Kratzer, Markus; Lasnik, Michael; Röhrig, Sören; Teichert, Christian; Deluca, Marco
2018-01-11
Lead zirconate titanate (PZT) is one of the prominent materials used in polycrystalline piezoelectric devices. Since the ferroelectric domain orientation is the most important parameter affecting the electromechanical performance, analyzing the domain orientation distribution is of great importance for the development and understanding of improved piezoceramic devices. Here, vector piezoresponse force microscopy (vector-PFM) has been applied in order to reconstruct the ferroelectric domain orientation distribution function of polished sections of device-ready polycrystalline lead zirconate titanate (PZT) material. A measurement procedure and a computer program based on the software Mathematica have been developed to automatically evaluate the vector-PFM data for reconstructing the domain orientation function. The method is tested on differently in-plane and out-of-plane poled PZT samples, and the results reveal the expected domain patterns and allow determination of the polarization orientation distribution function at high accuracy.
NASA Astrophysics Data System (ADS)
Sagdeo, P. R.; Anwar, Shahid; Lalla, N. P.; Patil, S. I.
2006-11-01
In the present study we report the precise resistivity measurements for the polycrystalline bulk sample as well as highly oriented thin-films of La 0.8Ca 0.2MnO 3. The poly crystalline sample was prepared by standard solid-state reaction route and the oriented thin film was prepared by pulsed laser deposition (PLD). The phase purity of these samples was confirmed by X-ray diffraction and the back-scattered electron imaging using scanning electron microscopy (SEM). The oxygen stoichiometry analysis was done by iodimetry titration. The resistivities of these samples were carried out with four-probe resistivity measurement setup. The observed temperature dependence of resistivity data for both the samples was fitted using the polaron model. We have found that polaronic model fits well with the experimental data of both polycrystalline and single crystal samples. A new phenomenological model is proposed and used to estimate contribution to the resistivity due to grain boundary in the ferromagnetic state of polycrystalline manganites and it has been shown that the scattering of electrons from the grain boundary (grain surface) is a function of temperature and controlled by the effective grain resistance at that temperature.
Highly oriented diamond films on Si: growth, characterization, and devices
NASA Astrophysics Data System (ADS)
Stoner, Brian R.; Malta, D. M.; Tessmer, A. J.; Holmes, J.; Dreifus, David L.; Glass, R. C.; Sowers, A.; Nemanich, Robert J.
1994-04-01
Highly oriented, (100) textured diamond films have been grown on single-crystal Si substrates via microwave plasma enhanced chemical vapor deposition. A multistep deposition process including bias-enhanced nucleation and textured growth was used to obtain smooth films consisting of epitaxial grains with only low-angle grain boundaries. Boron-doped layers were selectively deposited onto the surface of these oriented films and temperature-dependent Hall effect measurements indicated a 3 to 5 times improvement in hole mobility over polycrystalline films grown under similar conditions. Room temperature hole mobilities between 135 and 278 cm2/V-s were measured for the highly oriented samples as compared to 2 to 50 cm2/V-s for typical polycrystalline films. Grain size effects and a comparison between the transport properties of polycrystalline, highly oriented and homoepitaxial films will be discussed. Metal-oxide- semiconductor field-effect transistors were then fabricated on the highly oriented films and exhibited saturation and pinch-off of the channel current.
NASA Astrophysics Data System (ADS)
Zabolotna, Natalia I.; Dovhaliuk, Rostyslav Y.
2013-09-01
We present a novel measurement method of optic axes orientation distribution which uses a relatively simple measurement setup. The principal difference of our method from other well-known methods lies in direct approach for measuring the orientation of optical axis of polycrystalline networks biological crystals. Our test polarimetry setup consists of HeNe laser, quarter wave plate, two linear polarizers and a CCD camera. We also propose a methodology for processing of measured optic axes orientation distribution which consists of evaluation of statistical, correlational and spectral moments. Such processing of obtained data can be used to classify particular tissue sample as "healthy" or "pathological". For our experiment we use thin layers of histological section of normal and muscular dystrophy tissue sections. It is shown that the difference between mentioned moments` values of normal and pathological samples can be quite noticeable with relative difference up to 6.26.
Surface properties of atomically flat poly-crystalline SrTiO3
Woo, Sungmin; Jeong, Hoidong; Lee, Sang A.; Seo, Hosung; Lacotte, Morgane; David, Adrian; Kim, Hyun You; Prellier, Wilfrid; Kim, Yunseok; Choi, Woo Seok
2015-01-01
Comparison between single- and the poly-crystalline structures provides essential information on the role of long-range translational symmetry and grain boundaries. In particular, by comparing single- and poly-crystalline transition metal oxides (TMOs), one can study intriguing physical phenomena such as electronic and ionic conduction at the grain boundaries, phonon propagation, and various domain properties. In order to make an accurate comparison, however, both single- and poly-crystalline samples should have the same quality, e.g., stoichiometry, crystallinity, thickness, etc. Here, by studying the surface properties of atomically flat poly-crystalline SrTiO3 (STO), we propose an approach to simultaneously fabricate both single- and poly-crystalline epitaxial TMO thin films on STO substrates. In order to grow TMOs epitaxially with atomic precision, an atomically flat, single-terminated surface of the substrate is a prerequisite. We first examined (100), (110), and (111) oriented single-crystalline STO surfaces, which required different annealing conditions to achieve atomically flat surfaces, depending on the surface energy. A poly-crystalline STO surface was then prepared at the optimum condition for which all the domains with different crystallographic orientations could be successfully flattened. Based on our atomically flat poly-crystalline STO substrates, we envision expansion of the studies regarding the TMO domains and grain boundaries. PMID:25744275
Spall behaviour of single crystal aluminium at three principal orientations
NASA Astrophysics Data System (ADS)
Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.
2017-10-01
A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.
Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials
MacDonald, M. J.; Vorberger, J.; Gamboa, E. J.; ...
2016-06-07
Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enablingmore » elastic anisotropy and sample texture effects to be modeled directly. Furthermore, the effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe
2014-04-28
The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.
Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M. J., E-mail: macdonm@umich.edu; SLAC National Accelerator Laboratory, Menlo Park, California 94025; Vorberger, J.
2016-06-07
Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit [Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate latticemore » strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiñones-Galván, J.G., E-mail: erk_183@hotmail.com; Lozada-Morales, R.; Jiménez-Sandoval, S.
Highlights: • A non-transparent cadmium oxide film has been deposited by pulsed laser deposition. • The CdO film is polycrystalline and highly oriented in the (2 0 0) direction. • Thermal treatment was applied in order to see the effect on its physical properties. - Abstract: A stable non-transparent CdO film was grown by pulsed laser deposition. The sample was thermally annealed at 500 °C in air. A (2 0 0) highly oriented polycrystalline film was obtained. The annealed sample has not preferred orientation. Scanning electron micrographs show a grain size reduction for the annealed sample. By Raman spectroscopy, themore » defects related second order vibrational modes of CdO were observed. Chemical composition analysis shows the presence of CdO together with a substoichiometric CdO{sub x} phase for the as-grown sample. For the annealed sample a compensation of oxygen vacancies was observed. Electrical resistivity measurements give a value of 8.602 × 10{sup −4} (Ω cm) for the as-grown film. For the annealed sample the electrical resistivity increased to a value of 9.996 × 10{sup −3} (Ω cm). Zero transmission has never been reported for CdO films. The photoluminescence spectra were measured in order to shed some light on the origin of the zero transmission.« less
Preferred crystallographic orientation in the ice I ← II transformation and the flow of ice II
Bennett, K.; Wenk, H.-R.; Durham, W.B.; Stern, L.A.; Kirby, S.H.
1997-01-01
The preferred crystallographic orientation developed during the ice I ← II transformation and during the plastic flow of ice II was measured in polycrystalline deuterium oxide (D2O) specimens using low-temperature neutron diffraction. Samples partially transformed from ice I to II under a non-hydrostatic stress developed a preferred crystallographic orientation in the ice II. Samples of pure ice II transformed from ice I under a hydrostatic stress and then when compressed axially, developed a strong preferred orientation of compression axes parallel to (1010). A match to the observed preferred orientation using the viscoplastic self-consistent theory was obtained only when (1010) [0001] was taken as the predominant slip system in ice II.
NASA Astrophysics Data System (ADS)
Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.
2010-12-01
The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.
Robust weak anti-localisation effect in strongly textured nanocrystalline Bi2Se3 samples
NASA Astrophysics Data System (ADS)
Pereira, V. M. M.; Henriques, M. S. C.; Paixão, J. A.
2018-05-01
Topological insulators are a quantum state of matter that has recently created a great interest among the scientific community, with Bi2Se3 being one of the most extensively studied materials. Here, we demonstrate that polycrystalline nanostructured samples of Bi2Se3 preserve the existence of topological surface states, where electrons cannot be localised. The nanosheet crystals were synthesised by a microwave-assisted method and their structure, composition and morphology thoroughly characterised. The transport properties of a textured polycrystalline sample with strong preferred orientation along the c-axis were measured, showing the presence of the weak anti-localisation effect and Shubnikov-de Haas oscillations. These features are robust against the presence of non-magnetic impurities and structural defects.
NASA Astrophysics Data System (ADS)
García, M. F.; Restrepo-Parra, E.; Riaño-Rojas, J. C.
2015-05-01
This work develops a model that mimics the growth of diatomic, polycrystalline thin films by artificially splitting the growth into deposition and relaxation processes including two stages: (1) a grain-based stochastic method (grains orientation randomly chosen) is considered and by means of the Kinetic Monte Carlo method employing a non-standard version, known as Constant Time Stepping, the deposition is simulated. The adsorption of adatoms is accepted or rejected depending on the neighborhood conditions; furthermore, the desorption process is not included in the simulation and (2) the Monte Carlo method combined with the metropolis algorithm is used to simulate the diffusion. The model was developed by accounting for parameters that determine the morphology of the film, such as the growth temperature, the interacting atomic species, the binding energy and the material crystal structure. The modeled samples exhibited an FCC structure with grain formation with orientations in the family planes of < 111 >, < 200 > and < 220 >. The grain size and film roughness were analyzed. By construction, the grain size decreased, and the roughness increased, as the growth temperature increased. Although, during the growth process of real materials, the deposition and relaxation occurs simultaneously, this method may perhaps be valid to build realistic polycrystalline samples.
Optical-diffraction method for determining crystal orientation
Sopori, B.L.
1982-05-07
Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Mo, Kun; Yao, Tiankai
Here coordinated experimental efforts to quantitatively correlate crystallographic orientation and surface faceting features in UO2 are reported upon. A sintered polycrystalline UO2 sample was thermally etched to induce the formation of surface faceting features. Synchrotron Laue microdiffraction was used to obtain a precise crystallographic orientation map for the UO2 surface grains. Scanning electron microscopy (SEM) was utilized to collect the detailed information on the surface morphology of the sample. The surface faceting features were found to be highly dependent on the crystallographic orientation. In most cases, Triple-plane structures containing one {100} plane and two {111} planes were found to dominatemore » the surface of UO2. The orientation-faceting relationship established in this study revealed a practical and efficient method of determining crystallographic orientation based on the surface features captured by SEM images.« less
Substrate Structures For Growth Of Highly Oriented And/Or Epitaxial Layers Thereon
Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Jia, Quanxi
2005-07-26
A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc's of 2.3×106 A/cm2 have been demonstrated with projected Ic's of 320 Amperes across a sample 1 cm wide for a superconducting article including a flexible polycrystalline metallic substrate, an inert oxide material layer upon the surface of the flexible polycrystalline metallic substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the layer of the inert oxide material, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer, a layer of a buffer material upon the oriented cubic oxide material layer, and, a top-layer of a high temperature superconducting material upon the layer of a buffer material.
Park, Woo Young; Park, Min Hyuk; Lee, Jong Ho; Yoon, Jung Ho; Han, Jeong Hwan; Choi, Jung-Hae; Hwang, Cheol Seong
2012-01-01
The strain states of [111]-, [110]-, and [002]-oriented grains in poly-crystalline sputtered (Ba,Sr)TiO3 thin films on highly [111]-oriented Pt electrode/Si substrates were carefully examined by X-ray diffraction techniques. Remarkably, [002]-oriented grains respond more while [110]- and [111]-oriented grains do less than the theoretically estimated responses, which is understandable from the arrangement of the TiO6 octahedra with respect to the stress direction. Furthermore, such mechanical responses are completely independent of the degree of crystallization and film thickness. The transition growth temperature between the positive and negative strains was also different depending on the grain orientation. The unstrained lattice parameter for each type of grain was different suggesting that the oxygen vacancy concentration for each type of grain is different, too. The results reveal that polycrystalline (Ba,Sr)TiO3 thin films are not an aggregation of differently oriented grains which simply follow the mechanical behavior of single crystal with different orientations. PMID:23230505
Salzman, Sivan; Romanofsky, Henry J; Giannechini, Lucca J; Jacobs, Stephen D; Lambropoulos, John C
2016-02-20
We describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS). We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6 MR fluids, variations were found in the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yiming, E-mail: yangyiming1988@outlook.com
Minor phases make considerable contributions to the mechanical and physical properties of metals and alloys. Unfortunately, it is difficult to identify unknown minor phases in a bulk polycrystalline material using conventional metallographic methods. Here, a non-destructive method based on three-dimensional X-ray diffraction (3DXRD) is developed to solve this problem. Simulation results demonstrate that this method is simultaneously able to identify minor phase grains and reveal their positions, orientations and sizes within bulk alloys. According to systematic simulations, the 3DXRD method is practicable for an extensive sample set, including polycrystalline alloys with hexagonal, orthorhombic and cubic minor phases. Experiments were alsomore » conducted to confirm the simulation results. The results for a bulk sample of aluminum alloy AA6061 show that the crystal grains of an unexpected γ-Fe (austenite) phase can be identified, three-dimensionally and nondestructively. Therefore, we conclude that the 3DXRD method is a powerful tool for the identification of unknown minor phases in bulk alloys belonging to a variety of crystal systems. This method also has the potential to be used for in situ observations of the effects of minor phases on the crystallographic behaviors of alloys. - Highlights: •A method based on 3DXRD is developed for identification of unknown minor phase. •Grain position, orientation and size, is simultaneously acquired. •A systematic simulation demonstrated the applicability of the proposed method. •Experimental results on a AA6061 sample confirmed the practicability of the method.« less
Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang
2017-04-27
Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys.
Magnetostrictive performance of additively manufactured CoFe rods using the LENS (TM) system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Nicholas J.; Yoo, Jin-Hyeong; Ott, Ryan T.
Magnetostrictive materials exhibit a strain in the presence of a variable magnetic field. While they normally require large, highly oriented crystallographic grains for high strain values, metal additive manufacturing (3D printing) may be able to produce highly textured polycrystalline rods, with properties comparable to those manufactured using the more demanding free standing zone melting (FSZM) technique. Rods of Co 75.8Fe 24.2 and Co 63.7Fe 36.3 have been fabricated using the Laser engineered net shaping (LENS TM) system to evaluate the performance of additively manufactured magnetic and magnetostrictive materials. The 76% Co sample showed an average magnetostriction (λ) of 86 ppmmore » at a stress of 124 MPa; in contrast, the 64% Co sample showed only 27 ppm at the same stress. For direct comparison, a Co 67Fe 33 single crystal disk, also measured as part of this study, exhibited a magnetostriction value of 131 and 91 microstrain in the [100] and [111] directions, respectively, with a calculated polycrystalline value (λ s) of 107 microstrain. Electron back scattered diffraction (EBSD) has been used to qualitatively link the performance with crystallographic orientation and phase information, showing only the BCC phase in the 76% Co sample, but three different phases (BCC, FCC, and HCP) in the 64% Co sample.« less
Magnetostrictive performance of additively manufactured CoFe rods using the LENSTM system
NASA Astrophysics Data System (ADS)
Jones, Nicholas J.; Yoo, Jin-Hyeong; Ott, Ryan T.; Lambert, Paul K.; Petculescu, Gabriela; Simsek, Emrah; Schlagel, Deborah; Lograsso, Thomas A.
2018-05-01
Magnetostrictive materials exhibit a strain in the presence of a variable magnetic field. While they normally require large, highly oriented crystallographic grains for high strain values, metal additive manufacturing (3D printing) may be able to produce highly textured polycrystalline rods, with properties comparable to those manufactured using the more demanding free standing zone melting (FSZM) technique. Rods of Co75.8Fe24.2 and Co63.7Fe36.3 have been fabricated using the Laser engineered net shaping (LENSTM) system to evaluate the performance of additively manufactured magnetic and magnetostrictive materials. The 76% Co sample showed an average magnetostriction (λ) of 86 ppm at a stress of 124 MPa; in contrast, the 64% Co sample showed only 27 ppm at the same stress. For direct comparison, a Co67Fe33 single crystal disk, also measured as part of this study, exhibited a magnetostriction value of 131 and 91 microstrain in the [100] and [111] directions, respectively, with a calculated polycrystalline value (λs) of 107 microstrain. Electron back scattered diffraction (EBSD) has been used to qualitatively link the performance with crystallographic orientation and phase information, showing only the BCC phase in the 76% Co sample, but three different phases (BCC, FCC, and HCP) in the 64% Co sample.
Magnetostrictive performance of additively manufactured CoFe rods using the LENS (TM) system
Jones, Nicholas J.; Yoo, Jin-Hyeong; Ott, Ryan T.; ...
2018-05-01
Magnetostrictive materials exhibit a strain in the presence of a variable magnetic field. While they normally require large, highly oriented crystallographic grains for high strain values, metal additive manufacturing (3D printing) may be able to produce highly textured polycrystalline rods, with properties comparable to those manufactured using the more demanding free standing zone melting (FSZM) technique. Rods of Co 75.8Fe 24.2 and Co 63.7Fe 36.3 have been fabricated using the Laser engineered net shaping (LENS TM) system to evaluate the performance of additively manufactured magnetic and magnetostrictive materials. The 76% Co sample showed an average magnetostriction (λ) of 86 ppmmore » at a stress of 124 MPa; in contrast, the 64% Co sample showed only 27 ppm at the same stress. For direct comparison, a Co 67Fe 33 single crystal disk, also measured as part of this study, exhibited a magnetostriction value of 131 and 91 microstrain in the [100] and [111] directions, respectively, with a calculated polycrystalline value (λ s) of 107 microstrain. Electron back scattered diffraction (EBSD) has been used to qualitatively link the performance with crystallographic orientation and phase information, showing only the BCC phase in the 76% Co sample, but three different phases (BCC, FCC, and HCP) in the 64% Co sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisner, L. L., E-mail: llm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru; Poletika, T. M., E-mail: poletm@ispms.tsc.ru
Using the EBSD, SEM and TEM methods, the structure of surface layer of polycrystalline NiTi alloy samples was examined after the modification of material surface by the pulsed action of mean-energy silicon ion beam. It was found that the ion beam treatment would cause grain fragmentation of the near-surface layer to a depth 5÷50 μm; a higher extent of fragmentation was observed in grains whose close-packed planes were oriented approximately in the same direction as the ion beam was. The effect of high-intensity ion beam treatment on the anisotropic behavior of polycrystalline NiTi alloy and the mechanisms involved were alsomore » examined.« less
NASA Astrophysics Data System (ADS)
Willenweber, A.; Thomas, S.; Burnley, P. C.
2012-12-01
The Berkeley Texture Package BEARTEX is a Windows-based computer software that combines various algorithms to analyze lattice-preferred orientation in polycrystalline materials. BEARTEX was initially designed to interpret diffraction intensity data from pole figure goniometers. Recently it has been successfully used to process synthetic forsterite powder diffraction data from in-situ synchrotron X-ray diffraction taken during deformation (Bollinger et al. 2012). Our study aims to test the practicability of using BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz (novaculite) during deformation. In-situ X-ray diffraction data was collected during the deformation of novaculite at 2.5 GPa and up to 1000 °C in a D-DIA apparatus using the ten-element energy-dispersive detector at the NSLS beamline X17B2. Diffraction intensities are a function of crystal orientation, expressed in azimuth angle η and pole distance ψ. The latter is the angle between the normal of a given diffraction plane and the vertical direction of the D-DIA apparatus - our principal stress direction during compression. Orientation-dependent diffraction intensities were corrected for different responses of the single detectors and x-ray absorption effects of the anvils. Orientation distributions (ODs) and inverse pole figures were calculated using BEARTEX. In addition, electron backscatter diffraction (EBSD) analyses were carried out on the deformed novaculite samples. Generated pole figures were compared with those derived from BEARTEX. Textural properties of our novaculite starting material complicated the BEARTEX analyses. The relatively strong variation of grain sizes in our natural specimens caused non-random diffraction intensity distributions. Those lead to non-random distributions of crystal orientations when analyzed with BEARTEX, although pole figures from EBSD data clearly show random crystal orientations. In an attempt to solve this problem, we employed a scanning routine when recording in-situ synchrotron X-ray diffraction and so collected diffraction from multiple sample volumes rather than from one single spot. Here, we will present a comparison of pole figures derived from independent BEARTEX and EBSD analyses for a series of novaculite experiments and discuss the practicability of BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz. REFERENCES C. BOLLINGER, S. MERKEL AND P. RATERRON (2012): In situ quantitative analysis of stress and texture development in forsterite aggregates deformed at 6 GPa and 1373 K. J. Appl. Cryst., 45, 263-271.
Mechanism of calcite co-orientation in the sea urchin tooth.
Killian, Christopher E; Metzler, Rebecca A; Gong, Y U T; Olson, Ian C; Aizenberg, Joanna; Politi, Yael; Wilt, Fred H; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan N; Gilbert, P U P A
2009-12-30
Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO(3)) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin ( Strongylocentrotus purpuratus ), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction (muXRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO(3) is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.
NASA Astrophysics Data System (ADS)
Sakashita, Tatsuo; Chazono, Hirokazu; Pezzotti, Giuseppe
2007-12-01
A quantitative determination of domain distribution in polycrystalline barium titanate (BaTiO3, henceforth BT) ceramics has been pursued with the aid of a microprobe polarized Raman spectrometer. The crystallographic texture and domain orientation distribution of BT ceramics, which switched upon applying stress according to ferroelasticity principles, were determined from the relative intensity of selected phonon modes, taking into consideration a theoretical analysis of the angular dependence of phonon mode intensity for the tetragonal BT phase. Furthermore, the angular dependence of Raman intensity measured in polycrystalline BT depended on the statistical distribution of domain angles in the laser microprobe, which was explicitly taken into account in this work for obtaining a quantitative analysis of domain orientation for in-plane textured BT polycrystalline materials.
Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang
2017-01-01
Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys. PMID:28772826
2008-01-01
oriented grain-boundaries. In this work we show considerable evidence for such weak-coupling by study of the dependence of magnetization in bulk and...powdered samples. Bulk sample magnetization curves show very little hysteresis while remanent magnetization shows almost no sample size dependence...K Fig. 2 (Color online) Magnetization hysteresis loops at 5 and 20 K for the bulk LaO0.89F0.11FeAs. Inset shows the temperature dependence of
Salzman, Sivan; Romanofsky, Henry J.; Giannechini, Lucca J.; ...
2016-02-19
In this study, we describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS).We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6MR fluids, variations were found inmore » the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.
Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD).more » All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.« less
Indentation recovery in GdPO 4 and observation of deformation twinning
Wilkinson, Taylor M.; Musselman, Matthew A.; Boatner, Lynn A.; ...
2016-09-30
A series of nanoindentation tests on both single and polycrystalline specimens of a monazite rare-earth orthophosphate, GdPO 4, revealed frequent observation of anomalous unloading behavior with a large degree of recovery, where previously this behavior had only been observed in xenotime-structure rare-earth orthophosphates. An indentation site in the polycrystalline sample was examined using TEM to identify the deformation mechanism responsible for recovery. Finally, the presence of a twin along the (100) orientation, along with a series of stacking faults contained within the deformation site, provide evidence that the mechanism of recovery in GdPO 4 is the collapse of deformation twinsmore » during unloading.« less
Indentation recovery in GdPO 4 and observation of deformation twinning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, Taylor M.; Musselman, Matthew A.; Boatner, Lynn A.
A series of nanoindentation tests on both single and polycrystalline specimens of a monazite rare-earth orthophosphate, GdPO 4, revealed frequent observation of anomalous unloading behavior with a large degree of recovery, where previously this behavior had only been observed in xenotime-structure rare-earth orthophosphates. An indentation site in the polycrystalline sample was examined using TEM to identify the deformation mechanism responsible for recovery. Finally, the presence of a twin along the (100) orientation, along with a series of stacking faults contained within the deformation site, provide evidence that the mechanism of recovery in GdPO 4 is the collapse of deformation twinsmore » during unloading.« less
NASA Astrophysics Data System (ADS)
Budai, J. D.; Yang, W.; Tischler, J. Z.; Liu, W.; Larson, B. C.; Ice, G. E.
2004-03-01
We describe a new polychromatic x-ray microdiffraction technique providing 3D measurements of lattice structure, orientation and strain with submicron point-to-point spatial resolution. The instrument is located on the UNI-CAT II undulator beamline at the Advanced Photon Source and uses Kirkpatrick-Baez focusing mirrors, differential aperture CCD measurements and automated analysis of spatially-resolved Laue patterns. 3D x-ray structural microscopy is applicable to a wide range of materials investigations and here we describe 3D thermal grain growth studies in polycrystalline aluminum ( ˜1% Fe,Si) from Alcoa. The morphology and orientations of the grains in a hot-rolled aluminum sample were initially mapped. The sample was then annealed to induce grain growth, cooled to room temperature, and the same volume region was re-mapped to determine the thermal migration of all grain boundaries. Significant grain growth was observed after annealing above ˜350^oC where both low-angle and high-angle boundaries were mobile. These measurements will provide the detailed 3D experimental input needed for testing theories and computer models of 3D grain growth in bulk materials.
Three-dimensional full-field X-ray orientation microscopy
Viganò, Nicola; Tanguy, Alexandre; Hallais, Simon; Dimanov, Alexandre; Bornert, Michel; Batenburg, Kees Joost; Ludwig, Wolfgang
2016-01-01
A previously introduced mathematical framework for full-field X-ray orientation microscopy is for the first time applied to experimental near-field diffraction data acquired from a polycrystalline sample. Grain by grain tomographic reconstructions using convex optimization and prior knowledge are carried out in a six-dimensional representation of position-orientation space, used for modelling the inverse problem of X-ray orientation imaging. From the 6D reconstruction output we derive 3D orientation maps, which are then assembled into a common sample volume. The obtained 3D orientation map is compared to an EBSD surface map and local misorientations, as well as remaining discrepancies in grain boundary positions are quantified. The new approach replaces the single orientation reconstruction scheme behind X-ray diffraction contrast tomography and extends the applicability of this diffraction imaging technique to material micro-structures exhibiting sub-grains and/or intra-granular orientation spreads of up to a few degrees. As demonstrated on textured sub-regions of the sample, the new framework can be extended to operate on experimental raw data, thereby bypassing the concept of orientation indexation based on diffraction spot peak positions. This new method enables fast, three-dimensional characterization with isotropic spatial resolution, suitable for time-lapse observations of grain microstructures evolving as a function of applied strain or temperature. PMID:26868303
Evolution of LiFePO4 thin films interphase with electrolyte
NASA Astrophysics Data System (ADS)
Dupré, N.; Cuisinier, M.; Zheng, Y.; Fernandez, V.; Hamon, J.; Hirayama, M.; Kanno, R.; Guyomard, D.
2018-04-01
Many parameters may control the growth and the characteristics of the interphase, such as surface structure and morphology, structural defects, grain boundaries, surface reactions, etc. However, polycrystalline surfaces contain these parameters simultaneously, resulting in a quite complicated system to study. Working with model electrode surfaces using crystallographically oriented crystalline thin films appears as a novel and unique approach to understand contributions of preferential orientation and rugosity of the surface. In order to rebuild the interphase architecture along electrochemical cycling, LiFePO4 epitaxial films offering ideal 2D (100) interfaces are here investigated through the use of non-destructive depth profiling by Angular Resolved X-ray Photoelectron Spectroscopy (ARXPS). The composition and structure of the interphase is then monitored upon cycling for samples stopped at the end of charge and discharge for various numbers of cycles, and discussed in the light of combined XPS and X-ray reflectivity (XRR) measurements. Such an approach allows describing the interphase evolution on a specific model LiFePO4 crystallographic orientation and helps understanding the nature and evolution of the LiFePO4/electrolyte interphase forming on the surface of LiFePO4 poly-crystalline powder.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Noebe, R. D.; Kumar, K. S.; Mannan, S. K.; Cullers, C. L.
1991-01-01
The 1000-K and 1200-K time-dependent deformation of 100-line-oriented and non-100-line-oriented single crystals of Ni-40Al (made by a modified Bridgman technique) was examined over a large range of strain rates (from 0.1 to 10 to the -7th per sec). The results were compared with those for polycrystalline Ni-40Al made by hot pressing XD synthesized powder. The results from measurements of slow-plastic-strain-rate properties of the two materials show that single crystals offer no strength advantage over polycrystalline material. Both forms were found to deform via a dislocation climb mechanism.
NASA Astrophysics Data System (ADS)
Liu, Y. Y.; Xie, S. H.; Jin, G.; Li, J. Y.
2009-04-01
Magnetoelectric annealing is necessary to remove antiferromagnetic domains and induce macroscopic magnetoelectric effect in polycrystalline magnetoelectric materials, and in this paper, we study the effective magnetoelectric properties of perpendicularly annealed polycrystalline Cr2O3 using effective medium approximation. The effect of temperatures, grain aspect ratios, and two different types of orientation distribution function have been analyzed, and unusual material symmetry is observed when the orientation distribution function only depends on Euler angle ψ. Optimal grain aspect ratio and texture coefficient are also identified. The approach can be applied to analyze the microstructural field distribution and macroscopic properties of a wide range of magnetoelectric polycrystals.
Transport properties of olivine grain boundaries from electrical conductivity experiments
NASA Astrophysics Data System (ADS)
Pommier, Anne; Kohlstedt, David L.; Hansen, Lars N.; Mackwell, Stephen; Tasaka, Miki; Heidelbach, Florian; Leinenweber, Kurt
2018-05-01
Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth's interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ = 7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700-1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3-6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of 4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.
NASA Astrophysics Data System (ADS)
Sakhnovskiy, M. Y.; Ushenko, V. A.
2013-09-01
The process of converting of laser radiation by optically anisotropic crystals of biological networks are singular in the sense of total (simultaneous) of mechanisms of orientation and phase (birefringence) anisotropy the formation of polarization-inhomogeneous field of scattered radiation. This work is aimed at developing a method of polarization selection mechanisms of blood plasma polycrystalline networks anisotropy. The relationship between statistics, correlation and fractal parameters of polarization-inhomogeneous images of blood plasma and by linear dichroism and linear birefringence of polycrystalline networks albumin and globulin was found. The criteria of differentiation and diagnostic images of polarization-inhomogeneous plasma samples of the control group (donor) and a group of patients with malignant changes of breast tissue was identified.
NASA Astrophysics Data System (ADS)
Breton, Daniel; Baker, Ian; Cole, David
2013-04-01
Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests to ~10% strain on 917 kg m-3, initially randomly-oriented polycrystalline ice specimens at 0.1 (atmospheric) and 20 MPa (simulating ~2,000 m depth) hydrostatic pressures, performing microstructural analyses on the resulting deformed specimens to characterize the evolution and strength of crystal fabric. Our microstructural analysis technique simultaneously collects grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtains crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and orientation data. We present creep and microstructural data to demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice and discuss possible mechanisms for the observed differences.
Unexpected Magnetic Domain Behavior in LTP-MnBi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, PK; Jin, S; Berkowitz, AE
2013-07-01
Low-temperature-phase MnBi (LTP-MnBi) has attracted much interest as a potential rare-earth-free permanent magnet material because of its high uniaxial magnetocrystalline anisotropy at room temperature, K approximate to 10(7) ergs/cc, and the unusual increase of anisotropy with increasing temperature, with an accompanying increasing coercive force (H-C) with temperature. However, due to the complex Mn-Bi phase diagram, bulk samples of LTP-MnBi with the optimum saturation moment, similar to 75-76 emu/g have been achieved only with zone-refined single crystals. We have prepared polycrystalline samples of LTP-MnBi by induction melting and annealing at 300 degrees C. The moment in 70 kOe is 73.5 emu/g,more » but H-C is only 50 Oe. This is quite surprising-the high saturation moment indicates the dominating presence of LTP-MnBi. Therefore, an H-C c of some significant fraction of 2K/M-S approximate to 30 kOe would seem reasonable in this polycrystalline sample. By examining "Bitter" patterns, we show that the sample is composed of similar to 50 - 100 mu m crystallites. The randomly oriented crystallites exhibit the variety of magnetic domain structures and orientations expected from the hexagonal-structured MnBi with its strong uniaxial anisotropy. Clearly, the reversal of magnetization in the sample proceeds by the low-field nucleation of reversed magnetization in each crystallite, rather than by a wall-pinning mechanism. When the annealed sample was milled into fine particles, H-C increased by several orders of magnitude, as expected.« less
Nanoscale Surface Modification of Polycrystalline Tin Sulphide Films during Plasma Treatment
NASA Astrophysics Data System (ADS)
Zimin, S. P.; Gorlachev, E. S.; Dubov, G. A.; Amirov, I. I.; Naumov, V. V.; Gremenok, V. F.; Ivanov, V. A.; Seidi, H. G.
2013-05-01
In this paper, we present a comparative research of the nanoscale modification of the surface morphology of polycrystalline SnS films on glass substrates with two different preferred growth orientations processed in inductively coupled argon plasma. We report a new effect of polycrystalline SnS film surface smoothing during plasma treatment, which can be advantageous for the fabrication of multilayer solar cell devices with SnS absorption layers.
Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato
2015-05-01
The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.
He, Guoai; Tan, Liming; Liu, Feng; Huang, Lan; Huang, Zaiwang; Jiang, Liang
2017-01-01
Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX) process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs) to high angle grain boundaries (HAGBs) and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary. PMID:28772514
NASA Astrophysics Data System (ADS)
Yang, Weiguang; Nie, Lei; Li, Dongmei; Wang, Yali; Zhou, Jie; Ma, Lei; Wang, Zhenhua; Shi, Weimin
2011-06-01
Polycrystalline α-HgI 2 thick films have been grown on ITO-coated glass substrates using ultrasonic-wave-assisted vapor phase deposition (UWAVPD) with the different source temperatures and ultrasonic frequencies. The influence of the assisted ultrasonic wave and source temperature on the structural and electrical properties of the polycrystalline α-HgI 2 films is investigated. It is found that the assisted ultrasonic wave plays an important role in the improvement of the structural and electrical properties. An uniformly oriented polycrystalline α-HgI 2 film with clear facets and narrow size distribution can be obtained at the source temperature of 80 °C under the assistance of 59 KHz ultrasonic frequency with the ultrasonic power of 200 W, which has the lowest value of ρ=2.2×10 12 Ω cm for E-field parallel to c-axis, approaching to that of high quality α-HgI 2 single crystals (4.0×10 12 Ω cm).
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy
McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.
2015-01-01
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy
NASA Astrophysics Data System (ADS)
McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.
2015-10-01
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy.
McDonald, S A; Reischig, P; Holzner, C; Lauridsen, E M; Withers, P J; Merkle, A P; Feser, M
2015-10-23
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through '4D' in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.
Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals
NASA Astrophysics Data System (ADS)
Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.
2017-12-01
A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.
A laboratory based system for laue micro x-ray diffraction.
Lynch, P A; Stevenson, A W; Liang, D; Parry, D; Wilkins, S; Tamura, N
2007-02-01
A laboratory diffraction system capable of illuminating individual grains in a polycrystalline matrix is described. Using a microfocus x-ray source equipped with a tungsten anode and prefigured monocapillary optic, a micro-x-ray diffraction system with a 10 microm beam was developed. The beam profile generated by the ellipsoidal capillary was determined using the "knife edge" approach. Measurement of the capillary performance, indicated a beam divergence of 14 mrad and a useable energy bandpass from 5.5 to 19 keV. Utilizing the polychromatic nature of the incident x-ray beam and application of the Laue indexing software package X-Ray Micro-Diffraction Analysis Software, the orientation and deviatoric strain of single grains in a polycrystalline material can be studied. To highlight the system potential the grain orientation and strain distribution of individual grains in a polycrystalline magnesium alloy (Mg 0.2 wt % Nd) was mapped before and after tensile loading. A basal (0002) orientation was identified in the as-rolled annealed alloy; after tensile loading some grains were observed to undergo an orientation change of 30 degrees with respect to (0002). The applied uniaxial load was measured as an increase in the deviatoric tensile strain parallel to the load axis.
NASA Astrophysics Data System (ADS)
Arendt, P.; Foltyn, S.; Wu, Xin Di; Townsend, J.; Adams, C.; Hawley, M.; Tiwari, P.; Maley, M.; Willis, J.; Moseley, D.
Ion-assisted, ion-beam sputter deposition is used to obtain (001) biaxially oriented films of cubic yttria stabilized zirconia (YSZ) on polycrystalline metal substrates. Yttrium barium copper oxide (YBCO) is then heteroepitaxially pulse laser deposited onto the YSZ. Phi scans of the films show the full-width-half maxima of the YSZ (202) and the YBCO (103) reflections to be 14 deg and 10 deg, respectively. Our best dc transport critical current density measurement for the YBCO is 800,000 A/sq cm at 75 K and 0 T. At 75 K, the total dc transport current in a 1 cm wide YBCO film is 23 A.
Magnetic Surfaces, Thin Films, and Multilayers
1992-01-01
investigations %as the cleaved ((00)I) face of highly oriented pyrolytic graphite ( HOPG ). This surface is inert in air and is easily imaged with the STM[83-86...Parkin IBM Almaden Research Center, San Jose, California, U.S.A. Herbert Hopster University of California -Irvine, Irvine, California, U.S.A. Jean...magnetic fields (typically 10 to 100 kOe). For polycrystalline samples and at normal temperatures more modest increases, typically of a factor of 2 to 10
Falcaro, Paolo; Okada, Kenji; Hara, Takaaki; Ikigaki, Ken; Tokudome, Yasuaki; Thornton, Aaron W; Hill, Anita J; Williams, Timothy; Doonan, Christian; Takahashi, Masahide
2017-03-01
The fabrication of oriented, crystalline films of metal-organic frameworks (MOFs) is a critical step toward their application to advanced technologies such as optics, microelectronics, microfluidics and sensing. However, the direct synthesis of MOF films with controlled crystalline orientation remains a significant challenge. Here we report a one-step approach, carried out under mild conditions, that exploits heteroepitaxial growth for the rapid fabrication of oriented polycrystalline MOF films on the centimetre scale. Our methodology employs crystalline copper hydroxide as a substrate and yields MOF films with oriented pore channels on scales that primarily depend on the dimensions of the substrate. To demonstrate that an anisotropic crystalline morphology can translate to a functional property, we assembled a centimetre-scale MOF film in the presence of a dye and showed that the optical response could be switched 'ON' or 'OFF' by simply rotating the film.
Kim, Sang Woo; Ahn, Jae-Pyoung
2013-01-01
This study proposes a seed/template-free method that affords high-purity semiconducting nanowires from nanoclusters, which act as basic building blocks for nanomaterials, under supercritical CO2 fluid. Polycrystalline nanowires of Gd-doped ceria (Gd-CeO2) were formed by CO2-mediated non-oriented attachment of the nanoclusters resulting from the dissociation of single-crystalline aggregates. The unique formation mechanism underlying this morphological transition may be exploited for the facile growth of high-purity polycrystalline nanowires. PMID:23572061
NASA Astrophysics Data System (ADS)
Breton, D. J.; Baker, I.; Cole, D. M.
2012-12-01
Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests on a 917 kg m-3 polycrystalline ice specimen at 20 MPa hydrostatic pressure, thus simulating ~2,000 m depth. Initial specimen grain orientations were random, typical grain diameters were 1.2 mm, and the applied creep stress was 0.3 MPa. Subsequent microstructural analyses on the deformed specimen and a similarly prepared, undeformed specimen allowed characterization of crystal fabric evolution under pressure. Our microstructural analysis technique simultaneously collected grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtained crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and full c- and a-axis grain orientation data. The combined creep and microstructural data demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice. We discuss possible mechanisms for the observed phenomena, and future directions for hydrostatic creep testing.
Luis-Raya, Gilgamesh; Ramírez-Cardona, Màrius; Luna-Bárcenas, Gabriel; Hernández-Landaverde, Martín A; Jiménez-Nieto, Adair; García-Rivas, Jose Luis; España-Sánchez, Beatriz Liliana; Sanchez, Isaac C
2017-06-08
Differences on herringbone molecular arrangement in two forms of long-chain 1,ω-alkanediols (C n H 2 n +2 O₂ with n = 10, 11, 12, 13) are explained from the analysis of O-H···O hydrogen-bond sequences in infinite chains and the role of a C-H···O intramolecular hydrogen-bond in stabilization of a gauche defect, as well as the inter-grooving effectiveness on molecular packing. GIXD (Glancing Incidence X-ray Diffraction) experiments were conducted on polycrystalline monophasic samples. Diffracted intensities were treated with the multi-axial March-Dollase method to correlate energetic and geometrical features of molecular interactions with the crystalline morphology and textural pattern of samples. The monoclinic (P 2 ₁/ c , Z = 2) crystals of the even-numbered members ( n = 10, 12; DEDOL and DODOL, respectively) are diametrical prisms with combined form {104}/{-104}/{001} and present a two-fold platelet-like preferred orientation, whereas orthorhombic (P 2 ₁ 2 ₁ 2 ₁, Z = 4) odd-numbered members ( n = 11, 13; UNDOL and TRDOL, respectively) present a dominant needle-like orientation on direction [101] (fiber texture). We show that crystalline structures of medium complexity and their microstructures can be determined from rapid GIXD experiments from standard radiation, combined with molecular replacement procedure using crystal structures of compounds with higher chain lengths as reference data.
NASA Astrophysics Data System (ADS)
Panich, A. M.
The analysis of 19F NMR spectra of polycrystalline and partially oriented samples of fluorinated graphite (C 2F) n intercalated with chlorine trifluoride has been carried out. Molecular mobility results in almost complete averaging of the dipole-dipole interactions of nuclei, while the essential chemical shielding anisotropy (CSA) is manifested. There is suggested molecular rotation about its C2 axes, which in turn rotates about the normal to the graphite plane. The CSA (σ || - σ ⊥) is determined to be 510 and -640 ppm, respectively, for the two inequivalent fluorine atoms of the molecule. The effect of the "antiparamagnetic" shielding leading to inversion of the chemical shielding tenser [(σ || - σ ⊥) < 0] for the equatorial F atom and anomalous line disposition in the NMR spectrum is discussed.
Magnetic force microscopy studies in bulk polycrystalline iron
NASA Astrophysics Data System (ADS)
Abuthahir, J.; Kumar, Anish
2018-02-01
The paper presents magnetic force microscopy (MFM) studies on the effect of crystallographic orientation and external magnetic field on magnetic microstructure in a bulk polycrystalline iron specimen. The magneto crystalline anisotropic effect on the domain structure is characterized with the support of electron backscatter diffraction study. The distinct variations in magnetic domain structure are observed based on the crystallographic orientation of the grain surface normal with respect to the cube axis i.e. the easy axis of magnetization. Further, the local magnetization behavior is studied in-situ by MFM in presence of external magnetic field in the range of -2000 to 2000 Oe. Various micro-magnetization phenomena such as reversible and irreversible domain wall movements, expansion and contraction of domains, Barkhausen jump, bowing of a pinned domain wall and nucleation of a spike domain are visualized. The respective changes in the magnetic microstructure are compared with the bulk magnetization obtained using vibrating sample magnetometer. Bowing of a domain wall, pinned at two points, upon application of magnetic field is used to estimate the domain wall energy density. The MFM studies in presence of external field applied in two perpendicular directions are used to reveal the influence of the crystalline anisotropy on the local micro-magnetization.
Fabrication of flexible Ir and Ir-Rh wires and application for thermocouple
NASA Astrophysics Data System (ADS)
Murakami, Rikito; Kamada, Kei; Shoji, Yasuhiro; Yokota, Yuui; Yoshino, Masao; Kurosawa, Shunsuke; Ohashi, Yuji; Yamaji, Akihiro; Yoshikawa, Akira
2018-04-01
The fabrication and thermal electromotive force characteristics of Ir/Ir-Rh thermocouples capable of repeated bending deformation are described. Ir and Ir-Rh wires with a diameter of 0.5 mm were fabricated using the alloy-micro-pulling-down method. Scanning electron microscopy and electron backscattering diffraction of the radial cross section of the grown wires were performed to investigate the microstructure and orientation of the crystal grains. At the start of growth, the microstructure was polycrystalline with diameters of several hundred micrometers, while at the 8-m growth point it was found to be monocrystalline. The observed single crystals of pure Ir and Ir-Rh alloy were oriented in the 〈1 1 3〉 and 〈1 1 2〉 directions, respectively, whereas the polycrystalline Ir-Rh samples showed preferential growth in the 〈1 0 0〉 direction. The thermal electromotive force of the fabricated Ir/Ir-Rh thermocouple was measured by the comparison technique and the fixed-point technique, and the thermoelectric power was estimated to be 5.9 μV/°C in the range from 600°C to 1100°C.
NASA Astrophysics Data System (ADS)
Nomoto, Junichi; Inaba, Katsuhiko; Kobayashi, Shintaro; Makino, Hisao; Yamamoto, Tetsuya
2017-06-01
A 10-nm-thick radio frequency magnetron-sputtered aluminum-doped zinc oxide (AZO) showing a texture with a preferential (0001) orientation on amorphous glass substrates was used as an interface layer for tailoring the orientation of 490-nm-thick polycrystalline AZO films subsequently deposited by direct current (DC) magnetron sputtering at a substrate temperature of 200 °C. Wide-angle X-ray diffraction pole figure analysis showed that the resulting 500-nm-thick AZO films showed a texture with a highly preferential c-axis orientation. This showed that DC-magnetron-sputtered AZO films grew along with the orientation matching that of the interface layer, whereas 500-nm-thick AZO films deposited on bare glass substrates by DC magnetron sputtering exhibited a mixed orientation of the c-plane and other planes. The surface morphology was also improved while retaining the lateral grain size by applying the interface layer as revealed by atomic force microscopy.
NASA Astrophysics Data System (ADS)
Sakashita, Tatsuo; Deluca, Marco; Yamamoto, Shinsuke; Chazono, Hirokazu; Pezzotti, Giuseppe
2007-06-01
The stress dependence of the Raman spectrum of polycrystalline barium titanate (BaTiO3, BT) ceramics has been examined with microprobe polarized Raman spectroscopy. The angular dependence of the Raman spectrum of the tetragonal BT crystal has been theoretically established, enabling us to assess the stress dependence of selected spectral modes without the influence of crystallographic domain orientation. Upon considering the frequency shift of selected Raman modes as a function of orientation between the crystallographic axis and the polarization vector of incident and scattered light, a suitable instrumental configuration has been selected, which allowed a direct residual stress measurement according to a modified piezospectroscopic procedure. The analysis is based on the selection of mixed photostimulated spectral modes in two perpendicular angular orientations.
Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer
NASA Astrophysics Data System (ADS)
Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming
2018-03-01
Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.
Effects of chemical states of carbon on deuterium retention in carbon-containing materials
NASA Astrophysics Data System (ADS)
Oyaidzu, Makoto; Kimura, Hiromi; Nakahata, Toshihiko; Nishikawa, Yusuke; Tokitani, Masayuki; Oya, Yasuhisa; Iwakiri, Hirotomo; Yoshida, Naoaki; Okuno, Kenji
2007-08-01
Deuterium retention behavior in highly oriented pyrolytic graphite (HOPG), poly-crystalline diamond, poly-crystalline SiC, sintered WC, and converted B 4C were investigated to reveal tritium behavior in re-deposition and co-deposition layers. Such layers would contain carbon, when the first wall and/or divertor were made of graphite or carbon-containing materials. Furthermore, the employment of other materials such as tungsten, and first wall conditioning such as boronization would complicate the layers. No different deuterium trapping sites due to carbon from those in HOPG were found in all the samples, where two deuterium trapping processes were observed: hot atom chemical trapping of energetic deuterium by a dangling bond of carbon and thermochemical trapping of thermalized deuterium in a constituent atom vacancy surrounded by carbons. Additionally, the latter reaction could be easily counteracted by or competed with the other deuterium trapping reactions by constituent atoms.
2006-08-01
carbon would be highly oriented pyrolytic graphite ( HOPG ), which is formed by depositing one atom at a time on a surface utilizing the pyrolysis of a... of the crystallites, and baking to 2800 K produces a polycrystalline graphite part that has high strength and conductivity. To make isotropic...pitch fibers) or flexible (Graphoil®), as well as anisotropic ( HOPG ) or isotropic ( polycrystalline graphite ). In addition, porosity, lubricity
Anomalous heat transfer in two polymorphs of para-bromobenzophenone
NASA Astrophysics Data System (ADS)
Romantsova, O. O.; Horbatenko, Yu. V.; Krivchikov, A. I.; Korolyuk, O. A.; Vdovichenko, G. A.; Zloba, D. I.; Pyshkin, O. S.
2017-03-01
The thermal conductivity of a polycrystalline sample of monoclinic polymorph of para-bromobenzophenone in the T = 3-320 K temperature range was measured using steady-state linear heat flow. The temperature dependences of thermal conductivity are presented as the sum of two independent contributions: a contribution that corresponds to the thermal conductivity of an orientationally ordered crystal structure, and a new additional thermally activated contribution that manifests itself above 130 K. A comparison is made with the data on the thermal conductivity of a single crystal triclinic polymorph of para-bromobenzophenone. It is established that the contribution corresponding to the thermal conductivity of the orientationally ordered crystal structure depends on the molecular crystal packing, and the characteristic activation energy of the thermal activation contribution, which is caused by the intramolecular vibrations of the C-Br bond, does not depend on the grain size or on the structure of the sample.
Improved texture measurement during deformation of polycrystalline olivine at high pressure
NASA Astrophysics Data System (ADS)
Dixon, N. A.; Durham, W. B.; Kohlstedt, D. L.; Hunt, S. A.
2014-12-01
Unresolved issues in geodynamics demand a better understanding of the bulk mechanical properties of mantle minerals, and also careful analysis of the complex lattice-scale physics behind these properties. Instead of probing the mechanical properties of a material by testing the relationship between "bulk" stress and strain rate in a sample at a variety of conditions (varying P, T, water content, and other environmental variables), synchrotron x-ray diffraction now allows us to observe, in situ, the active deformation physics in much greater detail. This includes in situ monitoring of plastic anisotropy and local stress heterogeneity, grain size, the development of lattice-preferred orientation (LPO), and even the partitioning of stress between multiple phases in the same polycrystalline sample. Here, we present results obtained with the use of the MTEX toolbox for Matlab and energy-dispersive x-ray diffraction, showing the in situ development of LPO in deforming dry San Carlos olivine samples, at pressures from 2-7 GPa. These measurements hint at the active dislocation mechanisms for these conditions. The ability generate a broad range of mantle conditions in the D-DIA, while precisely measuring the structure and conditions within our sample at the grain and lattice scale, demonstrates the promising future of deformation experiments as a means to understanding the evolution of the deep Earth.
NASA Astrophysics Data System (ADS)
Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Spolenak, R.; Brown, W. L.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.
2002-05-01
The availability of high brilliance synchrotron sources, coupled with recent progress in achromatic focusing optics and large area two-dimensional detector technology, has allowed us to develop an x-ray synchrotron technique that is capable of mapping orientation and strain/stress in polycrystalline thin films with submicron spatial resolution. To demonstrate the capabilities of this instrument, we have employed it to study the microstructure of aluminum thin film structures at the granular and subgranular levels. Due to the relatively low absorption of x-rays in materials, this technique can be used to study passivated samples, an important advantage over most electron probes given the very different mechanical behavior of buried and unpassivated materials.
Effects of crystalline quality and electrode material on fatigue in Pb(Zr,Ti)O3 thin film capacitors
NASA Astrophysics Data System (ADS)
Lee, J.; Johnson, L.; Safari, A.; Ramesh, R.; Sands, T.; Gilchrist, H.; Keramidas, V. G.
1993-07-01
Pb(Zr(0.52)Ti(0.48))O3 (PZT)/Y1Ba2Cu3O(x) (YBCO) heterostructures were grown by pulsed laser deposition, in which PZT films were epitaxial, highly oriented, or polycrystalline. These PZT films were obtained by varying the deposition temperature from 550 to 760 C or by using various substrates such as SrTiO3 (100), MgO (100), and r-plane sapphire. PZT films with Pt top electrodes exhibited large fatigue with 35-50 percent loss of the remanent polarization after 10 exp 9 cycles, depending on the crystalline quality. Polycrystalline films showed better fatigue resistance than epitaxial or highly oriented films. However, PZT films with both top and bottom YBCO electrodes had significantly improved fatigue resistance for both epitaxial and polycrystalline films. Electrode material seems to be a more important parameter in fatigue than the crystalline quality of the PZT films.
Origins of Folding Instabilities on Polycrystalline Metal Surfaces
NASA Astrophysics Data System (ADS)
Beckmann, N.; Romero, P. A.; Linsler, D.; Dienwiebel, M.; Stolz, U.; Moseler, M.; Gumbsch, P.
2014-12-01
Wear and removal of material from polycrystalline metal surfaces is inherently connected to plastic flow. Here, plowing-induced unconstrained surface plastic flow on a nanocrystalline copper surface has been studied by massive molecular dynamics simulations and atomic force microscopy scratch experiments. In agreement with experimental findings, bulges in front of a model asperity develop into vortexlike fold patterns that mark the disruption of laminar flow. We identify dislocation-mediated plastic flow in grains with suitably oriented slip systems as the basic mechanism of bulging and fold formation. The observed folding can be fundamentally explained by the inhomogeneity of plasticity on polycrystalline surfaces which favors bulge formation on grains with suitably oriented slip system. This process is clearly distinct from Kelvin-Helmholtz instabilities in fluids, which have been previously suggested to resemble the formed surface fold patterns. The generated prow grows into a rough chip with stratified lamellae that are identified as the precursors of wear debris. Our findings demonstrate the importance of surface texture and grain structure engineering to achieve ultralow wear in metals.
