale, and interpretability are illustrated. Although circumstances such as funding and availability of pre-construction data may limit which design can be implemented, a pre/post-construction design including barrier and reference streams provides the most meaningful information for use in barrier management decisions. Where it is not feasible to obtain pre-construction data, a design including reference streams is important to maintain the interpretability of results. Regardless of the design used, process-oriented research provides a framework for interpreting results obtained in broad surveys. As such, information from both extensive surveys and intensive process-oriented research provides the best basis for fishery management actions, and gives researchers and managers the most confidence in the conclusions reached regarding the effects of sea lamprey barriers.
Thermocouple Probe Orientation Affects Prescribed Fire Behavior Estimation.
Coates, T Adam; Chow, Alex T; Hagan, Donald L; Waldrop, Thomas A; Wang, G Geoff; Bridges, William C; Rogers, Mary-Frances; Dozier, James H
2018-01-01
Understanding the relationship between fire intensity and fuel mass is essential information for scientists and forest managers seeking to manage forests using prescribed fires. Peak burning temperature, duration of heating, and area under the temperature profile are fire behavior metrics obtained from thermocouple-datalogger assemblies used to characterize prescribed burns. Despite their recurrent usage in prescribed burn studies, there is no simple protocol established to guide the orientation of thermocouple installation. Our results from dormant and growing season burns in coastal longleaf pine ( Mill.) forests in South Carolina suggest that thermocouples located horizontally at the litter-soil interface record significantly higher estimates of peak burning temperature, duration of heating, and area under the temperature profile than thermocouples extending 28 cm vertically above the litter-soil interface ( < 0.01). Surprisingly, vertical and horizontal estimates of these measures did not show strong correlation with one another ( ≤ 0.14). The horizontal duration of heating values were greater in growing season burns than in dormant season burns ( < 0.01), but the vertical values did not indicate this difference ( = 0.52). Field measures of fuel mass and depth before and after fire showed promise as significant predictive variables ( ≤ 0.05) for the fire behavior metrics. However, all correlation coefficients were less than or equal to = 0.41. Given these findings, we encourage scientists, researchers, and managers to carefully consider thermocouple orientation when investigating fire behavior metrics, as orientation may affect estimates of fire intensity and the distinction of fire treatment effects, particularly in forests with litter-dominated surface fuels. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Polarized photoluminescence of nc-Si–SiO{sub x} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michailovska, E. V.; Indutnyi, I. Z.; Shepeliavyi, P. E.
2016-01-15
The effect of photoluminescence polarization memory in nc-Si–SiO{sub x} light-emitting structures containing Si nanoparticles (nc-Si) in an oxide matrix is for the first time studied. The polarization properties of continuous and porous nanostructures passivated in HF vapors (or solutions) are studied. It is established that the polarization memory effect is manifested only after treatment of the structures in HF. The effect is also accompanied by a shift of the photoluminescence peak to shorter wavelengths and by a substantial increase in the photoluminescence intensity. It is found that, in anisotropic nc-Si–SiO{sub x} samples produced by oblique deposition in vacuum, the degreemore » of linear photoluminescence polarization in the sample plane exhibits a noticeable orientation dependence and correlates with the orientation of SiO{sub x} nanocolumns forming the structure of the porous layer. These effects are attributed to the transformation of symmetrically shaped Si nanoparticles into asymmetric elongated nc-Si particles upon etching in HF. In continuous layers, nc-Si particles are oriented randomly, whereas in porous structures, their preferential orientation coincides with the orientation of oxide nanocolumns.« less
NASA Technical Reports Server (NTRS)
Parker, D. E.; Wood, D. L.; Gulledge, W. L.; Goodrich, R. L.
1979-01-01
Two types of experiments concerning the estimated magnitude of self-motion during exposure to linear oscillation on a parallel swing are described in this paper. Experiment I examined changes in magnitude estimation as a function of variation of the subject's head orientation, and Experiments II a, II b, and II c assessed changes in magnitude estimation performance following exposure to sustained, 'intense' linear oscillation (fatigue-inducting stimulation). The subjects' performance was summarized employing Stevens' power law R = k x S to the nth, where R is perceived self-motion magnitude, k is a constant, S is amplitude of linear oscillation, and n is an exponent). The results of Experiment I indicated that the exponents, n, for the magnitude estimation functions varied with head orientation and were greatest when the head was oriented 135 deg off the vertical. In Experiments II a-c, the magnitude estimation function exponents were increased following fatigue. Both types of experiments suggest ways in which the vestibular system's contribution to a spatial orientation perceptual system may vary. This variability may be a contributing factor to the development of pilot/astronaut disorientation and may also be implicated in the occurrence of motion sickness.
