Sample records for oriented sample solid-state

  1. Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins

    PubMed Central

    Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi

    2013-01-01

    In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578

  2. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity

    NASA Astrophysics Data System (ADS)

    Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming'en; Hu, Zhiwei; Zhu, Jiliang

    2018-03-01

    A highly self-textured Ga2O3-substituted Li7La3Zr2O12 (LLZO-Ga) solid electrolyte with a nominal composition of Li6.55Ga0.15La3Zr2O12 is obtained by a simple and low-cost solid-state reaction technique, requiring no seed crystals to achieve grain orientation. The as-prepared self-textured LLZO-Ga shows a strong (420) preferred orientation with a high Lotgering factor of 0.91. Coherently, a terrace-shaped microstructure consisting of many parallel layers, indicating a two-dimensional-like growth mode, is clearly observed in the self-textured sample. As a result, the highly self-textured garnet-type lithium-ion conducting solid electrolyte of LLZO-Ga exhibits an extremely high ionic conductivity, reaching a state-of-the-art level of 2.06 × 10-3 S cm-1 at room temperature (25 °C) and thus shedding light on an important strategy for improving the structure and ionic conductivity of solid electrolytes.

  3. AssignFit: a program for simultaneous assignment and structure refinement from solid-state NMR spectra

    PubMed Central

    Tian, Ye; Schwieters, Charles D.; Opella, Stanley J.; Marassi, Francesca M.

    2011-01-01

    AssignFit is a computer program developed within the XPLOR-NIH package for the assignment of dipolar coupling (DC) and chemical shift anisotropy (CSA) restraints derived from the solid-state NMR spectra of protein samples with uniaxial order. The method is based on minimizing the difference between experimentally observed solid-state NMR spectra and the frequencies back calculated from a structural model. Starting with a structural model and a set of DC and CSA restraints grouped only by amino acid type, as would be obtained by selective isotopic labeling, AssignFit generates all of the possible assignment permutations and calculates the corresponding atomic coordinates oriented in the alignment frame, together with the associated set of NMR frequencies, which are then compared with the experimental data for best fit. Incorporation of AssignFit in a simulated annealing refinement cycle provides an approach for simultaneous assignment and structure refinement (SASR) of proteins from solid-state NMR orientation restraints. The methods are demonstrated with data from two integral membrane proteins, one α-helical and one β-barrel, embedded in phospholipid bilayer membranes. PMID:22036904

  4. Solid state NMR: The essential technology for helical membrane protein structural characterization

    PubMed Central

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-01-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099

  5. Solid state NMR: The essential technology for helical membrane protein structural characterization

    NASA Astrophysics Data System (ADS)

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-02-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.

  6. Detergent Optimized Membrane Protein Reconstitution in Liposomes for Solid State NMR

    PubMed Central

    2015-01-01

    For small helical membrane proteins, their structures are highly sensitive to their environment, and solid state NMR is a structural technique that can characterize these membrane proteins in native-like lipid bilayers and proteoliposomes. To date, a systematic method by which to evaluate the effect of the solubilizing detergent on proteoliposome preparations for solid state NMR of membrane proteins has not been presented in the literature. A set of experiments are presented aimed at determining the conditions most amenable to dialysis mediated reconstitution sample preparation. A membrane protein from M. tuberculosis is used to illustrate the method. The results show that a detergent that stabilizes the most protein is not always ideal and sometimes cannot be removed by dialysis. By focusing on the lipid and protein binding properties of the detergent, proteoliposome preparations can be readily produced, which provide double the signal-to-noise ratios for both the oriented sample and magic angle spinning solid state NMR. The method will allow more membrane protein drug targets to be structurally characterized in lipid bilayer environments. PMID:24665863

  7. Protonation of benzimidazoles and 1,2,3-benzotriazoles Solid-state linear dichroic infrared (IR-LD) spectral analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.; Pindeva, Liliya I.

    2006-09-01

    IR-LD spectroscopic data obtained by the orientated solid samples as a suspension in a nematic liquid crystal of 1-hydroxy-1,2,3-benzotriazole, 2-methyl-, 2-acetonitrilebenzimidazoles and their protonated salts have been presented. The stereo-structures have been predicted and compared with theoretical ones. The IR-characteristic bands assignments of all molecule systems have been achieved.

  8. A "special perspectives" issue: Recent achievements and new directions in biomolecular solid state NMR

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2015-04-01

    Twenty years ago, applications of solid state nuclear magnetic resonance (NMR) methods to real problems involving biological systems or biological materials were few and far between. Starting in the 1980s, a small number of research groups had begun to explore the possibility of obtaining structural and dynamical information about peptides, proteins, and other biopolymers from solid state NMR spectra. Progress was initially slow due to the relatively primitive state of solid state NMR probes, spectrometers, sample preparation methods, and pulse sequence techniques, coupled with the small number of people contributing to this research area. By the early 1990s, with the advent of new ideas about pulse sequence techniques such as dipolar recoupling, improvements in techniques for orienting membrane proteins and in technology for magic-angle spinning (MAS), improvements in the capabilities of commercial NMR spectrometers, and general developments in multidimensional spectroscopy, it began to appear that biomolecular solid state NMR might have a viable future. It was not until 1993 that the annual number of publications in this area crept above twenty.

  9. Aromatic dipeptides and their salts—Solid-state linear-dichroic infrared (IR-LD) spectral analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.

    2008-07-01

    Stereo-structural analysis and IR-bands assignment of the aromatic dipeptides L-tryrosyl- L-phenylalanine ( Tyr-Phe), L-phenylalanyl- L-tyrosine ( Phe-Tyr) and their hydrochloride salts have been carried out by means of IR-LD spectroscopy of oriented as nematic liquid crystal suspension solid samples. The experimental data are compared with known crystallographic ones and theoretical predicted geometries at RHF/ and UHF/6-31G**.

  10. 'Boomerang'-like insertion of a fusogenic peptide in a lipid membrane revealed by solid-state 19F NMR.

    PubMed

    Afonin, Sergii; Dürr, Ulrich H N; Glaser, Ralf W; Ulrich, Anne S

    2004-02-01

    Solid state (19)F NMR revealed the conformation and alignment of the fusogenic peptide sequence B18 from the sea urchin fertilization protein bindin embedded in flat phospholipid bilayers. Single (19)F labels were introduced into nine distinct positions along the wild-type sequence by substituting each hydrophobic amino acid, one by one, with L-4-fluorophenylglycine. Their anisotropic chemical shifts were measured in uniaxially oriented membrane samples and used as orientational constraints to model the peptide structure in the membrane-bound state. Previous (1)H NMR studies of B18 in 30% TFE and in detergent micelles had shown that the peptide structure consists of two alpha-helical segments that are connected by a flexible hinge. This helix-break-helix motif was confirmed here by the solid-state (19)F NMR data, while no other secondary structure (beta-sheet, 3(10)-helix) was compatible with the set of orientational constraints. For both alpha-helical segments we found that the helical conformation extends all the way to the respective N- and C-termini of the peptide. Analysis of the corresponding tilt and azimuthal rotation angles showed that the N-terminal helix of B18 is immersed obliquely into the bilayer (at a tilt angle tau approximately 54 degrees), whereas the C-terminus is peripherally aligned (tau approximately 91 degrees). The azimuthal orientation of the two segments is consistent with the amphiphilic distribution of side-chains. The observed 'boomerang'-like mode of insertion into the membrane may thus explain how peptide binding leads to lipid dehydration and acyl chain perturbation as a prerequisite for bilayer fusion to occur. Copyright 2004 John Wiley & Sons, Ltd.

  11. Characterization of a water-solid interaction in a partially ordered system.

    PubMed

    Chakravarty, Paroma; Lubach, Joseph W

    2013-11-04

    GNE068-PC, a developmental compound, was previously characterized to be mesomorphous, i.e. having long-range order associated with significant local molecular disorder (Chakravarty et. al., Mol. Pharmaceutics, accepted). The compound was exposed to moisture under different relative humidity conditions ranging from 11% to 60% RH at room temperature (RT) for 7 days, and the resultant product phases were characterized. The partially ordered sample progressively lost crystallinity (long-range order) and birefringence (orientational order) upon exposure to increasing RH conditions, leading to the formation of a completely disordered amorphous phase at 60% RH (RT). Long-range positional order was irrecoverable even after moisture removal from the sample exposed to 60% RH. This was attributed to replacement of residual ethyl acetate by water, the former being critical for maintenance of long-range order in the material. In addition, water sorption appeared to irreversibly alter the molecular orientation, thereby affecting sample birefringence. Solid-state NMR revealed increases in (1)H and (13)C spin-lattice relaxation times (T1) going from the mesomorphous phase to the fully amorphous phase. This was indicative of reduction in lattice mobility, likely due to the decreased motion of the aromatic portions of the molecule, in particular C17, which showed the most dramatic increase in (13)C T1. This is likely due to decrease in available free volume upon water sorption. Drying of the hydrated disordered phase showed somewhat greater mobility than the hydrated phase, likely due to increased relative free volume through removal of water. A water-solid interaction therefore irreversibly changed the solid-state makeup of GNE068-PC.

  12. Reconstruction of interatomic vectors by principle component analysis of nuclear magnetic resonance data in multiple alignments

    NASA Astrophysics Data System (ADS)

    Hus, Jean-Christophe; Bruschweiler, Rafael

    2002-07-01

    A general method is presented for the reconstruction of interatomic vector orientations from nuclear magnetic resonance (NMR) spectroscopic data of tensor interactions of rank 2, such as dipolar coupling and chemical shielding anisotropy interactions, in solids and partially aligned liquid-state systems. The method, called PRIMA, is based on a principal component analysis of the covariance matrix of the NMR parameters collected for multiple alignments. The five nonzero eigenvalues and their eigenvectors efficiently allow the approximate reconstruction of the vector orientations of the underlying interactions. The method is demonstrated for an isotropic distribution of sample orientations as well as for finite sets of orientations and internuclear vectors encountered in protein systems.

  13. The contribution of grain boundary and defects to the resistivity in the ferromagnetic state of polycrystalline manganites

    NASA Astrophysics Data System (ADS)

    Sagdeo, P. R.; Anwar, Shahid; Lalla, N. P.; Patil, S. I.

    2006-11-01

    In the present study we report the precise resistivity measurements for the polycrystalline bulk sample as well as highly oriented thin-films of La 0.8Ca 0.2MnO 3. The poly crystalline sample was prepared by standard solid-state reaction route and the oriented thin film was prepared by pulsed laser deposition (PLD). The phase purity of these samples was confirmed by X-ray diffraction and the back-scattered electron imaging using scanning electron microscopy (SEM). The oxygen stoichiometry analysis was done by iodimetry titration. The resistivities of these samples were carried out with four-probe resistivity measurement setup. The observed temperature dependence of resistivity data for both the samples was fitted using the polaron model. We have found that polaronic model fits well with the experimental data of both polycrystalline and single crystal samples. A new phenomenological model is proposed and used to estimate contribution to the resistivity due to grain boundary in the ferromagnetic state of polycrystalline manganites and it has been shown that the scattering of electrons from the grain boundary (grain surface) is a function of temperature and controlled by the effective grain resistance at that temperature.

  14. High piezoelectric performance of poly(lactic acid) film manufactured by solid-state extrusion

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsunobu; Onogi, Takayuki; Onishi, Katsuki; Inagaki, Takuma; Tajitsu, Yoshiro

    2014-09-01

    Recently, the application of uniaxially stretched poly(l-lactic acid) (PLLA) films to speakers, actuators, and pressure sensors has been attempted, taking advantage of their piezoelectric performance. However, the shear piezoelectric constant d14 of uniaxially stretched PLLA film is conventionally 6-10 pC N-1. To realize a high sensitivity of pressure sensors, compact speakers, and actuators, and a low driving voltage, further improvement of the piezoelectric performance is desired. In this study, we carried out solid-state extrusion (SSE) to stretch and orient poly(d-lactic acid) (PDLA) and verified its effects on piezoelectric performance. By SSE, we were able to improve the mechanical strength and elastic modulus of PDLA samples. Furthermore, the d14 of the samples was significantly increased to approximately 20 pC N-1.

  15. integrating Solid State NMR and Computations in Membrane Protein Science

    NASA Astrophysics Data System (ADS)

    Cross, Timothy

    2015-03-01

    Helical membrane protein structures are influenced by their native environment. Therefore the characterization of their structure in an environment that models as closely as possible their native environment is critical for achieving not only structural but functional understanding of these proteins. Solid state NMR spectroscopy in liquid crystalline lipid bilayers provides an excellent tool for such characterizations. Two classes of restraints can be obtained - absolute restraints that constrain the structure to a laboratory frame of reference when using uniformly oriented samples (approximately 1° of mosaic spread) and relative restraints that restrain one part of the structure with respect to another part such as torsional and distance restraints. Here, I will discuss unique restraints derived from uniformly oriented samples and the characterization of initial structures utilizing both restraint types, followed by restrained molecular dynamics refinement in the same lipid bilayer environment as that used for the experimental restraint collection. Protein examples will be taken from Influenza virus and Mycobacterium tuberculosis. When available comparisons of structures to those obtained using different membrane mimetic environments will be shown and the causes for structural distortions explained based on an understanding of membrane biophysics and its sophisticated influence on membrane proteins.

  16. Recrystallization of fluconazole using the supercritical antisolvent (SAS) process.

    PubMed

    Park, Hee Jun; Kim, Min-Soo; Lee, Sibeum; Kim, Jeong-Soo; Woo, Jong-Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2007-01-10

    The supercritical antisolvent (SAS) process was used to modify solid state characteristics of fluconazole. Fluconazole was recrystallized at various temperatures (60-80 degrees C) and pressures (8-16MPa) using dichloromethane (DCM) as a solvent. Acetone and ethanol were also employed as solvents. The fluconazole polymorphs prepared by the SAS process were characterized by differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Furthermore, the equilibrium solubility of the samples in aqueous solution was determined. Fluconazole anhydrate form I was obtained at low temperature (40 degrees C) and anhydrate form II was obtained at high temperature (80 degrees C). The variation of pressure during the SAS process may influence the preferred orientation. Anhydrate forms I and II were also obtained using various solvents. Therefore, it was shown that solid state characteristics of fluconazole, including the polymorphic form and preferred orientation, can be controlled by changing operating conditions of the SAS process such as temperature, pressure, and solvent.

  17. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.

    PubMed

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2015-05-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.

  18. Experimental determination of torsion angles in the polypeptide backbone of the gramicidin A channel by solid state nuclear magnetic resonance.

    PubMed

    Teng, Q; Nicholson, L K; Cross, T A

    1991-04-05

    An analytical method for the determination of torsion angles from solid state 15N nuclear magnetic resonance (n.m.r.) spectroscopic data is demonstrated. Advantage is taken of the 15N-1H and 15N-13C dipolar interactions as well as the 15N chemical shift interaction in oriented samples. The membrane-bound channel conformation of gramicidin A has eluded an atomic resolution structure determination by more traditional approaches. Here, the torsion angles for the Ala3 site are determined by obtaining the n.m.r. data for both the Gly2-Ala3 and Ala3-Leu4 peptide linkages. Complete utilization of the orientational constraints derived from these orientation-dependent nuclear spin interactions in restricting the conformational space is most effectively achieved by utilizing spherical trigonometry. Two possible sets of torsion angles for the Ala3 site are obtained (phi, psi = -129 degrees, 153 degrees and -129 degrees, 122 degrees), both of which are consistent with a right-handed beta-helix. Other functional and computational evidence strongly supports the set for which the carbonyl oxygen atom of the Ala3-Leu4 linkage is rotated into the channel lumen.

  19. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors.

    PubMed

    Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong

    2015-11-04

    In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.

  20. Enhancement in superconducting properties of Bi2Sr2Ca1Cu2O8+θ (Bi-2212) by means of boron oxide additive

    NASA Astrophysics Data System (ADS)

    Fallah-Arani, Hesam; Baghshahi, Saeid; Sedghi, Arman; Stornaiuolo, Daniela; Tafuri, Francesco; Riahi-Noori, Nastaran

    2018-05-01

    By using a solid state method, Bi2Sr2Ca1Cu2O8+θ (Bi-2212) polycrystalline samples were synthesized with the addition of boron oxide additive, with the aim of improving the performance of this compound for large scale applications. As the first step, the parameters for the solid state method, in particular sintering temperature, were optimized in order to obtain pure Bi-2212 samples with an optimal microstructure. Then, based on this optimization, the properties of the Bi2Sr2Ca1Cu2BxOy samples with x = 0.05, 0.1, and 0.2 were studied using several characterization techniques. It was found that the sample having x = 0.05 showed a magnetic hysteresis loop larger than that of the pure Bi-2212 sample and a critical current density value of 3.71 × 105 A/cm2, comparable to the best results found in the literature for Bi-2212, while preserving well-stacked and oriented grains.

  1. Effect of annealing ambient on anisotropic retraction of film edges during solid-state dewetting of thin single crystal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu; Ma, Wen

    During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction ratesmore » of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.« less

  2. Reassessment of MxiH subunit orientation and fold within native Shigella T3SS needles using surface labelling and solid-state NMR.

    PubMed

    Verasdonck, Joeri; Shen, Da-Kang; Treadgold, Alexander; Arthur, Christopher; Böckmann, Anja; Meier, Beat H; Blocker, Ariel J

    2015-12-01

    T3SSs are essential virulence determinants of many Gram-negative bacteria, used to inject bacterial effectors of virulence into eukaryotic host cells. Their major extracellular portion, a ∼50 nm hollow, needle-like structure, is essential to host cell sensing and the conduit for effector secretion. It is formed of a small, conserved subunit arranged as a helical polymer. The structure of the subunit has been studied by electron cryomicroscopy within native polymers and by solid-state NMR in recombinant polymers, yielding two incompatible atomic models. To resolve this controversy, we re-examined the native polymer used for electron cryomicroscopy via surface labelling and solid-state NMR. Our data show the orientation and overall fold of the subunit within this polymer is as established by solid-state NMR for recombinant polymers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Solid State Division progress report for period ending September 30, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Watson, D.M.

    1985-03-01

    During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)

  4. Conformational study of 13C-enriched fibroin in the solid state, using the cross polarization nuclear magnetic resonance method.

    PubMed

    Fujiwara, T; Kobayashi, Y; Kyogoku, Y; Kataoka, K

    1986-01-05

    Silk fibroin with the alanyl carboxyl carbon enriched with 13C was obtained by giving a diet containing 13C-enriched alanine to the larvae of Bombyx mori and Antheraea pernyi at the fifth instar. Sericin-free fibroin fibers were prepared from cocoons, and gut was made from the liquid silk in the gland. The final 13C content was about 13%. Cross polarization/magic angle sample spinning spectra at 25 MHz and 75 MHz were measured for each sample at different orientations. Spectra were simulated using the principal values and orientations of the shielding tensor in the alanine crystal. The results indicate that the beta-structure of the fibroin may be a little more flattened than the typical pleated sheet beta-structure.

  5. Molecular orientation of organic thin films on dielectric solid substrates: a phase-sensitive vibrational SFG study.

    PubMed

    Ge, Aimin; Peng, Qiling; Qiao, Lin; Yepuri, Nageshwar R; Darwish, Tamim A; Matsusaki, Michiya; Akashi, Mitsuru; Ye, Shen

    2015-07-21

    Broadband phase-sensitive vibrational sum frequency generation (SFG) spectroscopy was utilized to study the molecular orientation of molecules adsorbed on dielectric solid substrates. A gold thin film was employed to generate a SFG signal as a local oscillator (LO). To simplify the phase measurement, a self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) was used as a standard sample for phase correction of the phase-sensitive SFG measurements on the solid/air interface. It was demonstrated that the absolute orientation of molecules in the LB films on a fused quartz surface can be clearly distinguished by phase-sensitive SFG measurement. In addition, the observation on the SAM of d35-OTS reveals that the two C-H stretching modes for α-CH2 group are in opposite phase. Furthermore, by using the present phase-sensitive SFG setup, the orientation flipping of water molecules on positively and negatively charged solid/liquid interface can be distinguished.

  6. Vertically Oriented and Interpenetrating CuSe Nanosheet Films with Open Channels for Flexible All-Solid-State Supercapacitors

    DOE PAGES

    Li, Lingzhi; Gong, Jiangfeng; Liu, Chunyan; ...

    2017-03-22

    As a p-type multifunctional semiconductor, CuSe nanostructures show great promise in optoelectronic, sensing, and photocatalytic fields. Although great progress has been achieved, controllable synthesis of CuSe nanosheets (NSs) with a desirable spacial orientation and open frameworks remains a challenge, and their use in supercapacitors (SCs) has not been explored. Herein, a highly vertically oriented and interpenetrating CuSe NS film with open channels is deposited on an Au-coated polyethylene terephthalate substrate. Such CuSe NS films exhibit high specific capacitance (209 F g–1) and can be used as a carbon black- and binder-free electrode to construct flexible, symmetric all-solid-state SCs, using polyvinylmore » alcohol–LiCl gel as the solid electrolyte. A device fabricated with such CuSe NS films exhibits high volumetric specific capacitance (30.17 mF cm–3), good cycling stability, excellent flexibility, and desirable mechanical stability. The excellent performance of such devices results from the vertically oriented and interpenetrating configuration of CuSe NS building blocks, which can increase the available surface and facilitate the diffusion of electrolyte ions. Moreover, as a prototype for application, three such solid devices in series can be used to light up a red light-emitting diode.« less

  7. Vertically Oriented and Interpenetrating CuSe Nanosheet Films with Open Channels for Flexible All-Solid-State Supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lingzhi; Gong, Jiangfeng; Liu, Chunyan

    As a p-type multifunctional semiconductor, CuSe nanostructures show great promise in optoelectronic, sensing, and photocatalytic fields. Although great progress has been achieved, controllable synthesis of CuSe nanosheets (NSs) with a desirable spacial orientation and open frameworks remains a challenge, and their use in supercapacitors (SCs) has not been explored. Herein, a highly vertically oriented and interpenetrating CuSe NS film with open channels is deposited on an Au-coated polyethylene terephthalate substrate. Such CuSe NS films exhibit high specific capacitance (209 F g–1) and can be used as a carbon black- and binder-free electrode to construct flexible, symmetric all-solid-state SCs, using polyvinylmore » alcohol–LiCl gel as the solid electrolyte. A device fabricated with such CuSe NS films exhibits high volumetric specific capacitance (30.17 mF cm–3), good cycling stability, excellent flexibility, and desirable mechanical stability. The excellent performance of such devices results from the vertically oriented and interpenetrating configuration of CuSe NS building blocks, which can increase the available surface and facilitate the diffusion of electrolyte ions. Moreover, as a prototype for application, three such solid devices in series can be used to light up a red light-emitting diode.« less

  8. Ultracold Fermions in the P-Orbital Band of an Optical Lattice

    DTIC Science & Technology

    2015-07-27

    introduces (1) a new degree of freedom due to orbital degeneracy and (2) a tunneling anisotropy which depends on the orientation of the orbital wavefunction...demonstrated this new technique with a diode -pumped solid-state laser operating at 1342 nm that could be frequency doubled to provide 671 nm light for laser...Figure 3: Self-injection locked, diode -pumped solid-state laser for laser cooling of Li atoms. The solid-state Nd:YVO4 laser at the top consists of a

  9. Simulation of Solid-State Weld Microstructures in Ti-17 via Thermal and Thermo- Mechanical Exposures

    NASA Astrophysics Data System (ADS)

    Orsborn, Jonathan

    Solid-state welding processes are very important to the advancement of aviation technology; since they enable the joining of dissimilar metals without the additional weight and bulk of fastening systems, the processes can create for stronger and lighter parts to increase payload and efficiency. However, since the processes are not equilibrium, not much is understood about what happens to the materials during the process. During a solid-state weld, the materials being welded are exposed to rapid heating rates, high maximum temperatures, large and varying amounts of deformation, short hold times at temperature, and fast cooling rates. Due to the dynamic nature of the process it is very hard to measure the strains and temperatures experienced by the materials. This work attempted to simulate the microstructures observed in solid-state welds of Ti-5Al-2Sn-2Zr-4Cr-4Mo, or Ti-17. If the microstructures could be replicated in a controlled and repeatable fashion, then perhaps the conditions of the welding process could be indirectly determined. The simulations were performed by rapidly heating Ti-17 specimens, holding them for a very short time, and rapidly cooling. Some of the samples were also subjected to deformation while at high temperatures. The microstructures resulting from the thermal and thermo-mechanical exposures were then compared with microstructures from an actual solid-state weld of Ti-17. It was determined that the presence of untransformed secondary alpha indicates the temperature did not exceed the beta transus of the alloy (˜900 °C), the presence of untransformed primary alpha indicates that the temperature did not exceed ˜1100 °C, homogenized beta grains indicate that the temperature did exceed 1100°C, and the presence of ghost alpha is indicative that the temperature likely exceeded ˜950 °C. These numbers are rough estimates, as time at temperature and heating rate both factor into the process, and shorter times at higher temperatures can sometimes produce results similar to longer times at lower temperatures. It was also determined that ghost alpha is a conglomeration of alpha laths with many different morphological orientations and crystallographic orientations, with beta present between the laths.

  10. Free energy reconstruction from steered dynamics without post-processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athenes, Manuel, E-mail: Manuel.Athenes@cea.f; Condensed Matter and Materials Division, Physics and Life Sciences Directorate, LLNL, Livermore, CA 94551; Marinica, Mihai-Cosmin

    2010-09-20

    Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-{alpha}. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, wemore » accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.« less

  11. Process parameters, orientation, and functional properties of melt-processed bulk Y-Ba-Cu-O superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharchenko, I.V.; Terryll, K.M.; Rao, K.V.

    1995-03-01

    This study compared the microstructure, texturing, and functional properties (critical currents) of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}-based bulk pellets that were prepared by the quench-melt-growth-process (QMGP), melt-textured growth (MTG), and conventional solid-state reaction (SSR) approaches. Using two X-ray diffraction (XRD) methods, {theta}-2{theta}, and rocking curves, the authors found that the individual grains of two melt-processed pellets exhibited remarkable preferred orientational alignment (best rocking curve width = 3.2{degree}). However, the direction of the preferred orientation among the grains was random. Among the three types of bulk materials studied, the QMGP sample was found to have the best J{sub c} values, {approx} 4,500more » A/cm{sup 2} at 77 K in a field of 2 kG, as determined from SQUID magnetic data.« less

  12. Mechanism of calcite co-orientation in the sea urchin tooth.

    PubMed

    Killian, Christopher E; Metzler, Rebecca A; Gong, Y U T; Olson, Ian C; Aizenberg, Joanna; Politi, Yael; Wilt, Fred H; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan N; Gilbert, P U P A

    2009-12-30

    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO(3)) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin ( Strongylocentrotus purpuratus ), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction (muXRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO(3) is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.

  13. NMR at Low and Ultra-Low Temperatures

    PubMed Central

    Tycko, Robert

    2017-01-01

    Conspectus Solid state nuclear magnetic resonance (NMR) measurements at low temperatures have been common in physical sciences for many years, and are becoming increasingly important in studies of biomolecular systems. This article reviews a diverse set of projects from my laboratory, dating back to the early 1990s, that illustrate the motivations for low-temperature solid state NMR, the types of information that are available from the measurements, and likely directions for future research. These projects include NMR studies of both physical and biological systems, performed at low (cooled with nitrogen, down to 77 K) and very low (cooled with helium, below 77 K) temperatures, and performed with and without magic-angle spinning (MAS). In NMR studies of physical systems, the main motivation is to study phenomena that occur only at low temperatures. Two examples from my laboratory are studies of molecular rotation and an orientational ordering in solid C60 at low temperatures and studies of unusual electronic states, called skyrmions, in two-dimensionally confined electron systems within semiconductor quantum wells. NMR measurements on quantum wells were facilitated by optical pumping of nuclear spin polarizations, a signal enhancement phenomenon that exists at very low temperatures. In studies of biomolecular systems, motivations for low-temperature NMR include suppression of molecular tumbling (thereby permitting solid state NMR measurements on soluble proteins), suppression of conformational exchange (thereby permitting quantitation of conformational distributions), and trapping of transient intermediate states in a non-equilibrium kinetic process (by rapid freeze-quenching). Solid state NMR measurements on AIDS-related peptide/antibody complexes, chemically denatured states of the model protein HP35, and a transient intermediate in the rapid folding pathway of HP35 illustrate these motivations. NMR sensitivity generally increases with decreasing sample temperature. It is therefore advantageous to go as cold as possible, particularly in studies of biomolecular systems in frozen solutions. However, solid state NMR studies of biomolecular systems generally require rapid MAS. A novel MAS NMR probe design that uses nitrogen gas for sample spinning and cold helium only for sample cooling allows a wide variety of solid state NMR measurements to be performed on biomolecular systems at 20-25 K, where signals are enhanced by factors of 12-15 relative to measurements at room temperature. MAS NMR at very low temperatures also facilitates dynamic nuclear polarization (DNP), allowing sizeable additional signal enhancements and large absolute NMR signal amplitudes to be achieved with relatively low microwave powers. Current research in my laboratory seeks to develop and exploit DNP-enhanced MAS NMR at very low temperatures, for example in studies of transient intermediates in protein folding and aggregation processes and studies of peptide/protein complexes that can be prepared only at low concentrations. PMID:23470028

  14. Application of advanced sampling and analysis methods to predict the structure of adsorbed protein on a material surface

    PubMed Central

    Abramyan, Tigran M.; Hyde-Volpe, David L.; Stuart, Steven J.; Latour, Robert A.

    2017-01-01

    The use of standard molecular dynamics simulation methods to predict the interactions of a protein with a material surface have the inherent limitations of lacking the ability to determine the most likely conformations and orientations of the adsorbed protein on the surface and to determine the level of convergence attained by the simulation. In addition, standard mixing rules are typically applied to combine the nonbonded force field parameters of the solution and solid phases the system to represent interfacial behavior without validation. As a means to circumvent these problems, the authors demonstrate the application of an efficient advanced sampling method (TIGER2A) for the simulation of the adsorption of hen egg-white lysozyme on a crystalline (110) high-density polyethylene surface plane. Simulations are conducted to generate a Boltzmann-weighted ensemble of sampled states using force field parameters that were validated to represent interfacial behavior for this system. The resulting ensembles of sampled states were then analyzed using an in-house-developed cluster analysis method to predict the most probable orientations and conformations of the protein on the surface based on the amount of sampling performed, from which free energy differences between the adsorbed states were able to be calculated. In addition, by conducting two independent sets of TIGER2A simulations combined with cluster analyses, the authors demonstrate a method to estimate the degree of convergence achieved for a given amount of sampling. The results from these simulations demonstrate that these methods enable the most probable orientations and conformations of an adsorbed protein to be predicted and that the use of our validated interfacial force field parameter set provides closer agreement to available experimental results compared to using standard CHARMM force field parameterization to represent molecular behavior at the interface. PMID:28514864

  15. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  16. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  17. Structure and Membrane Interactions of the Antibiotic Peptide Dermadistinctin K by Multidimensional Solution and Oriented 15N and 31P Solid-State NMR Spectroscopy

    PubMed Central

    Verly, Rodrigo M.; Moraes, Cléria Mendonça de; Resende, Jarbas M.; Aisenbrey, Christopher; Bemquerer, Marcelo Porto; Piló-Veloso, Dorila; Valente, Ana Paula; Almeida, Fábio C.L.; Bechinger, Burkhard

    2009-01-01

    DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an α-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with 15N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting 15N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled 31P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing. PMID:19289046

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.

    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD).more » All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.« less

  19. Sum frequency generation and solid-state NMR study of the structure, orientation, and dynamics of polystyrene-adsorbed peptides

    PubMed Central

    Weidner, Tobias; Breen, Nicholas F.; Li, Kun; Drobny, Gary P.; Castner, David G.

    2010-01-01

    The power of combining sum frequency generation (SFG) vibrational spectroscopy and solid-state nuclear magnetic resonance (ssNMR) spectroscopy to quantify, with site specificity and atomic resolution, the orientation and dynamics of side chains in synthetic model peptides adsorbed onto polystyrene (PS) surfaces is demonstrated in this study. Although isotopic labeling has long been used in ssNMR studies to site-specifically probe the structure and dynamics of biomolecules, the potential of SFG to probe side chain orientation in isotopically labeled surface-adsorbed peptides and proteins remains largely unexplored. The 14 amino acid leucine-lysine peptide studied in this work is known to form an α-helical secondary structure at liquid-solid interfaces. Selective, individual deuteration of the isopropyl group in each leucine residue was used to probe the orientation and dynamics of each individual leucine side chain of LKα14 adsorbed onto PS. The selective isotopic labeling methods allowed SFG analysis to determine the orientations of individual side chains in adsorbed peptides. Side chain dynamics were obtained by fitting the deuterium ssNMR line shape to specific motional models. Through the combined use of SFG and ssNMR, the dynamic trends observed for individual side chains by ssNMR have been correlated with side chain orientation relative to the PS surface as determined by SFG. This combination provides a more complete and quantitative picture of the structure, orientation, and dynamics of these surface-adsorbed peptides than could be obtained if either technique were used separately. PMID:20628016

  20. Thermal conductivity of solid monohydroxyl alcohols in polyamorphous states

    NASA Astrophysics Data System (ADS)

    Krivchikov, A. I.; Korolyuk, O. A.; Sharapova, I. V.

    2012-01-01

    New measurements of the thermal conductivity of solid ethyl alcohol C2H5OH in the interval from 2 K to the melting temperature are presented. An annealing effect in the thermal conductivity of the orientationally ordered phase of the alcohol has been observed over a wide range of temperatures. This phase was obtained as a result of an irreversible first-order phase transition from an orientationally disordered crystal with a cubic structure at T = 109 K. The thermal conductivity was observed to increase as the monoclinic lattice changed from a less stable phase to a more stable one. The growth may be due to the improved quality of the completely ordered crystal. A comparative analysis of the temperature dependences of the thermal conductivity κ(T) is made for the solid monohydroxyl alcohols CH3OH, C2H5OH, С2D5OD, C3H7OH, and C4H9OH in their disordered orientational and structural states. At low temperatures the thermal conductivity of the series of monohydroxyl structural glasses of the alcohols increases linearly with the mass of the alcohol molecule.

  1. Pressure-induced orientational glass phase in molecular para-hydrogen.

    PubMed

    Schelkacheva, T I; Tareyeva, E E; Chtchelkatchev, N M

    2009-02-01

    We propose a theoretical description of a possible orientational glass transition in solid molecular para-hydrogen and ortho-deuterium under pressure supposing that they are mixtures of J=0 and J=2 states of molecules. The theory uses the basic concepts and methods of standard spin-glass theory. We expect our orientational glass to correspond to the II' phase of the high-pressure hydrogen phase diagram.

  2. Determining the Topology of Integral Membrane Peptides Using EPR Spectroscopy

    PubMed Central

    Inbaraj, Johnson J.; Cardon, Thomas B.; Laryukhin, Mikhail; Grosser, Stuart M.

    2008-01-01

    This paper reports on the development of a new structural biology technique for determining the membrane topology of an integral membrane protein inserted into magnetically aligned phospholipid bilayers (bicelles) using EPR spectroscopy. The nitroxide spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) was attached to the pore-lining transmembrane domain (M2δ) of the nicotinic acetylcholine receptor (AChR) and incorporated into a bicelle. The corresponding EPR spectra revealed hyperfine splittings that were highly dependent on the macroscopic orientation of the bicelles with respect to the static magnetic field. The helical tilt of the peptide can be easily calculated using the hyperfine splittings gleaned from the orientational dependent EPR spectra. A helical tilt of 14° was calculated for the M2δ peptide with respect to the bilayer normal of the membrane, which agrees well with previous 15N solid-state NMR studies. The helical tilt of the peptide was verified by simulating the corresponding EPR spectra using the standardized MOMD approach. This new method is advantageous because: (1) bicelle samples are easy to prepare, (2) the helical tilt can be directly calculated from the orientational-dependent hyperfine splitting in the EPR spectra, and (3) EPR spectroscopy is approximately 1000 fold more sensitive than 15N solid-state NMR spectroscopy; thus, the helical tilt of an integral membrane peptide can be determined with only 100 μg of peptide. The helical tilt can be determined more accurately by placing TOAC spin labels at several positions with this technique. PMID:16848493

  3. Low voltage solid-state lateral coloration electrochromic device

    DOEpatents

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1984-12-21

    A solid-state transition metal oxide device comprising a plurality of layers having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.

  4. Low voltage solid-state lateral coloration electrochromic device

    DOEpatents

    Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.

    1987-01-01

    A solid-state transition metal oxide device comprising a plurality of lay having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.

  5. Orientational alignment in solids from bidimensional isotropic-anisotropic nuclear magnetic resonance spectroscopy: applications to the analysis of aramide fibers.

    PubMed

    Sachleben, J R; Frydman, L

    1997-02-01

    The use of two-dimensional isotropic-anisotropic correlation spectroscopy for the analysis of orientational alignment in solids is presented. The theoretical background and advantages of this natural-abundance 13C NMR method of measurement are discussed, and demonstrated with a series of powder and single-crystal variable-angle correlation spectroscopy (VACSY) experiments on model systems. The technique is subsequently employed to analyze the orientational distributions of three polymer fibers: Kevlar 29, Kevlar 49 and Kevlar 149. Using complementary two-dimensional NMR data recorded on synthetic samples of poly(p-phenyleneterephthalamide), the precursor of Kevlar, it was found that these commercial fibers possess molecules distributed over a very narrow orientational range with respect to the macroscopic director. The widths measured for these director distribution arrangements were (12 +/- 1.5) degrees for Kevlar 29, (15 +/- 1.5) degrees for Kevlar 49, and (8 +/- 1.5) degrees for Kevlar 149. These figures compare well with previous results obtained for non-commercial fiber samples derived from the same polymer.

  6. Conformational and orientational order and disorder in solid polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Sprik, Michiel; Rothlisberger, Ursula; Klein, Michael L.

    The low pressure phase diagram of solid polytetrafluoroethylene (PTFE/Teflon) has been investigated using constant temperature-constant pressure molecular dynamics techniques and a new all-atom potential model for fluorocarbons. The simulation was started in an ordered low temperature phase in which the molecules are parallel and have a helical conformation with a pitch of uniform magnitude and sign (chirality). In accordance with experiment, a transition to an orientationally disordered state is observed upon heating. The coherent helical winding of CF2 groups also disappears abruptly at the transition but short helical segments remain and become equally distributed between left and right chirality with increasing temperature. The orientational and conformational disorder is accompanied by translational diffusion along the chain direction. At a still higher temperature melting sets in. On cooling, the disordered solid phase is recovered and its structure is shown to be identical to that generated on heating. On further cooling, a spontaneous ordering transition is observed but the system fails to recover a uniform helical ground state. Instead, the high pressure ordered monoclinic all- trans (alkane-like) structure is obtained: an observation that indicates a deficiency in the potential model.