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Narasimhan, P. T.
The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.
NASA Astrophysics Data System (ADS)
Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya
2016-06-01
Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility ( μ H) of 50.1 cm2/Vs with a carrier concentration ( N) of 2.55 × 1020 cm-3. Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm2/Vs with an N of 2.22 × 1020 cm-3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong Hoe; Park, Jaehong; Li, Zhen
Organic-inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 x 10 14 cm -3), and unprecedented 9 GHz charge-carrier mobility (71 cm 2 V -1 smore » -1), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). In conclusion, the TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites.« less
Kim, Dong Hoe; Park, Jaehong; Li, Zhen; ...
2017-04-18
Organic-inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 x 10 14 cm -3), and unprecedented 9 GHz charge-carrier mobility (71 cm 2 V -1 smore » -1), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). In conclusion, the TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nürnberger, P.; Reinhardt, H.; Kim, H-C.
2015-10-07
The research in this paper deals with the angular dependence of the formation of laser-induced periodic surface structures (LIPSS) by linearly polarized nanosecond laser pulses on polycrystalline austenitic stainless steel. Incident angles ranging from 45° to 70° lead to the generation of superimposed merely perpendicular oriented LIPSS on steel as well as on monocrystalline (100) silicon which was used as a reference material. Additional extraordinary orientations of superimposing LIPSS along with significantly different periodicities are found on polycrystalline steel but not on (100) silicon. Electron backscatter diffraction measurements indicate that the expansion of these LIPSS is limited to the grainmore » size and affected by the crystal orientation of the individual grains. Atomic force microscopy imaging shows that LIPSS fringe heights are in good agreement with the theoretically predicted penetration depths of surface plasmon polaritons into stainless steel. These results indicate that optical anisotropies must be taken into account to fully describe the theory of light-matter interaction leading to LIPSS formation.« less
Phase transition in lead titanate thin films: a Brillouin study
NASA Astrophysics Data System (ADS)
Kuzel, P.; Dugautier, C.; Moch, P.; LeMarrec, F.; Karkut, M. G.
2002-12-01
The elastic properties of both polycrystalline and epitaxial PbTiO3 (PTO) thin films are studied using Brillouin scattering spectroscopy. The epitaxial PTO films were prepared by pulsed laser ablation on (1) a [0 0 1] single crystal of SrTiO3 (STO) doped with Nb and (2) a [0 0 1] STO buffered with a layer of YBa2Cu3O7. The polycrystalline PTO films were prepared by sol-gel on a Si substrate buffered with TiO2 and Pt layers. The data analysis takes into account the ripple and the elasto-optic contributions. The latter significantly affects the measured spectra since it gives rise to a Love mode in the p-s scattering geometry. At room temperature, the spectra of the epitaxially grown samples are interpreted using previously published elastic constants of PTO single crystals. Sol-gel samples exhibit appreciable softening of the effective elastic properties compared to PTO single crystals: this result is explained by taking into account the random orientation of the microscopic PTO grains. For both the polycrystalline and the epitaxial films we have determined that the piezoelectric terms do not contribute to the spectra. The temperature dependence of the spectra shows strong anomalies of the elastic properties near the ferroelectric phase transition. Compared to the bulk, TC is higher in the sol-gel films, while in the epitaxial films the sign of the TC shift depends on the underlying material.
High repetition pump-and-probe photoemission spectroscopy based on a compact fiber laser system.
Ishida, Y; Otsu, T; Ozawa, A; Yaji, K; Tani, S; Shin, S; Kobayashi, Y
2016-12-01
The paper describes a time-resolved photoemission (TRPES) apparatus equipped with a Yb-doped fiber laser system delivering 1.2-eV pump and 5.9-eV probe pulses at the repetition rate of 95 MHz. Time and energy resolutions are 11.3 meV and ∼310 fs, respectively, the latter is estimated by performing TRPES on a highly oriented pyrolytic graphite (HOPG). The high repetition rate is suited for achieving high signal-to-noise ratio in TRPES spectra, thereby facilitating investigations of ultrafast electronic dynamics in the low pump fluence (p) region. TRPES of polycrystalline bismuth (Bi) at p as low as 30 nJ/mm 2 is demonstrated. The laser source is compact and is docked to an existing TRPES apparatus based on a 250-kHz Ti:sapphire laser system. The 95-MHz system is less prone to space-charge broadening effects compared to the 250-kHz system, which we explicitly show in a systematic probe-power dependency of the Fermi cutoff of polycrystalline gold. We also describe that the TRPES response of an oriented Bi(111)/HOPG sample is useful for fine-tuning the spatial overlap of the pump and probe beams even when p is as low as 30 nJ/mm 2 .
Peternell, M; Russell-Head, D S; Wilson, C J L
2011-05-01
Two in situ plane-strain deformation experiments on norcamphor and natural ice using synchronous recording of crystal c-axis orientations have been performed with an automated fabric analyser and a newly developed sample press and deformation stage. Without interrupting the deformation experiment, c-axis orientations are determined for each pixel in a 5 × 5 mm sample area at a spatial resolution of 5 μm/pixel. In the case of norcamphor, changes in microstructures and associated crystallographic information, at a strain rate of ∼2 × 10(-5) s(-1), were recorded for the first time during a complete in situ deformation-cycle experiment that consisted of an annealing, deformation and post-deformation annealing path. In the case of natural ice, slower external strain rates (∼1 × 10(-6) s(-1)) enabled the investigation of small changes in the polycrystal aggregate's crystallography and microstructure for small amounts of strain. The technical setup and first results from the experiments are presented. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.
Nanometer-Scale Force Detected Nuclear Magnetic Resonance Imaging
2013-01-01
different crystallographic orientation. Single crystal thin films should thus minimize the stray electric fields by reducing the number of grain ...from epitaxial Ag films, rather than polycrystalline Ag films. It is thought that grain boundaries in polycrystalline metal films give rise to stray...electric fields near the surface of the film. The electric fields are produced as a consequence of the work func- tion difference between grains of
Preparation of AgInSe2 thin films grown by vacuum evaporation method
NASA Astrophysics Data System (ADS)
Matsuo, H.; Yoshino, K.; Ikari, T.
2006-09-01
Polycrystalline AgInSe2 thin films were successfully grown on glass substrates by an evaporation method. The starting materials were stoichiometrically mixed Ag2Se and In2Se3 powders. X-ray diffraction revealed that the sample annealed at 600 °C consisted of AgInSe2 single phase, with (112) orientation and a large grain size. The lattice constant (a axis) was close to JCPDS values. From optical transmittance and reflectance measurements, the bandgap energy was estimated to be 1.17 eV.
Lin, Liqiang; Zeng, Xiaowei
2015-01-01
The focus of this work is to investigate spall fracture in polycrystalline materials under high-speed impact loading by using an atomistic-based interfacial zone model. We illustrate that for polycrystalline materials, increases in the potential energy ratio between grain boundaries and grains could cause a fracture transition from intergranular to transgranular mode. We also found out that the spall strength increases when there is a fracture transition from intergranular to transgranular. In addition, analysis of grain size, crystal lattice orientation and impact speed reveals that the spall strength increases as grain size or impact speed increases. PMID:26435546
NASA Astrophysics Data System (ADS)
Mahler, Michael; Gaganidze, Ermile; Aktaa, Jarir
2018-04-01
The experimental observation of anisotropic fracture behaviour of round blank polycrystalline tungsten was simulated using finite element (FE) method in combination with cohesive zone model. Experiments in the past had shown that due to the anisotropic microstructure the fracture toughness varies by factor of about two for different orientations. The reason is the crack propagation direction, which is - in some orientations - not the typical crack propagation direction for mode I fracture. In some directions the crack is not growing perpendicular to the crack opening tensile load. Nevertheless, in the present paper, the microstructure is modelled by FE mesh including cohesive zone elements which mimic grain boundaries (GB). This is based on the assumption that GB's are the weakest links in the structure. The use of the correct parameters to describe the fracture process allows the description of the observed experimental orientation dependent fracture toughness.
NASA Astrophysics Data System (ADS)
Arjmand, Yaser; Eshghi, Hosein
2016-03-01
In this paper, ZnO nanostructures have been synthesized by thermal evaporation process using metallic zinc powder in the presence of oxygen on p-Si (100) at different distances from the boat. The structural and optical characterizations have been carried out. The morphological study shows various shape nanostructures. XRD data indicate that all samples have a polycrystalline wurtzite hexagonal structure in such a way that the closer sample has a preferred orientation along (101) while the ones farther are grown along (002) direction. From the structural and optical data analysis, we found that the induced strains are the main parameter controlling the UV/green peaks ratios in the PL spectra of the studied samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp; Hasegawa, Ryo; Kitagawa, Takuya
2016-03-15
The c-axis-oriented polycrystalline lanthanum silicate oxyapatite, La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} (□ denotes a vacancy in the Si site), was successfully prepared by the reactive diffusion between randomly grain-oriented La{sub 2}SiO{sub 5} polycrystal and [SiO+1/2O{sub 2}] gases at 1873 K in Ar atmosphere. The polycrystal was characterized using optical microscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, micro-Raman spectroscopy, X-ray diffractometry, and impedance spectroscopy. The crystal structure (space group P6{sub 3}/m) showed the deficiency of Si site at ca. 1.9%. The bulk oxide-ion conductivity along the grain-alignment direction steadily increased from 9.2 × 10{sup −3} to 1.17 ×more » 10{sup −2} S/cm with increasing temperature from 923 to 1073 K. The activation energy of conduction was 0.23(2) eV. - Graphical abstract: We have successfully prepared the highly c-axis-oriented polycrystalline La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} by the reactive diffusion between randomly grain-oriented La{sub 2}SiO{sub 5} polycrystal and [SiO + 1/2O{sub 2}] gases at 1873 K in Ar atmosphere. The crystal structure (space group P6{sub 3}/m) showed the deficiency of Si site of ca. 1.9%. - Highlights: • The c-axis-oriented polycrystalline La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} is successfully prepared. • Crystal structure of La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} is determined by single-crystal XRD. • The polycrystal shows relatively high oxide ion conductivity along the common c-axis. • Reactive diffusion is successfully used for the preparation of grain-aligned ceramics.« less
NASA Astrophysics Data System (ADS)
Harshavardhan, K. S.; Rajeswari, M.; Hwang, D. M.; Chen, C. Y.; Sands, T.; Venkatesan, T.; Tkaczyk, J. E.; Lay, K. W.; Safari, A.
1992-04-01
Critical-current densities have been measured in YBa2Cu3O7-x films deposited on (100) yttria stabilized zirconia (YSZ) and polycrystalline YSZ substrates as a function of temperature (4.5-88 K), magnetic field (0-1 T) and orientation relative to the applied field. The results indicate that in films on polycrystalline substrates, surface and interface pinning play a dominant role at high temperatures. In films on (100) YSZ, pinning is mainly due to intrinsic layer pinning as well as extrinsic pinning associated with the interaction of the fluxoids with point defects and low energy planar (2D) boundaries. The differences are attributed to the intrinsic rigidity of single fluxoids which is reduced in films on polycrystalline substrates thereby weakening the intrinsic layer pinning.
NASA Astrophysics Data System (ADS)
Peetermans, S.; Bopp, M.; Vontobel, P.; Lehmann, E. H.
Common neutron imaging uses the full polychromatic neutron beam spectrum to reveal the material distribution in a non-destructive way. Performing it with a reduced energy band, i.e. energy-selective neutron imaging, allows access to local variation in sample crystallographic properties. Two sample categories can be discerned with different energy responses. Polycrystalline materials have an energy-dependent cross-section featuring Bragg edges. Energy-selective neutron imaging can be used to distinguish be- tween crystallographic phases, increase material sensitivity or penetration, improve quantification etc. An example of the latter is shown by the examination of copper discs prior to machining them into linear accelerator cavity structures. The cross-section of single crystals features distinct Bragg peaks. Based on their pattern, one can determine the orientation of the crystal, as in a Laue pattern, but with the tremendous advantage that the operation can be performed for each pixel, yielding crystal orientation maps at high spatial resolution. A wholly different method to investigate such samples is also introduced: neutron diffraction imaging. It is based on projections formed by neutrons diffracted from the crystal lattice out of the direct beam. The position of these projections on the detector gives information on the crystal orientation. The projection itself can be used to reconstruct the crystal shape. A three-dimensional mapping of local Bragg reflectivity or a grain orientation mapping can thus be obtained.
Improved bounds on the energy-minimizing strains in martensitic polycrystals
NASA Astrophysics Data System (ADS)
Peigney, Michaël
2016-07-01
This paper is concerned with the theoretical prediction of the energy-minimizing (or recoverable) strains in martensitic polycrystals, considering a nonlinear elasticity model of phase transformation at finite strains. The main results are some rigorous upper bounds on the set of energy-minimizing strains. Those bounds depend on the polycrystalline texture through the volume fractions of the different orientations. The simplest form of the bounds presented is obtained by combining recent results for single crystals with a homogenization approach proposed previously for martensitic polycrystals. However, the polycrystalline bound delivered by that procedure may fail to recover the monocrystalline bound in the homogeneous limit, as is demonstrated in this paper by considering an example related to tetragonal martensite. This motivates the development of a more detailed analysis, leading to improved polycrystalline bounds that are notably consistent with results for single crystals in the homogeneous limit. A two-orientation polycrystal of tetragonal martensite is studied as an illustration. In that case, analytical expressions of the upper bounds are derived and the results are compared with lower bounds obtained by considering laminate textures.
NASA Astrophysics Data System (ADS)
Fukuda, Kunito; Asakawa, Naoki
2017-08-01
Spin-dependent space charge limited carrier conduction in a Schottky barrier diode using polycrystalline p-type π-conjugated molecular pentacene is explored using multiple-frequency electrically detected magnetic resonance (EDMR) spectroscopy with a variable-angle configuration. The measured EDMR spectra are decomposed into two components derived respectively from mobile and trapped positive polarons. The linewidth of the EDMR signal for the trapped polarons increases with increasing resonance magnetic field for an in-plane configuration where the normal vector of the device substrate is perpendicular to the resonance magnetic field, while it is independent of the field for an out-of-plane configuration. This difference is consistent with the pentacene arrangement on the device substrate, where pentacene molecules exhibit a uniaxial orientation on the out-of-substrate plane. By contrast, the mobile polarons do not show anisotropic behavior with respect to the resonance magnetic field, indicating that the anisotropic effect is averaged out owing to carrier motion. These results suggest that the orientational arrangements of polycrystalline pentacene molecules in a nano thin film play a crucial role in spin-dependent electrical conduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yanhong, E-mail: tianyh@hit.edu.cn; Zhang, Rui; Hang, Chunjin
2014-02-15
The morphologies and orientations of Cu{sub 6}Sn{sub 5} intermetallic compounds in the Sn3.0Ag0.5Cu solder joints both on polycrystalline and single crystal Cu pads under different peak reflow temperatures and times above liquids were investigated. The relationship between Cu{sub 6}Sn{sub 5} grain orientations and morphologies was clarified. At the interface of Sn3.0Ag0.5Cu/polycrystalline Cu pad, scalloped Cu{sub 6}Sn{sub 5} intermetallic compounds formed at 250 °C and roof shape Cu{sub 6}Sn{sub 5} formed at 300 °C. Both scalloped Cu{sub 6}Sn{sub 5} and roof shape Cu{sub 6}Sn{sub 5} had a preferred orientation of (0001) plane being parallel to polycrystalline Cu pad surface. Besides, themore » percentage of large angle grain boundaries increased as the peak reflow temperature rose. At the interface of Sn3.0Ag0.5Cu/(111) single crystal Cu pad, the Cu{sub 6}Sn{sub 5} intermetallic compounds were mainly scallop-type at 250 °C and were prism type at 300 °C. The prismatic Cu{sub 6}Sn{sub 5} grains grew along the three preferred directions with the inter-angles of 60° on (111) single crystal Cu pad while along two perpendicular directions on (100) single crystal Cu pad. The orientation relationship between Cu{sub 6}Sn{sub 5} grains and the single crystal Cu pads was investigated by electron backscatter diffraction technology. In addition, two types of hollowed Cu{sub 6}Sn{sub 5} intermetallic compounds were found inside the joints of polycrystalline Cu pads. The long hexagonal Cu{sub 6}Sn{sub 5} strips were observed in the joints reflowing at 250 °C while the hollowed Cu{sub 6}Sn{sub 5} strips with the ‘▪’ shape cross-sections appeared at 300 °C, which was attributed to the different grain growth rates of different Cu{sub 6}Sn{sub 5} crystal faces. - Highlights: • The orientation of interfacial Cu{sub 6}Sn{sub 5} grains was obtained by EBSD technology. • Two types of hollowed Cu{sub 6}Sn{sub 5} strips were found at different temperatures. • The formation mechanism of hollowed Cu{sub 6}Sn{sub 5} was elaborated based on Bravais law. • The relationship between Cu{sub 6}Sn{sub 5} grain orientations and morphologies was clarified.« less
NASA Astrophysics Data System (ADS)
Nakashima, Seiji; Ricinschi, Dan; Park, Jung Min; Kanashima, Takeshi; Fujisawa, Hironori; Shimizu, Masaru; Okuyama, Masanori
2009-03-01
The stress influence of the structural and ferroelectric properties of polycrystalline BiFeO3 (BFO) thin films has been investigated using a membrane substrate for relaxing stress. Reciprocal space mapping (RSM) measurement has been performed to confirm the stress dependence of the crystal structure of polycrystalline BFO thin films on the Pt (200 nm)/TiO2 (50 nm)/SiO2 (600 nm)/Si (625 μm) substrate (stress-constrained BFO film) and the Pt (200 nm)/TiO2 (50 nm)/SiO2 (600 nm)/Si (15 μm) membrane substrate (stress-relaxed BFO film). The BFO thin films prepared by pulsed laser deposition were polycrystalline and mainly exhibit a texture with (001) and (110) plane orientations. From the RSM results, the crystal structure of the (001)-oriented domain changes from Pm monoclinic to Cm monoclinic or to R3c rhombohedral due to stress relaxation. Moreover, at room temperature as well as at 150 K, remanent polarization (Pr) increases and double coercive field (2Ec) decreases (in the latter case from 88 to 94 μC/cm2 and from 532 to 457 kV/cm, respectively) due to relaxing stress. The enhancement of ferroelectricity is attributed to the crystal structural deformation and/or transition and angle change between the polarization direction and film plane.
The Fundamentals of Dislocation Transport of Hydrogen in BCC Iron.
1984-10-01
4.2.1. Single Crystal Material 24 4.2.2. Polycrystalline Material 25 4.3. Single Crystal Orientation Determination 25 4.4. Straining Permeation Test 27...Test 45 4.6. Supersaturation Study 47 S. RESULTS AND DISCUSSION 50 5.1. Single Crystal Orientation Determination 50 5.1.1. Slip System Determination 58...Orientation 162 Determination B.1. Dislocation Line Direction Determination 162 B.2. Burgers Vector Determination 164
NASA Astrophysics Data System (ADS)
Brown, Delilah A.; Morgan, Sean; Peldzinski, Vera; Brüning, Ralf
2017-11-01
Copper films for printed circuit board applications have to be fine-grained to achieve even filling of vias. Electroplated Cu films on roll annealed Cu substrates may have unacceptably large epitaxial crystals. Here galvanic films were plated on oriented single-crystal Cu substrates from an additive-free electrolyte, as well as DC plating and pulse reverse (PR) plating with additives. The distribution of crystallite orientations was mapped with XRD and compared with the microstructure determined by SEM. For the additive-free bath on [1 1 1] and [1 0 0] oriented surfaces a gradual transition from epitaxial to polycrystalline is seen, while films on [1 1 0] substrates are persistently epitaxial. Without bath additives, twinning is the main mechanism for the transition to polycrystalline texture. For DC plating, additives (carriers, accelerators and levelers) promote fine-grained films with isotropic grain orientations, with films on [1 1 0] substrates being partially isotropic. Plating with carriers and accelerators (no leveler) yields films with many distinct crystallite orientations. These orientations result from up to five steps of recursive twinning. PR plating produces isotropic films with no or very few twins (〈1 1 1〉 and 〈1 0 0〉 substrates, respectively), while on 〈1 1 0〉 oriented surfaces the deposits are about 20% epitaxial.
NASA Astrophysics Data System (ADS)
Jin, Yaming; Lu, Xiaomei; Zhang, Junting; Kan, Yi; Bo, Huifeng; Huang, Fengzhen; Xu, Tingting; Du, Yingchao; Xiao, Shuyu; Zhu, Jinsong
2015-07-01
For rhombohedral multiferroelectrics, non-180° ferroelectric domain switching may induce ferroelastic and/or (anti-)ferromagnetic effect. So the determination and control of ferroelectric domain switching angles is crucial for nonvolatile information storage and exchange-coupled magnetoelectric devices. We try to study the intrinsic characters of polarization switching in BiFeO3 by introducing a special data processing method to determine the switching angle from 2D PFM (Piezoresponse Force Microscopy) images of randomly oriented samples. The response surface of BiFeO3 is first plotted using the piezoelectric tensor got from first principles calculations. Then from the normalized 2D PFM signals before and after switching, the switching angles of randomly oriented BiFeO3 grains can be determined through numerical calculations. In the polycrystalline BiFeO3 films, up to 34% of all switched area is that with original out-of-plane (OP) polarization parallel to the poling field. 71° polarization switching is more favorable, with the area percentages of 71°, 109° and 180° domain switching being about 42%, 29% and 29%, respectively. Our analysis further reveals that IP stress and charge migration have comparable effect on switching, and they are sensitive to the geometric arrangements. This work helps exploring a route to control polarization switching in BiFeO3, so as to realize desirable magnetoelectric coupling.
Shock induced spall fracture in polycrystalline copper
NASA Astrophysics Data System (ADS)
Mukherjee, D.; Rav, Amit; Sur, Amit; Joshi, K. D.; Gupta, Satish C.
2014-04-01
The plate impact experiments have been conducted on commercially available 99.99% pure polycrystalline samples of copper using single stage gas gun facility. The free surface velocity history of the sample plate measured using VISAR instrument is utilized to determine the dynamic yield strength and spall strength of copper. The dynamic yield strength and spall strength of polycrystalline copper sample has been determined to be 0.14 GPa and 1.32 GPa, respectively with corresponding strain rates of the order of 104/s.
NASA Astrophysics Data System (ADS)
Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas
2017-12-01
In the present paper, results of plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial strain compression and elevated temperatures up to melt are presented. The dynamic stress at yield and post yield of magnesium, as inferred from the measured normal component of the particle velocity histories at the free (rear) surface of the target plate, are observed to decrease progressively with increasing test temperatures in the range from 23 to 500 °C. At (higher) test temperatures in the range 500-610 °C, the rate of decrease of dynamic stress with temperature at yield and post-yield in the sample is observed to weaken. At still higher test temperatures (617 and 630 °C), a dramatic increase in dynamic yield as well as flow stress is observed indicating a change in dominant mechanism of plastic deformation as the sample approaches the melt point of magnesium at strain rates of 105/s. In addition to these measurements at the wavefront, the plateau region of the free surface particle velocity profiles indicates that the longitudinal (plastic) impedance of the magnesium samples decreases continuously as the sample temperatures are increased from room to 610 °C, and then reverses trend (indicating increasing material longitudinal impedance/strength) as the sample temperatures are increased to 617 and 630 °C. Electron back scattered diffraction analysis of the as-received and annealed pre-test magnesium samples reveal grain coarsening as well as grain re-orientation to a different texture during the heating process of the samples.
NASA Astrophysics Data System (ADS)
Hartzell, C. J.; Pratum, T. K.; Drobny, G.
1987-10-01
This study demonstrates the mutual orientation of three tensor interactions in a single NMR experiment. The orientation of the 15N chemical shift tensor relative to the molecular frame has thus been determined in polycrystalline L-[1-13C] alanyl-L-[15N] alanine. The 13C-15N and 15N-1H dipole interactions are determined using the 1H dipole-modulated, 13C dipole-coupled 15N spectrum obtained as a transform of the data in t2. From simulations of the experimental spectra, two sets of polar angles have been determined relating the 13C-15N and 15N-1H dipoles to the 15N chemical shift tensor. The values determined are βCN =106°, αCN =5° and βNH =-19°, αNH =12°. The experiment verifies, without reference to single crystal data, that σ33 lies in the peptide plane and σ22 is nearly perpendicular to the plane.
Magnetic preferential orientation of metal oxide superconducting materials
Capone, D.W.; Dunlap, B.D.; Veal, B.W.
1990-07-17
A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.
Magnetic preferential orientation of metal oxide superconducting materials
Capone, Donald W.; Dunlap, Bobby D.; Veal, Boyd W.
1990-01-01
A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0
Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review
NASA Astrophysics Data System (ADS)
Gránásy, László; Rátkai, László; Szállás, Attila; Korbuly, Bálint; Tóth, Gyula I.; Környei, László; Pusztai, Tamás
2014-04-01
Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.
NASA Astrophysics Data System (ADS)
Ivanova, T. M.; Serebryany, V. N.
2017-12-01
The component fit method in quantitative texture analysis assumes that the texture of the polycrystalline sample can be represented by a superposition of weighted standard distributions those are characterized by position in the orientation space, shape and sharpness of the scattering. The components of the peak and axial shapes are usually used. It is known that an axial texture develops in materials subjected to direct pressing. In this paper we considered the possibility of modelling a texture of a magnesium sample subjected to equal-channel angular pressing with axial components only. The results obtained make it possible to conclude that ECAP is also a process leading to the appearance of an axial texture in magnesium alloys.
NASA Astrophysics Data System (ADS)
Fukuda, Jun-ichi; Muto, Jun; Nagahama, Hiroyuki
2018-01-01
We performed two axial deformation experiments on synthetic polycrystalline anorthite samples with a grain size of 3 μm and 5 vol% Si-Al-rich glass at 900 °C, a confining pressure of 1.0 GPa, and a strain rate of 10-4.8 s-1. One sample was deformed as-is (dry); in the other sample, two half-cut samples (two cores) with 0.15 wt% water at the boundary were put together in the apparatus. The mechanical data for both samples were essentially identical with a yield strength of 700 MPa and strain weakening of 500 MPa by 20% strain. The dry sample appears to have been deformed by distributed fracturing. Meanwhile, the water-added sample shows plastic strain localization in addition to fracturing and reaction products composed of zoisite grains and SiO2 materials along the boundary between the two sample cores. Infrared spectra of the water-added sample showed dominant water bands of zoisite. The maximum water content was 1500 wt ppm H2O at the two-core boundary, which is the same as the added amount. The water contents gradually decreased from the boundaries to the sample interior, and the gradient fitted well with the solution of the one-dimensional diffusion equation. The determined diffusion coefficient was 7.4 × 10-13 m2/s, which agrees with previous data for the grain boundary diffusion of water. The anorthite grains in the water-added sample showed no crystallographic preferred orientation. Textural observations and water diffusion indicate that water promotes the plastic deformation of polycrystalline anorthite by grain-size-sensitive creep as well as simultaneous reactions. We calculated the strain rate evolution controlled by water diffusion in feldspar aggregates surrounded by a water source. We assumed water diffusion in a dry rock mass with variable sizes. Diffused water weakens a rock mass with time under compressive stress. The calculated strain rate decreased from 10-10 to 10-15 s-1 with an increase in the rock mass size to which water is supplied from < 1 m to 1 km and an increase in the time of water diffusion from < 1 to 10,000 years. This indicates a decrease in the strain rate in a rock mass with increasing deformation via water diffusion.
NASA Astrophysics Data System (ADS)
Salzman, S.; Romanofsky, H. J.; Clara, Y. I.; Giannechini, L. J.; West, Garrett J.; Lambropoulos, J. C.; Jacobs, S. D.
2013-09-01
Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and zinc selenide (ZnSe) can leave millimeter-size artifacts on the part surface. These pebble-like features come from the anisotropic mechanical and chemical properties of the ceramic material and from the CVD growth process itself. The resulting surface texture limits the use of MRF for polishing aspheric and other complex shapes using these important infrared (IR) ceramics. An investigation of the individual contributions of chemistry and mechanics to polishing of other polycrystalline ceramics has been employed in the past to overcome similar material anisotropy problems. The approach taken was to study the removal process for the different single-crystal orientations that comprise the ceramic, making adjustments to mechanics (polishing abrasive type and concentration) and polishing slurry chemistry (primarily pH) to equalize the removal rate for all crystal orientations. Polishing with the modified slurry was shown to prevent the development of surface texture. Here we present mechanical (microhardness testing) and chemical (acid etching) studies performed on the four single-crystal orientations of ZnS: 100, 110, 111, and 311. We found that the (111) plane is 35% to 55% harder and 30% to 40% more resistant to chemical etching than the other three planes. This relatively high degree of variation in these properties can help to explain the surface texture developed from MRF of the polycrystalline material. Theoretical calculations of microhardness, planar, and bond densities are presented and compared with the experimental data. Here surface characterization of these single-crystal orientations of ZnS for material removal and roughness with chemically modified MR fluids at various pH levels between pH 4 and pH 6 are presented for the first time.
Ultrafast shock-induced orientation of polycrystalline films: Applications to high explosives
NASA Astrophysics Data System (ADS)
Franken, Jens; Hambir, Selezion A.; Dlott, Dana D.
1999-02-01
Tiny laser-driven shock waves of ˜5 GPa pressure (nanoshocks) are used to study fast mechanical processes occurring in a thin layer of polycrystalline insensitive energetic material, (3-nitro-1,2,4-triazol-5-one) (NTO). Ultrafast coherent Raman spectroscopy of shocked NTO shows the existence of three distinct mechanical processes. Very fast (˜600 ps) changes in intensity and the appearance of new transitions are associated with the uniaxial nature of compression by the shock front. Frequency shifting and broadening processes which track the ˜2 ns duration nanoshock are associated with transient changes in density and temperature. A novel slower process (5-10 ns) starts as the shock begins to unload, and continues for several nanoseconds after the shock is over, resulting in changes of widths and intensities of several vibrational transitions. By comparing ultrafast spectra to static Raman spectra of single NTO crystals in various orientations, it is concluded that this process involves shock-induced partial orientation of the crystals in the NTO layer. The NTO crystals are oriented faster than the time scale for initiating chemical reactions. The sensitivity of explosive crystals to shock initiation may depend dramatically on the orientation of the crystal relative to the direction of shock propagation, so the implications of fast shock-induced orientation for energetic materials initiation are discussed briefly.
NASA Astrophysics Data System (ADS)
Shin, Junsoo; Goyal, Amit; Jesse, Stephen; Kim, Dae Ho
2009-06-01
Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of ˜11.5 μC/cm2. Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices.
NASA Astrophysics Data System (ADS)
Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.
The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.
Optimization of Ferroelectric Ceramics by Design at the Microstructure Level
NASA Astrophysics Data System (ADS)
Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.
2010-05-01
Ferroelectric materials show remarkable physical behaviors that make them essential for many devices and have been extensively studied for their applications of nonvolatile random access memory (NvRAM) and high-speed random access memories. Although ferroelectric ceramics (polycrystals) present ease in manufacture and in compositional modifications and represent the widest application area of materials, computational and theoretical studies are sparse owing to many reasons including the large number of constituent atoms. Macroscopic properties of ferroelectric polycrystals are dominated by the inhomogeneities at the crystallographic domain/grain level. Orientation of grains/domains is critical to the electromechanical response of the single crystalline and polycrystalline materials. Polycrystalline materials have the potential of exhibiting better performance at a macroscopic scale by design of the domain/grain configuration at the domain-size scale. This suggests that piezoelectric properties can be optimized by a proper choice of the parameters which control the distribution of grain orientations. Nevertheless, this choice is complicated and it is impossible to analyze all possible combinations of the distribution parameters or the angles themselves. Hence we have implemented the stochastic optimization technique of simulated annealing combined with the homogenization for the optimization problem. The mathematical homogenization theory of a piezoelectric medium is implemented in the finite element method (FEM) by solving the coupled equilibrium electrical and mechanical fields. This implementation enables the study of the dependence of the macroscopic electromechanical properties of a typical crystalline and polycrystalline ferroelectric ceramic on the grain orientation.
NASA Astrophysics Data System (ADS)
Bolon, Bruce T.; Haugen, M. A.; Abin-Fuentes, A.; Deneen, J.; Carter, C. B.; Leighton, C.
2007-02-01
We have used ferromagnet/antiferromagnet/ferromagnet trilayers and ferromagnet/antiferromagnet multilayers to probe the grain size dependence of exchange bias in polycrystalline Co/Fe 50Mn 50. X-ray diffraction and transmission electron microscopy show that the Fe 50Mn 50 (FeMn) grain size increases with increasing FeMn thickness in the Co (30 Å)/FeMn system. Hence, in Co(30 Å)/FeMn( tAF Å)/Co(30 Å) trilayers the two Co layers sample different FeMn grain sizes at the two antiferromagnet/ferromagnet interfaces. For FeMn thicknesses above 100 Å, where simple bilayers have a thickness-independent exchange bias, we are therefore able to deduce the influence of FeMn grain size on the exchange bias and coercivity (and their temperature dependence) simply by measuring trilayer and multilayer samples with varying FeMn thicknesses. This can be done while maintaining the (1 1 1) orientation, and with little variation in interface roughness. Increasing the average grain size from 90 to 135 Å results in a fourfold decrease in exchange bias, following an inverse grain size dependence. We interpret the results as being due to a decrease in uncompensated spin density with increasing antiferromagnet grain size, further evidence for the importance of defect-generated uncompensated spins.
Yoneda, A; Kubo, A
2006-06-28
It is known that the {100} and {111} planes of cubic crystals subjected to uniaxial deviatoric stress conditions have strain responses that are free from the effect of lattice preferred orientation. By utilizing this special character, one can unambiguously and simultaneously determine the mean pressure and deviatoric stress from polycrystalline diffraction data of the cubic sample. Here we introduce a numerical tensor calculation method based on the generalized Hooke's law to simultaneously determine the hydrostatic component of the stress (mean pressure) and deviatoric stress in the sample. The feasibility of this method has been tested by examining the experimental data of the Au pressure marker enclosed in a diamond anvil cell using a pressure medium of methanol-ethanol mixture. The results demonstrated that the magnitude of the deviatoric stress is ∼0.07 GPa at the mean pressure of 10.5 GPa, which is consistent with previous results of Au strength under high pressure. Our results also showed that even a small deviatoric stress (∼0.07 GPa) could yield a ∼0.3 GPa mean pressure error at ∼10 GPa.
NASA Astrophysics Data System (ADS)
Li, Jinhua; Yuan, Ningyi; Jiang, Meiping; Kun, Li
2011-08-01
Vanadium Dioxide Polycrystalline Films with High Temperature Coefficient of Resistance(TCR) were fabricated by modified Ion Beam Enhanced Deposition(IBED) method. The TCR of the Un-doping VO2 was about -4%/K at room temperature after appropriate thermal annealing. The XRD results clearly showed that IBED polycrystalline VO2 films had a single [002] orientation of VO2(M). The TCR of 5at.%W and 7at.% Ta doped Vanadium Dioxide Polycrystalline Films were high up to -18%/K and -12%/K at room temperature, respectively. Using 7at.% Ta and 2at.% Ti co-doping, the TCR of the co-doped vanadium oxide film was -7%/K and without hysteresis during temperature increasing and decresing from 0-80°C. It should indicate that the W-doped vanadium dioxide films colud be used for high sensing IR detect and the Ta/Ti co-doped film without hysteresis is suitable for infrarid imaging application.
Elasticity of stishovite at high pressure
NASA Astrophysics Data System (ADS)
Li, Baosheng; Rigden, Sally M.; Liebermann, Robert C.
1996-08-01
The elastic-wave velocities of stishovite, the rutile-structured polymorph of SiO 2, were measured to 3 GPa at room temperature in a piston cylinder apparatus using ultrasonic interferometry on polycrystalline samples. These polycrystalline samples (2-3 mm in length and diameter) were hot-pressed at 14 GPa and 1050°C in a 2000 ton uniaxial split-sphere apparatus (USSA-2000) using fused silica rods as starting material. They were characterized as low porosity (less than 1%), single phase, fine grained, free of cracks and preferred orientation, and acoustically isotropic by using density measurement, X-ray diffraction, scanning electron microscopy, and bench-top velocity measurements. On the basis of subsequent in situ X-ray diffraction study at high P and T on peak broadening on similar specimens, it is evident that the single crystal grains within these polycrystalline aggregates are well equilibrated and that these specimens are free of residual strain. P- and S-wave velocities measured at 1 atm are within 1.5% of the Hashin-Shtrikman bounds calculated from single-crystal elastic moduli. Measured pressure derivatives of the bulk and shear moduli, K' 0 = 5.3 ± 0.1 and G' 0 = 1.8 ± 0.1, are not unusual compared with values measured for other transition zone phases such as silicate spinel and majorite garnet. Isothermal compression curves calculated with the measured values of K0 and K' 0 agree well with experimental P-V data to 16 GPa. The experimental value of dG /dP is in excellent agreement with predictions based on elasticity systematics. Theoretical models are not yet able to replicate the measured values of K' 0 and G' 0.
ISS and TPD study of the adsorption and interaction of CO and H2 on polycrystalline Pt
NASA Technical Reports Server (NTRS)
Melendez, Orlando; Hoflund, Gar B.; Schryer, David R.
1990-01-01
The adsorption and interaction of CO and H2 on polycrystalline Pt has been studied using ion scattering spectroscopy (ISS) and temperature programmed desorption (TPD). The ISS results indicate that the initial CO adsorption on Pt takes place very rapidly and saturates the Pt surface with coverage close to a monolayer. ISS also shows that the CO molecules adsorb at an angular orientation from the surface normal and perhaps parallel to the surface. A TPD spectrum obtained after coadsorbing C-12 O-16 and C-13 O-18 on Pt shows no isotopic mixing, which is indicative of molecular CO adsorption. TPD spectra obtained after coadsorbing H2 and CO on polycrystalline Pt provides evidence for the formation of a CO-H surface species.
NASA Astrophysics Data System (ADS)
Pan, Qingtao; Wang, Tao; Yan, Hui; Zhang, Ming; Mai, Yaohua
2017-04-01
Crystallization of glass/Aluminum (50, 100, 200 nm) /hydrogenated amorphous silicon (a-Si:H) (50, 100, 200 nm) samples by Aluminum-induced crystallization (AIC) is investigated in this article. After annealing and wet etching, we found that the continuity of the polycrystalline silicon (poly-Si) thin films was strongly dependent on the double layer thicknesses. Increasing the a-Si:H/Al layer thickness ratio would improve the film microcosmic continuity. However, too thick Si layer might cause convex or peeling off during annealing. Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) are introduced to analyze the process of the peeling off. When the thickness ratio of a-Si:H/Al layer is around 1 to 1.5 and a-Si:H layer is less than 200 nm, the poly-Si film has a good continuity. Hall measurements are introduced to determine the electrical properties. Raman spectroscopy and X-ray diffraction (XRD) results show that the poly-Si film is completely crystallized and has a preferential (111) orientation.
Interface spins in polycrystalline FeMn/Fe bilayers with small exchange bias
NASA Astrophysics Data System (ADS)
Pires, M. J. M.
2018-04-01
The magnetic moments at the interface between ferromagnetic and antiferromagnetic layers play a central role in exchange biased systems, but their behavior is still not completely understood. In this work, the FeMn/Fe interface in polycrystalline thin films has been studied using conversion electron Mössbauer spectroscopy (CEMS), magneto-optic Kerr effect (MOKE) and micromagnetic simulations. Samples were prepared with 57Fe layers at two distinct depths in order to probe the interface and bulk behaviors. At the equilibrium, the interface moments are randomly oriented while the bulk of the Fe layer has an in-plane magnetic anisotropy. Several models for the interface and anisotropies of the layers were used in the simulations of spin configurations and hysteresis loops. From the whole set of simulations, one can conclude the direct analysis of hysteresis curves is not enough to infer whether the interface has a configuration with spins tilted out of the film plane at equilibrium since different choices of parameters provide similar curves. The simulations have also shown the occurrence of spin clusters at the interface is compatible with CEMS and MOKE measurements.
Electrical conductivity of high-purity germanium crystals at low temperature
NASA Astrophysics Data System (ADS)
Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming
2018-05-01
The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Z. H.; Lin Peng, R.; Johansson, S.
2008-01-01
In situ time-of-flight neutron diffraction and high-energy x-ray diffraction techniques were used to reveal the preferred reselection of martensite variants through a detwinning process in polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloys under uniaxial compressive stress. The variant reorientation via detwinning during loading can be explained by considering the influence of external stress on the grain/variant orientation-dependent distortion energy. These direct observations of detwinning provide a good understanding of the deformation mechanisms in shape memory alloys.
Dynamic Microstructure Design Consortium
2011-03-23
multiple realizations of polycrystalline microstructure. Cyclic microplasticity in favorably oriented martensite grains is the primary driver for the...can alter the residual stress distribution 13. The present work ex- plores how short-range microplastic deformation during cyclic loading promotes
Cluster glass induced exchange biaslike effect in the perovskite cobaltites
NASA Astrophysics Data System (ADS)
Luo, Wanju; Wang, Fangwei
2007-04-01
Exchange biaslike phenomenon is observed in the Ba doped perovskite polycrystalline LaCoO3. The magnetic hysteresis loop shifts in both horizontal and vertical directions at 5K when the samples are cooled down to 5K in a magnetic field. The nature of this magnetic anisotropy is ascribed to the freezing properties of the local anisotropy in the cluster glass system. The magnetic shifts in horizontal and vertical directions can be derived directly under the principle that the spins of a cluster are frozen in random orientations and aligned to the field direction upon zero field and field cooling, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, R. L.; Wang, Y. D.; Nie, Z. H.
2008-01-01
This paper deals with the experimental study of stress-induced phase transformation in a polycrystalline Ni-Mn-Ga alloy under uniaxial compression and its powder under hydrostatic compression. In situ neutron diffraction experiments were employed to follow changes in the structure and lattice strains caused by the applied stresses. Large lattice strains that are dependent on the lattice planes or grain orientations were observed in the parent Heusler phase for both the bulk material and the powder sample. The development of such anisotropic strains and the influence of external load conditions are discussed in the paper.
NASA Astrophysics Data System (ADS)
Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred
2016-12-01
This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.
Growth and characterization of β-Ga2O3 crystals
NASA Astrophysics Data System (ADS)
Nikolaev, V. I.; Maslov, V.; Stepanov, S. I.; Pechnikov, A. I.; Krymov, V.; Nikitina, I. P.; Guzilova, L. I.; Bougrov, V. E.; Romanov, A. E.
2017-01-01
Here we report on the growth and characterization of β-Ga2O3 bulk crystals and polycrystalline layer on different substrates. Bulk β-Ga2O3 crystals were produced by free crystallisation of gallium oxide melt in sapphire crucible. Transparent single crystals measuring up to 8 mm across were obtained. Good structural quality was confirmed by x-ray diffraction rocking curve FWHM values of 46″. Young's modulus, shear modulus and hardness of the β-Ga2O3 crystals were measured by nanoindentation and Vickers microindentation techniques. Polycrystalline β-Ga2O3 films were deposited on silicon and sapphire substrates by sublimation method. It was found that structure and morphology of the films were greatly influenced by the material and orientation of the substrates. The best results were achieved on a-plane sapphire substrates where predominantly (111) oriented films were obtained.
NASA Astrophysics Data System (ADS)
Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.
2007-10-01
A modelling framework that incorporates the peculiarities of microstructural features, such as the spatial correlation of crystallographic orientations and morphological texture in piezoelectrics, is established. The mathematical homogenization theory of a piezoelectric medium is implemented using the finite element method by solving the coupled equilibrium electrical and mechanical fields. The dependence of the domain orientation on the macroscopic electromechanical properties of crystalline as well as polycrystalline ceramic relaxor ferroelectric 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 (PMN-42% PT) is studied based on this model. The material shows large anisotropy in the piezoelectric coefficient ejK in its crystalline form. The homogenized electromechanical moduli of polycrystalline ceramic also exhibit significantly anisotropic behaviours. An optimum texture at which the piezoceramic exhibits its maximum longitudinal piezoelectric response is identified.
NASA Astrophysics Data System (ADS)
Teng, Yao; Shi, Tao; Zhu, Yuping; Li, Zongbin; Deng, Tao; Bai, Guonan
2016-03-01
A polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloy produced by directional solidification is the subject of this research paper. The compressive stress-strain curves of the material for different cutting angles to the solidification direction are tested. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress are analyzed experimentally. The results show that mechanical behaviors in the loading-unloading cycle of the material present nonlinear and anisotropic characteristics, which are all closely related to the material's orientation to the solidification direction. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress achieve maximum values in the solidification direction. A 50° orientation to the solidification direction is the cut-off direction of the mechanical properties, where the martensite Young's modulus and reorientation start critical stress reach minimum values. The present study is expected to provide sound guidance for practical applications.
NASA Astrophysics Data System (ADS)
Cantu-Valle, Jesus; Ruiz-Zepeda, Francisco; Sanchez, John Eder; Mendoza-Santoyo, Fernando; Ponnce, Arturo; UTSA Team
2015-03-01
We report the magnetic imaging and crystalline structure of high aspect ratio cobalt nanowires. Experimental results of magnetization reversal in cobalt nanowires are presented to illustrate the functionality of the in situ magnetization process through the manipulation of the objective lens. By making use of this applicability, we measure the magnetization and show experimental evidence of the magnetic flux distribution in polycrystalline cobalt nanowires using off-axis electron holography. The retrieved phase map can distinguishes the magnetic contribution from the crystalline contribution with high accuracy. To determine the size and orientation of the grains within the Co nanowires, PED-assisted orientation mapping was performed. Finally, the magnetic analysis performed at individual nanowires was correlated with the crystalline orientation map, obtained by PED-assisted crystal phase orientation mapping. The large shape anisotropy determines the mayor magnetization direction rather than the magneto-crystalline anisotropy in the studied nanowires. The combination of the two techniques allowed us to directly visualize the effects of the crystallographic texture on the magnetization of the nanowire. The authors would like to acknowledge Dr. B.J.H. Stadler for providing the samples and financial support from NSF PREM #DMR 0934218, CONACYT, #215762 and Department of Defense #64756-RT-REP.
Von Dreele, Robert B.; D'Amico, Kevin
2006-10-31
A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.
Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian
2014-07-21
Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. Itmore » is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.« less
Predicting seismic anisotropy in D'' from global mantle flow models
NASA Astrophysics Data System (ADS)
Nowacki, A. J.; Walker, A.; Forte, A. M.; Wookey, J.; Kendall, J. M.
2010-12-01
The strong seismic anisotropy of D'' revealed by measurement of shear wave splitting is commonly considered a signature of convectional flow in the lowermost mantle. However, the relationship between the nature of mantle flow and the seismic observations is unclear. In order to test the hypothesis that anisotropy is caused by a deformation-induced crystallographic preferred orientation, we combine 3D models of mantle flow, simulations of the deformation of polycrystalline composites, and new seismic data. We make use of an emerging suite of models of mantle dynamics, which invert data from mineral physics experiments, seismic P- and S-wave travel times, and geodynamic surface observations, to produce an estimate of the current global scale 3D flow in the silicate Earth. Seismic tomography---and hence these dynamic models---is particularly well-constrained beneath Central America because of fortuitous earthquake and seismometer locations. We trace particles through the flow models within three different regions of D'' beneath Central and North America and use the strain field from this tracing as boundary conditions for visco-plastic modelling of texture development in representative polycrystalline samples. In order to simulate texture development we calculate the orientation of each crystal in each sample at each step in the flow. Grain interactions are described using a self-consistent approach, where the crystal is considered embedded in a homogenous effective medium, representing the surrounding grains as an average of the whole sample. Parameters describing the single crystal plasticity (e.g. slip system activities) are chosen to agree with existing experimental results for the deformation of lower mantle minerals, or are taken from parameterisations of the Peierls-Nabarro model of dislocations parameterised using density functional theory. The calculated textures are then used to predict the elastic properties of the deforming lowermost mantle, and thus the magnitude and orientation of shear wave splitting accrued by S waves traversing this region in different directions. We present the first results, and compare them to recent multi-azimuth observations. This allows us to test the efficacy of proposed phase assemblages and slip systems to explain D'' anisotropy. Whilst there are large uncertainties in physical parameters of the deep Earth, we anticipate that the constraints we are able to place on these may allow us in the future to directly map deformation in D'' with anisotropy measurements, hence testing models of deep mantle thermodynamics.
FMR and torque studies of highly stressed magnetostrictive polycrystalline CoPd alloy films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubowik, J.; Szymanski, B.
1994-03-01
Ferromagnetic resonance (FMR) and torque curves have been measured in electrodeposited CoPd alloy films with composition ranged from Co{sub 13}Pd{sub 83} to Co{sub 45}Pd{sub 55}. The authors show that the origin of the multimode structure of FMR spectra in these strongly magnetostrictive polycrystalline films can be satisfactory explained on the basis of the independent-grain-approach for a textured microstructure. The fourfold periodicity of the torque curves for the compositional range of 30--35 at% is assumed to be oriented by inhomogeneous distribution of the magnetization direction.
Tian, Mingliang; Wang, Jinguo; Kurtz, James; Mallouk, Thomas E; Chan, M H W
2003-07-01
Metallic nanowires (Au, Ag, Cu, Ni, Co, and Rh) with an average diameter of 40 nm and a length of 3-5 μm have been fabricated by electrodeposition in the pores of track-etched polycarbonate membranes. Structural characterizations by transmission electron microscopy (TEM) and electron diffraction showed that nanowires of Au, Ag, and Cu are single-crystalline with a preferred [111] orientation, whereas Ni, Co, and Rh wires are polycrystalline. Possible mechanisms responsible for nucleation and growth for single-crystal noble metals versus polycrystalline group VIII-B metals are discussed.
Diffraction Contrast Tomography: A Novel 3D Polycrystalline Grain Imaging Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuettner, Lindsey Ann
2017-06-06
Diffraction contrast tomography (DCT) is a non-destructive way of imaging microstructures of polycrystalline materials such as metals or crystalline organics. It is a useful technique to map 3D grain structures as well as providing crystallographic information such as crystal orientation, grain shape, and strain. Understanding the internal microstructure of a material is important in understanding the bulk material properties. This report gives a general overview of the similar techniques, DCT data acquisition, and analysis processes. Following the short literature review, potential work and research at Los Alamos National Laboratory (LANL) is discussed.
Modelling heat conduction in polycrystalline hexagonal boron-nitride films
Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon
2015-01-01
We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820
Process Research of Polycrystalline Silicon Material (PROPSM)
NASA Technical Reports Server (NTRS)
Culik, J. S.
1984-01-01
A passivation process (hydrogenation) that will improve the power generation of solar cells fabricated from presently produced, large grain, cast polycrystalline silicon (Semix), a potentially low cost material are developed. The first objective is to verify the operation of a DC plasma hydrogenation system and to investigate the effect of hydrogen on the electrical performance of a variety of polycrystalline silicon solar cells. The second objective is to parameterize and optimize a hydrogenation process for cast polycrystalline silicon, and will include a process sensitivity analysis. The sample preparation for the first phase is outlined. The hydrogenation system is described, and some early results that were obtained using the hydrogenation system without a plasma are summarized. Light beam induced current (LBIC) measurements of minicell samples, and their correlation to dark current voltage characteristics, are discussed.
The structural and electrical properties of polycrystalline La0.8Ca0.17Ag0.03MnO3 manganites
NASA Astrophysics Data System (ADS)
Ruli, F.; Kurniawan, B.; Imaduddin, A.
2018-04-01
In this paper, the authors report the electrical properties of polycrystalline La0.8Ca0.17Ag0.03MnO3 manganites synthesized using sol-gel method. The X-ray diffraction (XRD) patterns of polycrystalline La0.8Ca0.17Ag0.03MnO3 samples reveal an orthorhombic perovskite structure with Pnma space group. Analysis using energy dispersive X-ray (EDX) confirms that the sample contains all expected chemical elements without any additional impurity. The measurement of resistivity versus temperature using cryogenic magnetometer was performed to investigate the electrical properties. The results show that the electrical resistivity of polycrystalline La0.8Ca0.17Ag0.03MnO3 exhibits metalic behavior below 244 K. The temperature dependence of electrical resistivity dominantly emanates from electron-electron scattering and the grain/domain boundary play a important role in conduction mechanism in polycrystalline La0.8Ca0.17Ag0.03MnO3.
NASA Astrophysics Data System (ADS)
Ramirez-Porras, A.
2005-06-01
The structure of p-type porous silicon (PS) has been investigated by the use of transmission electron diffraction (TED) microscopy and image processing. The results suggest the presence of well oriented crystalline phases and polycrystalline phases characterized by random orientation. These phases are believed to be formed by spheres with a mean diameter of 4.3 nm and a standard deviation of 1.3 nm.
Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment
Cha, Wonsuk; Liu, Wenjun; Harder, Ross; ...
2016-07-26
A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifyingin situchamber design. This approach was demonstrated with Au nanoparticles and will enable,more » for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.« less
TEM observations of radiation damage in tungsten irradiated by 20 MeV W ions
NASA Astrophysics Data System (ADS)
Ciupiński, Ł.; Ogorodnikova, O. V.; Płociński, T.; Andrzejczuk, M.; Rasiński, M.; Mayer, M.; Kurzydłowski, K. J.
2013-12-01
Polycrystalline, recrystallized W targets were subjected to implantation with 20 MeV W6+ ions in order to simulate radiation damage caused by fusion neutrons. Three samples with cumulative damage of 0.01, 0.1 and 0.89 dpa were produced. The near-surface zone of each sample has been analyzed by transmission electron microscopy (TEM). To this end, lamellae oriented perpendicularly to the targets implanted surface were milled out using focused ion beam (FIB). A reference lamella from non-irradiated, recrystallized W target was also prepared to estimate the damage introduced during FIB processing. TEM studies revealed a complex microstructure of the damaged zones as well as its evolution with cumulative damage level. The experimentally observed damage depth agrees very well with the one calculated using the Stopping and Range of Ions in Matter (SRIM) software.
Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment.
Cha, Wonsuk; Liu, Wenjun; Harder, Ross; Xu, Ruqing; Fuoss, Paul H; Hruszkewycz, Stephan O
2016-09-01
A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.