Therapists' Use of DBT: A Survey Study of Clinical Practice
ERIC Educational Resources Information Center
DiGiorgio, Kimberly E.; Glass, Carol R.; Arnkoff, Diane B.
2010-01-01
The purpose of this study was to examine how therapists conduct Dialectical Behavior Therapy (DBT) individual psychotherapy with clients, focusing on clinical factors that could account for decisions regarding modifications of DBT (e.g., client diagnosis, therapist theoretical orientation, and intensity of DBT training). Additionally, the study…
USDA-ARS?s Scientific Manuscript database
Insecticide resistance is the most broadly recognized and well studied ecological problem resulting from intensive insecticide use, which also provides useful evolutionary models of newly adapted phenotypes to changing environments. Two common assumptions in such population-oriented models are the e...
Assessment Intelligence in Small Group Learning
ERIC Educational Resources Information Center
Xing, Wanli; Wu, Yonghe
2014-01-01
Assessment of groups in CSCL context is a challenging task fraught with many confounding factors collected and measured. Previous documented studies are by and large summative in nature and some process-oriented methods require time-intensive coding of qualitative data. This study attempts to resolve these problems for teachers to assess groups…
University ESL Learners' Cross-Cultural Transitions through Web-Based Project Work
ERIC Educational Resources Information Center
Kang, Migyu; Bruna, Katherine Richardson
2013-01-01
This study sought to account for East Asian learners' cross-cultural transitions to US university Intensive English classroom culture within a technology-mediated language teaching approach, PrOCALL (Project-Oriented Computer Assisted Language Learning). It explored the influence of this approach on classroom interaction patterns acquired in the…
Involvement with Local Television News: Cognitive and Emotional Dimensions.
ERIC Educational Resources Information Center
Perse, Elizabeth M.
1990-01-01
Examines the validity of audience involvement in the context of local television news by testing the relationships among (1) strength of news viewing motivation and involvement intensity; (2) type of news viewing motivation and involvement orientation; and (3) cognitive and emotional involvement. Finds that audience involvement during message…
Subjective Dimensions of Organizational Roles among Public Relations Practitioners.
ERIC Educational Resources Information Center
Dozier, David M.; Gottesman, Michael
To explore the subjective dimensions of public relations practitioner orientations toward their profession in the context of the organizational roles they play, this study combined characteristics of both large-sample survey research and indepth, intensive inquiry. Membership lists of the Public Relations Society of America, the International…
Investigating Team Cohesion in COCOMO II.2000
ERIC Educational Resources Information Center
Snowdeal-Carden, Betty A.
2013-01-01
Software engineering is team oriented and intensely complex, relying on human collaboration and creativity more than any other engineering discipline. Poor software estimation is a problem that within the United States costs over a billion dollars per year. Effective measurement of team cohesion is foundationally important to gain accurate…
Serious Fun: Life-Deep Learning of Koi Hobbyists
ERIC Educational Resources Information Center
Liu, Chi-Chang
2012-01-01
Hobby activities can be viewed through the lens of informal, free-choice learning. A wide range of hobbies combine fun and learning-intensive practices, and can contribute to scientific literacy. Hobby learning involves clear goal orientation, persistence and effort, and often results in more richly and strongly connected knowledge; traits highly…
Using Eye Movement Desensitization and Reprocessing To Enhance Treatment of Couples.