  7. Design and Computational Fluid Dynamics Investigation of a Personal, High Flow Inhalable Sampler

    PubMed Central

    Anthony, T. Renée; Landázuri, Andrea C.; Van Dyke, Mike; Volckens, John

    2016-01-01

    The objective of this research was to develop an inlet to meet the inhalable sampling criterion at 10 l min−1 flow using the standard, 37-mm cassette. We designed a porous head for this cassette and evaluated its performance using computational fluid dynamics (CFD) modeling. Particle aspiration efficiency was simulated in a wind tunnel environment at 0.4 m s−1 freestream velocity for a facing-the-wind orientation, with sampler oriented at both 0° (horizontal) and 30° down angles. The porous high-flow sampler oriented 30° downward showed reasonable agreement with published mannequin wind tunnel studies and humanoid CFD investigations for solid particle aspiration into the mouth, whereas the horizontal orientation resulted in oversampling. Liquid particles were under-aspirated in all cases, however, with 41–84% lower aspiration efficiencies relative to solid particles. A sampler with a single central 15-mm pore at 10 l min−1 was also investigated and was found to match the porous sampler’s aspiration efficiency for solid particles; the single-pore sampler is expected to be more suitable for liquid particle use. PMID:20418278

  8. In situ grain fracture mechanics during uniaxial compaction of granular solids

    NASA Astrophysics Data System (ADS)

    Hurley, R. C.; Lind, J.; Pagan, D. C.; Akin, M. C.; Herbold, E. B.

    2018-03-01

    Grain fracture and crushing are known to influence the macroscopic mechanical behavior of granular materials and be influenced by factors such as grain composition, morphology, and microstructure. In this paper, we investigate grain fracture and crushing by combining synchrotron x-ray computed tomography and three-dimensional x-ray diffraction to study two granular samples undergoing uniaxial compaction. Our measurements provide details of grain kinematics, contacts, average intra-granular stresses, inter-particle forces, and intra-grain crystal and fracture plane orientations. Our analyses elucidate the complex nature of fracture and crushing, showing that: (1) the average stress states of grains prior to fracture vary widely in their relation to global and local trends; (2) fractured grains experience inter-particle forces and stored energies that are statistically higher than intact grains prior to fracture; (3) fracture plane orientations are primarily controlled by average intra-granular stress and contact fabric rather than the orientation of the crystal lattice; (4) the creation of new surfaces during fracture accounts for a very small portion of the energy dissipated during compaction; (5) mixing brittle and ductile grain materials alters the grain-scale fracture response. The results highlight an application of combined x-ray measurements for non-destructive in situ analysis of granular solids and provide details about grain fracture that have important implications for theory and modeling.

  9. Microstructure development and texture evolution of aluminum multi-port extrusion tube during the porthole die extrusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, X.H.

    Aluminum multi-port extrusion tube is processed by the porthole die extrusion and the internal tube walls are welded through the solid state metallurgical bonding. In order to observe the development of grains and their orientations under severe plastic deformation and solid state welding, the extrusion butt together with the die is quenched immediately after extrusion to preserve the grain structure in the processing. The forming histories of selected material points are obtained by analyzing the optical microscopy graph. The evolution of the microstructure along the forming path is characterized by electro backscattered diffraction. It is found that geometrical dynamic recrystallizationmore » happens in the process. Grains are elongated, scattered at the transition zone and shear intensive zone, and then pinched off when they are pushed out from the die orifice. The shear-type orientations are predominant at the surface layer on the longitudinal section of the tube web and have penetrated into the intermediate layer. The rolling-type orientations are formed at the central layer. Texture gradient through the thickness of the tube web is observed. And cube orientated grains are found at the seam weld region. - Highlights: •Microstructure of extrusion butt is preserved after the micro scale porthole die extrusion. •Grain morphology history along forming path is investigated. •Texture evolutions on three material flows are present. •Texture gradient exists on the longitudinal section of the internal wall of profile. •Rolling-type and cube textures are found at the solid state welding region.« less

  10. Sensitivity enhancement and contrasting information provided by free radicals in oriented-sample NMR of bicelle-reconstituted membrane proteins.

    PubMed

    Tesch, Deanna M; Nevzorov, Alexander A

    2014-02-01

    Elucidating structure and topology of membrane proteins (MPs) is essential for unveiling functionality of these important biological constituents. Oriented-sample solid-state NMR (OS-NMR) is capable of providing such information on MPs under nearly physiological conditions. However, two dimensional OS-NMR experiments can take several days to complete due to long longitudinal relaxation times combined with the large number of scans to achieve sufficient signal sensitivity in biological samples. Here, free radicals 5-DOXYL stearic acid, TEMPOL, and CAT-1 were added to uniformly (15)N-labeled Pf1 coat protein reconstituted in DMPC/DHPC bicelles, and their effect on the longitudinal relaxation times (T1Z) was investigated. The dramatically shortened T1Z's allowed for the signal gain per unit time to be used for either: (i) up to a threefold reduction of the total experimental time at 99% magnetization recovery or (ii) obtaining up to 74% signal enhancement between the control and radical samples during constant experimental time at "optimal" relaxation delays. In addition, through OS-NMR and high-field EPR studies, free radicals were able to provide positional constraints in the bicelle system, which provide a description of the location of each residue in Pf1 coat protein within the bicellar membranes. This information can be useful in the determination of oligomerization states and immersion depths of larger membrane proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Determining the Orientation and Localization of Membrane-Bound Peptides

    PubMed Central

    Hohlweg, Walter; Kosol, Simone; Zangger, Klaus

    2012-01-01

    Many naturally occurring bioactive peptides bind to biological membranes. Studying and elucidating the mode of interaction is often an essential step to understand their molecular and biological functions. To obtain the complete orientation and immersion depth of such compounds in the membrane or a membrane-mimetic system, a number of methods are available, which are separated in this review into four main classes: solution NMR, solid-state NMR, EPR and other methods. Solution NMR methods include the Nuclear Overhauser Effect (NOE) between peptide and membrane signals, residual dipolar couplings and the use of paramagnetic probes, either within the membrane-mimetic or in the solvent. The vast array of solid state NMR methods to study membrane-bound peptide orientation and localization includes the anisotropic chemical shift, PISA wheels, dipolar waves, the GALA, MAOS and REDOR methods and again the use of paramagnetic additives on relaxation rates. Paramagnetic additives, with their effect on spectral linewidths, have also been used in EPR spectroscopy. Additionally, the orientation of a peptide within a membrane can be obtained by the anisotropic hyperfine tensor of a rigidly attached nitroxide label. Besides these magnetic resonance techniques a series of other methods to probe the orientation of peptides in membranes has been developed, consisting of fluorescence-, infrared- and oriented circular dichroism spectroscopy, colorimetry, interface-sensitive X-ray and neutron scattering and Quartz crystal microbalance. PMID:22044140

  12. Intermediate couplings: NMR at the solids-liquids interface

    NASA Astrophysics Data System (ADS)

    Spence, Megan

    2006-03-01

    Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.

  13. Effects of Drying Process on an IgG1 Monoclonal Antibody Using Solid-State Hydrogen Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS).

    PubMed

    Moussa, Ehab M; Wilson, Nathan E; Zhou, Qi Tony; Singh, Satish K; Nema, Sandeep; Topp, Elizabeth M

    2018-01-03

    Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity. Here, we compared lyophilization with and without controlled ice nucleation, and spray drying for their effects on the solid-state conformation and matrix interactions of a model IgG1 monoclonal antibody (mAb). Solid-state conformation and matrix interactions of the mAb were probed using solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS), and solid-state Fourier transform infrared (ssFTIR) and solid-state fluorescence spectroscopies. mAb conformation and/or matrix interactions were most perturbed in mannitol-containing samples and the distribution of states was more heterogeneous in sucrose and trehalose samples that were spray dried. The findings demonstrate the sensitivity of ssHDX-MS to changes weakly indicated by spectroscopic methods, and support the broader use of ssHDX-MS to probe formulation and process effects on proteins in solid samples.

  14. Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting.

    PubMed

    Ye, Jongpil

    2015-05-08

    Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes.

  15. Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting

    PubMed Central

    Ye, Jongpil

    2015-01-01

    Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes. PMID:25951816

  16. Development of forming and joining technology for TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Torgerson, R. T.

    1973-01-01

    Forming joining techniques and properties data were developed for thin-gage TD-NiCr sheet in the recrystallized and unrecrystallized conditions. Theoretical and actual forming limit data are presented for several gages of each type of material for five forming processes: brake forming, corrugation forming, joggling, dimpling and beading. Recrystallized sheet can be best formed at room temperature, but unrecrystallized sheet requires forming at elevated temperature. Formability is satisfactory with most processes for the longitudinal orientation but poor for the transverse orientation. Dimpling techniques require further development for both material conditions. Data on joining techniques and joint properties are presented for four joining processes: resistance seam welding (solid-state), resistance spot welding (solid-state), resistance spot welding (fusion) and brazing. Resistance seam welded (solid-state) joints with 5t overlap were stronger than parent material for both material conditions when tested in tensile-shear and stress-rupture. Brazing studies resulted in development of NASA 18 braze alloy (Ni-16Cr-15Mo-8Al-4Si) with several properties superior to baseline TD-6 braze alloy, including lower brazing temperture, reduced reaction with Td-Ni-Cr, and higher stress-rupture properties.

  17. High-precision control of static magnetic field magnitude, orientation, and gradient using optically pumped vapour cell magnetometry.

    PubMed

    Ingleby, S J; Griffin, P F; Arnold, A S; Chouliara, M; Riis, E

    2017-04-01

    An integrated system of hardware and software allowing precise definition of arbitrarily oriented magnetic fields up to |B| = 1 μT within a five-layer Mumetal shield is described. The system is calibrated with reference to magnetic resonance observed between Zeeman states of the 6S 1/2 F = 4 133 Cs ground state. Magnetic field definition over the full 4π solid angle is demonstrated with one-sigma tolerances in magnitude, orientation, and gradient of δ|B| = 0.94 nT, δθ = 5.9 mrad, and δ|∇B|=13.0 pT/mm, respectively. This field control is used to empirically map M x magnetometer signal amplitude as a function of the static field (B 0 ) orientation.

  18. Molecular characterization of the plant biopolyester cutin by AFM and spectroscopic techniques.

    PubMed

    Benítez, José J; Matas, Antonio J; Heredia, Antonio

    2004-08-01

    Atomic force microscopy, FT-IR spectroscopy, and solid-state nuclear magnetic resonance have been used to improve our current knowledge on the molecular characteristics of the biopolyester cutin, the main component of the plant cuticle. After comparison of samples of cutin isolated from young and mature tomato fruit cuticles has been possible to establish different degrees of cross-linking in the biopolymer and that the polymer is mainly formed after esterification of secondary hydroxyl groups of the monomers that form this type of cutin. Atomic force microscopy gave useful structural information on the molecular topography of the outer surface of the isolated samples. The texture of these samples is a consequence of the cross-linking degree or chemical status of the polymer. Thus, the more dense and cross-linked cutin from ripe or mature tomato fruit is characterized by a flatter and more globular texture in addition to the development of elongated and orientated superstructures.

  19. Linear-dichroic infrared spectroscopy—Validation and experimental design of the new orientation technique of solid samples as suspension in nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Ivanova, B. B.; Simeonov, V. D.; Arnaudov, M. G.; Tsalev, D. L.

    2007-05-01

    A validation of the developed new orientation method of solid samples as suspension in nematic liquid crystal (NLC), applied in linear-dichroic infrared (IR-LD) spectroscopy has been carried out using a model system DL-isoleucine ( DL-isoleu). Accuracy, precision and the influence of the liquid crystal medium on peak positions and integral absorbances of guest molecules have been presented. Optimization of experimental conditions has been performed as well. An experimental design for quantitative evaluation of the impact of four input factors: the number of scans, the rubbing-out of KBr-pellets, the amount of studied compounds included in the liquid crystal medium and the ratios of Lorentzian to Gaussian peak functions in the curve fitting procedure on the spectroscopic signal at five different frequencies, indicating important specifities of the system has been studied.

  20. Measurements of relative chemical shift tensor orientations in solid-state NMR: new slow magic angle spinning dipolar recoupling experiments.

    PubMed

    Jurd, Andrew P S; Titman, Jeremy J

    2009-08-28

    Solid-state NMR experiments can be used to determine conformational parameters, such as interatomic distances and torsion angles. The latter can be obtained from measurements of the relative orientation of two chemical shift tensors, if the orientation of these with respect to the surrounding bonds is known. In this paper, a new rotor-synchronized magic angle spinning (MAS) dipolar correlation experiment is described which can be used in this way. Because the experiment requires slow MAS rates, a novel recoupling sequence, designed using symmetry principles, is incorporated into the mixing period. This recoupling sequence is based in turn on a new composite cyclic pulse referred to as COAST (for combined offset and anisotropy stabilization). The new COAST-C7(2)(1) sequence is shown to give good theoretical and experimental recoupling efficiency, even when the CSA far exceeds the MAS rate. In this regime, previous recoupling sequences, such as POST-C7(2)(1), exhibit poor recoupling performance. The effectiveness of the new method has been explored by a study of the dipeptide L-phenylalanyl-L-phenylalanine.

  1. Molecular dynamics simulations on PGLa using NMR orientational constraints.

    PubMed

    Sternberg, Ulrich; Witter, Raiker

    2015-11-01

    NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide.

  2. The effect of B{sub 2}O{sub 3} flux on growth NLBCO superconductor by solid state reaction and wet-mixing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suharta, W. G., E-mail: wgsuharta@gmail.com; Wendri, N.; Ratini, N.

    The synthesis of B{sub 2}O{sub 3} flux substituted NLBCO superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} has been done using solid state reaction and wet-mixing methods in order to obtain homogeneous crystals and single phase. From DTA/TGA characteritations showed the synthesis process by wet-mixing requires a lower temperature than the solid state reaction in growing the superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂}. Therefore, in this research NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} sample calcinated at 650°C for wet-mixing method and 820°C for solid state reaction methods. The all samples was sintered at 950°C for ten hours. Crystallinity of the sample was confirmedmore » using X-ray techniques and generally obtained sharp peaks that indicates the sample already well crystallized. Search match analyses for diffraction data gave weight fractions of impurity phase of the solid state reaction method higher than wet-mixing method. In this research showed decreasing the price of the lattice parameter about 1% with the addition of B{sub 2}O{sub 3} flux for the both synthesis process and 2% of wet mixing process for all samples. Characterization using scanning electron microscopy (SEM) showed the distribution of crystal zise for wet-mixing method more homogeneous than solid state reaction method, with he grain size of samples is around 150–250 nm. The results of vibrating sample magnetometer (VSM) showed the paramagnetic properties for all samples.« less

  3. Cross-polarization/magic-angle sample-spinning /sup 13/C NMR spectroscopic study of chlorophyll a in the solid state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C.E.; Spencer, R.B.; Burger, V.T.

    1984-01-01

    Solid-state cross-polarization/magic-angle sample-spinning /sup 13/C NMR spectra have been recorded on chlorophyll a-water aggregates, methyl pyrochlorophyllide a, and methyl pyropheophorbide a. Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid-state spectra. 18 references, 2 figures, 1 table.

  4. Resource Conservation and Recovery Act (RCRA) Orientation Manual

    EPA Pesticide Factsheets

    This manual provides introductory information on the solid and hazardous waste management programs under the Resource Conservation and Recovery Act (RCRA). Designed for EPA and state staff, members of the regulated community, and the general public.

  5. Theoretical constraints on dynamic pulverization of fault zone rocks

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Ben-Zion, Yehuda

    2017-04-01

    We discuss dynamic rupture results aiming to elucidate the generation mechanism of pulverized fault zone rocks (PFZR) observed in 100-200 m wide belts distributed asymmetrically across major strike-slip faults separating different crustal blocks. Properties of subshear and supershear ruptures are considered using analytical results of Linear Elastic Fracture Mechanics and numerical simulations of Mode-II ruptures along faults between similar or dissimilar solids. The dynamic fields of bimaterial subshear ruptures are expected to produce off-fault damage primarily on the stiff side of the fault, with tensile cracks having no preferred orientation, in agreement with field observations. Subshear ruptures in a homogeneous solid are expected to produce off-fault damage with high-angle tensile cracks on the extensional side of the fault, while supershear ruptures between similar or dissimilar solids are likely to produce off-fault damage on both sides of the fault with preferred tensile crack orientations. One or more of these features are not consistent with properties of natural samples of PFZR. At a distance of about 100 m from the fault, subshear and supershear ruptures without stress singularities produce strain rates up to 1 s-1. This is less than required for rock pulverization in laboratory experiments with centimetre-scale intact rock samples, but may be sufficient for pulverizing larger samples with pre-existing damage.

  6. Determining the orientation of a chiral substrate using full-hemisphere angle-resolved photoelectron spectroscopy.

    PubMed

    Tadich, A; Riley, J; Thomsen, L; Cowie, B C C; Gladys, M J

    2011-10-21

    Chiral interfaces and substrates are of increasing importance in the field of enantioselective chemistry. To fully understand the enantiospecific interactions between chiral adsorbate molecules and the chiral substrate, it is vital that the chiral orientation of the substrate is known. In this Letter we demonstrate that full-hemisphere angle-resolved photoemission permits straightforward identification of the orientation of a chiral surface. The technique can be applied to any solid state system for which photoemission measurements are possible. © 2011 American Physical Society

  7. Structural and morphological study of Fe-doped Bi-based superconductor

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath; Kumar, Rohitash

    2018-05-01

    In the present work, we report the study of iron-doped Bi-based superconductor sample with stoichiometric composition of Bi2Sr2Can-1(Cu1-x Fex)3O2n+4 where n=3 and x = 0.7. This sample was prepared by grinding the precursor oxides in the Ball mill for 6 hours continuous at the rate of 400 rpm for a proper mixing and to obtain the required grain size. Then the solid-state reaction method was used to prepare the sample. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray fluorescence analysis (EDX) were performed for determination of the crystal structure, surface morphology and trace the material elements of samples, respectively. The surface microscopy data were collected over a selected area of the surface of the material and a two-dimensional image generated that displays spatial variations in properties including chemical characterization and orientation of materials.

  8. Physical properties of organic fullerene cocrystals

    NASA Astrophysics Data System (ADS)

    Macovez, Roberto

    2017-12-01

    The basic facts and fundamental properties of binary fullerene cocrystals are reviewed, focusing especially on solvates and salts of Buckminsterfullerene (C60), and hydrates of hydrophilic C60 derivatives. The examined properties include the lattice structure and the presence of orientational disorder and/or rotational dynamics (of both fullerenes and cocrystallizing moieties), thermodynamic properties such as decomposition enthalpies, and charge transport properties. Both thermodynamic properties and molecular orientational disorder shed light on the extent of intermolecular interactions in these binary solid-state systems. Comparison is carried out also with pristine fullerite and with the solid phases of functionalized C60. Interesting experimental findings on binary fullerene cocrystals include the simultaneous occurrence of rotations of both constituent molecular species, crystal morphologies reminiscent of quasi-crystalline behaviour, the observation of proton conduction in hydrate solids of hydrophilic fullerene derivatives, and the production of super-hard carbon materials by application of high pressures on solvated fullerene crystals.

  9. Optical devices featuring nonpolar textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  10. Frontiers of More than Moore in Bioelectronics and the Required Metrology Needs

    NASA Astrophysics Data System (ADS)

    Guiseppi-Elie, Anthony; Kotanen, Christian; Wilson, A. Nolan

    2011-11-01

    Silicon's intersection with biology is a premise inherent in Moore's prediction. Distinct from biologically inspired molecular logic and storage devices (more Moore) are the integration of solid state electronic devices with the soft condensed state of the body (more than Moore). Developments in biomolecular recognition events per sq. cm parallel those of Moore's Law. However, challenges continue in the area of "More than Moore". Two grand challenge problems must be addressed—the biocompatibility of synthetic materials with the myriad of tissue types within the human body and the interfacing of solid state micro- and nano-electronic devices with the electronics of biological systems. Electroconductive hydrogels have been developed as soft, condensed, biomimetic but otherwise inherently electronically conductive materials to address the challenge of interfacing solid state devices with the electronics of the body, which is predominantly ionic. Nano-templated interfaces via the oriented immobilization of single walled carbon nanotubes (SWCNTs) onto metallic electrodes have engendered reagentless, direct electron transfer between biological redox enzymes and solid state electrodes. In addressing these challenges, metrology needs and opportunities are found in such widely diverse areas as single molecule counting and addressing, sustainable power requirements such as the development of implantable biofuel cells for the deployment of implantable biochips, and new manufacturing paradigms to address plura-biology needs on solid state devices.

  11. Metastable State during Melting and Solid-Solid Phase Transition of [CnMim][NO3] (n = 4-12) Ionic Liquids by Molecular Dynamics Simulation.

    PubMed

    Cao, Wudi; Wang, Yanting; Saielli, Giacomo

    2018-01-11

    We simulate the heating process of ionic liquids [C n Mim][NO 3 ] (n = 4, 6, 8, 10, 12), abbreviated as C n , by means of molecular dynamics (MD) simulation starting from a manually constructed triclinic crystal structure composed of polar layers containing anions and cationic head groups and nonpolar regions in between containing cationic alkyl side chains. During the heating process starting from 200 K, each system undergoes first a solid-solid phase transition at a lower temperature, and then a melting phase transition at a higher temperature to an isotropic liquid state (C 4 , C 6 , and C 8 ) or to a liquid crystal state (C 10 and C 12 ). After the solid-solid phase transition, all systems keep the triclinic space symmetry, but have a different set of lattice constants. C 4 has a more significant structural change in the nonpolar regions which narrows the layer spacing, while the layer spacings of other systems change little, which can be qualitatively understood by considering that the contribution of the effective van der Waals interaction in the nonpolar regions (abbreviated as EF1) to free energy becomes stronger with increasing side-chain length, and at the same time the contribution of the effective electrostatic interaction in the polar layers (abbreviated as EF2) to free energy remains almost the same. The melting phase transitions of all systems except C 6 are found to be a two-step process with an intermediate metastable state appeared during the melting from the crystal state to the liquid or liquid crystal state. Because the contribution of EF2 to the free energy is larger than EF1, the metastable state of C 4 has the feature of having higher ordered polar layers and lower ordered side-chain orientation. By contrast, C 8 -C 12 have the feature of having lower ordered polar layers and higher ordered side-chain orientation, because for these systems, the contribution of EF2 to the free energy is smaller than EF1. No metastable state is found for C 6 because the free-energy contribution of EF1 is balanced with EF2.

  12. Portable and wide-range solid-state transmission densitometer for quality control in film radiography

    PubMed Central

    Aramburo, Javier Morales; Gonzalez, Sigifredo Solano; Toledo, Jorge Toledo

    2010-01-01

    In biology, materials science, radiography quality control or film dosimetry in radiotherapy, a transmission densitometer is useful for measurements of optical density. The design proposed here is oriented to quality control in radiographic films. The instrument described here utilizes low-cost solid-state devices and is easy to construct. The use of 1-watt white light-emitting diode in this densitometer enables low power consumption and a cold light source. Moreover, the instrument does not need a reference light, which results in decreasing the number of parts and reducing the overall size of the apparatus. PMID:20927222

  13. Multifrequency Ultra-High Resolution Miniature Scanning Microscope Using Microchannel And Solid-State Sensor Technologies And Method For Scanning Samples

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2006-01-01

    A miniature, ultra-high resolution, and color scanning microscope using microchannel and solid-state technology that does not require focus adjustment. One embodiment includes a source of collimated radiant energy for illuminating a sample, a plurality of narrow angle filters comprising a microchannel structure to permit the passage of only unscattered radiant energy through the microchannels with some portion of the radiant energy entering the microchannels from the sample, a solid-state sensor array attached to the microchannel structure, the microchannels being aligned with an element of the solid-state sensor array, that portion of the radiant energy entering the microchannels parallel to the microchannel walls travels to the sensor element generating an electrical signal from which an image is reconstructed by an external device, and a moving element for movement of the microchannel structure relative to the sample. Discloses a method for scanning samples whereby the sensor array elements trace parallel paths that are arbitrarily close to the parallel paths traced by other elements of the array.

  14. The Effect of Molecular Orientation to Solid-Solid and Melting Transitions

    NASA Astrophysics Data System (ADS)

    Yazici, Mustafa; Özgan, Şükrü

    The thermodynamics of solid-solid and solid-liquid transitions are investigated with an account of the number of molecular orientation. The variations of the positional and orientational orders with the reduced temperature are studied. It is found out that orientational order parameter is very sensitive to the number of allowed orientation. The reduced transition temperatures, volume changes and entropy changes of the phase transitions and theoretical phase diagrams are obtained. The entropy changes of melting transitions for different numbers of allowed orientation of the present model are compared with the theoretical results and some experimental data. The quantitative predictions of the model are compared with experimental results for plastic crystals and agreement between predictions of the model and the experimental results are approximately good. Also, different numbers of allowed orientation D correspond to different experimental results HI, HBr, H2S for D = 2; HBr, CCl4, HI for D = 4; C2H12 for D = 6; CH4, PH3 for D = 20.

  15. Structural analysis of geochemical samples by solid-state nuclear magnetic resonance spectrometry. Role of paramagnetic material

    USGS Publications Warehouse

    Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.

    1987-01-01

    An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.

  16. Emplacement and deformation of the A-type Madeira granite (Amazonian Craton, Brazil)

    NASA Astrophysics Data System (ADS)

    Siachoque, Astrid; Salazar, Carlos Alejandro; Trindade, Ricardo

    2017-04-01

    The Madeira granite is one of the Paleoproterozoic (1.82 Ga) A-type granite intrusions in the Amazonian Craton. It is elongated in the NE-SW direction and is composed of four facies. Classical structural techniques and the anisotropy of magnetic susceptibility (AMS) method were applied to the study of its internal fabric. Magnetic susceptibility measurements, thermomagnetic curves, remanent coercivity spectra, optical microscopy and SEM (scanning electron microscopy) analyses were carried out on the earlier and later facies of the Madeira granite: the rapakivi granite (RG) and the albite granite (AG) respectively. The last one is subdivided into the border albite granite (BAG) and the core albite granite (CAG) subfacies. AMS fabric pattern is controlled by pure magnetite in all facies, despite significant amounts of hematite in the BAG subfacies. Microstructural observations show that in almost all sites, magnetic fabric correlates to magmatic state fabrics that are defined by a weak NE-SW orientation of mafic and felsic silicates. However, strain mechanisms in both subfacies of AG also exhibit evidence for solid-state deformation at high to moderate temperatures. Pegmatite dyke, strike slip fault (SFA-B-C), hydrothermal vein, normal fault (F1-2) and joint (J) structures were observed and their orientation and kinematics is consistent with the magmatic and solid-state structures. Dykes, SFA-C and F1, are usually orientated along the N70°E/40°N plane, which is nearly parallel to the strike of AMS and magmatic foliations. In contrast, veins, SFB, F2 and some J are oriented perpendicular to the N70°E trend. Kinematic analysis in these structures shows evidence for a dextral sense of movement in the system in the brittle regime. The coherent structural pattern for the three facies of Madeira granite suggests that the different facies form a nested pluton. The coherence in orientation and kinematics from magmatic to high-temperature solid-state, and into the brittle regime indicates the continuity in the stress regime from the last magmatic stages until the complete cooling of the pluton, likely along a NE-SW dextral corridor related to the regional deformation in the Uatumã-Anauá Domain of the Amazonian Craton.

  17. Development of a solid state laser of Nd:YLF

    NASA Astrophysics Data System (ADS)

    Doamaralneto, R.

    The CW laser action was obtained at room temperature of a Nd:YLF crystal in an astigmatically compensated cavity, pumped by an argon laser. This laser was completely projected, constructed and characterized in our laboratories. It initiates a broader project on laser development that will have several applications like nuclear fusion, industry, medicine, telemetry, etc. Throught the study of the optical properties of the Nd:YLF crystal, laser operation was predicted using a small volume gain medium on the mentioned cavity, pumped by an Ar 514,5 nm laser line. To obtain the laser action at polarizations sigma (1,053 (MU)m) and (PI) (1.047 (MU)m) an active medium was prepared which was a crystalline plate with a convenient crystallographic orientation. The laser characterization is in reasonable agreement with the initial predictions. For a 3.5% output mirror transmission, the oscillation threshold is about 0.15 W incident on the crystal, depending upon the sample used. For 1 W of incident pump light, the output power is estimated to be 12 mw, which corresponds to almost 1.5% slope efficiency. The versatile arrangement is applicable to almost all optically pumped solid state laser materials.

  18. Grain-size-induced weakening of H2O ices I and II and associated anisotropic recrystallization

    USGS Publications Warehouse

    Stern, L.A.; Durham, W.B.; Kirby, S.H.

    1997-01-01

    Grain-size-dependent flow mechanisms tend to be favored over dislocation creep at low differential stresses and can potentially influence the rheology of low-stress, low-strain rate environments such as those of planetary interiors. We experimentally investigated the effect of reduced grain size on the solid-state flow of water ice I, a principal component of the asthenospheres of many icy moons of the outer solar system, using techniques new to studies of this deformation regime. We fabricated fully dense ice samples of approximate grain size 2 ?? 1 ??m by transforming "standard" ice I samples of 250 ?? 50 ??m grain size to the higher-pressure phase ice II, deforming them in the ice II field, and then rapidly releasing the pressure deep into the ice I stability field. At T ??? 200 K, slow growth and rapid nucleation of ice I combine to produce a fine grain size. Constant-strain rate deformation tests conducted on these samples show that deformation rates are less stress sensitive than for standard ice and that the fine-grained material is markedly weaker than standard ice, particularly during the transient approach to steady state deformation. Scanning electron microscope examination of the deformed fine-grained ice samples revealed an unusual microstructure dominated by platelike grains that grew normal to the compression direction, with c axes preferentially oriented parallel to compression. In samples tested at T ??? 220 K the elongation of the grains is so pronounced that the samples appear finely banded, with aspect ratios of grains approaching 50:1. The anisotropic growth of these crystallographically oriented neoblasts likely contributes to progressive work hardening observed during the transient stage of deformation. We have also documented remarkably similar microstructural development and weak mechanical behavior in fine-grained ice samples partially transformed and deformed in the ice II field.

  19. Infrared study on the molecular orientation in bulk-heterojunction films based on perylene and 3,4,9,10-perylenetetracarboxylic dianhydride

    NASA Astrophysics Data System (ADS)

    Seto, Keisuke; Pham, John; Furukawa, Yukio

    2012-03-01

    Solid-state structures of thin blend films of perylene and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) formed on the Au surface have been studied by a combination of infrared reflection-absorption spectroscopy and the RATIO method of Debe. In the blend films, PTCDA molecules take the face-on orientation in the whole range of PTCDA contents from 7.5 to 88 mol%. On the other hand, the molecular orientation of perylene molecules changes from edge-on toward random as the PTCDA content increases.

  20. Utilization of oriented crystal growth for screening of aromatic carboxylic acids cocrystallization with urea

    NASA Astrophysics Data System (ADS)

    Przybyłek, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław; Mroczyńska, Karina; Cysewski, Piotr

    2016-01-01

    The possibility of molecular complex formation in the solid state of urea with benzoic acid analogues was measured directly on the crystallite films deposited on the glass surface using powder X-ray diffractometry (PXRD). Obtained solid mixtures were also analyzed using Fourier transform infrared spectroscopy (FTIR). The simple droplet evaporation method was found to be efficient, robust, fast and cost-preserving approach for first stage cocrystal screening. Additionally, the application of orientation effect to cocrystal screening simplifies the analysis due to damping of majority of diffraction signals coming from coformers. During validation phase the proposed approach successfully reproduced both positive cases of cocrystallization (urea:salicylic acid and urea:4-hydroxy benzoic acid) as well as pairs of co-formers immiscible in the solid state (urea:benzoic acid and urea:acetylsalicylic acids). Based on validated approach new cocrystals of urea were identified in complexes with 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 3,5-dihydroxybenzoic acid. In all cases formation of multicomponent crystal phase was confirmed by the appearance of new reflexes on the diffraction patterns and FTIR absorption band shifts of O-H and N-H groups.

  1. Nonthermal effects in photostimulated solid state reaction of Mn doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Daraselia, D.; Japaridze, D.; Jibuti, Z.; Shengelaya, A.; Müller, K. A.

    2017-04-01

    The effect of a photostimulated solid state reaction was investigated in Mn doped SrTiO3 samples. Light irradiation was performed by either halogen or UV lamps in order to study the effect of the spectral composition, and the results were compared with samples prepared at the same temperatures in a conventional furnace. The obtained samples were studied by X-ray diffraction for structural characterization and by Electron Paramagnetic Resonance, which provides microscopic information about the local environment as well as the valence state of Mn ions. It was found that light irradiation significantly enhances the solid state reaction rate compared to synthesis in the conventional furnace. Moreover, it was observed that UV lamp irradiation is much more effective compared to halogen lamps. This indicates that the absorption of light with energy larger than the materials band gap plays an important role and points towards the nonthermal mechanism of the photostimulated solid state reaction.

  2. Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods.

    PubMed

    Lesot, Philippe; Kazimierczuk, Krzysztof; Trébosc, Julien; Amoureux, Jean-Paul; Lafon, Olivier

    2015-11-01

    Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years. Copyright © 2015 John Wiley & Sons, Ltd.

  3. "Cooking the sample": radiofrequency induced heating during solid-state NMR experiments.

    PubMed

    d'Espinose de Lacaillerie, Jean-Baptiste; Jarry, Benjamin; Pascui, Ovidiu; Reichert, Detlef

    2005-09-01

    Dissipation of radiofrequency (RF) energy as heat during continuous wave decoupling in solid-state NMR experiment was examined outside the conventional realm of such phenomena. A significant temperature increase could occur while performing dynamic NMR measurements provided the sample contains polar molecules and the sequence calls for relatively long applications of RF power. It was shown that the methyl flip motion in dimethylsulfone (DMS) is activated by the decoupling RF energy conversion to heat during a CODEX pulse sequence. This introduced a significant bias in the correlation time-temperature dependency measurement used to obtain the activation energy of the motion. By investigating the dependency of the temperature increase in hydrated lead nitrate on experimental parameters during high-power decoupling one-pulse experiments, the mechanisms for the RF energy deposition was identified. The samples were heated due to dissipation of the energy absorbed by dielectric losses, a phenomenon commonly known as "microwave" heating. It was thus established that during solid-state NMR experiments at moderate B0 fields, RF heating could lead to the heating of samples containing polar molecules such as hydrated polymers and inorganic solids. In particular, this could result in systematic errors for slow dynamics measurements by solid-state NMR.

  4. A Good Name and Great Riches: Rebranding Solid State Physics for the National Laboratories

    NASA Astrophysics Data System (ADS)

    Martin, Joseph

    2012-03-01

    In 1943 Oliver Buckley, lamenting the inadequacy of term ``physics'' to evoke what physicists did, quoted the proverb, ``A good name is rather to be chosen than great riches.'' Some forty years later, solid state physicists confronted similar discontent with their name, precipitating the rise of the appellation ``condensed matter physics.'' Ostensibly a rebranding of a well-established field, the change signaled deeper conceptual and institutional realignment. Whereas ``solid state'' emerged in the 1940s in the service of institutional aims, ``condensed matter'' more accurately captured a distinct set of theoretical and experimental approaches. Reimagining the field around core conceptual approaches set condensed matter apart from the inchoate field of materials science, which subsumed a growing proportion of solid state funding and personnel through the 1980s. Federally funded research installations were the source of ``great riches'' for scientific research. The DOE National Laboratory System and the DARPA network of Interdisciplinary Laboratories, given their responsiveness to shifts in national funding priorities, provide a sensitive historical instrument through which to trace the transition from solid state to condensed matter. The reorganization of solid state in response to the evolution of national priorities and funding practices precipitated a sharpening of the field's intellectual mission. At the same time, it reflected the difficulties solid state faced articulating its intellectual--as opposed to technological--merit. The proverb continues, `` and loving favor rather than silver and gold.'' The adoption of a name that emphasized intellectual cohesion and associated social esteem exposed the growing tension between technology-oriented national funding goals for materials research and condensed matter physics' ascendant intellectual identity.

  5. Dynamic Structure of Bombolitin II Bound to Lipid Bilayers as Revealed by Solid-state NMR and Molecular-Dynamics Simulation

    PubMed Central

    Toraya, Shuichi; Javkhlantugs, Namsrai; Mishima, Daisuke; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira

    2010-01-01

    Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes were determined by solid-state 31P and 13C NMR spectroscopy. 31P NMR spectra showed that BLT2-DPPC membranes were disrupted into small particles below the gel-to-liquid crystalline phase transition temperature (Tc) and fused to form a magnetically oriented vesicle system where the membrane surface is parallel to the magnetic fields above the Tc. 13C NMR spectra of site-specifically 13C-labeled BLT2 at the carbonyl carbons were observed and the chemical shift anisotropies were analyzed to determine the dynamic structure of BLT2 bound to the magnetically oriented vesicle system. It was revealed that the membrane-bound BLT2 adopted an α-helical structure, rotating around the membrane normal with the tilt angle of the helical axis at 33°. Interatomic distances obtained from rotational-echo double-resonance experiments further showed that BLT2 adopted a straight α-helical structure. Molecular dynamics simulation performed in the BLT2-DPPC membrane system showed that the BLT2 formed a straight α-helix and that the C-terminus was inserted into the membrane. The α-helical axis is tilted 30° to the membrane normal, which is almost the same as the value obtained from solid-state NMR. These results suggest that the membrane disruption induced by BLT2 is attributed to insertion of BLT2 into the lipid bilayers. PMID:21081076

  6. Characterization of molecular disorder in vapor-deposited thin films of aluminum tris(quinoline-8-olate) by one-dimensional 27Al NMR under magic angle spinning.

    PubMed

    Utz, Marcel; Nandagopal, Magesh; Mathai, Mathew; Papadimitrakopoulos, Fotios

    2006-01-21

    Aluminum tris (quinoline-8-olate) (Alq3) is used as an electron-transport layer in organic light-emitting diodes. The material can be obtained in a wide range of different solid phases, both crystalline and amorphous, by deposition from the vapor phase or from solution under controlled conditions. While the structure of the crystalline polymorphs of Alq3 has been investigated thoroughly by x-ray diffraction as well as solid-state NMR, very little information is currently available on the amount of structural disorder in the amorphous forms of Alq3. In the present contribution, we report the use of 27Al NMR spectroscopy in the solid state under magic angle spinning to extract such information from amorphous vapor deposits of Alq3. The NMR spectra obtained from these samples exhibit different degrees of broadening, reflecting distributions of the electric-field gradient tensor at the site of the aluminum ion. These distributions can be obtained from the NMR spectra by solving the corresponding inverse problem. From these results, the magnitude of structural disorder in terms of molecular geometry has been estimated by density-functional theory calculations. It was found that the electric-field gradient anisotropy delta follows a bimodal distribution. Its majority component is centered around delta values comparable to the meridianal alpha crystal polymorph and has a width of about 10%, corresponding to distortions of the molecular geometry of a few degrees in the orientation of the ligands. Alq3 samples obtained at higher deposition rates exhibit higher degrees of disorder. The minor component, present at about 7%, has a much smaller anisotropy, suggesting that it may be due to the facial isomer of Alq3.