In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less
Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.; ...
2016-02-27
In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less
New criteria for isotropic and textured metals
NASA Astrophysics Data System (ADS)
Cazacu, Oana
2018-05-01
In this paper a isotropic criterion expressed in terms of both invariants of the stress deviator, J2 and J3 is proposed. This criterion involves a unique parameter, α, which depends only on the ratio between the yield stresses in uniaxial tension and pure shear. If this parameter is zero, the von Mises yield criterion is recovered; if a is positive the yield surface is interior to the von Mises yield surface whereas when a is negative, the new yield surface is exterior to it. Comparison with polycrystalline calculations using Taylor-Bishop-Hill model [1] for randomly oriented face-centered (FCC) polycrystalline metallic materials show that this new criterion captures well the numerical yield points. Furthermore, the criterion reproduces well yielding under combined tension-shear loadings for a variety of isotropic materials. An extension of this isotropic yield criterion such as to account for orthotropy in yielding is developed using the generalized invariants approach of Cazacu and Barlat [2]. This new orthotropic criterion is general and applicable to three-dimensional stress states. The procedure for the identification of the material parameters is outlined. Illustration of the predictive capabilities of the new orthotropic is demonstrated through comparison between the model predictions and data on aluminum sheet samples.
Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process
NASA Astrophysics Data System (ADS)
Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.
2018-03-01
A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.
Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process
NASA Astrophysics Data System (ADS)
Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.
2018-06-01
A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.
Modeling of stress distributions on the microstructural level in Alloy 600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozaczek, K.J.; Petrovic, B.G.; Ruud, C.O.
1995-04-01
Stress distribution in a random polycrystalline material (Alloy 600) was studied using a topologically correct microstructural model. Distributions of von Mises and hydrostatic stresses at the grain vertices, which could be important in intergranular stress corrosion cracking, were analyzed as functions of microstructure, grain orientations and loading conditions. Grain size, shape, and orientation had a more pronounced effect on stress distribution than loading conditions. At grain vertices the stress concentration factor was higher for hydrostatic stress (1.7) than for von Mises stress (1.5). The stress/strain distribution in the volume (grain interiors) is a normal distribution and does not depend onmore » the location of the studied material volume i.e., surface vs/bulk. The analysis of stress distribution in the volume showed the von Mises stress concentration of 1.75 and stress concentration of 2.2 for the hydrostatic pressure. The observed stress concentration is high enough to cause localized plastic microdeformation, even when the polycrystalline aggregate is in the macroscopic elastic regime. Modeling of stresses and strains in polycrystalline materials can identify the microstructures (grain size distributions, texture) intrinsically susceptible to stress/strain concentrations and justify the correctness of applied stress state during the stress corrosion cracking tests. Also, it supplies the information necessary to formulate the local failure criteria and interpret of nondestructive stress measurements.« less
Auger electron intensity variations in oxygen-exposed large grain polycrystalline silver
NASA Technical Reports Server (NTRS)
Lee, W. S.; Outlaw, R. A.; Hoflund, G. B.; Davidson, M. R.
1989-01-01
Auger electron spectroscopic studies of the grains in oxygen-charged polycrystal-line silver show significant intensity variations as a function of crystallographic orientation. These intensity variations were observed by studies of the Auger images and line scans of the different grains (randomly selected) for each silver transition energy. The results can be attributed to the diffraction of the ejected Auger electrons and interpreted by corresponding changes in the electron mean-free path for inelastic scattering and by oxygen atom accumulation in the subsurface. The subsurface (second layer) octahedral sites increased in size because of surface relaxation and serve as a stable reservoir for the dissolved oxygen.
Compression deformation of WC: atomistic description of hard ceramic material
NASA Astrophysics Data System (ADS)
Feng, Qing; Song, Xiaoyan; Liu, Xuemei; Liang, Shuhua; Wang, Haibin; Nie, Zuoren
2017-11-01
The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.
Compression deformation of WC: atomistic description of hard ceramic material.
Feng, Qing; Song, Xiaoyan; Liu, Xuemei; Liang, Shuhua; Wang, Haibin; Nie, Zuoren
2017-11-24
The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.
Large structural, thin-wall castings made of metals subject to hot tearing, and their fabrication
NASA Technical Reports Server (NTRS)
Smashey, Russell W. (Inventor)
2001-01-01
An article, such as a gas turbine engine mixer, is made by providing a mold structure defining a thin-walled, hollow article, and a base metal that is subject to hot tear cracking when cast in a generally equiaxed polycrystalline form, such as Rene' 108 and Mar-M247. The article is fabricated by introducing the molten base metal into the mold structure, and directionally solidifying the base metal in the mold structure to form a directionally oriented structure. The directionally oriented structure may be formed of a single grain or oriented multiple grains.
Positron Annihilation in Polycrystalline Silver Samples Subjected to the Stretching Force
NASA Astrophysics Data System (ADS)
Pajak, J.; Rudzińska, W.; Pietrzak, R.; Szymański, Cz.; Smiatek, W.
Angular distributions of the positron annihilation quanta, positron lifetime and resistivity were measured for polycrystalline silver samples deformed by uniaxial tension up to different deformation degrees. The S parameter as a function of deformation degree of the sample has been determined. The data obtained for silver samples elongated up to different elongation degrees indicate the dominant role of vacancies and larger defects type clusters created during the deformation process. The positron annihilation data are corrob-orated by results obtained by resistivity measurements.
Plastic deformation of polycrystalline MgO up to 1250 K and 65 GPa
NASA Astrophysics Data System (ADS)
Merkel, S.; Liermann, H.; Miyagi, L. M.; Wenk, H.
2009-12-01
Understanding the development of lattice preferred orientations (LPO) in polycrystals is critical to constrain the anisotropy and dynamics of the Earth mantle. Until recently, it was not possible to study LPO under high pressure and high temperature. The introduction of the deformation-DIA (D-DIA) and radial diffraction experiments in the diamond anvil cell (DAC) have extended the range of pressures and temperatures that can be accessed. However, the pressure range accessible in the D-DIA remains limited (up to 19 GPa, 1) and LPO measurements in the DAC have been performed at 300 K (2). Recently, we have designed a new DAC that can be used to study LPO in polycrystalline samples up to temperatures of 1300 K and pressures of 65 GPa (3). In this study, we use this new device for the study of MgO up to 65 GPa and 1250 K. Four samples of polycrystalline MgO were deformed in the DAC at constant temperature: 300, 600, 900, and 1250 K. At each temperature, we study the development of stress and LPO as the sample is compressed between ambient and high pressures (up to 65 GPa). In all cases, we collect diffraction data in a radial geometry that can be used to extract lattice strains and LPO in the sample. A comparison of the LPO measured in the experiment and results of visco-plastic self-consistent models can be used to extract information about the active deformation mechanisms in the sample (2). Similarly, the measured lattice strains can be compared to results of an elasto-plastic self-consistent model to extract information on average stress, stress distribution among grains, and active deformation in the sample (4). Details of the measurements along with the LPO measured in the experiments will be presented. We will also discuss the implication of those results for our understanding of the behavior of MgO in the deep mantle. 1- N. Nishiyama, Y. Wang, M. L. Rivers, S. R. Sutton, D. Cookson, Rheology of e-iron up to 19 GPa and 600 K in the D-DIA, Geophys. Res. Lett., 34, L23304 (2007) 2- S. Merkel, H.-R. Wenk, J. Shu, G. Shen, P. Gillet, H.-K. Mao, R. J. Hemley, Deformation of polycrystalline MgO at pressures of the lower mantle J. Geophys. Res., 107, 2271 (2002) 3- H.-P. Liermann, S. Merkel, L. Miyagi, H.-R. Wenk, G. Shen, H. Cynn, W.J. Evans, New Experimental Method for In Situ Determination of Material Textures at Simultaneous High-Pressure and Temperature by Means of Radial Diffraction in the Diamond Anvil Cell, Review of Scientific Instruments, in press 4- S. Merkel, C.N. Tomé, H.-R. Wenk, A modeling analysis of the influence of plasticity on high pressure deformation of hcp-Co Phys. Rev. B, 79, 064110, 2009
NASA Astrophysics Data System (ADS)
Alekseev, V. I.; Eliseyev, A. N.; Irribarra, E.; Kishin, I. A.; Klyuev, A. S.; Kubankin, A. S.; Nazhmudinov, R. M.; Zhukova, P. N.
2018-02-01
The Parametric X-Ray radiation (PXR) spectra and yield dependencies on the orientation angle are measured during the interaction of 7 MeV electrons with a tungsten textured polycrystalline foil for different observation angles. The effects of PXR spectral density increase and PXR yield orientation dependence broadening in the backward direction is shown experimentally for the first time. The experimental results are compared with PXR kinematical theories for both mosaic crystals and polycrystals.
NASA Astrophysics Data System (ADS)
Fallah-Arani, Hesam; Baghshahi, Saeid; Sedghi, Arman; Stornaiuolo, Daniela; Tafuri, Francesco; Riahi-Noori, Nastaran
2018-05-01
By using a solid state method, Bi2Sr2Ca1Cu2O8+θ (Bi-2212) polycrystalline samples were synthesized with the addition of boron oxide additive, with the aim of improving the performance of this compound for large scale applications. As the first step, the parameters for the solid state method, in particular sintering temperature, were optimized in order to obtain pure Bi-2212 samples with an optimal microstructure. Then, based on this optimization, the properties of the Bi2Sr2Ca1Cu2BxOy samples with x = 0.05, 0.1, and 0.2 were studied using several characterization techniques. It was found that the sample having x = 0.05 showed a magnetic hysteresis loop larger than that of the pure Bi-2212 sample and a critical current density value of 3.71 × 105 A/cm2, comparable to the best results found in the literature for Bi-2212, while preserving well-stacked and oriented grains.
Yin, Anmin; Wang, Xiaochen; Glorieux, Christ; Yang, Quan; Dong, Feng; He, Fei; Wang, Yanlong; Sermeus, Jan; Van der Donck, Tom; Shu, Xuedao
2017-07-01
A photoacoustic, laser ultrasonics based approach in an Impulsive Stimulated Scattering (ISS) implementation was used to investigate the texture in polycrystalline metal plates. The angular dependence of the 'polycrystalline' surface acoustic wave (SAW) velocity measured along regions containing many grains was experimentally determined and compared with simulated results that were based on the angular dependence of the 'single grain' SAW velocity within single grains and the grain orientation distribution. The polycrystalline SAW velocities turn out to vary with texture. The SAW velocities and their angular variations for {110} texture were found to be larger than that the ones for {111} texture or the strong γ fiber texture. The SAW velocities for {001} texture were larger than for {111} texture, but with almost the same angular dependence. The results infer the feasibility to apply angular SAW angular dispersion measurements by laser ultrasonics for on-line texture monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Zongbin; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zou, Naifu; Zhao, Xiang; Zuo, Liang
2014-07-01
The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong ⟨0 1 0⟩7M preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zongbin; Zou, Naifu; Zhao, Xiang
2014-07-14
The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong 〈0 1 0〉{sub 7M} preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sánchez-Hernández, Z.E.; CICATA—Altamira, IPN. Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México; Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx
The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO{sub 2} + 8% Y{sub 2}O{sub 3}) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphatemore » buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure.« less
Aruna, I; Mehta, B R; Malhotra, L K; Khan, S A; Avasthi, D K
2005-10-01
A detailed elastic recoil detection analysis using 40 MeV 28Si5+ ions has been carried out to study the changes in the H concentration and concentration profiles during the hydrogenation/dehydrogenation process in polycrystalline and nanoparticle Gd layers formed using vacuum evaporation and inert gas evaporation techniques, respectively. Nanoparticle sample exhibits a larger difference in the [H]/[Gd] values (2.9 and 1.7) in comparison to polycrystalline sample (2.4 and 2.0) in the loaded and deloaded states. Hydrogenation/dehydrogenation activity is restricted to the top portion in case of polycrystalline sample. In contrast to this, size induced structural transformation; enhanced surface area and the presence of large number of inter particle boundaries due to nanoparticle character result in the complete Gd layer becoming active during switching.
Influence of ammonia flow rate for improving properties of polycrystalline GaN
NASA Astrophysics Data System (ADS)
Ariff, A.; Ahmad, M. A.; Hassan, Z.; Zainal, N.
2018-06-01
Post-annealing treatment in ammonia ambient is widely accepted for GaN material, but less works have been done to investigate the influence of the ammonia (NH3) flow rate for reducing the N-deficiency as well as improving the quality of the material. In this work, we investigated the influence of NH3 flow rate at 1, 2, 3, and 4 slm in improving properties of a ∼1 μm thick polycrystalline GaN layer. Our simulation work suggested that the uniformity of temperature and pressure gradient of the NH3 gas did not lead to the reduction of N-deficiency of the polycrystalline GaN layer. Instead, it was found that the mitigation of the N-deficiency was strongly influenced by the fluid velocity of the NH3 gas, which had passed over the layer. Either at lower or higher fluid velocity, the chance for the active N atoms to incorporate into the GaN lattice structure was low. Therefore, the N-deficiency on the polycrystalline GaN layer could not be minimized under these conditions. As measured by EDX, the N atoms incorporation was the most effective when the NH3 flow rate at 3 slm, suggesting the flow rate significantly improved the N-deficiency of the polycrystalline GaN layer. Furthermore, it favored the formation of larger hexagonal faceted grains, with the smallest FWHM of XRD peaks from the GaN diffractions in (10 1 bar 0), (0002) and (10 1 bar 1) orientations, while allowing the polycrystalline GaN layer to show sharp and intense emissions peak of NBE in a PL spectrum.
Method for preparing Pb-. beta. ''-alumina ceramic
Hellstrom, E.E.
1984-08-30
A process is disclosed for preparing impermeable, polycrystalline samples of Pb-..beta..''-alumina ceramic from Na-..beta..''-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-..beta..''-alumina ceramic that is substantially crack-free.
Method for preparing Pb-.beta."-alumina ceramic
Hellstrom, Eric E.
1986-01-01
A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.
Structural differences between single crystal and polycrystalline UBe 13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia
Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less
Structural differences between single crystal and polycrystalline UBe 13
Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia; ...
2018-05-16
Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less
Processing and Characterization of Nickel-Manganese-Gallium Shape-Memory Fibers and Foams
NASA Astrophysics Data System (ADS)
Zheng, Peiqi-Paige
Ferromagnetic Ni-Mn-Ga shape memory alloys with large magnetic field-induced strains are promising candidates for actuators. Magnetic shape memory alloys display magnetic-field-induced strain (MFIS) of up to 10%, as single crystals. Polycrystalline materials are much easier to create but display a near-zero MFIS because twinning of neighboring grains introduces strain incompatibility leading to high internal stresses. Pores reduce these incompatibilities between grains and thus increase the MFIS of polycrystalline Ni-Mn-Ga which after training (thermo-magneto-mechanical cycling) exhibits MFIS as high as 8.7%. In this thesis, a systematic study of the effect of porosity on the magneto-mechanical properties of polycrystalline Ni-Mn-Ga foams is presented. The MFIS increased with increasing porosity, demonstrating that removal of constraints by addition of porosity is responsible for the high MFIS in polycrystalline foams. Ni-Mn-Ga foams with 57 volume percent of 355-500 micrometers open pores, with and without directional solidification were cast replicated. One directional solidified foam specimen showed a maximum magnetic-field induced strain of 0.65%, which is twice the value displayed by other foam specimens without directional solidification. This improvement is consistent with a reduction of incompatibility stresses under magnetic field from the reduced crystallographic misorientation between neighboring grains. Polycrystalline Ni-Mn-Ga foam displays ˜1% MFIS after the hermo-magnetic training. To show this effect in this highly textured sample, neutron diffraction texture measurements were conducted with a magnetic field applied at various orientations to the sample, demonstrating that selection of martensite variants takes place during cooling. Oligocrystalline Ni-Mn-Ga foams with an open porosity of 63.5?0.7% were created by a sintering replication process using NaCl space-holders. The high surface/volume ratio and mechanical stability under cyclic strain makes polycrystalline Ni-Mn-Ga metallic foams attractive for magnetic refrigeration. Compared to a polycrystalline bulk material, open-cells Ni-Mn-Ga foams shows a reduction in the temperature span of the phase transition and an increase in the magnetocaloric effect (MCE). Ni-Mn-Ga wires with sub-millimeter diameter, either as individual wires or as part of a 2D/3D wire assemblies, are promising candidates for actuators, sensors, magnetic cooling systems and energy harvesting devices. Here, we report the mechanical behavior of oligocrystalline Ni-Mn-Ga Taylor wires by tensile tests at room temperature. Magnetic-field induced shape recovery is demonstrated at 0°C in a martensitic Ni-Mn-Ga microwire, where a mechanically-produced 120° bend is recovered near fully within a magnetic field produced by permanent magnets. Tubes of the ferromagnetic shape-memory alloy Ni-Mn-Ga of composition near the Ni2MnGa Heusler phase can be used, alone or combined in structures, in magnetic actuators or magnetic refrigerators. However, fabrication of Ni-Mn-Ga tubes with sub-millimeter diameter by classical cold or hot drawing methods is hampered by the brittleness of the alloy. Here, we demonstrate a new process, where Ni-Mn-Ga tubes are fabricated by interdiffusion of Mn and Ga into drawn, ductile Ni tubes with 500 and 760 micrometers inner and outer diameters.
NASA Astrophysics Data System (ADS)
Sharath Chandra, L. S.; Mondal, R.; Thamizhavel, A.; Dhar, S. K.; Roy, S. B.
2017-09-01
The temperature dependence of resistivity ρ(T) of a polycrystalline sample and a single crystal sample (current along the [0001] direction) of α - Titanium (Ti) at low temperatures is revisited to understand the electrical charge transport phenomena in this hexagonal closed pack metal. We show that the ρ(T) in single crystal Ti can be explained by considering the scattering of electrons due to electron-phonon, electron-electron, inter-band s-d and electron-impurity interactions, whereas the ρ(T) of polycrystalline Ti could not be explained by these interactions alone. We observed that the effects of the anisotropy of the hexagonal structure on the electronic band structure and the phonon dispersion need to be taken into account to explain ρ(T) of polycrystalline Ti. Two Debye temperatures corresponding to two different directions for the electron-phonon interactions and inter-band s-d scattering are needed to account the observed ρ(T) in polycrystalline Ti.
NASA Astrophysics Data System (ADS)
Tsujiura, Yuichi; Kawabe, Saneyuki; Kurokawa, Fumiya; Hida, Hirotaka; Kanno, Isaku
2015-10-01
We evaluated the effective transverse piezoelectric coefficients (e31,f) of Pb(Zr,Ti)O3 (PZT) thin films from both the direct and converse piezoelectric effects of unimorph cantilevers. (001) preferentially oriented polycrystalline PZT thin films and (001)/(100) epitaxial PZT thin films were deposited on (111)Pt/Ti/Si and (001)Pt/MgO substrates, respectively, by rf-magnetron sputtering, and their piezoelectric responses owing to intrinsic and extrinsic effects were examined. The direct and converse |e31,f| values of the polycrystalline PZT thin films were calculated as 6.4 and 11.5-15.0 C/m2, respectively, whereas those of the epitaxial PZT thin films were calculated as 3.4 and 4.6-4.8 C/m2, respectively. The large |e31,f| of the converse piezoelectric property of the polycrystalline PZT thin films is attributed to extrinsic piezoelectric effects. Furthermore, the polycrystalline PZT thin films show a clear nonlinear piezoelectric contribution, which is the same as the Rayleigh-like behavior reported in bulk PZT. In contrast, the epitaxial PZT thin films on the MgO substrate show a piezoelectric response owing to the intrinsic and linear extrinsic effects, and no nonlinear contribution was observed.
Grafting odorant binding proteins on diamond bio-MEMS.
Manai, R; Scorsone, E; Rousseau, L; Ghassemi, F; Possas Abreu, M; Lissorgues, G; Tremillon, N; Ginisty, H; Arnault, J-C; Tuccori, E; Bernabei, M; Cali, K; Persaud, K C; Bergonzo, P
2014-10-15
Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approach based on complexing a histidine-tag located on the protein with nickel allowed control of the proteins' orientation. Evidence confirming protein grafting was obtained using electrochemical impedance spectroscopy, fluorescence imaging and X-ray photoelectron spectroscopy. The chemical sensing performances of these OBP modified transducers were assessed. The second grafting method led to typically 20% more sensitive sensors, as a result of better access of ligands to the proteins active sites and also perhaps a better yield of protein immobilization. This new grafting method appears to be highly promising for further investigation of the ligand binding properties of OBPs in general and for the development of arrays of non-specific biosensors for artificial olfaction applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Lin, Tiegui; Wang, Jian; Liu, Gang; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen
2017-01-01
To fabricate high-quality polycrystalline VO2 thin film with a metal–insulator transition (MIT) temperature less than 50 °C, high-power impulse magnetron sputtering with different discharge currents was employed in this study. The as-deposited VO2 films were characterized by a four-point probe resistivity measurement system, visible-near infrared (IR) transmittance spectra, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The resistivity results revealed that all the as-deposited films had a high resistance change in the phase transition process, and the MIT temperature decreased with the increased discharge current, where little deterioration in the phase transition properties, such as the resistance and transmittance changes, could be found. Additionally, XRD patterns at various temperatures exhibited that some reverse deformations that existed in the MIT process of the VO2 film, with a large amount of preferred crystalline orientations. The decrease of the MIT temperature with little deterioration on phase transition properties could be attributed to the reduction of the preferred grain orientations. PMID:28772990
Orientation dependent cyclic stability of the elastocaloric effect in textured Ni-Mn-Ga alloys
NASA Astrophysics Data System (ADS)
Wei, Longsha; Zhang, Xuexi; Liu, Jian; Geng, Lin
2018-05-01
High-performance elastocaloric materials require a large reversible elastocaloric effect and long life cyclic stability. Here, we fabricated textured polycrystalline Ni50.4Mn27.3Ga22.3 alloys by cost-effective casting method to create a <001> texture. A strong correlation between the cyclic stability and the crystal orientation was demonstrated. A large reversible adiabatic temperature change ΔT ˜6 K was obtained when the external stress was applied parallel to <001> direction. However, the ΔT decreased rapidly after 50 cycles, showing an unstable elastocaloric effect (eCE). On the other hand, when the external stress was applied perpendicular to <001>, the adiabatic ΔT was smaller ˜4 K, but was stable over 100 cycles. This significantly enhanced eCE stability was related to the high yield strength, low transformation strain and much higher crack initiation-propagation resistances perpendicular to <001> direction. This study provides a feasible strategy for optimizing the eCE property by creation of the texture structure in polycrystalline Ni-Mn-Ga and Ni-Mn-X (X= In, Sn, Sb) alloys.
NASA Astrophysics Data System (ADS)
Shibata, Yosei; Tsutsumi, Jun'ya; Matsuoka, Satoshi; Matsubara, Koji; Yoshida, Yuji; Chikamatsu, Masayuki; Hasegawa, Tatsuo
2015-04-01
We report the fabrication of high quality thin films for semiconducting organic donor-acceptor charge-transfer (CT) compounds, (diC8BTBT)(FnTCNQ) (diC8BTBT = 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and FnTCNQ [n = 0,2,4] = fluorinated derivatives of 7,7,8,8,-tetracyanoquinodimethane), which have a high degree of layered crystallinity. Single-phase and uniaxially oriented polycrystalline thin films of the compounds were obtained by co-evaporation of the component donor and acceptor molecules. Organic thin-film transistors (OTFTs) fabricated with the compound films exhibited n-type field-effect characteristics, showing a mobility of 6.9 × 10-2 cm2/V s, an on/off ratio of 106, a sub-threshold swing of 0.8 V/dec, and an excellent stability in air. We discuss the suitability of strong intermolecular donor-acceptor interaction and the narrow CT gap nature in compounds for stable n-type OTFT operation.
NASA Astrophysics Data System (ADS)
Li, Zhenzhuang; Li, Zongbin; Yang, Bo; Yang, Yiqiao; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang
2018-01-01
The magnetostructural transformation and magnetocaloric effect of directionally solidified polycrystalline Ni55Mn18+xGa27-x (x = 0, 1, 2) alloys were studied. It is shown the directionally solidified alloys form coarse columnar-shaped grains with strong 〈0 0 1〉A (the subscript A refers to austenite) preferred orientation along the solidification direction. Through Mn substitution for Ga, a coupled magnetostructural transformation was realized in Ni55Mn19Ga26 and Ni55Mn20Ga25 alloys. Large adiabatic temperature variation (ΔTad) of 1.47 K and 1.57 K under the low field change of 1.5 T were achieved in these two alloys, respectively. Such ΔTad values are obviously higher than that obtained from a single martensitic transformation and magnetic transition. The present results demonstrate that proper composition tuning to achieve magnetostructural transformation as well as increasing the grain size and preferential orientation degree through directional solidification could be an economical processing route to optimize magnetocaloric properties in polycrystalline Ni-Mn-Ga based alloys.
NASA Astrophysics Data System (ADS)
Jarabana, Kanaka M.; Mishra, Ashutosh; Bisen, Supriya
2016-10-01
Polycrystalline BaTiO3 (BTO) and SrTiO3 (STO) were synthesized by solid state route method and properties of made polycrystalline were characterized by X-Ray diffraction (XRD), Raman Spectroscopy & FTIR Spectroscopy. XRD analysis shows that samples are crystalline in nature. In Raman Spectroscopy measurement, the experiment has been done with the help of JOBIN-YOVN HORIBA LABRAM HR800 single monochromator, which is coupled with a “peltier cooled” charge coupled device (CCD). Raman Spectroscopy at low temperature measurement shows the phase transition above & below the curie temperature in samples. Fourier transform Infrared spectroscopy was used to determine the Ti-O bond length position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuyama, H., E-mail: matsu@phys.sci.hokudai.ac.jp; Nara, D.; Kageyama, R.
We developed a micrometer-sized magnetic tip integrated onto the write head of a hard disk drive for spin-polarized scanning tunneling microscopy (SP-STM) in the modulated tip magnetization mode. Using SP-STM, we measured a well-defined in-plane spin-component of the tunneling current of the rough surface of a polycrystalline NiFe film. The spin asymmetry of the NiFe film was about 1.3% within the bias voltage range of -3 to 1 V. We obtained the local spin component image of the sample surface, switching the magnetic field of the sample to reverse the sample magnetization during scanning. We also obtained a spin imagemore » of the rough surface of a polycrystalline NiFe film evaporated on the recording medium of a hard disk drive.« less
A thermal desorption spectroscopy study of hydrogen trapping in polycrystalline α-uranium
Lillard, R. S.; Forsyth, R. T.
2015-03-14
The kinetics of hydrogen desorption from polycrystalline α-uranium (α-U) was examined using thermal desorption spectroscopy (TDS). The goal was to identify the major trap sites for hydrogen and their associated trap energies. In polycrystalline α-U six TDS adsorption peaks were observed at temperatures of 521 K, 556 K, 607 K, 681 K, 793 K and 905 K. In addition, the desorption was determined to be second order based on peak shape. The position of the first three peaks was consistent with desorption from UH3. To identify the trap site corresponding to the high temperature peaks the data were compared tomore » a plastically deformed sample and a high purity single crystal sample. The plastically deformed sample allowed the identification of trapping at dislocations while the single crystal sample allow for the identification of high angle boundaries and impurities. Thus, with respect to the desorption energy associated with each peak, values between 12.9 and 26.5 kJ/mole were measured.« less
Enantiomerically enriched, polycrystalline molecular sieves
Brand, Stephen K.; Schmidt, Joel E.; Deem, Michael W.; ...
2017-05-01
Zeolite and zeolite-like molecular sieves are being used in a large number of applications such as adsorption and catalysis. Achievement of the long-standing goal of creating a chiral, polycrystalline molecular sieve with bulk enantioenrichment would enable these materials to perform enantioselective functions. Here, we report the synthesis of enantiomerically enriched samples of a molecular sieve. For this study, enantiopure organic structure directing agents are designed with the assistance of computational methods and used to synthesize enantioenriched, polycrystalline molecular sieve samples of either enantiomer. Computational results correctly predicted which enantiomer is obtained, and enantiomeric enrichment is proven by high-resolution transmission electronmore » microscopy. The enantioenriched and racemic samples of the molecular sieves are tested as adsorbents and heterogeneous catalysts. The enantioenriched molecular sieves show enantioselectivity for the ring opening reaction of epoxides and enantioselective adsorption of 2-butanol (the R enantiomer of the molecular sieve shows opposite and approximately equal enantioselectivity compared with the S enantiomer of the molecular sieve, whereas the racemic sample of the molecular sieve shows no enantioselectivity).« less
Enantiomerically enriched, polycrystalline molecular sieves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, Stephen K.; Schmidt, Joel E.; Deem, Michael W.
Zeolite and zeolite-like molecular sieves are being used in a large number of applications such as adsorption and catalysis. Achievement of the long-standing goal of creating a chiral, polycrystalline molecular sieve with bulk enantioenrichment would enable these materials to perform enantioselective functions. Here, we report the synthesis of enantiomerically enriched samples of a molecular sieve. For this study, enantiopure organic structure directing agents are designed with the assistance of computational methods and used to synthesize enantioenriched, polycrystalline molecular sieve samples of either enantiomer. Computational results correctly predicted which enantiomer is obtained, and enantiomeric enrichment is proven by high-resolution transmission electronmore » microscopy. The enantioenriched and racemic samples of the molecular sieves are tested as adsorbents and heterogeneous catalysts. The enantioenriched molecular sieves show enantioselectivity for the ring opening reaction of epoxides and enantioselective adsorption of 2-butanol (the R enantiomer of the molecular sieve shows opposite and approximately equal enantioselectivity compared with the S enantiomer of the molecular sieve, whereas the racemic sample of the molecular sieve shows no enantioselectivity).« less
Terbium Ion Doping in Ca3Co4O9: A Step towards High-Performance Thermoelectric Materials
Saini, Shrikant; Yaddanapudi, Haritha Sree; Tian, Kun; Yin, Yinong; Magginetti, David; Tiwari, Ashutosh
2017-01-01
The potential of thermoelectric materials to generate electricity from the waste heat can play a key role in achieving a global sustainable energy future. In order to proceed in this direction, it is essential to have thermoelectric materials that are environmentally friendly and exhibit high figure of merit, ZT. Oxide thermoelectric materials are considered ideal for such applications. High thermoelectric performance has been reported in single crystals of Ca3Co4O9. However, for large scale applications single crystals are not suitable and it is essential to develop high-performance polycrystalline thermoelectric materials. In polycrystalline form, Ca3Co4O9 is known to exhibit much weaker thermoelectric response than in single crystal form. Here, we report the observation of enhanced thermoelectric response in polycrystalline Ca3Co4O9 on doping Tb ions in the material. Polycrystalline Ca3−xTbxCo4O9 (x = 0.0–0.7) samples were prepared by a solid-state reaction technique. Samples were thoroughly characterized using several state of the art techniques including XRD, TEM, SEM and XPS. Temperature dependent Seebeck coefficient, electrical resistivity and thermal conductivity measurements were performed. A record ZT of 0.74 at 800 K was observed for Tb doped Ca3Co4O9 which is the highest value observed till date in any polycrystalline sample of this system. PMID:28317853
Texture-induced anisotropy and high-strain rate deformation in metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, S.K.; Maudlin, P.J.
1990-01-01
We have used crystallographic texture calculations to model anisotropic yielding behavior for polycrystalline materials with strong preferred orientations and strong plastic anisotropy. Fitted yield surfaces were incorporated into an explicit Lagrangian finite-element code. We consider different anisotropic orientations, as well as different yield-surface forms, for Taylor cylinder impacts of hcp metals such as titanium and zirconium. Some deformed shapes are intrinsic to anisotropic response. Also, yield surface curvature, as distinct from strength anisotropy, has a strong influence on plastic flow. 13 refs., 5 figs.
The effect of texture on the crack growth resistance of alumina
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Shannon, John L., Jr.; Bradt, Richard C.
1987-01-01
The crack growth resistance of a textured, extruded alumina body was compared with that of an isotropic, isopressed body of similar grain size, density, and chemistry. R-curve levels reflected the preferred orientation; however, R-curve slopes (dK sub IR/d Delta a) were the same in all instances, implying a similar crack growth resistive mechanism. Three orthogonal orientations of crack growth in the two structures exhibited similar forms of K sub IR versus Delta-a curves, for which a schematic diagram for polycrystalline ceramics is proposed.
NASA Astrophysics Data System (ADS)
Kamei, Masayuki; Yagami, Teruyuki; Takaki, Satoru; Shigesato, Yuzo
1994-05-01
Heteroepitaxial growth of tin-doped indium oxide (ITO) film was achieved for the first time by using single crystalline yttria stabilized zirconia (YSZ) as substrates. The epitaxial relationship between ITO film and YSZ substrate was ITO[100]∥YSZ[100]. By comparing the electrical properties of this epitaxial ITO film with that of a randomly oriented polycrystalline ITO film grown on a glass substrate, neither the large angle grain boundaries nor the crystalline orientation were revealed to be dominant in determining the carrier mobility in ITO films.
NASA Astrophysics Data System (ADS)
Sala, A.; Palenzona, A.; Bernini, C.; Caglieris, F.; Cimberle, M. R.; Ferdeghini, C.; Lamura, G.; Martinelli, A.; Pani, M.; Hecher, J.; Eisterer, M.; Putti, M.
2014-05-01
The study of overdoped FeTe1-xSex (0.5 < x < 1) polycrystalline superconductor samples is reported. The samples were prepared using a melting technique previously developed by our group. Increasing the Se content a phase separation related to the formation of FeSe inside the Fe(Se,Te) phase happens, as demonstrated by structural analysis and magnetic characterization. The proposed phase separation picture is likely the fingerprint of a miscibility gap in the Fe(Se,Te) system.
Thermoelectric properties of n-type polycrystalline BixSb2-xTe3 alloys
NASA Technical Reports Server (NTRS)
Snyder, J.; Gerovac, N.; Caillat, T.
2002-01-01
(BixSbl-x)2Te3(.5 = x = .7) polycrystalline samples were synthesized using a combination of melting and powder metallurgy techniques. The samples were hot pressed in graphite dies and cut perpendicular and parallel to the pressing direction. Samples were examined by microprobe analysis to determine their atomic composition. The thermoelectric properties were measured at room temperature in both directions. These properties include Seebeck coefficient, thermal conductivity, electrical resistivity, and Hall effect. The thermoelectric figure-of-merit, ZT, was calculated fiom these properties.
Krypton adsorption on rutile: State and cross-sectional area at 77 K
NASA Astrophysics Data System (ADS)
Grillet, Y.; Rouquerol, F.; Rouquerol, J.
1985-10-01
A krypton adsorption study was carried out on a polycrystalline TiO 2 sample (98.5% rutile) presently considered as a potential reference material for surface areas. Both adsorption microcalorimetry and volumetry show evidence of a two-dimensional phase change (from 2D fluid to 2D solid) taking place at 77 K before the completion of the monolayer. No such phenomenon is observed neither with nitrogen (which we explain by a strong orientation and a close-packing of this molecule on a polar surface) neither with argon (which we explain by a large incompatibility factor between rutile and an argon crystal). On completion of the monolayer, the krypton molecular cross-sectional area is here around 0.15 nm 2 (instead of the usual 0.17 to 0.21 nm 2).
Advances in 6d diffraction contrast tomography
NASA Astrophysics Data System (ADS)
Viganò, N.; Ludwig, W.
2018-04-01
The ability to measure 3D orientation fields and to determine grain boundary character plays a key role in understanding many material science processes, including: crack formation and propagation, grain coarsening, and corrosion processes. X-ray diffraction imaging techniques offer the ability to retrieve such information in a non-destructive manner. Among them, Diffraction Contrast Tomography (DCT) is a monochromatic beam, near-field technique, that uses an extended beam and offers fast mapping of 3D sample volumes. It was previously shown that the six-dimensional extension of DCT can be applied to moderately deformed samples (<= 5% total strain), made from materials that exhibit low levels of elastic deformation of the unit cell (<= 1%). In this article, we improved over the previously proposed 6D-DCT reconstruction method, through the introduction of both a more advanced forward model and reconstruction algorithm. The results obtained with the proposed improvements are compared against the reconstructions previously published in [1], using Electron Backscatter Diffraction (EBSD) measurements as a reference. The result was a noticeably higher quality reconstruction of the grain boundary positions and local orientation fields. The achieved reconstruction quality, together with the low acquisition times, render DCT a valuable tool for the stop-motion study of polycrystalline microstructures, evolving as a function of applied strain or thermal annealing treatments, for selected materials.
Auger mediated positron sticking on graphene and highly oriented pyrolytic graphite
NASA Astrophysics Data System (ADS)
Chirayath, V. A.; Chrysler, M.; McDonald, A.; Lim, Z.; Shastry, K.; Gladen, R.; Fairchild, A.; Koymen, A.; Weiss, A.
Positron annihilation induced Auger electron spectroscopy (PAES) measurements on 6-8 layers graphene grown on polycrystalline copper and the measurements on a highly oriented pyrolytic graphite (HOPG) sample have indicated the presence of a bound surface state for positrons. Measurements carried out with positrons of kinetic energies lower than the electron work function for graphene or HOPG have shown emission of low energy electrons possible only through the Auger mediated positron sticking (AMPS) process. In this process the positron makes a transition from a positive energy scattering state to a bound surface state. The transition energy is coupled to a valence electron which may then have enough energy to get ejected from the sample surface. The positrons which are bound to surface state are highly localized in a direction perpendicular to surface and delocalized parallel to it which makes this process highly surface sensitive and can thus be used for characterizing graphene or graphite surfaces for open volume defects and surface impurities. The measurements have also shown an extremely large low energy tail for the C KVV Auger transition at 263eV indicative of another physical process for low energy emission. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.
Toward in situ x-ray diffraction imaging at the nanometer scale
NASA Astrophysics Data System (ADS)
Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami
2008-08-01
We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.
Complex dielectric properties of anhydrous polycrystalline glucose in the terahertz region
NASA Astrophysics Data System (ADS)
Sun, P.; Liu, W.; Zou, Y.; Jia, Qiong Z.; Li, Jia Y.
2015-03-01
We utilized terahertz time-domain spectroscopy (THz-TDS) to investigate the complex dielectric properties of solid polycrystalline material of anhydrous glucose (D-(+)-glucose with purity >99.9%). THz transmission spectra of samples were measured from 0.2 to 2.2 THz. The samples were prepared into tablets with thicknesses of 0.362, 0.447, 0.504, 0.522 and 0.626 mm, respectively. The imaginary part of the complex dielectric function of polycrystalline glucose showed that there were multiple characteristic absorption peaks at 1.232, 1.445, 1.522, 1.608, 1.811 and 1.987 THz, respectively. Moreover, for a given characteristic absorption peak, the real part of the complex dielectric function showed anomalous dispersion within the full width half maximum (FWHM) of the absorption peak. Both finite difference time-domain (FDTD) numerical simulations and experimental results showed that the complex dielectric function of anhydrous polycrystalline glucose fits well with the Lorentz dielectric mode. The plasma oscillation frequency was below the frequency of the light waves suggesting that the light waves passed through the polycrystalline glucose tablets. Calculations based on density functional theory (DFT) showed that the characteristic absorption peaks of polycrystalline glucose originated mainly from collective intermolecular vibrations such as hydrogen bonds and crystal phonon modes. The THz radiation can excite the vibrational or rotational energy levels of the biological macromolecules. This leads to changes in their spatial configuration or interactions. This study showed that THz-TDS has potential applications in biological and pharmaceutical research and food industry.
The path for long range conduction in high J(sub c) TlBa2Ca2Cu3O(8+x) spray-pyrolyzed deposits
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.
Grain boundary misorientations and local texture in polycrystalline TlBa2Ca2Cu3O(8+x) deposits prepared by thallination of spray-pyrolyzed precursor deposits on yttria-stabilized zirconia have been determined from transmission electron microscopy, electron backscatter diffraction patterns, and x ray diffraction. The deposits were polycrystalline, had small grains, and excellent c-axis alignment. The deposits contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range current flow occurs through a percolative network of small angle grain boundaries at colony intersections.
Miller, Samuel A.; Witting, Ian; Aydemir, Umut; ...
2018-01-24
The transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, themore » thermal conductivity for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding zT=0.2 and 0.1 for p and n type, respectively, at 300 K, and zT=0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less
Polycrystalline ZrTe5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance
NASA Astrophysics Data System (ADS)
Miller, Samuel A.; Witting, Ian; Aydemir, Umut; Peng, Lintao; Rettie, Alexander J. E.; Gorai, Prashun; Chung, Duck Young; Kanatzidis, Mercouri G.; Grayson, Matthew; Stevanović, Vladan; Toberer, Eric S.; Snyder, G. Jeffrey
2018-01-01
The transition-metal pentatellurides HfTe5 and ZrTe5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n -p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivity for polycrystalline samples is much lower, 1.5 Wm-1 K-1 , than previously reported for single crystals. It is found that the polycrystalline ZrTe5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n - to p -type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding z T =0.2 and 0.1 for p and n type, respectively, at 300 K, and z T =0.23 and 0.32 for p and n type at 600 K. Given the reasonably high z T that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Samuel A.; Witting, Ian; Aydemir, Umut
The transition-metal pentatellurides HfTe5 and ZrTe5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivitymore » for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the twoband model, the thermoelectric performance at different doping levels is predicted, finding zT =0.2 and 0.1 for p and n type, respectively, at 300 K, and zT= 0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Samuel A.; Witting, Ian; Aydemir, Umut
The transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, themore » thermal conductivity for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding zT=0.2 and 0.1 for p and n type, respectively, at 300 K, and zT=0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solla, E.L., E-mail: esolla@uvigo.es
Herein, we report on the micro- and nanostructure of the calcium phosphate coating produced by pulsed laser deposition (PLD), using focused ion beam (FIB) lamella sample preparation and transmission electron microscopy (TEM) as the characterization technique. The initial selected area electron diffraction (SAED) data demonstrated the presence of hydroxyapatite (HA) over any other possible calcium phosphate crystalline structure and the polycrystalline nature of the coating. Moreover, the SAED analyses showed clear textured ring patterns coherent with the presence of a preferred orientation in the HA nano-crystal growth. The SAED data also indicated that the coating appears to be textured inmore » the 〈002〉 crystalline direction. Dark-field images obtained using 002 as the working reflection showed a clear oriented crystal growth in columns, from bottom to top. These columns have a peculiar arrangement of nano-crystals since, in some cases, the preferred orientation appears to start at a certain distance from the substrate. Direct d-spacing measurements on high-resolution TEM images provided further proof of the presence of an HA nano-crystal structure. The reported data may be of interest in the future to adjust the microstructure of the HA coatings. - Highlights: •The FIB lift-out technique allows a very site-specific sample preparation method for HRTEM analysis. •It also permits a fast assessment of the HA coating thickness and elemental composition (EDS). •The coatings exhibit a nano-crystalline nature, with a texturing effect along the 002 planes. •PLD is suitable for the production of crystalline c-axis oriented hydroxyapatite coatings. •The crystalline HA phase in the PLD coating is very similar to the present in bone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treimer, Wolfgang; Ebrahimi, Omid; Karakas, Nursel
Polarized neutron radiography was used to study the three-dimensional magnetic flux distribution inside of single-crystal and polycrystalline Pb cylinders with large (cm3) volume and virtually zero demagnetization. Experiments with single crystals being in the Meissner phase (T
2012-03-07
signal processing with smaller sizes and unique properties Nanoelectronics: NTs, graphene, diamond, SiC for sensing, logic & memory storage 3...synthesized i-n graphene heterojunctions 19 DISTRIBUTION A: Approved for public release; distribution is unlimited. Electrical Properties of...boundaries in polycrystalline samples Polycrystalline graphene can have similar (as much as 90%) electrical properties (conductance and mobility
Meng, Lijian; Teixeira, Vasco; Dos Santos, M P
2013-02-01
ZnO films doped with vanadium (ZnO:V) have been prepared by dc reactive magnetron sputtering technique at different substrate temperatures (RT-500 degrees C). The effects of the substrate temperature on ZnO:V films properties have been studied. XRD measurements show that only ZnO polycrystalline structure has been obtained, no V2O5 or VO2 crystal phase can be observed. It has been found that the film prepared at low substrate temperature has a preferred orientation along the (002) direction. As the substrate temperature is increased, the (002) peak intensity decreases. When the substrate temperature reaches the 500 degrees C, the film shows a random orientation. SEM measurements show a clear formation of the nano-grains in the sample surface when the substrate temperature is higher than 400 degrees C. The optical properties of the films have been studied by measuring the specular transmittance. The refractive index has been calculated by fitting the transmittance spectra using OJL model combined with harmonic oscillator.
Constitutive Models for Shape Memory Alloy Polycrystals
NASA Technical Reports Server (NTRS)
Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.
1996-01-01
Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.
NASA Astrophysics Data System (ADS)
Reade, R. P.; Mao, X. L.; Russo, R. E.
1991-08-01
The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.
Laser generation in polycrystalline Cr{sup 2+}:ZnSe with undoped faces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savin, D V; Gavrishchuk, E M; Ikonnikov, V B
2015-01-31
An original method has been suggested for producing polycrystalline Cr{sup 2+}:ZnSe samples with undoped faces. Generation characteristics of a Cr{sup 2+}:ZnSe laser are studied under pulse-periodic pumping by a Tm{sup 3+}:YLF-laser. The efficiency of converting the pump radiation into laser generation at a wavelength of 2350 nm is 20%. Cr{sup 2+}:ZnSe samples exhibit high resistance to surface breakdown. (lasers)
X-ray diffraction from shock-loaded polycrystals.
Swift, Damian C
2008-01-01
X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.
Tari, Vahid; Lebensohn, Ricardo A.; Pokharel, Reeju; ...
2018-08-01
Here, a validation is reported for micromechanical simulation using a reimplementation of an elasto-viscoplastic FFT-based (EVPFFT) formulation, i.e., the Micromechanical Analysis of Stress-strain Inhomogeneities with fast Fourier transform (MASSIF) code, against experimental data obtained from synchrotron x-ray diffraction. The experimental data was collected during in-situ deformation of a titanium alloy specimen by High Energy Diffraction Microscopy (HEDM), which provided the average elastic strain tensor and orientation of each grain in a polycrystalline sample. MASSIF was used to calculate the local micromechanical fields in a Ti-7Al polycrystalline sample at different load levels. The initially attempted simulation showed that, although the effectivemore » response was calibrated to reproduce the experiment, MASSIF was not able to reproduce the micromechanical fields at the scale of individual grains. The differences between calculated and measured averages at the grain scale were related to initial residual strains resulting from the prior processing of the material, which had not been incorporated in the original calculation. Accordingly, a new simulation was instantiated using information on the measured residual strains to define a set of eigenstrains, calculated via an Eshelby approximation. This initialization significantly improved the correlation between calculated and simulated fields for all strain and stress components, for measurements performed within the elastic regime. For the measurements at the highest load, which was past plastic yield, the correlations deteriorated because of plastic deformation at the grain level and the lack of an accurate enough constitutive description in this deformation regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tari, Vahid; Lebensohn, Ricardo A.; Pokharel, Reeju
Here, a validation is reported for micromechanical simulation using a reimplementation of an elasto-viscoplastic FFT-based (EVPFFT) formulation, i.e., the Micromechanical Analysis of Stress-strain Inhomogeneities with fast Fourier transform (MASSIF) code, against experimental data obtained from synchrotron x-ray diffraction. The experimental data was collected during in-situ deformation of a titanium alloy specimen by High Energy Diffraction Microscopy (HEDM), which provided the average elastic strain tensor and orientation of each grain in a polycrystalline sample. MASSIF was used to calculate the local micromechanical fields in a Ti-7Al polycrystalline sample at different load levels. The initially attempted simulation showed that, although the effectivemore » response was calibrated to reproduce the experiment, MASSIF was not able to reproduce the micromechanical fields at the scale of individual grains. The differences between calculated and measured averages at the grain scale were related to initial residual strains resulting from the prior processing of the material, which had not been incorporated in the original calculation. Accordingly, a new simulation was instantiated using information on the measured residual strains to define a set of eigenstrains, calculated via an Eshelby approximation. This initialization significantly improved the correlation between calculated and simulated fields for all strain and stress components, for measurements performed within the elastic regime. For the measurements at the highest load, which was past plastic yield, the correlations deteriorated because of plastic deformation at the grain level and the lack of an accurate enough constitutive description in this deformation regime.« less
NASA Technical Reports Server (NTRS)
Varshney, Usha; Eichelberger, B. Davis, III
1995-01-01
This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.
Lebensohn, Ricardo A.; Zecevic, Miroslav; Knezevic, Marko; ...
2015-12-15
Here, this work presents estimations of average intragranular fluctuations of lattice rotation rates in polycrystalline materials, obtained by means of the viscoplastic self-consistent (VPSC) model. These fluctuations give a tensorial measure of the trend of misorientation developing inside each single crystal grain representing a polycrystalline aggregate. We first report details of the algorithm implemented in the VPSC code to estimate these fluctuations, which are then validated by comparison with corresponding full-field calculations. Next, we present predictions of average intragranular fluctuations of lattice rotation rates for cubic aggregates, which are rationalized by comparison with experimental evidence on annealing textures of fccmore » and bcc polycrystals deformed in tension and compression, respectively, as well as with measured intragranular misorientation distributions in a Cu polycrystal deformed in tension. The orientation-dependent and micromechanically-based estimations of intragranular misorientations that can be derived from the present implementation are necessary to formulate sound sub-models for the prediction of quantitatively accurate deformation textures, grain fragmentation, and recrystallization textures using the VPSC approach.« less
NASA Astrophysics Data System (ADS)
Getsinger, A.; Hirth, G.
2014-12-01
Strain localization is significantly enhanced by the influx of fluid; however, processes associated with deformation in polycrystalline material, fluid infiltration, and the evolution of creep processes and rock fabric with increasing strain localization are not well constrained for many lower crust lithologies. We combine field and experimental observations of mafic rocks deforming at lower crust pressure, temperature, and water conditions to examine strain localization processes associated with the influx of fluid, strength dependence of fabric evolution, and flow law parameters for amphibolite. General shear experiments were conducted in a Griggs rig on powdered basalt (≤5 µm starting grain size) with up to 1 wt% water at lower continental crust conditions (750˚ to 850˚C, 1GPa). Amphibole formed during deformation exhibits both a strong shape preferred orientation (SPO) and lattice preferred orientation (LPO). With increasing strain, the amphibole (and clinopyroxene) LPO strengthens and rotates to [001] maximum aligned sub-parallel to the flow direction and SPO, which indicates grain rotation during deformation. Plagioclase LPO increases from random to very weak in samples deformed to high strain. As the amphibole LPO rotates and strengthens, the mechanical strength decreases. The correlation of the SPO and LPO coupled with the rheological evidence for diffusion creep (n ≈ 1.5) indicates that the amphibole fabric results from grain growth and rigid grain rotation during deformation. The coevolution of LPO (and grain rotation) and mechanical weakening coupled with the absence of grain size reduction in our samples suggests that strength depends on the formation of a strong mineral LPO. Both our field and experimental data demonstrate that fluid intrusion into the mafic lower crust initiates syn-deformational, water-consuming reactions, creating a rheological contrast between wet and dry lithologies that promotes strain localization. Additionally, the rheology of both naturally deformed amphibolite shear zones and our fine-grained experimental amphibolite is comparable to that predicted using flow laws for wet anorthite. Thus, both our experimental and field analyses indicate that wet plagioclase rheology provides a good constraint on the strength of hydrated lower continental crust.
Grain Boundary Plane Orientation Fundamental Zones and Structure-Property Relationships
Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.
2015-01-01
Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries. PMID:26498715
Grain boundary plane orientation fundamental zones and structure-property relationships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.
2015-10-26
Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to themore » strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.« less
Optimal configuration of microstructure in ferroelectric materials by stochastic optimization
NASA Astrophysics Data System (ADS)
Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.
2010-07-01
An optimization procedure determining the ideal configuration at the microstructural level of ferroelectric (FE) materials is applied to maximize piezoelectricity. Piezoelectricity in ceramic FEs differs significantly from that of single crystals because of the presence of crystallites (grains) possessing crystallographic axes aligned imperfectly. The piezoelectric properties of a polycrystalline (ceramic) FE is inextricably related to the grain orientation distribution (texture). The set of combination of variables, known as solution space, which dictates the texture of a ceramic is unlimited and hence the choice of the optimal solution which maximizes the piezoelectricity is complicated. Thus, a stochastic global optimization combined with homogenization is employed for the identification of the optimal granular configuration of the FE ceramic microstructure with optimum piezoelectric properties. The macroscopic equilibrium piezoelectric properties of polycrystalline FE is calculated using mathematical homogenization at each iteration step. The configuration of grains characterized by its orientations at each iteration is generated using a randomly selected set of orientation distribution parameters. The optimization procedure applied to the single crystalline phase compares well with the experimental data. Apparent enhancement of piezoelectric coefficient d33 is observed in an optimally oriented BaTiO3 single crystal. Based on the good agreement of results with the published data in single crystals, we proceed to apply the methodology in polycrystals. A configuration of crystallites, simultaneously constraining the orientation distribution of the c-axis (polar axis) while incorporating ab-plane randomness, which would multiply the overall piezoelectricity in ceramic BaTiO3 is also identified. The orientation distribution of the c-axes is found to be a narrow Gaussian distribution centered around 45°. The piezoelectric coefficient in such a ceramic is found to be nearly three times as that of the single crystal. Our optimization model provide designs for materials with enhanced piezoelectric performance, which would stimulate further studies involving materials possessing higher spontaneous polarization.
NASA Astrophysics Data System (ADS)
Novruzov, V. D.; Keskenler, E. F.; Tomakin, M.; Kahraman, S.; Gorur, O.
2013-09-01
Boron doped CdS thin films were deposited by spray pyrolysis method using perfume atomizer. The effects of ultraviolet light on the structural, optical and electrical properties of B-doped CdS thin films were investigated as a function of dopant concentration (B/Cd). X-ray diffraction studies showed that all samples were polycrystalline nature with hexagonal structure. It was determined that the preferred orientation of non-illuminated samples changes from (1 0 1) to (0 0 2) with B concentration. The c lattice constant of films decreases from 6.810 Å to 6.661 Å with boron doping. The XRD peak intensity increased with the illumination for almost all the samples. The lattice parameters of B-doped samples remained nearly constant after illumination. It was found that the optical transmittance, photoluminescence spectra, resistivity and carrier concentration of the B-doped samples are stable after the illumination with UV light. Also the effects of UV light on B-doped CdS/Cu2S solar cell were investigated and it was determined that photoelectrical parameters of B-doped solar cell were more durable against the UV light.