ERIC Educational Resources Information Center
Protinsky, Howard; Sparks, Jennifer; Flemke, Kimberly
2001-01-01
Eye Movement Desensitization and Reprocessing (EMDR) as a clinical technique may enhance treatment effectiveness when applied in couple therapy that is emotionally and experientially oriented. Clinical experience indicates EMDR-based interventions are useful for accessing and reprocessing intense emotions in couple interactions. EMDR can amplify…
de Graaf, Tom A; Herring, Jim; Sack, Alexander T
2011-03-01
Transcranial magnetic stimulation (TMS) can induce masking by interfering with ongoing neural activity in early visual cortex. Previous work has explored the chronometry of occipital involvement in vision by using single pulses of TMS with high temporal resolution. However, conventionally TMS intensities have been high and the only measure used to evaluate masking was objective in nature. Recent studies have begun to incorporate subjective measures of vision, alongside objective ones. The current study goes beyond previous work in two regards. First, we explored both objective vision (an orientation discrimination task) and subjective vision (a stimulus visibility rating on a four-point scale), across a wide range of time windows with high temporal resolution. Second, we used a very sensitive TMS-masking paradigm: stimulation was at relatively low TMS intensities, with a figure-8 coil, and the small stimulus was difficult to discriminate already at baseline level. We hypothesized that this should increase the effective temporal resolution of our paradigm. Perhaps for this reason, we are able to report a rather interesting masking curve. Within the classical-masking time window, previously reported to encompass broad SOAs anywhere between 60 and 120 ms, we report not one, but at least two dips in objective performance, with no masking in-between. The subjective measure of vision did not mirror this pattern. These preliminary data from our exploratory design suggest that, with sensitive TMS masking, we might be able to reveal visual processes in early visual cortex previously unreported.
Slimani, Ahmed; Varret, François; Boukheddaden, Kamel; Garrot, Damien; Oubouchou, Hassane; Kaizaki, Sumio
2013-02-22
We investigated by optical microscopy the thermal transition of the spin-crossover dinuclear iron(II) compound [(Fe(NCSe)(py)(2))(2)(m-bpypz)]. In a high-quality crystal the high-spin (HS) low-spin (LS) thermal transition took place with a sizable hysteresis, at ~108 K and ~116 K on cooling and heating, respectively, through the growth of a single macroscopic domain with a straight LS and HS interface. The interface orientation was almost constant and its propagation velocity was close to ~6 and 26 μ m s(-1) for the on-cooling and on-heating processes, respectively. We found that the motion of the interface was sensitive to the intensity of the irradiation beam of the microscope, through a photothermal effect. By fine-tuning the intensity we could stop and even reverse the interface motion. This way we stabilized a biphasic state of the crystal, and we followed the spontaneous motion of the interface at different temperatures inside the thermal hysteresis loop. This experiment gives access for the first time to an accurate determination of the equilibrium temperature in the case of thermal hysteresis--which was not accessible by the usual quasistatic investigations. The temperature dependence of the propagation velocity inside the hysteretic interval was revealed to be highly nonlinear, and it was quantitatively reproduced by a dynamical mean-field theory, which made possible an estimate of the macroscopic energy barrier.
Orientation estimation algorithm applied to high-spin projectiles
NASA Astrophysics Data System (ADS)
Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.
2014-06-01
High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.
Evidence for an intense solar outburst in prehistory
NASA Astrophysics Data System (ADS)
Peratt, A. L.; Yao, W. F.
2008-04-01
A past intense solar outburst and its effect on Earth was proposed by Gold [3] who based his hypotheses on astronomical and geophysical evidence. The discovery that objects from Neolithic or Early Bronze Ages carry patterns of high-current Z-pinches provides insight into the origin and meaning of these ancient symbols produced by mankind. A comparison of graphical and radiation data from high-current Z-pinches to petroglyphs and megaliths is made [1]. These correspond to mankind's visual observations of ancient aurora if the solar wind had increased at times between one and two orders of magnitude, millennia ago [3]. Reference [2] focused on the source of light and its temporal change from a current-increasing Z-Pinch or dense plasma focus aurora. The orientation and field-of-view (FOV) as surveyed and contributed from 139 countries, the latest data coming from a 300 km survey along the Orinoco River Basin in Venezuela, is given. A reconstruction of the auroral form is shown based on existent geophysical evidence. Shown are relativistic electron flows inward at Earth's south polar axis and hypervelocity proton impacts around the north polar axis. 1. A. L. Peratt, Trans. Plasma Sci., 31, 1192, 2003. 2. A. L. Peratt, Trans. Plasma Sci., 35, 778, 2007. 3. T. Gold, Pontificiae Academiae Scientiarvm Scripta Varia 25, 159, 1962.