  7. Structural characterization of the voltage sensor domain and voltage-gated K+- channel proteins vectorially-oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry

    PubMed Central

    Gupta, S.; Dura, J.A.; Freites, J.A.; Tobias, D.J.; Blasie, J. K.

    2012-01-01

    The voltage-sensor domain (VSD) is a modular 4-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of x-ray crystal structures for a few voltage-gated potassium (Kv-) channels and a voltage-gate sodium (Nav-) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e. non-conducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially-oriented within a single phospholipid (POPC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane investigated by x-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces thus achieving partial to full hydration, respectively (Gupta et. al. Phys. Rev E. 2011, 84). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the sub-molecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected sub-molecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and exchangeable hydrogen throughout the profile structure of both the VSD itself and the VSD:POPC membrane. These two experimentally-determined water and exchangeable hydrogen distribution profiles are in good agreement with molecular dynamics simulations of the VSD protein vectorially-oriented within a fully hydrated POPC bilayer membrane, supporting the existence of the VSD’s water pore. This approach was extended to the full-length Kv-channel (KvAP) at solid/liquid interface, providing the separate profile structures of the KvAP protein and the POPC bilayer within the reconstituted KvAP:POPC membrane. PMID:22686684

  8. Modern Material Analysis Instruments Add a New Dimension to Materials Characterization and Failure Analysis

    NASA Technical Reports Server (NTRS)

    Panda, Binayak

    2009-01-01

    Modern analytical tools can yield invaluable results during materials characterization and failure analysis. Scanning electron microscopes (SEMs) provide significant analytical capabilities, including angstrom-level resolution. These systems can be equipped with a silicon drift detector (SDD) for very fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations, chambers that admit large samples, variable pressure for wet samples, and quantitative analysis software to examine phases. Advanced solid-state electronics have also improved surface and bulk analysis instruments: Secondary ion mass spectroscopy (SIMS) can quantitatively determine and map light elements such as hydrogen, lithium, and boron - with their isotopes. Its high sensitivity detects impurities at parts per billion (ppb) levels. X-ray photo-electron spectroscopy (XPS) can determine oxidation states of elements, as well as identifying polymers and measuring film thicknesses on coated composites. This technique is also known as electron spectroscopy for chemical analysis (ESCA). Scanning Auger electron spectroscopy (SAM) combines surface sensitivity, spatial lateral resolution (10 nm), and depth profiling capabilities to describe elemental compositions of near and below surface regions down to the chemical state of an atom.

  9. Role of strained nano-regions in the formation of subgrains in CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Fang, Tsang-Tse; Wang, Yong-Huei; Kuo, Jui-Chao

    2011-07-01

    Single-phase CaCu3Ti4O12 (CCTO) was synthesized by solid-state reaction. Electron backscatter diffraction, scanning electron microscopy, and atomic force microscopy were adopted to characterize the grain orientation, microstructure, and surface morphology of the CCTO samples with or without thermal etching. Bump strained nano-regions induced by the local compositional disorder at a nano-scale have been discovered, being the origin of the formation of subgrains in CCTO. The proposed mechanism for the formation of subgrains involves the formation of etched pits and subboundaries pertaining to the strained nano-regions rather than dislocation displacement. The dielectric response inside the grains of CCTO relevant to the strained nano-regions is also discussed.

  10. A SnS2-based photomemristor driven by sun

    NASA Astrophysics Data System (ADS)

    Dragoman, Mircea; Batiri, Mihail; Dinescu, Adrian; Ciobanu, Vladimir; Rusu, Emil; Dragoman, Daniela; Tiginyanu, Ion

    2018-01-01

    We demonstrate experimentally that a sample of a SnS2 layered semiconductor compound with the area of 1 cm2 and the thickness of 100 μm, contacted laterally by silver electrodes with the area of 1 mm2, acts naturally as a memristor device when illuminated by a sun simulator. Although the conductance of the device changes with the number of pulses or voltages sweeps, the current-voltage dependence is almost linear, showing only a very narrow but clearly pinched hysteresis, which is the main imprint of a memristor. This SnS2-based solid-state miniaturized photomemristor could be used for the implementation of all-optical neuromorphic circuits based on artificial neurons and synapses, oriented to learning algorithms of living organisms.

  11. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    PubMed

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  12. Quantitative secondary electron detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Jyoti; Joy, David C.; Nayak, Subuhadarshi

    Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. 3). Methods and devices effect a quantitative detection of secondary electrons with the array of solid state detectors comprising a number of solid state detectors. An array senses the number of secondary electrons with a plurality of solid state detectors, counting the number of secondary electrons with a time to digital converter circuit in counter mode.

  13. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  14. Universal chemiluminescence flow-through device based on directed self-assembly of solid-state organic chromophores on layered double hydroxide matrix.

    PubMed

    Wang, Zhihua; Teng, Xu; Lu, Chao

    2013-02-19

    In this work, a universal chemiluminescence (CL) flow-through device suitable for various CL resonance energy transfer (CRET) systems has been successfully fabricated. Highly efficient CRET in solid-state photoactive organic molecules can be achieved by assembling them on the surface of layered double hydroxides (LDHs). We attribute these observations to the suppression of the intermolecular π-π stacking interactions among aromatic rings and the improvement of molecular orientation and planarity in the LDH matrix, enabling a remarkable increase in fluorescence lifetime and quantum yield of organic molecules. Under optimal conditions, using peroxynitrous acid-fluorescein dianion (FLUD) as a model CRET system, trace FLUD (10 μM) was assembled on the surface of LDHs. Peroxynitrous acid/nitrite could be assayed in the range of 1.0-500 μM, and the detection limit for peroxynitrous acid/nitrite (S/N = 3) was 0.6 μM. This CL flow-through device exhibited operational stability, high reproducibility, and long lifetime. While LDHs were immobilized in a flow-through device in the absence of FLUD, the detection limit for peroxynitrous acid/nitrite was 100 μM. On the other hand, FLUD at the same concentration can not enhance the CL intensity of peroxynitrous acid system. This fabricated CL flow-through column has been successfully applied to determine nitrite in sausage samples with recoveries of 98-102%. These satisfactory results demonstrated that our studies pave a novel way toward flow-through column-based CRET using solid-state organic molecules as acceptors for signal amplification.

  15. Research on MMC-SST Oriented AC/DC Distribution System

    NASA Astrophysics Data System (ADS)

    Xie, Xifeng; Shi, Hua; Zuo, Jianglin; Zhang, Zhigang

    2018-01-01

    A modular multilevel converter-solid state transformer (MMC-SST) oriented AC/DC Distribution System is designed. Firstly, the topology structure is introduced, MMC is adopted in the input stage, multiple DC-DC converters are adopted in the isolation stage, and a Three-Phase Four-Leg inverter is adopted in the output stage. Then, the control strategy is analysed. Finally, simulation model and an experimental prototype of MMC-SST are built, simulation and experimental results show that topology and control strategy of MMC-SST are feasible.

  16. Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy

    PubMed Central

    Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.

    2017-01-01

    Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522

  17. Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burch, Alexandra; Yeager, John; Bahr, David

    Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less

  18. Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity

    DOE PAGES

    Burch, Alexandra; Yeager, John; Bahr, David

    2017-11-01

    Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less

  19. Effect of highways and local activities on the quality of underground water in Ogun State, Nigeria: a case study of three districts in Ogun State, Nigeria.

    PubMed

    Odukoya, Olusegun O; Onianwa, Percy C; Sanusi, Olanrewaju I

    2010-09-01

    The effect of highways and local activities on the quality of groundwater in Ogun State, Nigeria was investigated. This was done by collecting groundwater samples from three different districts in the state, located in Southwestern Nigeria. The water samples collected at 5 m from the highway and control samples collected at 3 km from the highway were analyzed for the following physicochemical parameters: pH, conductivity, chemical oxygen demand, alkalinity, total hardness, total solid, suspended solid, dissolved solid, chloride, sulfate, phosphate, nitrate, phenol, and the metals-lead, zinc, iron, aluminum, sodium, and potassium. The levels of chromium, copper, and cadmium in the samples were below the detectable limit. The levels of the parameters show that there are significant differences between those in the samples and the controls (F test) except for phosphate and phenol. Also, anthropogenic sources (local activities) elevate the levels of different specific parameters, which are related to these activities. Good correlation was observed between traffic density and lead levels as well as between conductivity and dissolved solids. Comparisons with the World Health Organization guidelines indicate that most of the water samples are not suitable for human consumption.

  20. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yi-Mu, E-mail: ymlee@nuu.edu.t; Yang, Hsi-Wen

    2011-03-15

    High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possessmore » highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.« less

  1. A solid-state dedicated circularly polarized luminescence spectrophotometer: Development and application.

    PubMed

    Harada, Takunori; Hayakawa, Hiroshi; Watanabe, Masayuki; Takamoto, Makoto

    2016-07-01

    A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample.

  2. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    PubMed Central

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-01-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1–S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and indicate retention of the protein’s folded three-dimensional tertiary structure upon completion of membrane bilayer reconstitution. Moreover, the resulting high in-plane density of vectorially oriented protein within a fully hydrated single phospholipid bilayer membrane at the solid-liquid interface will enable investigation of their conformational states as a function of the transmembrane electric potential. PMID:22060407

  3. Dynamics of Re(2,2'-bipyridine)(CO)3Cl MLCT formation and decay after picosecond pulsed X-ray excitation and femtosecond UV excitation.

    PubMed

    Zhao, Liyan; Odaka, Hideho; Ono, Hiroshi; Kajimoto, Shinji; Hatanaka, Koji; Hobley, Jonathan; Fukumura, Hiroshi

    2005-01-01

    The dynamics of Re(2,2'-bipyridine)(CO)3Cl MLCT state formation and decay were determined after femtosecond UV laser excitation and picosecond pulsed X-ray excitation, in an N,N-dimethylformamide (DMF) solution as well as in its solid form. At room temperature, after UV excitation, this MLCT excited state emits both in DMF solution and in the solid form. Transient absorption spectra were measured in solution at various delay times following excitation by a 160 fs, 390 nm laser pulse. There was a prompt absorption increase at around 460 nm occurring within the pump probe convolution (<1 ps), which was assigned to the formation of the 3MLCT state. This transient absorbance was constant over 100 ps. In contrast to the solution state, in the solid state, the emission maximum slightly red-shifts with increasing time after laser excitation. In both solid and solution the emission rises within the system response time. The solid sample exhibited a 1.4 ns emission decay that was not observed for the solution sample. The emission rise from a solid sample after 20 ps pulsed X-ray excitation was significantly slower than the system's time resolution. It is proposed that kinetically energetic electrons are ejected following X-ray induced ionisation, creating ionised tracks in which energetic cations and electrons take time to recombine yielding delayed 3MLCT states that emit.

  4. Three Ways to Be Happy: Pleasure, Engagement, and Meaning--Findings from Australian and US Samples

    ERIC Educational Resources Information Center

    Vella-Brodrick, Dianne A.; Park, Nansook; Peterson, Christopher

    2009-01-01

    This study examined the contributions of orientations to happiness (pleasure, engagement and meaning) to subjective well-being. A sample of 12,622 adults from the United States completed on-line surveys measuring orientations to happiness, positive affect, negative affect, and life satisfaction. A sample of 332 adults from Australia also completed…

  5. Crystal Orientation-Dependent Reactivity of Oxide Surfaces in Contact with Lithium Metal.

    PubMed

    Connell, Justin G; Zhu, Yisi; Zapol, Peter; Tepavcevic, Sanja; Sharafi, Asma; Sakamoto, Jeff; Curtiss, Larry A; Fong, Dillon D; Freeland, John W; Markovic, Nenad M

    2018-05-23

    Understanding ionic transport across interfaces between dissimilar materials and the intrinsic chemical stability of such interfaces is a fundamental challenge spanning many disciplines and is of particular importance for designing conductive and stable solid electrolytes for solid-state Li-ion batteries. In this work, we establish a surface science-based approach for assessing the intrinsic stability of oxide materials in contact with Li metal. Through a combination of experimental and computational insights, using Nb-doped SrTiO 3 (Nb/STO) single crystals as a model system, we were able to understand the impact of crystallographic orientation and surface morphology on the extent of the chemical reactions that take place between surface Nb, Ti, and Sr upon reaction with Li. By expanding our approach to investigate the intrinsic stability of the technologically relevant, polycrystalline Nb-doped lithium lanthanum zirconium oxide (Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 ) system, we found that this material reacts with Li metal through the reduction of Nb, similar to that observed for Nb/STO. These results clearly demonstrate the feasibility of our approach to assess the intrinsic (in)stability of oxide materials for solid-state batteries and point to new strategies for understanding the performance of such systems.

  6. Crystal Orientation-Dependent Reactivity of Oxide Surfaces in Contact with Lithium Metal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connell, Justin G.; Zhu, Yisi; Zapol, Peter

    Understanding ionic transport across interfaces between dissimilar materials and the intrinsic chemical stability of such interfaces is a fundamental challenge spanning many disciplines and is of particular importance for designing conductive and stable solid electrolytes for solid-state Li-ion batteries. In this work, we establish a surface science-based approach for assessing the intrinsic stability of oxide materials in contact with Li metal. Through a combination of experimental and computational insights, using Nb-doped SrTiO3 (Nb/STO) single crystals as a model system, we were able to understand the impact of crystallographic orientation and surface morphology on the extent of the chemical reactions thatmore » take place between surface Nb, Ti, and Sr upon reaction with Li. By expanding our approach to investigate the intrinsic stability of the technologically relevant, polycrystalline Nb-doped lithium lanthanum zirconium oxide (Li6.5La3Zr1.5Nb0.5O12) system, we found that this material reacts with Li metal through the reduction of Nb, similar to that observed for Nb/STO. These results clearly demonstrate the feasibility of our approach to assess the intrinsic (in)stability of oxide materials for solid-state batteries and point to new strategies for understanding the performance of such systems.« less

  7. Control of Rydberg atom blockade by dc electric field orientation in a quasi-one-dimensional sample

    NASA Astrophysics Data System (ADS)

    Goncalves, Luís Felipe; Marcassa, Luis Gustavo

    2017-04-01

    Rydberg atoms posse a strong atom-atom interaction, which limits its density in an atomic sample. Such effect is known as Rydberg atom blockade. Here, we present a novel way to control such effect by direct orienting the induced atomic dipole moment using a dc external electrical field. To demonstrate it, we excite the 50S1 / 2 Rb atomic state in a quasi-one-dimensional sample held in a quasi-electrostatic trap. A pure nS state holds only van der Waals interaction at long range, but in the presence of an external electric field the state mixing leads to strong dipole-dipole interactions. We have measured the Rydberg atom population as a function of ground state atoms density for several angles between the electric field and the main axis of the unidimensional sample. The results indicate that the limit on the final Rydberg density can be controlled by electric field orientation. Besides, we have characterized the sample by using direct spatial ion imaging, demonstrating that it does behave as an unidimensional sample. This work was supported by Sao Paulo Research Foundation (FAPESP) Grants No. 2011/22309-8 and No. 2013/02816- 8, the U.S. Army Research Office Grant No. W911NF-15-1-0638 and CNPq.

  8. Dynamic nuclear polarisation via the integrated solid effect II: experiments on naphthalene-h8 doped with pentacene-d14

    NASA Astrophysics Data System (ADS)

    Eichhorn, T. R.; van den Brandt, B.; Hautle, P.; Henstra, A.; Wenckebach, W. Th.

    2014-07-01

    In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used. To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.

  9. The study of ultrasonic irradiation effects on solid state powders of HTc superconductor YBa2Cu3O7-x

    NASA Astrophysics Data System (ADS)

    Kargar, Mahboubeh; Khoshnevisan, Bahram

    2016-03-01

    In this paper, an ultrasound assisted solid state synthesis method for high-temperature (HTc) YBa2Cu3O7-x (YBCO) superconductor nanostructures with different morphologies is presented. Here, the routine heat treatment of the powder mixture of as-prepared precursors is followed by the ultrasound irradiation inside various alcoholic solutions. Not only the influence of the ultrasound irradiation intensity and duration but also the influence of different solvents such as ethanol, methanol and 1-butanol with various vapor pressures and so various destruction powers were also studied on the morphology and particle size of the products. The various morphologies were studied by scanning electron microscope (SEM) which not only have been affected by intensity and type of alcoholic solvent but also sonication time and ultrasound power have significant role as well. Formation of the YBCO superconducting phase was examined by using Rietveld refinement of X-ray diffraction (XRD) which indicates the crystalline preferred growth in c-axis orientation in crystal. Magnetic susceptibility measurements showed the ultrasound waves had no important effect on the onset critical temperature of the prepared nanorods (about 91.64 K) which is compared with the bulk samples (Tc ˜ 92K).

  10. Krypton adsorption on rutile: State and cross-sectional area at 77 K

    NASA Astrophysics Data System (ADS)

    Grillet, Y.; Rouquerol, F.; Rouquerol, J.

    1985-10-01

    A krypton adsorption study was carried out on a polycrystalline TiO 2 sample (98.5% rutile) presently considered as a potential reference material for surface areas. Both adsorption microcalorimetry and volumetry show evidence of a two-dimensional phase change (from 2D fluid to 2D solid) taking place at 77 K before the completion of the monolayer. No such phenomenon is observed neither with nitrogen (which we explain by a strong orientation and a close-packing of this molecule on a polar surface) neither with argon (which we explain by a large incompatibility factor between rutile and an argon crystal). On completion of the monolayer, the krypton molecular cross-sectional area is here around 0.15 nm 2 (instead of the usual 0.17 to 0.21 nm 2).

  11. Controlling the orientation of spin-correlated radical pairs by covalent linkage to nanoporous anodic aluminum oxide membranes.

    PubMed

    Chen, Hsiao-Fan; Gardner, Daniel M; Carmieli, Raanan; Wasielewski, Michael R

    2013-10-07

    Ordered multi-spin assemblies are required for developing solid-state molecule-based spintronics. A linear donor-chromophore-acceptor (D-C-A) molecule was covalently attached inside the 150 nm diam. nanopores of an anodic aluminum oxide (AAO) membrane. Photoexcitation of D-C-A in a 343 mT magnetic field results in sub-nanosecond, two-step electron transfer to yield the spin-correlated radical ion pair (SCRP) (1)(D(+)˙-C-A(-)˙), which then undergoes radical pair intersystem crossing (RP-ISC) to yield (3)(D(+)˙-C-A(-)˙). RP-ISC results in S-T0 mixing to selectively populate the coherent superposition states |S'> and |T'>. Microwave-induced transitions between these states and the unpopulated |T(+1)> and |T(-1)> states result in spin-polarized time-resolved EPR (TREPR) spectra. The dependence of the electron spin polarization (ESP) phase of the TREPR spectra on the orientation of the AAO membrane pores relative to the externally applied magnetic field is used to determine the overall orientation of the SCRPs within the pores at room temperature.

  12. Feeling Better When Someone Is Alike: Poor Emotion Regulators Profit From Pro-Social Values and Priming for Similarities With Close Others.

    PubMed

    Chatterjee, Monischa B; Baumann, Nicola; Koole, Sander L

    2017-12-01

    The dispositional inability to self-regulate one's own emotions intuitively is described as state orientation and has been associated with numerous psychological impairments. The necessity to search for buffering effects against negative outcomes of state orientation is evident. Research suggests that state-oriented individuals can benefit from feeling close to others. Yet, there are individual differences in the extent to which supportive relationships are valued. The objective of the present article was to examine whether high importance of relatedness increases the utilization of its situational activation among state-oriented individuals. In two studies, we examined whether situational activation of relatedness (by priming for similarities with a close other) is particularly advantageous for state-oriented individuals who attach high importance to relatedness (i.e., benevolence values). The sample consisted of 170 psychology undergraduates in Study 1 and 177 in Study 2. In both studies, state-oriented participants high in benevolence had reduced negative mood after thinking about similarities (vs. differences). State-oriented participants low in benevolence did not benefit from priming for similarities. In Study 2, physical presence of a close other did not boost priming effects for state-oriented participants but stimulated action-oriented participants to attune their self-regulatory efforts to the context. The results show that state-oriented individuals who value benevolence do benefit from a situational activation of relatedness. © 2016 Wiley Periodicals, Inc.

  13. Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor.

    PubMed

    Nickel, Daniel V; Ruggiero, Michael T; Korter, Timothy M; Mittleman, Daniel M

    2015-03-14

    The temperature-dependent terahertz spectra of the partially-disordered and ordered phases of camphor (C10H16O) are measured using terahertz time-domain spectroscopy. In its partially-disordered phases, a low-intensity, extremely broad resonance is found and is characterized using both a phenomenological approach and an approach based on ab initio solid-state DFT simulations. These two descriptions are consistent and stem from the same molecular origin for the broad resonance: the disorder-localized rotational correlations of the camphor molecules. In its completely ordered phase(s), multiple lattice phonon modes are measured and are found to be consistent with those predicted using solid-state DFT simulations.

  14. All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes

    NASA Astrophysics Data System (ADS)

    Li, Jiantong; Mishukova, Viktoriia; Östling, Mikael

    2016-09-01

    The all-solid-state graphene-based in-plane micro-supercapacitors are fabricated simply through reliable inkjet printing of pristine graphene in interdigitated structure on silicon wafers to serve as both electrodes and current collectors, and a following drop casting of polymer electrolytes (polyvinyl alcohol/H3PO4). Benefiting from the printing processing, an attractive porous electrode microstructure with a large number of vertically orientated graphene flakes is observed. The devices exhibit commendable areal capacitance over 0.1 mF/cm2 and a long cycle life of over 1000 times. The simple and scalable fabrication technique for efficient micro-supercapacitors is promising for on-chip energy storage applications in emerging electronics.

  15. Crystallographic analysis of the solid-state dewetting of polycrystalline gold film using automated indexing in a transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, S. A.; Lee, H. J.; Oh, Y. J., E-mail: yjoh@hanbat.ac.kr

    We analyzed the effect of crystallographic anisotropy on the morphological evolution of a 12-nm-thick gold film during solid-state dewetting at high temperatures using automated indexing tool in a transmission electron microscopy. Dewetting initiated at grain-boundary triple junctions adjacent to large grains resulting from abnormal grain growth driven by (111) texture development. Voids at the junctions developed shapes with faceted edges bounded by low-index crystal planes. The kinetic mobility of the edges varied with the crystal orientation normal to the edges, with a predominance of specific edges with the slowest retraction rates as the annealing time was increased.

  16. Rechargeable thin film battery and method for making the same

    DOEpatents

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  17. Insights into the discrepant luminescence for BaSiO3 :Eu2+ phosphors prepared by solid-state reaction and precipitation reaction methods.

    PubMed

    Xu, Jiao; Zhao, Yang; Chen, Jingjing; Mao, Zhiyong; Yang, Yanfang; Wang, Dajian

    2017-09-01

    Two synthesis routes, solid-state reaction and precipitation reaction, were employed to prepare BaSiO 3 :Eu 2+ phosphors in this study. Discrepancies in the luminescence green emission at 505 nm for the solid-state reaction method sample and in the yellow emission at 570 nm for the sample prepared by the precipitation reaction method, were observed respectively. A detail investigation about the discrepant luminescence of BaSiO 3 :Eu 2+ phosphors was performed by evaluation of X-ray diffraction (XRD), photoluminescence (PL)/photoluminescence excitation (PLE), decay time and thermal quenching properties. The results showed that the yellow emission was generated from the BaSiO 3 :Eu 2+ phosphor, while the green emission was ascribed to a small amount of Ba 2 SiO 4 :Eu 2+ compound that was present in the solid-state reaction sample. This work clarifies the luminescence properties of Eu 2+ ions in BaSiO 3 and Ba 2 SiO 4 hosts. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Up-conversion media on basis single crystals BaY2F8 for UV and VUV solid state lasers

    NASA Astrophysics Data System (ADS)

    Pushkar, A. A.; Ouvarova, T. V.; Molchanov, V. N.

    2007-04-01

    Crystal BaY IIF 8 represents the big interest as the perspective active media for lasers ultra-violet (UV) and vacuumultra- violet (VUV) regions. For the decision of problems with solarization this media and a choice of sources pump it is offered to use up-conversion mechanisms pump with activators from rare-earth elements (RE). We have developed technology of grown of oriented monocrystals BaY IIF 8, have defined influence of orientation on growth rate and quality ofthe received monocrystals.

  19. GIPAW (gauge including projected augmented wave) and local dynamics in 13C and 29Si solid state NMR: the study case of silsesquioxanes (RSiO1.5)8.

    PubMed

    Gervais, Christel; Bonhomme-Coury, Laure; Mauri, Francesco; Babonneau, Florence; Bonhomme, Christian

    2009-08-28

    Octameric silsesquioxanes (RSiO(1.5))(8) are versatile and interesting nano building blocks, suitable for the synthesis of nanocomposites with controlled porosity. In this paper, we revisit the (29)Si and (13)C solid state NMR spectroscopy for this class of materials, by using GIPAW (gauge including projected augmented wave) first principles calculations [Pickard & Mauri, Phys. Rev. B, 2001, 63, 245101]. Full tensorial data, including the chemical shift anisotropies (CSA) and the absolute orientation of the corresponding principal axes systems (PAS), were calculated. Subsequent averaging of the calculated tensors (due to fast reorientation of the R groups around the Si-C bonds) allowed for the interpretation of the strong reduction of CSA and dipolar couplings for these derivatives. Good agreement was observed between the averaged calculated data and the experimental parameters. Interesting questions related to the interplay between X-ray crystallography and solid state NMR are raised and will be emphasized.

  20. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR

    PubMed Central

    Hong, Mei; Su, Yongchao

    2011-01-01

    Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein–lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. PMID:21344534

  1. Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR

    PubMed Central

    2015-01-01

    We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as 1H–13C and 1H–15N HETCOR or 13C–13C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs. PMID:26393368

  2. Holistic Assessment and Ethical Disputation on a New Trend in Solid Biofuels.

    PubMed

    Hašková, Simona

    2017-04-01

    A new trend in the production technology of solid biof uels has appeared. There is a wide consensus that most solid biofuels will be produced according to the new production methods within a few years. Numerous samples were manufactured from agro-residues according to conventional methods as well as new methods. Robust analyses that reviewed the hygienic, environmental, financial and ethical aspects were performed. The hygienic and environmental aspect was assessed by robust chemical and technical analyses. The financial aspect was assessed by energy cost breakdown. The ethical point of view was built on the above stated findings, the survey questionnaire and critical discussion with the literature. It is concluded that the new production methods are significantly favourable from both the hygienic and environmental points of view. Financial indicators do not allow the expressing of any preference. Regarding the ethical aspect, it is concluded that the new methods are beneficial in terms of environmental responsibility. However, it showed that most of the customers that took part in the survey are price oriented and therefore they tend to prefer the cheaper-conventional alternative. In the long term it can be assumed that expansion of the new technology and competition among manufacturers will reduce the costs.

  3. Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.

    PubMed

    Douliez, Jean-Paul

    2010-07-06

    It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.

  4. CP/MAS /sup 13/C NMR spectroscopic study of chlorophyll a in the solid state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C.E.; Spencer, R.B.; Burger, V.T.

    1983-09-01

    Solid-state cross-polarization, magic-angle sample spinning carbon-13 nuclear magnetic resonance spectra have been recorded on chlorophyll a- water aggregates, methyl pyrochlorophyllide a and methyl pyropheophorbide a (derivatives that lack a phytyl chain). Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid state spectra.

  5. Chemical shift and electric field gradient tensors for the amide and carboxyl hydrogens in the model peptide N-acetyl-D,L-valine. Single-crystal deuterium NMR study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald, R. E., II; Bernhard, T.; Haeberlen, U.

    1993-01-01

    Solid-state NMR spectroscopy is well established as a method for describing molecular structure with resolution on the atomic scale. Many of the NMR observables result from anisotropic interactions between the nuclear spin and its environment. These observables can be described by second-rank tensors. For example, the eigenvalues of the traceless symmetric part of the hydrogen chemical shift (CS) tensor provide information about the strength of inter- or intramolecular hydrogen bonding. On the other hand, the eigenvectors of the deuterium electric field gradient (EFG) tensor give deuteron/proton bond directions with an accuracy rivalled only by neutron diffraction. In this paper themore » authors report structural information of this type for the amide and carboxyl hydrogen sites in a single crystal of the model peptide N-acetyl-D,L-valine (NAV). They use deuterium NMR to infer both the EFG and CS tensors at the amide and carboxyl hydrogen sites in NAV. Advantages of this technique over multiple-pulse proton NMR are that it works in the presence of {sup 14}N spins which are very hard to decouple from protons and that additional information in form of the EFG tensors can be derived. The change in the CS and EFG tensors upon exchange of a deuteron for a proton (the isotope effect) is anticipated to be very small; the effect on the CS tensors is certainly smaller than the experimental errors. NAV has served as a model peptide before in a variety of NMR studies, including those concerned with developing solid-state NMR spectroscopy as a method for determining the structure of proteins. NMR experiments on peptide or protein samples which are oriented in at least one dimension can provide important information about the three-dimensional structure of the peptide or the protein. In order to interpret the NMR data in terms of the structure of the polypeptide, the relationship of the CS and EFG tensors to the local symmetry elements of an amino acide, e.g., the peptide plane, is essential. The main purpose of this work is to investigate this relationship for the amide hydrogen CS tensor. The amide hydrogen CS tensor will also provide orientational information for peptide bonds in proteins complementary to that from the nitrogen CS and EFG tensors and the nitrogen-hydrogen heteronuclear dipole-dipole coupling which have been used previously to determine protein structures by solid-state NMR spectroscopy. This information will be particularly valuable because the amide hydrogen CS tensor is not axially symmetric. In addition, the use of the amide hydrogen CS interaction in high-field solid-state NMR experiments will increase the available resolution among peptide sites.« less

  6. Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.

    PubMed

    Perić, Berislav; Gautier, Régis; Pickard, Chris J; Bosiočić, Marko; Grbić, Mihael S; Požek, Miroslav

    2014-01-01

    Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined δiso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Electronic structure calculation of Sr2CoWO6 double perovskite using DFT+U

    NASA Astrophysics Data System (ADS)

    Mandal, Golak; Jha, Dhiraj; Himanshu, A. K.; Ray, Rajyavardhan; Mukherjee, P.; Das, Nisith; Singh, B. K.; Sreenivas, K.; Singh, M. N.; Sinha, A. K.

    2018-04-01

    Using the synchrotron and Raman spectroscopy we measured the lattice parameter and Raman modes of the half-metallic (HM) Sr2CoWO6 (SCoW) synthesied by the solid state reaction technique.. The physical properties of SCoW are studies within the framework of density function theory (DFT) under the generalised gradient approximation (GGA) of Perdew, Bruke, and Ernzerhof both by itself and including a coulomb repulsion via the Hubbard approach or GGA+U. Our results states that Sr2CoWO6 material behaves as insulators for the spin-up orientation and spindown orientation as found for the half metallic systems and at U = 0.06eV the ground state of spin up channel being insulating with spin gap of 2.27eV comparable to the experimental Band gap (BG).

  8. Quality of storm-water runoff, Mililani Town, Oahu, Hawaii, 1980-84

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamane, C.M.; Lum, M.G.

    1985-01-01

    The data included results from analyses of 300 samples of storm water runoff. Turbidity, suspended solids, Kjeldahl nitrogen, and phosphorus concentrations exceeded the State of Hawaii Department of Health's streamwater standards in more than 50% of the samples. Mercury, lead, and fecal coliform bacteria levels exceeded the US EPAs recommended criteria for either freshwater aquatic life or shellfish harvesting waters in more than half the samples. Other constituents exceeding State or federal standards in at least one sample included pH, cadmium, nitrate plus nitrite, iron, alkalinity, manganese, chromium, copper, zinc, and the pesticides. No statistically significant relationships were found betweenmore » quantity of runoff and concentration of water quality constituents. A first flush effect was observed for chemical oxygen demand, suspended solids, lead, nitrate plus nitrite, fecal coliform bacteria, dissolved solids, and mercury. There were significant differences between the two basins for values of discharge, turbidity, specific conductance, chemical oxygen demand, suspended solids, nitrate plus nitrite, phosphorus, lead, dissolved solids, and mercury. The larger basin had higher median and maximum values, and wider ranges of values. 28 refs., 10 figs., 7 tabs.« less

  9. Real-scale comparison between simple and composite raw sewage sampling

    NASA Astrophysics Data System (ADS)

    Sergio Scalize, Paulo; Moraes Frazão, Juliana

    2018-06-01

    The present study performed a qualitative and quantitative characterization of the raw sewage collected at the entrance of the sewage treatment station of the city of Itumbiara, state of Goiás. Samples were collected every two hours over a period of seven consecutive days. Characterization of both point samples and composite samples was performed. The parameters analyzed were: temperature, pH, alkalinity, chemical oxygen demand, oil and grease, electric conductivity, total phosphorus, settleable solids, ammoniacal nitrogen, total suspended solids, volatile suspended solids, fixed suspended solids and turbidity. These results allowed us to verify that it is possible to perform the collection and analysis of a point sample, instead of a composite sample, as a way of monitoring the efficiency of a sewage treatment plant.

  10. Terahertz vibrational modes of the rigid crystal phase of succinonitrile.

    PubMed

    Nickel, Daniel V; Delaney, Sean P; Bian, Hongtao; Zheng, Junrong; Korter, Timothy M; Mittleman, Daniel M

    2014-04-03

    Succinonitrile (N ≡ C-CH2-CH2-C ≡ N), an orientationally disordered molecular plastic crystal at room temperature, exhibits rich phase behavior including a solid-solid phase transition at 238 K. In cooling through this phase transition, the high-temperature rotational disorder of the plastic crystal phase is frozen out, forming a rigid crystal that is both spatially and orientationally ordered. Using temperature-dependent terahertz time-domain spectroscopy, we characterize the vibrational modes of this low-temperature crystalline phase for frequencies from 0.3 to 2.7 THz and temperatures ranging from 20 to 220 K. Vibrational modes are observed at 1.122 and 2.33 THz at 90 K. These modes are assigned by solid-state density functional theory simulations, corresponding respectively to the translation and rotation of the molecules along and about their crystallographic c-axis. In addition, we observe a suppression of the phonon modes as the concentration of dopants, in this case a lithium salt (LiTFSI), increases, indicating the importance of doping-induced disorder in these ionic conductors.

  11. Sexual orientation and treatment-seeking for depression in a multilingual worldwide sample

    PubMed Central

    Rutter, Tara M.; Flentje, Annesa; Dilley, James W.; Barakat, Suzanne; Liu, Nancy H.; Gross, Margaret S.; Muñoz, Ricardo F.; Leykin, Yan

    2016-01-01

    Background Prior research has found higher rates of mental health problems among sexual minority individuals. We examine treatment-seeking for depression, as well as its relationship with sexual orientation, in a large, multilingual, international sample. Method Participants in an automated, quintilingual internet-based depression screening tool were screened for depression, and completed several background measures, including sexual orientation (with an option to decline to state) and past and current depression treatment seeking. Results 3,695 participants screened positive for current or past depression and responded to the sexual orientation question. Those who declined to state their sexual orientation were far less likely to seek any treatment than individuals endorsing any orientation; they were especially unlikely to seek psychotherapy. Individuals identifying as bisexual sought both psychotherapy and alternative treatments at a higher rate than other groups. An interaction was observed between sexual orientation and gender, such that lesbian women were especially likely to have used psychotherapy. Other variables that emerged as significant predictors of treatment-seeking for depression included age and participant's language. Limitations Limitations include possible misinterpretation of translated terms due to regional differences, and possible limits to generalizability due to this study being conducted on the internet. Conclusions Our results suggest that individuals who decline to state their sexual orientation may be more likely to forgo effective treatments for depression. Further studies of depression service utilization should focus on developing treatment modalities that could better engage sexual minority individuals, especially those who are reluctant to disclose their orientation. PMID:27466746

  12. In-situ visualisation of hyphal structure and arrangement in mycoprotein pastes.

    PubMed

    Miri, Taghi; Cox, Philip W; Fryer, Peter J

    2003-02-01

    A novel method to examine the morphology and structure of fungal hyphae in solid pastes used for the production of meat alternative product is presented. A sample of fermentation broth was fluorescently stained with Calcofluor White and added back to the broth, mixed and then a paste made using ultra-filtration. Fibre visualisation was by fluorescence microscopy and quantification by manual image analysis. This method enables the determination of fibre length and orientation within the paste. Imaging of the hypha fibre paste proved that its structure was 'isotropic', i.e. that fibres were randomly oriented in all directions. Processing of the paste altered the orientation of the fibres, the method was able to identify and quantify the changes in fibre position.

  13. Methylene blue adsorption on a DMPA lipid langmuir monolayer.

    PubMed

    Giner Casares, Juan José; Camacho, Luis; Martín-Romero, Maria Teresa; López Cascales, José Javier

    2010-07-12

    Adsorption of methylene blue (MB) onto a dimyristoylphosphatidic acid (DMPA) Langmuir air/water monolayer is studied by molecular dynamics (MD) simulations, UV reflection spectroscopy and surface potential measurements. The free-energy profile associated with MB transfer from water to the lipid monolayer shows two minima of -66 and -60 kJ mol(-1) for its solid and gas phase, respectively, corresponding to a spontaneous thermodynamic process. From the position of the free-energy minima, it is possible to predict the precise location of MB in the interior of the DMPA monolayer. Thus, MB is accommodated in the phosphoryl or carbonyl region of the DMPA Langmuir air/water interface, depending on the isomorphic state (solid or gas phase, respectively). Reorientation of MB, measured from the bulk solution to the interior of the lipid monolayer, passes from a random orientation in bulk solution to an orientation parallel to the surface of the lipid monolayer when MB is absorbed.