Lim, Karkeng; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Al-Hardan, N.H.; Mansor, Ishak; Chiu, Weesiong
2016-01-01
In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions. PMID:28773425
Song, Yongli; Wang, Xianjie; Sui, Yu; ...
2016-02-12
Here in this article, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO 2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10 4, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In+Nb) co-doped rutile TiO 2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, andmore » that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.« less
Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke
2016-01-01
In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles. PMID:26869187
NASA Astrophysics Data System (ADS)
Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke
2016-02-01
In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.
Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke
2016-02-12
In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10(4), dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.
NASA Astrophysics Data System (ADS)
Dintle, Lawrence K.; Luhanga, Pearson V. C.; Moditswe, Charles; Muiva, Cosmas M.
2018-05-01
The structural and optoelectronic properties of undoped and indium doped zinc oxide (IZO) thin films grown on glass substrates through a simple reproducible custom-made pneumatic chemical spray pyrolysis technique are presented. X-ray diffraction (XRD) results showed a polycrystalline structure of hexagonal wurtzite phase growing preferentially along the (002) plane for the undoped sample. Increase in dopant content modified the orientation leading to more pronounced (100) and (101) reflections. Optical transmission spectra showed high transmittance of 80-90% in the visible range for all thin films. The optical band gap energy (Eg) was evaluated on the basis of the derivative of transmittance (dT/dλ) versus wavelength (λ) model and Tauc's extrapolation method in the region where the absorption coefficient, α ≥ 104 cm-1. The observed values of Eg were found to decrease generally with increasing In dopant concentration. From the figure of merit calculations a sample with 4 at.% In dopant concentration showed better optoelectronic properties.
Quantitative microstructural imaging by scanning Laue x-ray micro- and nanodiffraction
Chen, Xian; Dejoie, Catherine; Jiang, Tengfei; ...
2016-06-08
We present that local crystal structure, crystal orientation, and crystal deformation can all be probed by Laue diffraction using a submicron x-ray beam. This technique, employed at a synchrotron facility, is particularly suitable for fast mapping the mechanical and microstructural properties of inhomogeneous multiphase polycrystalline samples, as well as imperfect epitaxial films or crystals. As synchrotron Laue x-ray microdiffraction enters its 20th year of existence and new synchrotron nanoprobe facilities are being built and commissioned around the world, we take the opportunity to overview current capabilities as well as the latest technical developments. Fast data collection provided by state-of-the-art areamore » detectors and fully automated pattern indexing algorithms optimized for speed make it possible to map large portions of a sample with fine step size and obtain quantitative images of its microstructure in near real time. Lastly, we extrapolate how the technique is anticipated to evolve in the near future and its potential emerging applications at a free-electron laser facility.« less
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1977-01-01
Sliding friction experiments were conducted with single-crystal (SCF) and hot-pressed polycrystalline (HPF) manganese-zinc ferrite in contact with various metals. Results indicate that the coefficients of friction for SCF and HPF are related to the relative chemical activity of those metals in high vacuum. The more active the metal, the higher the coefficient of friction. The coefficients of friction for both SCF and HPF were the same and much higher in vacuum than in argon at atmospheric pressure. All the metals tested transferred to the surface of both SCF and HPF in sliding. Both SCF and HPF exhibited cracking and fracture with sliding. Cracking in SCF is dependent on crystallographic characteristics. In HPF, cracking depends on the orientation of the individual crystallites.
NASA Astrophysics Data System (ADS)
Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang
2018-04-01
Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.
Time and metamorphic petrology: Calcite to aragonite experiments
Hacker, B.R.; Kirby, S.H.; Bohlen, S.R.
1992-01-01
Although the equilibrium phase relations of many mineral systems are generally well established, the rates of transformations, particularly in polycrystalline rocks, are not. The results of experiments on the calcite to aragonite transformation in polycrystalline marble are different from those for earlier experiments on powdered and single-crystal calcite. The transformation in the polycrystalline samples occurs by different mechanisms, with a different temperature dependence, and at a markedly slower rate. This work demonstrates the importance of kinetic studies on fully dense polycrystalline aggregates for understanding mineralogic phase changes in nature. Extrapolation of these results to geological time scales suggests that transformation of calcite to aragonite does not occur in the absence of volatiles at temperatures below 200??C. Kinetic hindrance is likely to extend to higher temperatures in more complex transformations.
Peralta, P.; Loomis, E.; Chen, Y.; ...
2015-04-09
Variability in local dynamic plasticity due to material anisotropy in polycrystalline metals is likely to be important on damage nucleation and growth at low pressures. Hydrodynamic instabilities could be used to study these plasticity effects by correlating measured changes in perturbation amplitudes at free surfaces to local plastic behaviour and grain orientation, but amplitude changes are typically too small to be measured reliably at low pressures using conventional diagnostics. Correlations between strength at low shock pressures and grain orientation were studied in copper (grain size ≈ 800 μm) using the Richtmyer–Meshkov instability with a square-wave surface perturbation (wavelength = 150 μm, amplitude = 5 μm), shocked at 2.7 GPa using symmetric plate impacts. A Plexiglas window was pressed against the peaks of the perturbation, keeping valleys as free surfaces. This produced perturbation amplitude changes much larger than those predicted without the window. Amplitude reductions from 64 to 88% were measured in recovered samples and grains oriented close tomore » $$\\langle$$0 0 1$$\\rangle$$ parallel to the shock had the largest final amplitude, whereas grains with shocks directions close to $$\\langle$$1 0 1$$\\rangle$$ had the lowest. Finite element simulations were performed with elastic-perfectly plastic models to estimate yield strengths leading lead to those final amplitudes. Anisotropic elasticity and these yield strengths were used to calculate the resolved shear stresses at yielding for the two orientations. In conclusion, results are compared with reports on orientation dependence of dynamic yielding in Cu single crystals and the higher values obtained suggest that strength estimations via hydrodynamic instabilities are sensitive to strain hardening and strain rate effects.« less
NASA Astrophysics Data System (ADS)
Liu, Yongxun; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Mizubayashi, Wataru; Morita, Yukinori; Migita, Shinji; Ota, Hiroyuki; Masahara, Meishoku
2014-01-01
Three-dimensional (3D) fin-channel charge trapping (CT) flash memories with different gate materials of physical-vapor-deposited (PVD) titanium nitride (TiN) and n+-polycrystalline silicon (poly-Si) have successfully been fabricated by using (100)-oriented silicon-on-insulator (SOI) wafers and orientation-dependent wet etching. Electrical characteristics of the fabricated flash memories including statistical threshold voltage (Vt) variability, endurance, and data retention have been comparatively investigated. It was experimentally found that a larger memory window and a deeper erase are obtained in PVD-TiN-gated metal-oxide-nitride-oxide-silicon (MONOS)-type flash memories than in poly-Si-gated poly-Si-oxide-nitride-oxide-silicon (SONOS)-type memories. The larger memory window and deeper erase of MONOS-type flash memories are contributed by the higher work function of the PVD-TiN metal gate than of the n+-poly-Si gate, which is effective for suppressing electron back tunneling during erase operation. It was also found that the initial Vt roll-off due to the short-channel effect (SCE) is directly related to the memory window roll-off when the gate length (Lg) is scaled down to 46 nm or less.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Grace; Brown, Judith Alice; Bishop, Joseph E.
The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities ofmore » interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.« less
Macroscopic damping model for structural dynamics with random polycrystalline configurations
NASA Astrophysics Data System (ADS)
Yang, Yantao; Cui, Junzhi; Yu, Yifan; Xiang, Meizhen
2018-06-01
In this paper the macroscopic damping model for dynamical behavior of the structures with random polycrystalline configurations at micro-nano scales is established. First, the global motion equation of a crystal is decomposed into a set of motion equations with independent single degree of freedom (SDOF) along normal discrete modes, and then damping behavior is introduced into each SDOF motion. Through the interpolation of discrete modes, the continuous representation of damping effects for the crystal is obtained. Second, from energy conservation law the expression of the damping coefficient is derived, and the approximate formula of damping coefficient is given. Next, the continuous damping coefficient for polycrystalline cluster is expressed, the continuous dynamical equation with damping term is obtained, and then the concrete damping coefficients for a polycrystalline Cu sample are shown. Finally, by using statistical two-scale homogenization method, the macroscopic homogenized dynamical equation containing damping term for the structures with random polycrystalline configurations at micro-nano scales is set up.
Optimal Magnetorheological Fluid for Finishing of Chemical-Vapor-Deposited Zinc Sulfide
NASA Astrophysics Data System (ADS)
Salzman, Sivan
Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor- deposited zinc sulfide (ZnS) optics leaves visible surface artifacts known as "pebbles". These artifacts are a direct result of the material's inner structure that consists of cone-like features that grow larger (up to a few millimeters in size) as deposition takes place, and manifest on the top deposited surface as "pebbles". Polishing the pebble features from a CVD ZnS substrate to a flat, smooth surface to below 10 nm root-mean-square is challenging, especially for a non-destructive polishing process such as MRF. This work explores ways to improve the surface finish of CVD ZnS processed with MRF through modification of the magnetorheological (MR) fluid's properties. A materials science approach is presented to define the anisotropy of CVD ZnS through a combination of chemical and mechanical experiments and theoretical predictions. Magnetorheological finishing experiments with single crystal samples of ZnS, whose cuts and orientations represent most of the facets known to occur in the polycrystalline CVD ZnS, were performed to explore the influence of material anisotropy on the material removal rate during MRF. By adjusting the fluid's viscosity, abrasive type concentration, and pH to find the chemo-mechanical conditions that equalize removal rates among all single crystal facets during MRF, we established an optimized, novel MR formulation to polish CVD ZnS without degrading the surface finish of the optic.
NASA Astrophysics Data System (ADS)
Berkov, D. V.; Gorn, N. L.
2018-06-01
In this paper we present a simple and effective numerical method which allows a fast Fourier transformation-based evaluation of stress generated by dislocations with arbitrary directions and Burgers vectors if the (site-dependent) dislocation density is known. Our method allows the evaluation of the dislocation stress using a rectangular grid with shape-anisotropic discretization cells without employing higher multipole moments of the dislocation interaction coefficients. Using the proposed method, we first simulate the stress created by relatively simple non-homogeneous distributions of vertical edge and so-called ‘mixed’ dislocations in a disk-shaped sample, which is necessary to understand the dislocation behavior in more complicated systems. The main part of our research is devoted to the stress distribution in polycrystalline layers with the dislocation density rapidly varying with the distance to the layer bottom. Considering GaN as a typical example of such systems, we investigate dislocation-induced stress for edge and mixed dislocations, having random orientations of Burgers vectors among crystal grains. We show that the rapid decay of the dislocation density leads to many highly non-trivial features of the stress distributions in such layers and study in detail the dependence of these features on the average grain size. Finally we develop an analytical approach which allows us to predict the evolution of the stress variance with the grain size and compare analytical predictions with numerical results.
Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD.
Chauve, T; Montagnat, M; Barou, F; Hidas, K; Tommasi, A; Mainprice, D
2017-02-13
Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=-5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the 'parent' ones suggests the possibility of 'spontaneous' nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).
Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD
Barou, F.; Hidas, K.; Tommasi, A.; Mainprice, D.
2017-01-01
Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=−5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the ‘parent’ ones suggests the possibility of ‘spontaneous’ nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025294
Effects of Sn Layer Orientation on the Evolution of Cu/Sn Interfaces
NASA Astrophysics Data System (ADS)
Sun, Menglong; Zhao, Zhangjian; Hu, Fengtian; Hu, Anmin; Li, Ming; Ling, Huiqin; Hang, Tao
2018-03-01
The effects of Sn layer orientation on the evolution of Cu/Sn joint interfaces were investigated. Three Sn layers possessing (112), (321) and (420) orientations were electroplated on polycrystalline Cu substrates respectively. The orientations of Sn layer preserved during reflowing at 250 °C for 10 s. After aging at 150 °C for different time, the interfacial microstructures were observed from the cross-section and top-view. The alignment between the c-axis of Sn and Cu diffusion direction significantly sped up the Cu diffusion, leading to the thickest intermetallic compound layer formed in (112) joint. Two types of voids, namely, intracrystalline voids and grain islanding caused intercrystalline voids generated at Cu/Cu3Sn interfaces due to the different interdiffusion coefficients of Cu and Sn (112) oriented Sn/Cu joint produced many more voids than (321) joint, and no voids were detected in (420) joint. Therefore, to enhance the reliability of solder joints, using (420) oriented Sn as solder layer could be an efficient way.
Ultrafast lattice dynamics of single crystal and polycrystalline gold nanofilms☆
NASA Astrophysics Data System (ADS)
Hu, Jianbo; Karam, Tony E.; Blake, Geoffrey A.; Zewail, Ahmed H.
2017-09-01
Ultrafast electron diffraction is employed to spatiotemporally visualize the lattice dynamics of 11 nm-thick single-crystal and 2 nm-thick polycrystalline gold nanofilms. Surprisingly, the electron-phonon coupling rates derived from two temperature simulations of the data reveal a faster interaction between electrons and the lattice in the case of the single-crystal sample. We interpret this unexpected behavior as arising from quantum confinement of the electrons in the 2 nm-thick gold nanofilm, as supported by absorption spectra, an effect that counteracts the expected increase in the electron scattering off surfaces and grain boundaries in the polycrystalline materials.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-10-02
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-01-01
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals. PMID:28793597
NASA Astrophysics Data System (ADS)
Becker, C.; Ruske, F.; Sontheimer, T.; Gorka, B.; Bloeck, U.; Gall, S.; Rech, B.
2009-10-01
Polycrystalline silicon (poly-Si) thin films have been prepared by electron-beam evaporation and thermal annealing for the development of thin-film solar cells on glass coated with ZnO:Al as a transparent, conductive layer. The poly-Si microstructure and photovoltaic performance were investigated as functions of the deposition temperature by Raman spectroscopy, scanning and transmission electron microscopies including defect analysis, x-ray diffraction, external quantum efficiency, and open circuit measurements. It is found that two temperature regimes can be distinguished: Poly-Si films fabricated by deposition at low temperatures (Tdep<400 °C) and a subsequent thermal solid phase crystallization step exhibit 1-3 μm large, randomly oriented grains, but a quite poor photovoltaic performance. However, silicon films deposited at higher temperatures (Tdep>400 °C) directly in crystalline phase reveal columnar, up to 300 nm big crystals with a strong ⟨110⟩ orientation and much better solar cell parameters. It can be concluded from the results that the electrical quality of the material, reflected by the open circuit voltage of the solar cell, only marginally depends on crystal size and shape but rather on the intragrain properties of the material. The carrier collection, described by the short circuit current of the cell, seems to be positively influenced by preferential ⟨110⟩ orientation of the grains. The correlation between experimental, microstructural, and photovoltaic parameters will be discussed in detail.
NASA Astrophysics Data System (ADS)
Álvarez-Serrano, I.; Ruiz de Larramendi, I.; López, M. L.; Veiga, M. L.
2017-03-01
Thin films of SrBiMn2-xTixO6-δ have been fabricated by Pulsed Laser Deposition on SrTiO3 [100] and [111] substrates. Their texture, width, homogeneity and morphology are evaluated by means of XRD, SEM, XPS, whereas complex impedance spectroscopy is employed to analyze their electrical response. The thickness values range between 80 and 900 nm depending on the experimental conditions. The epitaxial growing could be interpreted in terms of two contributions of microstructural origin: a matrix part and some polycrystalline surface formations (hemi-spheres). Texture studies suggest a fiber-type orientated morphology coherently with the Scanning Electron Microscopy images. XPS analyses indicate a segregation regarding A-sublattice cations, which features depend on the substrate orientation. This segregation could be connected to the development of nanopolar regions. Impedance data show the electrical polarization in the samples to be enhanced compared to bulk response of corresponding powdered samples. A relaxor behavior which fits a Vogel-Fulcher law is obtained for x = 0.50 whereas an almost frequency-independent relaxor ferroelectric behavior is registered for the thinnest film of x = 0.25 composition grown on SrTiO3 [111] substrate. The influence of compositional and structural aspects in the obtained dielectric response is analyzed.
Nanofrictional behavior of amorphous, polycrystalline and textured Y-Cr-O films
NASA Astrophysics Data System (ADS)
Gervacio-Arciniega, J. J.; Flores-Ruiz, F. J.; Diliegros-Godines, C. J.; Broitman, E.; Enriquez-Flores, C. I.; Espinoza-Beltrán, F. J.; Siqueiros, J.; Cruz, M. P.
2016-08-01
Differences in friction coefficients (μ) of ferroelectric YCrO3, textured and polycrystalline films, and non-ferroelectric Y-Cr-O films are analyzed. The friction coefficient was evaluated by atomic force microscopy using a simple quantitative procedure where the dependence of friction force with the applied load is obtained in only one topographical image. A simple code was developed with the MATLAB® software to analyze the experimental data. The code includes a correction of the hysteresis in the forward and backward scanning directions. The quantification of load exerted on the sample surface was obtained by finite element analysis of the AFM cantilever starting from its experimental dynamic information. The results show that the ferroelectric YCrO3 film deposited on a Pt(150 nm)/TiO2(30 nm)/SiO2/Si (100) substrate is polycrystalline and has a lower friction coefficient than the deposited on SrTiO3 (110), which is highly textured. From a viewpoint of industrial application in ferroelectric memories, where the writing process is electrical or mechanically achieved by sliding AFM tips on the sample, polycrystalline YCrO3 films seem to be the best candidates due to their lower μ.
Polycrystalline Superconducting Thin Films: Texture Control and Critical Current Density
NASA Astrophysics Data System (ADS)
Yang, Feng
1995-01-01
The growth processes of polycrystalline rm YBa_2CU_3O_{7-X} (YBCO) and yttria-stabilized-zirconia (YSZ) thin films have been developed. The effectiveness of YSZ buffer layers on suppression of the reaction between YBCO thin films and metallic substrates was carefully studied. Grown on the chemically inert surfaces of YSZ buffer layers, YBCO thin films possessed good quality of c-axis alignment with the c axis parallel to the substrate normal, but without any preferred in-plane orientations. This leads to the existence of a large percentage of the high-angle grain boundaries in the YBCO films. The critical current densities (rm J_{c}'s) found in these films were much lower than those in single crystal YBCO thin films, which was the consequence of the weak -link effect of the high-angle grain boundaries in these films. It became clear that the in-plane alignment is vital for achieving high rm J_{c }s in polycrystalline YBCO thin films. To induce the in-plane alignment, ion beam-assisted deposition (IBAD) technique was integrated into the conventional pulsed laser deposition process for the growth of the YSZ buffer layers. It was demonstrated that using IBAD the in-plane orientations of the YSZ grains could be controlled within a certain range of a common direction. This ion -bombardment induced in-plane texturing was explained using the anisotropic sputtering yield theory. Our observations and analyses have provided valuable information on the optimization of the IBAD process, and shed light on the texturing mechanism in YSZ. With the in-plane aligned YSZ buffer layers, YBCO thin films grown on metallic substrates showed improved rm J_{c}s. It was found that the in-plane alignment of YSZ and that of YBCO were closely related. A direct correlation was revealed between the rm J_{c} value and the degree of the in-plane alignment for the YBCO thin films. To explain this correlation, a numerical model was applied to multi-grain superconducting paths with different textures to determine the expected rm J_{c}s. The good agreement between the experimental data and numerical results confirmed that the rm J_{c} improvement directly resulted from the reduction of the number of high-angle grain boundaries in the in-plane aligned polycrystalline YBCO thin films, and provided a guideline on the further improvement of the rm J_ {c}s of polycrystalline YBCO thin films.
NASA Astrophysics Data System (ADS)
Chudzik, Michael Patrick
The weak-link behavior of grain boundaries in polycrystalline high-T c superconductors adversely affects the current density in these materials. The development of wire technology based on polycrystalline high-Tc materials requires understanding and controlling the development of low-angle grain boundaries in these conductors. The research goal is to comprehensively examine the methodology in fabrication and characterization to understand the structure-transport correlation in YBa2Cu3O 7-x (YBCO) surface-coated conductors. High current density YBCO coated conductors were fabricated and characterized as candidates for second generation high-Tc wire technology. Critical current densities (Jc) greater than 1 x 106 A/cm2 at 77 K and zero magnetic field were obtained using thin films epitaxially grown by metalorganic chemical vapor deposition (MOCVD) and pulsed laser deposition (PLD) on oriented buffer layers. The biaxially textured oxide buffer layers were deposited by ion-beam-assisted deposition (IBAD). The transport properties of coated conductors were evaluated in high magnetic fields for intrinsic and extrinsic flux vortex pinning effects for improved high-field properties. Transport Jc's of these coated conductors at 7 tesla (77 K) were measured at values greater than 105 A/cm 2 with the magnetic field perpendicular to the YBCO c-axis (B⊥ c) in both MOCVD and PLD derived conductors. The Jc's in B || c orientation fell an order of magnitude lower at 7 tesla to values near 10 4 A/cm2 due to decreased intrinsic flux pinning. The critical current densities as a function of grain boundary misorientation were found to deviate from the general trend determined for single grain boundary junctions, due to the mosaic structure, which allows meandering current flow. Extensive parametric investigations of relevant thin film growth techniques were utilized to establish growth-property relationships that led to optimized fabrication of high-Tc conductors. The work contained in this dissertation successfully addresses the challenge in engineering low-angle grain boundary polycrystalline conductors for high-current high-field applications and develops a structure-property correlation, which is essential for advancing this technology.
NASA Astrophysics Data System (ADS)
Lu, Teng; Studer, Andrew J.; Yu, Dehong; Withers, Ray L.; Feng, Yujun; Chen, Hua; Islam, S. S.; Xu, Zhuo; Liu, Yun
2017-12-01
This in situ neutron-diffraction study on antiferroelectric (AFE) P b0.99(N b0.02Z r0.65S n0.28T i0.05 ) O3 polycrystalline materials describes systematic structural and associated preferred orientation changes as a function of applied electric field and temperature. It is found that the pristine AFE phase can be poled into the metastable ferroelectric (FE) phase at room temperature. At this stage, both AFE and FE phases consist of modes associated with octahedral rotation and A -site ionic displacements. The temperature-induced phase transition indicates that the octahedral rotation and ionic displacements are weakly coupled in the room-temperature FE phase and decoupled in the high-temperature FE phase. However, both temperature and E -field-induced phase transitions between the AFE and high-temperature FE phase demonstrate the critical role of coupling between octahedral rotation and A -site ionic displacements in stabilizing the AFE structure, which provides not only experimental evidence to support previous theoretical calculations, but also an insight into the design and development of AFE materials. Moreover, the associated preferred orientation evolution in both AFE and FE phases is studied during the phase transitions. It is found that the formation of the preferred orientation can be controlled to tune the samples' FE and AFE properties.
GaAs Photovoltaics on Polycrystalline Ge Substrates
NASA Technical Reports Server (NTRS)
Wilt, David M.; Pal, AnnaMaria T.; McNatt, Jeremiah S.; Wolford, David S.; Landis, Geoffrey A.; Smith, Mark A.; Scheiman, David; Jenkins, Phillip P.; McElroy Bruce
2007-01-01
High efficiency III-V multijunction solar cells deposited on metal foil or even polymer substrates can provide tremendous advantages in mass and stowage, particularly for planetary missions. As a first step towards that goal, poly-crystalline p/i/n GaAs solar cells are under development on polycrystalline Ge substrates. Organo Metallic Vapor Phase Epitaxy (OMVPE) parameters for pre-growth bake, nucleation and deposition have been examined. Single junction p/i/n GaAs photovoltaic devices, incorporating InGaP front and back window layers, have been grown and processed. Device performance has shown a dependence upon the thickness of a GaAs buffer layer deposited between the Ge substrate and the active device structure. A thick (2 m) GaAs buffer provides for both increased average device performance as well as reduced sensitivity to variations in grain size and orientation. Illumination under IR light (lambda > 1 micron), the cells showed a Voc, demonstrating the presence of an unintended photoactive junction at the GaAs/Ge interface. The presence of this junction limited the efficiency to approx.13% (estimated with an anti-refection coating) due to the current mismatch and lack of tunnel junction interconnect.
Natural occurrence of pure nano-polycrystalline diamond from impact crater
NASA Astrophysics Data System (ADS)
Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.
2015-10-01
Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5-50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material.
Advanced Micro-Polycrystalline Silicon Films Formed by Blue-Multi-Laser-Diode Annealing
NASA Astrophysics Data System (ADS)
Noguchi, Takashi; Chen, Yi; Miyahira, Tomoyuki; de Dieu Mugiraneza, Jean; Ogino, Yoshiaki; Iida, Yasuhiro; Sahota, Eiji; Terao, Motoyasu
2010-03-01
Semiconductor blue-multi-laser-diode annealing (BLDA) for amorphous Si film was performed to obtain a film containing uniform polycrystalline silicon (poly-Si) grains as a low temperature poly-Si (LTPS) process used for thin-film transistor (TFT). By adopting continuous wave (CW) mode at the 445 nm wavelength of the BLDA system, the light beam is efficiently absorbed into the thin amorphous silicon film of 50 nm thickness and can be crystallized stably. By adjusting simply the laser power below 6 W with controlled beam shape, the isotropic Si grains from uniform micro-grains to arbitral grain size of polycrystalline phase can be obtained with reproducible by fixing the scan speed at 500 mm/s. As a result of analysis using electron microscopy and atomic force microscopy (AFM), uniform distributed micro-poly-Si grains of smooth surface were observed at a power condition below 5 W and the preferred crystal orientation of (111) face was confirmed. As arbitral grain size can be obtained stably and reproducibly merely by controlling the laser power, BLDA is promising as a next-generation LTPS process for AM OLED panel including a system on glass (SoG).
Natural occurrence of pure nano-polycrystalline diamond from impact crater
Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.
2015-01-01
Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5–50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material. PMID:26424384
Fatigue pre-cracking and fracture toughness in polycrystalline tungsten and molybdenum
NASA Astrophysics Data System (ADS)
Taguchi, Katsuya; Nakadate, Kazuhito; Matsuo, Satoru; Tokunaga, Kazutoshi; Kurishita, Hiroaki
2018-01-01
Fatigue pre-cracking performance and fracture toughness in polycrystalline tungsten (W) and molybdenum (Mo) have been investigated in relation to grain boundary (GB) configuration with respect to the crack advance direction. Sub-sized, single edge notched bend (SENB) specimens with three different orientations, R-L (ASTM notation) for a forged Mo rod and L-S and T-S for a rolled W plate, were pre-cracked in two steps: fully uniaxial compression fatigue loading to provoke crack initiation and its stable growth from the notch root, and subsequent 3-point bend (3PB) fatigue loading to extend the crack. The latter step intends to minimize the influence of the residual tensile stresses generated during compression fatigue by moving the crack tip away from the plastic zone. It is shown that fatigue pre-cracking performance, especially pre-crack extension behavior, is significantly affected by the specimen orientation. The R-L orientation, giving the easiest cracking path, permitted crack extension completely beyond the plastic zone, while the L-S and T-S orientations with the thickness cracking direction of the rolled plate sustained the crack lengths around or possibly within the plastic zone size due to difficulty in crack advance through an aligned grain structure. Room temperature fracture toughness tests revealed that the 3PB fatigued specimens exhibited appreciably higher fracture toughness by about 30% for R-L, 40% for L-S and 60% for T-S than the specimens of each orientation pre-cracked by compression fatigue only. This indicates that 3PB fatigue provides the crack tip front out of the residual tensile stress zone by crack extension or leads to reduction in the residual stresses at the crack tip front. Strong dependence of fracture toughness on GB configuration was evident. The obtained fracture toughness values are compared with those in the literature and its strong GB configuration dependence is discussed in connection with the appearance of pop-in.
Anisotropic thermal conductivity of thin polycrystalline oxide samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, A., E-mail: abhishektiwariiitr@gmail.com; Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800; Boussois, K.
2013-11-15
This paper reports about the development of a modified laser-flash technique and relation to measure the in-plane thermal diffusivity of thin polycrystalline oxide samples. Thermal conductivity is then calculated with the product of diffusivity, specific heat and density. Design and operating features for evaluating in-plane thermal conductivities are described. The technique is advantageous as thin samples are not glued together to measure in-plane thermal conductivities like earlier methods reported in literature. The approach was employed to study anisotropic thermal conductivity in alumina sheet, textured kaolin ceramics and montmorillonite. Since it is rare to find in-plane thermal conductivity values for suchmore » anisotropic thin samples in literature, this technique offers a useful variant to existing techniques.« less
NASA Astrophysics Data System (ADS)
Lappalainen, Jyrki; Lantto, Vilho; Frantti, Johannes; Hiltunen, Jussi
2006-06-01
Microstructure, film orientation, and optical transmission spectra of polycrystalline Nd-modified Pb(ZrxTi1-x)O3 films were studied as a function of film thickness. Pulsed laser deposition was used for the fabrication of films with thickness from 80to465nm on single-crystal MgO(100) substrates. Raman spectroscopy, x-ray diffraction, and spectrophotometry measurements were utilized in the film characterization. With the decreasing film thickness, films first oriented with c axis perpendicular to film surface, and then, after some critical thickness, changed to a-axis orientation. At the same time, compressive stress increased up to 1.3GPa and a clear blueshift of the optical absorption edge was found in transmission spectra.
Hetero-Orientation Epitaxial Growth of TiO2 Splats on Polycrystalline TiO2 Substrate
NASA Astrophysics Data System (ADS)
Chen, Lin; Yang, Guan-Jun
2018-05-01
In the present study, the effect of titania (TiO2) substrate grain size and orientation on the epitaxial growth of TiO2 splat was investigated. Interestingly, the splat presented comparable grain size with that of substrate, indicating the hereditary feature of grain size. In addition, hetero- and homo-orientation epitaxial growth was observed at deposition temperatures below 400 °C and above 500 °C, respectively. The preferential growth of high-energy (001) face was also observed at low deposition temperatures (≤ 400 °C), which was found to result from dynamic nonequilibrium effect during the thermal spray deposition. Moreover, thermal spray deposition paves the way for a new approach to prepare high-energy (001) facets of TiO2 crystals.
Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank
2015-01-01
We synthesized grain-oriented lead-free piezoelectric materials in (K0.5Bi0.5TiO3-BaTiO3-xNa0.5Bi0.5TiO3 (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d33 ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials. PMID:25716551
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurya, Deepam; Zhou, Yuan; Wang, Yaojin
2015-02-26
We synthesized grain-oriented lead-free piezoelectric materials in (K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-xNa₀̣₅Bi₀̣₅TiO₃ (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d₃₃ ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectricmore » materials.« less
Reconstruction of 3d grain boundaries from rock thin sections, using polarised light
NASA Astrophysics Data System (ADS)
Markus Hammes, Daniel; Peternell, Mark
2016-04-01
Grain boundaries affect the physical and chemical properties of polycrystalline materials significantly by initiating reactions and collecting impurities (Birchenall, 1959), and play an essential role in recrystallization (Doherty et al. 1997). In particular, the shape and crystallographic orientation of grain boundaries reveal the deformation and annealing history of rocks (Kruhl and Peternell 2002, Kuntcheva et al. 2006). However, there is a lack of non-destructive and easy-to-use computer supported methods to determine grain boundary geometries in 3D. The only available instrument using optical light to measure grain boundary angles is still the polarising microscope with attached universal stage; operated manually and time-consuming in use. Here we present a new approach to determine 3d grain boundary orientations from 2D rock thin sections. The data is recorded by using an automatic fabric analyser microscope (Peternell et al., 2010). Due to its unique arrangement of 9 light directions the highest birefringence colour due to each light direction and crystal orientation (retardation) can be determined at each pixel in the field of view. Retardation profiles across grain boundaries enable the calculation of grain boundary angle and direction. The data for all positions separating the grains are combined and further processed. In combination with the lateral position of the grain boundary, acquired using the FAME software (Hammes and Peternell, in review), the data is used to reconstruct a 3d grain boundary model. The processing of data is almost fully automatic by using MATLAB®. Only minor manual input is required. The applicability was demonstrated on quartzite samples, but the method is not solely restricted on quartz grains and other birefringent polycrystalline materials could be used instead. References: Birchenall, C.E., 1959: Physical Metallurgy. McGraw-Hill, New York. Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Juul Jensen, D., Kassner, M.E., King, W.E., McNelley, T.R., McQueen, H.J., Rollett, A.D., 1997: Current issues in recrystallization: a review. Materials Science and Engineering A 238, 219-274. Hammes, D.M., Peternell, M., in review. FAME: Software for analysing rock microstructures. Computers & Geoscience. Kruhl, J.H., Peternell, M., 2002. The equilibration of high-angle grain boundaries in dynamically recrystallized quartz: the effect of crystallography and temperature. Journal of Structural Geology 24, 1125-1137. Kuntcheva, B., Kruhl, J.H. & Kunze, K., 2006. Crystallographic orientation of high-angle grain boundaries in dynamically recrystallized quartz: First results. Tectonophysics 421, 331-346. Peternell, M., Hasalová, P., Wilson, J.L., Piaziolo, S., Schulmann, K., 2010. Evaluating quartz crystallographic preferred orientations and the role of deformation partitioning using EBSD and fabric analyser techniques. Journal of Structural Geology 32, 803-817.
Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.
2003-01-01
We report on laboratory measurements of compressional- and shear-wave speeds in a compacted, polycrystalline ice-Ih sample. The sample was made from triply distilled water that had been frozen into single crystal ice, ground into small grains, and sieved to extract the 180250 µm diameter fraction. Porosity was eliminated from the sample by compacting the granular ice between a hydraulically driven piston and a fixed end plug, both containing shear-wave transducers. Based on simultaneous compressional- and shear-wave-speed measurements, we calculated Poisson's ratio and compressional-wave, bulk, and shear moduli from 20 to 5°C and 22 to 33 MPa.
Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieler, Thomas R., E-mail: bieler@egr.msu.edu; Kang, Di, E-mail: kangdi@msu.edu; Baars, Derek C., E-mail: baarsder@gmail.com
2015-12-04
The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of themore » large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.« less
Effect of copper doping sol-gel ZnO thin films: physical properties and sensitivity to ethanol vapor
NASA Astrophysics Data System (ADS)
Boukaous, Chahra; Benhaoua, Boubaker; Telia, Azzedine; Ghanem, Salah
2017-10-01
In the present paper, the effect of copper doping ZnO thin films, deposited using a sol-gel dip-coating technique, on the structural, optical and ethanol vapor-sensing properties, was investigated. The range of the doping content is 0 wt. %-5 wt. % Cu/Zn and the films’ properties were studied using x-ray diffraction, scanning electron microscopy and a UV-vis spectrophotometer. The obtained results indicated that undoped and copper-doped zinc oxide thin films have polycrystalline wurtzite structure with (1 0 1) preferred orientation. All samples have a smooth and dense structure free of pinholes. A decrease in the band gap with Cu concentration in the ZnO network was observed. The influence of the dopant on ethanol vapor-sensing properties shows an increase in the film sensitivity to the ethanol vapor within the Cu concentration.
Nanoscale insights on one- and two-dimensional material structures
NASA Astrophysics Data System (ADS)
Floresca, Herman Carlo
The race for smaller, faster and more efficient devices has led researchers to explore the possibilities of utilizing nanostructures for scaling. These one-dimensional and two-dimensional materials have properties that are attractive for this purpose but are still not well controlled. Control comes with a complete understanding of the materials' electrical, thermal, optical and structural characteristics but is difficult to obtain due to their small scale. This work is intended to help researchers overcome the difficulty in studying nanostructures by providing techniques for analysis and insights of nanostructures that have not been previously available. Two nanostructures were studied: silicon nanowires and graphene. The nanowires were prepared for cross-section transmission electron microscopy (TEM) to discover the effects that controlled oxidation has on the dimensions and shape of the nanowires. Since cross-section TEM is not able to provide information about surface structure, a method for manipulating the wires with orientation control was developed. With this ability, all three orthogonal views of the nanowire were compiled for a comprehensive study on its structure in terms of shape and surface roughness. Graphene was used for a two-dimensional analytical technique that took advantage of customized computer programs for data acquisition, measurement and display. With the information provided, distinctions between grain boundary types in polycrystalline graphene were made and supported by statistical information from the software's output. It was also applied to a growth series of graphene samples in conjunction with scanning electron microscopy (SEM) images and electron backscatter diffraction (EBSD) maps. The results help point to origins of graphene's polycrystalline nature. This dissertation concludes with a thought towards the future by highlighting a method that can help analyze nanostructures, which may become incorporated into the structures of large devices. The fold-out method is a TEM sample preparation technique utilizing a focused ion beam (FIB) for site specific thinning across a large sample area. Its process is demonstrated along with advantages over conventional methods.
Thin film processing of photorefractive BaTiO3
NASA Technical Reports Server (NTRS)
Schuster, Paul R.
1993-01-01
During the period covered by this report, October 11, 1991 through October 10, 1992, the research has progressed in a number of different areas. The sol-gel technique was initially studied and experimentally evaluated for depositing films of BaTiO3. The difficulties with the precursors and the poor quality of the films deposited lead to the investigation of pulsed laser deposition as an alternative approach. The development of the pulsed laser deposition technique has resulted in continuous improvements to the quality of deposited films of BaTiO3. The initial depositions of BaTiO3 resulted in amorphous films, however, as the pulsed laser deposition technique continued to evolve, films were deposited in the polycrystalline state, then the textured polycrystalline state, and most recently heteroepitaxial films have also been successfully deposited on cubic (100) oriented SrTiO3 substrates. A technique for poling samples at room temperature and in air is also undergoing development with some very preliminary but positive results. The analytical techniques, which include x-ray diffraction, ferroelectric analysis, UV-Vis spectrophotometry, scanning electron microscopy with x-ray compositional analysis, optical and polarized light microscopy, and surface profilometry have been enhanced to allow for more detailed evaluation of the samples. In the area of optical characterization, a pulsed Nd:YAG laser has been incorporated into the experimental configuration. Now data can also be acquired within various temporal domains resulting in more detailed information on the optical response of the samples and on their photorefractive sensitivity. The recent establishment of collaborative efforts with two departments at Johns Hopkins University and the Army Research Lab at Fort Belvoir has also produced preliminary results using the metallo-organic decomposition technique as an alternative method for thin film processing of BaTiO3. RF and DC sputtering is another film deposition approach that should be initiated in the near future. Other techniques for optical characterization, which may even allow for intragrannular (within single grains) investigations, are also being considered.
de Broglie, I.; Beck, C. E.; Liu, W.; ...
2015-05-30
Using synchrotron X-ray micro-diffraction and Eigenstrain analysis the distribution of lattice swelling near grain boundaries in helium-implanted polycrystalline tungsten is quantified. Samples heat-treated at up to 1473 K after implantation show less uniform lattice swelling that varies significantly from grain to grain compared to as-implanted samples. An increase in lattice swelling is found in the vicinity of some grain boundaries, even at depths beyond the implanted layer. As a result, these findings are discussed in terms of the evolution of helium-ion-implantation-induced defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Broglie, I.; Beck, C. E.; Liu, W.
Using synchrotron X-ray micro-diffraction and Eigenstrain analysis the distribution of lattice swelling near grain boundaries in helium-implanted polycrystalline tungsten is quantified. Samples heat-treated at up to 1473 K after implantation show less uniform lattice swelling that varies significantly from grain to grain compared to as-implanted samples. An increase in lattice swelling is found in the vicinity of some grain boundaries, even at depths beyond the implanted layer. As a result, these findings are discussed in terms of the evolution of helium-ion-implantation-induced defects.
Effect of vorticity on polycrystalline ice deformation
NASA Astrophysics Data System (ADS)
Llorens, Maria-Gema; Griera, Albert; Steinbach, Florian; Bons, Paul D.; Gomez-Rivas, Enrique; Jansen, Daniela; Lebensohn, Ricardo A.; Weikusat, Ilka
2017-04-01
Understanding ice sheet dynamics requires a good knowledge of how dynamic recrystallisation controls ice microstructures and rheology at different boundary conditions. In polar ice sheets, pure shear flattening typically occurs at the top of the sheets, while simple shearing dominates near their base. We present a series of two-dimensional microdynamic numerical simulations that couple ice deformation with dynamic recrystallisation of various intensities, paying special attention to the effect of boundary conditions. The viscoplastic full-field numerical modelling approach (VPFFT) (Lebensohn, 2001) is used to calculate the response of a polycrystalline aggregate that deforms purely by dislocation glide. This code is coupled with the ELLE microstructural modelling platform that includes recrystallisation in the aggregate by intracrystalline recovery, nucleation by polygonisation, as well as grain boundary migration driven by the reduction of surface and strain energies (Llorens et al., 2016a, 2016b, 2017). The results reveal that regardless the amount of DRX and ice flow a single c-axes maximum develops all simulations. This maximum is oriented approximately parallel to the maximum finite shortening direction and rotates in simple shear towards the normal to the shear plane. This leads to a distinctly different behaviour in pure and simple shear. In pure shear, the lattice preferred orientation (LPO) and shape-preferred orientation (SPO) are increasingly unfavourable for deformation, leading to hardening and an increased activity of non-basal slip. The opposite happens in simple shear, where the imposed vorticity causes rotation of the LPO and SPO to a favourable orientation, leading to strain softening. An increase of recrystallisation enhances the activity of the non-basal slip, due to the reduction of deformation localisation. In pure shear conditions, the pyramidal slip activity is thus even more enhanced and can become higher than the basal-slip activity. Our results further show that subgrain boundaries can be developed by the activity of the non-basal slip systems. The implementation of the polygonisation routine reduces grain size and SPO, but does not significantly change the final LPO, because newly nucleated grains approximately keep the c-axis orientations of their parental grains. However, it enables the establishment of an equilibrium grain size, and therefore the differential stress reaches a steady-state. Lebensohn. 2001 N-site modelling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Materialia, 49(14), 2723-2737. Llorens, et al., 2016a. Dynamic recrystallisation of ice aggregates during co-axial viscoplastic deformation: a numerical approach. Journal of Glaciology, 62(232), 359-377. Llorens, et al., 2016b. Full-field predictions of ice dynamic recrystallisation under simple shear conditions, Earth and Planetary Science Letters, 450, 233-242. Llorens, et al., 2017. Dynamic recrystallisation during deformation of polycrystalline ice: insights from numerical simulations, Philosophical Transactions of the Royal Society A, 375 (2086), 20150346.
1989-01-01
channelling and scanning electron microscopy (SEM) of highly oriented pyrolytic graphite ( HOPG ), comparative scratch testing results and some ideas on...electrode graphite , HOPG and carbon fibers also show enhanced wear resistance followoing irradiation (6), the extent of which depends upon the initial...literature dealing with damage effects and physical property changes following neutron irradiation of graphite (single and polycrystalline ) in nuclear
1991-01-22
highly oriented pyrolitic graphite ( HOPG ) for detailed studies of nucleation and of the development of surface roughness. Using a shadowing technique, we...laser to a temperature of approximately 600’C, a polycrystalline film resulted, as indicated b x-ray diffraction ( XRD ) data shown in Fig. 4. vI Figure 4...stress level rose in films deposited at colder temperatures. Development of second harmonic generation as a technique for evaluation of anisotropy in
Study of the Effects of Metallurgical Factors on the Growth of Fatigue Microcracks.
1987-11-25
polycrystalline) yield stress. 8. The resulting model, predicated on the notion of orientation-dependent microplastic grains, predicts quantitatively the entire...Figure 5. Predicted crack growth curves for small cracks propagating from a microplastic grain into elastic-plastic, contiguous grains; Ao is defined as...or the crack tip opening *displacement, 6. Figure 5. Predicted crack growth curves for small cracks propagating from a microplastic grain into
Paranjape, Harshad M.; Paul, Partha P.; Sharma, Hemant; ...
2017-02-16
Deformation heterogeneities at the microstructural length-scale developed in polycrystalline shape memory alloys (SMAs) during superelastic loading are studied using both experiments and simulations. In situ X-ray diffraction, specifically the far-field high energy diffraction microscopy (ff-HEDM) technique, was used to non-destructively measure the grain-averaged statistics of position, crystal orientation, elastic strain tensor, and volume for hundreds of austenite grains in a superelastically loaded nickel-titanium (NiTi) SMA. These experimental data were also used to create a synthetic microstructure within a finite element model. The development of intragranular stresses were then simulated during tensile loading of the model using anisotropic elasticity. Driving forcesmore » for phase transformation and slip were calculated from these stresses. The grain-average responses of individual austenite crystals examined before and after multiple stress-induced transformation events showed that grains in the specimen interior carry more axial stress than the surface grains as the superelastic response "shakes down". Examination of the heterogeneity within individual grains showed that regions near grain boundaries exhibit larger stress variation compared to the grain interiors. As a result, this intragranular heterogeneity is more strongly driven by the constraints of neighboring grains than the initial stress state and orientation of the individual grains.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranjape, Harshad M.; Paul, Partha P.; Sharma, Hemant
Deformation heterogeneities at the microstructural length-scale developed in polycrystalline shape memory alloys (SMAs) during superelastic loading are studied using both experiments and simulations. In situ X-ray diffraction, specifically the far-field high energy diffraction microscopy (ff-HEDM) technique, was used to non-destructively measure the grain-averaged statistics of position, crystal orientation, elastic strain tensor, and volume for hundreds of austenite grains in a superelastically loaded nickel-titanium (NiTi) SMA. These experimental data were also used to create a synthetic microstructure within a finite element model. The development of intragranular stresses were then simulated during tensile loading of the model using anisotropic elasticity. Driving forcesmore » for phase transformation and slip were calculated from these stresses. The grain-average responses of individual austenite crystals examined before and after multiple stress-induced transformation events showed that grains in the specimen interior carry more axial stress than the surface grains as the superelastic response "shakes down". Examination of the heterogeneity within individual grains showed that regions near grain boundaries exhibit larger stress variation compared to the grain interiors. As a result, this intragranular heterogeneity is more strongly driven by the constraints of neighboring grains than the initial stress state and orientation of the individual grains.« less
Neutron transmission measurements of poly and pyrolytic graphite crystals
NASA Astrophysics Data System (ADS)
Adib, M.; Abbas, Y.; Abdel-Kawy, A.; Ashry, A.; Kilany, M.; Kenawy, M. A.
The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be bcoh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while oriented at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hkl) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K.
NASA Astrophysics Data System (ADS)
Yan, J.; Hu, G. D.
2018-05-01
Bi4Ti3O12-CaBi4Ti4O15 (BT-CBTi) film was fabricated on Pt(111)/Ti/SiO2/Si substrate by the sol-gel method. The intergrowth structure was demonstrated to be obtained both in the film and corresponding powder sample according to x-ray diffraction (XRD) patterns. The good fatigue resistance as well as a strong charge-retaining ability can be obtained in the intergrowth BT-CBTi film. The remanent polarization (P r ) and coercive field (E c ) for BT-CBTi film was about 28 μC cm‑2 and 150 kV cm‑1 under an electric field of 540 kV cm‑1, respectively. The P r value of purely (100)-oriented BT-CBTi film can be roughly estimated to be higher than 50 μC cm‑2 based on both the volume fraction of (100)-oriented grains and the piezoelectric properties. The P r value of BT-CBTi film is about 50 μC cm‑2 under an electric field of 1100 kV cm‑1 in predominently (100)-oriented BT-CBTi film. It means that it is reasonable to predict the performance of (100)-oriented BT-CBTi films based on the ferroelectric and piezoelectric properties of the polycrystalline BT-CBTi film. The spontaneous polarization is larger than 80 μC cm‑2 under an electric field of 1100 kV cm‑1.
Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates
NASA Astrophysics Data System (ADS)
Bayraktar, M.; Chopra, A.; Bijkerk, F.; Rijnders, G.
2014-09-01
Integration of PbZr0.52Ti0.48O3 (PZT) films on glass substrates is of high importance for device applications. However, to make use of the superior ferro- and piezoelectric properties of PZT, well-oriented crystalline or epitaxial growth with control of the crystal orientation is a prerequisite. In this article, we report on epitaxial growth of PZT films with (100)- and (110)-orientation achieved by utilizing Ca2Nb3O10 (CNO) and Ti0.87O2 (TO) nanosheets as crystalline buffer layers. Fatigue measurements demonstrated stable ferroelectric properties of these films up to 5 × 109 cycles. (100)-oriented PZT films on CNO nanosheets show a large remnant polarization of 21 μC/cm2 that is the highest remnant polarization value compared to (110)-oriented and polycrystalline films reported in this work. A piezoelectric response of 98 pm/V is observed for (100)-oriented PZT film which is higher than the values reported in the literature on Si substrates.
Electrical transport properties in indium tin oxide films prepared by electron-beam evaporation
NASA Astrophysics Data System (ADS)
Liu, X. D.; Jiang, E. Y.; Zhang, D. X.
2008-10-01
Amorphous and polycrystalline indium tin oxide films have been prepared by electron-beam evaporation method. The amorphous films exhibit semiconductor behavior, while metallic conductivity is observed in the polycrystalline samples. The magnetoconductivities of the polycrystalline films are positive at low temperatures and can be well described by the theory of three-dimensional weak-localization effect. In addition, the electron phase-breaking rate is proportional to T3/2. Comparing the experimental results with theory, we find that the electron-electron scattering is the dominant destroyer of the constructive interference in the films. In addition, the Coulomb interaction is the main contribution to the nontrivial corrections for the electrical conductivity at low temperatures.
Hofmann, Felix; Song, Xu; Abbey, Brian; Jun, Tea-Sung; Korsunsky, Alexander M
2012-05-01
An understanding of the mechanical response of modern engineering alloys to complex loading conditions is essential for the design of load-bearing components in high-performance safety-critical aerospace applications. A detailed knowledge of how material behaviour is modified by fatigue and the ability to predict failure reliably are vital for enhanced component performance. Unlike macroscopic bulk properties (e.g. stiffness, yield stress, etc.) that depend on the average behaviour of many grains, material failure is governed by `weakest link'-type mechanisms. It is strongly dependent on the anisotropic single-crystal elastic-plastic behaviour, local morphology and microstructure, and grain-to-grain interactions. For the development and validation of models that capture these complex phenomena, the ability to probe deformation behaviour at the micro-scale is key. The diffraction of highly penetrating synchrotron X-rays is well suited to this purpose and micro-beam Laue diffraction is a particularly powerful tool that has emerged in recent years. Typically it uses photon energies of 5-25 keV, limiting penetration into the material, so that only thin samples or near-surface regions can be studied. In this paper the development of high-energy transmission Laue (HETL) micro-beam X-ray diffraction is described, extending the micro-beam Laue technique to significantly higher photon energies (50-150 keV). It allows the probing of thicker sample sections, with the potential for grain-level characterization of real engineering components. The new HETL technique is used to study the deformation behaviour of individual grains in a large-grained polycrystalline nickel sample during in situ tensile loading. Refinement of the Laue diffraction patterns yields lattice orientations and qualitative information about elastic strains. After deformation, bands of high lattice misorientation can be identified in the sample. Orientation spread within individual scattering volumes is studied using a pattern-matching approach. The results highlight the inability of a simple Schmid-factor model to capture the behaviour of individual grains and illustrate the need for complementary mechanical modelling.
NASA Astrophysics Data System (ADS)
Najafi, Navid; Rozati, S. M.
2018-03-01
Fluorine-doped zinc oxide (FZO) (ZnO:F) thin films were manufactured by atmospheric pressure chemical vapor deposition (APCVD) on glass substrates using zinc acetate dihydrate [C4H6O4Zn·2H2O, ZnAc] and ammonium fluoride (NH4F) as the source of fluorine with deposition duration of only 120 s for each sample. The effects of different amounts of fluorine as the dopant on the structural, electrical and optical properties of FZO thin films were investigated. The results show a polycrystalline structure at higher temperatures compared to amorphous structure at lower temperatures. The x-ray diffraction patterns of the polycrystalline films were identified as a hexagonal wurtzite structure of zinc oxide (ZnO) with the (002) preferred orientation. Also, the sheet resistance decreased from 17.8 MΩ/□ to 28.9 KΩ/□ for temperatures 325°C to 450°C, respectively. In order to further decrease the sheet resistance of the undoped ZnO thin films, fluorine was added using NH4F as the precursor, and again a drastic change in sheet resistance of only 17.7 Ω/□ was obtained. Based on the field emission scanning electron microscopy images, the fluorine concentration in CVD source is an important factor affecting the grain size and modifies electrical parameters. Ultraviolet-visible measurements revealed reduction of transparency of the layers with increasing fluorine as the dopant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaboli, Shirin; Burnley, Pamela C.
Rhombohedral twinning in alumina (aluminium oxide, α-Al 2O 3) is an important mechanism for plastic deformation under high-temperature–pressure conditions. Rhombohedral twins in a polycrystalline alumina sample deformed in a D-DIA apparatus at 965 K and 4.48 GPa have been characterized. Three classes of grains were imaged, containing single, double and mosaic twins, using electron channeling contrast imaging (ECCI) in a field emission scanning electron microscope. These twinned grains were analyzed using electron backscatter diffraction (EBSD). The methodology for twin identification presented here is based on comparison of theoretical pole figures for a rhombohedral twin with experimental pole figures obtained withmore » EBSD crystal orientation mapping. An 85°(02{\\overline 2}1) angle–axis pair of misorientation was identified for rhombohedral twin boundaries in alumina, which can be readily used in EBSD post-processing software to identify the twin boundaries in EBSD maps and distinguish the rhombohedral twins from basal twins. Elastic plastic self-consistent (EPSC) modeling was then used to model the synchrotron X-ray diffraction data from the D-DIA experiments utilizing the rhombohedral twinning law. From these EPSC models, a critical resolved shear stress of 0.25 GPa was obtained for rhombohedral twinning under the above experimental conditions, which is internally consistent with the value estimated from the applied load and Schmid factors determined by EBSD analysis.« less
Gettering of Residual Impurities by Ion Implantation Damage in Poly-AlN UV Diode Detectors
NASA Astrophysics Data System (ADS)
Khan, A. H.; Stacy, T.; Meese, J. M.