Ferroelectrics under the Synchrotron Light: A Review
Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis
2015-01-01
Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814
Zak, Marek; Swine, Christian; Grodzicki, Tomasz
2009-01-28
Consistently swelling proportion of the frail elderly within a modern society challenges the overstrained public health sector to provide both adequate medical care and comprehensive assistance in their multiple functional deficits of daily living. Easy-to-apply and task-specific ways of addressing this issue are being sought out, with a view to proposing systemic solutions for nationwide application. The present randomised, double-blind, placebo-controlled, 7-week clinical trial aimed to determine whether specifically structured, intensive exercise regimens, combined with nutritional supplementation, might improve and help sustain individual muscle strength and mobility, and possibly enhance individual functional capabilities in an on-going quest for active prevention of care-dependency. Ninety-one frail elderly (F 71 M 20; mean age 79 years) were recruited from both nursing home residents and community dwellers and randomly split into four groups: Group I - progressive resistance exercises (PRE) + functionally-oriented exercises (FOE) + nutritional supplementation (NS), Group II - PRE + FOE + placebo, Group III--standard exercises (SE) + FOE + NS, Group IV - SE + FOE + placebo. Each group pursued a 45 min. exercise session 5 times weekly. The subjects' strength with regard to four muscle groups, i.e. hip and knee extensors and flexons, was assessed at 80% (1 RM) weekly, whereas their balance and mobility at baseline and at the end of the study. The study was completed by 80 subjects. Despite its relatively short duration significant differences in muscle strength were noted both in Group I and Group II (p = 0.01; p = 0.04; respectively), although this did not translate directly into perceptible improvement in individual mobility. Notable improvements in individual mobility were reported in Group III and Group IV (p = 0.002), although without positive impact on individual muscle strength. Comprehensively structured, high-intensity regimen made up of diverse exercise types, i.e. functionally-oriented, progressive resistance and standard ones, preferably if combined with nutritional supplementation in adequate volume, demonstrates clear potential for appreciably improving overall functional status in the frail elderly in terms of individual walking capacity and muscle strength. Central Register of Clinical Trials, Poland--CEBK180/2000.
Multiple relaxations of the cluster surface diffusion in a homoepitaxial SrTiO3 layer
NASA Astrophysics Data System (ADS)
Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho
2018-03-01
We examine the surface diffusion process of adatomic clusters on a (001)-oriented SrTiO3 single crystal using reflection high energy electron diffraction (RHEED). We find that the recovery curve of the RHEED intensity acquired after a homoepitaxial half-layer growth can be accurately fit into a double exponential function, indicating the existence of two dominant relaxation mechanisms. The characteristic relaxation times at selected growth temperatures are investigated to determine the diffusion activation barriers of 0.67 eV and 0.91 eV, respectively. The Monte Carlo simulation of the cluster hopping model suggests that the decrease in the number of dimeric and trimeric clusters during surface diffusion is the origin of the observed relaxation phenomena.
2017-01-01
Zn(O,S) buffer layer electronic configuration is determined by its composition and thickness, tunable through atomic layer deposition. The Zn K and L-edges in the X-ray absorption near edge structure verify ionicity and covalency changes with S content. A high intensity shoulder in the Zn K-edge indicates strong Zn 4s hybridized states and a preferred c-axis orientation. 2–3 nm thick films with low S content show a subdued shoulder showing less contribution from Zn 4s hybridization. A lower energy shift with film thickness suggests a decreasing bandgap. Further, ZnSO4 forms at substrate interfaces, which may be detrimental for device performance. PMID:29083141
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, T.; Atac, R.; Cook, A.
1989-03-06
The ACPMAPS multipocessor is a highly cost effective, local memory parallel computer with a hypercube or compound hypercube architecture. Communication requires the attention of only the two communicating nodes. The design is aimed at floating point intensive, grid like problems, particularly those with extreme computing requirements. The processing nodes of the system are single board array processors, each with a peak power of 20 Mflops, supported by 8 Mbytes of data and 2 Mbytes of instruction memory. The system currently being assembled has a peak power of 5 Gflops. The nodes are based on the Weitek XL Chip set. Themore » system delivers performance at approximately $300/Mflop. 8 refs., 4 figs.« less