  14. Development of Nonelectronic Part Cyclic Failure Rates

    DTIC Science & Technology

    1977-12-01

    Schilling, W. A., "The User-Oriented Connector," Microwave Journal, Octcber 1976 40. Schneider, C., "Military Relay Reliability," Bell Telephone...polyimide B Diallyl phthalate, melamine , -55 to 200 fluorosilicone, silicone rubber, polysulfone, epoxy resin C Polytetrafluoroethylene (teflon) -55 to 125...propagation, solid state sciences, microwave physics and electronic reliability, maintainabilitg andcompatibility. .,% -UT104, , 8. g z

  15. Characterizing Optical Loss in Orientation Patterned III-V Materials using Laser Calorimetry

    DTIC Science & Technology

    2014-03-27

    nm and solid state fiber lasers . A comparison of the important properties of commonly used frequency conversion materials are shown in Table 1 [9......templates at AFRL. 32 Laser Calorimetry Experiment A THOR Labs ITC 4001 Laser diode with a 1625 nm, 50 mW fiber pigtail was used as the source

  16. Performance Oriented Packaging (POP) testing of Artillery Type and Rocket Fuzes Packed in a Wood Wirebound Box

    DTIC Science & Technology

    1993-08-03

    44. Name: Fuze PD M739 United Nations Proper Shipping Name: Fuzes, Detonating United Nations Number: 0408 NSN: 1390-00-574-7705 Drawing Number: 9258605...Physical State: Solid United Nations Packing-group: II Amount Per Container: 8 45. Name: Fuze PD M739 United Nations Proper Shipping Name: Fuzes

  17. Cycles for Science: Biology Curriculum Supplement for Grades 9-12. A Steel Cycles Program.

    ERIC Educational Resources Information Center

    Rogers, Diana; Laymon, Carol

    This document contains project-oriented lessons and hands-on activities developed to integrate steel recycling, natural resource conservation, and solid waster management into science learning. It is designed to assist secondary teachers and students (grades 9-12) in meeting state and local goals for learning in biology, chemistry, general science…

  18. Instability and thermal conductivity of pressure-densified and elastically altered orientational glass of Buckminsterfullerene

    NASA Astrophysics Data System (ADS)

    Johari, G. P.; Andersson, Ove; Sundqvist, Bertil

    2018-04-01

    We report on the temperature, pressure, and time (T, p, and t)-dependent features of thermal conductivity, κ, of partially ordered, non-equilibrium state of C60-OG, the orientational glass of Buckminsterfullerene (at T below the orientational freezing temperature Tog) made more unstable (i) by partially depressurizing its high-p formed state to elastically expand it and (ii) by further pressurizing that state to elastically contract it. The sub-Tog effects observed on heating of C60-OG differ from those of glasses because phonon propagation depends on the ratio of two well-defined orientational states of C60 molecules and the density of the solid. A broad peak-like feature appears at T near Tog in the κ-T plots of C60-OG formed at 0.7 GPa, depressurized to 0.2 GPa and heated at 0.2 GPa, which we attribute to partial overlap of the sub-Tog and Tog features. A sub-Tog local minimum appears in the κ-T plots at T well below Tog of C60-OG formed at 0.1 GPa, pressurized to 0.5 GPa and heated at 0.5 GPa and it corresponds to the state of maximum disorder. Although Buckminsterfullerene is regarded as an orientationally disordered crystal, variation of its properties with T and p is qualitatively different from other such crystals. We discuss the findings in terms of the nature of its disorder, sensitivity of its rotational dynamics to temperature, and the absence of the Johari-Goldstein relaxation. All seem to affect the phenomenology of its glass-like transition.

  19. A Solid-State Deuterium NMR and SFG Study of the Side Chain Dynamics of Peptides Adsorbed onto Surfaces

    PubMed Central

    Breen, Nicholas F.; Weidner, Tobias; Li, Kun; Castner, David G.; Drobny, Gary P.

    2011-01-01

    The artificial amphiphilic peptide LKα14 adopts a helical structure at interfaces, with opposite orientation of its leucine (L, hydrophobic) and lysine (K, hydrophilic) side chains. When adsorbed onto surfaces, different residue side chains necessarily have different proximities to the surface, depending on both their position in the helix and the composition of the surface itself. Deuterating the individual leucine residues (isopropyl-d7) permits the use of solid-state deuterium NMR as a site-specific probe of side chain dynamics. In conjunction with SFG as a probe of the peptide binding face, we demonstrate that the mobility of specific leucine side chains at the interface is quantifiable in terms of their surface proximity. PMID:19764755

  20. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  1. Neutron Time-of-Flight Diffractometer HIPPO at LANSCE

    NASA Astrophysics Data System (ADS)

    Vogel, Sven; Williams, Darrick; Zhao, Yusheng; Bennett, Kristin; von Dreele, Bob; Wenk, Hans-Rudolf

    2004-03-01

    The High-Pressure Preferred Orientation (HIPPO) neutron diffractometer is the first third-generation neutron time-of-flight powder diffractometer to be constructed in the United States. It produces extremely high intensity by virtue of a short (9 m) initial flight path on a high intensity water moderator and 1380 3He detector tubes covering 4.5 m2 of detector area from 10' to 150' in scattering angles. HIPPO was designed and manufactured as a joint effort between LANSCE and University of California with the goals of attaining world-class science and making neutron powder diffractometry an accessible and available tool to the national user community. Over two decades of momentum transfer are available (0.1-30 A-1) to support studies of amorphous solids; magnetic diffraction; small crystalline samples; and samples subjected to extreme environments such as temperature, pressure, or magnetic fields. The exceptionally high data rates of HIPPO also make it useful for time-resolved studies. In addition to the standard ancillary equipment (100-position sample/texture changer, closed-cycle He refrigerator, furnace), HIPPO has unique high-pressure cells capable of achieving pressures of 30 GPA at ambient and high (2000 K) temperature with samples up to 100 mm3 in volume.

  2. Synthesis of new oligothiophene derivatives and their intercalation compounds: Orientation effects

    USGS Publications Warehouse

    Ibrahim, M.A.; Lee, B.-G.; Park, N.-G.; Pugh, J.R.; Eberl, D.D.; Frank, A.J.

    1999-01-01

    The orientation dependence of intercalated oligothiophene derivatives in vermiculite and metal disulfides MS2 (M = Mo, Ti and Zr) on the pendant group on the thiophene ring and the host material was studied by X-ray diffraction (XRD) and solid state nuclear magnetic resonance spectroscopy. Amino and nitro derivatives of bi-, ter- and quarter-thiophenes were synthesized for the first time. The amino-oligothiophenes were intercalated into vermiculite by an exchange reaction with previously intercalated octadecylammonium vermiculite and into MS2 by the intercalation-exfoliation technique. Analysis of the XRD data indicates that a monolayer of amino-oligothiophene orients perpendicularly to the silicate surface in vermiculite and lies flat in the van der Waals gap of MS2.

  3. Imaging the molecular dimensions and oligomerization of protein molecules at the solid-liquid interface by surface oriented molecular sizing (SOMS) microscopy

    NASA Astrophysics Data System (ADS)

    Waner, Mark Joseph

    The structure and behavior of proteins at the solid/liquid interface is of great scientific interest. It has application both to fundamental biochemical understanding, as well as to biotechnological purposes. Interfaces play a critical role in many physiological processes. The mechanism of protein adsorption to surfaces is not very well understood. The current model put forth in much of the literature assumes a two step model. In the first step of this model the protein collides with the surface and adsorbs if its energy is sufficient to overcome the free energy of desorption of surface adsorbed solvent. The second step is often assumed to involve significant conformational change of the secondary and tertiary structure of the protein or enzyme, akin to denaturation. This unfolding of the protein would tend to indicate that loss of function would occur concomitantly, but studies have found very little loss in activity upon adsorption for a number of different protein systems. The recent development of the atomic force microscope (AFM) offers another tool for the examination of protein structure at liquid/solid interfaces. For atomically flat crystals the AFM has been used to determine atomic positions to <1 A resolution. In the case of samples with topographic features larger than atoms, the probe tip of the AFM 'convolutes' with the size and shape of surface features. This has hindered the use of AFM for molecular level structural determination of proteins at the liquid/solid interface. The work presented in this dissertation covers the development of the surface oriented molecular sizing (SOMS) technique which makes use of the angstrom height resolution of the AFM and a physically based mathematical framework for the analysis of the height distribution of adsorbed protein molecules. The surface adsorption and orientation (SAO) model is developed using statistical thermodynamics to model the expected height distributions for molecules adsorbed on a surface. The SOMS technique will be shown to be viable through studies of ferritin and concanavalin A (Con A) at the water/mica interface. Using this technique we are able to determine both the three-dimensional size and the oligomerization state of the adsorbed molecules. This technique will then be utilized for the examination of denaturation of Con A at the interface, by a number of mechanisms. Further, the structural and orientational changes in Con A as a function of pH will also be presented. The final chapter of this dissertation will present an extension of these studies to the deposition and structure of Con A thin films on mica.

  4. Crystal structure of solid molecular hydrogen under high pressures

    NASA Astrophysics Data System (ADS)

    Cui, T.; Ma, Y.; Zou, G.

    2002-11-01

    In an effort to achieve a comprehensive understanding of the structure of dense H2, we have performed path-integral Monte Carlo simulations for three combinations of pressures and temperatures corresponding to three phases of solid hydrogen. Our results suggest three kinds of distribution of molecules: orientationally disordered hexagonal close packed (hcp), orientationally ordered hcp with Pa3-type local orientation order and orientationally ordered orthorhombic structure of Cmca symmetry, for the three phases.

  5. Monitoring structural transformations in crystals. 7. 1-Chloroanthracene and its photodimer.

    PubMed

    Turowska-Tyrk, Ilona; Grześniak, Karolina

    2004-02-01

    Crystals of the 1-chloroanthracene photodimer, viz. trans-bi(1-chloro-9,10-dihydro-9,10-anthracenediyl), C(28)H(18)Cl(2), were obtained from the solid-state [4+4]-photodimerization of the monomer, C(14)H(9)Cl, followed by recrystallization. The symmetry of the product molecules is defined by the orientation of the reactant molecules in the crystal. The mutual orientation parameters calculated for adjacent monomers explain the reactivity of the compound. The molecules in the crystal of the monomer and the recrystallized photodimer pack differently and the photodimer has crystallographically imposed inversion symmetry.

  6. High-performance liquid chromatographic determination of ursodeoxycholic acid after solid phase extraction of blood serum and detection-oriented derivatization.

    PubMed

    Nobilis, M; Pour, M; Kunes, J; Kopecký, J; Kvĕtina, J; Svoboda, Z; Sládková, K; Vortel, J

    2001-03-01

    Ursodeoxycholic acid (3 alpha,7 beta-dihydroxy-5 beta-cholanoic acid, UDCA) is a therapeutically applicable bile acid widely used for the dissolution of cholesterol-rich gallstones and in the treatment of chronic liver diseases associated with cholestasis. UDCA is more hydrophilic and less toxic than another therapeutically valuable bile acid, chenodeoxycholic acid (CDCA), the 7 alpha-epimer of UDCA. Procedures for sample preparation and HPLC determination of UDCA in blood serum were developed and validated. A higher homologue of UDCA containing an additional methylene group in the side chain was synthetized and used as an internal standard (IS). Serum samples with IS were diluted with a buffer (pH=7). The bile acids and IS were captured using solid phase extraction (C18 cartridges). The carboxylic group of the analytes was derivatized using 2-bromo-2'-acetonaphthone (a detection-oriented derivatization), and reaction mixtures were analyzed (HPLC with UV 245 nm detection; a 125--4 mm column containing Lichrospher 100 C18, 5 microm; mobile phase: acetonitrile--water, 6:4 (v/v)). Following validation, this method was used for pharmacokinetic studies of UDCA in humans.

  7. Sexual orientation and treatment-seeking for depression in a multilingual worldwide sample.

    PubMed

    Rutter, Tara M; Flentje, Annesa; Dilley, James W; Barakat, Suzanne; Liu, Nancy H; Gross, Margaret S; Muñoz, Ricardo F; Leykin, Yan

    2016-12-01

    Prior research has found higher rates of mental health problems among sexual minority individuals. We examine treatment-seeking for depression, as well as its relationship with sexual orientation, in a large, multilingual, international sample. Participants in an automated, quintilingual internet-based depression screening tool were screened for depression, and completed several background measures, including sexual orientation (with an option to decline to state) and past and current depression treatment seeking. 3695 participants screened positive for current or past depression and responded to the sexual orientation question. Those who declined to state their sexual orientation were far less likely to seek any treatment than individuals endorsing any orientation; they were especially unlikely to seek psychotherapy. Individuals identifying as bisexual sought both psychotherapy and alternative treatments at a higher rate than other groups. An interaction was observed between sexual orientation and gender, such that lesbian women were especially likely to have used psychotherapy. Other variables that emerged as significant predictors of treatment-seeking for depression included age and participant's language. Limitations include possible misinterpretation of translated terms due to regional differences, and possible limits to generalizability due to this study being conducted on the internet. Our results suggest that individuals who decline to state their sexual orientation may be more likely to forgo effective treatments for depression. Further studies of depression service utilization should focus on developing treatment modalities that could better engage sexual minority individuals, especially those who are reluctant to disclose their orientation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Heat Management Strategies for Solid-state NMR of Functional Proteins

    PubMed Central

    Fowler, Daniel J.; Harris, Michael J.; Thompson, Lynmarie K.

    2012-01-01

    Modern solid-state NMR methods can acquire high-resolution protein spectra for structure determination. However, these methods use rapid sample spinning and intense decoupling fields that can heat and denature the protein being studied. Here we present a strategy to avoid destroying valuable samples. We advocate first creating a sacrificial sample, which contains unlabeled protein (or no protein) in buffer conditions similar to the intended sample. This sample is then doped with the chemical shift thermometer Sm2Sn2O7. We introduce a pulse scheme called TCUP (for Temperature Calibration Under Pulseload) that can characterize the heating of this sacrificial sample rapidly, under a variety of experimental conditions, and with high temporal resolution. Sample heating is discussed with respect to different instrumental variables such as spinning speed, decoupling strength and duration, and cooling gas flow rate. The effects of different sample preparation variables are also discussed, including ionic strength, the inclusion of cryoprotectants, and the physical state of the sample (i.e. liquid, solid, or slurry). Lastly, we discuss probe detuning as a measure of sample thawing that does not require retuning the probe or using chemical shift thermometer compounds. Use of detuning tests and chemical shift thermometers with representative sample conditions makes it possible to maximize the efficiency of the NMR experiment while retaining a functional sample. PMID:22868258

  9. Particle generator

    DOEpatents

    Hess, Wayne P.; Joly, Alan G.; Gerrity, Daniel P.; Beck, Kenneth M.; Sushko, Peter V.; Shlyuger, Alexander L.

    2005-06-28

    Energy tunable solid state sources of neutral particles are described. In a disclosed embodiment, a halogen particle source includes a solid halide sample, a photon source positioned to deliver photons to a surface of the halide, and a collimating means positioned to accept a spatially defined plume of hyperthermal halogen particles emitted from the sample surface.

  10. Selective Optical Addressing of Nuclear Spins through Superhyperfine Interaction in Rare-Earth Doped Solids.

    PubMed

    Car, B; Veissier, L; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T

    2018-05-11

    In Er^{3+}:Y_{2}SiO_{5}, we demonstrate the selective optical addressing of the ^{89}Y^{3+} nuclear spins through their superhyperfine coupling with the Er^{3+} electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.

  11. Selective Optical Addressing of Nuclear Spins through Superhyperfine Interaction in Rare-Earth Doped Solids

    NASA Astrophysics Data System (ADS)

    Car, B.; Veissier, L.; Louchet-Chauvet, A.; Le Gouët, J.-L.; Chanelière, T.

    2018-05-01

    In Er3 +:Y2SiO5 , we demonstrate the selective optical addressing of the Y89 3 + nuclear spins through their superhyperfine coupling with the Er3 + electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y3 + nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.

  12. Action-State Orientation and the Theory of Planned Behavior: A Study of Job Search in China

    ERIC Educational Resources Information Center

    Song, Zhaoli; Wanberg, Connie; Niu, Xiongying; Xie, Yizhong

    2006-01-01

    Job search is an important element of people's careers and is especially critical for unemployed individuals. The current study surveyed a sample of 328 unemployed job seekers in China to test hypotheses related to the theory of planned behavior and action-state orientation theory. Results of the three-wave longitudinal study demonstrated that the…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.W.; Labouriau, A.; Taylor, C.M.

    Dynamics and structure of tri-n-butyltin fluoride in n-hexane solutions were probed using (tin-119) nuclear magnetic resonance spin relaxation methodologies. Significant relaxation-induced polarization transfer effects were observed and exploited. The experimental observations indicate that the tri-n-butyl fluoride exists in a polymeric form in solution. For a 0.10% (w/w) solution at 25 [degree]C, NMR reveals significant orientational/exchange relaxation on both the microsecond and nanosecond time scales. Solution-state and solid-state parameters are compared and contrasted. 26 refs., 3 figs., 1 tab.

  14. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  15. Gas-phase detection of solid-state fission product complexes for post-detonation nuclear forensic analysis

    DOE PAGES

    Stratz, S. Adam; Jones, Steven A.; Oldham, Colton J.; ...

    2016-06-27

    This study presents the first known detection of fission products commonly found in post-detonation nuclear debris samples using solid sample introduction and a uniquely coupled gas chromatography inductively-coupled plasma time-of-flight mass spectrometer. Rare earth oxides were chemically altered to incorporate a ligand that enhances the volatility of the samples. These samples were injected (as solids) into the aforementioned instrument and detected for the first time. Repeatable results indicate the validity of the methodology, and this capability, when refined, will prove to be a valuable asset for rapid post-detonation nuclear forensic analysis.

  16. Gas-phase detection of solid-state fission product complexes for post-detonation nuclear forensic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratz, S. Adam; Jones, Steven A.; Oldham, Colton J.

    This study presents the first known detection of fission products commonly found in post-detonation nuclear debris samples using solid sample introduction and a uniquely coupled gas chromatography inductively-coupled plasma time-of-flight mass spectrometer. Rare earth oxides were chemically altered to incorporate a ligand that enhances the volatility of the samples. These samples were injected (as solids) into the aforementioned instrument and detected for the first time. Repeatable results indicate the validity of the methodology, and this capability, when refined, will prove to be a valuable asset for rapid post-detonation nuclear forensic analysis.

  17. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract.

    PubMed

    Bennett, Ryan C; Brough, Chris; Miller, Dave A; O'Donnell, Kevin P; Keen, Justin M; Hughey, Justin R; Williams, Robert O; McGinity, James W

    2015-03-01

    Acetyl-11-keto-β-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.

  18. Liquid Crystalline Polymers

    DTIC Science & Technology

    1990-02-28

    include energy costs, time required for cooling, large volume changes, and degradation. For many high -temperature LCPs, the latter may be the most...LCPs)- high local (microscopic) orientational order, which is retained in the solid state-has significant implications in a range of DOD applications...that yield and maintain specific mer sequences. * Continue efforts to measure mer sequence distribution, e.g., by multinuclei NMR. 0 Develop high

  19. Determination of Structural Topology of a Membrane Protein in Lipid -Bilayers using Polarization Optimized Experiments (POE) for Static and MAS Solid State NMR Spectroscopy

    PubMed Central

    Mote, Kaustubh R.; Gopinath, T.; Veglia, Gianluigi

    2013-01-01

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments (POE), for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ∼ 0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional O-ssNMR and MAS-ssNMR. PMID:23963722

  20. Effect of Aerogel Anisotropy in Superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. M.; Li, J. I. A.; Pollanen, J.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.

    2014-03-01

    Two theories have been advanced to describe the effects of anisotropic impurity introduced by stretched silica aerogel on the orientation of the orbital angular momentum l& circ; in superfluid 3He-A. These theories disagree on whether the anisotropy will orient l& circ; perpendicular[2] or parallel[3] to the strain axis. In order to examine this question we have produced and characterized a homogeneous aerogel sample with uniaxial anisotropy introduced during growth, corresponding to stretching of the aerogel. These samples have been shown to stabilize two new chiral states;[4] the higher temperature state being the subject of the present study. Using pulsed NMR we have performed experiments on 3He-A imbibed in this sample in two orientations: strain parallel and perpendicular to the applied magnetic field. From the NMR frequency shifts as a function of tip angle and temperature, we find that the angular momentum l& circ; is oriented along the strain axis, providing evidence for the theory advanced by Sauls. This work was supported by the National Science Foundation, DMR-1103625.

  1. Diphytanoyl lipids as model systems for studying membrane-active peptides.

    PubMed

    Kara, Sezgin; Afonin, Sergii; Babii, Oleg; Tkachenko, Anton N; Komarov, Igor V; Ulrich, Anne S

    2017-10-01

    The branched chains in diphytanoyl lipids provide membranes with unique properties, such as high chemical/physical stability, low water permeability, and no gel-to-fluid phase transition at ambient temperature. Synthetic diphytanoyl phospholipids are often used as model membranes for electrophysiological experiments. To evaluate whether these sturdy lipids are also suitable for solid-state NMR, we have examined their interactions with a typical amphiphilic peptide in comparison with straight-chain lipids. First, their phase properties were monitored using 31 P NMR, and the structural behaviour of the antimicrobial peptide PGLa was studied by 19 F NMR and circular dichroism in oriented membrane samples. Only lipids with choline headgroups (DPhPC) were found to form stable lipid bilayers in oriented samples, while DPhPG, DPhPE and DPhPS display non-lamellar structures. Hence, the experimental temperature and hydration are crucial factors when using supported diphytanoyl lipids, as both parameters must be maintained in an appropriate range to avoid the formation of non-bilayer structures. For the same reason, a high content of other diphytanoyl lipids besides DPhPC in mixed lipid systems is not favourable. Unlike the situation in straight-chain membranes, we found that the α-helical PGLa was not able to insert into the tightly packed fluid bilayer of DPhPC but remained in a surface-bound state even at very high peptide concentration. This behaviour can be explained by the high cohesivity and the negative spontaneous curvature of the diphytanoyl lipids. These characteristic features must therefore be taken into consideration, both, in electrophysiological studies, and when interpreting the structural behaviour of membrane-active peptides in such lipid environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors.

    PubMed

    Hisao, Grant S; Harland, Michael A; Brown, Robert A; Berthold, Deborah A; Wilson, Thomas E; Rienstra, Chad M

    2016-04-01

    The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  4. An exploratory study of differences in views of factors affecting sexual orientation for a sample of lesbians and gay men.

    PubMed

    Otis, Melanie D; Skinner, William F

    2004-06-01

    An exploratory study of lesbians (70) and gay men (118) from a rural state in the mid-South was conducted using a self-administered, mail-out survey. The nonrandom sample was drawn from organizational mailing lists, snowball sampling, and a convenience sample at a community event. Respondents were asked to indicate the extent to which each of the following affected sexual orientation: genetics, relationship between parents, relationship with parents, birth order, peers, growing up in a dysfunctional family, growing up in a single-parent family, negative experiences with the opposite sex, and positive experiences with the same sex. Similar to studies of heterosexual men and women, these gay men were more likely to view sexual orientation as a result of genetics than the lesbian respondents. Further, the lesbian group were more likely to view positive relationships with the same sex to have a great influence on sexual orientation. These data indicate there are sex differences in views on factors that affect sexual orientation.

  5. Optimization of anisotropic photonic density of states for Raman cooling of solids

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chung; Ghosh, Indronil; Schleife, André; Carney, P. Scott; Bahl, Gaurav

    2018-04-01

    Optical refrigeration of solids holds tremendous promise for applications in thermal management. It can be achieved through multiple mechanisms including inelastic anti-Stokes Brillouin and Raman scattering. However, engineering of these mechanisms remains relatively unexplored. The major challenge lies in the natural unfavorable imbalance in transition rates for Stokes and anti-Stokes scattering. We consider the influence of anisotropic photonic density of states on Raman scattering and derive expressions for cooling in such photonically anisotropic systems. We demonstrate optimization of the Raman cooling figure of merit considering all possible orientations for the material crystal and two example photonic crystals. We find that the anisotropic description of the photonic density of states and the optimization process is necessary to obtain the best Raman cooling efficiency for systems having lower symmetry. This general result applies to a wide array of other laser cooling methods in the presence of anisotropy.

  6. The Fabrication of (bismuth, LEAD)(2) STRONTIUM(2) CALCIUM(2) COPPER(3) Oxygen(x) Superconductor in Bulk and Tape Forms

    NASA Astrophysics Data System (ADS)

    Lim, Hanjin

    High-T_{rm c}<=ad doped rm Bi_2Sr_2Ca_2Cu _2Cu_3O_{x} (BSCCO 2223) superconductor bulk materials were prepared using conventional powder metallurgy techniques, which were made from precursors having different histories. The ease of formation of superconducting phases was highly dependent on the processing of primitive powder. With the three -powder process that combines three kinds of calcined precursor powders, the formation of the BSCCO superconductor was accelerated and the amount of the secondary phase (e.g., Ca_2CuO_3) was reduced. The critical transition temperature (T _{rm c}) of the superconductor from the three-powder process is higher than that from the one-powder process. In lead-doped BSCCO 2223, positron trapping and annihilation evidently occur in the open BiO double layers rather than in the superconducting CuO_2 layers of the structure. Both positron annihilation parameters (tau_1, tau _2, overlinetau) and Doppler parameters (P, W, P/W) were insensitive to the superconducting transition in this material. This is quite opposite to the case of YBCO and Dy doped YBCO where positron annihilation is sensitive to the superconducting transition. High-T_{rm c} BSCCO superconducting tapes were fabricated using the powder -in-tube (PIT) method that includes heat treatments as well as mechanical processing such as drawing, rolling, and pressing. The highest critical current densities (J _{rm c}) at 5 and 77 K were 5.12 times 10^5 A/cm^2 and 1.77 times 10^4 A/cm^2 , respectively, for the tape sample which was solid state processed at 840^circC with three short sintering steps. J_{ rm c} values at 5 and 77 K of tape samples were 1 and 2 orders of magnitude higher than those of bulk samples, respectively. The preferred orientations of the BSCCO 2212 phase in the tape samples were basal and (1 1 13) textures; for the BSCCO 2223 phase preferred orientations were also basal and (1 1 19) textures. By taking the ratios of the texture coefficients (TCs) for (0 0 1) and (1 1 0) reflections, one can describe the strength of the basal texture for each superconducting phase in both bulk and tape. From these ratios one can say that the best basal texture for the tape BSCCO 2212 was produced by the procedure which included partial melting at 850^circ C for 0.3 h. The best treatment for BSCCO 2223 was the tape sample with solid state processing at 840 ^circC in 10% oxygen.

  7. Computer simulation and high level virial theory of Saturn-ring or UFO colloids.

    PubMed

    Bates, Martin A; Dennison, Matthew; Masters, Andrew

    2008-08-21

    Monte Carlo simulations are used to map out the complete phase diagram of hard body UFO systems, in which the particles are composed of a concentric sphere and thin disk. The equation of state and phase behavior are determined for a range of relative sizes of the sphere and disk. We show that for relatively large disks, nematic and solid phases are observed in addition to the isotropic fluid. For small disks, two different solid phases exist. For intermediate sizes, only a disordered fluid phase is observed. The positional and orientational structure of the various phases are examined. We also compare the equations of state and the nematic-isotropic coexistence densities with those predicted by an extended Onsager theory using virial coefficients up to B(8).

  8. Computer simulation and high level virial theory of Saturn-ring or UFO colloids

    NASA Astrophysics Data System (ADS)

    Bates, Martin A.; Dennison, Matthew; Masters, Andrew

    2008-08-01

    Monte Carlo simulations are used to map out the complete phase diagram of hard body UFO systems, in which the particles are composed of a concentric sphere and thin disk. The equation of state and phase behavior are determined for a range of relative sizes of the sphere and disk. We show that for relatively large disks, nematic and solid phases are observed in addition to the isotropic fluid. For small disks, two different solid phases exist. For intermediate sizes, only a disordered fluid phase is observed. The positional and orientational structure of the various phases are examined. We also compare the equations of state and the nematic-isotropic coexistence densities with those predicted by an extended Onsager theory using virial coefficients up to B8.

  9. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers.

    PubMed

    Mote, Kaustubh R; Gopinath, T; Traaseth, Nathaniel J; Kitchen, Jason; Gor'kov, Peter L; Brey, William W; Veglia, Gianluigi

    2011-11-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring (1)H-(15)N dipolar couplings (DC) and (15)N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles' heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([(1)H,(15)N]-SE-PISEMA-PDSD). The incorporation of 2D (15)N/(15)N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the (15)N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers. © Springer Science+Business Media B.V. 2011

  10. Polish Geophysical Solid Earth Infrastructure Contributing to EPOS

    NASA Astrophysics Data System (ADS)

    Debski, W.; Mutke, G.; Suchcicki, J.; Jozwiak, W.; Wiejacz, P.; Trojanowski, J.

    2012-04-01

    In this poster we present the current state of the main polish solid-earth-orientated infrastructures and shortly described history of their development, current state, and some plans for their future development. The presen- tation concentrates only on the classical infrastructure leaving aside for the while the the geodetic-orientated infrastructure, like GPS network and the GPS processing data centers, gravimetric infrastructure and others of this type. Polish broadband seismic infrastructure consists of 7 permanent broadband stations incorporated into the VEBSN initiative running at the polish territory and one operated in collaboration with NORSAR is settled at the Hornsund (Svalbard) polish polar station. All stations are equipped with STS-2 seismometers and polish MK-6 seismic stations providing 120 dB dynamics 100Hz sampling and data transmission in a real time to processing center. Besides this permanent broadband seismic network (PLSN) the Central Institute of Mining is running the permanent regional, short period network at the Upper Silesia area dedicated to the detailed monitoring of seismicity induced by the black coal mining activity in this area. The network consists of As the mining activity is the main source of seismicity in Poland also all mines are running underground short period networks, like for example Rudna-Polkowice copper mine seismic network consisting of 64 underground located short period seimometers. In that area, especially around the Zelazny Most: the huge post-floating artificial lake the, IGF PAS is running the local seismic array consisting of 4 short period seismometers. Besides these permanent network IGF PAN is running the portable seismic network for detailed mapping a possible natural seismic activity in selected regions of Poland. Important contribution to classical geophysical observation in the electro-magnetic field are provided by three permanent geomagnetic observatories (one at Hornsund) and supporting set of 10 portable, high-accuracy magnetoteluric stations.

  11. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K.

    PubMed

    Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4 He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO 3 . The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  12. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K

    NASA Astrophysics Data System (ADS)

    Lange, M.; Guénon, S.; Lever, F.; Kleiner, R.; Koelle, D.

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  13. Effect of Layer Thickness and Printing Orientation on Mechanical Properties and Dimensional Accuracy of 3D Printed Porous Samples for Bone Tissue Engineering

    PubMed Central

    Farzadi, Arghavan; Solati-Hashjin, Mehran; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan

    2014-01-01

    Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity. PMID:25233468

  14. Chemical compositions of dissolved organic matter from various sources as characterized by solid-state NMR

    USDA-ARS?s Scientific Manuscript database

    Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...

  15. Modeling an in-register, parallel "iowa" aβ fibril structure using solid-state NMR data from labeled samples with rosetta.

    PubMed

    Sgourakis, Nikolaos G; Yau, Wai-Ming; Qiang, Wei

    2015-01-06

    Determining the structures of amyloid fibrils is an important first step toward understanding the molecular basis of neurodegenerative diseases. For β-amyloid (Aβ) fibrils, conventional solid-state NMR structure determination using uniform labeling is limited by extensive peak overlap. We describe the characterization of a distinct structural polymorph of Aβ using solid-state NMR, transmission electron microscopy (TEM), and Rosetta model building. First, the overall fibril arrangement is established using mass-per-length measurements from TEM. Then, the fibril backbone arrangement, stacking registry, and "steric zipper" core interactions are determined using a number of solid-state NMR techniques on sparsely (13)C-labeled samples. Finally, we perform Rosetta structure calculations with an explicitly symmetric representation of the system. We demonstrate the power of the hybrid Rosetta/NMR approach by modeling the in-register, parallel "Iowa" mutant (D23N) at high resolution (1.2Å backbone rmsd). The final models are validated using an independent set of NMR experiments that confirm key features. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction

    PubMed Central

    Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.

    2013-01-01

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  17. Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source.

    PubMed

    Loredo, J C; Broome, M A; Hilaire, P; Gazzano, O; Sagnes, I; Lemaitre, A; Almeida, M P; Senellart, P; White, A G

    2017-03-31

    A boson-sampling device is a quantum machine expected to perform tasks intractable for a classical computer, yet requiring minimal nonclassical resources as compared to full-scale quantum computers. Photonic implementations to date employed sources based on inefficient processes that only simulate heralded single-photon statistics when strongly reducing emission probabilities. Boson sampling with only single-photon input has thus never been realized. Here, we report on a boson-sampling device operated with a bright solid-state source of single-photon Fock states with high photon-number purity: the emission from an efficient and deterministic quantum dot-micropillar system is demultiplexed into three partially indistinguishable single photons, with a single-photon purity 1-g^{(2)}(0) of 0.990±0.001, interfering in a linear optics network. Our demultiplexed source is between 1 and 2 orders of magnitude more efficient than current heralded multiphoton sources based on spontaneous parametric down-conversion, allowing us to complete the boson-sampling experiment faster than previous equivalent implementations.

  18. Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells

    PubMed Central

    Jagielski, Jakub; Kumar, Sudhir; Wang, Mingchao; Scullion, Declan; Lawrence, Robert; Li, Yen-Ting; Yakunin, Sergii; Tian, Tian; Kovalenko, Maksym V.; Chiu, Yu-Cheng; Santos, Elton J. G.; Lin, Shangchao; Shih, Chih-Jen

    2017-01-01

    The outstanding excitonic properties, including photoluminescence quantum yield (ηPL), of individual, quantum-confined semiconductor nanoparticles are often significantly quenched upon aggregation, representing the main obstacle toward scalable photonic devices. We report aggregation-induced emission phenomena in lamellar solids containing layer-controlled colloidal quantum wells (QWs) of hybrid organic-inorganic lead bromide perovskites, resulting in anomalously high solid-state ηPL of up to 94%. Upon forming the QW solids, we observe an inverse correlation between exciton lifetime and ηPL, distinct from that in typical quantum dot solid systems. Our multiscale theoretical analysis reveals that, in a lamellar solid, the collective motion of the surface organic cations is more restricted to orient along the [100] direction, thereby inducing a more direct bandgap that facilitates radiative recombination. Using the QW solids, we demonstrate ultrapure green emission by completely downconverting a blue gallium nitride light-emitting diode at room temperature, with a luminous efficacy higher than 90 lumen W−1 at 5000 cd m−2, which has never been reached in any nanomaterial assemblies by far. PMID:29282451

  19. Final Report for X-ray Diffraction Sample Preparation Method Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, T. M.; Meznarich, H. K.; Valero, T.

    WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza, E-mail: modaresi@chem.usb.ac.ir

    Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersivemore » X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant. - Highlights: • The solid-state synthesis of the novel chiral composites of poly[(±)-2-(sec-butyl)aniline] (PSBA) and silica-supported perchloric acid (SSPA). • It takes 120 h for complete deprotonation of PSBA.HCl salt. • Use of SSPA as dopant solid acid for the first time to attain the complete doping of PSBA. • The coating of silica surface with PSBA.« less

  1. SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2000-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  2. SIMPSON: A general simulation program for solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2011-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  3. Rotor-stator molecular crystals of fullerenes with cubane.

    PubMed

    Pekker, Sándor; Kováts, Eva; Oszlányi, Gábor; Bényei, Gyula; Klupp, Gyöngyi; Bortel, Gábor; Jalsovszky, István; Jakab, Emma; Borondics, Ferenc; Kamarás, Katalin; Bokor, Mónika; Kriza, György; Tompa, Kálmán; Faigel, Gyula

    2005-10-01

    Cubane (C8H8) and fullerene (C60) are famous cage molecules with shapes of platonic or archimedean solids. Their remarkable chemical and solid-state properties have induced great scientific interest. Both materials form polymorphic crystals of molecules with variable orientational ordering. The idea of intercalating fullerene with cubane was raised several years ago but no attempts at preparation have been reported. Here we show that C60 and similarly C70 form high-symmetry molecular crystals with cubane owing to topological molecular recognition between the convex surface of fullerenes and the concave cubane. Static cubane occupies the octahedral voids of the face-centred-cubic structures and acts as a bearing between the rotating fullerene molecules. The smooth contact of the rotor and stator molecules decreases significantly the temperature of orientational ordering. These materials have great topochemical importance: at elevated temperatures they transform to high-stability covalent derivatives although preserving their crystalline appearance. The size-dependent molecular recognition promises selective formation of related structures with higher fullerenes and/or substituted cubanes.

  4. Calcium-43 chemical shift tensors as probes of calcium binding environments. Insight into the structure of the vaterite CaCO3 polymorph by 43Ca solid-state NMR spectroscopy.

    PubMed

    Bryce, David L; Bultz, Elijah B; Aebi, Dominic

    2008-07-23

    Natural-abundance (43)Ca solid-state NMR spectroscopy at 21.1 T and gauge-including projector-augmented-wave (GIPAW) DFT calculations are developed as tools to provide insight into calcium binding environments, with special emphasis on the calcium chemical shift (CS) tensor. The first complete analysis of a (43)Ca solid-state NMR spectrum, including the relative orientation of the CS and electric field gradient (EFG) tensors, is reported for calcite. GIPAW calculations of the (43)Ca CS and EFG tensors for a series of small molecules are shown to reproduce experimental trends; for example, the trend in available solid-state chemical shifts is reproduced with a correlation coefficient of 0.983. The results strongly suggest the utility of the calcium CS tensor as a novel probe of calcium binding environments in a range of calcium-containing materials. For example, for three polymorphs of CaCO3 the CS tensor span ranges from 8 to 70 ppm and the symmetry around calcium is manifested differently in the CS tensor as compared with the EFG tensor. The advantages of characterizing the CS tensor are particularly evident in very high magnetic fields where the effect of calcium CS anisotropy is augmented in hertz while the effect of second-order quadrupolar broadening is often obscured for (43)Ca because of its small quadrupole moment. Finally, as an application of the combined experimental-theoretical approach, the solid-state structure of the vaterite polymorph of calcium carbonate is probed and we conclude that the hexagonal P6(3)/mmc space group provides a better representation of the structure than does the orthorhombic Pbnm space group, thereby demonstrating the utility of (43)Ca solid-state NMR as a complementary tool to X-ray crystallographic methods.

  5. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts

    NASA Astrophysics Data System (ADS)

    Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf

    2018-06-01

    For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.

  6. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts

    NASA Astrophysics Data System (ADS)

    Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf

    2018-04-01

    For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.