1996-03-01
UV diode detectors have been fabricated from oriented polycrystalline AlN grown on (111) n-type 3-15Ω-cm Si substrates by CVD using AlCl3 and ammonia with a hydrogen carrier gas at 760-800C, 40-45 torr and gas flow rates of 350, 120, and 120 sccm for hydrogen, ammonia and hydrogen over heated AlCl_3. Half of the AlN film of thickness 1.5-2.0 microns was masked off prior to ion implantation. Samples were ion-implanted at 5 kV with methane, nitrogen and argon to a dose of 5-6 x 10^18 ions/cm^2. The AlN was contacted with sputtered Au while the Si was contacted with evaporated Al. No annealing was performed. Rectification was obtained as a result of radiation damage in the AlN. SIMs analysis showed a reduction of oxygen, hydrogen, chlorine and carbon by several orders of magnitude and to a depth of several microns in the ion implanted samples compared to the masked samples. The quantum efficiency was 16nm uncorrected for reflection from the AlN and thin metal contact.
The high temperature creep behavior of oxides and oxide fibers
NASA Technical Reports Server (NTRS)
Jones, Linda E.; Tressler, Richard E.
1991-01-01
A thorough review of the literature was conducted on the high-temperature creep behavior of single and polycrystalline oxides which potentially could serve as fiber reinforcements in ceramics or metal matrix applications. Sapphire when oriented with the basal plane perpendicular to the fiber axis (c-axis oriented) is highly creep resistant at temperatures in excess of 1600 C and applied loads of 100 MPa and higher. Pyramidal slip is preferentially activated in sapphire under these conditions and steady-state creep rates in the range of 10(exp -7) to 10 (exp -8)/s were reported. Data on the creep resistance of polycrystalline beryllia suggest that C-axiz oriented single crystal beryllia may be a viable candidate as a fiber reinforcement material; however, the issure of fabricability and moisture sensitivity must be addressed for this material. Yttrium aluminum garnet (YAG) also appears to be a fiber candidate material having a high resistance to creep which is due to it's complex crystal structure and high Peierl resistance. The high creep resistance of garnet suggests that there may be other complex ternary oxides such as single crystal mullite which may also be candidate materials for fiber reinforcements. Finally, CVD and single crystal SiC, although not oxides, do possess a high resistance to creep in the temperature range between 1550 and 1850 C and under stresses of 110 to 220 MPa. From a review of the literature, it appears that for high creep resistant applications sapphire, silicon carbide, yttrium aluminum garnet, mullite, and beryllia are desirable candidate materials which require further investigation.
Massey, M.A.; Prior, D.J.; Moecher, D.P.
2011-01-01
Optical microscopy, electron probe microanalysis, and electron backscatter diffraction methods have been used to examine a broad range of garnet microstructures within a high strain zone that marks the western margin of a major transpression zone in the southern New England Appalachians. Garnet accommodated variable states of finite strain, expressed as low strain porphyroclasts (Type 1), high strain polycrystalline aggregates (Type 2), and transitional morphologies (Type 3) that range between these end members. Type 1 behaved as rigid porphyroclasts and is characterized by four concentric Ca growth zones. Type 2 help define foliation and lineation, are characterized by three Ca zones, and possess a consistent bulk crystallographic preferred orientation of (100) symmetrical to the tectonic fabric. Type 3 show variable degrees of porphyroclast associated with aggregate, where porphyroclasts display complex compositional zoning that corresponds to lattice distortion, low-angle boundaries, and subgrains, and aggregate CPO mimics porphyroclast orientation. All aggregates accommodated a significant proportion of greenschist facies deformation through grain boundary sliding, grain rotation and impingement, and pressure solution, which lead to a cohesive behavior and overall strain hardening of the aggregates. The characteristic CPO could not have been developed in this manner, and was the result of an older phase of partitioned amphibolite facies dislocation creep, recovery including chemical segregation, and recrystallization of porphyroclasts. This study demonstrates the significance of strain accommodation within garnet and its affect on composition under a range of PT conditions, and emphasizes the importance of utilizing EBSD methods with studies that rely upon a sound understanding of garnet. ?? 2010 Elsevier Ltd.
Theoretical model of hardness anisotropy in brittle materials
NASA Astrophysics Data System (ADS)
Gao, Faming
2012-07-01
Anisotropy is prominent in the hardness test of single crystals. However, the anisotropic nature is not demonstrated quantitatively in previous hardness model. In this work, it is found that the electron transition energy per unit volume in the glide region and the orientation of glide region play critical roles in determining hardness value and hardness anisotropy for a single crystal material. We express the mathematical definition of hardness anisotropy through simple algebraic relations. The calculated Knoop hardnesses of the single crystals are in good agreement with observations. This theory, extended to polycrystalline materials by including hall-petch effect and quantum size effect, predicts that the polycrystalline diamond with low angle grain boundaries can be harder than single-crystal bulk diamond. Combining first-principles technique and the formula of hardness anisotropy the hardness of monoclinic M-carbon, orthorhombic W-carbon, Z-carbon, and T-carbon are predicted.
NASA Astrophysics Data System (ADS)
Guo, Qianying; Thompson, Gregory B.
2018-04-01
In-situ TEM nanoindentation of a polycrystalline Cu film was cross-correlated with precession electron diffraction (PED) to quantify the microstructural evolution. The use of PED is shown to clearly reveal features, such as grain size, that are easily masked by diffraction contrast created by the deformation. Using PED, the accompanying grain refinement and change in texture as well as the preservation of specific grain boundary structures, including a ∑3 boundary, under the indent impression were quantified. The nucleation of dislocations, evident in low-angle grain boundary formations, was also observed under the indent. PED quantification of texture gradients created by the indentation process linked well to bend contours observed in the bright-field images. Finally, PED enabled generating a local orientation spread map that gave an approximate estimation of the spatial distribution of strain created by the indentation impression.
Clement, Marta; Olivares, Jimena; Capilla, Jose; Sangrador, Jesús; Iborra, Enrique
2012-01-01
We investigate the excitation and propagation of acoustic waves in polycrystalline aluminum nitride films along the directions parallel and normal to the c-axis. Longitudinal and transverse propagations are assessed through the frequency response of surface acoustic wave and bulk acoustic wave devices fabricated on films of different crystal qualities. The crystalline properties significantly affect the electromechanical coupling factors and acoustic properties of the piezoelectric layers. The presence of misoriented grains produces an overall decrease of the piezoelectric activity, degrading more severely the excitation and propagation of waves traveling transversally to the c-axis. It is suggested that the presence of such crystalline defects in c-axis-oriented films reduces the mechanical coherence between grains and hinders the transverse deformation of the film when the electric field is applied parallel to the surface. © 2012 IEEE
NASA Astrophysics Data System (ADS)
Tomimatsu, Toru; Takigawa, Ryo
2018-06-01
Owing to its high spatial resolution, near-field spectroscopy is a useful method for sensing the stress in a narrow region of submicron order. Here, on the basis of the highly resolved images obtained by near-field luminescence spectroscopy, we propose a statistical method of analyzing grain anisotropy-induced stress in polycrystalline Al2O3. We focus on two characteristics of a spectra: the intensity ratio and peak shift of luminescence of two lines (R1 and R2) from Al2O3 to discuss crystal orientation and stress, respectively. By incorporating the concept of the crystal misorientation parameter using intensity ratio, an apparent correlation between the magnitude of stress and the misorientation is found. This correlation analysis provides an important insight for the investigation of local thermal stress in Al2O3.
Two-dimensional freezing criteria for crystallizing colloidal monolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Ziren; Han Yilong; Alsayed, Ahmed M.
Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the first time: the Hansen-Verlet freezing rule, the Loewen-Palberg-Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of single crystals, were demonstrated to apply to the formation of polycrystalline solids. At themore » freezing point, we also observed a peak in the fluctuations of the orientational order parameter and a percolation transition associated with caged particles. Speculation about these percolated clusters of caged particles casts light on solidification mechanisms and dynamic heterogeneity in freezing.« less
Anisotropic rheology of a polycrystalline aggregate and convection in planetary mantles
NASA Astrophysics Data System (ADS)
Pouilloux, L. S.; Labrosse, S.; Kaminski, E.
2011-12-01
Observations of seismic anisotropy in the Earth mantle is often related to the crystal preferred orientation of polycrystalline aggregates. In this case, the physical properties depends on the direction and require the use of tensors to be fully described. In particular, the viscosity must be defined as a fourth order tensor whereas the thermal conductivity is a 2nd order tensor. However, the dynamical implications of such physical properties have received little attention until now. In this work, we present the mathematical formulation for an anisotropic medium and the relationship with dislocation creep deformation. We explore extensively the problem of the onset of Rayleigh-Bénard convection with such anisotropic properties. We finally presents some numerical results on the time-dependent problem using an orthotropic law for an ice polycrystal. Geophysical implications of this work related to the dynamics of planetary mantles are discussed, especially the potential of anisotropic rheology to localize deformation.
Flat ion milling: a powerful tool for preparation of cross-sections of lead-silver alloys.
Brodusch, Nicolas; Boisvert, Sophie; Gauvin, Raynald
2013-06-01
While conventional mechanical and chemical polishing results in stress, deformation and polishing particles embedded on the surface, flat milling with Ar+ ions erodes the material with no mechanical artefacts. This flat milling process is presented as an alternative method to prepare a Pb-Ag alloy cross-section for scanning electron microscopy. The resulting surface is free of scratches with very little to no stress induced, so that electron diffraction and channelling contrast are possible. The results have shown that energy dispersive spectrometer (EDS) mapping, electron channelling contrast imaging and electron backscatter diffraction can be conducted with only one sample preparation step. Electron diffraction patterns acquired at 5 keV possessed very good pattern quality, highlighting an excellent surface condition. An orientation map was acquired at 20 keV with an indexing rate of 90.1%. An EDS map was performed at 5 keV, and Pb-Ag precipitates of sizes lower than 100 nm were observed. However, the drawback of the method is the generation of a noticeable surface topography resulting from the interaction of the ion beam with a polycrystalline and biphasic sample.
NASA Astrophysics Data System (ADS)
Singh, S. J.; Shimoyama, J.; Ogino, H.; Kishio, K.
2015-11-01
The transport properties (electrical resistivity, Hall and Seebeck coefficient, and thermal conductivity) of iron based superconductors with thick perovskite-type oxide blocking layers and fluorine-doped SmFeAsO were studied to explore their possible potential for thermoelectric applications. The thermal conductivity of former compounds depicts the dominated role of phonon and its value decreases rapidly below the Tc, suggesting the addition of scattering of phonons. Both the Seebeck coefficient (S) and Hall coefficient (RH) of all samples were negative in the whole temperature region below 300 K, indicating that the major contribution to the normal state conductivity is by electrons. In addition, the profile of S(T) and RH(T) of all samples have similar behaviours as would be expected for a multi-band superconductors. Although the estimated thermoelectric figure of merit (ZT) of these compounds was much lower than that of practically applicable thermoelectric materials, however its improvement can be expected by optimizing microstructure of the polycrystalline materials, such as densification and grain orientation.
Evaluation of stress in high pressure radial diffraction: application to hcp Co
NASA Astrophysics Data System (ADS)
Merkel, S.; Tome, C.; Wenk, H.
2007-12-01
Understanding the coupling between elastic and plastic behaviour in hcp Co plastically deformed is important as it can serve as a starting model for improving our understanding of hcp-Fe, the main constituent of the Earth's inner core. For many years, the radial diffraction technique has been used to study mechanical properties under pressure. In those experiments, a polycrystalline sample is plastically deformed between two diamond anvils and lattice spacings are measured using diffraction, with the incoming x-ray beam perpendicular to the compression direction. From the variations of the d-spacings with the diffraction angle, we deduce information on the hydrostatic and deviatoric stress in the sample, while the variations of diffraction intensities provide information on the lattice preferred orientations within the polycrystal. Theories have been developed to relate the observed lattice strains to elastic moduli and stress within the sample (1). However, those models do not account for the effect of plastic deformation and, as a consequence, stress determinations can be inconsistent between lattice planes. In particular, experiments on cobalt have shown that plasticity effects on lattice strains were particularly large in hcp metals (2). This implies that the elastic moduli previously measured for hcp-iron using this technique are not directly related to single-crystal elastic moduli(3). Addressing this problem requires us to consider plastic relaxation, in addition to elastic effects. This can be done using polycrystal elasto-plastic models, which account for slip activity and the threshold stresses associated with their activation. Here, we present new results on modeling radial diffraction experiments using an elasto-plastic self-consistent (EPSC) model and show how the model can be used to interpret radial diffraction data on hcp-Co. More important, we also show how this can be used to derive information about the active slip systems and their critical stress of activation. (1) A.K. Singh, C. Balasingh, Mao, R.J. Hemley & J. Shu, Analysis of lattice strains measured under non- hydrostatic pressure, J. Appl. Phys., 1998, 83, 7567-7575 (2) S. Merkel, N. Miyajima, D. Antonangeli, G. Fiquet & T. Yagi, Lattice preferred orientation and stress in polycrystalline hcp-Co plastically deformed under high pressure, J. Appl. Phys., 2006, 100, 023510 (3) D. Antonangeli, S. Merkel & D. L. Farber, Elastic anisotropy in hcp metals at high pressure and the sound wave anisotropy of the Earth's inner core, Geophys. Res. Lett., 2006, 33, L24303
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yongli; Wang, Xianjie; Sui, Yu
Here in this article, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO 2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10 4, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In+Nb) co-doped rutile TiO 2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, andmore » that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.« less
Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals
NASA Astrophysics Data System (ADS)
Martínez-González, Jose A.; Li, Xiao; Sadati, Monirosadat; Zhou, Ye; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.
2017-06-01
Chiral nematic liquid crystals are known to form blue phases--liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation over large regions. These results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stebner, A. P.; Brown, D. W.; Brinson, L. C.
2013-05-27
Polycrystalline, monoclinic nickel-titanium specimens were subjected to tensile and compressive deformations while neutron diffraction spectra were recorded in situ. Using these data, orientation-specific and macroscopic Young's moduli are determined from analysis of linear-elastic deformation exhibited by 13 unique orientations of monoclinic lattices and their relationships to each macroscopic stress and strain. Five of 13 elastic compliance constants are also identified: s{sub 11} = 1.15, s{sub 15} = -1.10, s{sub 22} = 1.34, s{sub 33} = 1.06, s{sub 35} = -1.54, all Multiplication-Sign 10{sup -2} GPa{sup -1}. Through these results, recent atomistic calculations of monoclinic nickel-titanium elastic constants are validated.
Shock Hugoniot of single crystal copper
NASA Astrophysics Data System (ADS)
Chau, R.; Stölken, J.; Asoka-Kumar, P.; Kumar, M.; Holmes, N. C.
2010-01-01
The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], and [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from molecular dynamics calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu.
2010-01-01
0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...body screening effect. In addition, a radial cutoff function is also applied to reduce calculation time . The MEAM for an alloy system is based on the...moduli Real materials are usually polycrystalline aggregates of randomly oriented single-crystal grains, each exhibiting single-crystalline elastic
Switchable vanadium oxide films by a sol-gel process
NASA Astrophysics Data System (ADS)
Partlow, D. P.; Gurkovich, S. R.; Radford, K. C.; Denes, L. J.
1991-07-01
Thin polycrystalline films of VO2 and V2O3 were deposited on a variety of substrates using a sol-gel process. The orientation, microstructure, optical constants, and optical and electrical switching behavior are presented. These films exhibited sharp optical switching behavior even on an amorphous substrate such as fused silica. The method yields reproducible results and is amenable to the coating of large substrates and curved surfaces such as mirrors and lenses.
Twin-mediated crystal growth: an enigma resolved
Shahani, Ashwin J.; Gulsoy, E. Begum; Poulsen, Stefan O.; Xiao, Xianghui; Voorhees, Peter W.
2016-01-01
During crystal growth, faceted interfaces may be perturbed by defects, leading to a rich variety of polycrystalline growth forms. One such defect is the coherent Σ3 {111} twin boundary, which is widely known to catalyze crystal growth. These defects have a profound effect on the properties of many materials: for example, electron-hole recombination rates strongly depend on the character of the twin boundaries in polycrystalline Si photovoltaic cells. However, the morphology of the twinned interface during growth has long been a mystery due to the lack of four-dimensional (i.e., space and time resolved) experiments. Many controversial mechanisms have been proposed for this process, most of which lack experimental verification. Here, we probe the real-time interfacial dynamics of polycrystalline Si particles growing from an Al-Si-Cu liquid via synchrotron-based X-ray tomography. Our novel analysis of the time evolution of the interfacial normals allows us to quantify unambiguously the habit plane and grain boundary orientations during growth. This, when combined with direct measurements of the interfacial morphology provide the first confirmation of twin-mediated growth, proposed over 50 years ago. Using the insights provided by these experiments, we have developed a unified picture of the phenomena responsible for the dynamics of faceted Si growth. PMID:27346073
Twin-mediated crystal growth: an enigma resolved
NASA Astrophysics Data System (ADS)
Shahani, Ashwin J.; Gulsoy, E. Begum; Poulsen, Stefan O.; Xiao, Xianghui; Voorhees, Peter W.
2016-06-01
During crystal growth, faceted interfaces may be perturbed by defects, leading to a rich variety of polycrystalline growth forms. One such defect is the coherent Σ3 {111} twin boundary, which is widely known to catalyze crystal growth. These defects have a profound effect on the properties of many materials: for example, electron-hole recombination rates strongly depend on the character of the twin boundaries in polycrystalline Si photovoltaic cells. However, the morphology of the twinned interface during growth has long been a mystery due to the lack of four-dimensional (i.e., space and time resolved) experiments. Many controversial mechanisms have been proposed for this process, most of which lack experimental verification. Here, we probe the real-time interfacial dynamics of polycrystalline Si particles growing from an Al-Si-Cu liquid via synchrotron-based X-ray tomography. Our novel analysis of the time evolution of the interfacial normals allows us to quantify unambiguously the habit plane and grain boundary orientations during growth. This, when combined with direct measurements of the interfacial morphology provide the first confirmation of twin-mediated growth, proposed over 50 years ago. Using the insights provided by these experiments, we have developed a unified picture of the phenomena responsible for the dynamics of faceted Si growth.
NASA Astrophysics Data System (ADS)
Kassem, M. E.; Gaafar, M.; Abdel Gawad, M. M. H.; El-Muraikhi, M.; Ragab, I. M.
2004-02-01
Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO 4 have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature Tc, as well as the value of specific heat CPmax at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically.
Preferential orientation of metal oxide superconducting materials by mechanical means
Capone, Donald W.
1990-01-01
A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0<.times.<0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu--O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities.
Preferential orientation of metal oxide superconducting materials by mechanical means
Capone, D.W.
1990-11-27
A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities. 3 figs.
Limmer, Steven J.; Medlin, Douglas L.; Siegal, Michael P.; ...
2014-12-03
When using galvanostatic pulse deposition, we studied the factors influencing the quality of electroformed Bi 1–xSb x nanowires with respect to composition, crystallinity, and preferred orientation for high thermoelectric performance. Two nonaqueous baths with different Sb salts were investigated. The Sb salts used played a major role in both crystalline quality and preferred orientations. Nanowire arrays electroformed using an SbI 3 -based chemistry were polycrystalline with no preferred orientation, whereas arrays electroformed from an SbCl 3-based chemistry were strongly crystallographically textured with the desired trigonal orientation for optimal thermoelectric performance. From the SbCl 3 bath, the electroformed nanowire arraysmore » were optimized to have nanocompositional uniformity, with a nearly constant composition along the nanowire length. Moreover, nanowires harvested from the center of the array had an average composition of Bi 0.75 Sb 0.25. However, the nanowire compositions were slightly enriched in Sb in a small region near the edges of the array, with the composition approaching Bi 0.70Sb 0.30.« less
Dependence of critical current density on microstructure and processing of high-T(c) superconductors
NASA Astrophysics Data System (ADS)
Goyal, A.; Specht, E. D.; Wang, Z. L.; Kroeger, D. M.; Sutliff, J. A.; Tkaczyk, J. E.; Deluca, J. A.; Masur, L.; Riley, G. N., Jr.
Microstructural origins for reduced weak-link behavior in high-J(sup c) melt-processed YBCO, spray pyrolyzed thick films of Tl-1223, metallic precursor Y-124 polycrystalline powder-in-tube (PIT) wires and PIT Bi-2212/2223 are discussed. Since the materials studied are the highest J(sub c), polycrystalline, high-T(sub c) superconductors fabricated worldwide, the results provide important guidelines for further improvements in superconducting properties, thereby enabling practical applications of these materials. It is found that strongly linked current flow within domains of melt-processed 123 occurs effectively through a single crystal path. In c-axis oriented, polycrystalline Tl-1223 thick films, local in-plane texture has been found to play a crucial role in the reduced weak-link behavior. Formation of 'colonies' of grains with a common c-axis and modest in-plane misorientation was observed. Furthermore, a colony boundary in general has a varying misorientation along the boundary. Large regions comprised primarily of low angle boundaries were observed. Percolative transport through a network of such small angle boundaries appears to provide the non-weak-linked current path. Although powder-in-tube BSCCO 2212 and 2223 also appear to have a 'colony' microstructure, there are some important differences. Colonies in BSCCO consist of stacks of grains with similar c-axis orientation in contrast to colonies in Tl-1223 films where few grains are stacked on top of one another. In the case of Y-124 wires, weak macroscopic in-plane texture is found. Additional measurements are underway to determine if a sharper, local in-plane texture also exists. It is found that in three of the four types of superconductors studied, reduced weak-link behavior can be ascribed to some degree of biaxial alignment between grains, either on a 'local' or a 'global' scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H.S., E-mail: 160184@mail.csc.com.tw; Chiu, C.H.; Hong, I.T.
2013-09-15
Previous literature has used several monocrystalline sputtering targets with various crystalline planes, respectively, to investigate the variations of the sputter yield of materials in different crystalline orientations. This study presents a method to measure the sputtered yields of Mo for the three low-index planes (100), (110), and (111), through using an easily made polycrystalline target. The procedure was firstly to use electron backscattered diffraction to identify the grain positions of the three crystalline planes, and then use a focused ion beam to perform the micro-milling of each identified grain, and finally the sputter yields were calculated from the removed volumes,more » which were measured by atomic force microscope. Experimental results showed that the sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}, coincidental with the ranking of their planar atomic packing densities. The concept of transparency of ion in the crystalline substance was applied to elucidate these results. In addition, the result of (110) orientation exhibiting higher sputter yield is helpful for us to develop a Mo target with a higher deposition rate for use in industry. By changing the deformation process from straight rolling to cross rolling, the (110) texture intensity of the Mo target was significantly improved, and thus enhanced the deposition rate. - Highlights: • We used EBSD, FIB and AFM to measure the sputter yields of Mo in low-index planes. • The sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}. • The transparency of ion was used to elucidate the differences in the sputter yield. • We improved the sputter rate of polycrystalline Mo target by adjusting its texture.« less
Gukasov, A; Brown, P J
2010-12-22
Polarized neutron diffraction can provide information about the atomic site susceptibility tensor χ(ij) characterizing the magnetic response of individual atoms to an external magnetic field (Gukasov and Brown 2002 J. Phys.: Condens. Mater. 14 8831). The six independent atomic susceptibility parameters (ASPs) can be determined from polarized neutron flipping ratio measurements on single crystals and visualized as magnetic ellipsoids which are analogous to the thermal ellipsoids obtained from atomic displacement parameters (ADPs). We demonstrate now that the information about local magnetic susceptibility at different magnetic sites in a crystal can also be obtained from polarized and unpolarized neutron diffraction measurements on magnetized powder samples. The validity of the method is illustrated by the results of such measurements on a polycrystalline sample of Tb(2)Sn(2)O(7).
Directed Self-Assembly of Liquid Crystalline Blue-Phases into Ideal Single-Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Gonzalez, Jose A.; Li, Xiao; Sadati, Monirosadat
Chiral nematic liquid crystals are known to form blue phases—liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation overmore » large regions. Lastly, these results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.« less
NASA Astrophysics Data System (ADS)
Ichinokawa, T.; Le Gressus, C.; Mogami, A.; Pellerin, F.; Massignon, D.
The contrast change of secondary electron images due to the crystal orientations is observed by the ultra high vacuum scanning electron microscope (UHV-SEM) for crystal grains of clean surface of polycrystalline Al in the primary energy Ep of 200 eV to 5 KeV. The low energy electron loss spectra are measured by the cylindrical mirror analyzer. The relative intensity ratio between surface and bulk plasmon loss spectra was dependent on the crystal orientations. The SEM images taken by the surface and bulk plasmon signals at Ep = 230 eV show the inverse contrast depending on the grains. The inversion of the relative intensities between the surface and bulk plasmon losses is explained qualitatively by taking into account of variation of the penetration depth of the incident beam caused by the electron channeling.
NASA Astrophysics Data System (ADS)
Ichinokawa, T.; Le Gressus, C.; Mogami, A.; Pellerin, F.; Massignon, D.
1981-10-01
The contrast change of secondary electron images due to the crystal orientations is observed by the ultra high vacuum scanning electron microscope (UHV-SEM) for crystal grains of clean surface of polycrystalline Al in the primary energy Ep of 200 eV to 5 keV. The low energy electron loss spectra are measured by the cylindrical mirror analyzer. The relative intensity ratio between surface and bulk plasmon loss spectra was dependent on the crystal orientations. The SEM images taken by the surface and bulk plasmon signals at Ep = 230 eV show the inverse contrast depending on the grains. The inversion of the relative intensities between the surface and bulk plasmon losses is explained qualitatively by taking into account of variation of the penetration depth of the incident beam caused by the electron channeling.
Directed Self-Assembly of Liquid Crystalline Blue-Phases into Ideal Single-Crystals
Martinez-Gonzalez, Jose A.; Li, Xiao; Sadati, Monirosadat; ...
2017-06-16
Chiral nematic liquid crystals are known to form blue phases—liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation overmore » large regions. Lastly, these results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.« less
Ma, Yurong; Aichmayer, Barbara; Paris, Oskar; Fratzl, Peter; Meibom, Anders; Metzler, Rebecca A.; Politi, Yael; Addadi, Lia; Gilbert, P. U. P. A.; Weiner, Steve
2009-01-01
The sea urchin tooth is a remarkable grinding tool. Even though the tooth is composed almost entirely of calcite, it is used to grind holes into a rocky substrate itself often composed of calcite. Here, we use 3 complementary high-resolution tools to probe aspects of the structure of the grinding tip: X-ray photoelectron emission spectromicroscopy (X-PEEM), X-ray microdiffraction, and NanoSIMS. We confirm that the needles and plates are aligned and show here that even the high Mg polycrystalline matrix constituents are aligned with the other 2 structural elements when imaged at 20-nm resolution. Furthermore, we show that the entire tooth is composed of 2 cooriented polycrystalline blocks that differ in their orientations by only a few degrees. A unique feature of the grinding tip is that the structural elements from each coaligned block interdigitate. This interdigitation may influence the fracture process by creating a corrugated grinding surface. We also show that the overall Mg content of the tooth structural elements increases toward the grinding tip. This probably contributes to the increasing hardness of the tooth from the periphery to the tip. Clearly the formation of the tooth, and the tooth tip in particular, is amazingly well controlled. The improved understanding of these structural features could lead to the design of better mechanical grinding and cutting tools. PMID:19332795
Ma, Yurong; Aichmayer, Barbara; Paris, Oskar; Fratzl, Peter; Meibom, Anders; Metzler, Rebecca A; Politi, Yael; Addadi, Lia; Gilbert, P U P A; Weiner, Steve
2009-04-14
The sea urchin tooth is a remarkable grinding tool. Even though the tooth is composed almost entirely of calcite, it is used to grind holes into a rocky substrate itself often composed of calcite. Here, we use 3 complementary high-resolution tools to probe aspects of the structure of the grinding tip: X-ray photoelectron emission spectromicroscopy (X-PEEM), X-ray microdiffraction, and NanoSIMS. We confirm that the needles and plates are aligned and show here that even the high Mg polycrystalline matrix constituents are aligned with the other 2 structural elements when imaged at 20-nm resolution. Furthermore, we show that the entire tooth is composed of 2 cooriented polycrystalline blocks that differ in their orientations by only a few degrees. A unique feature of the grinding tip is that the structural elements from each coaligned block interdigitate. This interdigitation may influence the fracture process by creating a corrugated grinding surface. We also show that the overall Mg content of the tooth structural elements increases toward the grinding tip. This probably contributes to the increasing hardness of the tooth from the periphery to the tip. Clearly the formation of the tooth, and the tooth tip in particular, is amazingly well controlled. The improved understanding of these structural features could lead to the design of better mechanical grinding and cutting tools.
Epitaxial Fe/Y2O3 interfaces as a model system for oxide-dispersion-strengthened ferritic alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, Tiffany C.; Bowden, Mark E.; Wang, Chong M.
2015-02-01
The fundamental mechanisms underlying the superior radiation tolerance properties of oxide-dispersion-strengthened ferritic steels and nanostructured ferritic alloys are poorly understood. Thin film heterostructures of Fe/Y2O3 can serve as a model system for fundamental studies of radiation damage. Epitaxial thin films of Y2O3 were deposited by pulsed laser deposition on 8% Y:ZrO2 (YSZ) substrates with (100), (110), and (111) orientation. Metallic Fe was subsequently deposited by molecular beam epitaxy. Characterization by x-ray diffraction and Rutherford backscattering spectrometry in the channeling geometry revealed a degree of epitaxial or axiotaxial ntation for Fe(211) deposited on Y2O3(110)/YSZ(110). In contrast, Fe on Y2O3(111)/YSZ(111) was fullymore » polycrystalline, and Fe on Y2O3(100)/YSZ(100) exhibited out-of-plane texture in the [110] direction with little or no preferential in-plane orientation. Scanning transmission electron microscopy imaging of Fe(211)/Y2O3(110)/YSZ(110) revealed a strongly islanded morphology for the Fe film, with no epitaxial grains visible in the cross-sectional sample. Well-ordered Fe grains with no orientation to the underlying Y2O3 were observed. Well-ordered crystallites of Fe with both epitaxial and non-epitaxial orientations on Y2O3 are a promising model system for fundamental studies of radiation damage phenomena. This is illustrated with preliminary results of He bubble formation following implantation with a helium ion microscope. He bubble formation is shown to preferentially occur at the Fe/Y2O3 interface.« less
NASA Astrophysics Data System (ADS)
Kumar Ray, Atish
There exists considerable debate in the texture community about whether grain interactions are a necessary factor to explain the development of deformation textures in polycrystalline metals. Computer simulations indicate that grain interactions play a significant role, while experimental evidence shows that the material type and starting orientation are more important in the development of texture and microstructure. A balanced review of the literature on face-centered cubic metals shows that the opposing viewpoints have developed due to the lack of any complete experimental study which considers both the intrinsic (material type and starting orientation) and extrinsic (grain interaction) factors. In this study, a novel method was developed to assemble ideally orientated crystalline aggregates in 99.99% aluminum (Al) or copper (Cu) to experimentally evaluate the effect of grain interactions on room temperature deformation texture. Ideal orientations relevant to face-centered cubic rolling textures, Cube {100} <001>, Goss {110} <001>, Brass {110} <11¯2> and Copper {112} <111¯> were paired in different combinations and deformed by plane strain compression to moderate strain levels of 1.0 to 1.5. Orientation dependent mechanical behavior was distinguishable from that of the neighbor-influenced behavior. In interacting crystals the constraint on the rolling direction shear strains (gammaXY , gammaXZ) was found to be most critical to show the effect of interactions via the evolution of local microstructure and microtexture. Interacting crystals with increasing deformations were observed to gradually rotate towards the S-component, {123} <634>. Apart from the average lattice reorientations, the interacting crystals also developed strong long-range orientation gradients inside the bulk of the crystal, which were identified as accumulating misorientations across the deformation boundaries. Based on a statistical procedure using quaternions, the orientation and interaction related heterogeneous deformations were characterized by three principal component vectors and their respective eigenvalues for both the orientation and misorientation distributions. For the case of a medium stacking fault energy metal like Cu, the texture and microstructure development depends wholly on the starting orientations. Microstructural instabilities in Cu are explained through a local slip clustering process, and the possible role of grain interactions on such instabilities is proposed. In contrast, the texture and microstructure development in a high stacking fault energy metal like Al is found to be dependent on the grain interactions. In general, orientation, grain interaction and material type were found to be key factors in the development of rolling textures in face-centered cubic metals and alloys. Moreso, in the texture development not any single parameter can be held responsible, rather, the interdependency of each of the three parameters must be considered. In this frame-work polycrystalline grains can be classified into four types according to their stability and susceptibility during deformation.
Numerical study of electrical transport in co-percolative metal nanowire-graphene thin-films
NASA Astrophysics Data System (ADS)
Gupta, Man Prakash; Kumar, Satish
2016-11-01
Nanowires-dispersed polycrystalline graphene has been recently explored as a transparent conducting material for applications such as solar cells, displays, and touch-screens. Metal nanowires and polycrystalline graphene play synergetic roles during the charge transport in the material by compensating for each other's limitations. In the present work, we develop and employ an extensive computational framework to study the essential characteristics of the charge transport not only on an aggregate basis but also on individual constituents' levels in these types of composite thin-films. The method allows the detailed visualization of the percolative current pathways in the material and provides the direct evidence of current crowding in the 1-D nanowires and 2-D polygraphene sheet. The framework is used to study the effects of several important governing parameters such as length, density and orientation of the nanowires, grain density in polygraphene, grain boundary resistance, and the contact resistance between nanowires and graphene. We also present and validate an effective medium theory based generalized analytical model for the composite. The analytical model is in agreement with the simulations, and it successfully predicts the overall conductance as a function of several parameters including the nanowire network density and orientation and graphene grain boundaries. Our findings suggest that the longer nanowires (compared to grain size) with low angle orientation (<40°) with respect to the main carrier transport direction provide significant advantages in enhancing the conductance of the polygraphene sheet. We also find that above a certain value of grain boundary resistance (>60 × intra-grain resistance), the overall conductance becomes nearly independent of grain boundary resistance due to nanowires. The developed model can be applied to study other emerging transparent conducting materials such as nanowires, nanotubes, polygraphene, graphene oxide, and their hybrid nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yau, Allison; Harder, Ross J.; Kanan, Matthew W.
Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure-function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces involved. Here we use Bragg coherent diffractive imaging to investigate the role of structural inhomogeneity on the hydriding phase transformation dynamics of individual Pd grains in polycrystalline films in three-dimensional detail. In contrast to previous reports on single- and polycrystalline nanoparticles, we observe no evidence of a hydrogen-rich surface layer and consequently no size dependence in the hydriding phase transformation pressure over a 125-325more » nm size range. We do observe interesting grain boundary dynamics, including reversible rotations of grain lattices while the material remains in the hydrogen-poor phase. The mobility of the grain boundaries, combined with the lack of a hydrogen-rich surface layer, suggests that the grain boundaries are acting as fast diffusion sites for the hydrogen atoms. Such hydrogen-enhanced plasticity in the hydrogen poor phase provides insight into the switch from the size-dependent behavior of single-crystal nanoparticles to the lower transformation pressures of polycrystalline materials and may play a role in hydrogen embrittlement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machida, Emi; Research Fellowships of the Japan Society for the Promotion of Science, Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472; Horita, Masahiro
2012-12-17
We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.
Fundamental properties of a new samarium compound SmPtSi2
NASA Astrophysics Data System (ADS)
Yamaguchi, Shuto; Takahashi, Eisuke; Kase, Naoki; Nakano, Tomohito; Takeda, Naoya; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya
2018-05-01
We have discovered a new orthorhombic ternary compound SmPtSi2. We succeeded in growing a single crystal of SmPtSi2; prepared a polycrystalline sample of this compound, and measured their susceptibility, specific heat, and resistivity. The temperature dependence of susceptibility of the polycrystalline sample is close to that of Sm3+ at high temperatures, and its specific heat shows anomalies at TH = 8.6 K and TL = 5.6 K. The resistivity of a single crystal of SmPtSi2 shows a hump-type anomaly just below TH and a sudden decrease at TL, indicating that these anomalies are intrinsic and that SmPtSi2 exhibits a two-step transition.
Electrical properties of polycrystalline methane hydrate
Du Frane, W. L.; Stern, L.A.; Weitemeyer, K.A.; Constable, S.; Pinkston, J.C.; Roberts, J.J.
2011-01-01
Electromagnetic (EM) remote-sensing techniques are demonstrated to be sensitive to gas hydrate concentration and distribution and complement other resource assessment techniques, particularly seismic methods. To fully utilize EM results requires knowledge of the electrical properties of individual phases and mixing relations, yet little is known about the electrical properties of gas hydrates. We developed a pressure cell to synthesize gas hydrate while simultaneously measuring in situ frequency-dependent electrical conductivity (σ). Synthesis of methane (CH4) hydrate was verified by thermal monitoring and by post run cryogenic scanning electron microscope imaging. Impedance spectra (20 Hz to 2 MHz) were collected before and after synthesis of polycrystalline CH4 hydrate from polycrystalline ice and used to calculate σ. We determined the σ of CH4 hydrate to be 5 × 10−5 S/m at 0°C with activation energy (Ea) of 30.6 kJ/mol (−15 to 15°C). After dissociation back into ice, σ measurements of samples increased by a factor of ~4 and Ea increased by ~50%, similar to the starting ice samples.
Tuning the Electrical and Thermal Conductivities of Thermoelectric Oxides through Impurity Doping
NASA Astrophysics Data System (ADS)
Torres Arango, Maria A.
Waste heat and thermal gradients available at power plants can be harvested to power wireless networks and sensors by using thermoelectric (TE) generators that directly transform temperature differentials into electrical power. Oxide materials are promising for TE applications in harsh industrial environments for waste heat recovery at high temperatures in air, because they are lightweight, cheaply produced, highly efficient, and stable at high temperatures in air. Ca3Co4O9(CCO) with layered structure is a promising p-type thermoelectric oxide with extrapolated ZT value of 0.87 in single crystal form [1]. However the ZT values for the polycrystalline ceramics remain low of ˜0.1-0.3. In this research, nanostructure engineering approaches including doping and addition of nanoinclusions were applied to the polycrystalline CCO ceramic to improve the energy conversion efficiency. Polycrystalline CCO samples with various Bi doping levels were prepared through the sol-gel chemical route synthesis of powders, pressing and sintering of the pellets. Microstructure features of Bi doped ceramic bulk samples such as porosity, development of crystal texture, grain boundary dislocations and segregation of Bi dopants at various grain boundaries are investigated from microns to atomic scale. The results of the present study show that the Bi-doping is affecting both the electrical conductivity and thermal conductivity simultaneously, and the optimum Bi doping level is strongly correlated with the microstructure and the processing conditions of the ceramic samples. At the optimum doping level and processing conditions of the ceramic samples, the Bi substitution of Ca results in the increase of the electrical conductivity, decrease of the thermal conductivity, and improvement of the crystal texture. The atomic resolution Scanning Transmission Electron Microscopy (STEM) Z-contrast imaging and the chemistry analysis also reveal the Bi-segregation at grain boundaries of CCO polycrystalline samples. In order to further decrease the thermal conductivity and increase the overall energy conversion efficiency of ceramic samples. The highest ZT value obtained is 0.32 at 973K for Ca and Co site Bi doping. The effect of the nanoinclusions on the performance and the microstructure of CCO were investigated as well.
Electron Induced Conductivity of Al2O3 as Pertaining to Thermionic Integrated Circuits.
1985-12-01
No.6, pp. 4450-4456, December 1983. 18. Pomerantz, M. A., Shatas, R. A. and Marshall, 3. F., "Electrical Conductivity Induced in MgO Crystals by 1.3...Experiments were conducted to measure the electron induced conductivity CEIC) of single crystal sapphire (A120 ) and poly-crystalline alumina (A1203 ). The...induced conductivity (EIC) of single crystal sapphire (A li2O-) and poly-crystalline alumina (Alzz2O. The EIC is generated when the samples are bombarded
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, Ryo; Okabe, Momoko; Asaka, Toru
We prepared the b-axis-oriented polycrystalline Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} (NTGO) embedded in Ga{sub 2}O{sub 3}-doped Na{sub 2}Ti{sub 4}O{sub 9} matrix using the reactive diffusion technique. When the sandwich-type Ga{sub 2}TiO{sub 5}/NaGaO{sub 2}/Ga{sub 2}TiO{sub 5} diffusion couple was heated at 1323 K for 24 h, the NTGO polycrystal was readily formed in the presence of a liquid phase. The resulting polycrystalline material was characterized by X-ray diffractometry, electron microscopy and impedance spectroscopy. We mechanically processed the annealed diffusion couple and obtained the thin-plate electrolyte consisting mostly of the grain-aligned NTGO polycrystal. The ionic conductivity (σ) of the electrolyte along themore » common b-axis direction steadily increased from 1.3×10{sup −4} to 7.3×10{sup −3} S/cm as the temperature increased from 573 to 1073 K. There was a slope change at ca. 792 K for the Arrhenius plot of σ; the activation energies were 0.39 eV above this temperature and 0.57 eV below it. The NTGO showed the crystal structure (space group C2/m) with substantial positional disordering of one of the two Ga sites. The Na{sup +} ions occupied ca. 43% of the Wyckoff position 4i site, the deficiency of which would contribute to the relatively high ionic conductivity along the b-axis. The reactive diffusion could be widely applicable as the novel technique to the preparation of grain-aligned ceramics of multi-component systems. - Graphical abstract: We have prepared the b-axis-oriented Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} polycrystal embedded in Ga{sub 2}O{sub 3}-doped Na{sub 2}Ti{sub 4}O{sub 9} matrix by the heat treatment of sandwich-type diffusion couple of Ga{sub 2}TiO{sub 5}/NaGaO{sub 2}/Ga{sub 2}TiO{sub 5}. The resulting Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} electrolyte showed the ionic conductivity ranging from 1.3×10{sup −4} S/cm at 573 K to 7.3×10{sup −3} S/cm at 1073 K. - Highlights: • The b-axis-oriented polycrystalline Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} is successfully prepared. • Crystal structure of Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} is determined by single-crystal XRD. • The polycrystal shows relatively high Na{sup +} ion conductivity along the common b-axis. • Reactive diffusion is successfully used for the preparation of grain-aligned ceramics.« less
NASA Astrophysics Data System (ADS)
Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi
2018-01-01
We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.
Ordered macro-microporous metal-organic framework single crystals
NASA Astrophysics Data System (ADS)
Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin
2018-01-01
We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.
NASA Astrophysics Data System (ADS)
Tsubokawa, Yumiko; Ishikawa, Masahiro
2017-09-01
Graphite-bearing polycrystalline olivine and polycrystalline clinopyroxene with submicron to micron grain size were successfully sintered from a single crystal of naturally occurring olivine (Fo88-92Fa12-8: Mg1.76-1.84Fe0.16-0.24SiO4) and a single crystal of naturally occurring clinopyroxene (Di99Hed1: Ca0.92Na0.07Mn0.01Mg0.93Fe0.01Al0.06Si2O6). The milled powders of both these crystals were sintered under argon gas flow at temperatures ranging from 1130 to 1350 °C for 2 h. As the sintering temperature increased, the average grain size of olivine increased from 0.2 to 1.4 µm and that of clinopyroxene increased from 0.1 to 2.4 µm. The porosity of sintered samples remained at an almost-constant volume of 2-5% for olivine and 3-4% for clinopyroxene. The samples sintered from powders milled with ethanol exhibited trace amount of graphite, identified via Raman spectroscopy analysis. As the sintering temperature increased, the intensity of the graphite Raman peak decreased, compared with both olivine and clinopyroxene peaks. The carbon content of the sintered samples was estimated to be a few hundred ppm. The in-plane size ( L a ) of graphite in the sintered olivine was estimated to be <15 nm. Our experiments demonstrate new possibilities for preparing graphite-bearing silicate-mantle mineral rocks, and this method might be useful in understanding the influence of the physical properties of graphite on grain-size-sensitive rheology or the seismic velocity of the Earth's mantle.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Taniguchi, Hiroki; Tatewaki, Shingo; Yasui, Shintaro; Fujii, Yasuhiro; Yamaura, Jun-ichi; Terasaki, Ichiro
2018-04-01
This paper focuses on effects of isovalent La substitution on the crystal structure and dielectric properties of ferroelectric B i2Si O5 . Polycrystalline samples of (Bi1-xL ax ) 2Si O5 are synthesized by crystallization of Bi-Si-O and Bi-La-Si-O glasses with a composition range of 0 ≤x ≤0.1 . The crystal structure changes from monoclinic to tetragonal with increasing La-substitution rate x at room temperature. This structural variation stems from the change in orientation of Si O4 tetrahedra that form one-dimensional chains when they are in the ordered configuration, thus suggesting that lone-pair electrons play an important role in sustaining one-dimensional chains of Si O4 tetrahedra. Synchronizing with the disordering of Si O4 chains, ferroelectric phase transition temperature of (Bi1-xL ax ) 2Si O5 sharply decreases as x increases, and ferroelectricity finally vanishes at around x =0.03 . The present results demonstrate that lone-pair electrons of Bi play an important role in the ferroelectricity of B i2Si O5 through propping the ordered structure of one-dimensional Si O4 chains with stereochemical activity. Furthermore, an additional phase transition has been first discovered in the low-temperature region of (Bi1-xL ax ) 2Si O5 with x ≤0.01 , where the ordered one-dimensional Si O4 chains remain.
NASA Astrophysics Data System (ADS)
Lunt, A. J. G.; Xie, M. Y.; Baimpas, N.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.; Korsunsky, A. M.
2014-08-01
Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.
Faghihi, Shahab; Zia, Sonia; Taha, Masoumeh Fakhr
2012-12-01
Stainless steel (SS) is one of the most applicable materials in fabrication of cardiac implants. The aim of this study is to investigate the effect of atomic structure of polycrystalline stainless steel on the response of adipose tissue-derived stem cells (ADSCs). Samples are prepared from differently processed extruded rod and rolled sheet of 316L SS having different crystallographic structure. X-ray diffraction analysis indicated (200) and (111) orientations with distinct volume fractions in the specimens. Morphology and ADSCs behavior including adhesion, proliferation and differentiation are assessed. The expression of cardiac specific protein (cardiac troponin I) and genes of differentiating cardiomyocytes is analyzed by immunofluorescence and RT-PCR. The number of attached and grown cells on the rod sample is higher than the sheet sample also the scanning electron microscopy (SEM) analysis of ADSCs grown on the samples demonstrates higher cell density and spreading pattern on the surface of rod sample. In differentiated ADSCs on the rod sample the expression of all genes except ANF are detectable, while on the sheet sample only the MEF2C and β-MHC are expressed. This study shows that the cellular response is influenced by the crystal structure of the substrate therefore; the skill to alter the structure of substrate may lend itself to engineer a biomaterial which could be suitable for differentiation of stem cells into a definite lineage. Copyright © 2012 Elsevier Ltd. All rights reserved.
Magnetic properties in polycrystalline and single crystal Ca-doped LaCoO3
NASA Astrophysics Data System (ADS)
Zeng, R.; Debnath, J. C.; Chen, D. P.; Shamba, P.; Wang, J. L.; Kennedy, S. J.; Campbell, S. J.; Silver, T.; Dou, S. X.
2011-04-01
Polycrystalline (PC) and single crystalline (SC) Ca-doped LaCoO3 (LCCO) samples with the perovskite structure were synthesized by conventional solid-state reaction and the floating-zone growth method. We present the results of a comprehensive investigation of the magnetic properties of the LCCO system. Systematic measurements have been conducted on dc magnetization, ac susceptibility, exchange-bias, and the magnetocaloric effect. These findings suggest that complex structural phases, ferromagnetic (FM), and spin-glass/cluster-spin-glass (CSG), and their transitions exist in PC samples, while there is a much simpler magnetic phase in SC samples. It was also of interest to discover that the CSG induced a magnetic field memory effect and an exchange-bias-like effect, and that a large inverse irreversible magnetocaloric effect exists in this system.
NASA Astrophysics Data System (ADS)
Gukasov, A.; Brown, P. J.
2010-12-01
Polarized neutron diffraction can provide information about the atomic site susceptibility tensor χij characterizing the magnetic response of individual atoms to an external magnetic field (Gukasov and Brown 2002 J. Phys.: Condens. Mater. 14 8831). The six independent atomic susceptibility parameters (ASPs) can be determined from polarized neutron flipping ratio measurements on single crystals and visualized as magnetic ellipsoids which are analogous to the thermal ellipsoids obtained from atomic displacement parameters (ADPs). We demonstrate now that the information about local magnetic susceptibility at different magnetic sites in a crystal can also be obtained from polarized and unpolarized neutron diffraction measurements on magnetized powder samples. The validity of the method is illustrated by the results of such measurements on a polycrystalline sample of Tb2Sn2O7.
Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.
2013-01-01
The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471
Evolutionary selection growth of two-dimensional materials on polycrystalline substrates
NASA Astrophysics Data System (ADS)
Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; Unocic, Raymond R.; Rack, Philip D.; Baddorf, Arthur P.; Ivanov, Ilia N.; Lavrik, Nickolay V.; List, Frederick; Gupta, Nitant; Bets, Ksenia V.; Yakobson, Boris I.; Smirnov, Sergei N.
2018-03-01
There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection2 approach, which is now realized in 2D geometry. The method relies on `self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.
Thin films of a ferroelectric phenazine/chloranilic acid organic cocrystal
NASA Astrophysics Data System (ADS)
Thompson, Nicholas J.; Jandl, Adam C.; Spalenka, Josef W.; Evans, Paul G.
2011-07-01
Phenazine-chloranilic acid cocrystal thin films can be formed by vacuum evaporation of the component molecules onto cooled substrates. Fluxes of phenazine and chloranilic acid were provided from separate sublimation sources, from which the cocrystalline phase can be formed under a wide range of impingement rates of the component molecules. Substrates consisted of Au or Ni thin films on Si wafers, cooled to 100-140 K during deposition. X-ray diffraction and scanning electron microscopy show that this process yields polycrystalline thin films of the cocrystal with voids between crystalline grains. The relative intensities of X-ray reflections differ from reported intensities of polycrystalline powders, suggesting that the films have an anisotropic distribution of crystallographic orientations. The cocrystalline thin films have an effective dielectric constant of 13 at room temperature, increasing at lower temperatures and exhibiting a broad maximum near 200 K. The means to grow thin films of organic ferroelectric materials will allow the integration of new functionalities into organic electronic device structures, including capacitors and field-effect transistors.
Bottle-brush-shaped heterostructures of NiO-ZnO nanowires: growth study and sensing properties
NASA Astrophysics Data System (ADS)
Baratto, C.; Kumar, R.; Comini, E.; Ferroni, M.; Campanini, M.
2017-11-01
We present here heterostructured ZnO-NiO nanowires (NWs), constituted by a core of single crystalline ZnO NWs, covered by poly-crystalline NiO nanorods (NRs). The bottle-brush shape was investigated by scanning electron microscopy and transmission electron microscope, confirming that a columnar growth of NiO occurred over the ZnO core, with a preferred orientation of NiO over ZnO NWs. The heterostructured devices are proposed for gas sensing application. Bare ZnO NWs and heterostructured sensors with two different thicknesses of NiO poly-crystalline NRs were analysed for acetone, ethanol, NO2 and H2 detection. All sensors maintained n-type sensing mechanism, with improved sensing performance for lower thickness of NiO, due to high catalytic activity of NiO. The sensing dynamic is also strongly modified by the presence of heterojunction of NiO/ZnO, with a reduction of response and recovery times towards ethanol and acetone at 400 °C.
Template synthesis of indium nanowires using anodic aluminum oxide membranes.
Chen, Feng; Kitai, Adrian H
2008-09-01
Indium nanowires with diameters approximately 300 nm have been synthesized by a hydraulic pressure technique using anodic aluminum oxide (AAO) templates. The indium melt is injected into the AAO template and solidified to form nanostructures. The nanowires are dense, continuous and uniformly run through the entire approximately 60 microm thickness of the AAO template. X-ray diffraction (XRD) reveals that the nanowires are polycrystalline with a preferred orientation. SEM is performed to characterize the morphology of the nanowires.
NASA Astrophysics Data System (ADS)
Mousavi, M.; Kompany, A.; Shahtahmasebi, N.; Bagheri-Mohagheghi, M.-M.
2013-08-01
Vanadium oxide thin films were grown on glass substrates using spray pyrolysis technique. The effects of substrate temperature, vanadium concentration in the initial solution and the solution spray rate on the nanostructural and the electrochromic properties of deposited films are investigated. Characterization and the electrochromic measurements were carried out using X-ray diffraction, scanning electron microscopy and cyclic voltammogram. XRD patterns showed that the prepared films have polycrystalline structure and are mostly mixed phases of orthorhombic α-V2O5 along with minor β-V2O5 and V4O9 tetragonal structures. The preferred orientation of the deposited films was found to be along [101] plane. The cyclic voltammogram results obtained for different samples showed that only the films with 0.2 M solution concentration, 5 ml/min solution spray rate and 450°C substrate temperature exhibit two-step electrochromic properties. The results show a correlation between cycle voltammogram, morphology and resistance of the films.
Heavy Ion Irradiated Ferromagnetic Films: The Cases of Cobalt and Iron
NASA Astrophysics Data System (ADS)
Lieb, K. P.; Zhang, K.; Müller, G. A.; Gupta, R.; Schaaf, P.
2005-01-01
Polycrystalline, e-gun deposited Co, Fe and Co/Fe films, tens of nanometers thick, have been irradiated with Ne, Kr, Xe and/or Fe ions to fluences of up to 5 × 1016 ions/cm2. Changes in the magnetic texture induced by the implanted ions have been measured by means of hyperfine methods, such as Magnetic Orientation Mössbauer Spectroscopy (Fe), and by Magneto-Optical Kerr Effect and Vibrating Sample Magnetometry. In Co and CoFe an hcp → fcc phase transition has been observed under the influence of Xe-ion implantation. For 1016 Xe-ions/cm2, ion beam mixing in the Co/Fe system produces a soft magnetic material with uniaxial anisotropy. The effects have been correlated with changes in the microstructure as determined via X-ray diffraction. The influences of internal and external strain fields, an external magnetic field and pre-magnetization have been studied. A comprehensive understanding of the various effects and underlying physical reasons for the modifications appears to emerge from these investigations.
NASA Astrophysics Data System (ADS)
Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.
2017-01-01
We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.
Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains.
Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae
2018-03-23
In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H 2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.
Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains
NASA Astrophysics Data System (ADS)
Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae
2018-03-01
In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.
Texture and Elastic Anisotropy of Mantle Olivine
NASA Astrophysics Data System (ADS)
Nikitin, A. N.; Ivankina, T. I.; Bourilitchev, D. E.; Klima, K.; Locajicek, T.; Pros, Z.
Eight olivine rock samples from different European regions were collected for neu- tron texture analyses and for P-wave velocity measurements by means of ultrasonic sounding at various confining pressures. The orientation distribution functions (ODFs) of olivine were determined and pole figures of the main crystallographic planes were calculated. The spatial P-wave velocity distributions were determined at confining pressures from 0.1 to 400 MPa and modelled from the olivine textures. In dependence upon the type of rock (xenolith or dunite) different behavior of both the P-wave veloc- ity distributions and the anisotropy coefficients with various confining pressures was observed. In order to explain the interdependence of elastic anisotropy and hydrostatic pressure, a model for polycrystalline olivine rocks was suggested, which considers the influence of the crystallographic and the mechanical textures on the elastic behaviour of the polycrystal. Since the olivine texture depends upon the active slip systems and the deformation temperature, neutron texture analyses enable us to estimate depth and thermodynamical conditions during texture formation.
Magnetization reversal in exchange biased Co/CoO probed with anisotropic magnetoresistance
NASA Astrophysics Data System (ADS)
Gredig, Thomas; Krivorotov, Ilya N.; Dahlberg, E. Dan
2002-05-01
The magnetization reversal in exchange coupled polycrystalline Co/CoO bilayers has been investigated as a function of CoO thickness using anisotropic magnetoresistance as a probe. The anisotropic magnetoresistance (AMR) was measured during the magnetization reversal and it was used to determine the orientation of the magnetization. For thin CoO layers large training effects were present; ergo the first hysteresis loop after field cooling was not the same as the second. The magnitude of the observed training was found to decrease with increasing CoO thickness. In the samples where substantial training was observed, the first magnetization reversal was dominated by nucleation of reversed domains. For the reversal from the antiparallel state back to the parallel direction, the AMR is consistent with a rotation process. In thicker CoO films where the training was less, the asymmetry was drastically reduced. A simple model that couples the antiferromagnetic grains to the ferromagnetic layer simulates qualitatively the observed magnetoresistance.
NASA Astrophysics Data System (ADS)
Fukushima, J.; Ara, K.; Nojima, T.; Iguchi, S.; Hayashi, Y.; Takizawa, H.
2018-05-01
To maximize the formation of an anisotropic interface between the magnetostrictive phase and the electrostrictive phase, a eutectic BaTiO3-CoFe2O4 multiferroic material is fabricated by containerless processing. The composites in this process had a fine eutectic structure, especially at a eutectic composition of BaTiO3:CoFe2O4 = 62:38. TEM observations revealed that the (1 0 0) plane of tetragonal BaTiO3 and the (1 0 0) plane of CoFe2O4 were oriented in parallel. In addition to the largest magnetodielectric effect in the eutectic-composition samples, we confirmed the permittivity is controlled linearly by applying a high magnetic field through forced magnetostriction. So far, the peak of the magnetodielectric effect around 0.25 T has been only found in the sintered CoFe2O4 polycrystalline sample. Thus, the containerless processing provides us a route to produce an ideal microstructure without accompanying 90° domain wall process and rotational magnetization process, which enhances the magnetodielectric effect.
Morphological changes in polycrystalline Fe after compression and release
NASA Astrophysics Data System (ADS)
Gunkelmann, Nina; Tramontina, Diego R.; Bringa, Eduardo M.; Urbassek, Herbert M.
2015-02-01
Despite a number of large-scale molecular dynamics simulations of shock compressed iron, the morphological properties of simulated recovered samples are still unexplored. Key questions remain open in this area, including the role of dislocation motion and deformation twinning in shear stress release. In this study, we present simulations of homogeneous uniaxial compression and recovery of large polycrystalline iron samples. Our results reveal significant recovery of the body-centered cubic grains with some deformation twinning driven by shear stress, in agreement with experimental results by Wang et al. [Sci. Rep. 3, 1086 (2013)]. The twin fraction agrees reasonably well with a semi-analytical model which assumes a critical shear stress for twinning. On reloading, twins disappear and the material reaches a very low strength value.
Analysis of macromolecules, ligands and macromolecule-ligand complexes
Von Dreele, Robert B [Los Alamos, NM
2008-12-23
A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.
Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.
2003-01-01
We report on compressional- and shear-wave-speed measurements made on compacted polycrystalline sI methane and sII methane-ethane hydrate. The gas hydrate samples are synthesized directly in the measurement apparatus by warming granulated ice to 17??C in the presence of a clathrate-forming gas at high pressure (methane for sI, 90.2% methane, 9.8% ethane for sII). Porosity is eliminated after hydrate synthesis by compacting the sample in the synthesis pressure vessel between a hydraulic ram and a fixed end-plug, both containing shear-wave transducers. Wave-speed measurements are made between -20 and 15??C and 0 to 105 MPa applied piston pressure.
A Dictionary Approach to Electron Backscatter Diffraction Indexing.
Chen, Yu H; Park, Se Un; Wei, Dennis; Newstadt, Greg; Jackson, Michael A; Simmons, Jeff P; De Graef, Marc; Hero, Alfred O
2015-06-01
We propose a framework for indexing of grain and subgrain structures in electron backscatter diffraction patterns of polycrystalline materials. We discretize the domain of a dynamical forward model onto a dense grid of orientations, producing a dictionary of patterns. For each measured pattern, we identify the most similar patterns in the dictionary, and identify boundaries, detect anomalies, and index crystal orientations. The statistical distribution of these closest matches is used in an unsupervised binary decision tree (DT) classifier to identify grain boundaries and anomalous regions. The DT classifies a pattern as an anomaly if it has an abnormally low similarity to any pattern in the dictionary. It classifies a pixel as being near a grain boundary if the highly ranked patterns in the dictionary differ significantly over the pixel's neighborhood. Indexing is accomplished by computing the mean orientation of the closest matches to each pattern. The mean orientation is estimated using a maximum likelihood approach that models the orientation distribution as a mixture of Von Mises-Fisher distributions over the quaternionic three sphere. The proposed dictionary matching approach permits segmentation, anomaly detection, and indexing to be performed in a unified manner with the additional benefit of uncertainty quantification.
Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum.
Morgan, Dane V; Macy, Don; Stevens, Gerald
2008-11-01
A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.
Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.
2010-01-01
Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.
Zeng, Fan W.; Contescu, Cristian I.; Gallego, Nidia C.; ...
2016-12-18
Laser ultrasonic line source methods have been used to study elastic anisotropy in nuclear graphites by measuring shear wave birefringence. Depending on the manufacturing processes used during production, nuclear graphites can exhibit various degrees of material anisotropy related to preferred crystallite orientation and to microcracking. In this paper, laser ultrasonic line source measurements of shear wave birefringence on NBG-25 have been performed to assess elastic anisotropy. Laser line sources allow specific polarizations for shear waves to be transmitted – the corresponding wavespeeds can be used to compute bulk, elastic moduli that serve to quantify anisotropy. These modulus values can bemore » interpreted using physical property models based on orientation distribution coefficients and microcrack-modified, single crystal moduli to represent the combined effects of crystallite orientation and microcracking on material anisotropy. Finally, ultrasonic results are compared to and contrasted with measurements of anisotropy based on the coefficient of thermal expansion to show the relationship of results from these techniques.« less
Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryanto, Didik, E-mail: didi027@lipi.go.id; Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah; Marwoto, Putut
Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtainedmore » at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.« less
NASA Astrophysics Data System (ADS)
Feng, Ningbo; Liao, Y. W.; Lu, Y.; He, Y.; Jin, Y. R.; Liu, X. R.
2018-06-01
Thermoelectric properties of Ca3Co4O9 polycrystalline ceramics with sheet grains were optimized by adding Bi2Ca2Co2O y phase. Therefore, the (1 - x) Ca3Co4O9/ x Bi2Ca2Co2O y (0 ≤ x ≤ 1) composites were prepared. The phase constitution and micro-structure of the samples were analyzed by XRD and SEM, respectively. With the addition of Bi2Ca2Co2O y , the apparent density D a and the relative density D r of the samples continuously increases. When x ≤ 0.4, the electrical resistivity of the samples declines, however, when x ≥ 0.4, the electrical resistivity of the samples increases. The Seebeck coefficient of the samples grows with the increase of the x monotonously. The power factor of the 0.6 Ca3Co4O9/0.4 Bi2Ca2Co2O y samples reaches 0.24 mW m-1K-2 at 973 K. Thermal conductivity κ of the 0.6 Ca3Co4O9/0.4 Bi2Ca2Co2O y monotonously decreases with the temperature rising, achieving the minimum about 1.34 W m-1K-1 at 973 K. The ZT of 0.6 Ca3Co4O9/0.4 Bi2Ca2Co2O y composites gets to 0.18, which is comparable to that of most doped Ca3Co4O9 polycrystalline ceramics, implying higher ZT can be realized by combining the strategy of doping and introducing the Bi2Ca2Co2O y .
NASA Technical Reports Server (NTRS)
Jin, Michael; Banger, Kal; Harris, Jerry; Hepp, Aloysius
2003-01-01
Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) which were prepared in-house. Films with either (112) or (204/220) preferred orientation, had a chalcopyrite structure, and (112)-oriented films contained more copper than (204/220)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always In-rich and were accompanied by a secondary phase. From the results of post-growth annealing, etching experiments, and Raman spectroscopic data, the secondary phase was identified as an In-rich compound. On the contrary, (112)-oriented films were always obtained with a minimal amount of the secondary phase, and had a maximum grain size of about 0.5 micron. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 and 30 Omega-cm, and an optical band gap of approximately 1.46 eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.
Valence-band and core-level photoemission study of single-crystal Bi2CaSr2Cu2O8 superconductors
NASA Astrophysics Data System (ADS)
Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1988-12-01
High-quality single crystals of Bi2CaSr2Cu2O8 superconductors have been prepared and cleaved in ultrahigh vacuum. Low-energy electron diffraction measurements show that the surface structure is consistent with the bulk crystal structure. Ultraviolet photoemission and x-ray photoemission experiments were performed on these well-characterized sample surfaces. The valence-band and the core-level spectra obtained from the single-crystal surfaces are in agreement with spectra recorded from polycrystalline samples, justifying earlier results from polycrystalline samples. Cu satellites are observed both in the valence band and Cu 2p core level, signaling the strong correlation among the Cu 3d electrons. The O 1s core-level data exhibit a sharp, single peak at 529-eV binding energy without any clear satellite structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kantor, M. M., E-mail: Kantor@imet.ac.ru; Vorkachev, K. G., E-mail: KGV@imet.ac.ru
The efficiency of different techniques application for the investigation of orientation inhomogeneities in polycrystalline materials was studied using FEG SEM-FIB dual beam station equipped with EBSD. It is shown that for the visualization of pearlitic ferrite fragments it is more appropriate to acquire the images in secondary electrons induced by Ga ions. At the same time for the visualization of nano-sized particles it is more prospective to use images in forward scatter electrons in combination with IQ maps. It is established that pearlitic ferrite fragments are not flat. Complicated spatial configuration of orientation inhomogeneities in pearlitic ferrite is shown bymore » means of 3-d reconstruction. The features of ferrites aggregation are revealed depending on pearlitic ferrite fragmentation criterion. The existence of long-range misorientations in the aggregation area of proeutectoid and pearlitic ferrites is shown.« less
Metal-Organic Framework (MOF) Nanorods, Nanotubes, and Nanowires.
Arbulu, Roberto C; Jiang, Ying-Bing; Peterson, Eric J; Qin, Yang
2018-05-14
New mechanisms for the controlled growth of one-dimensional (1D) metal-organic framework (MOF) nano- and superstructures under size-confinement and surface-directing effects have been discovered. Through applying interfacial synthesis templated by track-etched polycarbonate (PCTE) membranes, congruent polycrystalline zeolitic imidazolate framework-8 (ZIF-8) solid nanorods and hollow nanotubes were found to form within 100 nm membrane pores, while single crystalline ZIF-8 nanowires grew inside 30 nm pores, all of which possess large aspect ratios up to 60 and show preferential crystal orientation with the {100} planes aligned parallel to the long axis of the pore. Our findings provide a generalizable method for controlling size, morphology, and lattice orientation of MOF nanomaterials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study Of The Perovskite to Post-Perovskite Transformation Using Multigrain Crystallography
NASA Astrophysics Data System (ADS)
Merkel, Sébastien; Langrand, Christopher; Hilairet, Nadège; Rosa, Angelika; Svitlyk, Volodymyr; Dobson, David
2017-04-01
At P/T conditions of the D'' layer, Bridgmanite transforms into its high-pressure phase of (Mg,Fe)SiO3 post-perovskite(pPv). Observations of seismic anisotropy in D'' are inferred to arise from textures and microstructures within pPv. Specifically, mantle flow is though to cause pPv to deform, creating lattice-preferred orientations (Merkel et al, 2006, 2007; Miyagi et al, 2010; Nisr et al, 2012). However, debates emerged in the literature whether experimentally observed textures were induced by plastic deformation of the sample or by phase transformation from a previous phase (Walte et al 2009, Okada et al, 2010, Miyagi et al, 2011) and whether this could explain the observed patterns of anisotropy in the lowermost mantle (Dobson et al, 2013). Here, we use multigrain crystallography (Sørensen et al, 2012) to characterize hundreds of crystals in a polycrystalline material in-situ as it is transforming. This technique has been recently adapted for Diamond Anvil Cell (DAC) high pressure experiments (Ice et al, 2005; Nisr et al, 2012, 2014; Barton et al, 2012; Zhang et al, 2013, 2016; Rosa et al, 2015, 2016). Potentially, DAC multigrain crystallography is useful for the determination of the orientation and position of individual grains with an average resolution in grain orientation and position below 0.2° and 5 μm, respectively (Langrand et al, in press). We will presents results on the potential resolution of the method with tests on (Mg,Fe)SiO3 itself and on how the method is now being used for tracking individual grains during the Pv/pPv transition in NaCoF3 up to 25 GPa and at T between 600-900 K. At 600 K, the sample transforms to powder rings and looses the grain microstructure. At 900 K, large grains are preserved as the sample fully transforms to pPv and back to Pv. At the end, the results of such experiments will be used to understand transformation mechanisms between Pv and pPv and the development of microstructures and anisotropy in the Earth's D'' layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonova, A. O., E-mail: aoantonova@mail.ru; Savyolova, T. I.
2016-05-15
A two-dimensional mathematical model of a polycrystalline sample and an experiment on electron backscattering diffraction (EBSD) is considered. The measurement parameters are taken to be the scanning step and threshold grain-boundary angle. Discrete pole figures for materials with hexagonal symmetry have been calculated based on the results of the model experiment. Discrete and smoothed (by the kernel method) pole figures of the model sample and the samples in the model experiment are compared using homogeneity criterion χ{sup 2}, an estimate of the pole figure maximum and its coordinate, a deviation of the pole figures of the model in the experimentmore » from the sample in the space of L{sub 1} measurable functions, and the RP-criterion for estimating the pole figure errors. Is is shown that the problem of calculating pole figures is ill-posed and their determination with respect to measurement parameters is not reliable.« less
NASA Astrophysics Data System (ADS)
Kokornaczyk, Maria Olga; Dinelli, Giovanni; Betti, Lucietta
2013-01-01
The present paper reports on an observation that dendrite-like polycrystalline structures from evaporating droplets of wheat grain leakages exhibit bilateral symmetry. The exactness of this symmetry, measured by means of fluctuating asymmetry, varies depending on the cultivar and stress factor influence, and seems to correspond to the seed germination rate. In the bodies of plants, animals, and humans, the exactness of bilateral symmetry is known to reflect the environmental conditions of an organism's growth, its health, and its success in sexual selection. In polycrystalline structures, formed under the same conditions, the symmetry exactness depends on the properties of the crystallizing solution such as the composition and viscosity; however, it has never been associated with sample quality. We hypothesize here that, as in living nature, the exactness of approximate bilateral symmetry might be considered a quality indicator also in crystallographic methods applied to food quality analysis.
NASA Technical Reports Server (NTRS)
Lockwood, A.; Wood, C.; Vandersande, J.; Zoltan, A.; Parker, J.; Danielson, L.; Alexander, M.; Whittenberger, D.
1987-01-01
Small amounts of second phase materials can have important effects on the thermoelectric properties of polycrystalline gamma-La(3-x)X4 (X-S, Te; X in the range of 0 to 1/3). Microscopic examination by SEM of hot pressed La(3-x)Te4 samples has revealed from 1-5 vol. pct of La2O2Te, an amount which is not detected by X-ray powder diffraction measurements. This amount of La2O2Te resulting from oxygen contamination can reduce the concentration of electrons by as much as 10 to 75 percent below the electron concentration calculated for single phase La(3-x)Te4 in the composition range of greatest interest. Small amounts of second phase materials can also lower the lattice thermal conductivity by scattering low frequency phonons. These results indicate that microstructural effects should be considered when electrical and thermal properties of polycrystalline materials are analyzed.
NASA Astrophysics Data System (ADS)
Fan, Liang; Lu, Huimin; Leng, Jing; Sun, Zegao; Chen, Chunbo
2015-12-01
Recently, aluminum-air (Al-air) batteries have received attention from researchers as an exciting option for safe and efficient batteries. The electrochemical performance of Aluminum anode remains an active area of investigation. In this paper, the electrochemical properties of polycrystalline Al, Al (001), (110) and (111) single crystals are investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 4 M NaOH and KOH. Hydrogen corrosion rates of the Al anodes are determined by hydrogen collection. Battery performance using the anodes is tested by constant current discharge at 10 mA cm-2. This is the first report showing that the electrochemical properties of Al are closely related to the crystallographic orientation in alkaline electrolytes. The (001) crystallographic plane has good corrosion resistance but (110) is more sensitive. Al (001) single crystals display higher anode efficiency and capacity density. Controlling the crystallographic orientation of the Al anode is another way to improve the performance of Al-air batteries in alkaline electrolytes.
Peng, Xiong; Karakalos, Stavros G; Mustain, William E
2018-01-17
Selective electrochemical reduction of CO 2 is one of the most important processes to study because of its promise to convert this greenhouse gas to value-added chemicals at low cost. In this work, a simple anodization treatment was devised that first oxidizes Ag to Ag 2 CO 3 , then uses rapid electrochemical reduction to create preferentially oriented nanoparticles (PONs) of metallic Ag (PON-Ag) with high surface area as well as high activity and very high selectivity for the reduction of CO 2 to CO. The PON-Ag catalyst was dominated by (110) and (100) orientation, which allowed PON-Ag to achieve a CO Faradaic efficiency of 96.7% at an operating potential of -0.69 V vs RHE. This performance is not only significantly higher than that of polycrystalline Ag (60% at -0.87 V vs RHE) but also represents one of the best combinations of activity and selectivity achieved to date - all with a very simple, scalable approach to electrode fabrication.
NASA Astrophysics Data System (ADS)
Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo
2016-03-01
Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.
Acoustic plane wave preferential orientation of metal oxide superconducting materials
Tolt, Thomas L.; Poeppel, Roger B.
1991-01-01
A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0
Investigation of post-thermal annealing on material properties of Cu-In-Zn-Se thin films
NASA Astrophysics Data System (ADS)
Güllü, H. H.; Parlak, M.
2017-12-01
The Cu-In-Zn-Se thin film was synthesized by changing the contribution of In in chalcopyrite CuInSe2 with Zn. The XRD spectra of the films showed the characteristic diffraction peaks in a good agreement with the quaternary Cu-In-Zn-Se compound. They were in the polycrystalline nature without any post-thermal process, and the main orientation was found to be in the (112) direction with tetragonal crystalline structure. With increasing annealing temperature, the peak intensities in preferred orientation became more pronounced and grain sizes were in increasing behavior from 6.0 to 25.0 nm. The samples had almost the same atomic composition of Cu0.5In0.5ZnSe2. However, EDS results of the deposited films indicated that there was Se re-evaporation and/or segregation with the annealing in the structure of the film. According to the optical analysis, the transmittance values of the films increased with the annealing temperature. The absorption coefficient of the films was calculated as around 105 cm-1 in the visible region. Moreover, optical band gap values were found to be changing in between 2.12 and 2.28 eV depending on annealing temperature. The temperature-dependent dark- and photo-conductivity measurements were carried out to investigate the electrical characteristics of the films.
Optical parametric oscillation in a random poly-crystalline medium: ZnSe ceramic
NASA Astrophysics Data System (ADS)
Ru, Qitian; Kawamori, Taiki; Lee, Nathaniel; Chen, Xuan; Zhong, Kai; Mirov, Mike; Vasilyev, Sergey; Mirov, Sergey B.; Vodopyanov, Konstantin L.
2018-02-01
We demonstrate an optical parametric oscillator (OPO) based on random phase matching in a polycrystalline χ(2) material, ZnSe. The subharmonic OPO utilized a 1.5-mm-long polished ZnSe ceramic sample placed at the Brewster's angle and was synchronously pumped by a Kerr-lens mode-locked Cr:ZnS laser with a central wavelength of 2.35 μm, a pulse duration of 62 fs, and a repetition frequency of 79 MHz. The OPO had a 90-mW pump threshold, and produced an ultrabroadband spectrum spanning 3-7.5 μm. The observed pump depletion was as high as 79%. The key to success in achieving the OPO action was choosing the average grain size of the ZnSe ceramic to be close to the coherence length ( 100 μm) for our 3-wave interaction. This is the first OPO that uses random polycrystalline material with quadratic nonlinearity and the first OPO based on ZnSe. Very likely, random phase matching in ZnSe and similar random polycrystalline materials (ZnS, CdS, CdSe, GaP) represents a viable route for generating few-cycle pulses and multi-octave frequency combs, thanks to a very broadband nonlinear response.
Vortex Flux Pinning in Type-Ii Superconductors
NASA Astrophysics Data System (ADS)
Hasan, Mohammad-Khair A. M.
1995-01-01
Rotational magnetization vector measurements on polycrystalline samples of rm YBa_2Cu _3O_7 (YBCO) and (Ba, K)BiO _3 at various fixed fields (H) and temperatures (T) reveal that the vortex flux density (B) in a rotational state consists of a component B_{rm R}, which rotates rigidly with sample rotation, and a B_{rm F} component, which stays at a fixed frictional angle (theta _{rm F}) relative to H. Also, B_{rm R} decreases and ultimately vanishes with increasing H, while B _{rm F} grows monotonically, implying that the vortex pinning strength have a broad distribution. This has been confirmed by the measurements on YBCO of the remanent flux density B^ {rm rm} which can be decomposed analogously into B_{R} ^{} and B_ {F}^{} at angle theta_{F}^{} relative to H. The quantity Hsin theta_{rm F},, which at equilibrium equals tau_{rm p}/mu (the average pinning torque per vortex of moment mu) decreases with increasing high H. This result and the distribution in the strength of the pinning are shown to be consistent with the collective pinning process of vortex bundling. At fixed H, tau_{rm p} decreases rapidly with increasing T, varying approximately as T^{-0.8} for both samples. For polycrystalline YBCO at 4.2 K, B_ {rm R} and B_{ rm F} are found to relax differently with time. The negative creep sign of B_ {rm R} indicates that the number of rotational vortices decreases with time, whereas B _{rm F} shows a positive creep with a negative change in theta_ {rm F}, which indicates that more frictional vortices enter the sample with a tendency of alignment in the direction of H. For grain-oriented YBCO at 4.2 K, the vortex creep measurements of B along the c-axis at different fields showed that: whenever the hysteretic changes of H are reversed in sign, the vortex flux creep (dB/dlogt) decreases very rapidly to zero, where it lingers before changing sign. At the same turning values of H, (dB/dH) also goes to zero. These properties are attributable to the reversals of the vortex motion which occur at the turning values of H and cause a reversal of frictional pinning forces.
Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.
Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate
2018-03-14
Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunt, A. J. G., E-mail: alexander.lunt@eng.ox.ac.uk; Xie, M. Y.; Baimpas, N.
2014-08-07
Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals.more » Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.« less
Fabrication of setup for high temperature thermal conductivity measurement.
Patel, Ashutosh; Pandey, Sudhir K
2017-01-01
In this work, we report the fabrication of an experimental setup for high temperature thermal conductivity (κ) measurement. It can characterize samples with various dimensions and shapes. Steady state based axial heat flow technique is used for κ measurement. Heat loss is measured using parallel thermal conductance technique. Simple design, lightweight, and small size sample holder is developed by using a thin heater and limited components. Low heat loss value is achieved by using very low thermal conductive insulator block with small cross-sectional area. Power delivered to the heater is measured accurately by using 4-wire technique and for this, the heater is developed with 4 wires. This setup is validated by using Bi 0.36 Sb 1.45 Te 3 , polycrystalline bismuth, gadolinium, and alumina samples. The data obtained for these samples are found to be in good agreement with the reported data. The maximum deviation of 6% in the value κ is observed. This maximum deviation is observed with the gadolinium sample. We also report the thermal conductivity of polycrystalline tellurium from 320 K to 550 K and the nonmonotonous behavior of κ with temperature is observed.
Molecular dynamics simulations of Li transport between cathode crystals
NASA Astrophysics Data System (ADS)
Garofalini, S. H.
The molecular dynamics (MD) computer simulation technique has been used to study the effect of an amorphous intergranular film (IGF) present in a polycrystalline cathode on Li transport. The solid electrolyte is a model lithium silicate glass while the cathode is a nanocrystalline vanadia with an amorphous V 2O 5 IGF separating the crystals. Thin (˜1 to a few nanometer thick) IGFs are known to be present in most polycrystalline oxide materials. However, the role of such a film on Li transport in oxide cathodes has not been addressed. Current scanning probe microscopy (SPM) studies have shown that the orientation of the layered nanocrystalline vanadia crystals near the cathode/solid electrolyte interface is not optimized for Li ion transport. While the precise structure of the material between the crystals has not been identified, initially it can be initially considered as likely to be a thin non-crystalline (amorphous) film. This is based on the ubiquitous presence of such a structure in other polycrystalline oxides. Also, and with more relevance to the materials used in thin film batteries, an amorphous film can be expected to form between nanocrystals that crystallized from an amorphous matrix, as would be the case in a deposited thin film cathode. Consistent with simulations of Li transport in amorphous vanadia, the current simulations show that Li ions diffuse more rapidly into the amorphous intergranular thin film than into the layered vanadia with the (0 0 1) planes parallel to the cathode/electrolyte interface.
Three dimensional grain boundary modeling in polycrystalline plasticity
NASA Astrophysics Data System (ADS)
Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman
2018-05-01
At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.
NASA Astrophysics Data System (ADS)
Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.
2012-03-01
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Optical reflectance and transmittance of photonic polycrystalline structures from living organisms
NASA Astrophysics Data System (ADS)
Vigneron, Jean-Pol; Bay, Annick; Colomer, Jean-François; Van Hooijdonk, Eloise; Simonis, Priscilla
2012-10-01
Scales from specific weevils, longhorns and butterflies have been shown to internally contain a photonic structure that can be described as the agglomeration of photonic crystallites. Usually, the same local photonic structure is found in all crystallites, with different orientations. This distribution is investigated by analysing a large amount of fractured scales. The visual effects produced by fractioning the photonic-crystal into the aggregation of reoriented photonic crystallites can be, for increasing disorder, (1) the loss of iridescence and the loss of metallicity for diffuse coloration, (2) the loss of coloration.
Observation of oxide particles below the apparent oxygen solubility limit in tantalum
NASA Technical Reports Server (NTRS)
Stecura, S.
1973-01-01
The apparent solubility of oxygen in polycrystalline tantalum as determined by the X-ray diffraction lattice parameter technique is about 1.63 atomic percent at 820 C. However, oxide particles were identified in samples containing as low as 0.5 atomic percent of oxygen. These oxide particles were present at the grain boundaries and within the grains. The number of oxide particles increased with increasing oxygen concentration in tantalum. The presence of oxide particles suggests that the true solubility of oxygen in the polycrystalline tantalum metal is probably significantly lower than that reported in the literature.
NASA Astrophysics Data System (ADS)
Devi Chandrasekhar, K.; Mallesh, S.; Krishna Murthy, J.; Das, A. K.; Venimadhav, A.
2014-09-01
We have presented the dielectric/impedance spectroscopy of La1-xPbxFeO3 (x=0.15 and 0.25) polycrystalline samples in a wide temperature and frequency range. They exhibited colossal dielectric permittivity and multiple relaxations. Temperature and field dependent magnetization study showed enhancement of magnetization upon Pb doping which has been ascribed to the defect driven magnetization phenomenon. Overall we have emphasized the formation of various kinds of defects and their influence on dielectric and magnetic properties in the system.
Dutel, Guy-Daniel; Langlois, Patrick; Tingaud, David; Vrel, Dominique; Dirras, Guy
2017-04-01
Data regarding bulk polycrystalline nickel samples obtained by powder metallurgy using Spark Plasma Sintering (SPS) are presented, with a special emphasis on the influence of a cold isostatic pre-compaction on the resulting morphologies and subsequent mechanical properties. Three types of initial powders are used, nanometric powders, micrometric powders and a mixture of the formers. For each type of powder, the SPS cycle has been optimized for the powders without pre-compaction and the same cycle has been used to also sinter pre-compacted powders.
NASA Astrophysics Data System (ADS)
Yashima, Isamu; Watanave, Hiroshi; Ogisu, Takayasu; Tsukuda, Ryouma; Sato, Susumu
1998-05-01
Bi2Te3-xSex (0≦x<1) polycrystalline solids are prepared by a hot press method and their thermoelectric properties are studied. The samples show the maximum value of Z = 2.3×10-3 K-1 at x=0.22. The lattice thermal conductivity is smaller than that of a single crystal. The lattice constant and power factor decrease upon increasing the selenium substitution while thermal conductivity decreases for x values up to 0.33 and becomes constant for x values greater than 0.33.
NASA Astrophysics Data System (ADS)
Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.
2016-03-01
Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization of the resin embedded (originally polycrystalline) silicate sample. We explore the astrophysical implications of this laboratory result as an upper limit to the effect of X-rays on the structure of cosmic silicates.
NASA Astrophysics Data System (ADS)
Marsilius, Mie; Granzow, Torsten; Jones, Jacob L.
2011-02-01
The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180° domain wall motion under electrical and mechanical poling loads. To distinguish between 180° and non-180° domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180° domains.
NASA Technical Reports Server (NTRS)
Graham, C. D., Jr.; Pope, D. P.; Kulkarni, S.; Wolf, M.
1978-01-01
The hot workability of polycrystalline silicon was studied. Uniaxail stress-strain curves are given for strain rates in the range of .0001 to .1/sec and temperatures from 1100 to 1380 C. At the highest strain rates at 1380 C axial strains in excess of 20% were easily obtainable without cracking. After deformations of 36%, recrystallization was completed within 0.1 hr at 1380 C. When the recrystallization was complete, there was still a small volume fraction of unrecyrstallized material which appeared very stable and may degrade the electronic properties of the bulk materials. Texture measurements showed that the as-produced vapor deposited polycrystalline rods have a 110 fiber texture with the 110 direction parallel to the growth direction and no preferred orientation about this axis. Upon axial compression perpendicular to the growth direction, the former 110 fiber axis changed to 111 and the compression axis became 110 . Recrystallization changed the texture to 110 along the former fiber axis and to 100 along the compression axis.
Evolutionary selection growth of two-dimensional materials on polycrystalline substrates
Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; ...
2018-03-12
There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here in this paper we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection approach, which is now realized in 2D geometry. The method relies on ‘self-selection’ of the fastest-growing domain orientation, which eventually overwhelms themore » slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h -1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.« less
Cooperative nucleation modes in polycrystalline CoxPd1-x nanowires
NASA Astrophysics Data System (ADS)
Viqueira, M. S.; Pozo-López, G.; Urreta, S. E.; Condó, A. M.; Cornejo, D. R.; Fabietti, L. M.
2015-05-01
Polycrystalline CoxPd1-x (x = 1, 0.60, 0.45, 0.23, and 0.11) cylindrical nanowires (ø = 18-35 nm, about 1 μm length) are produced by AC electrodeposition into hexagonally ordered alumina pores. Single-phase nanowires of an fcc Co-Pd solid solution, with randomly oriented equiaxed grains (7-12 nm) are obtained; in all the cases, the grain size is smaller than the wire diameter. The coercive field and the reduced remanence of Co-rich nanowire arrays are hardly sensitive to temperature within the range varying from 4 K to 300 K. On the other hand, in Pd-rich nanowires both magnitudes are smaller and they largely increase when cooling below 100 K. This behavior also depends on the mean grain size. These facts are systematized considering two main aspects: the non-trivial temperature and composition dependence of the crystalline anisotropy and the saturation magnetostriction in Co-Pd alloys; and a random anisotropy effect, which defines a nucleation localization length that may involve more than a single grain, and thus promotes more cooperative nucleation modes.
Evolutionary selection growth of two-dimensional materials on polycrystalline substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj
There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here in this paper we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection approach, which is now realized in 2D geometry. The method relies on ‘self-selection’ of the fastest-growing domain orientation, which eventually overwhelms themore » slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h -1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.« less
Nonequilibrium partitioning during rapid solidification of SiAs alloys
NASA Astrophysics Data System (ADS)
Kittl, J. A.; Aziz, M. J.; Brunco, D. P.; Thompson, M. O.
1995-02-01
The velocity dependence of the partition coefficient was measured for rapid solidification of polycrystalline Si-4.5 at% As and Si-9 at% As alloys induced by pulsed laser melting. The results constitute the first test of partitioning models both for the high velocity regime and for non-dilute alloys. The continuous growth model (CGM) of Aziz and Kaplan fits the data well, but with an unusually low diffusive speed of 0.46 m/s. The data show negligible dependence of partitioning on concentration, also consistent with the CGM. The predictions of the Hillert-Sundman model are inconsistent with partitioning results. Using the aperiodic stepwise growth model (ASGM) of Goldman and Aziz, an average over crystallographic orientations with parameters from independent single-crystal experiments is shown to be reasonably consistent with these polycrystalline partitioning results. The results, combined with others, indicate that the CGM without solute drag and its extension to lateral ledge motion, the ASGM, are the only models that fit the data for both solute partioning and kinetic undercooling interface response functions. No current solute drag models can match both partitioning and undercooling measurements.
Mesoscale Science with High Energy X-ray Diffraction Microscopy at the Advanced Photon Source
NASA Astrophysics Data System (ADS)
Suter, Robert
2014-03-01
Spatially resolved diffraction of monochromatic high energy (> 50 keV) x-rays is used to map microstructural quantities inside of bulk polycrystalline materials. The non-destructive nature of High Energy Diffraction Microscopy (HEDM) measurements allows tracking of responses as samples undergo thermo-mechanical or other treatments. Volumes of the order of a cubic millimeter are probed with micron scale spatial resolution. Data sets allow direct comparisons to computational models of responses that frequently involve long-ranged, multi-grain interactions; such direct comparisons have only become possible with the development of HEDM and other high energy x-ray methods. Near-field measurements map the crystallographic orientation field within and between grains using a computational reconstruction method that simulates the experimental geometry and matches orientations in micron sized volume elements to experimental data containing projected grain images in large numbers of Bragg peaks. Far-field measurements yield elastic strain tensors through indexing schemes that sort observed diffraction peaks into sets associated with individual crystals and detect small radial motions in large numbers of such peaks. Combined measurements, facilitated by a new end station hutch at Advanced Photon Source beamline 1-ID, are mutually beneficial and result in accelerated data reduction. Further, absorption tomography yields density contrast that locates secondary phases, void clusters, and cracks, and tracks sample shape during deformation. A collaboration led by the Air Force Research Laboratory and including the Advanced Photon Source, Lawrence Livermore National Laboratory, Carnegie Mellon University, Petra-III, and Cornell University and CHESS is developing software and hardware for combined measurements. Examples of these capabilities include tracking of grain boundary migrations during thermal annealing, tensile deformation of zirconium, and combined measurements of nickel superalloys and a titanium alloy under tensile forces. Work supported by NSF grant DMR-1105173
The Influence of Sn Orientation on the Electromigration of Idealized Lead-free Interconnects
NASA Astrophysics Data System (ADS)
Linares, Xioranny
As conventional lead solders are being replaced by Pb-free solders in electronic devices, the reliability of solder joints in integrated circuits (ICs) has become a high concern. Due to the miniaturization of ICs and consequently solder joints, the current density through the solder interconnects has increased causing electrical damage known as electromigration. Electromigration, atomic and mass migration due to high electron currents, is one of the most urgent reliability issues delaying the implementation of Pb-free solder materials in electronic devices. The research on Pb-free solders has mainly focused on the qualitative understanding of failure by electromigration. There has been little progress however, on the quantitative analysis of electromigration because of the lack of available material parameters, such as the effective charge, (z*), the driving force for electromigration. The research herein uses idealized interconnects to measure the z* of electromigration of Cu in Sn-3.0Ag-0.5Cu (SAC305) alloy under different experimental conditions. Planar SAC 305 interconnects were sandwiched between two Cu pads and subject to uniaxial current. The crystallographic orientation of Sn in these samples were characterized with electron backscatter diffraction (EBSD) and wavelength dispersive spectroscopy (WDS) before and after electromigration testing. Results indicate that samples with the c-axis aligned perpendicular to current flow, polycrystalline, and those with a diffusion barrier on the cathode side all inhibit the growth of intermetallic compounds (IMC). The effective charge values of Cu in SAC 305 under the different conditions tested were quantified for the first time and included in this dissertation. The following research is expected to help verify and improve the electromigration model and identify the desirable conditions to inhibit damage by electromigration in Pb-free solder joints.
NASA Astrophysics Data System (ADS)
Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi
2013-09-01
Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.
Development of Kawai-type multianvil technology using nano-polycrystalline diamond anvils
NASA Astrophysics Data System (ADS)
Irifune, T.; Kunimoto, T.
2016-12-01
Nano-polycrystalline diamond (NPD) developed at GRC, Ehime Univ., is known to be much harder than conventional sintered polycrystalline diamond (SD), and is potentially important as material for anvils for Kawai-type (6-8 type) multianvil apparatus (KMA), as well as for diamond anvil cell. We synthesized NPD rods with about 8 mm in both diameter and length using a 6000-ton press KMA (BOTCHAN-6000), which are cut by pulsed-laser to form cubes with 6 mm edge length and tested them as anvils for KMA. In situ X-ray observations were made to evaluate the produced pressures and sample images using the "6-6-8 assembly". A combination of semi-fired pyrophyllite gaskets and alumina ceramics pressure medium optimized for the NPD anvils with a truncation (TEL) of 1.0 mm yielded pressures up to 88 GPa at a press load of only 3.4 MN, which is nearly 60% higher than the pressure (56 GPa) reached using SD anvils with the identical cell assembly at the same press load. Moreover, the high X-ray transparency of NPD has enabled us to clearly see the sample image via the anvils, allowing diffraction measurements and observations of the sample shape even if the anvil gap becomes very small under such very high pressures. The use of NPD anvils should lead to new technology for mineral physics studies under the conditions of the Earth's lowermost mantle and possibly those of the core without scarifying the advantages of KMA over DAC.
NASA Astrophysics Data System (ADS)
Chang, Yun-Yuan; Jacobsen, Steven D.; Kimura, Masaki; Irifune, Tetsuo; Ohno, Ichiro
2014-03-01
The sound velocities and elastic moduli of transparent nano-polycrystalline diamond (NPD) have been determined by GHz-ultrasonic interferometry on three different bulk samples, and by resonant spectroscopy on a spherically fabricated NPD sample. We employ a newly-developed optical contact micrometer to measure the thickness of ultrasonic samples to ±0.05 μm with a spatial resolution of ∼50 μm in the same position of the GHz-ultrasonic measurements, resulting in acoustic-wave sound velocity measurements with uncertainties of 0.005-0.02%. The isotropic and adiabatic bulk and shear moduli of NPD measured by GHz-ultrasonic interferometry are KS0 = 442.5 (±0.5) GPa and G0 = 532.4 (±0.5) GPa. By rotating the shear-wave polarization direction, we observe no transverse anisotropy in this NPD. Using resonant sphere spectroscopy, we obtain KS0 = 440.3 (±0.5) GPa and G0 = 532.7 (±0.4) GPa. For comparison, we also measured by GHz-ultrasonic interferometry the elastic constants of a natural single-crystal type-IA diamond with about one-half the experimental uncertainty of previous measurements. The resulting Voigt-Reuss-Hill averaged bulk and shear moduli of natural diamond are KS0 = 441.8 (±0.8) GPa and G0 = 532.6 (±0.5) GPa, demonstrating that the bulk-elastic properties of transparent NPD are equivalent to natural single-crystal diamond as calculated from polycrystalline averaging of its elastic constants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Ujjal; Freppon, Daniel; Men, Long
2017-07-09
The ability to produce large-scale, reversible structural changes in a variety of materials by photoexcitation of a wide variety of azobenzene derivatives has been recognized for almost two decades. Because photoexcitation of trans-azobenzene produces the cis-isomer in solution, it has generally been inferred that the macroscopic structural changes occurring in materials are also initiated by a similar large-amplitude trans-to-cis isomerization. This paper provides the first demonstration that a trans-to-cis photoisomerization occurs in polycrystalline azobenzene, and is consistent with the previously hypothesized nature of the trigger in the photoactuated mechanisms of the materials in question. It is also demonstrated that undermore » low irradiance, trans-to-cis isomerization occurs in the solid (not via a pre-melted phase); and the presence of the cis-isomer thus lowers the melting point of the sample, providing a liquid phase. A variety of experimental techniques were employed, including X-ray diffraction measurements of polycrystalline azobenzene during exposure to laser irradiation and fluorescence measurements of the solid sample. Finally, a practical consequence of this work is that it establishes trans-azobenzene as an easily obtainable and well-defined control for monitoring photoinduced structural changes in X-ray diffraction experiments, using easily accessible laser wavelengths.« less
Divins, N. J.; Senanayake, S. D.; Casanovas, A.; ...
2015-01-19
The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO₂ cubes and CeO₂ rods tailored towards the production of hydrogen. At 650-700 K the hydrogen yield follows the trend RhPd/CeO₂-cubes > RhPd/CeO₂ -rods > RhPd/CeO₂- polycrystalline, whereas at temperatures higher than 800 K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO₂-cubes and RhPd/CeO₂ -rods for ESR at low temperature is mainly ascribed to higher water-gas shift activity and a strong interaction between the bimetallic -more » oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {100} and {110} ceria crystallographic planes during catalyst activation and ESR, but not on {111} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria« less
Magnetostriction Increase of Polycrystalline Fe-Al-B Thin Sheets after Thermomechanical Process
NASA Astrophysics Data System (ADS)
Dias, M. B. S.; Fulop, G. O.; Baldan, C. A.; Bormio-Nunes, C.
2017-12-01
Magnetostrictive materials are applied in several types of sensors, actuators, and energy harvesting. In particular, for AC devices, thin materials are desired to reduce eddy current losses. It is well known that the magnetostriction of single crystals and textured materials is higher than in polycrystalline ones, however, the cost and manufacture speed are crucial to be used as parts of commercial devices. Therefore, polycrystalline samples are strong candidates for common applications. In this work, (Fe x Al100- x )98.4B1.6 ( x = 86.6, 82 and 79.4) alloys were rolled down to 0.7 mm of thickness and annealed at 1473 K (1200 °C) for 2 hours aiming to reduce the thickness of the samples without deteriorating the magnetic properties. The alloys, even with higher contents of Al, were easily deformed to the thickness of 0.7 mm and this ability is attributed to the presence of the Fe2B phase. After the thermomechanical process, new isotropic recrystallized grains emerged and the longitudinal magnetostriction increased to 75.8, 16.9, and 3.2 pct, achieving 28.3, 28.4, and 28.8 ppm, respectively, for x = 86.6, 82, and 79.4. The piezomagnetic coefficient obtained of 4 nm/A is a suitable actuating sensitivity.
NASA Astrophysics Data System (ADS)
Barr, Amy C.; Stillman, David E.
2011-03-01
Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.
Effect of substrates on the molecular orientation of silicon phthalocyanine dichloride thin films
NASA Astrophysics Data System (ADS)
Deng, Juzhi; Baba, Yuji; Sekiguchi, Tetsuhiro; Hirao, Norie; Honda, Mitsunori
2007-05-01
Molecular orientations of silicon phthalocyanine dichloride (SiPcCl2) thin films deposited on three different substrates have been measured by near-edge x-ray absorption fine structure (NEXAFS) spectroscopy using linearly polarized synchrotron radiation. The substrates investigated were highly oriented pyrolitic graphite (HOPG), polycrystalline gold and indium tin oxide (ITO). For thin films of about five monolayers, the polarization dependences of the Si K-edge NEXAFS spectra showed that the molecular planes of SiPcCl2 on three substrates were nearly parallel to the surface. Quantitative analyses of the polarization dependences revealed that the tilted angle on HOPG was only 2°, which is interpreted by the perfect flatness of the HOPG surface. On the other hand, the tilted angle on ITO was 26°. Atomic force microscopy (AFM) observation of the ITO surface showed that the periodicity of the horizontal roughness is of the order of a few nanometres, which is larger than the molecular size of SiPcCl2. It is concluded that the morphology of the top surface layer of the substrate affects the molecular orientation of SiPcCl2 molecules not only for mono-layered adsorbates but also for multi-layered thin films.
Plastic strain arrangement in copper single crystals in sliding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumaevskii, Andrey V., E-mail: tch7av@gmail.com; Lychagin, Dmitry V., E-mail: dvl-tomsk@mail.ru; Tarasov, Sergei Yu., E-mail: tsy@ispms.tsc.ru
2014-11-14
Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zonesmore » were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.« less
Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Ding-wen; Balke, Nina; Kalinin, Sergei V
2011-01-01
A recently developed technique, electrochemical strain microscopy (ESM), utilizes the strong coupling between ionic current and anisotropic volumetric chemical expansion of lithium-ion electrode materials to dynamically probe the sub-one-hundred? nm inter-facial kinetic intercalation properties. A numerical technique based on the finite element method was developed to analyze the underlying physics that govern the ESM signal generation and establish relations to battery performance. The performed analysis demonstrates that the diffusion path within a thin film is tortuous and the extent of lithium diffusion into the electrode is dependent on the SPM-tip-imposed overpotential frequency. The detected surface actuation gives rise to themore » development of an electromechanical hysteresis loop whose shape is dependent on grain size and overpotential frequency. Shape and tilting angle of the loop are classified into low and high frequency regimes, separated by a transition frequency which is also a function of lithium diffusivity and grain size, f{sub T} = D//{sup 2}. Research shows that the crystallographic orientation of the surface actuated grain has a significant impact on the shape of the loop. The polycrystalline crystallographic orientation of the grains induces a diffusion path network in the electrode which impacts on the mechanical reliability of the battery. Simulations demonstrate that continuous battery cycling results in a cumulative capacity loss as a result of the hysteric non-reversible lithium intercalation. Furthermore, results suggest that ESM has the capability to infer the local out-of-plane lithium diffusivity and the out-of-plane contribution to Vegard tensor.« less
Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Ding-Wen; Balke, Nina; Kalinin, Sergei V.
2011-08-03
A recently developed technique, electrochemical strain microscopy (ESM), utilizes the strong coupling between ionic current and anisotropic volumetric chemical expansion of lithium-ion electrode materials to dynamically probe the sub-one-hundred? nm inter-facial kinetic intercalation properties. A numerical technique based on the finite element method was developed to analyze the underlying physics that govern the ESM signal generation and establish relations to battery performance. The performed analysis demonstrates that the diffusion path within a thin film is tortuous and the extent of lithium diffusion into the electrode is dependent on the SPM-tip-imposed overpotential frequency. The detected surface actuation gives rise to themore » development of an electromechanical hysteresis loop whose shape is dependent on grain size and overpotential frequency. Shape and tilting angle of the loop are classified into low and high frequency regimes, separated by a transition frequency which is also a function of lithium diffusivity and grain size, f T = D/l₂. Research shows that the crystallographic orientation of the surface actuated grain has a significant impact on the shape of the loop. The polycrystalline crystallographic orientation of the grains induces a diffusion path network in the electrode which impacts on the mechanical reliability of the battery. Simulations demonstrate that continuous battery cycling results in a cumulative capacity loss as a result of the hysteric non-reversible lithium intercalation. Furthermore, results suggest that ESM has the capability to infer the local out-of-plane lithium diffusivity and the out-of-plane contribution to Vegard tensor.« less
Sun, Tao; Fezzaa, Kamel
2016-06-17
Here, a high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD,more » researchers are able to perform diffraction peak indexing, extraction of one-dimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information.« less
Electroanalytical sensing of chromium(III) and (VI) utilising gold screen printed macro electrodes.
Metters, Jonathan P; Kadara, Rashid O; Banks, Craig E
2012-02-21
We report the fabrication of gold screen printed macro electrodes which are electrochemically characterised and contrasted to polycrystalline gold macroelectrodes with their potential analytical application towards the sensing of chromium(III) and (VI) critically explored. It is found that while these gold screen printed macro electrodes have electrode kinetics typically one order of magnitude lower than polycrystalline gold macroelectrodes as is measured via a standard redox probe, in terms of analytical sensing, these gold screen printed macro electrodes mimic polycrystalline gold in terms of their analytical performance towards the sensing of chromium(III) and (VI), whilst boasting additional advantages over the macro electrode due to their disposable one-shot nature and the ease of mass production. An additional advantage of these gold screen printed macro electrodes compared to polycrystalline gold is the alleviation of the requirement to potential cycle the latter to form the required gold oxide which aids in the simplification of the analytical protocol. We demonstrate that gold screen printed macro electrodes allow the low micro-molar sensing of chromium(VI) in aqueous solutions over the range 10 to 1600 μM with a limit of detection (3σ) of 4.4 μM. The feasibility of the analytical protocol is also tested through chromium(VI) detection in environmental samples.
NASA Astrophysics Data System (ADS)
Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.
2011-10-01
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (6.4 × 109 voxel each) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop. We discuss our findings in the context of previous studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Lima Batista, Anderson Márcio; Miranda, Marcus Aurélio Ribeiro; Martins, Fátima Itana Chaves Custódio
Several methods can be used to obtain, from powder diffraction patterns, crystallite size and lattice strain of polycrystalline samples. Some examples are the Scherrer equation, Williamson–Hall plots, Warren/Averbach Fourier decomposition, Whole Powder Pattern Modeling, and Debye function analysis. To apply some of these methods, it is necessary to remove the contribution of the instrument to the widths of the diffraction peaks. Nowadays, one of the main samples used for this purpose is the LaB6 SRM660b commercialized by the National Institute of Standard Technology; the width of the diffraction peak of this sample is caused only by the instrumental apparatus. However,more » this sample can be expensive for researchers in developing countries. In this work, the authors present a simple route to obtain micron-sized polycrystalline CeO 2that have a full width at half maximum comparable with the SRM660b and therefore it can be used to remove instrumental broadening.« less
NASA Astrophysics Data System (ADS)
Choudapur, V. H.; Bennal, A. S.; Raju, A. B.
2018-04-01
The ZnS nanomaterial is synthesized by hydrothermal method under optimized conditions using Zinc acetate and sodium sulphide as precursors. The Zinc Sulphide thin films are obtained by simple spin coating method with high optical transmittance. The prepared thin films are adhesive and uniform. The x-ray diffraction analysis showed that the films are polycrystalline in cubic phase with the preferred orientation along (111) direction. Current-voltage curves were recorded at room temperature using Keithley 617 programmable electrometer and conductivity is calculated for the film coated on ITO by two probe method. The pH of the solution is varied by using ammonia and hydrochloric acid. The comparative studies of effect of pH on the morphology, crystallanity and optoelectronic properties of the films are studied. It is observed that the pH of the solution has large influence on optoelectronic properties. The thin film prepared with neutral pH has higher crystallanity, bandgap and conductivity as compared to the samples prepared in acidic or basic solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khafizov, M.; Pakarinen, J.; He, L.
We report on imaging subsurface grain microstructure using picosecond ultrasonics. This approach relies on elastic anisotropy of crystalline materials where ultrasonic velocity depends on propagation direction relative to the crystal axes. Picosecond duration ultrasonic pulses are generated and detected using ultrashort light pulses. In materials that are transparent or semitransparent to the probe wavelength, the probe monitors GHz Brillouin oscillations. The frequency of these oscillations is related to the ultrasonic velocity and the optical index of refraction. Ultrasonic waves propagating across a grain boundary experience a change in velocity due to a change in crystallographic orientation relative to the ultrasonicmore » propagation direction. This change in velocity is manifested as a change in the Brillouin oscillation frequency. Using the ultrasonic propagation velocity, the depth of the interface can be determined from the location in time of the transition in oscillation frequency. An image of the grain boundary is obtained by scanning the beam along the surface. We demonstrate this volumetric imaging capability using a polycrystalline UO 2 sample. As a result, cross section liftout analysis of the grain boundaries using electron microscopy were used to verify our imaging results.« less
Spray deposition of highly transparent fluorine doped cadmium oxide thin films
NASA Astrophysics Data System (ADS)
Deokate, R. J.; Pawar, S. M.; Moholkar, A. V.; Sawant, V. S.; Pawar, C. A.; Bhosale, C. H.; Rajpure, K. Y.
2008-01-01
The cadmium oxide (CdO) and F:CdO films have been deposited by spray pyrolysis method using cadmium acetate and ammonium fluoride as precursors for Cd and F ions, respectively. The effect of temperature and F doping on the structural, morphological, optical and Hall effect properties of sprayed CdO thin films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical absorption and electrical measurement techniques. TGA and DTA studies, indicates the formation of CdO by decomposition of cadmium acetate after 250 °C. XRD patterns reveal that samples are polycrystalline with cubic structure and exhibits (2 0 0) preferential orientation. Considerable broading of (2 0 0) peak, simultaneous shifting of corresponding Bragg's angle have been observed with respect to F doping level. SEM and AFM show the heterogeneous distribution of cubical grains all over the substrate, which are randomly distributed. F doping shifts the optical gap along with the increase in the transparency of CdO films. The Hall effect measurement indicates that the resistivity and mobility decrease up to 4% F doping.