  7. 1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins

    NASA Astrophysics Data System (ADS)

    Schubeis, Tobias; Le Marchand, Tanguy; Andreas, Loren B.; Pintacuda, Guido

    2018-02-01

    Building on a decade of continuous advances of the community, the recent development of very fast (60 kHz and above) magic-angle spinning (MAS) probes has revolutionised the field of solid-state NMR. This new spinning regime reduces the 1H-1H dipolar couplings, so that direct detection of the larger magnetic moment available from 1H is now possible at high resolution, not only in deuterated molecules but also in fully-protonated substrates. Such capabilities allow rapid "fingerprinting" of samples with a ten-fold reduction of the required sample amounts with respect to conventional approaches, and permit extensive, robust and expeditious assignment of small-to-medium sized proteins (up to ca. 300 residues), and the determination of inter-nuclear proximities, relative orientations of secondary structural elements, protein-cofactor interactions, local and global dynamics. Fast MAS and 1H detection techniques have nowadays been shown to be applicable to membrane-bound systems. This paper reviews the strategies underlying this recent leap forward in sensitivity and resolution, describing its potential for the detailed characterization of membrane proteins.

  8. Enhancing the resolution of 1H and 13C solid-state NMR spectra by reduction of anisotropic bulk magnetic susceptibility broadening.

    PubMed

    Hanrahan, Michael P; Venkatesh, Amrit; Carnahan, Scott L; Calahan, Julie L; Lubach, Joseph W; Munson, Eric J; Rossini, Aaron J

    2017-10-25

    We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H- 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H- 13 C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H- 13 C HETCOR NMR spectra. 2D 1 H- 13 C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra.

  9. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.

  10. Comparison between solid-state and powder-state alkali pretreatment on saccharification and fermentation for bioethanol production from rice straw.

    PubMed

    Yeasmin, Shabina; Kim, Chul-Hwan; Islam, Shah Md Asraful; Lee, Ji-Young

    2016-01-01

    The efficacy of different concentrations of NaOH (0.25%, 0.50%, 0.75%, and 1.00%) for the pretreatment of rice straw in solid and powder state in enzymatic saccharification and fermentation for the production of bioethanol was evaluated. A greater amount of biomass was recovered through solid-state pretreatment (3.74 g) from 5 g of rice straw. The highest increase in the volume of rice straw powder as a result of swelling was observed with 1.00% NaOH pretreatment (48.07%), which was statistically identical to 0.75% NaOH pretreatment (32.31%). The surface of rice straw was disrupted by the 0.75% NaOH and 1.00% NaOH pretreated samples as observed using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). In Fourier-transform infrared (FT-IR) spectra, absorbance of hydroxyl groups at 1,050 cm(-1) due to the OH group of lignin was gradually decreased with the increase of NaOH concentration. The greatest amounts of glucose and ethanol were obtained in 1.00% NaOH solid-state pretreated and powder-state hydrolyzed samples (0.804 g g(-1) and 0.379 g g(-1), respectively), which was statistically similar to the use of 0.75% NaOH (0.763 g g(-1) and 0.358 g g(-1), respectively). Thus, solid-state pretreatment with 0.75% NaOH and powder-state hydrolysis appear to be suitable for fermentation and bioethanol production from rice straw.

  11. Solid state electro-optic color filter and iris

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Test results obtained have confirmed the practicality of the solid state electro-optic filters as an optical control element in a television system. Neutral-density control range in excess of 1000:1 has been obtained on sample filters. Test results, measurements in a complete camera system, discussions of problem areas, analytical comparisons, and recommendations for future investigations are included.

  12. SOLID-STATE SYNTHESIS AND SOME PROPERTIES OF MAGNESIUM-DOPED COPPER ALUMINUM OXIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Ren, Fei; Wang, Hsin

    2010-01-01

    Copper aluminum oxide (CuAlO2) with delafossite structure is a promising candidate for high temperature thermoelectric applications because of its modest band gap, high stability and low cost. We investigate magnesium doping on the aluminum site as a means of producing higher electrical conductivity and optimized Seebeck coefficient. Powder samples were synthesized using solid-state reaction and bulk samples were prepared using both cold-pressing and hot-pressing techniques. Composition analysis, microstructural examination and transport property measurements were performed, and the results suggest that while hot-pressing can achieve high density samples, secondary phases tend to form and lower the performance of the materials.

  13. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  14. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples.

    PubMed

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Hume, Alan; Simpson, André J

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Wilson, M.A.; Hatcher, P.G.

    1988-01-01

    Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studies by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing 13C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage. ?? 1988.

  16. Coupling of individual quantum emitters to channel plasmons.

    PubMed

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain

    2015-08-07

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

  17. Bias-induced conformational switching of supramolecular networks of trimesic acid at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Ubink, J.; Enache, M.; Stöhr, M.

    2018-05-01

    Using the tip of a scanning tunneling microscope, an electric field-induced reversible phase transition between two planar porous structures ("chickenwire" and "flower") of trimesic acid was accomplished at the nonanoic acid/highly oriented pyrolytic graphite interface. The chickenwire structure was exclusively observed for negative sample bias, while for positive sample bias only the more densely packed flower structure was found. We suggest that the slightly negatively charged carboxyl groups of the trimesic acid molecule are the determining factor for this observation: their adsorption behavior varies with the sample bias and is thus responsible for the switching behavior.

  18. Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.

    Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithmmore » to reconstruct structural information from singleparticle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.« less

  19. Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase

    DOE PAGES

    Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.

    2017-06-26

    Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithmmore » to reconstruct structural information from singleparticle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.« less

  20. A strip-shield improves the efficiency of a solenoid coil in probes for high-field solid-state NMR of lossy biological samples.

    PubMed

    Wu, Chin H; Grant, Christopher V; Cook, Gabriel A; Park, Sang Ho; Opella, Stanley J

    2009-09-01

    A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800MHz (1)H/(15)N and (1)H/(13)C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers.

  1. A Discovery-Oriented Approach to Solid-Phase Peptide Synthesis

    ERIC Educational Resources Information Center

    Bockman, Matthew R.; Miedema, Christopher J.; Brennan, Brian B.

    2012-01-01

    In this discovery-oriented laboratory experiment, students use solid-phase synthesis techniques to construct a dipeptide containing an unknown amino acid. Following synthesis and cleavage from the polymeric support, electrospray ionization-mass spectrometry is employed to identify the unknown amino acid that was used in the peptide coupling. This…

  2. Comparison of polycyclic aromatic hydrocarbons level between suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia

    NASA Astrophysics Data System (ADS)

    Muslim, Noor Zuhartini Md; Babaheidari, Seyedreza Hashemi; Zakaria, Mohamad Pauzi

    2015-09-01

    Sixteen type of common Polycyclic Aromatic Hydrocarbons (PAHs) which consist of naphthalene, acenaphthene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]-perylene, indeno[1,2,3-cd]-pyrene and dibenz[a,h]-anthracene in suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia were investigated. The analysis samples were taken from six different sites of Pengkalan Chepa River during sunny day. The samples were subjected to a series of pre-treatment before the level of PAHs can be determined. A Gas Chromatography-Mass Spectrometry (GC-MS) was the prime method for the analysis of PAHs level. A total of 16 PAHs concentration in suspended solid of the whole Pengkalan Chepa River was found to be 2144.6 ng/g dry weights. This concentration was about eight times more than 16 PAHs concentration in sediment which found to be 266.5 ng/g dry weights.

  3. Preliminary assessment for DNA extraction on microfluidic channel

    NASA Astrophysics Data System (ADS)

    Gopinath, Subash C. B.; Hashim, Uda; Uda, M. N. A.

    2017-03-01

    The aim of this research is to extract, purify and yield DNA in mushroom from solid state mushroom sample by using fabricated continuous high-capacity sample delivery microfluidic through integrated solid state extraction based amino-coated silica bead. This device is made to specifically extract DNA in mushroom sample in continuous inflow process with energy and cost consumption. In this project, we present two methods of DNA extraction and purification which are by using centrifuge (complex and conventional method) and by using microfluidic biosensor (new and fast method). DNA extracted can be determined by using ultraviolet-visible spectroscopy (UV-VIS). The peak obtained at wavelength 260nm after measuring the absorbance of sample proves that DNA is successfully extracted from the mushroom.

  4. Investigation of the Effect of Small Hardening Spots Created on the Sample Surface by Laser Complex with Solid-State Laser

    NASA Astrophysics Data System (ADS)

    Nozdrina, O.; Zykov, I.; Melnikov, A.; Tsipilev, V.; Turanov, S.

    2018-03-01

    This paper describes the results of an investigation of the effect of small hardening spots (about 1 mm) created on the surface of a sample by laser complex with solid-state laser. The melted area of the steel sample is not exceed 5%. Steel microhardness change in the region subjected to laser treatment is studied. Also there is a graph of the deformation of samples dependence on the tension. As a result, the yield plateau and plastic properties changes were detected. The flow line was tracked in the series of speckle photographs. As a result we can see how mm surface inhomogeneity can influence on the deformation and strength properties of steel.

  5. Roles of bond orientational ordering in glass transition and crystallization.

    PubMed

    Tanaka, Hajime

    2011-07-20

    It is widely believed that crystallization in three dimensions is primarily controlled by positional ordering, and not by bond orientational ordering. In other words, bond orientational ordering is usually considered to be merely a consequence of positional ordering and thus has often been ignored. This one-order-parameter (density) description may be reasonable when we consider an equilibrium liquid-solid transition, but may not be enough to describe a metastable state and the kinetics of the transition. Here we propose that bond orientational ordering can play a key role in (i) crystallization, (ii) the ordering to quasi-crystal and (iii) vitrification, which occurs under rather weak frustration against crystallization. In a metastable supercooled state before crystallization, a system generally tends to have bond orientational order at least locally as a result of a constraint of dense packing. For a system interacting with hard-core repulsions, the constraint is intrinsically of geometrical origin and thus the basic physics is the same as nematic ordering of rod-like particles upon densification. Furthermore, positional ordering is easily destroyed even by weak frustration such as polydispersity and anisotropic interactions which favour a symmetry not consistent with that of the equilibrium crystal. Thus we may say that vitrification can be achieved by disturbing and prohibiting long-range positional ordering. Even in such a situation, bond orientational ordering still survives, accompanying its critical-like fluctuations, which are the origin of dynamic heterogeneity for this case. This scenario naturally explains both the absence of positional order and the development of bond orientational order upon cooling in a supercooled state. Although our argument is speculative in nature, we emphasize that this physical picture can coherently explain crystallization, vitrification, quasi-crystallization and their relationship in a natural manner. For a strongly frustrated system, even bond orientational order can be destroyed. Even in such a case there may still appear a structural signature of dense packing, which is linked to slow dynamics.

  6. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  7. Insights into Solid-State Electron Transport through Proteins from Inelastic Tunneling Spectroscopy: The Case of Azurin.

    PubMed

    Yu, Xi; Lovrincic, Robert; Sepunaru, Lior; Li, Wenjie; Vilan, Ayelet; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2015-10-27

    Surprisingly efficient solid-state electron transport has recently been demonstrated through "dry" proteins (with only structural, tightly bound H2O left), suggesting proteins as promising candidates for molecular (bio)electronics. Using inelastic electron tunneling spectroscopy (IETS), we explored electron-phonon interaction in metal/protein/metal junctions, to help understand solid-state electronic transport across the redox protein azurin. To that end an oriented azurin monolayer on Au is contacted by soft Au electrodes. Characteristic vibrational modes of amide and amino acid side groups as well as of the azurin-electrode contact were observed, revealing the azurin native conformation in the junction and the critical role of side groups in the charge transport. The lack of abrupt changes in the conductance and the line shape of IETS point to far off-resonance tunneling as the dominant transport mechanism across azurin, in line with previously reported (and herein confirmed) azurin junctions. The inelastic current and hence electron-phonon interaction appear to be rather weak and comparable in magnitude with the inelastic fraction of tunneling current via alkyl chains, which may reflect the known structural rigidity of azurin.

  8. Centrohexaindane: six benzene rings mutually fixed in three dimensions - solid-state structure and six-fold nitration.

    PubMed

    Kuck, Dietmar; Linke, Jens; Teichmann, Lisa Christin; Barth, Dieter; Tellenbröker, Jörg; Gestmann, Detlef; Neumann, Beate; Stammler, Hans-Georg; Bögge, Hartmut

    2016-04-28

    The solid-state molecular structure of centrohexaindane (), a unique hydrocarbon comprising six benzene rings clamped to each other in three dimensions around a neopentane core, and the molecular packing in crystals of ·CHCl3 are reported. The molecular Td-symmetry and the Cartesian orientation of the six indane wings of in the solid state have been confirmed. The course and limitation of electrophilic aromatic substitution of are demonstrated for the case of nitration. Based on nitration experiments of a lower congener of , tribenzotriquinacene , the six-fold nitrofunctionalisation of has been achieved in excellent yield, giving four constitutional isomers, two nonsymmetrical ( and ) and two C3-symmetrical ones ( and ), all of which contain one single nitro group in each of the six benzene rings. The relative yields of the four isomers (∼3 : 1 : 1 : 3) point to a random electrophilic attack of the electrophiles at the twelve formally equivalent outer positions of the aromatic periphery of , suggesting electronic independence of its six aromatic π-electron systems. In turn, the pronounced conformational rigidity of the centrohexacyclic framework of enables the unequivocal structural identification of the isomeric hexanitrocentrohexaindanes by (1)H NMR spectroscopy.

  9. Device and method for automated separation of a sample of whole blood into aliquots

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.

    1989-01-01

    A device and a method for automated processing and separation of an unmeasured sample of whole blood into multiple aliquots of plasma. Capillaries are radially oriented on a rotor, with the rotor defining a sample chamber, transfer channels, overflow chamber, overflow channel, vent channel, cell chambers, and processing chambers. A sample of whole blood is placed in the sample chamber, and when the rotor is rotated, the blood moves outward through the transfer channels to the processing chambers where the blood is centrifugally separated into a solid cellular component and a liquid plasma component. When the rotor speed is decreased, the plasma component backfills the capillaries resulting in uniform aliquots of plasma which may be used for subsequent analytical procedures.

  10. Examination of Multiphase (Zr,Ti)(V,Cr,Mn,Ni)2 Ni-MH Electrode Alloys: Part II. Solid-State Transformation of the Interdendritic B2 Phase

    NASA Astrophysics Data System (ADS)

    Bendersky, L. A.; Wang, K.; Boettinger, W. J.; Newbury, D. E.; Young, K.; Chao, B.

    2010-08-01

    Solidification microstructure of multicomponent (Zr,Ti)-Ni-(V,Cr,Mn,Co) alloys intended for use as negative electrodes in Ni-metal hydride (Ni-MH) batteries was studied in Part I of this series of articles. Part II of the series examines the complex internal structure of the interdendritic grains formed by solid-state transformation and believed to play an important role in the electrochemical charge/discharge characteristics of the overall alloy composition. By studying one alloy, Zr21Ti12.5V10Cr5.5Mn5.1Co5.0Ni40.2Al0.5Sn0.3, it is shown that the interdendritic grains solidify as a B2 (Ti,Zr)44(Ni,TM)56 phase, and then undergo transformation to Zr7Ni10-type, Zr9Ni11-type, and martensitic phases. The transformations obey orientation relationships between the high-temperature B2 phase and the low-temperature Zr-Ni-type intermetallics, and consequently lead to a multivariant structure. The major orientation relationship for the orthorhombic Zr7Ni10 type is [011]Zr7Ni10//[001]B2; (100)Zr7Ni10//(100)B2. The orientation relationship for the tetragonal Zr9Ni11 type is [001]Zr9Ni11//[001]B2; (130)Zr9Ni11//(100)B2. Binary Ni-Zr and ternary Ti-Ni-Zr phase diagrams were used to rationalize the formation of the observed domain structure.

  11. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS.

    PubMed

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-01-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-10-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.

  13. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    PubMed

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-05

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A LOW-E MAGIC ANGLE SPINNING PROBE FOR BIOLOGICAL SOLID STATE NMR AT 750 MHz

    PubMed Central

    McNeill, Seth A.; Gor’kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.

    2009-01-01

    Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as “Low-E,” was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the Low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane embedded peptides. PMID:19138870

  15. "Street Life" as a Site of Resiliency: How Street Life-Oriented Black Men Frame Opportunity in the United States

    ERIC Educational Resources Information Center

    Arafat Payne, Yasser

    2008-01-01

    This study organized a participatory action research team of four street life-oriented Black men to examine attitudes toward opportunity in a community sample of street life-oriented Black men ranging between the ages of 16 and 65. Data were collected in the form of 371 surveys and two group interviews. Most of the data collection took place…

  16. An automatic granular structure generation and finite element analysis of heterogeneous semi-solid materials

    NASA Astrophysics Data System (ADS)

    Sharifi, Hamid; Larouche, Daniel

    2015-09-01

    The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium-copper alloy (Al-5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie-Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected.

  17. Learning ion solid interactions hands-on: An activity based, inquiry oriented, graduate course

    NASA Astrophysics Data System (ADS)

    Braunstein, Gabriel

    2005-12-01

    Experimental work, using state of the art instrumentation, is integrated with lectures in a "real life", learning by discovery approach, in the Ion-Solid Interactions graduate/undergraduate course offered by the Department of Physics of the University of Central Florida. The lecture component of the course covers the underlying physical principles, and related scientific and technological applications, associated with the interaction of energetic ions with matter. In the experimental section the students form small groups and perform a variety of projects, experimental and computational, as part of a participative, inquiry oriented, learning process. In the most recent offering of the class, the students deposited a compound semiconductor thin film by dual-gun sputtering deposition, where each group aimed at a different stoichiometry of the same compound (Zn1-xSxOy). Then they analyzed the composition using Rutherford backscattering spectrometry, measured electrical transport properties using Hall effect and conductivity measurements, and determined the band gap using spectrophotometry. Finally the groups shared their results and each wrote a 'journal-like' technical article describing the entire work. In a different assignment, each group also developed a Monte Carlo computer program ('TRIM-like') to simulate the penetration of ions into a solid, in ion implantation, calculating the stopping cross-sections with approximate models, taught in class, which can be analytically solved. The combination of classroom/laboratory activities is very well received by the students. They gain real life experience operating state of the art equipment, and working in teams, while performing research-like projects, and simultaneously they learn the theoretical foundations of the discipline.

  18. Endothermic decompositions of inorganic monocrystalline thin plates. II. Displacement rate modulation of the reaction front

    NASA Astrophysics Data System (ADS)

    Bertrand, G.; Comperat, M.; Lallemant, M.

    1980-09-01

    Copper sulfate pentahydrate dehydration into trihydrate was investigated using monocrystalline platelets with (110) crystallographic orientation. Temperature and pressure conditions were selected so as to obtain elliptical trihydrate domains. The study deals with the evolution, vs time, of elliptical domain dimensions and the evolution, vs water vapor pressure, of the {D}/{d} ratio of ellipse axes and on the other hand of the interface displacement rate along a given direction. The phenomena observed are not basically different from those yielded by the overall kinetic study of the solid sample. Their magnitude, however, is modulated depending on displacement direction. The results are analyzed within the scope of our study of endothermic decomposition of solids.

  19. Growth of (Y1-x Ca x )Ba2Cu4O8 in ambient pressure and its tri-axial magnetic alignment

    NASA Astrophysics Data System (ADS)

    Horii, S.; Yamaki, M.; Shimoyama, J.; Kishio, K.; Doi, T.

    2015-10-01

    We report the growth of single crystals in ambient pressure and tri-axial orientation under modulated rotation magnetic fields (MRFs) for (Y1-x Ca x )Ba2Cu4O8 [(Y1-x Ca x )124] with x ≤ 0.1. Rectangular (Y1-x Ca x )124 crystals approximately 50 μm in size have been successfully grown for x ≤ 0.1 in a growth temperature region from 650 °C to 750 °C. Their critical temperatures increased with x and exhibited approximately 91 K for x = 0.1. By applying an MRF of 10 T, pulverised powders of (Y1-x Ca x )124 were tri-axially aligned in epoxy resin at room temperature in a whole x region below x = 0.1. The magnitude relationship of the magnetic susceptibilities (χ) along crystallographic directions for (Y1-x Ca x )124 was χ c > χ a > χ b at room temperature and was unchanged with a change in x. From changes in the degrees of the c-axis and the in-plane orientation (Δω) for the (Y1-x Ca x )124 powder samples aligned under three different MRF conditions, it was found that MRFs above at least 1 T were required to achieve almost complete tri-axial alignment with Δω < 5°. Irreversibility lines for H//c were successfully determined even from the powder samples by the introduction of magnetic alignment without using single crystalline samples. The present study indicates that magnetic alignment is a useful process for the fabrication of quasi-single-crystals from the perspective of solid-state physics and the production of cuprate superconducting materials.

  20. Laboratory Instruments Available to Support Space Station Researchers at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Gorti, Sridhar

    2013-01-01

    A number of research instruments are available at NASA's Marshall Space Flight Center (MSFC) to support ISS researchers and their investigations. These modern analytical tools yield valuable and sometimes new informative resulting from sample characterization. Instruments include modern scanning electron microscopes equipped with field emission guns providing analytical capabilities that include angstron-level image resolution of dry, wet and biological samples. These microscopes are also equipped with silicon drift X-ray detectors (SDD) for fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations in crystalline alloys. Sample chambers admit large samples, provide variable pressures for wet samples, and quantitative analysis software to determine phase relations. Advances in solid-state electronics have also facilitated improvements for surface chemical analysis that are successfully employed to analyze metallic materials and alloys, ceramics, slags, and organic polymers. Another analytical capability at MSFC is a mganetic sector Secondary Ion Mass Spectroscopy (SIMS) that quantitatively determines and maps light elements such as hydrogen, lithium, and boron along with their isotopes, identifies and quantifies very low level impurities even at parts per billion (ppb) levels. Still other methods available at MSFC include X-ray photo-electron spectroscopy (XPS) that can determine oxidation states of elements as well as identify polymers and measure film thicknesses on coated materials, Scanning Auger electron spectroscopy (SAM) which combines surface sensitivity, spatial lateral resolution (approximately 20 nm), and depth profiling capabilities to describe elemental compositions in near surface regions and even the chemical state of analyzed atoms. Conventional Transmission Electron Microscope (TEM) for observing internal microstructures at very high magnifications and the Electron Probe Micro-analyzer (EPMA) for very precise microanalysis are available as needed by the researcher. Space Station researchers are invited to work with MSFC in analyzing their samples using these techniques.

  1. Coarsening in Solid-Liquid Mixtures Studied on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Caruso, John J.

    1999-01-01

    Ostwald ripening, or coarsening, is a process in which large particles in a two-phase mixture grow at the expense of small particles. It is a ubiquitous natural phenomena occurring in the late stages of virtually all phase separation processes. In addition, a large number of commercially important alloys undergo coarsening because they are composed of particles embedded in a matrix. Many of them, such as high-temperature superalloys used for turbine blade materials and low-temperature aluminum alloys, coarsen in the solid state. In addition, many alloys, such as the tungsten-heavy metal systems, coarsen in the solid-liquid state during liquid phase sintering. Numerous theories have been proposed that predict the rate at which the coarsening process occurs and the shape of the particle size distribution. Unfortunately, these theories have never been tested using a system that satisfies all the assumptions of the theory. In an effort to test these theories, NASA studied the coarsening process in a solid-liquid mixture composed of solid tin particles in a liquid lead-tin matrix. On Earth, the solid tin particles float to the surface of the sample, like ice in water. In contrast, in a microgravity environment this does not occur. The microstructures in the ground- and space-processed samples (see the photos) show clearly the effects of gravity on the coarsening process. The STS-83-processed sample (right image) shows nearly spherical uniformly dispersed solid tin particles. In contrast, the identically processed, ground-based sample (left image) shows significant density-driven, nonspherical particles, and because of the higher effective solid volume fraction, a larger particle size after the same coarsening time. The "Coarsening in Solid-Liquid Mixtures" (CSLM) experiment was conducted in the Middeck Glovebox facility (MGBX) flown aboard the shuttle in the Microgravity Science Laboratory (MSL-1/1R) on STS-83/94. The primary objective of CSLM is to measure the temporal evolution of the solid particles during coarsening.

  2. Late-Eburnean tectonic emplacement of Wayen syenite (Burkina Faso)

    NASA Astrophysics Data System (ADS)

    Seydoux Traoré, Abraham; Naba, Séta; Lompo, Martin

    2010-05-01

    The alkali plutonism of the Palaeoproterozoic domain of the West African craton remains very poorly studied. The rare data available are those from the Ninakri syenite and the alkali granites of central Côte d'Ivoire (Bonhomme, 1962; Morel and Alinat, 1993 ; Doumbia et al, 1998) and those of the alkali granites of central Burkina Faso (Wenmenga, 1986). All these studies focused on the petrographical characterization and the determination of the radiometric ages of these plutons. All ages were determined by the Rb/Sr and they vary between 1.8 Ga and 2.1 Ga. The span of emplacement ages suggests that the alkali plutonism of the Palaeoproterozoic of West Africa continued throughout the tectono-magmatic history of the craton. The purpose of the present study is to characterize the late eburnean tectonic processes using the structural data of the Wayen syenite which was dated at 2.1 Ga by Rb/Sr isochron by Vachette and Ouédraogo (1978) Map view and field relationships show that the Wayen syenite intrudes the metavolcanic and early plutonic rocks (tonalites, trondhjemites and granodiorites). The geochemical data show that the syenite has a peraluminous character (Peccerrilo and Taylor, 1976) and belongs to the S-type granitoids (Chappell and White, 1992). The structural data have been obtained by magnetic susceptibility (Km) measurements on 190 samples from 47 sampling stations. The values of susceptibility range between 253 µSI and 595,314 µSI. This means that we have both samples with ferromagnetic character (Km > 500 µSI) and paramagnetic character (Km ≤ 500 µSI). In the case of paramagnetism, the minerals bearing the magnetic susceptibility are ferriferous silicates (amphiboles and pyroxenes) whereas the in the ferromagnetic samples, it is magnetite. The microstructures of the syenite are mostly magmatic and very locally they show both high temperature solid state deformation features and relatively low temperature solid state conditions along narrow shear bands. At the map scale the regular orientation of lineations and foliations strongly suggests that the eburnean tectonic event was active during emplacement, which contradicts the widespread idea that the syenites represent post-orogenic granitoids.

  3. Fabrication of high-k dielectric Calcium Copper Titanate (CCTO) target by solid state route

    NASA Astrophysics Data System (ADS)

    Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.

    2016-02-01

    CaCu3Ti4O12 (CCTO) ceramic pellet of 10mm diameter has been synthesized by adopting solid state route. The structural and morphological characterization of the ceramics sample was carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. XRD pattern revealed the CCTO phase formation, where as SEM micrograph shows the sample consisting of well defined grain and grain boundaries. The room temperature dielectric constant of the sample was found to be ∼ 5000 at 1kHz. After successful preparation of CCTO pellet, a 2 inch diameter CCTO sputtering target is also fabricated in order to deposit CCTO thin films for microelectronic applications.

  4. Competence, achievement goals, motivational climate, and pleasant psychobiosocial states in youth sport.

    PubMed

    Bortoli, Laura; Bertollo, Maurizio; Comani, Silvia; Robazza, Claudio

    2011-01-01

    We examined the three-way interactions among competence (actual and perceived), individuals' dispositional goal orientation (task/ego), and perceived sport motivational climate (mastery/performance) in the prediction of pleasant psychobiosocial states (i.e. emotion, cognition, motivation, bodily reaction, movement, performance, and communication) as conceptualized by the Individual Zones of Optimal Functioning model. The sample consisted of 320 Italian youths (160 girls and 160 boys) aged 13-14 years who were involved in individual or team sports. The assessment included a perceived competence scale, a goal orientation questionnaire, a motivational climate inventory, and pleasant psychobiosocial descriptors. An actual competence scale was also administered to coaches asking them to assess their youngsters. Moderated hierarchical regression analysis showed that perceived competence, actual competence, and task orientation were the strongest predictors of pleasant psychobiosocial states. Moreover, actual competence and perceived competence interacted in different ways with dispositional goal orientations and motivational climate perceptions in the prediction of psychobiosocial states. It is therefore recommended that both constructs be included in motivational research.

  5. Single crystal to polycrystal neutron transmission simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dessieux, Luc Lucius; Stoica, Alexandru Dan; Bingham, Philip R.

    A collection of routines for calculation of the total cross section that determines the attenuation of neutrons by crystalline solids is presented. The total cross section is calculated semi-empirically as a function of crystal structure, neutron energy, temperature, and crystal orientation. The semi-empirical formula includes the contribution of parasitic Bragg scattering to the total cross section using both the crystal’s mosaic spread value and its orientation with respect to the neutron beam direction as parameters. These routines allow users to enter a distribution of crystal orientations for calculation of total cross sections of user defined powder or pseudo powder distributions,more » which enables simulation of non-uniformities such as texture and strain. In conclusion, the spectra for neutron transmission simulations in the neutron thermal energy range (2 meV–100 meV) are presented for single crystal and polycrystal samples and compared to measurements.« less

  6. Single crystal to polycrystal neutron transmission simulation

    DOE PAGES

    Dessieux, Luc Lucius; Stoica, Alexandru Dan; Bingham, Philip R.

    2018-02-02

    A collection of routines for calculation of the total cross section that determines the attenuation of neutrons by crystalline solids is presented. The total cross section is calculated semi-empirically as a function of crystal structure, neutron energy, temperature, and crystal orientation. The semi-empirical formula includes the contribution of parasitic Bragg scattering to the total cross section using both the crystal’s mosaic spread value and its orientation with respect to the neutron beam direction as parameters. These routines allow users to enter a distribution of crystal orientations for calculation of total cross sections of user defined powder or pseudo powder distributions,more » which enables simulation of non-uniformities such as texture and strain. In conclusion, the spectra for neutron transmission simulations in the neutron thermal energy range (2 meV–100 meV) are presented for single crystal and polycrystal samples and compared to measurements.« less

  7. Molecular mechanism of melting of a helical polymer crystal: Role of conformational order, packing and mobility of polymers

    NASA Astrophysics Data System (ADS)

    Cheerla, Ramesh; Krishnan, Marimuthu

    2018-03-01

    The molecular mechanism of melting of a superheated helical polymer crystal has been investigated using isothermal-isobaric molecular dynamics simulation that allows anisotropic deformation of the crystal lattice. A detailed microscopic analysis of the onset and progression of melting and accompanying changes in the polymer conformational order, translational, and orientation order of the solid along the melting pathway is presented. Upon gradual heating from room temperature to beyond the melting point at ambient pressure, the crystal exhibits signatures of premelting well below the solid-to-liquid melting transition at the melting point. The melting transition is manifested by abrupt changes in the crystal volume, lattice energy, polymer conformation, and dynamical properties. In the premelting stage, the crystal lattice structure and backbone orientation of the polymer chains are retained but with the onset of weakening of long-range helical order and interchain packing of polymers perpendicular to the fibre axis of the crystal. The premelting also marks the onset of conformational defects and anisotropic solid-state diffusion of polymers along the fibre axis. The present study underscores the importance of the interplay between intermolecular packing, interactions, and conformational dynamics at the atomic level in determining the macroscopic melting behavior of polymer crystals.

  8. Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide.

    PubMed

    Kirkegaard, Marie C; Miskowiec, Andrew; Ambrogio, Michael W; Anderson, Brian B

    2018-05-21

    We have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novel UP formation mechanism.

  9. Solid-state dewetting of thin Au films studied with real-time, in situ spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Magnozzi, M.; Bisio, F.; Canepa, M.

    2017-11-01

    We report the design and testing of a small, high vacuum chamber that allows real-time, in situ spectroscopic ellipsometry (SE) measurements; the chamber was designed to be easily inserted within the arms of a commercial ellipsometer. As a test application, we investigated the temperature-induced solid-state dewetting of thin (20 to 8 nm) Au layers on Si wafers. In situ SE measurements acquired in real time during the heating of the samples reveal features that can be related to the birth of a localized surface plasmon resonance (LSPR), and demonstrate the presence of a temperature threshold for the solid-state dewetting.

  10. Electrical resistivity well-logging system with solid-state electronic circuitry

    USGS Publications Warehouse

    Scott, James Henry; Farstad, Arnold J.

    1977-01-01

    An improved 4-channel electrical resistivity well-logging system for use with a passive probe with electrodes arranged in the 'normal' configuration has been designed and fabricated by Westinghouse Electric Corporation to meet technical specifications developed by the U.S. Geological Survey. Salient features of the system include solid-state switching and current regulation in the transmitter circuit to produce a constant-current source square wave, and synchronous solid-state switching and sampling of the potential waveform in the receiver circuit to provide an analog dc voltage proportions to the measured resistivity. Technical specifications and design details are included in this report.

  11. Solid-waste contract-negotiation handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Environmental Protection Agency has estimated that the United States generated 164 million tons of municipal solid waste in 1986, and that the amount is increasing at a rate of more than 1 percent annually. Landfills are reaching capacity and closing. The cost of disposing of waste is growing and local officials are concerned about how they will meet the challenge of managing solid waste. This handbook is designed to help local officials develop contracts with private companies and other governmental units that will protect the interests of the citizens in their communities. This handbook is based on information andmore » analysis derived from a questionnaire survey of 160 local governments located in EPA Region X, plus selected other states; review and analysis of sample provisions from actual solid waste contracts and agreements; follow-up interviews with solid waste managers in several of the states and with responding local governments; and a review of the literature as well as state federal statutes and regulations.« less

  12. Surface immobilized antibody orientation determined using ToF-SIMS and multivariate analysis.

    PubMed

    Welch, Nicholas G; Madiona, Robert M T; Payten, Thomas B; Easton, Christopher D; Pontes-Braz, Luisa; Brack, Narelle; Scoble, Judith A; Muir, Benjamin W; Pigram, Paul J

    2017-06-01

    Antibody orientation at solid phase interfaces plays a critical role in the sensitive detection of biomolecules during immunoassays. Correctly oriented antibodies with solution-facing antigen binding regions have improved antigen capture as compared to their randomly oriented counterparts. Direct characterization of oriented proteins with surface analysis methods still remains a challenge however surface sensitive techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) provide information-rich data that can be used to probe antibody orientation. Diethylene glycol dimethyl ether plasma polymers (DGpp) functionalized with chromium (DGpp+Cr) have improved immunoassay performance that is indicative of preferential antibody orientation. Herein, ToF-SIMS data from proteolytic fragments of anti-EGFR antibody bound to DGpp and DGpp+Cr are used to construct artificial neural network (ANN) and principal component analysis (PCA) models indicative of correctly oriented systems. Whole antibody samples (IgG) test against each of the models indicated preferential antibody orientation on DGpp+Cr. Cross-reference between ANN and PCA models yield 20 mass fragments associated with F(ab') 2 region representing correct orientation, and 23 mass fragments associated with the Fc region representing incorrect orientation. Mass fragments were then compared to amino acid fragments and amino acid composition in F(ab') 2 and Fc regions. A ratio of the sum of the ToF-SIMS ion intensities from the F(ab') 2 fragments to the Fc fragments demonstrated a 50% increase in intensity for IgG on DGpp+Cr as compared to DGpp. The systematic data analysis methodology employed herein offers a new approach for the investigation of antibody orientation applicable to a range of substrates. Controlled orientation of antibodies at solid phases is critical for maximizing antigen detection in biosensors and immunoassays. Surface-sensitive techniques (such as ToF-SIMS), capable of direct characterization of surface immobilized and oriented antibodies, are under-utilized in current practice. Selection of a small number of mass fragments for analysis, typically pertaining to amino acids, is commonplace in literature, leaving the majority of the information-rich spectra unanalyzed. The novelty of this work is the utilization of a comprehensive, unbiased mass fragment list and the employment of principal component analysis (PCA) and artificial neural network (ANN) models in a unique methodology to prove antibody orientation. This methodology is of significant and broad interest to the scientific community as it is applicable to a range of substrates and allows for direct, label-free characterization of surface bound proteins. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  13. Intercalation complex of proflavine with DNA: Structure and dynamics by solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Pei; Juang, Chilong; Harbison, G.S.

    1990-07-06

    The structure of the complex formed between the intercalating agent proflavine and fibrous native DNA was studied by one- and two-dimensional high-resolution solid-state nuclear magnetic resonance (NMR). Carbon-13-labeled proflavine was used to show that the drug is stacked with the aromatic ring plane perpendicular to the fiber axis and that it is essentially immobile. Natural abundance carbon-13 NMR of the DNA itself shows that proflavine binding does not change the puckering of the deoxyribose ring. However, phosphorus-31 NMR spectra show profound changes in the orientation of the phosphodiester grouping on proflavine binding, with some of the phosphodiesters tilting almost parallelmore » to the helix axis, and a second set almost perpendicular. The first group to the phosphodiesters probably spans the intercalation sites, whereas the tilting of the second set likely compensates for the unwinding of the DNA by the intercalator.« less

  14. Computational study of Li2OHCl as a possible solid state battery material

    NASA Astrophysics Data System (ADS)

    Howard, Jason; Holzwarth, N. A. W.

    Preparations of Li2OHCl have recently been experimentally studied as solid state Li ion electrolytes. A disordered cubic phase is known to be stable at temperatures T >35o C. Following previous ideas, first principles supercells are constructed with up to 320 atoms to model the cubic phase. First principles molecular dynamics simulations of the cubic phase show Li ion diffusion occuring on the t =10-12 s time scale, at temperatures as low as T = 400 K. The structure of the lower temperature phase (T <35o C) is not known in detail. A reasonable model of this structure is developed by using the tetragonal ideal structure found by first principles simulations and a model Hamiltonian to account for alternative orientations of the OH groups. Supported by NSF Grant DMR-1507942. Thanks to Zachary D. Hood of GaTech and ORNL for introducing these materials to us.

  15. Solid-state NMR studies of proteins immobilized on inorganic surfaces

    DOE PAGES

    Shaw, Wendy J.

    2014-10-29

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin and leucine rich amelogenin protein (LRAP), have been studied in depth and have different features, challenging our ability to extract design principles. More recent studies of the significantly larger full-length amelogenin represent a challenging but necessary step to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids and silaffin peptide with silica are also being studied, along with qualitative studies of proteins interacting with calcium carbonate. Dipolar recoupling techniquesmore » have formed the core of the quantitative studies, yet, the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques is advancing, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area.« less

  16. Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers.