Stress and Microstructure Evolution during Transient Creep of Olivine at 1000 and 1200 °C
NASA Astrophysics Data System (ADS)
Thieme, M.; Demouchy, S. A.; Mainprice, D.; Barou, F.; Cordier, P.
2017-12-01
As the major constituent of Earth's upper mantle, olivine largely determines its physical properties. In the past, deformation experiments were usually run until steady state or to a common value of finite strain. Additionally, few studies were performed on polycrystalline aggregates at low to intermediate temperatures (<1100 °C). For the first time, we study the mechanical response and correlated microstructure as a function of incremental finite strains. Deformation experiments were conducted in uniaxial compression in an internally heated gas-medium deformation apparatus at temperatures of 1000 and 1200 °C, at strain rates of 10-5s-1 and under 300 MPa of confining pressure. Sample volumes are large with > 1.2 cm3. Finite strains range from 0.1 to 8.6 % and corresponding differential stresses range from 71 to 1073 MPa. Deformed samples were characterized by high resolution electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD maps with step sizes as low as 0.05 µm were aquired for the first time without introducing artifacts. The grain size ranges from 1.8 to 2.3 µm, with no significant change in between samples. Likewise, the texture and texture strength (J- and BA-index), grain shape and aspect ratio, density of geometrically necessary dislocations, grain orientation spread, subgrain boundary spacing and misorientation do not change significantly as a function of finite strain or temperature. The dislocation distribution is highly heterogeneous, with some grains remaining dislocation free. TEM shows grain boundaries acting as low activity sites for dislocation nucleation. Even during early mechanical steady state, plasticity seems not to affect grains in unfavorable orientations. We find no confirmation of dislocation entanglements or increasing dislocation densities being the reason for strain hardening during transient creep. This suggests other, yet not understood, mechanisms affecting the strength of deformed olivine. Futhermore, we will map disclinations (rotational topological defects) to estimate their contribution to the transient deformation regime.
Effect of texture on rheological properties: the case of ɛ-Fe (Invited)
NASA Astrophysics Data System (ADS)
Merkel, S.; Gruson, M.; Tomé, C. N.; Nishiyama, N.; Wang, Y.
2009-12-01
Lattice preferred orientations (LPO) are known to affect the physical properties of materials. However, in most high pressure deformation experiments, LPO are ignored when interpreting the measured stress-strain curves. In addition, stress measurements in those experiments are complicated by the effect of plastic deformation on the measured lattice strains(1). Here, we present a new interpretation of the results obtained on hcp-iron at up to 19 GPa and 600 K in the deformation-DIA(2). In those experiments, five independent stress-strain curves were obtained on axial shortening with a ductile behavior of the sample for all. Stress were studied using results of monochromatic X-ray diffraction and the elastic theory of lattice strains(3). However, measured stresses were inconsistent with a change of behavior after 4% axial strain, particularly for strains measured on the 0002 line. We use elasto-plastic self consistent modeling(1) to show that this change of behavior is due to the evolution of LPO in the sample. With compression, 10-10 planes in hcp-iron align parallel to the compression direction and this affects the rheological behavior of the sample, which can not be summarized in a simple average law. We will also discuss the implication of those results for the extraction of polycrystalline rheological properties for materials with non-random lattice preferred orientations and how this could affect our understanding of the Earth deep interior. 1- S. Merkel, C.N. Tomé, H.-R Wenk, A modeling analysis of the influence of plasticity on high pressure deformation of hcp-Co, Phys. Rev. B, 79, 064110 (2009) 2- N. Nishiyama, Y. Wang, M. L. Rivers, S. R. Sutton, D. Cookson, Rheology of e-iron up to 19 GPa and 600 K in the D-DIA, Geophys. Res. Lett., 34, L23304 (2007) 3- A. K. Singh, C. Balasingh, H. K. Mao, R. J. Hemley, J. Shu, Analysis of lattice strains measured under non-hydrostatic pressure, J. Appl. Phys., 83, 7567-7575 (1998)
Magnetic field induced enhancement of resistance in polycrystalline ZrTe5
NASA Astrophysics Data System (ADS)
Behera, Prakash; Bera, Sumit; Patidar, Manju Mishra; Singh, Durgesh; Mishra, A. K.; Krishnan, M.; Gangrade, M.; Deshpande, U. P.; Venkatesh, R.; Ganesan, V.
2018-04-01
Transport properties of the polycrystalline ZrTe5 showing a considerable positive Magneto-Resistance (MR) in the intermediate temperatures has been reported. Substantial shift of peak temperature by approximately 65 K with an applied magnetic field of 13.5 Tesla has been observed. Magneto resistance of this polycrystalline sample (˜100%) is comparable with its single crystalline counterpart reported in literature. The peak intensity scales with peak temperature and obeys reasonably the Dionne relationship that is a clear indication of polaron mediated conduction in this system. Magneto Resistance (MR) in this system is attributed to the two carrier polaronic conduction model similar to the Holstein's approach. The results are further complemented with the Peak shift in magnetic field expected for a system having a fraction of localized carrier density. This observation places this famous thermoelectric material that displays a topological Dirac to Weyl transition in magnetic field in to the family of materials that have potential technological applications in the liquid nitrogen temperature range viz. 85-150 K.
NASA Astrophysics Data System (ADS)
Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; He, Jian; Alshareef, Husam N.; Tritt, Terry M.
2014-05-01
Recently, we have reported a significant enhancement (>70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO3 ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO3. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr1-xPrxTiO3 ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.
Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals
Albright, Scot P.; Chamberlin, Rhodes R.
1996-03-26
A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.
NASA Astrophysics Data System (ADS)
Ashmawi, Waeil Muhammad Al-Anwar
New analytical and computational formulations have been developed for the investigation of micro structurally induced ductile failure mechanisms in porous polycrystalline aggregates with low and high (CSL) angle grain-boundaries (GBs). A multiple-slip rate-dependent crystalline constitutive formulation that is coupled to the evolution of mobile and immobile dislocation densities, a new internal porosity formulation for void nucleation and growth, and specialized computational schemes have been developed to obtain a detailed understanding of the multi-scale interrelated physical mechanisms that result in ductile failure in polycrystalline materials. Comprehensive transmission and pile-up mechanisms have also been introduced to investigate dislocation-density impedance and slip-rate incompatibility at the GBs. The interrelated effects of GB orientation, mobile and immobile dislocation densities, strain hardening, geometrical softening, localized plastic strains, and dislocation-density transmission and blockage on void growth, interaction, and coalescence have been studied. Criteria have been developed to identify and monitor the initiation and development of potential dislocation-density activity sites adjacent to GB regions. These interactions play an important role in the formation of GB pile-up and transmission regions. The effects of GB structure and orientation on ductile failure have been accounted for by the development of GB interfacial kinematic conditions that account for a multitude of dislocation-density interactions with GBs, such as full and partial transmission, impedance, blockage, and absorption. Pile-ups and transmission regions are identified and monitored as the deformation and failure evolve. These kinematic conditions are linked to the initiation and evolution of failure modes by the development of a new internal porosity evolution formulation that accounts for void nucleation and growth. The internal porosity relation is coupled with the proposed dislocation-density based crystalline constitutive formulation, the interfacial GB dislocation-density interaction models, and the specialized computational schemes to obtain detailed predictions of the behavior of aggregates with explicit voids that have different orientations and combinations of sizes, shapes, and spacings. Results from the present study indicate that material failure is a competition between different interrelated effects, such as stress triaxiality, accumulated plastic shear strain, temperature, dislocation density concentration, and grain and GB crystallographic orientations. For all void arrangements, as the void size is increased, specimen necking is diffuse and failure is concentrated in the ligament regions. Furthermore, there are more dislocation-density activity sites for potential transmission and pile-ups at the GBs. Failure is concentrated along the void peripheries and within intervoid ligaments. It has been shown that the evolution of the mobile dislocation density saturation curves, and their saturation rate are directly related to the aggregate response. Nucleation and growth for all void distributions have occurred in regions of maximum dislocation density and along preferred crystallographic orientations. Spatial distributions of porosity, accumulated plastic strains, and pressure have been obtained to further elucidate how these parameters evolve and affect void to void interaction in critical ligament and localized regions as a function of intervoid spacing and nominal strains. These failure predictions can be also used to identify intergranular and transgranular failure propagation. The present study underscores the importance of using dislocation-density based multiple-slip crystalline constitutive formulations and GB interfacial mechanisms that are consistent with experimental observations and results to accurately characterize the microstructural evolution of deformation and failure modes on a length scale that is commensurate with the material competition between the inherent strengthening and softening mechanisms of crystalline systems.
Numerical simulation of magnetic interactions in polycrystalline YFeO 3
NASA Astrophysics Data System (ADS)
Lima, E.; Martins, T. B.; Rechenberg, H. R.; Goya, G. F.; Cavelius, C.; Rapalaviciute, R.; Hao, S.; Mathur, S.
The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO 3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M( H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field ( HE=5590 kOe), anisotropy field ( HA=0.5 kOe) and Dzyaloshinsky-Moriya antisymmetric field ( HD=149 kOe) are in good agreement with previous reports on this system.
Stern, L.A.; Kirby, S.H.; Durham, W.B.
1998-01-01
We describe a new and efficient technique to grow aggregates of pure methane hydrate in quantities suitable for physical and material properties testing. Test specimens were grown under static conditions by combining cold, pressurized CH4 gas with granulated H2O ice, and then warming the reactants to promote the reaction CH4(g) + 6H2O(s???1) ??? CH4??6H2O (methane hydrate). Hydrate formation evidently occurs at the nascent ice/liquid water interface on ice grain surfaces, and complete reaction was achieved by warming the system above the ice melting point and up to 290 K, at 25-30 MPa, for approximately 8 h. The resulting material is pure, cohesive, polycrystalline methane hydrate with controlled grain size and random orientation. Synthesis conditions placed the H2O ice well above its melting temperature while reaction progressed, yet samples and run records showed no evidence for bulk melting of the unreacted portions of ice grains. Control experiments using Ne, a non-hydrate-forming gas, showed that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting are easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably to temperatures well above its ordinary melting point while reacting to form hydrate. Direct observations of the hydrate growth process in a small, high-pressure optical cell verified these conclusions and revealed additional details of the hydrate growth process. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T = 140-200 K, Pc = 50-100 MPa, and ?? = 10-4 10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to an unusually high degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; X-ray analyses showed that methane hydrate undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.
Ultrahigh pressure deformation of polycrystaline hcp-cobalt
NASA Astrophysics Data System (ADS)
Merkel, S.; Antonangeli, D.; Fiquet, G.; Yagi, T.
2003-12-01
During the past few years, a novel set of methods has been developed allowing direct measurements on elasticity and rheology under static ultrahigh pressures using synchrotron x-ray diffraction and the diamond anvil cell. In particular, the analysis on the development of texture and uniaxial stress in a polycrystalline sample under ultrahigh pressure and non-hydrostatic conditions yielded to very interesting results on the microscopic deformation mechanisms and strength of MgO, silicate perovskite or ɛ -Fe [eg. Merkel et al. 2002, Merkel et al. 2003]. However, our understanding of the properties of the ɛ phase of iron remains poor. There are considerable uncertainties and disagreement on the results of various experiments or first-principles calculations. In particular, the results of the radial diffraction measurement on ɛ -Fe [Mao et al. 1998] have been highly controversial. In order to address this issue, we performed investigations on polycrystalline hcp-cobalt. Its properties such as the bulk modulus and thermal expansion are very close to those of ɛ -Fe and it is readily available under ambient conditions. Thus, it is a well known material and results from the high pressure radial diffraction experiments can be compared with those from well-established techniques. In the present analysis, we performed a new set a measurements between 0 and 20 GPa under ambient temperature conditions at the ESRF synchrotron source using amorphous boron gasket, monochromatic x-ray beam, and imaging plate techniques. From such an experiment, we are able to extract information on non-hydrostatic stress, elasticity, and preferred orientations of the sample in-situ under high pressure and compare them with results obtained previously on ɛ -Fe. Documenting the evolution of stress, elasticity and texture in hcp metals is of great interest for our understanding of the bulk properties and seismic anisotropy of the Earth's inner core. S. Merkel et al., J. Geophys. Res. 107 (2002) doi: 10.129/2001JB000920. S. Merkel et al., Earth Planet. Sci. Lett. 209 (2003) 351. H. Mao et al., Nature 396 (1998), 741
New software to model energy dispersive X-ray diffraction in polycrystalline materials
NASA Astrophysics Data System (ADS)
Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.
2012-02-01
Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.
Study of structural and magnetic characterization of polycrystalline Y0.5Ho0.5CrO3
NASA Astrophysics Data System (ADS)
Mall, Ashish Kumar; Garg, Ashish; Gupta, Rajeev
2018-05-01
A polycrystalline ceramic sample of Y0.5Ho0.5CrO3 was studied using powder X-ray diffraction, Raman spectroscopic and dc magnetometry measurement to understand the structural and magnetic properties. The Rietveld refinement of X-ray data suggests sample crystallized in Pnma orthorhombic structure without formation of any secondary phases confirming their phase-pure nature. However, Raman study shows a prominent effect of Ho doping in low wavenumber Raman active phonon modes. Further, M-T measurement shows magnetic phase transition (TN) at 141 K and a negative value of Curie-Weiss temperature suggesting an antiferromagnetic system. Subsequent, the appearance of the clear opening in the M-H loop below TN is an evidence of the appearance of a weak ferromagnetic component in the low- temperature regime while the magnetization increases linearly in the high magnetic field regime suggest antiferromagnetic component.
Effect of selenium deficiency on the thermoelectric properties of n -type In 4 Se 3 - x compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, G. H.; Lan, Y. C.; Wang, H.
2011-03-01
Thermoelectric properties of dense bulk polycrystalline In 4 Se 3 - x ( x = 0, 0.25, 0.5, 0.65, and 0.8) compounds are investigated. A peak dimensionless thermoelectric figure of merit ( ZT ) of about 1 is achieved for x = 0.65 and 0.8. The peak ZT is about 50% higher than the previously reported highest value for polycrystalline In 4 Se 3 - x compounds. Our In 4 Se 3 - x samples were prepared by ball milling and hot pressing. We show that it is possible to effectively control the electrical conductivity and thermal conductivity by controllingmore » selenium (Se) deficiency x . The ZT enhancement is mainly attributed to the thermal conductivity reduction due to the increased phonon scattering by Se deficiency, defects, and nanoscale inclusions in the ball-milled and hot-pressed dense bulk In 4 Se 3 - x samples.« less
Effect of selenium deficiency on the thermoelectric properties of n-type In 4Se 3-x compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, G H; Lan, Y C; Wang, H
2011-03-04
Thermoelectric properties of dense bulk polycrystalline In 4Se 3-x (x = 0, 0.25, 0.5, 0.65, and 0.8) compounds are investigated. A peak dimensionless thermoelectric figure of merit (ZT) of about 1 is achieved for x = 0.65 and 0.8. The peak ZT is about 50% higher than the previously reported highest value for polycrystalline In 4Se 3-x} compounds. Our In 4Se 3-x samples were prepared by ball milling and hot pressing. We show that it is possible to effectively control the electrical conductivity and thermal conductivity by controlling selenium (Se) deficiency x. The ZT enhancement is mainly attributed to themore » thermal conductivity reduction due to the increased phonon scattering by Se deficiency, defects, and nanoscale inclusions in the ball-milled and hot-pressed dense bulk In 4Se 3-x samples.« less
Growth, characterization and device development in monocrystalline diamond films
NASA Astrophysics Data System (ADS)
Davis, R. F.; Glass, J. T.; Nemanich, R. J.; Bozeman, S. P.; Sowers, A. T.
1995-06-01
Experimental and theoretical studies concerned with interface interactions of diamond with Si, Ni, and Ni3Si substrates have been conducted. Oriented diamond films deposited on (100) Si were characterized by polar Raman, polar x-ray diffraction (XRD), and cross-sectional high resolution transmission electron microscopy (HRTEM). These sutides showed that the diamond(100)/Si(100) interface adopted the 3:2-match arrangement rather than a 45 deg rotation. Extended Hueckel tight-binding (EHTB) electronic structure calculations for a model system revealed that the interface interaction favors the 3:2-match arrangement. Growth on polycrystalline Ni3Si resulted in oriented diamond particles; under the same growth conditions, graphite was formed on the nickel substrate. Our EHTB electronic structure calculations showed that the (111) and (100) surfaces of Ni3Si have a strong preference for diamond nucleation over graphite nucleation, but this was not the case for the (111) and (100) surfaces of Ni.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melo, M.; Araújo, E. B., E-mail: eudes@dfq.feis.unesp.br; Shvartsman, V. V.
Polycrystalline lanthanum lead zirconate titanate (PLZT) thin films were deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates to study the effects of the thickness and grain size on their structural and piezoresponse properties at nanoscale. Thinner PLZT films show a slight (100)-orientation tendency that tends to random orientation for the thicker film, while microstrain and crystallite size increases almost linearly with increasing thickness. Piezoresponse force microscopy and autocorrelation function technique were used to demonstrate the existence of local self-polarization effect and to study the thickness dependence of correlation length. The obtained results ruled out the bulk mechanisms and suggest that Schottky barriersmore » near the film-substrate are likely responsible for a build-in electric field in the films. Larger correlation length evidence that this build-in field increases the number of coexisting polarization directions in larger grains leading to an alignment of macrodomains in thinner films.« less
Investigation of noble metal substrates and buffer layers for BiSrCaCuO thin films
NASA Astrophysics Data System (ADS)
Matthiesen, M. M.; Rubin, L. M.; Williams, K. E.; Rudman, D. A.
Noble metal buffer layers and substrates for Bi2Sr2CaCu2O8 (BSCCO) films were investigated using bulk ceramic processing and thin-film techniques. Highly oriented, superconducting BSCCO films were fabricated on polycrystalline Ag substrates and on Ag/MgO and Ag/YSZ structures. Such films could not be produced on Au or Pt substrates under any annealing conditions. In addition, superconducting BSCCO films could not be produced on Ag/Al2O3, Ag/SiO2/Si, or Ag/(Haynes 230 alloy) structures using high annealing temperatures (870 C). However, oriented although poorly connected, superconducting BSCCO films were fabricated on Ag/Al2O3 structures by using lower annealing temperatures (820 C). Once lower processing temperatures are optimized, Ag may be usable as a buffer layer for BSCCO films.
NASA Technical Reports Server (NTRS)
Hovel, H. J.; Vernon, S. M.
1982-01-01
The power to weight ratio of GaAs cells can be reduced by fabricating devices using thin GaAs films on low density substrate materials (silicon, glass, plastics). A graphoepitaxy technique was developed which uses fine geometric patterns in the substrate to affect growth. Initial substrates were processed by etching 25 microns deep grooves into 100 oriented wafers; fine-grained polycrystalline GaAs layers 25-50 microns thick were then deposited on these and recrystallization was performed, heating the substrates to above the GaAs melting point in ASH3 atmosphere, resulting in large grain regrowth oriented along the groove dimensions. Experiments with smaller groove depths and spacings were initially encouraging; single large GaAs grains would totally cover one and often two groove fields of 14 groove each spanning several hundred microns. Dielectric coatings on the grooved substrates were also used to modify the growth.
ZnO-based transparent conductive thin films via sonicated-assisted sol-gel technique
NASA Astrophysics Data System (ADS)
Malek, M. F.; Mamat, M. H.; Ismail, A. S.; Yusoff, M. M.; Mohamed, R.; Rusop, M.
2018-05-01
We report on the growth of Al-doped ZnO (AZO) thin films onto Corning 7740 glass substrates via sonicated-assisted sol-gel technique. The influence of Al dopant on crystallisation behavior, optical and electrical properties of AZO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction <002>. All films exhibit a transmittance above than 80-90 % along the visible range up to 800 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO.
Initial Growth of Single-Crystalline Nanowires: From 3D Nucleation to 2D Growth.
Huang, Xh; Li, Gh; Sun, Gz; Dou, Xc; Li, L; Zheng, Lx
2010-04-17
The initial growth stage of the single-crystalline Sb and Co nanowires with preferential orientation was studied, which were synthesized in porous anodic alumina membranes by the pulsed electrodeposition technique. It was revealed that the initial growth of the nanowires is a three-dimensional nucleation process, and then gradually transforms to two-dimensional growth via progressive nucleation mechanism, which resulting in a structure transition from polycrystalline to single crystalline. The competition among the nuclei inside the nanoscaled-confined channel and the growth kinetics is responsible for the structure transition of the initial grown nanowires.
Adhesion, friction, and wear of a copper bicrystal with (111) and (210) grains
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1973-01-01
Sliding friction experiments were conducted in air with polycrystalline copper and ruby riders sliding against a copper bicrystal. Friction coefficient was measured across the bicrystal surface, and the initiation of adhesive wear was examined with scanning electron microscopy. Results indicate a marked increase in friction coefficient as the copper rider crossed the grain boundary from the (111) plane to the (210) plane of the bicrystal. Adhesion, friction, and initiation of adhesive wear was notably different in the adjacent grains of differing orientation. A slip-band adhesion-generated fracture mechanism for wear particle formation is proposed.
Local texture and strongly linked conduction in spray-pyrolyzed TlBa2Ca2Cu3O(8+x) deposits
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.
Local texture in polycrystalline TlBa2Ca2 Cu3O(8+x) deposits has been determined from transmission electron microscopy, electron backscatter diffraction patterns and x-ray diffraction. The small-grained deposits had excellent c-axis alignment and contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range conduction utilizes a percolative network of small angle grain boundaries at colony intersections.
Structural and magnetic properties of non-stoichiometric Fe1-xO thin films
NASA Astrophysics Data System (ADS)
Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil
2018-04-01
The Fe1-xO thin films of various iron deficiencies (x) have been grown at ambient temperature by reactive dc magnetron sputtering technique and their structural and magnetic properties are studied. The structural study shows that the films are polycrystalline. As the iron content (1-x) varies from 0.924 to 0.855 a clear consistent change in the preferential orientation of the grains from [111] to the [200] direction is observed. The magnetization measurements show the possible existence of small superparamagnetic defect clusters at 300 K and large spinel-type defect clusters below the Neel temperature.
NASA Astrophysics Data System (ADS)
Puelles, Pablo; Ábalos, Benito; Fernández-Armas, Sergio
2010-05-01
Pre-Cambrian and unconformable earliest Cambrian rocks from the Sierra de la Demanda (N Spain) exhibit field and microstructural relationships that attest to orogenic events recorded by concealed basement rocks. Neoproterozoic foliated slates ("Anguiano Schists") crop out under up to 300 m thick, unfoliated quartz-rich conglomerates ("Anguiano Conglomerates") and quartzites which are stratigraphically ca. 600 m below the oldest, paleontologically dated, pre-trilobitic Cambrian layers (likely older than 520 Ma). The Anguiano Conglomerates contain mm to cm grainsized well-rounded pebbles of various types including monocrystalline quartz, detrital zircon and tourmaline-bearing sandstones, black cherts and metamorphic poly-crystalline quartz aggregates. The undeformed matrix is made of much smaller (diagenetically overgrown) monocrystaline quartz grains and minor amounts of accesory zircon, tourmaline and mica. Black chert pebbles exhibit microstructural evidence of brittle deformation (microfaults and thin veins of syntaxial fibrous quartz). These and the fine-grained sandstone pebbles can also exhibit ductile deformations (microfolds with thickened hinges and axial planar continuous foliations), too. Polycrystalline quartz pebbles exhibit a variety of microstructures that resulted from syn-metamorphic ductile deformations. These are recognisable under the petrographic microscope and include continuous foliations, quartz shape fabrics, various types of subgrain or recrystallized new grain microtextures, and lattice preferred orientations (LPOs). Conventional characterization of quartz fabrics (after oriented structural sections) is challenged in conglomerate pebble thin sections by the difficulty of unraveling in them the complete structural reference framework provided by foliation (whose trace can be unraveled) and lineation orientation (which cannot be directly identified). Quartz in various metamorphic polycrystalline pebbles was studied with the Electron Back-Scatter Diffraction (EBSD) technique. The identification of quartz c-axis point maxima or girdles and their geometrical relationships with respect to -axis arrangements and pebble foliation traces enabled us to identify the operation of basal and prism- and occasionally prism-[c] intracrystalline slip systems. This points to upper-greenschists and amphibolite facies syn-metamorphic deformations. By contrast, black chert and sandstone pebbles and matrix quartz aggregates lack any LPO. The source area of the conglomerates was likely a pre-Cambrian basement that contained penetratively deformed low- to medium-grade metamorphic rocks. Radiometric dating of this metamorphism has not been accomplished so far though it is known that inherited Precambrian sources in the Iberian Peninsula relate notably to Neoproterozoic (Pan-African and Cadomian) orogens, and to a lesser extent to Paleoproterozoic (1.8-2.1 Ga) or Neoarchean (2.4-2.8 Ga) ones. Neoproterozoic (Cadomian) metamorphism of this grade has only been recognized in SW Iberia. If the fabrics here studied were Cadomian, they might be related to the arc-related igneous suites that have been detected or inferred in other realms of the northern Iberian Massif.
Epitaxial growth and electrical transport properties of Cr{sub 2}GeC thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eklund, Per; Thin Film Physics Division, Linkoeping University, IFM, 581 83 Linkoeping; Bugnet, Matthieu
2011-08-15
Cr{sub 2}GeC thin films were grown by magnetron sputtering from elemental targets. Phase-pure Cr{sub 2}GeC was grown directly onto Al{sub 2}O{sub 3}(0001) at temperatures of 700-800 deg. C. These films have an epitaxial component with the well-known epitaxial relationship Cr{sub 2}GeC(0001)//Al{sub 2}O{sub 3}(0001) and Cr{sub 2}GeC(1120)//Al{sub 2}O{sub 3}(1100) or Cr{sub 2}GeC(1120)//Al{sub 2}O{sub 3}(1210). There is also a large secondary grain population with (1013) orientation. Deposition onto Al{sub 2}O{sub 3}(0001) with a TiN(111) seed layer and onto MgO(111) yielded growth of globally epitaxial Cr{sub 2}GeC(0001) with a virtually negligible (1013) contribution. In contrast to the films deposited at 700-800 deg. C,more » the ones grown at 500-600 deg. C are polycrystalline Cr{sub 2}GeC with (1010)-dominated orientation; they also exhibit surface segregations of Ge as a consequence of fast Ge diffusion rates along the basal planes. The room-temperature resistivity of our samples is 53-66 {mu}{Omega}cm. Temperature-dependent resistivity measurements from 15-295 K show that electron-phonon coupling is important and likely anisotropic, which emphasizes that the electrical transport properties cannot be understood in terms of ground state electronic structure calculations only.« less
Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda
2016-01-01
Introduction Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. Aim The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Materials and Methods Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. Results The light absorption values obtained from spectrofluorometeric study were 3300000–3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000–6500000 cps for Group 2 (polycrystalline ceramic brackets) and 2700000 –3000000 cps for Group 3 (sapphire ceramic brackets) i.e., Group 2 showed the highest light absorption and the least translucency followed by groups 1 and 3. Shear bond strength results were 2.4 mpa, 1.9 mpa and 3.6 mpa for groups 1,2 and 3 respectively. Superior shear bond strength was recorded in group 3 (sapphire ceramic brackets). ARI results showed that group 3 had increased bond between bracket adhesive interfaces when compared to the other 2 groups. Conclusion From this study, it has been concluded that sapphire ceramic brackets (Group 3) was superior in translucency and shear bond strength followed by monocrystalline and polycrystalline ceramic brackets. PMID:27656556
Mohamed, Jauhar P; Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda
2016-08-01
Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. The light absorption values obtained from spectrofluorometeric study were 3300000-3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000-6500000 cps for Group 2 (polycrystalline ceramic brackets) and 2700000 -3000000 cps for Group 3 (sapphire ceramic brackets) i.e., Group 2 showed the highest light absorption and the least translucency followed by groups 1 and 3. Shear bond strength results were 2.4 mpa, 1.9 mpa and 3.6 mpa for groups 1,2 and 3 respectively. Superior shear bond strength was recorded in group 3 (sapphire ceramic brackets). ARI results showed that group 3 had increased bond between bracket adhesive interfaces when compared to the other 2 groups. From this study, it has been concluded that sapphire ceramic brackets (Group 3) was superior in translucency and shear bond strength followed by monocrystalline and polycrystalline ceramic brackets.
Synthesis and characterization of iron based superconductor Nd-1111
NASA Astrophysics Data System (ADS)
Alborzi, Z.; Daadmehr, V.
2018-06-01
Polycrystalline sample of NdFeAsO0.8F0.2 was prepared by one-step solid-state reaction method. The structural and electrical properties of sample were characterized through XRD pattern and the 4-probe method. The critical temperature was obtained at 56 K. The crystal structure was tetragonal with P4/nmm:2 symmetry group.
Pre and post annealed low cost ZnO nanorods on seeded substrate
NASA Astrophysics Data System (ADS)
Nordin, M. N.; Kamil, Wan Maryam Wan Ahmad
2017-05-01
We wish to report the photonic band gap (where light is confined) in low cost ZnO nanorods created by two-step chemical bath deposition (CBD) method where the glass substrates were pre-treated with two different seeding thicknesses, 100 nm (sample a) and 150 nm (sample b), of ZnO using radio frequency magnetron sputtering. Then the samples were annealed at 600°C for 1 hour in air before and after immersed into the chemical solution for CBD process. To observe the presence of photonic band gap on the sample, UV-Visible-NIR spectrophotometer was utilized and showed that sample a and sample b both achieved wide band gap between 240 nm and 380 nm, within the UV range for typical ZnO, however sample b provided a better light confinement that may be attributed by the difference in average nanorods size. Field Emission Scanning Electron Microscope (FESEM) of the samples revealed better oriented nanorods uniformly scattered across the surface when substrates were coated with 100 nm of seeding layer whilst the 150 nm seeding sample showed a poor distribution of nanorods probably due to defects in the sample. Finally, the crystal structure of the ZnO crystallite is revealed by employing X-ray diffraction and both samples showed polycrystalline with hexagonal wurtzite structure that matched with JCPDS No. 36-1451. The 100 nm pre-seeded samples was recognized to have bigger average crystallite size, however sample b was suggested as having a higher crystalline quality. In conclusion, the sample b is recognized as a better candidate for future photonic applications due to its more apparent of photonic band gap and this may be contributed by more random distribution of the nanorods as observed in FESEM images as well as higher crystalline quality as suggested from XRD measurements.
Development of new metal-oxide thin film gas sensors by conductivity and workfunction correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doll, T.; Mutschall, D.; Winter, R.
1996-12-31
Commercially available semiconducting gas sensors usually are based on tin dioxide, although there is a wide variety of metal oxides with capabilities for gas sensing. This derives from restrictions to predict the gas sensitivity under real conditions from clean surface measurements or sensitivity deviations due to different preparation techniques. Hence tedious sample variation and testing is required. It is known that beside pure conductivity studies, combined methods provide a better distinction between preparation-dependent and general chemical effects. For samples with a polycrystalline grain size smaller than the Debye length of the material the correlation of workfunction responses A{Delta}{Phi} to conductivitymore » measurements with the relation {Delta}{Phi} {approximately} log G is one powerful combination. In the present paper, this comparison is shown for nickel oxide layers prepared in two different ways: Reactive sputtering, which leads to partly polycrystalline layers of grain sizes of about 5 to 15 nm according to, and amorphous nickel oxide prepared by ozone enhanced molecular beam epitaxy. The work function and conductivity responses to H{sub 2}, NH{sub 3}, NO{sub 2}, SO{sub 2}, CO and Cl{sub 2} in synthetic air show a very similar sensitivity for the amorphous and the polycrystalline nickeloxides which indicates that the above mentioned correlation range includes amorphous states, too.« less
Triphasic Tooling with Small Oriented Diamond Tip for Turning and Smoothing Lightweight Mirrors
NASA Technical Reports Server (NTRS)
Voronov, O. A.; Tompa, G. S.; Kear, B. H.; Veress, V.
2004-01-01
We are developing a new method for the growth of small diamond crystals at very high temperatures and pressures directly from a carbon melt. A prototype "Supercell" has been developed for this purpose. This system is capable of high rate crystal growth in relatively large working volumes. The resulting high quality diamond crystals will be incorporated into a triphasic diamond/titanium carbide/titanium composite tool, with an oriented diamond crystal at its tip. High pressure is needed to prevent degradation of diamond at high temperature, and to ensure the formation of a crack & composite structure. After grinding and polishing, the composite material will be joined to a steel holder, thus forming a diamond-tipped tool for turning and smoothing of a mirror surface. A properly oriented single-crystal diamond cuts and smoothes much better than a conventional polycrystalline diamond crystal. This is because the hardness depends on crystallographic orientation-the difference corresponds to 60-100 GPa on the Knoop scale. Our goal is to achieve surface roughness of about 1 nm, which will be accomplished by precision cutting and smoothing. The hardness of the functionally-graded diamond/titanium carbide/titanium composite tool varies from 100 GPa at its tip to 15 GPa at its base. Previous work has shown that the mass of machined material using an oriented-diamond tool is much larger than that for a standard diamond-metal composite tool.
Thermal transport properties of polycrystalline Pb2FeMoO6
NASA Astrophysics Data System (ADS)
Yuan, Xueping; Xu, Mingxiang
2018-06-01
Thermoelectric properties and specific heat of polycrystalline Pb2FeMoO6 have been systematically studied. The thermal conductivity increases monotonically with increasing of temperature, and reaches the maximum value 1.50 W m‑1 K‑1 at 350 K. The relatively low thermal conductivity is mainly attributed to the strong scattering effect of phonons at Fe/Mo sites. The negative Seebeck coefficient indicates the n-type conduction of the sample. The absolute value of S increases up to 20 μV K‑1 at 350 K. Due to the inhomogeneity resulting from Fe/Mo ions disorder, no distinct λ-type specific heat peak or anomaly typical for second-order transitions are observed.
Structural, dielectric and impedance studies of polycrystalline La0.6Dy0.2Ca0.2MnO3
NASA Astrophysics Data System (ADS)
Nandan, K. R.; Kumar, A. Ruban
2017-05-01
Polycrystalline materials of Dy doped La1-xCaxMnO3 were prepared by Sol-Gel technique using citric acid as a chelating agent at 900°C. The compound was analyzed by powder X-ray diffraction technique and confirmed to be single phased orthorhombic perovskite structure with space group Pnma. From the dielectric and impedance studies confirmed the existence of dielectric relaxation and presence of space charge were observed from the dielectric constant and impedance plots respectively and confirms the existence of relaxation due to oxygen vacancy. Cole-cole plot confirms the presence of dielectric relaxation and grain contribution in the synthesized sample.
NASA Astrophysics Data System (ADS)
Zhu, Yuping; Chen, Tao; Teng, Yao; Liu, Bingfei; Xue, Lijun
2016-11-01
Directionally solidified, polycrystalline Ni-Mn-Ga is studied in this paper. The polycrystalline Ni-Mn-Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading-unloading cycle were measured. The experimental results show that the mechanical behavior during the loading-unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications.
Process Research of Polycrystalline Silicon Material (PROPSM)
NASA Technical Reports Server (NTRS)
Culik, J. S.
1984-01-01
An investigation was begun into the usefulness of molecular hydrogen annealing on polycrystalline solar cells. No improvement was realized even after twenty hours of hydrogenation. Thus, samples were chosen on the basis of: (1) low open circuit voltage; (2) low shunt conductance; and (3) high light generated current. These cells were hydrogenated in molecular hydrogen at 300 C. The differences between the before and after hydrogenation values are so slight as to be negligible. These cells have light generated current densities that indicate long minority carrier diffusion lengths. The open circuit voltage appears to be degraded, and quasi-neutral recombination current enhanced. Therefore, molecular hydrogen is not usful for passivating electrically active defects.
Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D; Renevier, Hubert; Consonni, Vincent
2017-03-03
The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol-gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 10 7 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.
NASA Astrophysics Data System (ADS)
Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D.; Renevier, Hubert; Consonni, Vincent
2017-03-01
The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol-gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.
NASA Astrophysics Data System (ADS)
Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam
2018-03-01
The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillemin, Sophie; Parize, Romain; Carabetta, Joseph
The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscaleengineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol–gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on themore » macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscaleengineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.« less
NASA Astrophysics Data System (ADS)
Lebyodkin, M. A.; Lebedkina, T. A.; Shashkov, I. V.; Gornakov, V. S.
2017-07-01
Magnetization reversal of polycrystalline NiFe/NiO bilayers was investigated using magneto-optical indicator film imaging and acoustic emission techniques. Sporadic acoustic signals were detected in a constant magnetic field after the magnetization reversal. It is suggested that they are related to elastic waves excited by sharp shocks in the NiO layer with strong magnetostriction. Their probability depends on the history and number of repetitions of the field cycling, thus testifying the thermal-activation nature of the long-time relaxation of an antiferromagnetic order. These results provide evidence of spontaneous thermally activated switching of the antiferromagnetic order in NiO grains during magnetization reversal in ferromagnet/antiferromagnet (FM/AFM) heterostructures. The respective deformation modes are discussed in terms of the thermal fluctuation aftereffect in the Fulcomer and Charap model which predicts that irreversible breakdown of the original spin orientation can take place in some antiferromagnetic grains with disordered anisotropy axes during magnetization reversal of exchange-coupled FM/AFM structures. The spin reorientation in the saturated state may induce abrupt distortion of isolated metastable grains because of the NiO magnetostriction, leading to excitation of shock waves and formation of plate (or Lamb) waves.
Lim, H.; Hale, L. M.; Zimmerman, J. A.; ...
2015-01-05
In this study, we develop an atomistically informed crystal plasticity finite element (CP-FE) model for body-centered-cubic (BCC) α-Fe that incorporates non-Schmid stress dependent slip with temperature and strain rate effects. Based on recent insights obtained from atomistic simulations, we propose a new constitutive model that combines a generalized non-Schmid yield law with aspects from a line tension (LT) model for describing activation enthalpy required for the motion of dislocation kinks. Atomistic calculations are conducted to quantify the non-Schmid effects while both experimental data and atomistic simulations are used to assess the temperature and strain rate effects. The parameterized constitutive equationmore » is implemented into a BCC CP-FE model to simulate plastic deformation of single and polycrystalline Fe which is compared with experimental data from the literature. This direct comparison demonstrates that the atomistically informed model accurately captures the effects of crystal orientation, temperature and strain rate on the flow behavior of siangle crystal Fe. Furthermore, our proposed CP-FE model exhibits temperature and strain rate dependent flow and yield surfaces in polycrystalline Fe that deviate from conventional CP-FE models based on Schmid's law.« less
NASA Astrophysics Data System (ADS)
Saouane, I.; Chaker, A.; Zaidi, B.; Shekhar, C.
2017-03-01
This paper describes the mathematical model used to determine the amount of solar radiation received on an inclined solar photovoltaic panel. The optimum slope angles for each month, season, and year have also been calculated for a solar photovoltaic panel. The optimization of the procedure to maximize the solar energy collected by the solar panel by varying the tilt angle is also presented. As a first step, the global solar radiation on the horizontal surface of a thermal photovoltaic panel during clear sky is estimated. Thereafter, the Muneer model, which provides the most accurate estimation of the total solar radiation at a given geographical point has been used to determine the optimum collector slope. Also, the Ant Colony Optimization (ACO) algorithm was applied to obtain the optimum tilt angle settings for PV collector to improve the PV collector efficiency. The results show good agreement between calculated and predicted results. Additionally, this paper presents studies carried out on the polycrystalline silicon solar panels for electrical energy generation in the city of Ghardaia. The electrical energy generation has been studied as a function of amount of irradiation received and the angle of optimum orientation of the solar panels.
Usher, Tedi -Marie; Levin, Igor; Daniels, John E.; ...
2015-10-01
In this study, the atomic-scale response of dielectrics/ferroelectrics to electric fields is central to their functionality. Here we introduce an in situ characterization method that reveals changes in the local atomic structure in polycrystalline materials under fields. The method employs atomic pair distribution functions (PDFs), determined from X-ray total scattering that depends on orientation relative to the applied field, to probe structural changes over length scales from sub-Ångstrom to several nanometres. The PDF is sensitive to local ionic displacements and their short-range order, a key uniqueness relative to other techniques. The method is applied to representative ferroelectrics, BaTiO 3 andmore » Na ½Bi ½TiO 3, and dielectric SrTiO 3. For Na ½Bi ½TiO 3, the results reveal an abrupt field-induced monoclinic to rhombohedral phase transition, accompanied by ordering of the local Bi displacements and reorientation of the nanoscale ferroelectric domains. For BaTiO 3 and SrTiO 3, the local/nanoscale structural changes observed in the PDFs are dominated by piezoelectric lattice strain and ionic polarizability, respectively.« less
Correlating sampling and intensity statistics in nanoparticle diffraction experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öztürk, Hande; Yan, Hanfei; Hill, John P.
2015-07-28
It is shown in a previous article [Öztürk, Yan, Hill & Noyan (2014).J. Appl. Cryst.47, 1016–1025] that the sampling statistics of diffracting particle populations within a polycrystalline ensemble depended on the size of the constituent crystallites: broad X-ray peak breadths enabled some nano-sized particles to contribute more than one diffraction spot to Debye–Scherrer rings. Here it is shown that the equations proposed by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] (AKK) to link diffracting particle and diffracted intensity statistics are not applicable if the constituent crystallites of the powder are below 10 nm. In this size range, (i) themore » one-to-one correspondence between diffracting particles and Laue spots assumed in the AKK analysis is not satisfied, and (ii) the crystallographic correlation between Laue spots originating from the same grain invalidates the assumption that all diffracting plane normals are randomly oriented and uncorrelated. Such correlation produces unexpected results in the selection of diffracting grains. For example, three or more Laue spots from a given grain for a particular reflection can only be observed at certain wavelengths. In addition, correcting the diffracted intensity values by the traditional Lorentz term, 1/cos θ, to compensate for the variation of particles sampled within a reflection band does not maintain fidelity to the number of poles contributing to the diffracted signal. A new term, cos θ B/cos θ, corrects this problem.« less
Correlating Sampling and Intensity Statistics in Nanoparticle Diffraction Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Hande; Yan, Hanfei; Hill, John P.
2015-08-01
In this article, [Öztürk, Yan, Hill & Noyan (2014). J. Appl. Cryst. 47, 1016-1025] it was shown that the sampling statistics of diffracting particle populations within a polycrystalline ensemble depended on the size of the constituent crystallites: broad X-ray peak breadths enabled some nano-sized particles to contribute more than one diffraction spot to Debye-Scherrer rings. Here it is shown that the equations proposed by Alexander, Klug & Kummer [J. Appl. Phys. (1948), 19, 742-753] (AKK) to link diffracting particle and diffracted intensity statistics are not applicable if the constituent crystallites of the powder are below 10 nm. In this sizemore » range, (i) the one-to-one correspondence between diffracting particles and Laue spots assumed in the AKK analysis is not satisfied, and (ii) the crystallographic correlation between Laue spots originating from the same grain invalidates the assumption that all diffracting plane normals are randomly oriented and uncorrelated. Such correlation produces unexpected results in the selection of diffracting grains. Three or more Laue spots from a given grain for a particular reflection can only be observed at certain wavelengths. In addition, correcting the diffracted intensity values by the traditional Lorentz term, 1/cos [theta], to compensate for the variation of particles sampled within a reflection band does not maintain fidelity to the number of poles contributing to the diffracted signal. A new term, cos [theta]B/cos [theta], corrects this problem.« less
Rüdiger, Celine; Favaro, Marco; Valero-Vidal, Carlos; Calvillo, Laura; Bozzolo, Nathalie; Jacomet, Suzanne; Hejny, Clivia; Gregoratti, Luca; Amati, Matteo; Agnoli, Stefano; Granozzi, Gaetano; Kunze-Liebhäuser, Julia
2016-04-07
Composite materials of titania and graphitic carbon, and their optimized synthesis are highly interesting for application in sustainable energy conversion and storage. We report on planar C/TiO2 composite films that are prepared on a polycrystalline titanium substrate by carbothermal treatment of compact anodic TiO2 with acetylene. This thin film material allows for the study of functional properties of C/TiO2 as a function of chemical composition and structure. The chemical and structural properties of the composite on top of individual Ti substrate grains are examined by scanning photoelectron microscopy and micro-Raman spectroscopy. Through comparison of these data with electron backscatter diffraction, it is found that the amount of generated carbon and the grade of anodic film crystallinity correlate with the crystallographic orientation of the Ti substrate grains. On top of Ti grains with ∼(0001) orientations the anodic TiO2 exhibits the highest grade of crystallinity, and the composite contains the highest fraction of graphitic carbon compared to Ti grains with other orientations. This indirect effect of the Ti substrate grain orientation yields new insights into the activity of TiO2 towards the decomposition of carbon precursors.
Structural studies on the substitution of Ag, Na doped LCSMO CMR manganites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subhashini, P., E-mail: subhashinisvu@gmail.com; Krishnaiah, M.; Munirathinam, B.
2016-05-06
Synthesis and characterization of colossal magnetoresistance (CMR) materials has been a subject of scientific research due to the unique transport, magnetotransport, and magnetic properties. The single phase polycrystalline La{sub 0.7}Ca{sub 0.1}Sr{sub 0.1}M{sub 0.1}MnO{sub 3} (LCSMO) (M=Ag and Na) samples prepared using nitrate route method. The structural properties are studied at different dopants by X-ray diffraction. The surface morphology and elemental analysis of both samples were carried out by scanning electron microscopy (SEM) and energy dispersive X-ray technique (EDAX) respectively. The structural analysis shows that the LCSMO is crystallized in an orthorhombic perovskite structure belonging to Pnma space group. The crystalmore » size of the sample is calculated using Scherrer formula. The SEM images show that the polycrystalline grains are observed to be near spherical shape and uniform in size. EDAX spectra taken from the surface of the synthesized powders show a nominal composition near the desired one for M=Na sample where as some vacancies are present in the A-site in the case of Ag substitution as will be discussed in this paper.« less
Mechanical characterization of poly-SiGe layers for CMOS-MEMS integrated application
NASA Astrophysics Data System (ADS)
Modlinski, Robert; Witvrouw, Ann; Verbist, Agnes; Puers, Robert; De Wolf, Ingrid
2010-01-01
Measuring mechanical properties at the microscale is essential to understand and to fabricate reliable MEMS. In this paper a tensile testing system and matching microscale test samples are presented. The test samples have a dog-bone-like structure. They are designed to mimic standard macro-tensile test samples. The micro-tensile tests are used to characterize 0.9 µm thick polycrystalline silicon germanium (poly-SiGe) films. The poly-SiGe film, that can be considered as a close equivalent to polycrystalline silicon (poly-Si), is studied as a very promising material for use in CMOS/MEMS integration in a single chip due to its low-temperature LPCVD deposition (T < 450 °C). The fabrication process of the poly-SiGe micro-tensile test structure is explained in detail: the design, the processing and post-processing, the testing and finally the results' discussion. The poly-SiGe micro-tensile results are also compared with nanoindentation data obtained on the same poly-SiGe films as well as with results obtained by other research groups.
Effect of carbon ion irradiation on Ag diffusion in SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.
Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with Cmore » 2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less
Effect of carbon ion irradiation on Ag diffusion in SiC
Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; ...
2015-11-14
Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with Cmore » 2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less
NASA Astrophysics Data System (ADS)
Lim, Edmund H. H.; Liew, Josephine Y. C.; Awang Kechik, M. M.; Halim, S. A.; Chen, S. K.; Tan, K. B.; Qi, X.
2017-06-01
Polycrystalline samples with nominal composition FeTe1- x S x ( x = 0.00-0.30) were synthesized via solid state reaction method with intermittent grinding in argon gas flow. X-ray diffraction (XRD) patterns revealed the tetragonal structure (space group P4/nmm) of the samples with the presence of impurities Fe3O4 and FeTe2. By substitution with S, the a and c lattice parameters shrink probably due to the smaller ionic radius of S2- compared to Te2-. Scanning electron microscopy images showed that the samples developed plate-like grains with increasing S substitution. Substitution of Te with S suppresses the structural transition of the parent compound FeTe as shown by both the temperature dependence of resistance and magnetic moment measurements. All of the S-substituted samples showed a rapid drop of resistance at around 9-10 K but zero resistance down to 4 K was not observed. In addition, negative magnetic moment corresponds to diamagnetism was detected in the samples for x = 0.25 and 0.30 suggesting the coexistence of magnetic and superconducting phase in these samples. The magnetization hysteresis loops measured at room temperature showed ferromagnetic behavior for the pure and S substituted samples. However, the magnetization, rentivity and coercivity decreased with S content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehkordi, Arash Mehdizadeh, E-mail: amehdiz@g.clemson.edu; Bhattacharya, Sriparna; He, Jian
2014-05-12
Recently, we have reported a significant enhancement (>70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO{sub 3} ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO{sub 3}. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr{sub 1−x}Pr{sub x}TiO{sub 3} ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factormore » and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.« less
Nanostructural evolution and behavior of H and Li in ion-implanted γ-LiAlO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Weilin; Zhang, Jiandong; Edwards, Danny J.
In-situ He+ ion irradiation is performed under a helium ion microscope to study nanostructural evolution in polycrystalline gamma-LiAlO2 pellets. Various locations within a grain, across grain boundaries and at a cavity are selected. The results exhibit He bubble formation, grain-boundary cracking, nanoparticle agglomeration, increasing surface brightness with dose, and material loss from the surface. Similar brightening effects at grain boundaries are also observed under a scanning electron microscope. Li diffusion and loss from polycrystalline gamma-LiAlO2 is faster than its monocrystalline counterpart during H2+ ion implantation at elevated temperatures. There is also more significant H diffusion and release from polycrystalline pelletsmore » during thermal annealing of 300 K implanted samples. Grain boundaries and cavities could provide a faster pathway for H and Li diffusion. H release is slightly faster from the 573 K implanted monocrystalline gamma-LiAlO2 during annealing at 773 K. Metal hydrides could be formed preferentially along the grain boundaries to immobilize hydrogen.« less
Improved dielectric properties of BaTiO3-added CaCu3Ti4O12 polycrystalline ceramics
NASA Astrophysics Data System (ADS)
Kim, Hui Eun; Choi, Soon-Mi; Lee, Sung-Yun; Hong, Youn-Woo; Yoo, Sang-Im
2013-05-01
The effects of the BaTiO3 (BTO) additive on the electrical properties of CaCu3Ti4O12 (CCTO) polycrystalline ceramics were systematically investigated. Various amounts of BTO powder up to 15 mol. % were added to CCTO powder. Each batch was ball-milled, pressed into pellets, and finally sintered at 1060°C for 12 h in air. Compared with pure CCTO sample ( ɛ r ˜ 52,000 and tan δ ˜ 0.38 at 100 kHz), BTO-added CCTO samples commonly showed significantly reduced dielectric losses although their dielectric constants were decreased approximately by one order of magnitude (for instance, ɛ r ˜ 4,075 and tan δ ˜ 0.02 at 100 kHz for 5 mol. % BTO-added CCTO sample). In addition, the breakdown voltages of BTO-added CCTO samples were much higher than that of pure CCTO sample, and thus the leakage currents were greatly reduced at the applied voltage above ˜ 10 V. A large reduction in the dielectric losses and leakage currents is attributed to the secondary phases segregated at the CCTO grain boundary which are composed of CaTiO3, Ba4Ti12O27, and unreacted BTO.
NASA Astrophysics Data System (ADS)
Lee, Sang Young; Lee, J. H.; Han, Jung Hoon; Moon, S. H.; Lee, H. N.; Booth, James C.; Claassen, J. H.
2005-03-01
The surface resistance (RS) and the real part (σ1) of the microwave complex conductivity of a ˜380-nm -thick polycrystalline MgB2 film with the critical temperature (TC) of 39.3K were investigated at frequency ˜8.5GHz as a function of temperature. Two distinct coherence peaks were observed in the σ1 vs temperature curve at Ttilde 0.5TC and ˜0.9TC , respectively, providing a direct evidence for the two-gap nature of MgB2 . The film is shown to have a π -band gap energy of ˜1.7meV . For the MgB2 film ion milled down to the thickness of ˜320nm , two coherence peaks were still observable with the first conductivity peak at ˜0.6TC . The inferred π -band gap energy of ˜2.0meV is higher than before ion milling. Reduced normal-state conductivity at TC and RS at temperatures below 15K were found for the ion-milled film. Calculations based on the weak-coupling BCS theory and the strong coupling theory suggest that both σ and π bands contribute to σ1 of the polycrystalline MgB2 films significantly. Our results are in contrast with the observation of single coherence peak, ascribed to the dominant role of the π band, in the microwave conductivity of c -axis-oriented MgB2 films reported by Jin [Phys. Rev. Lett. 91, 127006 (2003)]. Variations in the interband coupling constants with the level of disorder can account for the different TC and σ1 behavior of the as-grown and ion-milled films.
Improved camera for better X-ray powder photographs
NASA Technical Reports Server (NTRS)
Parrish, W.; Vajda, I. E.
1969-01-01
Camera obtains powder-type photographs of single crystals or polycrystalline powder specimens. X-ray diffraction photographs of a powder specimen are characterized by improved resolution and greater intensity. A reasonably good powder pattern of small samples can be produced for identification purposes.
NASA Astrophysics Data System (ADS)
Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.
2002-11-01
In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.
Process for utilizing low-cost graphite substrates for polycrystalline solar cells
NASA Technical Reports Server (NTRS)
Chu, T. L. (Inventor)
1978-01-01
Low cost polycrystalline silicon solar cells supported on substrates were prepared by depositing successive layers of polycrystalline silicon containing appropriate dopants over supporting substrates of a member selected from the group consisting of metallurgical grade polycrystalline silicon, graphite and steel coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures thereof such that p-n junction devices were formed which effectively convert solar energy to electrical energy. To improve the conversion efficiency of the polycrystalline silicon solar cells, the crystallite size in the silicon was substantially increased by melting and solidifying a base layer of polycrystalline silicon before depositing the layers which form the p-n junction.
NASA Astrophysics Data System (ADS)
Kim, N.; Takahashi, M.; Shigematsu, N.; Ree, J. H.; Jung, H.
2017-12-01
Intragranular recrystallization, including subgrain-rotation-recrystallization (SGR) and nucleation (and growth) of new grains along boundaries of deformation twins and bands, is an important process leading to grain-size reduction and causing rheological change depending on deformation condition. Despite of its importance, the detailed processes of intragranular recrystallization are still somewhat unclear. We deformed a limestone using triaxial testing machine at AIST of Japan at temperature of 500 700 °, strain rate of 10-4 10-5 s-1, confining pressure of 200 MPa and strain of up to 30%, to explore intragranular recrystallization processes of calcite. The limestone contains two abundant fossils, crinoid and trilobite. The crinoids are mono- or poly-crystalline. We focus on the monocrystalline crinoids with a coarser grain size ( 700 μm). The trilobites are polycrystalline and much finer-grained ( 7 μm) with initially a strong c-axis preferred orientation. At a lower temperature condition, subgrains develop both in twin and host domains of crinoids and evolve into new grains by SGR. At a higher temperature, recrystallized grains have irregular grain boundaries and bimodal grain-size distribution, implying grain-boundary migration (GBM) recrystallization. At a lower temperature, new grains nucleating and growing along twin boundaries inherit lattice orientation of twin domain, and with the nucleation site and usually a smaller grain size, they can be distinguished from new grains by SGR. At a higher temperature, however, the distinction is difficult at present due to extensive GBM. For the trilobites, there is only local GBM with no significant change in grain size, and flattening of grains reflects the bulk strain at a lower temperature. At a higher temperature, individual grains of the trilobites are equi-axed with weakened LPO, although the strain of trilobites is higher than bulk strain. These microfabrics suggest that the dominant deformation mechanism of the trilobites is diffusion creep. Although the initial LPO of the trilobites is weakened, the LPO is still preserved up to strain of 30%. This implies that even if the grain size of trilobites and matrix is similar in naturally deformed limestones, the lattice orientation map may be useful in recognizing trilobite fossils.
NASA Astrophysics Data System (ADS)
Tuteja, Mohit
Cadmium Telluride (CdTe), a chalcogenide semiconductor, is currently used as the absorber layer in one of the highest efficiency thin film solar cell technologies. Current efficiency records are over 22%. In 2011, CdTe solar cells accounted for 8% of all solar cells installed. This is because, in part, CdTe has a low degradation rate, high optical absorption coefficient, and high tolerance to intrinsic defects. Solar cells based on polycrystalline CdTe exhibit a higher short-circuit current, fill factor, and power conversion efficiency than their single crystal counterparts. This is despite the fact that polycrystalline CdTe devices exhibit lower open-circuit voltages. This is contrary to the observation for silicon and III-V semiconductors, where material defects cause a dramatic drop in device performance. For example, grain boundaries in covalently-bonded semiconductors (a) act as carrier recombination centers, and (b) lead to localized energy states, causing carrier trapping. Despite significant research to date, the mechanism responsible for the superior current collection properties of polycrystalline CdTe solar cells has not been conclusively answered. This dissertation focuses on the macro-scale electronic band structure, and micro scale electronic properties of grains and grain boundaries in device-grade CdTe thin films to answer this open question. My research utilized a variety of experimental techniques. Samples were obtained from leading groups fabricating the material and devices. A CdCl 2 anneal is commonly performed as part of this fabrication and its effects were also investigated. Photoluminescence (PL) spectroscopy was employed to study the band structure and defect states in CdTe polycrystals. Cadmium vacancy- and chlorine-related states lead to carrier recombination, as in CdTe films grown by other methods. Comparing polycrystalline and single crystal CdTe, showed that the key to explaining the improved performance of polycrystalline CdTe does not lie in macroscopic analysis. The nanoscale majority carrier concentration was studied using scanning microwave impedance microscopy, which revealed an existence of majority carrier depletion along the grain boundaries, independent of the growth process used, which was absent in films that were not subjected to CdCl2 annealing. This effect promotes carrier separation and collection. Conductive atomic force microscopy showed enhanced conduction of electrons along the grain boundaries in samples subjected to the CdCl2 anneal treatment while holes were shown to move through the grain bulk. The separation of conduction channels minimizes recombination while simultaneously reducing series resistance and hence enhancing fill factor. Several technical capabilities demonstrated in this work can be easily extended to other semiconductor materials.
Three Distinct Deformation Behaviors of Cementite Lamellae in a Cold-Drawn Pearlitic Wire
NASA Astrophysics Data System (ADS)
Xin, Tuo; Liu, Guiju; Liang, Wenshuang; Cai, Rongsheng; Feng, Honglei; Li, Chen; Li, Jian; Wang, Yiqian
2018-03-01
High-resolution transmission electron microscopy is used to investigate the deformation behaviors of cementite lamellae in the heavily cold-drawn piano wires. Three distinct morphologies of cementite are observed, namely, complete lamella, partly-broken lamella and nearly-disappeared lamella. For the complete cementite lamella, it remains a single-crystalline structure. For the partly-broken cementite lamella, polycrystalline structure and neck-down region appear to release the residual strain. The lattice expansion of ferrite takes place in two perpendicular directions indicating that the carbon atoms dissolve from cementite into ferrite lattices. An orientation relationship is found between ferrite and cementite phases in the cold-drawn pearlitic wire.
Structural and electrical properties of sputter deposited ZnO thin films
NASA Astrophysics Data System (ADS)
Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil
2018-05-01
The growth of zinc oxide thin films having different oxygen content was achieved at ambient temperature by reactive dc magnetron sputtering technique and their structural and electrical properties are studied. The structural studies show that the films are polycrystalline with a preferential orientation of the grains along the c-axis [002], which increases with increase in oxygen partial pressure. The grain size and the surface roughness of the zinc oxide films are found to decrease with increasing oxygen partial pressure. It is observed that the resistivity of the zinc oxide films can be tuned from semiconducting to insulating regime by varying the oxygen content.
Constitutive Modeling of Superalloy Single Crystals and Directionally Solidified Materials
NASA Technical Reports Server (NTRS)
Walker, K. P.; Jordan, E. H.
1985-01-01
A unified viscoplastic constitutive relation based on crystallographic slip theory was developed for the deformation analysis of nickel base face centered cubic superalloy single crystals at elevated temperature. The single crystal theory is embedded in a self consistent method to derive a constitutive relation for a directionally solidified material comprised of a polycrystalline aggregate of columnar cylindrical grains. One of the crystallographic axes of the cylindrical crystals points in the columnar direction while the remaining crystallographic axes are oriented at random in the basal plane perpendicular to the columnar direction. These constitutive formulations are coded in FORTRAN for use in nonlinear finite element and boundary element programs.
Microstructural evolution during thermal annealing of ice-Ih
NASA Astrophysics Data System (ADS)
Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine
2017-06-01
We studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice pre-deformed in uniaxial compression at temperature of -7 °C to macroscopic strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes. Decrease in average intragranular misorientation at the sample scale and modification of the misorientation across subgrain boundaries provide evidence for recovery from the earliest stages of annealing. This initial evolution is similar for all studied samples irrespective of their initial strain or annealing temperature. After an incubation period ≥1.5 h, recovery is accompanied by recrystallization (nucleation and grain boundary migration). Grain growth proceeds at the expense of domains with high intragranular misorientations, consuming first the most misorientated parts of primary grains. Grain growth kinetics fits the parabolic growth law with grain growth exponents in the range of 2.4-4.0. Deformation-induced tilt boundaries and kink bands may slow down grain boundary migration. They are stable features during early stages of static recrystallization, only erased by normal growth, which starts after >24 h of annealing.
Dhanalakshmi, A; Palanimurugan, A; Natarajan, B
2018-09-01
Mono, di and polysaccharides of glucose (C 6 H 12 O 6 ), sucrose (C 12 H 24 O 12 ) and starch (C 6 H 12 O 6 ) n bio-template ZnO nanoparticles (NPs) has prepared by chemical precipitation method. Saccharides bio-template ZnO (SBts-ZnO) NPs were efficiently prepared for their structural and optical properties were examined by using XRD, FE-SEM, AFM, FTIR, UV and PL techniques. All the samples are polycrystalline nature with a preferential orientation depending on the (1 0 1) plane. The reduction of crystalline size by utilizing glucose, sucrose and starch bio-template of ZnO NPs. FE-SEM images revealed that the spherical and nano-rods like morphologies for ZnO and SBts-ZnO NPs respectively. AFM recorded images shows spherical features that confirmed and also the morphological changes were noticed with the addition of polymers. Interaction of bio-templated saccharides (glucose G 1 , sucrose S 2 & starch S n ) molecules was proved by FTIR study. Optical absorbance and emission behaviours were investigated using UV-Vis and photoluminescence techniques. The antibacterial study revealed that SBts-ZnO have excellent antibacterial effect than ZnO. The S n -ZnO sample has potent antibacterial activity against the Proteus vulgaris followed by Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghafouri, Vahid; Shariati, Mohsen; Ebrahimzad, Akbar
2014-03-01
High-quality polycrystalline and single crystalline Indium-doped ZnO (ZnO:In) nanorods (NRs) have been synthesized on Si (100) substrates via a vapor transfer route in an oxygen-rich tube furnace. The morphology of the nanostructures and their distribution on the surface is highly related to distance between the substrate and evaporation sources. The morphology can be adjusted from micro-porous film to the vertically aligned hexagonal NRs by this distance. The diameter of the grown NRs varies between 50 and 200 nm, and their length mostly changes from 1 to 3 mm. EDS analysis indicated the presence of zinc, oxygen, and indium in the structures. FTIR measurements confirmed the existence of Zn-O and In-O bands in ZnO:In NRs. X-ray diffractions and SAED patterns showed that the vertically aligned hexagonal NRs have a preferential orientation along the (002) direction. Room-temperature photoluminescence (PL) spectra of NRs are dominated by a green band emission between 420 and 700 nm. The peak of the green emission has shifted in different samples, which is probably due to indium impurity. The results of the electrical transport measurement of the NRs showed that the amount of In impurity is effective in the increase of samples' conductivity.
Chalcogenide thin films deposited by rfMS technique using a single quaternary target
NASA Astrophysics Data System (ADS)
Prepelita, P.; Stavarache, I.; Negrila, C.; Garoi, F.; Craciun, V.
2017-12-01
Thin films of chalcogenide, Cu(In,Ga)Se2 have been obtained using a single quaternary target by radio frequency magnetron sputtering method, with thickness in the range 750 nm to 1200 nm. X-ray photoelectron spectroscopy investigations showed, that the composition of Cu(In,Ga)Se2 thin films was very similar to that of the used target CuIn0.75Ga0.25Se2. Identification of the chemical composition of Cu(In,Ga)Se2 thin films by XPS performed in high vacuum, emphasized that the samples exhibit surface features suitable to be integrated into the structure of solar cells. Atomic Force Microscopy and Scanning Electron Microscopy investigations showed that surface morphology was influenced by the increase in thickness of the Cu(In,Ga)Se2 layer. From X-Ray Diffraction investigations it was found that all films were polycrystalline, having a tetragonal lattice with a preferential orientation along the (112) direction. The optical reflectance as a function of wavelength was measured for the studied samples. The increase in thickness of the Cu(In,Ga)Se2 absorber determined a decrease of its optical bandgap value from 1.53 eV to 1.44 eV. The results presented in this paper showed an excellent alternative of obtaining Cu(In,Ga)Se2 compound thin films from a single target.
NASA Astrophysics Data System (ADS)
Chrysler, M.; Chirayath, V.; McDonald, A.; Lim, Z.; Shastry, K.; Gladen, R.; Fairchild, A.; Koymen, A.; Weiss, A.
Positron annihilation induced Auger electron spectroscopy (PAES) was used to study the positron induced low energy electron spectra from HOPG and a sample composed of 6-8 layers of graphene grown on polycrystalline copper. A low energy (~2eV) beam of positrons was used to implant positrons into a surface localized state on the graphene and HOPG samples. Measurements of the energy spectra of the positron induced electrons obtained using a TOF spectrometer indicate the presence of an annihilation induced KLL C Auger peak (at ~263 eV) along with a narrow low energy secondary peak due to an Auger mediated positron sticking (AMPS) process. A broad spectral feature was also observed below ~15 eV which we believe may be due to a VVV C Auger transition not previously observed. The energy dependence of the integrated intensity of the AMPS peak was measured for a series of incident positron kinetic energies ranging from ~1.5 eV up to 11 eV from which the binding energy of the surface localized positron state on graphene and HOPG was estimated. The implication of our results regarding the applicability of AMPS and PAES to the study of graphene surfaces and interfaces will be discussed. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.
NASA Astrophysics Data System (ADS)
Braunstein, G.; Paz-Pujalt, G. R.; Mason, M. G.; Blanton, T.; Barnes, C. L.; Margevich, D.
1993-01-01
The processes of formation and crystallization of thin films of SrTiO3 prepared by the method of metallo-organic decomposition have been studied with particular emphasis on the relationship between the thermal decomposition of the metallo-organic precursors and the eventual epitaxial alignment of the crystallized films. The films are deposited by spin coating onto single-crystalline silicon and SrTiO3 substrates, pyrolyzed on a hot plate at temperatures ranging from 200 to 450 °C, and subsequently heat treated in a quartz tube furnace at temperatures ranging from 300 to 1200 °C. Heat treatment at temperatures up to 450-500 °C results in the evaporation of solvents and other organic addenda, thermal decomposition of the metallo-organic (primarily metal-carboxylates) precursors, and formation of a carbonate species. This carbonate appears to be an intermediate phase in the reaction of SrCO3 and TiO2 to form SrTiO3. Relevant to this work is the fact that the carbonate species exhibits diffraction lines, indicating the formation of grains that can serve as seeds for the nucleation and growth of randomly oriented SrTiO3 crystallites, thereby leading to a polycrystalline film. Deposition on silicon substrates indeed results in the formation of polycrystalline SrTiO3. However, when the precursor solution is deposited on single-crystalline SrTiO3 substrates, the crystallization process involves a competition between two mechanisms: the random nucleation and growth of crystallites just described, and layer-by-layer solid phase epitaxy. Epitaxial alignment on SrTiO3 substrates can be achieved when the samples are heat treated at temperatures of 1100-1200 °C or at temperatures as low as 600-650 °C when the substrate is heated to about 1100 °C before spin coating.
Confocal Raman studies in determining crystalline nature of PECVD grown Si nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Nafis; Bhargav, P. Balaji; Ramasamy, P.
2015-06-24
Silicon nanowires of diameter ∼200 nm and length of 2-4 µm are grown in the plasma enhanced chemical vapour deposition technique using nanoclustered Au catalyst assisted vapour-liquid-solid process. The crystallinity in the as-grown and annealed samples is studied using confocal Raman spectroscopic studies. Amorphous phase is formed in the as-grown samples. Structural studies using high resolution transmission electron microscopy confirm the polycrystalline nature in the annealed sample.
Effect of the microstructure on electrical properties of high-purity germanium
NASA Astrophysics Data System (ADS)
Podkopaev, O. I.; Shimanskii, A. F.; Molotkovskaya, N. O.; Kulakovskaya, T. V.
2013-05-01
The interrelation between the electrical properties and the microstructure of high-purity germanium crystals has been revealed. The electrical conductivity of polycrystalline samples increases and the life-time of nonequilibrium charge carriers in them decreases with a decrease in the crystallite sizes.
Mode-converted diffuse ultrasonic backscatter.
Hu, Ping; Kube, Christopher M; Koester, Lucas W; Turner, Joseph A
2013-08-01
Diffuse ultrasonic backscatter describes the scattering of elastic waves from interfaces within heterogeneous materials. Previously, theoretical models have been developed for the diffuse backscatter of longitudinal-to-longitudinal (L-L) wave scattering within polycrystalline materials. Following a similar formalism, a mode-conversion scattering model is presented here to quantify the component of an incident longitudinal wave that scatters and is converted to a transverse (shear) wave within a polycrystalline sample. The model is then used to fit experimental measurements associated with a pitch-catch transducer configuration performed using a sample of 1040 steel. From these measurements, an average material correlation length is determined. This value is found to be in agreement with results from L-L scattering measurements and is on the order of the grain size as determined from optical micrographs. Mode-converted ultrasonic backscatter is influenced much less by the front-wall reflection than an L-L measurement and it provides additional microstructural information that is not accessible in any other manner.
Enhanced Thermoelectric Properties of Polycrystalline SnSe via LaCl₃ Doping.
Li, Fu; Wang, Wenting; Ge, Zhen-Hua; Zheng, Zhuanghao; Luo, Jingting; Fan, Ping; Li, Bo
2018-01-28
LaCl₃ doped polycrystalline SnSe was synthesized by combining mechanical alloying (MA) process with spark plasma sintering (SPS). It is found that the electrical conductivity is enhanced after doping due to the increased carrier concentration and carrier mobility, resulting in optimization of the power factor at 750 K combing with a large Seebeck coefficient over 300 Μvk -1 . Meanwhile, all the samples exhibit lower thermal conductivity below 1.0 W/mK in the whole measured temperature. The lattice thermal conductivity for the doped samples was reduced, which effectively suppressed the increscent of the total thermal conductivity because of the improved electrical conductivity. As a result, a ZT value of 0.55 has been achieved for the composition of SnSe-1.0 wt % LaCl₃ at 750 K, which is nearly four times higher than the undoped one and reveals that rare earth element is an effective dopant for optimization of the thermoelectric properties of SnSe.
NASA Astrophysics Data System (ADS)
Shen, J. D.; Yang, W. B.; Kumar, A.; Zhao, H. H.; Lai, Y. J.; Feng, L. S.; Xu, Q. Y.; Zhang, Y. Q.; Du, J.; Li, Q.
2018-04-01
Polycrystalline-BiFeO3(BFO)/Co bilayers were grown by pulsed laser deposition (PLD) and magnetron sputtering, with fast laser annealing under magnetic field. The enhanced exchange bias (EB) had been found in the BFO/Co bilayers (Appl. Surf. Sci. 367 (2016) 418). In order to reveal the origin of the enhanced EB in the samples, X-ray absorption Spectroscopy (XAS) of Fe 2p, Co 2p and O 1s were performed. The Co 2p XAS indicated the increase of Co oxidation state and the Fe 2p XAS of sample A and B under laser annealing processes showed that crystal field splitting energy decreased and led to the weakening of spin-orbit coupling with the increasing of the laser fluence. It was considered that the appearance of the oxidation state of Co and Fe2+ ions and the existence of the unidirectional anisotropy due to the laser fluence was responsible for the results and also for the enhanced EB.
Influence of the nitrogen content on the optical properties of CNx films.
Abd El-Kader, F H; Moharram, M A; Khafagia, M G; Mamdouh, Fathia
2012-11-01
Polycrystalline carbon nitride thin films were prepared by electrolysis of methanol-urea solution at different concentrations of urea to methanol and applied voltage 800 volts for 10h. Grazing incidence X-ray diffraction (GIXRD) revealed that the crystalline structure of carbon nitride films at moderate nitrogen content changed from amorphous phase to polycrystalline α-C(3)N(4), and β-C(3)N(4) phases. The optical transmission analysis of the films revealed that the band gap value for indirect allowed transitions increased with increasing nitrogen content, while the associated phonon energy value showed the opposite behavior. The refractive index and the extinction coefficient of the samples deposited with different concentrations were determined as a function of wavelength. The refractive index decreases with increasing both nitrogen content and crystallinity. The refractive index dispersion for the investigated samples is discussed in terms of the single oscillator model and oscillator parameters. Copyright © 2012. Published by Elsevier B.V.
Electromigration in Cu(Al) and Cu(Mn) damascene lines
NASA Astrophysics Data System (ADS)
Hu, C.-K.; Ohm, J.; Gignac, L. M.; Breslin, C. M.; Mittal, S.; Bonilla, G.; Edelstein, D.; Rosenberg, R.; Choi, S.; An, J. J.; Simon, A. H.; Angyal, M. S.; Clevenger, L.; Maniscalco, J.; Nogami, T.; Penny, C.; Kim, B. Y.
2012-05-01
The effects of impurities, Mn or Al, on interface and grain boundary electromigration (EM) in Cu damascene lines were investigated. The addition of Mn or Al solute caused a reduction in diffusivity at the Cu/dielectric cap interface and the EM activation energies for both Cu-alloys were found to increase by about 0.2 eV as compared to pure Cu. Mn mitigated and Al enhanced Cu grain boundary diffusion; however, no significant mitigation in Cu grain boundary diffusion was observed in low Mn concentration samples. The activation energies for Cu grain boundary diffusion were found to be 0.74 ± 0.05 eV and 0.77 ± 0.05 eV for 1.5 μm wide polycrystalline lines with pure Cu and Cu (0.5 at. % Mn) seeds, respectively. The effective charge number in Cu grain boundaries Z*GB was estimated from drift velocity and was found to be about -0.4. A significant enhancement in EM lifetimes for Cu(Al) or low Mn concentration bamboo-polycrystalline and near-bamboo grain structures was observed but not for polycrystalline-only alloy lines. These results indicated that the existence of bamboo grains in bamboo-polycrystalline lines played a critical role in slowing down the EM-induced void growth rate. The bamboo grains act as Cu diffusion blocking boundaries for grain boundary mass flow, thus generating a mechanical stress-induced back flow counterbalancing the EM force, which is the equality known as the "Blech short length effect."
Feasibility investigation of growing gallium arsenide single crystals in ribbon form
NASA Technical Reports Server (NTRS)
Richardson, D. L.
1975-01-01
Polycrystalline GaAs ribbons have been grown in graphite boats by passage of a wide zone through B2O3 encapsulated feed stock, confined by a quartz cover plate. By controlling the heat flow in the graphite boat and controlling the zoning rate, large grained, single phase polycrystalline samples with directional solidification and good thickness control were achieved. Arsenic vaporization was effectively suppressed at the melting point of GaAs by the B2O3 moat and 3 atmospheres of pressure. A vertical constrained-zone-melting apparatus with a B2O3 moat seal, rf heating, and water cooling on the bottom will be used to control the heat flow and temperature patterns required for growth of single crystal ribbons.
Synthesis and characterization of polycrystalline brownmillerite cobalt doped Ca2Fe2O5
NASA Astrophysics Data System (ADS)
Dhankhar, Suchita; Bhalerao, Gopal; Baskar, K.; Singh, Shubra
2016-05-01
Brownmillerite compounds with general formula A2BB'O5 (BB' = Mn, Al, Fe, Co) have attracted attention in wide range of applications such as in solid oxide fuel cell, oxygen separation membrane and photocatalysis. Brownmillerite compounds have unique structure with alternate layers of BO6 octahedral layers and BO4 tetrahedral layers. Presence of dopants like Co in place of Fe increases oxygen vacancies. In the present work we have synthesized polycrystalline Ca2Fe2O5 and Ca2Fe1-xCoxO5 (x = 0.01, 0.03) by citrate combustion route. The as prepared samples were characterized by XRD using PANalytical X'Pert System, DRS (Diffuse reflectance spectroscopy) and SEM (Scanning electron microscopy).
Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe
Burst, James M.; Farrell, Stuart B.; Albin, David S.; ...
2016-11-01
CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 10 16 cm -3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 10 16 cm -3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl 2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. In conclusion, this combination of long lifetime, high carrier concentration, and improved stability canmore » help overcome historic barriers for CdTe solar cell development.« less
Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burst, James M.; Farrell, Stuart B.; Albin, David S.
CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 10 16 cm -3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 10 16 cm -3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl 2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. In conclusion, this combination of long lifetime, high carrier concentration, and improved stability canmore » help overcome historic barriers for CdTe solar cell development.« less
Wavelet analysis of polarization maps of polycrystalline biological fluids networks
NASA Astrophysics Data System (ADS)
Ushenko, Y. A.
2011-12-01
The optical model of human joints synovial fluid is proposed. The statistic (statistic moments), correlation (autocorrelation function) and self-similar (Log-Log dependencies of power spectrum) structure of polarization two-dimensional distributions (polarization maps) of synovial fluid has been analyzed. It has been shown that differentiation of polarization maps of joint synovial fluid with different physiological state samples is expected of scale-discriminative analysis. To mark out of small-scale domain structure of synovial fluid polarization maps, the wavelet analysis has been used. The set of parameters, which characterize statistic, correlation and self-similar structure of wavelet coefficients' distributions of different scales of polarization domains for diagnostics and differentiation of polycrystalline network transformation connected with the pathological processes, has been determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jørgensen, Mads R. V.; Piccoli, Paula M. B.; Hathwar, Venkatesha R.
2017-01-31
The structural phase transition accompanied by a Jahn–Teller switch has been studied over a range of H/D ratios in (NH 4) 2[Cu(H 2O) 6](SO 4) 2(ACTS). In particular, single-crystal neutron diffraction investigations of crystals with deuteration in the range 50 to 82% are shown to be consistent with previous electron paramagnetic resonance (EPR) experiments exhibiting a phase boundary at 50% deuteration under ambient pressure. Polycrystalline samples show that the two phases can co-exist. In addition, single-crystal neutron and polycrystalline X-ray diffraction pressure experiments show a shift to lower pressure at 60% deuterationversusprevious measurements at 100% deuteration.
Structural control of In2Se3 polycrystalline thin films by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Okamoto, T.; Nakada, Y.; Aoki, T.; Takaba, Y.; Yamada, A.; Konagai, M.
2006-09-01
Structural control of In2Se3 polycrystalline thin films was attempted by molecular beam epitaxy (MBE) technique. In2Se3 polycrystalline films were obtained on glass substrates at substrate temperatures above 400 °C. VI/III ratio greatly affected crystal structure of In2Se3 polycrystalline films. Mixtures of -In2Se3 and γ-In2Se3 were obtained at VI/III ratios greater than 20, and layered InSe polycrystalline films were formed at VI/III ratios below 1. γ-In2Se3 polycrystalline thin films without α-phase were successfully deposited with VI/III ratios in a range of 2 to 4. Photocurrent spectra of the γ-In2Se3 polycrystalline films showed an abrupt increase at approximately 1.9 eV, which almost corresponds with the reported bandgap of γ-In2Se3. Dark conductivity and photoconductivity measured under solar simulator light (AM 1.5, 100 mW/cm2) were approximately 10-9 and 10-5 S/cm in the γ-In2Se3 polycrystalline thin films, respectively.
Sharma, Akhil; Verheijen, Marcel A; Wu, Longfei; Karwal, Saurabh; Vandalon, Vincent; Knoops, Harm C M; Sundaram, Ravi S; Hofmann, Jan P; Kessels, W M M Erwin; Bol, Ageeth A
2018-05-10
Low-temperature controllable synthesis of monolayer-to-multilayer thick MoS2 with tuneable morphology is demonstrated by using plasma enhanced atomic layer deposition (PEALD). The characteristic self-limiting ALD growth with a growth-per-cycle of 0.1 nm per cycle and digital thickness control down to a monolayer are observed with excellent wafer scale uniformity. The as-deposited films are found to be polycrystalline in nature showing the signature Raman and photoluminescence signals for the mono-to-few layered regime. Furthermore, a transformation in film morphology from in-plane to out-of-plane orientation of the 2-dimensional layers as a function of growth temperature is observed. An extensive study based on high-resolution transmission electron microscopy is presented to unravel the nucleation mechanism of MoS2 on SiO2/Si substrates at 450 °C. In addition, a model elucidating the film morphology transformation (at 450 °C) is hypothesized. Finally, the out-of-plane oriented films are demonstrated to outperform the in-plane oriented films in the hydrogen evolution reaction for water splitting applications.
Growth and characterization of GaAs/Al/GaAs heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, P.; Oh, J.E.; Singh, J.
Theoretical and experimental aspects of the growth of GaAs/Al/GaAs heterostructures have been investigated. In these heterostructures the GaAs on top of the buried metal layer is grown by migration-enhanced epitaxy (MEE) at low temperatures (200 and 400 {degree}C) to provide a kinetic barrier to the outdiffusion of Al during superlayer growth. The crystallinity and orientation of the Al film itself deposited on (100) GaAs at {approx}0 {degree}C was studied by transmission electron diffraction, dark-field imaging, and x-ray diffraction measurements. It is found that the Al growth is polycrystalline with a grain size {approx}60 A and the preferred growth orientation ismore » (111), which may be textured in plane but oriented out of plane. The quality of the GaAs superlayer grown on top of Al by MEE is very sensitive to the growth temperature. The layer grown at 400 {degree}C has good structural and optical quality, but is accompanied by considerable outdiffusion of Al at the Al-GaAs heterointerface. At 200 {degree}C, where the interface has good structural integrity, the superlayer exhibits twinning and no luminescence is observed.« less
NASA Astrophysics Data System (ADS)
Consonni, V.; Rey, G.; Roussel, H.; Bellet, D.
2012-02-01
Polycrystalline fluorine-doped SnO2 thin films have been grown by ultrasonic spray pyrolysis with a thickness varying in the range of 40 to 600 nm. A texture transition from ⟨110⟩ to ⟨100⟩ and ⟨301⟩ crystallographic orientations has experimentally been shown by x-ray diffraction measurements as film thickness is increased, showing that a process of abnormal grain growth has occurred. The texture effects are considered within a thermodynamic approach, in which the minimization of total free energy constitutes the driving force for grain growth. For very small film thickness, it is found that the ⟨110⟩ preferred orientation is due to surface energy minimization, as the (110) planes have the lowest surface energy in the rutile structure. In contrast, as film thickness is increased, the ⟨100⟩ and ⟨301⟩ crystallographic orientations are progressively predominant, owing to elastic strain energy minimization in which the anisotropic character is considered in the elastic biaxial modulus. A texture map is eventually determined, revealing the expected texture as a function of elastic strain and film thickness.
NASA Astrophysics Data System (ADS)
Ishizawa, Mamoru; Fujishiro, Hiroyuki; Naito, Tomoyuki; Ito, Akihiko; Goto, Takashi
2018-02-01
We have grown Bi0.9Sr0.1CuSeO epitaxial thin films on MgO and SrTiO3 (STO) single-crystal substrates by pulsed laser deposition (PLD) under various growth conditions, and investigated the crystal orientation, crystallinity, chemical composition, and thermoelectric properties of the films. The optimization of the growth conditions was realized in the film grown on MgO at the temperature T s = 573 K and Ar pressure P Ar = 0.01 Torr in this study, in which there was no misalignment apart from the c-axis and no impurity phase. It was clearly found that the higher crystal orientation of the epitaxial film grown at a higher temperature under a lower Ar pressure mainly enhanced the thermoelectric power factor P (= S 2/ρ), where S is the Seebeck coefficient and ρ is the electrical resistivity. However, the thermoelectric properties of the films were lower than those of polycrystalline bulk because of lattice distortion from lattice mismatch, a low crystallinity caused by a lower T s, and Bi and Cu deficiencies in the films.
Zhang, Li; Popov, Dmitry; Meng, Yue; ...
2016-01-01
Seifertite SiO₂ likely exists as a minor phase near the core–mantle boundary. By simulating the pressure and temperature conditions near the core–mantle boundary, seifertite was synthesized as a minor phase in a coarse-grained, polycrystalline sample coexisting with the (Mg,Fe)SiO₃ post-perovskite (pPv) phase at 129 GPa and 2500 K. Here we report the first in situ single-crystal structure determination and refinement of seifertite at high pressure and after a temperature quench from laser heating. We improved the data coverage of a minor phase from a diamond-anvil cell (DAC) by merging single-crystal data of seifertite from six selected grains that had differentmore » orientations. Observed systematic absences of reflections from the six individual grains allowed only one space group: Pbcn. The refined results of seifertite are in good agreement with the predictions from previous first-principles calculations at high pressure. This approach provides a method for structure determination of a minor phase in a mineral assemblage synthesized under P-T conditions representative of the deep Earth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Li; Popov, Dmitry; Meng, Yue
Seifertite SiO₂ likely exists as a minor phase near the core–mantle boundary. By simulating the pressure and temperature conditions near the core–mantle boundary, seifertite was synthesized as a minor phase in a coarse-grained, polycrystalline sample coexisting with the (Mg,Fe)SiO₃ post-perovskite (pPv) phase at 129 GPa and 2500 K. Here we report the first in situ single-crystal structure determination and refinement of seifertite at high pressure and after a temperature quench from laser heating. We improved the data coverage of a minor phase from a diamond-anvil cell (DAC) by merging single-crystal data of seifertite from six selected grains that had differentmore » orientations. Observed systematic absences of reflections from the six individual grains allowed only one space group: Pbcn. The refined results of seifertite are in good agreement with the predictions from previous first-principles calculations at high pressure. This approach provides a method for structure determination of a minor phase in a mineral assemblage synthesized under P-T conditions representative of the deep Earth.« less
Dielectric properties of calicum and barium-doped strontium titanate
NASA Astrophysics Data System (ADS)
Tung, Li-Chun
Dielectric properties of high quality polycrystalline Ca- and Ba-doped SrTiO3 perovskites are studied by means of dielectric constant, dielectric loss and ferroelectric hysteresis measurements. Low frequency dispersion of the dielectric constant is found to be very small and a simple relaxor model may not be able to explain its dielectric behavior. Relaxation modes are found in these samples, and they are all interpreted as thermally activated Bipolar re-orientation across energy barriers. In Sr1- xCaxTiO3 (x = 0--0.3), two modes are found associated with different relaxation processes, and the concentration dependence implies a competition between these processes. In Sr1-xBa xTiO3 (x = 0--0.25), relaxation modes are found to be related to the structural transitions, and the relaxation modes persist at low doping levels (x < 0.1), where structural ordering is not observed by previous neutron scattering studies. The validity of well-accepted Barret formula is discussed and two of the well-accepted models, anharmonic oscillator model and transverse Ising model, are found to be equivalent. Both of the Ca and Ba systems can be understood qualitatively within the concept of transverse Ising model.
Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.
Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of amore » blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.« less
Non-basal dislocations should be accounted for in simulating ice mass flow
NASA Astrophysics Data System (ADS)
Chauve, T.; Montagnat, M.; Piazolo, S.; Journaux, B.; Wheeler, J.; Barou, F.; Mainprice, D.; Tommasi, A.
2017-09-01
Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [ c ] or < c + a > Burgers vectors. These [ c ] or < c + a > dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change.
Electrical characterization of HgTe nanowires using conductive atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundersen, P.; Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim; Kongshaug, K. O.
Self-organized HgTe nanowires grown by molecular beam epitaxy (MBE) have been characterized using conductive atomic force microscopy. As HgTe will degrade or evaporate at normal baking temperatures for electron beam lithography (EBL) resists, an alternative method was developed. Using low temperature optical lithography processes, large Au contacts were deposited on a sample covered with randomly oriented, lateral HgTe nanowires. Nanowires partly covered by the large electrodes were identified with a scanning electron microscope and then localized in the atomic force microscope (AFM). The conductive tip of the AFM was then used as a movable electrode to measure current-voltage curves atmore » several locations on HgTe nanowires. The measurements revealed that polycrystalline nanowires had diffusive electron transport, with resistivities two orders of magnitude larger than that of an MBE-grown HgTe film. The difference can be explained by scattering at the rough surface walls and at the grain boundaries in the wires. The method can be a solution when EBL is not available or requires too high temperature, or when measurements at several positions along a wire are required.« less
Subsurface imaging of grain microstructure using picosecond ultrasonics
Khafizov, M.; Pakarinen, J.; He, L.; ...
2016-04-21
We report on imaging subsurface grain microstructure using picosecond ultrasonics. This approach relies on elastic anisotropy of crystalline materials where ultrasonic velocity depends on propagation direction relative to the crystal axes. Picosecond duration ultrasonic pulses are generated and detected using ultrashort light pulses. In materials that are transparent or semitransparent to the probe wavelength, the probe monitors GHz Brillouin oscillations. The frequency of these oscillations is related to the ultrasonic velocity and the optical index of refraction. Ultrasonic waves propagating across a grain boundary experience a change in velocity due to a change in crystallographic orientation relative to the ultrasonicmore » propagation direction. This change in velocity is manifested as a change in the Brillouin oscillation frequency. Using the ultrasonic propagation velocity, the depth of the interface can be determined from the location in time of the transition in oscillation frequency. An image of the grain boundary is obtained by scanning the beam along the surface. We demonstrate this volumetric imaging capability using a polycrystalline UO 2 sample. As a result, cross section liftout analysis of the grain boundaries using electron microscopy were used to verify our imaging results.« less
Zhou, Guangni; Zhu, Wenxin; Shen, Hao; ...
2016-06-15
Synchrotron-based Laue microdiffraction has been widely applied to characterize the local crystal structure, orientation, and defects of inhomogeneous polycrystalline solids by raster scanning them under a micro/nano focused polychromatic X-ray probe. In a typical experiment, a large number of Laue diffraction patterns are collected, requiring novel data reduction and analysis approaches, especially for researchers who do not have access to fast parallel computing capabilities. In this article, a novel approach is developed by plotting the distributions of the average recorded intensity and the average filtered intensity of the Laue patterns. Visualization of the characteristic microstructural features is realized in realmore » time during data collection. As an example, this method is applied to image key features such as microcracks, carbides, heat affected zone, and dendrites in a laser assisted 3D printed Ni-based superalloy, at a speed much faster than data collection. Such analytical approach remains valid for a wide range of crystalline solids, and therefore extends the application range of the Laue microdiffraction technique to problems where real-time decision-making during experiment is crucial (for instance time-resolved non-reversible experiments).« less
Zhou, Guangni; Zhu, Wenxin; Shen, Hao; Li, Yao; Zhang, Anfeng; Tamura, Nobumichi; Chen, Kai
2016-01-01
Synchrotron-based Laue microdiffraction has been widely applied to characterize the local crystal structure, orientation, and defects of inhomogeneous polycrystalline solids by raster scanning them under a micro/nano focused polychromatic X-ray probe. In a typical experiment, a large number of Laue diffraction patterns are collected, requiring novel data reduction and analysis approaches, especially for researchers who do not have access to fast parallel computing capabilities. In this article, a novel approach is developed by plotting the distributions of the average recorded intensity and the average filtered intensity of the Laue patterns. Visualization of the characteristic microstructural features is realized in real time during data collection. As an example, this method is applied to image key features such as microcracks, carbides, heat affected zone, and dendrites in a laser assisted 3D printed Ni-based superalloy, at a speed much faster than data collection. Such analytical approach remains valid for a wide range of crystalline solids, and therefore extends the application range of the Laue microdiffraction technique to problems where real-time decision-making during experiment is crucial (for instance time-resolved non-reversible experiments). PMID:27302087
Properties of Al- and Ga-doped thin zinc oxide films treated with UV laser radiation
NASA Astrophysics Data System (ADS)
Al-Asedy, Hayder J.; Al-Khafaji, Shuruq A.; Bakhtiar, Hazri; Bidin, Noriah
2018-03-01
This paper reports the Nd:YAG laser irradiation treated modified properties of aluminum (Al) and gallium (Ga) co-doped zinc oxide (ZnO) (AGZO) films prepared on Si-substrate via combined sol-gel and spin-coating method. The impact of varying laser energy (150-200 mJ) on the structure, morphology, electrical and optical properties of such AGZO films were determined. Laser-treated samples were characterized using various analytical tools. Present techniques could achieve a high-quality polycrystalline films compared with those produced via conventional high temperature processing. AGZO films irradiated with third harmonics UV radiation (355 nm) from Nd:YAG laser source revealed very low resistivity of 4.02 × 10- 3 Ω cm. The structural properties grain size was calculated firm the X-ray diffraction spectra using the Scherrer equation that increased from 12.7 to 22.5 nm as the annealing laser energy increased from (150-200) mJ. The differences in crystallinity and orientation are explained in terms of the thermal effect caused by laser irradiation. (FESEM) images have been demonstrated that Nd:YAG laser annealing can significantly improve the crystallinity level, densification, and surface flatness of sol-gel derived AGZO thin films that occurred as a result of laser processing. Synthesized AGZO films displayed favorable growth orientation along (101) lattice direction. AGZO films with energy band gap of 3.37-3.41 eV were obtained. Results on the crystallinity, surface morphology, roughness, bonding vibration, absorption, photoluminescence, and resistivity of the laser-irradiated films were analyzed and discussed.
NASA Astrophysics Data System (ADS)
Ferrero, Silvio; Axler, Jennifer; Ague, Jay J.; Wunder, Bernd; Ziemann, Martin A.
2017-04-01
Polycrystalline inclusions occur in felsic granulites from northeastern Connecticut, US (Axler and Ague, 2015). They sit in the core of garnet porphyroblasts formed during peak metamorphism at T >1000°C and P >1 GPa. The investigated inclusions vary from needle-shaped, with length ≤50 microns and few microns across, to isometric with diameter ≤10 microns. They show a rather constant assemblage which includes quartz, phlogopite, biotite and very often a compositionally variable phase. Raman spectroscopy shows the occasional presence of glass and cristobalite (the latter only when quartz is absent). Crystallized phases and the presence of glass suggest that these inclusions formed originally as droplets of melt trapped during garnet growth, likely as result of partial melting of the original metasedimentary protolith. A prominent feature of the garnet is the presence of rutile needles and ilmenite oriented accordingly to the crystallographic planes of garnet. When elongated in shape, also the polycrystalline inclusions are generally oriented according to the same planes, and occasionally contain rutile and /or ilmenite occur as trapped phases. Re-heating experiments were performed on the polycrystalline inclusions using a piston cylinder apparatus and without adding water to the experimental capsules. Complete re-homogenization was achieved at T 1025-1050°C and P 1.7 GPa, confirming that these inclusions are nanogranites (Ferrero et al., 2015). Re-homogenized inclusions contain a peraluminous glass (ASI=1.36) with ≤6 wt% water, confirmed also via Raman spectroscopy. Its average composition is granitic, with K/Na= 4.37 and rather high FeO (3.70 wt%). Both K-rich character and FeO content are consistent with experimental melts generated at T of 900-1000°C and variable P via melting of metasediments. The investigation of the experimental products furthermore provides novel constraints for the peak conditions (and likely of anatexis) of these granulites. During experiments performed at T 1025-1050°C and P <1.7 GPa melt and garnet interacts forming a new garnet with different composition, thus indicating lack of equilibrium between melt and garnet. Such microstructure is absent in the experiment at P ≥1.7 GPa, suggesting that such P values correspond to the conditions of melting with the simultaneous production of melt and garnet. Such values are more consistent with the water content of re-homogenized inclusions, rather high for melts formed at T>1000°C. Such pressures are remarkably higher than those previously proposed for these rocks, and suggest that they experienced indeed high pressure rather than ultrahigh temperature conditions, a possibility also supported by the widespread presence of pseudomorphs of sillimanite after kyanite. References Axler JA, Ague JJ (2015). Oriented multiphase needles in garnet from ultrahigh-temperature granulites. American Mineralogist, 100, 2254-2271. Ferrero S, Wunder B, Walczak K, Ziemann MA, O'Brien PJ (2015). Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths. Geology, 43, 447-450.
NASA Astrophysics Data System (ADS)
Tucker, D. A.; Seo, D.-K.; Whangbo, M.-H.; Sivazlian, F. R.; Stoner, B. R.; Bozeman, S. P.; Sowers, A. T.; Nemanich, R. J.; Glass, J. T.
1995-07-01
We carried out experimental and theoretical studies aimed at probing interface interactions of diamond with Si, Ni, and Ni 3Si substrates. Oriented diamond films deposited on (100) silicon were characterized by polar Raman, polar XRD, and cross-sectional HRTEM. These studies show that the diamond-(100)/Si(100) interface does not adopt the 45°-rotation but the 3 : 2-match arrangement. Our extended Hückel tight-binding (EHTB) electronic structure calculations for a model system show that the interface interaction favors the 3 : 2-match arrangement. Growth on polycrystalline Ni 3Si resulted in oriented diamond particles while, under the same growth conditions, largely graphite was formed on the nickel substrate. Our EHTB electronic structure calculations for model systems show that the (111) and (100) surfaces of Ni 3Si have a strong preference for diamond-nucleation over graphite-nucleation, but this is not the case for the (111) and (100) surfaces of Ni.
Solution processed nanogap organic diodes based on liquid crystalline materials
NASA Astrophysics Data System (ADS)
Wang, Yi-Fei; Iino, Hiroaki; Hanna, Jun-ichi
2017-09-01
Co-planar nanogap organic diodes were fabricated with smectic liquid crystalline materials of the benzothienobenzothiophene (BTBT) derivative by a spin-coating technique. A high rectification ratio of the order of 106 at ±3 V was achieved when a liquid crystalline material of 2,7-didecyl benzothieno[3,2-b][1]benzothiophene (10-BTBT-10) was used in a device configuration of Al/10-BTBT-10/pentafluorobenzenethiol-treated Au on a glass substrate, which was 4 orders higher than that of the device based on non-liquid crystalline materials of 2,7-dibutyl benzothieno[3,2-b][1]benzothiophene (4-BTBT-4) and BTBT. Similar results were also observed when another liquid crystalline material of ω, ω'-dioctylterthiophene (8-TTP-8) and a non-liquid crystalline material of terthiophene (TTP) were used. These improved rectifications can be ascribed to the self-assembly properties and controllable molecular orientation of liquid crystalline materials, which made uniform perpendicular oriented polycrystalline films favorable for superior charge transport in nano-channels.
Magnetostrictive and mechanical properties of Terfenol-D composites based on polymer
NASA Astrophysics Data System (ADS)
Rodríguez, C.; Cuevas, J. M.; Orue, I.; Vilas, J. L.; Barandiarán, J. M.; Fernandez-Gubieda, M. L.; Leon, L. M.
2007-07-01
Several composites, with outstanding magnetostrictive properties, have been synthesized combining a polyurethane base elastomer, with polycrystalline powders of Terfenol-D with a preferential orientation obtained by curing the material in a magnetic field. The morphology of the polymer matrix can be modified by changing the ratio of the hard /soft segment (F) of the polyurethane from 0.6 to 1.5. The influence of the morphology in the magnetostrictive response, for different composites, has been studied by following the storage modulus, E', in DMTA analysis. The magnetostrictive response has been studied as a function of Terfenol-D particle size and distribution (0-300, 212-300, 106-212, 0-38 μm), as well as a function of the content of the magnetostrictive particles in the composite. The highest response (about 1390 ppm) was obtained for a F=1.5 polyurethane and 50% wt of Terfenol-D of 212-300 μm particle size, oriented with a magnetic field of 0.5 T.
NASA Astrophysics Data System (ADS)
Pabst, Oliver; Schiffer, Michael; Obermeier, Ernst; Tekin, Tolga; Lang, Klaus Dieter; Ngo, Ha-Duong
2011-06-01
Silicon carbide (SiC) is a promising material for applications in harsh environments. Standard silicon (Si) microelectromechanical systems (MEMS) are limited in operating temperature to temperatures below 130 °C for electronic devices and below 600 °C for mechanical devices. Due to its large bandgap SiC enables MEMS with significantly higher operating temperatures. Furthermore, SiC exhibits high chemical stability and thermal conductivity. Young's modulus and residual stress are important mechanical properties for the design of sophisticated SiC-based MEMS devices. In particular, residual stresses are strongly dependent on the deposition conditions. Literature values for Young's modulus range from 100 to 400 GPa, and residual stresses range from 98 to 486 MPa. In this paper we present our work on investigating Young's modulus and residual stress of SiC films deposited on single crystal bulk silicon using bulge testing. This method is based on measurement of pressure-dependent membrane deflection. Polycrystalline as well as single crystal cubic silicon carbide samples are studied. For the samples tested, average Young's modulus and residual stress measured are 417 GPa and 89 MPa for polycrystalline samples. For single crystal samples, the according values are 388 GPa and 217 MPa. These results compare well with literature values.
Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin films.
Woo, Sungmin; Lee, Sang A; Mun, Hyeona; Choi, Young Gwan; Zhung, Chan June; Shin, Soohyeon; Lacotte, Morgane; David, Adrian; Prellier, Wilfrid; Park, Tuson; Kang, Won Nam; Lee, Jong Seok; Kim, Sung Wng; Choi, Woo Seok
2018-03-01
Transition metal oxide thin films show versatile electric, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO 3 thin films using pulsed laser epitaxy. Using the epitaxial stabilization technique with an atomically flat polycrystalline SrTiO 3 substrate, an epitaxial polycrystalline SrRuO 3 thin film with the crystalline quality of each grain comparable to that of its single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced the enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to an enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.
Thermoelectric Performance of Na-Doped GeSe
2017-01-01
Recently, hole-doped GeSe materials have been predicted to exhibit extraordinary thermoelectric performance owing largely to extremely low thermal conductivity. However, experimental research on the thermoelectric properties of GeSe has received less attention. Here, we have synthesized polycrystalline Na-doped GeSe compounds, characterized their crystal structure, and measured their thermoelectric properties. The Seebeck coefficient decreases with increasing Na content up to x = 0.01 due to an increase in the hole carrier concentration and remains roughly constant at higher concentrations of Na, consistent with the electrical resistivity variation. However, the electrical resistivity is large for all samples, leading to low power factors. Powder X-ray diffraction and scanning electron microscopy/energy-dispersive spectrometry results show the presence of a ternary impurity phase within the GeSe matrix for all doped samples, which suggests that the optimal carrier concentration cannot be reached by doping with Na. Nevertheless, the lattice thermal conductivity and carrier mobility of GeSe is similar to those of polycrystalline samples of the leading thermoelectric material SnSe, leading to quality factors of comparable magnitude. This implies that GeSe shows promise as a thermoelectric material if a more suitable dopant can be found. PMID:29302637
Crystal-face-selective adsorption of Au nanoparticles onto polycrystalline diamond surfaces.
Kondo, Takeshi; Aoshima, Shinsuke; Hirata, Kousuke; Honda, Kensuke; Einaga, Yasuaki; Fujishima, Akira; Kawai, Takeshi
2008-07-15
Crystal-face-selective adsorption of Au nanoparticles (AuNPs) was achieved on polycrystalline boron-doped diamond (BDD) surface via the self-assembly method combined with a UV/ozone treatment. To the best of our knowledge, this is the first report of crystal-face-selective adsorption on an inorganic solid surface. Hydrogen-plasma-treated BDD samples and those followed by UV/ozone treatment for 2 min or longer showed almost no adsorption of AuNP after immersion in the AuNP solution prepared by the citrate reduction method. However, the samples treated by UV/ozone for 10 s showed AuNP adsorption on their (111) facets selectively after the immersion. Moreover, the sample treated with UV/ozone for 40-60 s showed AuNP adsorption on the whole surface. These results indicate that the AuNP adsorption behavior can be controlled by UV/ozone treatment time. This phenomenon was highly reproducible and was applied to a two-step adsorption method, where AuNPs from different batches were adsorbed on the (111) and (100) surface in this order. Our findings may be of great value for the fabrication of advanced nanoparticle-based functional materials via bottom-up approaches with simple macroscale procedures.
Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.
2009-01-01
We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.
Photoelectron spectroscopy study on Li substituted NiO using PES beamline installed on Indus-1
NASA Astrophysics Data System (ADS)
Banerjee, A.; Chaudhari, S. M.; Phase, D. M.; Dasannacharya, B. A.
2003-01-01
Photoelectron spectroscopy beamline based on a toroidal grating monochromator (TGM) is recently commissioned on Indus-1 storage ring. It has been used to carry out valence band photoemission study of Li substituted NiO. In this paper initially a brief description of the beamline components and the experimental station for angle integrated photoemission experiment is presented. The later part of this paper is devoted to studies carried out on Li xNi 1- xO with x=0.0, 0.35 and 0.5 samples. Thin pellets of polycrystalline samples were used for the measurements reported here. Valence band spectra recorded on polycrystalline Li xNi 1- xO samples show drastic changes in various features as compared to that of pure NiO. The prominent changes are: (i) change in the relative contributions of Ni-3d and O-2p emissions, (ii) change in the peak position of Ni-3d from the top of the valance band of NiO and (iii) no noticeable change in the Ni satellite peak. These results are evaluated in terms of earlier findings in pure and low Li doped NiO.
High temperature deformation of hot-pressed polycrystalline orthoenstatite. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Dehghan-Banadaki, A.
1983-01-01
Artificial hot pressed polycrystalline samples were prepared from purified powder of Bamble, Norway, orthoenstatite, (Mg0.86Fe0.14)SiO3. The uniaxial creep behavior of the polycrystalline orthoenstatite was studied over stress ranges of 10-180 MPa and temperatures of 1500-1700 K (0.82-0.93 T sub m) under two different oxygen fugacities, namely equilibrium (Mo-MoO2 buffer) and a reducing (graphite heating element) atmosphere, respectively. An intergranular glassy phase of different compositions with a cavitational creep deformation were observed. In the Mo-MoO2 buffer atmosphere with PO2 approx. 10 to the minus 11 power - 10 to the minus 13 power atmospheres, the results of an analytical electron microscopy analysis indicate that the glassy phases are richer in Ca and Al due to the residual impurities after hot pressing. In the reducing atmosphere with an oxygen fugacity of PO2 approx. 10 to the minus 3 power - 10 to the minus 25 power atmospheres, the results of analytical electron microscopy analysis indicate that the glassy phase is almost pure silica with the presence of free iron precipitate on grain facets and at triple junctions due to the reduction of bulk materials.
New insights on the synthesis and electronic transport in bulk polycrystalline Pr-doped SrTiO3-δ
NASA Astrophysics Data System (ADS)
Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; Darroudi, Taghi; Alshareef, Husam N.; Tritt, Terry M.
2015-02-01
Recently, we have reported a significant enhancement in the electronic and thermoelectric properties of bulk polycrystalline SrTiO3 ceramics via praseodymium doping. This improvement was originated from the simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity, which was contributed to the non-uniform distribution of Pr dopants. In order to further understand the underlying mechanism, we herein investigate the role of praseodymium doping source (Pr2O3 versus Pr6O11) on the synthesis and electronic transport in Pr-doped SrTiO3 ceramics. It was observed that the high-temperature electronic transport properties are independent of the choice of praseodymium doping source for samples prepared following our synthesis strategy. Theoretical calculations were also performed in order to estimate the maximum achievable power factor and the corresponding optimal carrier concentration. The result suggests the possibility of further improvement of the power factor. This study should shed some light on the superior electronic transport in bulk polycrystalline Pr-doped SrTiO3 ceramics and provide new insight on further improvement of the thermoelectric power factor.