    PubMed Central

    Dale, R E; Hopkins, S C; an der Heide, U A; Marszałek, T; Irving, M; Goldman, Y E

    1999-01-01

    The orientation of proteins in ordered biological samples can be investigated using steady-state polarized fluorescence from probes conjugated to the protein. A general limitation of this approach is that the probes typically exhibit rapid orientational motion ("wobble") with respect to the protein backbone. Here we present a method for characterizing the extent of this wobble and for removing its effects from the available information about the static orientational distribution of the probes. The analysis depends on four assumptions: 1) the probe wobble is fast compared with the nanosecond time scale of its excited-state decay; 2) the orientational distributions of the absorption and emission transition dipole moments are cylindrically symmetrical about a common axis c fixed in the protein; 3) protein motions are negligible during the excited-state decay; 4) the distribution of c is cylindrically symmetrical about the director of the experimental sample. In a muscle fiber, the director is the fiber axis, F. All of the information on the orientational order of the probe that is available from measurements of linearly polarized fluorescence is contained in five independent polarized fluorescence intensities measured with excitation and emission polarizers parallel or perpendicular to F and with the propagation axis of the detected fluorescence parallel or perpendicular to that of the excitation. The analysis then yields the average second-rank and fourth-rank order parameters ( and ) of the angular distribution of c relative to F, and and , the average second-rank order parameters of the angular distribution for wobble of the absorption and emission transition dipole moments relative to c. The method can also be applied to other cylindrically ordered systems such as oriented lipid bilayer membranes and to processes slower than fluorescence that may be observed using longer-lived optically excited states. PMID:10049341

  17. Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation.

    PubMed

    Beckmann, Peter A; Bohen, Joseph M; Ford, Jamie; Malachowski, William P; Mallory, Clelia W; Mallory, Frank B; McGhie, Andrew R; Rheingold, Arnold L; Sloan, Gilbert J; Szewczyk, Steven T; Wang, Xianlong; Wheeler, Kraig A

    2017-09-01

    We report a variety of experiments and calculations and their interpretations regarding methyl group (CH 3 ) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C 6 H 8 O 3 (1) + H 2 O → C 6 H 10 O 4 (2)]. The techniques are solid state 1 H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution 1 H NMR spectroscopy. The solid state 1 H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state 1 H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state 1 H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. SIMPSON: a general simulation program for solid-state NMR spectroscopy.

    PubMed

    Bak, M; Rasmussen, J T; Nielsen, N C

    2000-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basically, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments. Copyright 2000 Academic Press.

  19. Sexual Orientation and Substance Abuse Treatment Utilization in the United States: Results from a National Survey

    PubMed Central

    McCabe, Sean Esteban; West, Brady T.; Hughes, Tonda L.; Boyd, Carol J.

    2012-01-01

    This study examined substance abuse treatment utilization across three dimensions of sexual orientation (identity, attraction, behavior) in a large national sample of adults in the United States. Prevalence estimates were based on data collected from the 2004–2005 National Epidemiologic Survey on Alcohol and Related Conditions. The sample consisted of 34,653 adults aged 20 years and older: 52% women, 71% White, 12% Hispanic, 11% African American, 4% Asian, and 2% other race/ethnicities. Approximately 2% of the sample self-identified as lesbian, gay or bisexual; 4% reported same-sex sexual behavior, and 6% reported same-sex sexual attraction. Sexual minorities, especially women, had a greater likelihood of lifetime substance use disorders and earlier age of drinking onset. The majority of respondents with substance use disorders were untreated and lifetime substance abuse treatment utilization differed based on sexual orientation. Sexual minorities were found to have more extensive family history of substance abuse problems. The findings indicate the underutilization of substance abuse treatment among all adults, and highlight some important factors to consider when working with sexual minorities. PMID:22444421

  20. Helix Fraying and Lipid-Dependent Structure of a Short Amphipathic Membrane-Bound Peptide Revealed by Solid-State NMR.

    PubMed

    Strandberg, Erik; Grau-Campistany, Ariadna; Wadhwani, Parvesh; Bürck, Jochen; Rabanal, Francesc; Ulrich, Anne S

    2018-06-14

    The amphipathic α-helical peptide KIA14 [(KIAGKIA) 2 -NH 2 ] was studied in membranes using circular dichroism and solid-state NMR spectroscopy to obtain global as well as local structural information. By analyzing 2 H NMR data from 10 analogues of KIA14 that were selectively labeled with Ala- d 3 , those positions that are properly folded into a helix could be determined within the membrane-bound peptide. The N-terminus was found to be unraveled, whereas positions 4-14 formed an ideal helix all the way to the C-terminus. The helicity did not change when Gly residues were replaced by Ala- d 3 but was reduced when Ile was replaced, indicating that large hydrophobic residues are required for membrane binding and helix formation. The reduced helicity was strongly correlated with a decrease in peptide-induced leakage from lipid vesicles. The orientation of the short KIA14 peptide was assessed in several lipid systems and compared with that of the longer KIA21 sequence [(KIAGKIA) 3 -NH 2 ]. In 1,2-dioleoyl- sn-glycero-3-phosphatidylcholine, both peptides are aligned flat on the membrane surface, whereas in 1,2-dimyristoyl- sn-glycero-3-phosphatidylcholine (DMPC)/1-myristoyl-2-hydroxy- sn-glycero-3-phosphatidylcholine (lyso-MPC) both are inserted into the membrane in an upright orientation. These two types of lipid systems had been selected for their strongly negative and positive spontaneous curvature, respectively. We propose that in these cases, the peptide orientation is largely determined by the lipid properties. On the other hand, in plain DMPC and 1,2-dilauroyl- sn-glycero-3-phosphatidylcholine, which have only a slight positive curvature, a marked difference in orientation is evident: the short KIA14 lies almost flat on the membrane surface, whereas the longer KIA21 is more tilted. We thus propose that out of the lipid systems tested here, DMPC (with hardly any curvature) is the least biased lipid system in which peptide orientation and realignment can be studied, allowing to compare and discriminate the intrinsic effects of the properties of the peptides as such.

  1. Advanced Organic Solid States Materials. Volume 173. Materials Research Society Symposium Proceedings

    DTIC Science & Technology

    1990-08-08

    for their collaboration in synthetic study. We also thank Prof. N. Kasai and Dr. Y. Kai for their collaboration in X - ray crystallographic study. We...substantially with the increasing amount of doping as monitored by the powder x - ray diffraction. After doping the sample was kept for at least one day...physical properties at different oxidation states in solution and in the solid state of tEDTB complexed with TCNQF4. The X ray crystal structure of

  2. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules

    PubMed Central

    Schanda, Paul; Ernst, Matthias

    2016-01-01

    Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043

  3. Physical vapor deposition as a route to glasses with liquid crystalline order

    NASA Astrophysics Data System (ADS)

    Gomez, Jaritza

    Physical vapor deposition (PVD) is an effective route to prepare glasses with a unique combination of properties. Substrate temperatures near the glass transition (Tg) and slow deposition rates can access enhanced mobility at the surface of the glass allowing molecules at the surface additional time to sample different molecular configurations. The temperature of the substrate can be used to control molecular mobility during deposition and properties in the resulting glasses such as higher density, kinetic stability and preferential molecular orientation. PVD was used to prepare glasses of itraconazole, a smectic A liquid crystal. We characterized molecular orientation using infrared and ellipsometry. Molecular orientation can be controlled by choice of Tsubstrate in a range of temperatures near Tg. Glasses deposited at Tsubstrate = Tg show nearly vertical molecular orientation relative to the substrate; at lower Tsubstrate, molecules are nearly parallel to the substrate. The molecular orientation depends on the temperature of the substrate during preparation and not on the molecular orientation of the underlying layer. This allows preparing samples of layers with differing orientations. We find these glasses are homogeneous solids without evidence of domain boundaries and are molecularly flat. We interpret the combination of properties obtained for vapor-deposited glasses of itraconazole to result from a process where molecular orientation is determined by the structure and dynamics at the free surface of the glass during deposition. We report the thermal and structural properties of glasses prepared using PVD of a rod-like molecule, posaconazole, which does not show equilibrium liquid crystal phases. These glasses show substantial molecular orientation that can be controlled by choice of Tsubstrate during deposition. Ellipsometry and IR indicate that glasses prepared at Tg - 3 K are highly ordered. At these Tsubstrate, molecules show preferential vertical orientation and orientation is similar to that measured in aligned nematic liquid crystal. Our results are consistent with a recently proposed mechanism where molecular orientation in equilibrium liquids can be trapped in PVD glasses and suggest that the orientation at the free surface of posaconazole is nematic-like. In addition, we show posaconazole glasses show high kinetic stability controlled by Tsubstrate.

  4. Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples

    NASA Astrophysics Data System (ADS)

    Bilge, Gonca; Sezer, Banu; Boyaci, Ismail Hakki; Eseller, Kemal Efe; Berberoglu, Halil

    2018-07-01

    Liquid analysis by using LIBS is a complicated process due to difficulties encountered during the collection of light and formation of plasma in liquid. To avoid these, some applications are performed such as aerosol formation and transforming liquid into solid state. However, performance of LIBS in liquid samples still remains a challenging issue. In this study, performance evaluation of LIBS and parameter optimizations in liquid and solid phase samples were performed. For this purpose, milk was chosen as model sample; milk powder was used as solid sample, and milk was used as liquid sample in the experiments. Different experimental setups have been constructed for each sampling technique, and optimizations were performed to determine suitable parameters such as delay time, laser energy, repetition rate and speed of rotary table for solid sampling technique, and flow rate of carrier gas for liquid sampling technique. Target element was determined as Ca, which is a critically important element in milk for determining its nutritional value and Ca addition. In optimum parameters, limit of detection (LOD), limit of quantification (LOQ) and relative standard deviation (RSD) values were calculated as 0.11%, 0.36% and 8.29% respectively for milk powders samples; while LOD, LOQ and RSD values were calculated as 0.24%, 0.81%, and 10.93% respectively for milk samples. It can be said that LIBS is an applicable method in both liquid and solid samples with suitable systems and parameters. However, liquid analysis requires much more developed systems for more accurate results.

  5. Fast and long-range triplet exciton diffusion in metal-organic frameworks for photon upconversion at ultralow excitation power.

    PubMed

    Mahato, Prasenjit; Monguzzi, Angelo; Yanai, Nobuhiro; Yamada, Teppei; Kimizuka, Nobuo

    2015-09-01

    The conversion of low-energy light into photons of higher energy based on sensitized triplet-triplet annihilation upconversion (TTA-UC) has emerged as a promising wavelength-shifting methodology because it permits UC at excitation powers as low as the solar irradiance. However, its application has been significantly hampered by the slow diffusion of excited molecules in solid matrices. Here, we introduce metal-organic frameworks (MOFs) that promote TTA-UC by taking advantage of triplet exciton migration among fluorophores that are regularly aligned with spatially controlled chromophore orientations. We synthesized anthracene-containing MOFs with different molecular orientations, and the analysis of TTA-UC emission kinetics unveiled a high triplet diffusion rate with a micrometre-scale diffusion length. Surface modification of MOF nanocrystals with donor molecules and their encapsulation in glassy poly(methyl methacrylate) (PMMA) allowed the construction of molecular-diffusion-free solid-state upconverters, which lead to an unprecedented maximization of overall UC quantum yield at excitation powers comparable to or well below the solar irradiance.

  6. Orientation distribution and process modeling of thermotropic liquid crystalline copolyester (TLCP) injection-moldings

    NASA Astrophysics Data System (ADS)

    Bubeck, Robert; Fang, Jun; Burghardt, Wesley; Burgard, Susan; Fischer, Daniel

    2009-03-01

    The influence of melt processing conditions upon mechanical properties and degrees of compound molecular orientation have been thoroughly studied for a series of well-defined injection molded samples fabricated from VECTRA (TM) A950 and 4,4'-dihydroxy-a-methylstilbene TLCPs. Fracture and tensile data were correlated with processing conditions, orientation, and molecular weight. Mechanical properties for both TLCPs were found to follow a ``universal'' Anisotropy Factor (AF) associated with the bimodal orientation states in the plaques determined from 2-D WAXS. Surface orientations were globally surveyed using Attenuated Total Reflectance -- Fourier Transform Infrared (ATR-FTIR) spectroscopy and C K edge Near-Edge X-ray Absorption Fine Structure (NEXAFS). The results derived from the two spectroscopy techniques confirmed each other well. These results along with those from 2-D WAXS in transmission were compared with the results of process modeling using a commercial program, MOLDFLOW(TM). The agreement between model predictions and the measured orientation states was gratifyingly good.

  7. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    PubMed Central

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-01-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy. PMID:28262765

  8. In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO2 Cathode in a Working All-Solid-State Battery.

    PubMed

    Gong, Yue; Zhang, Jienan; Jiang, Liwei; Shi, Jin-An; Zhang, Qinghua; Yang, Zhenzhong; Zou, Dongli; Wang, Jiangyong; Yu, Xiqian; Xiao, Ruijuan; Hu, Yong-Sheng; Gu, Lin; Li, Hong; Chen, Liquan

    2017-03-29

    We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO 2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO 2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO 2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.

  9. Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkegaard, Marie C.; Miskowiec, Andrew J.; Ambrogio, Michael W.

    Here, we have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novelmore » UP formation mechanism.« less

  10. Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide

    DOE PAGES

    Kirkegaard, Marie C.; Miskowiec, Andrew J.; Ambrogio, Michael W.; ...

    2018-05-10

    Here, we have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novelmore » UP formation mechanism.« less

  11. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  12. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  13. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain.

    PubMed

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-20

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  14. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain

    PubMed Central

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-01

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form. PMID:28787865

  15. 13C CP MAS NMR and GIAO-CHF/DFT calculations of flavonoids: Morin, kaempferol, tricin, genistein, formononetin and 3,7-dihydroxyflavone

    NASA Astrophysics Data System (ADS)

    Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona

    2008-02-01

    13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.

  16. Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response

    DOE PAGES

    Logan, Jonathan M.; Rosenmann, Daniel; Sangpo, Tenzin; ...

    2017-07-03

    Here, we report a method for growing chemically pure, oxide-free, air-stable Gd nanoislands with enhanced magnetic properties. These nanoislands are grown by solid-state dewetting and are fully encapsulated in tungsten such that they remain stable in ambient environments. They display good crystalline properties with hexagonally close-packed crystal structure and strong preferential orientation. We show that the choice of substrate strongly affects their shape, crystal orientation, and magnetic properties. The temperature-dependent magnetic coercivity and remanence of the Gd islands can vary by as much as a factor of three depending on the substrate used. The magneto- caloric properties of Gd islandsmore » grown on a sapphire substrate exceed those of high-quality Gd thin films.« less

  17. Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.

    PubMed

    Passoni, Luca; Ghods, Farbod; Docampo, Pablo; Abrusci, Agnese; Martí-Rujas, Javier; Ghidelli, Matteo; Divitini, Giorgio; Ducati, Caterina; Binda, Maddalena; Guarnera, Simone; Li Bassi, Andrea; Casari, Carlo Spartaco; Snaith, Henry J; Petrozza, Annamaria; Di Fonzo, Fabio

    2013-11-26

    In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.

  18. Functional Nanopores: A Solid-state Concept for Artificial Reaction Compartments and Molecular Factories.

    PubMed

    Puebla-Hellmann, Gabriel; Mayor, Marcel; Lörtscher, Emanuel

    2016-01-01

    On the road towards the long-term goal of the NCCR Molecular Systems Engineering to create artificial molecular factories, we aim at introducing a compartmentalization strategy based on solid-state silicon technology targeting zeptoliter reaction volumes and simultaneous electrical contact to ensembles of well-oriented molecules. This approach allows the probing of molecular building blocks under a controlled environment prior to their use in a complex molecular factory. Furthermore, these ultra-sensitive electrical conductance measurements allow molecular responses to a variety of external triggers to be used as sensing and feedback mechanisms. So far, we demonstrate the proof-of-concept by electrically contacting self-assembled mono-layers of alkane-dithiols as an established test system. Here, the molecular films are laterally constrained by a circular dielectric confinement, forming a so-called 'nanopore'. Device yields above 85% are consistently achieved down to sub-50 nm nanopore diameters. This generic platform will be extended to create distributed, cascaded reactors with individually addressable reaction sites, including interconnecting micro-fluidic channels for electrochemical communication among nanopores and sensing sites for reaction control and feedback. In this scientific outlook, we will sketch how such a solid-state nanopore concept can be used to study various aspects of molecular compounds tailored for operation in a molecular factory.

  19. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

    NASA Astrophysics Data System (ADS)

    McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.

    2005-03-01

    A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.

  20. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions.

    PubMed

    Sóti, Péter Lajos; Bocz, Katalin; Pataki, Hajnalka; Eke, Zsuzsanna; Farkas, Attila; Verreck, Geert; Kiss, Éva; Fekete, Pál; Vigh, Tamás; Wagner, István; Nagy, Zsombor K; Marosi, György

    2015-10-15

    Three solvent based methods: spray drying (SD), electrospinning (ES) and air-assisted electrospinning (electroblowing; EB) were used to prepare solid dispersions of itraconazole and Eudragit E. Samples with the same API/polymer ratios were prepared in order to make the three technologies comparable. The structure and morphology of solid dispersions were identified by scanning electron microscopy and solid phase analytical methods such as, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Raman chemical mapping. Moreover, the residual organic solvents of the solid products were determined by static headspace-gas chromatography/mass spectroscopy measurements and the wettability of samples was characterized by contact angle measurement. The pharmaceutical performance of the three dispersion type, evaluated by dissolution tests, proved to be very similar. According to XRPD and DSC analyses, made after the production, all the solid dispersions were free of any API crystal clusters but about 10 wt% drug crystallinity was observed after three months of storage in the case of the SD samples in contrast to the samples produced by ES and EB in which the polymer matrix preserved the API in amorphous state. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Shades of yellow: interactive effects of visual and odour cues in a pest beetle

    PubMed Central

    Stevenson, Philip C.; Belmain, Steven R.

    2016-01-01

    Background: The visual ecology of pest insects is poorly studied compared to the role of odour cues in determining their behaviour. Furthermore, the combined effects of both odour and vision on insect orientation are frequently ignored, but could impact behavioural responses. Methods: A locomotion compensator was used to evaluate use of different visual stimuli by a major coleopteran pest of stored grains (Sitophilus zeamais), with and without the presence of host odours (known to be attractive to this species), in an open-loop setup. Results: Some visual stimuli—in particular, one shade of yellow, solid black and high-contrast black-against-white stimuli—elicited positive orientation behaviour from the beetles in the absence of odour stimuli. When host odours were also present, at 90° to the source of the visual stimulus, the beetles presented with yellow and vertical black-on-white grating patterns changed their walking course and typically adopted a path intermediate between the two stimuli. The beetles presented with a solid black-on-white target continued to orient more strongly towards the visual than the odour stimulus. Discussion: Visual stimuli can strongly influence orientation behaviour, even in species where use of visual cues is sometimes assumed to be unimportant, while the outcomes from exposure to multimodal stimuli are unpredictable and need to be determined under differing conditions. The importance of the two modalities of stimulus (visual and olfactory) in food location is likely to depend upon relative stimulus intensity and motivational state of the insect. PMID:27478707

  2. Oriented Polar Molecules in a Solid Inert-Gas Matrix: A Proposed Method for Measuring the Electric Dipole Moment of the Electron

    NASA Astrophysics Data System (ADS)

    Vutha, A.; Horbatsch, M.; Hessels, E.

    2018-01-01

    We propose a very sensitive method for measuring the electric dipole moment of the electron using polar molecules embedded in a cryogenic solid matrix of inert-gas atoms. The polar molecules can be oriented in the $\\hat{\\rm{z}}$ direction by an applied electric field, as has recently been demonstrated by Park, et al. [Angewandte Chemie {\\bf 129}, 1066 (2017)]. The trapped molecules are prepared into a state which has its electron spin perpendicular to $\\hat{\\rm{z}}$, and a magnetic field along $\\hat{\\rm{z}}$ causes precession of this spin. An electron electric dipole moment $d_e$ would affect this precession due to the up to 100~GV/cm effective electric field produced by the polar molecule. The large number of polar molecules that can be embedded in a matrix, along with the expected long coherence times for the precession, allows for the possibility of measuring $d_e$ to an accuracy that surpasses current measurements by many orders of magnitude. Because the matrix can inhibit molecular rotations and lock the orientation of the polar molecules, it may not be necessary to have an electric field present during the precession. The proposed technique can be applied using a variety of polar molecules and inert gases, which, along with other experimental variables, should allow for careful study of systematic uncertainties in the measurement.

  3. Potentiometric titration of thiols, cationic surfactants and halides using a solid-state silver-silver sulphide electrode.

    PubMed

    Pinzauti, S; Papeschi, G; La Porta, E

    1983-01-01

    A rugged, low resistance silver-silver sulphide solid-state electrode for determining pharmaceuticals as authentic samples or in dosage forms by potentiometric titration is described. Sodium tetraphenylborate, mercury(II) acetate and silver nitrate (0.01) M were employed as titrants in the analysis of cationic surfactants (cetylpyridinium chloride, benzethonium chloride, benzalkonium chloride and chlorhexidine salts), antithyroid drugs (methimazole and propylthiouracil) or sodium halides respectively.

  4. Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme

    NASA Astrophysics Data System (ADS)

    Qiang, Wei

    2011-12-01

    We describe a sampling scheme for the two-dimensional (2D) solid state NMR experiments, which can be readily applied to the sensitivity-limited samples. The sampling scheme utilizes continuous, non-uniform sampling profile for the indirect dimension, i.e. the acquisition number decreases as a function of the evolution time ( t1) in the indirect dimension. For a beta amyloid (Aβ) fibril sample, we observed overall 40-50% signal enhancement by measuring the cross peak volume, while the cross peak linewidths remained comparable to the linewidths obtained by regular sampling and processing strategies. Both the linear and Gaussian decay functions for the acquisition numbers result in similar percentage of increment in signal. In addition, we demonstrated that this sampling approach can be applied with different dipolar recoupling approaches such as radiofrequency assisted diffusion (RAD) and finite-pulse radio-frequency-driven recoupling (fpRFDR). This sampling scheme is especially suitable for the sensitivity-limited samples which require long signal averaging for each t1 point, for instance the biological membrane proteins where only a small fraction of the sample is isotopically labeled.

  5. Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams

    NASA Astrophysics Data System (ADS)

    Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.

    2018-04-01

    Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.

  6. Strength and deformation of shocked diamond single crystals: Orientation dependence

    DOE PAGES

    Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less

  7. Strength and deformation of shocked diamond single crystals: Orientation dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less

  8. Strength and deformation of shocked diamond single crystals: Orientation dependence

    NASA Astrophysics Data System (ADS)

    Lang, J. M.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.

  9. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  10. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprisedmore » the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.« less

  11. Classification and authentication of unknown water samples using machine learning algorithms.

    PubMed

    Kundu, Palash K; Panchariya, P C; Kundu, Madhusree

    2011-07-01

    This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Phase Transformations and Microstructural Evolution: Part II

    DOE PAGES

    Clarke, Amy Jean

    2015-10-30

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in thismore » issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.« less

  13. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes.

    PubMed

    Cheng, Lei; Chen, Wei; Kunz, Martin; Persson, Kristin; Tamura, Nobumichi; Chen, Guoying; Doeff, Marca

    2015-01-28

    Cubic garnet phases based on Al-substituted Li7La3Zr2O12 (LLZO) have high ionic conductivities and exhibit good stability versus metallic lithium, making them of particular interest for use in next-generation rechargeable battery systems. However, high interfacial impedances have precluded their successful utilization in such devices until the present. Careful engineering of the surface microstructure, especially the grain boundaries, is critical to achieving low interfacial resistances and enabling long-term stable cycling with lithium metal. This study presents the fabrication of LLZO heterostructured solid electrolytes, which allowed direct correlation of surface microstructure with the electrochemical characteristics of the interface. Grain orientations and grain boundary distributions of samples with differing microstructures were mapped using high-resolution synchrotron polychromatic X-ray Laue microdiffraction. The electrochemical characteristics are strongly dependent upon surface microstructure, with small grained samples exhibiting much lower interfacial resistances and better cycling behavior than those with larger grain sizes. Low area specific resistances of 37 Ω cm(2) were achieved; low enough to ensure stable cycling with minimal polarization losses, thus removing a significant obstacle toward practical implementation of solid electrolytes in high energy density batteries.

  14. NEW APPROACHES TO ESTIMATION OF SOLID-WASTE QUANTITY AND COMPOSITION

    EPA Science Inventory

    Efficient and statistically sound sampling protocols for estimating the quantity and composition of solid waste over a stated period of time in a given location, such as a landfill site or at a specific point in an industrial or commercial process, are essential to the design ...

  15. Highly efficient red-emitting BaMgBO3F:Eu3+,R+ (R: Li, Na, K, Rb) phosphor for near-UV excitation synthesized via glass precursor solid-state reaction

    NASA Astrophysics Data System (ADS)

    Shinozaki, Kenji; Akai, Tomoko

    2017-09-01

    Eu3+-doped fluoroborate crystals of BaMgBO3F were synthesized by a solid-state reaction using a glassy precursor material, and their photoluminescence (PL) was investigated. To compensate for the incorporation of Eu3+ into Ba2+ sites, samples codoped with alkali ions (Li+, Na+, K+, Rb+) were also prepared. The Eu3+-doped sample showed red PL with a quantum yield (QY) of 65% caused by near-UV excitation (λ = 393 nm), and PL intensity and QY increased with the codoping of Eu3+ and alkali ions. It was found that the Eu3+,Li+-codoped sample showed the highest PL intensity and a QY of 83%.

  16. Solid liquid interfacial free energies of benzene

    NASA Astrophysics Data System (ADS)

    Azreg-Aı¨nou, M.

    2007-02-01

    In this work we determine for the range of melting temperatures 284.6⩽T⩽306.7 K, corresponding to equilibrium pressures 20.6⩽P⩽102.9 MPa, the benzene solid-liquid interfacial free energy by a cognitive approach including theoretical and experimental physics, mathematics, computer algebra (MATLAB), and some results from molecular dynamics computer simulations. From a theoretical and mathematical points of view, we deal with the elaboration of an analytical expression for the internal energy derived from a unified solid-liquid-vapor equation of state and with the elaboration of an existing statistical model for the entropy drop of the melt near the solid-liquid interface. From an experimental point of view, we will use our results obtained in collaboration with colleagues concerning the supercooled liquid benzene. Of particular interest for this work is the existing center-of-mass radial distribution function of benzene at 298 K obtained by computer simulation. Crystal-orientation-independent and minimum interfacial free energies are calculated and shown to increase slightly with the above temperatures. Both crystal-orientation-independent and minimum free energies agree with existing calculations and with rare existing experimental data. Taking into account the fact that the extent of supercooling is generally admitted as a constant, we determine the limits of supercooling by which we explore the behavior of the critical nucleus radius which is shown to decrease in terms of the above temperatures. The radius of the, and the number of molecules per, critical nucleus are shown to assume the average values of 20.2 A˚ and 175 with standard deviations of 0.16 Å and 4.5, respectively.

  17. Orientation dependence of temporal and spectral properties of high-order harmonics in solids [Orientation dependence of high-harmonic temporal and spectral properties in solids

    DOE PAGES

    Wu, Mengxi; You, Yongsing; Ghimire, Shambhu; ...

    2017-12-18

    We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems thismore » gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. Here, we address recent experimental results in MgO and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.« less

  18. Orientation dependence of temporal and spectral properties of high-order harmonics in solids [Orientation dependence of high-harmonic temporal and spectral properties in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Mengxi; You, Yongsing; Ghimire, Shambhu

    We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems thismore » gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. Here, we address recent experimental results in MgO and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.« less

  19. Morphology and conductivity study of solid electrolyte Li{sub 3}PO{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prayogi, Lugas Dwi, E-mail: ldprayodi@gmail.com; Faisal, Muhamad; Kartini, Evvy, E-mail: kartini@batan.go.id

    2016-02-08

    The comparison between two different methods of synthesize of solid electrolyte Li{sub 3}PO{sub 4} as precursor material for developing lithium ion battery, has been performed. The first method is to synthesize Li{sub 3}PO{sub 4} prepared by wet chemical reaction from LiOH and H{sub 3}PO{sub 4} which provide facile, abundant available resource, low cost, and low toxicity. The second method is solid state reaction prepared by Li{sub 2}CO{sub 3} and NH{sub 4}H{sub 2}PO{sub 4.} In addition, the possible morphology identification of comparison between two different methods will also be discussed. The composition, morphology, and additional identification phase and another compound ofmore » Li{sub 3}PO{sub 4} powder products from two different reaction are characterized by SEM, EDS, and EIS. The Li{sub 3}PO{sub 4} powder produced from wet reaction and solid state reaction have an average diameter of 0.834 – 7.81 µm and 2.15 – 17.3 µm, respectively. The density of Li{sub 3}PO{sub 4} prepared by wet chemical reaction is 2.238 gr/cm{sup 3}, little bit lower than the sample prepared by solid state reaction which density is 2.3560 gr/cm{sup 3}. The EIS measurement result shows that the conductivity of Li{sub 3}PO{sub 4} is 1.7 x 10{sup −9} S.cm{sup −1} for wet chemical reaction and 1.8 x 10{sup −10} S.cm{sup −1} for solid state reaction. The conductivity of Li{sub 3}PO{sub 4} is not quite different between those two samples even though they were prepared by different method of synthesize.« less

  20. Double Stokes-Mueller polarimetry in KTP (Potassium Titanyl Phosphate) crystal

    NASA Astrophysics Data System (ADS)

    Shaji, Chitra; S B, Sruthil Lal; Sharan, Alok

    2017-04-01

    Ultra-structural properties of material are being probed by Double Stokes-Mueller polarimetry (DSMP) technique. It makes use of higher dimensions of Stokes vector (9 X 1) and Mueller matrix (4 X9) to characterize the nonlinear optical properties of a material. Second harmonic generation (SHG) at 532nm using 1064nm as fundamental cw beam from Nd: YAG laser in type II phase matched KTP (Potassium Titanyl Phosphate) crystal is studied using DSMP. The experimental measurements for determining double Mueller matrix are carried out in the ``Polarization In Polarization Out'' (PIPO) arrangement. Nine input polarization states are incident on the sample and the linear Stokes vector of the emerging light from the sample is measured. The KTP crystal is oriented such that the SHG signal efficiency at the incident horizontal and vertical polarizations is high as compared to diagonal polarization states. The susceptibility tensor components and the phase difference between them at this orientation are determined from the double Mueller matrix elements. These determined values give information regarding the crystal axis orientations. To our knowledge, this is the first report of the use of DSMP technique to determine the crystal orientations of a biaxial crystal.

  1. Effect of processing route for preparation of mullite from kaolinite and alumina

    NASA Astrophysics Data System (ADS)

    Behera, Pallavi Suhasinee; Bhattacharyya, Sunipa

    2018-05-01

    In current work, two different types of mullite ceramic powder were prepared using kaolinite and alumina by solid state and chemical precipitation route. The phases, bond types and microstructural evolution of the mullite powders were investigated by X-ray diffraction, infrared analysis, and field emission scanning electron microscopy to study the mullitisation behavior. The solid state method evident a pure mullite phase formation at 1550 °C. In case of chemical precipitation route small amount of alumina peak was noticed along with major phase of mullite which was also clearly apprehended from FESEM micrographs and IR spectra. Densification was more for the samples prepared by solid state process which may be correlated to the delayed mullitization process in chemical precipitation route.

  2. Optimization of Uranium Molecular Deposition for Alpha-Counting Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monzo, Ellen; Parsons-Moss, Tashi; Genetti, Victoria

    2016-12-12

    Method development for molecular deposition of uranium onto aluminum 1100 plates was conducted with custom plating cells at Lawrence Livermore National Laboratory. The method development focused primarily on variation of electrode type, which was expected to directly influence plated sample homogeneity. Solid disc platinum and mesh platinum anodes were compared and data revealed that solid disc platinum anodes produced more homogenous uranium oxide films. However, the activity distribution also depended on the orientation of the platinum electrode relative to the aluminum cathode, starting current, and material composition of the plating cell. Experiments demonstrated these variables were difficult to control undermore » the conditions available. Variation of plating parameters among a series of ten deposited plates yielded variations up to 30% in deposition efficiency. Teflon particles were observed on samples plated in Teflon cells, which poses a problem for alpha activity measurements of the plates. Preliminary electropolishing and chemical polishing studies were also conducted on the aluminum 1100 cathode plates.« less

  3. Conformational distribution of n-hexane in a nematic liquid crystal obtained from nuclear spin dipolar couplings by Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luzar, M.; Rosen, M.E.; Caldarelli, S.

    Motionally averaged proton-proton dipolar couplings measured by nuclear magnetic resonance (NMR) spectroscopy can provide information about the conformations and orientations sampled by partially oriented molecules. In this study, the measured dipolar couplings between pairs of protons on n-hexane dissolved in a nematic liquid crystal solvent are used as constraints in a Monte Carlo sampling of the conformations and orientations of n-hexane. Rotation about each carbon-carbon bond in the molecule is modeled by the complete sinusoidal torsional potential of Ryckaert and Bellemans rather than by the three-state rotational isomeric states (RIS) model that has been used in previous studies. Comparison ofmore » the results of the simulations using the Ryckaert-Bellemans potential and the RIS model indicates little difference in the values of the adjustable parameters and the quality of the fits to the experimental data. The primary difference between the models appears in the calculated conformer probability distributions for n-hexane, highlighting the importance of the exact shape of the torsional potential used to model carbon-carbon bond rotation in organic molecules. 23 refs., 3 figs., 4 tabs.« less

  4. (14)N overtone transition in double rotation solid-state NMR.

    PubMed

    Haies, Ibraheem M; Jarvis, James A; Brown, Lynda J; Kuprov, Ilya; Williamson, Philip T F; Carravetta, Marina

    2015-10-07

    Solid-state NMR transitions involving outer energy levels of the spin-1 (14)N nucleus are immune, to first order in perturbation theory, to the broadening caused by the nuclear quadrupole interaction. The corresponding overtone spectra, when acquired in conjunction with magic-angle sample spinning, result in lines, which are just a few kHz wide, permitting the direct detection of nitrogen compounds without the need for labeling. Despite the success of this technique, "overtone" resonances are still broadened due to indirect, second order effects arising from the large quadrupolar interaction. Here we demonstrate that another order of magnitude in spectral resolution may be gained by using double rotation. This brings the width of the (14)N solid-state NMR lines much closer to the region commonly associated with high-resolution solid-state NMR spectroscopy of (15)N and demonstrates the improvements in resolution that may be possible through the development of pulsed methodologies to suppress these second order effects.

  5. [Determination of process variable pH in solid-state fermentation by FT-NIR spectroscopy and extreme learning machine (ELM)].

    PubMed

    Liu, Guo-hai; Jiang, Hui; Xiao, Xia-hong; Zhang, Dong-juan; Mei, Cong-li; Ding, Yu-han

    2012-04-01

    Fourier transform near-infrared (FT-NIR) spectroscopy was attempted to determine pH, which is one of the key process parameters in solid-state fermentation of crop straws. First, near infrared spectra of 140 solid-state fermented product samples were obtained by near infrared spectroscopy system in the wavelength range of 10 000-4 000 cm(-1), and then the reference measurement results of pH were achieved by pH meter. Thereafter, the extreme learning machine (ELM) was employed to calibrate model. In the calibration model, the optimal number of PCs and the optimal number of hidden-layer nodes of ELM network were determined by the cross-validation. Experimental results showed that the optimal ELM model was achieved with 1040-1 topology construction as follows: R(p) = 0.961 8 and RMSEP = 0.104 4 in the prediction set. The research achievement could provide technological basis for the on-line measurement of the process parameters in solid-state fermentation.

  6. Investigating the effect of moisture protection on solid-state stability and dissolution of fenofibrate and ketoconazole solid dispersions using PXRD, HSDSC and Raman microscopy.

    PubMed

    Kanaujia, Parijat; Lau, Grace; Ng, Wai Kiong; Widjaja, Effendi; Schreyer, Martin; Hanefeld, Andrea; Fischbach, Matthias; Saal, Christoph; Maio, Mario; Tan, Reginald B H

    2011-09-01

    Enhanced dissolution of poorly soluble active pharmaceutical ingredients (APIs) in amorphous solid dispersions often diminishes during storage due to moisture-induced re-crystallization. This study aims to investigate the influence of moisture protection on solid-state stability and dissolution profiles of melt-extruded fenofibrate (FF) and ketoconazole (KC) solid dispersions. Samples were kept in open, closed and Activ-vials(®) to control the moisture uptake under accelerated conditions. During 13-week storage, changes in API crystallinity were quantified using powder X-ray diffraction (PXRD) (Rietveld analysis) and high sensitivity differential scanning calorimetry (HSDSC) and compared with any change in dissolution profiles. Trace crystallinity was observed by Raman microscopy, which otherwise was undetected by PXRD and HSDSC. Results showed that while moisture protection was ineffective in preventing the re-crystallization of amorphous FF, KC remained X-ray amorphous despite 5% moisture uptake. Regardless of the degree of crystallinity increase in FF, the enhanced dissolution properties were similarly diminished. Moisture uptake above 10% in KC samples also led to re-crystallization and significant decrease in dissolution rates. In conclusion, eliminating moisture sorption may not be sufficient in ensuring the stability of solid dispersions. Analytical quantification of API crystallinity is crucial in detecting subtle increase in crystallinity that can diminish the enhanced dissolution properties of solid dispersions.

  7. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, Paul F.; Gryko, Jan; Bull, Craig

    A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr{sub 2}) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300{sup o}C. Syntheses at higher temperatures gave rise tomore » microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.« less

  8. Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.

    2017-12-01

    A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.

  9. Design of orienting and aiming instrument based on fiber optic gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun; Wang, Limin; Sun, Jiyu

    2007-12-01

    In order to improve the ground viability of missile weapon system, a quick orienting and aiming instrument is cried for the missile launching in modern war. The fiber optic gyroscope (FOG) based on Sagnac effect is a new type of all solid state rotation rate sensor that detects angular changes or angular rates relative to inertial space, which has many fine characteristics compared with traditional mechanical electronic gyro, such as low cost, light weight, long life, high reliability, wide dynamic range, etc. For the need of missile photoelectric aiming facility, It is necessary to design and manufacture a set of orienting and aiming instrument based on single axis FOG, to solve the close quarters aiming of missile launching, to measure the azimuth reference. Based on practical project, the principle of FOG orienting system and laser collimation theodolite aiming system is discussed and studied in this paper. Orienting and aiming system are constructed in the same basement. The influence of platform tilt on the precision of orientation is analyzed. An accelerator is used to compensate deviation caused by base tilt. The aiming precision affected by eccentricity of the encoders for laser collimation theodolite and the FOG orientation system are analyzed. The test results show that the aiming accuracy is 6' in three minutes. It is suitable for missile aiming in short range.

  10. Inserting Thienyl Linkers into Conjugated Molecules for Efficient Multilevel Electronic Memory: A New Understanding of Charge-Trapping in Organic Materials.

    PubMed

    Li, Yang; Li, Hua; He, Jinghui; Xu, Qingfeng; Li, Najun; Chen, Dongyun; Lu, Jianmei

    2016-03-18

    The practical application of organic memory devices requires low power consumption and reliable device quality. Herein, we report that inserting thienyl units into D-π-A molecules can improve these parameters by tuning the texture of the film. Theoretical calculations revealed that introducing thienyl π bridges increased the planarity of the molecular backbone and extended the D-A conjugation. Thus, molecules with more thienyl spacers showed improved stacking and orientation in the film state relative to the substrates. The corresponding sandwiched memory devices showed enhanced ternary memory behavior, with lower threshold voltages and better repeatability. The conductive switching and variation in the performance of the memory devices were interpreted by using an extended-charge-trapping mechanism. Our study suggests that judicious molecular engineering can facilitate control of the orientation of the crystallite in the solid state to achieve superior multilevel memory performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte.

    PubMed

    Mahmoud, Morsi M; Cui, Yuantao; Rohde, Magnus; Ziebert, Carlos; Link, Guido; Seifert, Hans Juergen

    2016-06-23

    Lithium aluminum germanium phosphate (LAGP) glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD) were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW) processing. Thirty GHz microwave (MW) processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM). Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery.

  12. A Modified Alderman-Grant Coil makes possible an efficient cross-coil probe for high field solid-state NMR of lossy biological samples

    NASA Astrophysics Data System (ADS)

    Grant, Christopher V.; Yang, Yuan; Glibowicka, Mira; Wu, Chin H.; Park, Sang Ho; Deber, Charles M.; Opella, Stanley J.

    2009-11-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B 1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194-241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.

  13. Compact near-IR and mid-IR cavity ring down spectroscopy device

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston (Inventor)

    2011-01-01

    This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.

  14. Solid State Research, 1980:3.

    DTIC Science & Technology

    1980-08-15

    wafers. The amount of overgrowth is dependent on the orientation of the silicon substrate and the thick- ness of the SiO 2 layer. V. ANALOG DEVICE...Moulton XI Intl. Quantum Electronics Metal-Doped Lasers A. Mooradian Conference, Boston, Z3-26 June 1980 5Z45 Temperature- Dependent Spectral D.J...High Tempera- C. 0. Bozler 24-27 June 1980 ture Anneal 5327 Growth-Temperature Dependence Z. L. Liau of LPE GaInAsP/lnP Lattice J. J. Hsieh Mismatch

  15. The effect of increased private sector involvement in solid waste collection in five cities in Ghana.

    PubMed

    Oduro-Kwarteng, Sampson; van Dijk, Meine Pieter

    2013-10-01

    Private sector involvement in solid waste management in developing countries has increased, but the effect is not always clear. This study assesses how it has been organized in five cities in Ghana, what has been its effect and what lessons for private sector development in developing countries can be drawn. Data were collected from 25 private companies and a sample of 1200 households. More than 60% of solid waste in Ghanaian cities is now collected by private enterprises. Sometimes, and increasingly, competitive bidding takes place, although sometimes no bidding is organized leading to rendering of this service and no contract being signed. Local governments and local solid waste companies have not changed to more customer-oriented delivery because of the slow pace of charging users and the resulting low rate of cost recovery. The participation of the population has been limited, which contributes to low cost recovery. However, a gradual better functioning of the system put in place is shown. We observed an increasing use of competitive bidding, signing of contracts and city-wide user charging.

  16. Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector

    DOEpatents

    Cole, Jerald D.; Drigert, Mark W.; Reber, Edward L.; Aryaeinejad, Rahmat

    2001-01-01

    In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.

  17. Direct observation of nucleation in the bulk of an opaque sample

    DOE PAGES

    Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; ...

    2017-02-14

    Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map amore » selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. In conclusion, possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed.« less

  18. Direct observation of nucleation in the bulk of an opaque sample.

    PubMed

    Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; Wu, Guilin; Liu, Wenjun; Tischler, Jonathan Z; Liu, Qing; Juul Jensen, Dorte

    2017-02-14

    Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map a selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. Possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed.

  19. 3D Double-Quantum/Double-Quantum Exchange Spectroscopy of Protons under 100 kHz Magic Angle Spinning.

    PubMed

    Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2017-06-22

    Solid-state 1 H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation/decoupling pulses, heteronuclear spins for spectral editing, and nonuniform sampling.

  20. Enhanced Multiferroic Properties of YMnO3 Ceramics Fabricated by Spark Plasma Sintering Along with Low-Temperature Solid-State Reaction

    PubMed Central

    Wang, Meng; Wang, Ting; Song, Shenhua; Ravi, Muchakayala; Liu, Renchen; Ji, Shishan

    2017-01-01

    Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid-state reaction method, phase-pure YMnO3 ceramics are fabricated using spark plasma sintering (SPS). X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YMnO3 ceramics can be prepared by SPS at 1000 °C for 5 minutes with annealing at 800 °C for 2 h. The relative density of the sample is as high as 97%, which is much higher than those of the samples sintered by other methods. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods and SPS with ball-milling precursors, and the ferroelectric loops at room temperature can be detected. These findings indicate that the YMnO3 ceramics prepared by the low temperature solid reaction method and SPS possess excellent dielectric lossy ferroelectric properties at room temperature, and magnetic properties at low temperature (10 K), making them suitable for potential multiferroic applications. PMID:28772832

  1. Solid state laser

    NASA Technical Reports Server (NTRS)

    Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)

    1993-01-01

    A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.

  2. Solid State Characterizations of Long-Term Leached Cast Stone Monoliths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmussen, Robert M.; Pearce, Carolyn I.; Parker, Kent E.

    This report describes the results from the solid phase characterization of six Cast Stone monoliths from the extended leach tests recently reported on (Serne et al. 2016),that were selected for characterization using multiple state-of-the-art approaches. The Cast Stone samples investigated were leached for > 590 d in the EPA Method 1315 test then archived for > 390 d in their final leachate. After reporting the long term leach behavior of the monoliths (containing radioactive 99Tc and stable 127I spikes and for original Westsik et al. 2013 fabricated monoliths, 238U), it was suggested that physical changes to the waste forms andmore » a depleting inventory of contaminants of potential concern may mean that effective diffusivity calculations past 63 d should not be used to accurately represent long-term waste form behavior. These novel investigations, in both length of leaching time and application of solid state techniques, provide an initial arsenal of techniques which can be utilized to perform such Cast Stone solid phase characterization work, which in turn can support upcoming performance assessment maintenance. The work was performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to characterize several properties of the long- term leached Cast Stone monolith samples.« less

  3. Mayenite Synthesized Using the Citrate Sol-Gel Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ude, Sabina N; Rawn, Claudia J; Meisner, Roberta A

    2014-01-01

    A citrate sol-gel method has been used to synthesize mayenite (Ca12Al14O33). X-ray powder diffraction data show that the samples synthesized using the citrate sol-gel method contained CaAl2O4 and CaCO3 along with mayenite when fired ex-situ in air at 800 C but were single phase when fired at 900 C and above. Using high temperature x-ray diffraction, data collected in-situ in air at temperatures of 600 C and below showed only amorphous content; however, data collected at higher temperatures indicated the first phase to crystallize is CaCO3. High temperature x-ray diffraction data collected in 4% H2/96% N2 does not show themore » presence of CaCO3, and Ca12Al14O33 starts to form around 850 C. In comparison, x-ray powder diffraction data collected ex-situ on samples synthesized using traditional solid-state synthesis shows that single phase was not reached until samples were fired at 1350 C. DTA/TGA data collected either in a nitrogen environment or air on samples synthesized using the citrate gel method suggest the complete decomposition of metastable phases and the formation of mayenite at 900 C, although the phase evolution is very different depending on the environment. Brunauer-Emmett-Teller (BET) measurements showed a slightly higher surface area of 7.4 0.1 m2/g in the citrate gel synthesized samples compared to solid-state synthesized sample with a surface area of 1.61 0.02 m2/g. SEM images show a larger particle size for samples synthesized using the solid-state method compared to those synthesized using the citrate gel method.« less

  4. An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

    NASA Astrophysics Data System (ADS)

    Laffont, L.; Jday, R.; Lacaze, J.

    2018-04-01

    Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.

  5. U.S. History: Grades 7-9. Revised Edition.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    Sixty-three behavioral objectives and related test items for United States history in grades seven through nine are presented. Each sample contains the objective, sample test items and directions, and criteria for judging the adequacy of student responses. Fourteen of the 15 categories are content oriented and presented chronologically: (1)…

  6. Spectroscopic and Structural Studies of a Surface Active Porphyrin in Solution and in Langmuir-Blodgett Films.

    PubMed

    Ponce, Concepcion P; Araghi, Hessamaddin Younesi; Joshi, Neeraj K; Steer, Ronald P; Paige, Matthew F

    2015-12-22

    Controlling aggregation of the dual sensitizer-emitter (S-E) zinc tetraphenylporphyrin (ZnTPP) is an important consideration in solid state noncoherent photon upconversion (NCPU) applications. The Langmuir-Blodgett (LB) technique is a facile means of preparing ordered assemblies in thin films to study distance-dependent energy transfer processes in S-E systems and was used in this report to control the aggregation of a functionalized ZnTPP on solid substrates. This was achieved by synthetic addition of a short polar tail to one of the pendant phenyl rings in ZnTPP in order to make it surface active. The surface active ZnTPP derivative formed rigid films at the air-water interface and exhibited mean molecular areas consistent with approximately vertically oriented molecules under appropriate film compression. A red shift in the UV-vis spectra as well as unquenched fluorescence emission of the LB films indicated formation of well-ordered aggregates. However, NCPU, present in the solution phase, was not observed in the LB films, suggesting that NCPU from ZnTPP as a dual S-E required not just a controlled aggregation but a specific orientation of the molecules with respect to each other.

  7. An ``Alternating-Curvature'' Model for the Nanometer-scale Structure of the Nafion Ionomer, Based on Backbone Properties Detected by NMR

    NASA Astrophysics Data System (ADS)

    Schmidt-Rohr, Klaus; Chen, Q.

    2006-03-01

    The perfluorinated ionomer, Nafion, which consists of a (-CF2-)n backbone and charged side branches, is useful as a proton exchange membrane in H2/O2 fuel cells. A modified model of the nanometer-scale structure of hydrated Nafion will be presented. It features hydrated ionic clusters familiar from some previous models, but is based most prominently on pronounced backbone rigidity between branch points and limited orientational correlation of local chain axes. These features have been revealed by solid-state NMR measurements, which take advantage of fast rotations of the backbones around their local axes. The resulting alternating curvature of the backbones towards the hydrated clusters also better satisfies the requirement of dense space filling in solids. Simulations based on this ``alternating curvature'' model reproduce orientational correlation data from NMR, as well as scattering features such as the ionomer peak and the I(q) ˜ 1/q power law at small q values, which can be attributed to modulated cylinders resulting from the chain stiffness. The shortcomings of previous models, including Gierke's cluster model and more recent lamellar or bundle models, in matching all requirements imposed by the experimental data will be discussed.

  8. Saccharose solid matrix embedded proteins: a new method for sample preparation for X-ray absorption spectroscopy.

    PubMed

    Ascone, I; Sabatucci, A; Bubacco, L; Di Muro, P; Salvato, B

    2000-01-01

    In this study, solid samples of hemoglobin and hemocyanin have been prepared by embedding the proteins into a saccharose-based matrix. These materials have been developed specifically for specimens for X-ray absorption spectroscopy (XAS). The preservation of protein conformation and active site organization was tested, making comparisons between the solid and the corresponding liquid samples, using resonance Raman, infra red, fluorescence and XAS. The XAS spectra of irradiated solid and liquid samples were then compared, and the preservation of biological activity of the proteins during both preparation procedure and X-ray irradiation was assessed. In all cases, the measurements clearly demonstrate that protein solid samples are both structurally and functionally quite well preserved, much better than those in the liquid state. The saccharose matrix provides an excellent protection against X-ray damages, allowing for longer exposure to the X-ray beam. Moreover, the demonstrated long-term stability of samples permits their preparation and storage in optimal conditions, allowing for the repetition of data collection with the same sample in several experimental sessions. The very high protein concentration that can be reached results in a significantly better signal-to-noise ratio, particularly useful for high molecular weight proteins with a low metal-to-protein ratio. On the bases of the above-mentioned results, we propose the new method as a standard procedure for the preparation of biological samples to be used for XAS spectroscopy.

  9. The effect of stress state on zirconium hydride reorientation

    NASA Astrophysics Data System (ADS)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by correlating the finite element stress-state results with the spatial distribution of hydride microstructures observed within the optical micrographs for each sample. Experiments showed that the hydride reorientation was enhanced as the stress biaxiality increased. The threshold stress decreased from 150 MPa to 80 MPa when stress biaxiality ratio increased from uniaxial tension to near-equibiaxial tension. This behavior was also predicted by classical nucleation theory based on the Gibbs free energy of transformation being assisted by the far-field stress. An analysis of in situ X-ray diffraction data obtained during a thermo-mechanical cycle typical of vacuum drying showed a complex lattice-spacing behavior of the hydride phase during the dissolution and precipitation. The in-plane hydrides showed bilinear lattice expansion during heating with the intrinsic thermal expansion rate of the hydrides being observed only at elevated temperatures as they dissolve. For radial hydrides that precipitate during cooling under stress, the spacing of the close-packed {111} planes oriented normal to the maximum applied stress was permanently higher than the corresponding {111} plane spacing in the other directions. This behavior is believed to be a result of a complex stress state within the precipitating plate-like hydrides that induces a strain component within the hydrides normal to its "plate" face (i.e., the applied stress direction) that exceeds the lattice spacing strains in the other directions. During heat-up, the lattice spacing of these same "plate" planes actually contract due to the reversion of the stress state within the plate-like hydrides as they dissolve. The presence of radial hydrides and their connectivity with in-plane hydrides was shown to increase the ductile-to-brittle transition temperature during tensile testing. This behavior can be understood in terms of the role of radial hydrides in promoting the initiation of a long crack that subsequently propagates under fracture mechanics conditions. Finally, the d-spacing of irradiated Zircaloy-4 and M5 cladding tubes was measured at room temperature and compared to that of unirradiated samples.

  10. Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations.

    PubMed

    Benet, Jorge; MacDowell, Luis G; Sanz, Eduardo

    2015-04-07

    In this work we study, by means of molecular dynamics simulations, the solid-liquid interface of NaCl under coexistence conditions. By analysing capillary waves, we obtain the stiffness for different orientations of the solid and calculate the interfacial free energy by expanding the dependency of the interfacial free energy with the solid orientation in terms of cubic harmonics. We obtain an average value for the solid-fluid interfacial free energy of 89 ± 6 mN m(-1) that is consistent with previous results based on the measure of nucleation free energy barriers [Valeriani et al., J. Chem. Phys. 122, 194501 (2005)]. We analyse the influence of the simulation setup on interfacial properties and find that facets prepared as an elongated rectangular stripe give the same results as those prepared as squares for all cases but the 111 face. For some crystal orientations, we observe at small wave-vectors a behaviour not consistent with capillary wave theory and show that this behavior does not depend on the simulation setup.

  11. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO2@PANI) Composite and Self-Assembled 3D Pillared Graphene Foam for Asymmetric All-Solid-State Flexible Supercapacitor Application.

    PubMed

    Ghosh, Kalyan; Yue, Chee Yoon; Sk, Md Moniruzzaman; Jena, Rajeeb Kumar

    2017-05-10

    We have fabricated high-energy-density all-solid-state flexible asymmetric supercapacitor by using a facile novel 3D hollow urchin-shaped coaxial manganese dioxide@polyaniline (MnO 2 @PANI) composite as positive electrode and 3D graphene foam (GF) as negative electrode materials with polyvinyl alcohol (PVA)/KOH gel electrolyte. The coaxial MnO 2 @PANI composite was fabricated by hydrothermal route followed by oxidation without use of an external oxidant. The formation mechanism of the 3D hollow MnO 2 @PANI composite occurs first by nucleation and growth of the MnO 2 crystal species via dissolution-recrystallization and oriented attachment mechanisms followed by the oxidation of aniline monomers on the MnO 2 crystalline template. The self-assembled 3D graphene block was synthesized by hydrothermal route using vitamin C as a reducing agent. The microstructures of the composites are analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The morphology is characterized by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), which clearly showed the formation of urchin-shaped coaxial MnO 2 @PANI composite. The electrochemical studies are explored by cyclic voltammetry, electrochemical impedance spectrometry, and cyclic charge-discharge tests. The symmetric all-solid-state flexible MnO 2 @PANI//MnO 2 @PANI and GF//GF supercapacitors exhibit the specific capacitance of 129.2 and 82.1 F g -1 at 0.5 A/g current density, respectively. The solid-state asymmetric supercapacitor shows higher energy density (37 Wh kg -1 ) with respect to the solid-state symmetric supercapacitors MnO 2 @PANI//MnO 2 @PANI and GF//GF, where the obtained energy density are found to be 17.9 and 11.4 Wh kg -1 , respectively, at 0.5 A/g current density. Surprisingly, the asymmetric supercapacitor shows a high energy density of 22.3 Wh kg -1 at a high current density of 5 A g -1 . The solid-state asymmetric supercapacitor shows a good cyclic stability in which ∼11% capacitance loss was observed after 5000 cycles.

  12. Field-controlled structures in ferromagnetic cholesteric liquid crystals.

    PubMed

    Medle Rupnik, Peter; Lisjak, Darja; Čopič, Martin; Čopar, Simon; Mertelj, Alenka

    2017-10-01

    One of the advantages of anisotropic soft materials is that their structures and, consequently, their properties can be controlled by moderate external fields. Whereas the control of materials with uniform orientational order is straightforward, manipulation of systems with complex orientational order is challenging. We show that a variety of structures of an interesting liquid material, which combine chiral orientational order with ferromagnetic one, can be controlled by a combination of small magnetic and electric fields. In the suspensions of magnetic nanoplatelets in chiral nematic liquid crystals, the platelet's magnetic moments orient along the orientation of the liquid crystal and, consequently, the material exhibits linear response to small magnetic fields. In the absence of external fields, orientations of the liquid crystal and magnetization have wound structure, which can be either homogeneously helical, disordered, or ordered in complex patterns, depending on the boundary condition at the surfaces and the history of the sample. We demonstrate that by using different combinations of small magnetic and electric fields, it is possible to control reversibly the formation of the structures in a layer of the material. In such a way, different periodic structures can be explored and some of them may be suitable for photonic applications. The material is also a convenient model system to study chiral magnetic structures, because it is a unique liquid analog of a solid helimagnet.

  13. In situ observation of quasimelting of diamond and reversible graphite-diamond phase transformations.

    PubMed

    Huang, J Y

    2007-08-01

    Because of technique difficulties in achieving the extreme high-pressure and high-temperature (HPHT) simultaneously, direct observation of the structures of carbon at extreme HPHT conditions has not been possible. Banhart and Ajayan discovered remarkably that carbon onions can act as nanoscopic pressure cells to generate high pressures. By heating carbon onions to approximately 700 degrees C and under electron beam irradiation, the graphite-to-diamond transformation was observed in situ by transmission electron microscopy (TEM). However, the highest achievable temperature in a TEM heating holder is less than 1000 degrees C. Here we report that, by using carbon nanotubes as heaters and carbon onions as high-pressure cells, temperatures higher than 2000 degrees C and pressures higher than 40 GPa were achieved simultaneously in carbon onions. At such HPHT conditions and facilitated by electron beam irradiation, the diamond formed in the carbon onion cores frequently changed its shape, size, orientation, and internal structure and moved like a fluid, implying that it was in a quasimelting state. The fluctuation between the solid phase of diamond and the fluid/amorphous phase of diamond-like carbon, and the changes of the shape, size, and orientation of the solid diamond, were attributed to the dynamic crystallization of diamond crystal from the quasimolten state and the dynamic graphite-diamond phase transformations. Our discovery offers unprecedented opportunities to studying the nanostructures of carbon at extreme conditions in situ and at an atomic scale.

  14. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV.

    PubMed

    Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen

    2016-10-01

    An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Characterization of the Factors that Influence Sinapine Concentration in Rapeseed Meal during Fermentation

    PubMed Central

    Niu, Yanxing; Jiang, Mulan; Guo, Mian; Wan, Chuyun; Hu, Shuangxi; Jin, Hu; Huang, Fenghong

    2015-01-01

    We analyzed and compared the difference in sinapine concentration in rapeseed meal between the filamentous fungus, Trametes sp 48424, and the yeast, Saccharomyces cerevisiae, in both liquid and solid-state fermentation. During liquid and solid-state fermentation by Trametes sp 48424, the sinapine concentration decreased significantly. In contrast, the liquid and solid-state fermentation process by Saccharomyces cerevisiae just slightly decreased the sinapine concentration (P ≤ 0.05). After the solid-state fermented samples were dried, the concentration of sinapine in rapeseed meal decreased significantly in Saccharomyces cerevisiae. Based on the measurement of laccase activity, we observed that laccase induced the decrease in the concentration of sinapine during fermentation with Trametes sp 48424. In order to eliminate the influence of microorganisms and the metabolites produced during fermentation, high moisture rapeseed meal and the original rapeseed meal were dried at 90°C and 105°C, respectively. During drying, the concentration of sinapine in high moisture rapeseed meal decreased rapidly and we obtained a high correlation coefficient between the concentration of sinapine and loss of moisture. Our results suggest that drying and enzymes, especially laccase that is produced during the solid-state fermentation process, may be the main factors that affect the concentration of sinapine in rapeseed meal. PMID:25606856

  16. Flicker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-03-01

    Solid-state lighting program technology fact sheet that discusses flicker metrics, contributing factors, and consequences in addition to comparing the flicker attributes of a sample of conventional and LED sources.

  17. Lunar Fluid Core and Solid-Body Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  18. The effect of size, orientation and alloying on the deformation of AZ31 nanopillars

    NASA Astrophysics Data System (ADS)

    Aitken, Zachary H.; Fan, Haidong; El-Awady, Jaafar A.; Greer, Julia R.

    2015-03-01

    We conducted uniaxial compression of single crystalline Mg alloy, AZ31 (Al 3 wt% and Zn 1 wt%) nanopillars with diameters between 300 and 5000 nm with two distinct crystallographic orientations: (1) along the [0001] c-axis and (2) at an acute angle away from the c-axis, nominally oriented for basal slip. We observe single slip deformation for sub-micron samples nominally oriented for basal slip with the deformation commencing via a single set of parallel shear offsets. Samples compressed along the c-axis display an increase in yield strength compared to basal samples as well as significant hardening with the deformation being mostly homogeneous. We find that the "smaller is stronger" size effect in single crystals dominates any improvement in strength that may have arisen from solid solution strengthening. We employ 3D-discrete dislocation dynamics (DDD) to simulate compression along the [0001] and [ 11 2 bar 2 ] directions to elucidate the mechanisms of slip and evolution of dislocation microstructure. These simulations show qualitatively similar stress-strain signatures to the experimentally obtained stress-strain data. Simulations of compression parallel to the [ 11 2 bar 2 ] direction reveal the activation and motion of only -type dislocations and virtually no dislocation junction formation. Computations of compression along [0001] show the activation and motion of both and dislocations along with a significant increase in the formation of junctions corresponding to the interaction of intersecting pyramidal planes. Both experiments and simulation show a size effect, with a differing exponent for basal and pyramidal slip. We postulate that this anisotropy in size effect is a result of the underlying anisotropic material properties only. We discuss these findings in the context of the effective resolved shear stress relative to the unit Burgers vector for each type of slip, which reveal that the mechanism that governs size effect in this Mg-alloy is equivalent in both orientations.

  19. Formation of (111) orientation-controlled ferroelectric orthorhombic HfO{sub 2} thin films from solid phase via annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mimura, Takanori; Katayama, Kiliha; Shimizu, Takao

    2016-08-01

    0.07YO{sub 1.5}-0.93HfO{sub 2} (YHO7) films were prepared on various substrates by pulse laser deposition at room temperature and subsequent heat treatment to enable a solid phase reaction. (111)-oriented 10 wt. % Sn-doped In{sub 2}O{sub 3}(ITO)//(111) yttria-stabilized zirconia, (111)Pt/TiO{sub x}/SiO{sub 2}/(001)Si substrates, and (111)ITO/(111)Pt/TiO{sub x}/SiO{sub 2}/(001)Si substrates were employed for film growth. In this study, X-ray diffraction measurements including θ–2θ measurements, reciprocal space mappings, and pole figure measurements were used to study the films. The film on (111)ITO//(111)yttria-stabilized zirconia was an (111)-orientated epitaxial film with ferroelectric orthorhombic phase; the film on (111)ITO/(111)Pt/TiO{sub x}/SiO{sub 2}/(001)Si was an (111)-oriented uniaxial textured film with ferroelectricmore » orthorhombic phase; and no preferred orientation was observed for the film on the (111)Pt/TiO{sub x}/SiO{sub 2}/(001)Si substrate, which does not contain ITO. Polarization–hysteresis measurements confirmed that the films on ITO covered substrates had saturated ferroelectric hysteresis loops. A remanent polarization (P{sub r}) of 9.6 and 10.8 μC/cm{sup 2} and coercive fields (E{sub c}) of 1.9 and 2.0 MV/cm were obtained for the (111)-oriented epitaxial and uniaxial textured YHO7 films, respectively. These results demonstrate that the (111)-oriented ITO bottom electrodes play a key role in controlling the orientation and ferroelectricity of the phase formation of the solid films deposited at room temperature.« less

  20. National Environmental/Energy Workforce Assessment, Phase II, Post-Secondary Education Profile: Solid Waste.

    ERIC Educational Resources Information Center

    National Field Research Center Inc., Iowa City, IA.

    Educational programs in solid waste management offered by 16 schools in 9 states were surveyed. These programs represent a sample, only, of the various programs available nationwide. Enrollment and graduate statistics are presented. Overall, 116 full-time and 124 part-time faculty were involved in the programs surveyed. Curricula and sources of…

  1. COMPONENTS IDENTIFIED IN ENERGY-RELATED WASTES AND EFFLUENTS

    EPA Science Inventory

    A state-of-the-art review of the characterization of solid wastes and aqueous effluents generated by energy-related processes was conducted. The reliability of these data was evaluated according to preselected criteria or sample source, sampling and analytical methodology, and da...

  2. Entropy production in a fluid-solid system far from thermodynamic equilibrium.

    PubMed

    Chung, Bong Jae; Ortega, Blas; Vaidya, Ashwin

    2017-11-24

    The terminal orientation of a rigid body in a moving fluid is an example of a dissipative system, out of thermodynamic equilibrium and therefore a perfect testing ground for the validity of the maximum entropy production principle (MaxEP). Thus far, dynamical equations alone have been employed in studying the equilibrium states in fluid-solid interactions, but these are far too complex and become analytically intractable when inertial effects come into play. At that stage, our only recourse is to rely on numerical techniques which can be computationally expensive. In our past work, we have shown that the MaxEP is a reliable tool to help predict orientational equilibrium states of highly symmetric bodies such as cylinders, spheroids and toroidal bodies. The MaxEP correctly helps choose the stable equilibrium in these cases when the system is slightly out of thermodynamic equilibrium. In the current paper, we expand our analysis to examine i) bodies with fewer symmetries than previously reported, for instance, a half-ellipse and ii) when the system is far from thermodynamic equilibrium. Using two-dimensional numerical studies at Reynolds numbers ranging between 0 and 14, we examine the validity of the MaxEP. Our analysis of flow past a half-ellipse shows that overall the MaxEP is a good predictor of the equilibrium states but, in the special case of the half-ellipse with aspect ratio much greater than unity, the MaxEP is replaced by the Min-MaxEP, at higher Reynolds numbers when inertial effects come into play. Experiments in sedimentation tanks and with hinged bodies in a flow tank confirm these calculations.

  3. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor

    NASA Astrophysics Data System (ADS)

    Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2018-03-01

    Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.

  4. Structural and Optical properties of poly-crystalline BaTiO3 and SrTiO3 prepared via solid state route

    NASA Astrophysics Data System (ADS)

    Jarabana, Kanaka M.; Mishra, Ashutosh; Bisen, Supriya

    2016-10-01

    Polycrystalline BaTiO3 (BTO) and SrTiO3 (STO) were synthesized by solid state route method and properties of made polycrystalline were characterized by X-Ray diffraction (XRD), Raman Spectroscopy & FTIR Spectroscopy. XRD analysis shows that samples are crystalline in nature. In Raman Spectroscopy measurement, the experiment has been done with the help of JOBIN-YOVN HORIBA LABRAM HR800 single monochromator, which is coupled with a “peltier cooled” charge coupled device (CCD). Raman Spectroscopy at low temperature measurement shows the phase transition above & below the curie temperature in samples. Fourier transform Infrared spectroscopy was used to determine the Ti-O bond length position.

  5. Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board

    NASA Technical Reports Server (NTRS)

    Breeding Shawn; Khodabandeh, Julia; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The science requirements for materials processing is to provide the desired PI requirements of thermal gradient, solid/liquid interface front velocity for a given processing temperature desired by the PI. Processing is performed by translating the furnace with the sample in a stationary position to minimize any disturbances to the solid/liquid interface front during steady state processing. Typical sample materials for this metals and alloys furnace are lead-tin alloys, lead-antimony alloys, and aluminum alloys. Samples must be safe to process and therefore typically are contained with hermetically sealed cartridge tubes (gas tight) with inner ceramic liners (liquid tight) to prevent contamination and/or reaction of the sample material with the cartridge tube.

  6. Accessing ultrahigh-pressure, quasi-isentropic states of mattera)

    NASA Astrophysics Data System (ADS)

    Lorenz, K. T.; Edwards, M. J.; Glendinning, S. G.; Jankowski, A. F.; McNaney, J.; Pollaine, S. M.; Remington, B. A.

    2005-05-01

    A new approach to the study of material strength of metals at extreme pressures has been developed on the Omega laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, inferred from interferometric measurements of velocity, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation [J. Edwards et al., Phys. Rev. Lett. 92, 075002 (2004)]. In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor unstable interfaces. This paper reports the first attempt to use this new laser-driven, quasi-isentropic technique for determining material strength in high-pressure solids. Modulated foils of Al-6061-T6 were accelerated and compressed to peak pressures of ˜200kbar. Modulation growth was recorded at a series of times after peak acceleration and well into the release phase. Fits to the growth data, using a Steinberg-Guinan constitutive strength model, give yield strengths 38% greater than those given by the nominal parameters for Al-6061-T6. Calculations indicate that the dynamic enhancement to the yield strength at ˜200kbar is a factor of ˜3.6× over the ambient yield strength of 2.9kbar. Experimental designs based on this drive developed for the National Ignition Facility laser [W. Hogan, E. Moses, B. Warner, M. Sorem, and J. Soures, Nuclear Fusion 41, 567 (2001)] predict that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega, accessing new regimes of dense, high-pressure matter.

  7. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    PubMed

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Preparation of Mo-Re-C samples containing Mo{sub 7}Re{sub 13}C with the β-Mn-type structure by solid state reaction of planetary-ball-milled powder mixtures of Mo, Re and C, and their crystal structures and superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh-ishi, Katsuyoshi, E-mail: oh-ishi@kc.chuo-u.ac.jp; Nagumo, Kenta; Tateishi, Kazuya

    Mo-Re-C compounds containing Mo{sub 7}Re{sub 13}C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo{sub 7}Re{sub 13}C with the β-Mn structure using the solid state method. Almost single-phase Mo{sub 7}Re{sub 13}C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with amore » pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K. - Graphical abstract: Temperature dependence of the magnetic susceptibility measured under 10 Oe for the superconducting PBM-T samples without Fe element and non-superconducting PBM-S with Fe element. The inset is the enlarged view of the data for the PBM-S sample.« less

  9. Study of the solid state of carbamazepine after processing with gas anti-solvent technique.

    PubMed

    Moneghini, M; Kikic, I; Voinovich, D; Perissutti, B; Alessi, P; Cortesi, A; Princivalle, F; Solinas, D

    2003-09-01

    The purpose of this study was to investigate the influence of supercritical CO2 processing on the physico-chemical properties of carbamazepine, a poorly soluble drug. The gas anti-solvent (GAS) technique was used to precipitate the drug from three different solvents (acetone, ethylacetate and dichloromethane) to study how they would affect the final product. The samples were analysed before and after treatment by scanning electron microscopy analysis and laser granulometry for possible changes in the habitus of the crystals. In addition, the solid state of the samples was studied by means of X-ray powder diffraction, differential scanning calorimetry, diffuse reflectance Fourier-transform infrared spectroscopy and hot stage microscopy. Finally, the in vitro dissolution tests were carried out. The solid state analysis of both samples untreated and treated with CO2, showed that the applied method caused a transition from the starting form III to the form I as well as determined a dramatic change of crystal morphology, resulting in needle-shaped crystals, regardless of the chosen solvent. In order to identify which process was responsible for the above results, carbamazepine was further precipitated from the same three solvents by traditional evaporation method (RV-samples). On the basis of this cross-testing, the solvents were found to be responsible for the reorganisation into a different polymorphic form, and the potential of the GAS process to produce micronic needle shaped particles, with an enhanced dissolution rate compared to the RV-carbamazepine, was ascertained.

  10. State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: A critical review.

    PubMed

    Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C

    2016-01-28

    Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Occurrence and persistence of fungicides in bed sediments and suspended solids from three targeted use areas in the United States

    USGS Publications Warehouse

    Smalling, Kelly L.; Reilly, Timothy J.; Sandstrom, Mark W.; Kuivila, Kathryn

    2013-01-01

    To document the environmental occurrence and persistence of fungicides, a robust and sensitive analytical method was used to measure 34 fungicides and an additional 57 current-use pesticides in bed sediments and suspended solids collected from areas of intense fungicide use within three geographic areas across the United States. Sampling sites were selected near or within agricultural research farms using prophylactic fungicides at rates and types typical of their geographic location. At least two fungicides were detected in 55% of the bed and 83% of the suspended solid samples and were detected in conjunction with herbicides and insecticides. Six fungicides were detected in all samples including pyraclostrobin (75%), boscalid (53%), chlorothalonil (41%) and zoxamide (22%). Pyraclostrobin, a strobilurin fungicide, used frequently in the United States on a variety of crops, was detected more frequently than p,p′-DDE, the primary degradate of p,p′-DDT, which is typically one of the most frequently occurring pesticides in sediments collected within highly agricultural areas. Maximum fungicide concentrations in bed sediments and suspended solids were 198 and 56.7 μg/kg dry weight, respectively. There is limited information on the occurrence, fate, and persistence of many fungicides in sediment and the environmental impacts are largely unknown. The results of this study indicate the importance of documenting the persistence of fungicides in the environment and the need for a better understanding of off-site transport mechanisms, particularly in areas where crops are grown that require frequent treatments to prevent fungal diseases.

  12. Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idigoras, O., E-mail: o.idigoras@nanogune.eu; Suszka, A. K.; Berger, A.

    2014-02-28

    This work studies the influence of crystallographic alignment onto magnetization reversal in partially epitaxial Co films. A reproducible growth sequence was devised that allows for the continuous tuning of grain orientation disorder in Co films with uniaxial in-plane anisotropy by the controlled partial suppression of epitaxy. While all stable or meta-stable magnetization states occurring during a magnetic field cycle exhibit a uniform magnetization for fully epitaxial samples, non-uniform states appear for samples with sufficiently high grain orientation disorder. Simultaneously with the occurrence of stable domain states during the magnetization reversal, we observe a qualitative change of the applied field anglemore » dependence of the coercive field. Upon increasing the grain orientation disorder, we observe a disappearance of transient domain wall propagation as the dominating reversal process, which is characterized by an increase of the coercive field for applied field angles away from the easy axis for well-ordered epitaxial samples. Upon reaching a certain disorder threshold level, we also find an anomalous magnetization reversal, which is characterized by a non-monotonic behavior of the remanent magnetization and coercive field as a function of the applied field angle in the vicinity of the nominal hard axis. This anomaly is a collective reversal mode that is caused by disorder-induced frustration and it can be qualitatively and even quantitatively explained by means of a two Stoner-Wohlfarth particle model. Its predictions are furthermore corroborated by Kerr microscopy and by Brillouin light scattering measurements.« less

  13. Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State

    NASA Astrophysics Data System (ADS)

    Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon

    2016-10-01

    Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.

  14. U.S. History: Grades 10-12. Revised Edition.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    Seventy-seven behavioral objectives and related test items for United States history in grades 10 through 12 are presented. Each sample contains the objective, sample test items, and criteria for judging the adequacy of student responses. Fourteen of the 15 categories are content-oriented, and presented in chronological groups: (1) discovery of…

  15. Strain history of ice shells of the Galilean satellites from radar detection of crystal orientation fabric

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Stillman, David E.

    2011-03-01

    Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.

  16. Dielectric and magnetic studies of BaTi0.5Fe0.5O3 ceramic materials, synthesized by solid state sintering.

    PubMed

    Samuvel, K; Ramachandran, K

    2015-02-05

    A comparative study of the surface morphology, dielectric and magnetic properties of the BaTi0.5Fe0.5O3 (BTFO) ceramics materials. This has been carried out by synthesizing the samples in different routes. BTFO samples have shown single phased 12R type hexagonal structure with R3m, P4mm space group. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. It has been identified that huge dielectric constant (10(3)-10(6)) at lower frequencies is largely contributed by the heterogeneous electronic microstructure at the interfaces of grains. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in chemical routed samples. The order of grain boundary resistivity suggests the semiconductor/insulator class of the material. The grain boundary resistivity of the mechanical alloyed samples is remarkably lower than the solid state and chemical routed samples. Few samples have of the samples have exhibited signature of ferromagnetism at the room temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Using Interactive Sketch Interpretation to Design Solid Objects

    DTIC Science & Technology

    1993-04-04

    chair ........ .............................. 20 2.2.2 An exercise in geometry ................................. 22 3 Generating topologies from line...design on a solid modeler fall into four broad categories: direct generation, conistructive solid geometry (CSG), profile manipulation and de- formable...Constructive Solid Geometry to find the intersection of three correctly oriented rectangular slabs [3] (it is also possible to use four CSG "cuts" to

  18. Does Promotion Orientation Help Explain Why Future-Orientated People Exercise and Eat Healthy?

    PubMed

    Milfont, Taciano L; Vilar, Roosevelt; Araujo, Rafaella C R; Stanley, Robert

    2017-01-01

    A study with United States undergraduate students showed individuals high in concern with future consequences engage in exercise and healthy eating because they adopt a promotion orientation, which represents the extent to which individuals are inclined to pursue positive gains. The present article reports a cross-cultural replication of the mediation findings with undergraduate samples from Brazil and New Zealand. Promotion orientation mediated the association between concern with future consequences and exercise attitudes in both countries, but the associations for healthy eating were not replicated-which could be explained by distinct obesity prevalence and eating habits in these socio-cultural contexts. We discuss theoretical and practical implications of the findings for promoting health behavior.

  19. Magnetocaloric properties of distilled gadolinium: Effects of structural inhomogeneity and hydrogen impurity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhanov, G. S.; Kolchugina, N. B.; Chzhan, V. B.

    2014-06-16

    High-purity Gd prepared by distillation is a structurally inhomogeneous system consisting of needle-shaped crystals of cross section 0.5–2.5 μm with near-c-axis orientation embedded in a matrix of nanosized (30–100 nm) grains. By measuring the magnetocaloric effect (MCE) directly, we find that the MCE values differ markedly for the plate-shaped samples cut out of a distillate along and perpendicular to the crystals. The effect of small controlled amounts of impurity (hydrogen) on the properties of distilled Gd is further studied. We observe opposite trends in the MCE response to hydrogen charging with respect to the crystal's orientation within the samples and discuss mechanismsmore » interrelating the unique structural morphology with the impurity behavior. As an overall assessment, the Curie temperatures of α-GdH{sub x} solid solutions increase from 291 K up to 294 K when increasing hydrogen concentration x from 0 to 0.15. Hydrogenation is found to broaden the ferromagnetic-to-paramagnetic phase transition. Hydrogen-containing specimens demonstrate reversibility of MCE at these temperatures.« less

  20. Domain and network aggregation of CdTe quantum rods within Langmuir Blodgett monolayers

    NASA Astrophysics Data System (ADS)

    Zimnitsky, Dmitry; Xu, Jun; Lin, Zhiqun; Tsukruk, Vladimir V.

    2008-05-01

    Control over the organization of quantum rods was demonstrated by changing the surface area at the air-liquid interface by means of the Langmuir-Blodgett (LB) technique. The LB isotherm of CdTe quantum rods capped with a mixture of alkylphosphines shows a transition point in the liquid-solid state, which is caused by the inter-rod reorganization. As we observed, at low surface pressure the quantum rods are assembled into round-shaped aggregates composed of a monolayer of nanorods packed in limited-size clusters with random orientation. The increase of the surface pressure leads to the rearrangement of these aggregates into elongated bundles composed of uniformly oriented nanorod clusters. Further compression results in denser packing of nanorods aggregates and in the transformation of monolayered domains into a continuous network of locally ordered quantum rods.

  1. Solid-state stability studies of 13-cis-retinoic acid and all-trans-retinoic acid using microcalorimetry and HPLC analysis.

    PubMed

    Tan, X; Meltzer, N; Lindebaum, S

    1992-09-01

    The solid-state stabilities of 13-cis-retinoic acid and all-trans-retinoic acid in the presence and absence of oxygen were investigated. The samples were first evaluated using microcalorimetry. The rate laws of different samples under different conditions were deduced from the shapes of the heat flow curves, and the activation energies of the reactions were determined from Arrhenius plots. Under an air atmosphere, the decomposition of 13-cis-retinoic acid is an autocatalytic reaction, while all-trans-retinoic acid undergoes a zero-order process. The degradation of the two compounds at a selected elevated temperature was also determined utilizing HPLC analysis. This technique confirmed the decomposition kinetics. Hence, their half-lives and shelf lives at room temperature could be calculated. Under a nitrogen atmosphere, the microcalorimetric experiment showed a first-order phenomenon for both samples, but HPLC analysis showed no degradation, suggesting that the two samples, in the absence of oxygen, undergo only a physical change.

  2. Some aspects of the thermodynamic behaviour of the lead-doped Bi-2223 system

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Maroni, V. A.

    1996-02-01

    A thermodynamic assessment of lead-doped Bi-2223 with emphasis on compositions and oxygen partial pressures within the homogeneity region prior to solid-state decomposition is presented. Equations for the variation of oxygen partial pressure with composition and temperature have been derived from our EMF measurements. Long-term metastability was indicated during cycling over a temperature range of ∼ 700-815°C of a lead-doped Bi-2223 sample having an oxygen-deficient stoichiometry of 9.64 prior to solid-state decomposition corresponding to the diphasic CuOCu 2O system. A trend of increasing negative values of the partial molar enthalpy Δ overlineH( O 2) and entropy Δ overlineS( O2 with increasing oxygen deficiency of the condensed phase indicated an increase in ordering of the cuprate structure prior to solid-state decomposition.

  3. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vo, Truong Quoc; Kim, BoHung, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr; Barisik, Murat, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr

    2016-05-21

    This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, threemore » distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an accurate understanding of thermal characteristics at the GB can be formulated by selecting a proper bin size.« less

  4. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection

    NASA Astrophysics Data System (ADS)

    Vo, Truong Quoc; Barisik, Murat; Kim, BoHung

    2016-05-01

    This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, three distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an accurate understanding of thermal characteristics at the GB can be formulated by selecting a proper bin size.

  5. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    USGS Publications Warehouse

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron, manganese, boron, and selenium exceeded WDEQ Class II agriculture groundwater standards in some samples. Measurements of pH and concentrations of sulfate, dissolved solids, aluminum, boron, and selenium exceeded WDEQ Class III livestock groundwater standards in some samples. The concentrations of dissolved solids in two samples exceeded the WDEQ Class IV industry groundwater standard. Measurements of pH and concentrations of dissolved solids, aluminum, iron, manganese, and selenium exceeded WDEQ Class special (A) fish and aquatic life groundwater standards in some samples. Stable isotopes of hydrogen and oxygen measured in water samples were compared to the Global Meteoric Water Line and Local Meteoric Water Lines. Results indicated that recharge to all of the wells was derived from precipitation and that the water has undergone some fractionation, possibly because of evaporation. Concentrations of organic compounds did not exceed any State or Federal water-quality standards. Few volatile organic compounds were detected in samples, whereas gasoline range organics, diesel range organics, and methane were detected most frequently. Concentrations of wastewater compounds did not exceed any State or Federal water-quality standards. The compounds N,N-diethyl-meta-toluamide (DEET), benzophenone, and phenanthrene were detected most frequently. Bacteria samples were collected, processed, incubated, and enumerated in the field or at the U.S. Geological Survey Wyoming-Montana Water Science Center. Total coliforms and Escherichia coli were detected in some samples.

  6. New poly(butylene succinate)/layered silicate nanocomposites: preparation and mechanical properties.

    PubMed

    Ray, Suprakas Sinha; Okamoto, Kazuaki; Maiti, Pralay; Okamoto, Masami

    2002-04-01

    New poly(butylene succinate) (PBS)/layered silicate nanocomposites have been successfully prepared by simple melt extrusion of PBS and octadecylammonium modified montmorillonite (C18-mmt) at 150 degrees C. The d-spacing of both C18-mmt and intercalated nanocomposites was investigated by wide-angle X-ray diffraction analysis. Bright-field transmission electron microscopic study showed several stacked silicate layers with random orientation in the PBS matrix. The intercalated nanocomposites exhibited remarkable improvement of mechanical properties in both solid and melt states as compared with that of PBS matrix without clay.

  7. [7,13-Bis(2-aminobenzyl)-1,4,10-trioxa-7,13-diazacyclopentadecane]diisothiocyanatobarium(II).

    PubMed

    Avecilla, Fernando; Esteban, David; Platas-Iglesias, Carlos; De Blas, Andres; Rodríguez-Blas, Teresa

    2003-01-01

    The X-ray crystal structure of the title complex, [Ba(NCS)(2)(C(24)H(36)N(4)O(3))], indicates that the Ba(II) cation is nine-coordinate in the solid state, being fully encapsulated by the organic receptor ligand. The receptor adopts a syn arrangement, with both pendant arms oriented on the same side of the crown moiety. The distance between the two amine N atoms is 3.911 (12) A, while the pivotal N atoms are 5.322 (10) A apart.

  8. JPRS Report, Science & Technology, Japan, Powder Metallurgy Technology

    DTIC Science & Technology

    1988-12-13

    100 mO« 132 Hz i i i i -K H JL x’ c-p’an« (film) ! f • j 0 60 70 M TOO 90 1C Figure 3. Real and...necessary to develop a new manufacturing process focusing on the control of grain orientation. References 1. M . Okada, et al., Jpn. J. Appl. Phys. 27...Tc drops as the amount of Sr added is increased. References 1. M . Oda, et al., Jpn. J. Phys., 26, L804, 1987. 2. Z. Qi-rui, et al., Solid State

  9. 1QCY17 Saltstone waste characterization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.

    2017-07-25

    In the first quarter of calendar year 2017, a salt solution sample was collected from Tank 50 on January 16, 2017 in order to meet South Carolina (SC) Regulation 61-107.19 Part I C, “Solid Waste Management: Solid Waste Landfills and Structural Fill – General Requirements” and the Saltstone Disposal Facility Class 3 Landfill Permit. The Savannah River National Laboratory (SRNL) was requested to prepare and ship saltstone samples to a United States Environmental Protection Agency (EPA) certified laboratory to perform the Toxicity Characteristic Leaching Procedure (TCLP) and subsequent characterization.

  10. Theoretical investigations of open-shell systems: 1. Spectral simulation of the 2s(2)p(2) (2)D <- 2s(2)2p (2)P(o) valence transition in the boron diargon cluster, and 2. Quantum Monte Carlo calculations of boron in solid molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Krumrine, Jennifer Rebecca

    This dissertation is concerned in part with the construction of accurate pairwise potentials, based on reliable ab initio potential energy surfaces (PES's), which are fully anisotropic in the sense that multiple PES's are accessible to systems with orientational electronic properties. We have carried out several investigations of B (2s 22p 2Po) with spherical ligands: (1)an investigation of the electronic spectrum of the BAr2 complex and (2)two related studies of the equilibrium properties and spectral simulation of B embedded in solid pH 2. Our investigations suggest that it cannot be assumed that nuclear motion in an open-shell system occurs on a single PES. The 2s2p2 2 D <-- 2s22p 2Po valence transition in the BAr 2 cluster is investigated. The electronic transition within BAr 2 is modeled theoretically; the excited potential energy surfaces of the five-fold degenerate B(2s2p2 2D) state within the ternary complex are computed using a pairwise-additive model. A collaborative path integral molecular dynamics investigation of the equilibrium properties of boron trapped in solid para-hydrogen (pH2) and a path integral Monte Carlo spectral simulation. Using fully anisotropic pair potentials, coupling of the electronic and nuclear degrees of freedom is observed, and is found to be an essential feature in understanding the behavior and determining the energy of the impure solid, especially in highly anisotropic matrices. We employ the variational Monte Carlo method to further study the behavior of ground state B embedded in solid pH2. When a boron atom exists in a substitutional site in a lattice, the anisotropic distortion of the local lattice plays a minimal role in the energetics. However, when a nearest neighbor vacancy is present along with the boron impurity, two phenomena are found to influence the behavior of the impure quantum solid: (1)orientation of the 2p orbital to minimize the energy of the impurity and (2)distortion of the local lattice structure to promote an energetically favorable nuclear configuration. This research was supported by the Joint Program for Atomic, Molecular and Optical Science sponsored by the University of Maryland at College Park and the National Insititute of Standards and Technology, and by the U.S. Air Force Office of Scientific Research. (Abstract shortened by UMI.)

  11. Velocity-tunable slow beams of cold O2 in a single spin-rovibronic state with full angular-momentum orientation by multistage Zeeman deceleration

    NASA Astrophysics Data System (ADS)

    Wiederkehr, A. W.; Schmutz, H.; Motsch, M.; Merkt, F.

    2012-08-01

    Cold samples of oxygen molecules in supersonic beams have been decelerated from initial velocities of 390 and 450 m s-1 to final velocities in the range between 150 and 280 m s-1 using a 90-stage Zeeman decelerator. (2 + 1) resonance-enhanced-multiphoton-ionization (REMPI) spectra of the 3sσ g 3Π g (C) ? two-photon transition of O2 have been recorded to characterize the state selectivity of the deceleration process. The decelerated molecular sample was found to consist exclusively of molecules in the J ‧‧ = 2 spin-rotational component of the X ? ground state of O2. Measurements of the REMPI spectra using linearly polarized laser radiation with polarization vector parallel to the decelerator axis, and thus to the magnetic-field vector of the deceleration solenoids, further showed that only the ? magnetic sublevel of the N‧‧ = 1, J ‧‧ = 2 spin-rotational level is populated in the decelerated sample, which therefore is characterized by a fully oriented total-angular-momentum vector. By maintaining a weak quantization magnetic field beyond the decelerator, the polarization of the sample could be maintained over the 5 cm distance separating the last deceleration solenoid and the detection region.

  12. Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State

    NASA Astrophysics Data System (ADS)

    Sharma, Sonia; Ramesh, Pranith; Swaminathan, P.

    2015-12-01

    Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.

  13. Role of adsorption in liquid lubrication

    NASA Technical Reports Server (NTRS)

    Groszek, A. J.

    1973-01-01

    Changes at solid-liquid interfaces caused by adsorption from solution are discussed paying attention to the following aspects: (1) stability of adsorbed films and the structure of metal-additive-film-liquid interface and effect of adsorbate orientation. (2) chemical versus physical adsorption, (3) heat of adsorption, (4) adsorption of additives, (5) activated adsorption, effect of activating adsorbates, (6) displacement phenomena at solid-liquid interfaces, (7) competition of antiwear additives, their solvents, and water, (8) effect of adsorption on the orientation of liquid in the interfacial region, and (9) relation between the chemical nature of solid surfaces and their interaction with liquid lubricants. The relevance of the above adsorption phenomena to lubrication is discussed, referring where possible to specific examples.

  14. Laser immunotherapy for advanced solid tumors

    NASA Astrophysics Data System (ADS)

    Naylor, Mark; Li, Xiaosong; Hode, Tomas; Alleruzzo, Lu; Raker, Joseph; Lam, Siu Kit; Zhou, Feifan; Chen, Wei

    2017-02-01

    Immunologically oriented therapy (immunotherapy) has arguably proved to be the most effective method for treating advanced melanoma, the prototypical chemotherapy-resistant solid tumor. The efficacy and benefit of immunotherapy for other tumors, including those that are at least partly responsive to chemotherapy, is less well established. Breast cancer, one of the most common of the solid tumors in humans, is partially responsive to traditional chemotherapy. We believe that breast cancer patients, like melanoma patients, will benefit from the application of immunotherapy techniques. Here we review the different forms of laser immunotherapy (LIT), a key type of immunologically oriented therapy, discuss its use in melanoma and in breast cancer, and discuss its potentially pivotal role in the immunotherapy armamentarium.

  15. Ceramic surfaces, interfaces and solid-state reactions

    NASA Astrophysics Data System (ADS)

    Heffelfinger, Jason Roy

    Faceting, the decomposition of a surface into two or more surfaces of different orientation, is studied as a function of annealing time for ceramic surfaces. Single-crystals of Alsb2Osb3\\ (alpha-Alsb2Osb3 or corundum structure) are carefully prepared and characterized by atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The mechanisms by which the originally smooth vicinal surface transforms into either a hill-and-valley or a terrace-and-step structure have been characterized. The progression of faceting is found to have a series of stages: surface smoothing, nucleation and growth of individual facets, formation of facet domains, coalescence of individual and facet domains and facet coarsening. These stages provide a model for the mechanisms of how other ceramic surfaces may facet into hill-and-valley and terrace-and-step surface microstructures. The well characterized Alsb2Osb3 surfaces provide excellent substrates by which to study the effect of surface structure on thin-film growth. Pulsed-laser deposition was used to grow thin films of yttria stabilized zirconia (YSZ) and Ysb2Osb3 onto annealed Alsb2Osb3 substrates. The substrate surface structure, such as surface steps and terraces, was found to have several effects on thin-film growth. Thin-films grown onto single-crystal substrates serve as a model geometry for studying thin-film solid-state reactions. Here, the reaction sequence and orientation relationship between thin films of Ysb2Osb3 and an Alsb2Osb3 substrate were characterized for different reaction temperatures. In a system were multiple reaction phases can form, the yttria aluminum monoclinic phase (YAM) was found to form prior to formation of other phases in this system. In a second system, a titanium alloy was reacted with single crystal Alsb2Osb3 in order to study phase formation in an intermetallic system. Both Tisb3Al and TiAl were found to form as reaction products and their orientation relationships with the Alsb2Osb3 are discussed.

  16. Trend-Analysis of Solid-State Structures: Low-Energy Conformational 'Reactions' Involving Directed and Coupled Movements in Half-Sandwich Compounds [CpFe(CO){C(=O)R}PPh3].

    PubMed

    Brunner, Henri; Tsuno, Takashi

    2018-05-01

    Invited for this month's cover picture are Prof. Dr. Henri Brunner from the University of Regensburg (Germany) and Prof. Dr. Takashi Tsuno from Nihon University (Japan). The cover picture shows the conformational reaction of JIDLUD→FIHTUL. The order of sample points of solid-state structures reveals information concerning low-energy, directed, and coupled movements in molecules. Read the full text of their Communication at https://doi.org/10.1002/open.201800007.

  17. A Novel Solid State Ultracapacitor

    NASA Technical Reports Server (NTRS)

    Cortes-Pena, A. Y.; Rolin, T. D.; Hill, C. W.

    2017-01-01

    Novel dielectric materials were researched to develop an internal barrier layer capacitor that is fully solid state. These materials included reduced nanoparticles of barium titanate that were coated with various atomic layer deposited oxides. The nanoparticle powders were then densified into pellets and characterized using a dielectric test fixture over a frequency range of 20 Hz to 2 MHz. Densification and sintering were evaluated using scanning electron microscopic techniques. Ultimately, the samples showing the most promising electrical characteristics of permittivity, dissipation factor and equivalent series resistance were chosen to manufacture devices for subsequent testing.

  18. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection.

    PubMed

    Yang, Jijin; Ferranti, David C; Stern, Lewis A; Sanford, Colin A; Huang, Jason; Ren, Zheng; Qin, Lu-Chang; Hall, Adam R

    2011-07-15

    We report the formation of solid-state nanopores using a scanning helium ion microscope. The fabrication process offers the advantage of high sample throughput along with fine control over nanopore dimensions, producing single pores with diameters below 4 nm. Electronic noise associated with ion transport through the resultant pores is found to be comparable with levels measured on devices made with the established technique of transmission electron microscope milling. We demonstrate the utility of our nanopores for biomolecular analysis by measuring the passage of double-strand DNA.

  19. FTIR spectrometer with solid-state drive system

    DOEpatents

    Rajic, Slobodan; Seals, Roland D.; Egert, Charles M.

    1999-01-01

    An FTIR spectrometer (10) and method using a solid-state drive system with thermally responsive members (27) that are subject to expansion upon heating and to contraction upon cooling. Such members (27) are assembled in the device (10) so as to move an angled, reflective surface (22) a small distance. The sample light beam (13) is received at a detector (24) along with a reference light beam (13) and there it is combined into a resulting signal. This allows the "interference" between the two beams to occur for spectral analysis by a processor (29).

  20. Interior of Mars from spacecraft and complementary data.

    NASA Astrophysics Data System (ADS)

    Dehant, Veronique

    2015-04-01

    Mars, as Earth, Venus and Mercury is a terrestrial planet having, in addition to the mantle and lithosphere, a core composed of an iron alloy. This core might be completely liquid, completely solid or may contain a solid part (the inner core) and a liquid part. The existence of a magnetic field around a planet is mainly explained by the presence of motions in the liquid part in the core. The absence of a magnetic field does not help in constraining the state of the core as it might be completely solid or completely liquid but the motion (convection) might not be sufficient to maintain it, or even contain a growing inner core inside a liquid core composed of iron or Nickel and a percentage of light element corresponding to the eutectic composition (no precipitation). The planet Mars is smaller than Earth. It has evolved differently. We know for the Earth that the core is liquid and that the inner core is forming by precipitation of iron. For Mars spacecraft observation of the gravity field and its time variation allow us to obtain the effect of mass repartition, and in particular those induced by the solid tides. These tidal deformation of the planet are larger for a planet with a liquid core than for a completely solid planet. Recent spacecraft orbiting around Mars (MGS, Mars Odyssey, MRO, Mars Express) have allowed to obtain the k2 tidal Love numbers. This measurement is rather at the limit of what the observation can tell us but seems to indicate that Mars has a liquid core. The absence of a present-day global magnetic field places Mars in the situation where the inner core is not yet forming or has reached the eutectic. Physical observation of the planet other than tides also allow us to obtain information about the interior of Mars: its rotation and orientation changes. Planetary rotation can be separated into the rotation speed around an axis and the orientation of this axis (or another axis of the planet) in space. Most of us know that the rotation of a boiled egg noticeably differs from that of a raw egg. This simple observation shows that information on the inside of an object can be obtained from its rotation. The same idea applies to the rotation of celestial bodies. Their rotation changes and orientation changes provide information on the interior. For Mars, as for the Earth, it is mainly the changes in the orientation that are important to characterize their interiors, the length-of-day variations being mostly related to atmospheric angular moment transfer to the solid planet. The orientation changes are called precession, the long-term change, and nutation, the periodic wiggly short-term changes that are the most interesting to obtain information about the core. Nutations have up to now only been unambiguously observed for the Earth, but the InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) NASA mission to be launched in 2016, will carry out an X-band transponder enabling us to do Doppler measurements on the motion of Mars with respect to Earth, and therewith to determine the nutations and the interior structure of Mars.

  1. Performance of methyl eugenol + matrix + toxicant combinations under field conditions in Hawaii and California for trapping Bactrocera dorsalis (Diptera: Tephritidae).

    PubMed

    Jang, Eric B; Ramsey, Amanda; Carvalho, Lori A

    2013-04-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel) is a major pest of many fruit crops worldwide. Current detection programs by federal and state agencies in the United States use a grid of traps consisting of liquid methyl eugenol (lure) and naled (toxicant) applied to cotton wicks and hung inside the trap. In recent years efforts have been made to incorporate these chemicals into various solid-type matrices that could be individually packaged to reduce human exposure to the chemicals and improve handling. New solid formulations containing methyl eugenol and either naled or dichlorovinyl dimethyl phosphate toxicants were compared with the standard formulations on cotton wicks in large scale field evaluation in Hawaii. Two reduced risk toxicants (spinosad and Rynaxypyr) were also evaluated. In one test the solid lure-toxicant-matrix combinations were sent to California to be weathered under California climate conditions and then sent back to Hawaii for evaluation. The polymer matrices with lure and toxicant were found to be as attractive as baited wicks and have the same longevity of attraction regardless of being weathered in Hawaii or in California. The new ingestible toxicants were also effective, although further testing of these ingestible lure + toxicant + matrix products is necessary.

  2. Diffusive and rotational dynamics of condensed n-H2 confined in MCM-41

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prisk, Timothy R; Bryan, Matthew; Sokol, Paul E

    2014-01-01

    In this paper, we report an inelastic neutron scattering study of liquid and solid n-H2 confined within MCM-41. This is a high surface area, mesoporous silica glass with a narrow pore size distribution centered at 3.5 nm. The scattering data provides information about the diffusive and rotational dynamics of the adsorbed n-H2 at low temperatures. In the liquid state, the neutron scattering data demonstrates that only a fraction of the adsorbed o-H2 is mobile on the picosecond time scale. This mobile fraction undergoes liquid-like jump diffusion, and values for the residence time t and effective mean-squared displacement hu2i are reportedmore » as a function of pore filling. In the solid state, the rotational energy levels of adsorbed H2 are strongly perturbed from their free quantum rotor behavior in the bulk solid. The underlying orientational potential of the hindered rotors is due to the surface roughness and heterogeneity of the MCM-41 pore walls. This potential is compared to the hindering potential of other porous silicas, such as Vycor. Strong selective adsorption makes the interfacial layer rich in o-H2, leaving the inner core volume consisting of a depleted mixture of o-H2 and p-H2.« less

  3. Preparation of Chloramphenicol/Amino Acid Combinations Exhibiting Enhanced Dissolution Rates and Reduced Drug-Induced Oxidative Stress.

    PubMed

    Sterren, Vanesa B; Aiassa, Virginia; Garnero, Claudia; Linck, Yamila Garro; Chattah, Ana K; Monti, Gustavo A; Longhi, Marcela R; Zoppi, Ariana

    2017-11-01

    Chloramphenicol is an old antibiotic agent that is re-emerging as a valuable alternative for the treatment of multidrug-resistant pathogens. However, it exhibits suboptimal biopharmaceutical properties and toxicity profiles. In this work, chloramphenicol was combined with essential amino acids (arginine, cysteine, glycine, and leucine) with the aim of improving its dissolution rate and reduce its toxicity towards leukocytes. The chloramphenicol/amino acid solid samples were prepared by freeze-drying method and characterized in the solid state by using Fourier transform infrared spectroscopy, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance. The dissolution properties, antimicrobial activity, reactive oxygen species production, and stability of the different samples were studied. The dissolution rate of all combinations was significantly increased in comparison to that of the pure active pharmaceutical ingredient. Additionally, oxidative stress production in human leukocytes caused by chloramphenicol was decreased in the chloramphenicol/amino acid combinations, while the antimicrobial activity of the antibiotic was maintained. The CAP:Leu binary combination resulted in the most outstanding solid system makes it suitable candidate for the development of pharmaceutical formulations of this antimicrobial agent with an improved safety profile.

  4. 2D phase tomography of biotissues: IV. Wavelet processing of phase tomograms of the background and precancerous endometrial states

    NASA Astrophysics Data System (ADS)

    Peresunko, A. P.; Zavadovskya, I. G.

    2004-06-01

    The paper deals with the studying of prognostic possibilities of determining the orientation structure of endometrial strome in the normal state and hiperplasia. The laser diagnostic of endometrial state is based on the principles of optical changes of laser radiation during its passing through the histological sample with the following investigation of its wavelet coefficients.

  5. Preliminary Development of an Object-Oriented Optimization Tool

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center has developed a FORTRAN-based object-oriented optimization (O3) tool that leverages existing tools and practices and allows easy integration and adoption of new state-of-the-art software. The object-oriented framework can integrate the analysis codes for multiple disciplines, as opposed to relying on one code to perform analysis for all disciplines. Optimization can thus take place within each discipline module, or in a loop between the central executive module and the discipline modules, or both. Six sample optimization problems are presented. The first four sample problems are based on simple mathematical equations; the fifth and sixth problems consider a three-bar truss, which is a classical example in structural synthesis. Instructions for preparing input data for the O3 tool are presented.

  6. Evidence for filamentary superconductivity up to 220 K in oriented multiphase Y-Ba-Cu-O thin films

    NASA Astrophysics Data System (ADS)

    Schönberger, R.; Otto, H. H.; Brunner, B.; Renk, K. F.

    1991-02-01

    We report on the observation of filamentary superconductivity up to 220 K in multiphase Y-Ba-Cu-O materials that are deposited as highly oriented thin films on (110)-SrTiO 3 substrates by laser ablation from ceramic targets. The high temperature zero resistivity states are reproducible after temperature cycling down to 80 K for samples treated by a special oxygenation and ozonization process at 340 K and measured in a pure oxygen atmosphere. Our results on thin films confirm former experiments of J.T. Chen and co-workers obtained on ceramic samples with preferred crystallite orientation. A close connection between superconductivity and structural instabilities of most likely ferroic nature, which are observed more often for YBa 2Cu 3O 7 in a narrow temperature range near 220 K, is suggested.

  7. Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography.

    PubMed

    Park, B Hyle; Pierce, Mark C; Cense, Barry; de Boer, Johannes F

    2005-10-01

    We present a generalized analysis of fiber-based polarization-sensitive optical coherence tomography with an emphasis on determination of sample optic axis orientation. The polarization properties of a fiber-based system can cause an overall rotation in a Poincaré sphere representation such that the plane of possible measured sample optic axes for linear birefringence and diattenuation no longer lies in the QU-plane. The optic axis orientation can be recovered as an angle on this rotated plane, subject to an offset and overall indeterminacy in sign such that only the magnitude, but not the direction, of a change in orientation can be determined. We discuss the accuracy of optic axis determination due to a fundamental limit on the accuracy with which a polarization state can be determined as a function of signal-to-noise ratio.

  8. Preparation of Mo-Re-C samples containing Mo7Re13C with the β-Mn-type structure by solid state reaction of planetary-ball-milled powder mixtures of Mo, Re and C, and their crystal structures and superconductivity

    NASA Astrophysics Data System (ADS)

    Oh-ishi, Katsuyoshi; Nagumo, Kenta; Tateishi, Kazuya; Takafumi, Ohnishi; Yoshikane, Kenta; Sugiyama, Machiko; Oka, Kengo; Kobayashi, Ryota

    2017-01-01

    Mo-Re-C compounds containing Mo7Re13C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo7Re13C with the β-Mn structure using the solid state method. Almost single-phase Mo7Re13C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with a pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K.

  9. Designing dipolar recoupling and decoupling experiments for biological solid-state NMR using interleaved continuous wave and RF pulse irradiation.

    PubMed

    Bjerring, Morten; Jain, Sheetal; Paaske, Berit; Vinther, Joachim M; Nielsen, Niels Chr

    2013-09-17

    Rapid developments in solid-state NMR methodology have boosted this technique into a highly versatile tool for structural biology. The invention of increasingly advanced rf pulse sequences that take advantage of better hardware and sample preparation have played an important part in these advances. In the development of these new pulse sequences, researchers have taken advantage of analytical tools, such as average Hamiltonian theory or lately numerical methods based on optimal control theory. In this Account, we focus on the interplay between these strategies in the systematic development of simple pulse sequences that combines continuous wave (CW) irradiation with short pulses to obtain improved rf pulse, recoupling, sampling, and decoupling performance. Our initial work on this problem focused on the challenges associated with the increasing use of fully or partly deuterated proteins to obtain high-resolution, liquid-state-like solid-state NMR spectra. Here we exploit the overwhelming presence of (2)H in such samples as a source of polarization and to gain structural information. The (2)H nuclei possess dominant quadrupolar couplings which complicate even the simplest operations, such as rf pulses and polarization transfer to surrounding nuclei. Using optimal control and easy analytical adaptations, we demonstrate that a series of rotor synchronized short pulses may form the basis for essentially ideal rf pulse performance. Using similar approaches, we design (2)H to (13)C polarization transfer experiments that increase the efficiency by one order of magnitude over standard cross polarization experiments. We demonstrate how we can translate advanced optimal control waveforms into simple interleaved CW and rf pulse methods that form a new cross polarization experiment. This experiment significantly improves (1)H-(15)N and (15)N-(13)C transfers, which are key elements in the vast majority of biological solid-state NMR experiments. In addition, we demonstrate how interleaved sampling of spectra exploiting polarization from (1)H and (2)H nuclei can substantially enhance the sensitivity of such experiments. Finally, we present systematic development of (1)H decoupling methods where CW irradiation of moderate amplitude is interleaved with strong rotor-synchronized refocusing pulses. We show that these sequences remove residual cross terms between dipolar coupling and chemical shielding anisotropy more effectively and improve the spectral resolution over that observed in current state-of-the-art methods.

  10. Agmatine Production by Aspergillus oryzae is Elevated by Low pH During Solid-State Cultivation.

    PubMed

    Akasaka, Naoki; Kato, Saori; Kato, Saya; Hidese, Ryota; Wagu, Yutaka; Sakoda, Hisao; Fujiwara, Shinsuke

    2018-05-25

    Sake (rice wine) produced by multiple parallel fermentation (MPF) involving Aspergillus oryzae (strain RW) and Saccharomyces cerevisiae under solid-state cultivation conditions contained 3.5 mM agmatine, while that produced from enzymatically saccharified rice syrup by S. cerevisiae contained <0.01 mM agmatine. Agmatine was also produced in ethanol-free rice syrup prepared with A. oryzae under solid-state cultivation (3.1 mM) but not under submerged cultivation, demonstrating that A. oryzae in solid-state culture produces agmatine. The effect of cultivation conditions on agmatine production was examined. Agmatine production was boosted at 30°C and reached the highest level (6.3 mM) at pH 5.3. The addition of l-lactic, succinic, and citric acids reduced the initial culture pH to 3.0, 3.5, and 3.2, respectively, resulting in further increase in agmatine accumulation (8.2, 8.7, and 8.3 mM, respectively). Homogenate from a solid-state culture exhibited a maximum l-arginine decarboxylase (ADC) activity (74 pmol min -1 μg -1 ) at pH 3.0 at 30°C; that from a submerged culture exhibited an extremely low activity (<0.3 pmol min -1 μg -1 ) under all conditions tested. These observations indicated that efficient agmatine production in ethanol-free rice syrup is achieved by an unidentified low pH-dependent ADC induced during solid-state cultivation of A. oryzae , even though A. oryzae lacks ADC orthologs and, instead, possesses four ornithine decarboxylases (ODC1-4). Recombinant ODC1 and ODC2 exhibited no ADC activity at acidic pH (pH 4.0>), suggesting that other decarboxylases or an unidentified ADC is involved in agmatine production. IMPORTANCE It has been speculated that, in general, fungi do not synthesize agmatine from l-arginine because they do not possess genes encoding for arginine decarboxylase. Numerous preclinical studies have shown that agmatine exerts pleiotropic effects on various molecular targets, leading to an improved quality of life. In the present study, we first demonstrated that l-arginine was a feasible substrate for agmatine production by the fungus Aspergillus oryzae RW. We observed that the productivity of agmatine by A. oryzae RW was elevated at low pH only during solid-state cultivation. A. oryzae is utilized in the production of various oriental fermented foods. The saccharification conditions optimized in the current study could be employed not only in the production of an agmatine-containing ethanol-free rice syrup but also in the production of many types of fermented foods, such as soy sauce (shoyu), rice vinegar, etc., as well as novel therapeutic agents and nutraceuticals. Copyright © 2018 American Society for Microbiology.

  11. Multimodal Nonlinear Optical Imaging for Sensitive Detection of Multiple Pharmaceutical Solid-State Forms and Surface Transformations.

    PubMed

    Novakovic, Dunja; Saarinen, Jukka; Rojalin, Tatu; Antikainen, Osmo; Fraser-Miller, Sara J; Laaksonen, Timo; Peltonen, Leena; Isomäki, Antti; Strachan, Clare J

    2017-11-07

    Two nonlinear imaging modalities, coherent anti-Stokes Raman scattering (CARS) and sum-frequency generation (SFG), were successfully combined for sensitive multimodal imaging of multiple solid-state forms and their changes on drug tablet surfaces. Two imaging approaches were used and compared: (i) hyperspectral CARS combined with principal component analysis (PCA) and SFG imaging and (ii) simultaneous narrowband CARS and SFG imaging. Three different solid-state forms of indomethacin-the crystalline gamma and alpha forms, as well as the amorphous form-were clearly distinguished using both approaches. Simultaneous narrowband CARS and SFG imaging was faster, but hyperspectral CARS and SFG imaging has the potential to be applied to a wider variety of more complex samples. These methodologies were further used to follow crystallization of indomethacin on tablet surfaces under two storage conditions: 30 °C/23% RH and 30 °C/75% RH. Imaging with (sub)micron resolution showed that the approach allowed detection of very early stage surface crystallization. The surfaces progressively crystallized to predominantly (but not exclusively) the gamma form at lower humidity and the alpha form at higher humidity. Overall, this study suggests that multimodal nonlinear imaging is a highly sensitive, solid-state (and chemically) specific, rapid, and versatile imaging technique for understanding and hence controlling (surface) solid-state forms and their complex changes in pharmaceuticals.

  12. High speed real-time wavefront processing system for a solid-state laser system

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  13. Theoretical studies on anisotropic electrical conductivity of trans-polyacetylene doped with n-type dopants

    NASA Astrophysics Data System (ADS)

    Wang, Cunguo; Wang, Rongshun

    2000-12-01

    Based on energy band theory of solid states, extended Hückel molecular orbital methods (EHMO/CO) were used to calculate the two-dimensional (2D) energy band structures of highly oriented trans-polyacetylene (PA) undoped and doped with n-type dopant (Li, Na, K). The band gaps ( Eg) of undoped PA in directions parallel and perpendicular to the oriented direction were 1.195 and 3.040 eV, respectively. When PA was doped with n-type dopant, the corresponding band gaps Eg1 and Eg2 decreased significantly. Based on the calculated results, we could successfully account for the changes of electrical anisotropy of PA from the undoped state to the doped form. The conductivity anisotropy ratio σ1/ σ2 decreased when PA was doped with n-type dopant, because the PA chains and the dopant showed a strong interchain coupling. It was the interchain coupling that acted as a bridge between two neighboring chains, and made the charge-carrier transport easier between the interchains. The theoretical results for undoped and doped PA are in good agreement with the experiment.

  14. Cluster analysis of molecular simulation trajectories for systems where both conformation and orientation of the sampled states are important.

    PubMed

    Abramyan, Tigran M; Snyder, James A; Thyparambil, Aby A; Stuart, Steven J; Latour, Robert A

    2016-08-05

    Clustering methods have been widely used to group together similar conformational states from molecular simulations of biomolecules in solution. For applications such as the interaction of a protein with a surface, the orientation of the protein relative to the surface is also an important clustering parameter because of its potential effect on adsorbed-state bioactivity. This study presents cluster analysis methods that are specifically designed for systems where both molecular orientation and conformation are important, and the methods are demonstrated using test cases of adsorbed proteins for validation. Additionally, because cluster analysis can be a very subjective process, an objective procedure for identifying both the optimal number of clusters and the best clustering algorithm to be applied to analyze a given dataset is presented. The method is demonstrated for several agglomerative hierarchical clustering algorithms used in conjunction with three cluster validation techniques. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Free energy of steps using atomistic simulations

    NASA Astrophysics Data System (ADS)

    Freitas, Rodrigo; Frolov, Timofey; Asta, Mark

    The properties of solid-liquid interfaces are known to play critical roles in solidification processes. Particularly special importance is given to thermodynamic quantities that describe the equilibrium state of these surfaces. For example, on the solid-liquid-vapor heteroepitaxial growth of semiconductor nanowires the crystal nucleation process on the faceted solid-liquid interface is influenced by the solid-liquid and vapor-solid interfacial free energies, and also by the free energies of associated steps at these faceted interfaces. Crystal-growth theories and mesoscale simulation methods depend on quantitative information about these properties, which are often poorly characterized from experimental measurements. In this work we propose an extension of the capillary fluctuation method for calculation of the free energy of steps on faceted crystal surfaces. From equilibrium atomistic simulations of steps on (111) surfaces of Copper we computed accurately the step free energy for different step orientations. We show that the step free energy remains finite at all temperature up to the melting point and that the results obtained agree with the more well established method of thermodynamic integration if finite size effects are taken into account. The research of RF and MA at UC Berkeley were supported by the US National Science Foundation (Grant No. DMR-1105409). TF acknowledges support through a postdoctoral fellowship from the Miller Institute for Basic Research in Science.

  16. Solid-state NMR study of geopolymer prepared by sol-gel chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Yi-Ling; Hanna, John V.; Lee, Yuan-Ling, E-mail: yuanlinglee@ntu.edu.t

    2010-12-15

    Geopolymers are a new class of materials formed by the condensation of aluminosilicates and silicates obtained from natural minerals or industrial wastes. In this work, the sol-gel method is used to synthesize precursor materials for the preparation of geopolymers. The geopolymer samples prepared by our synthetic route have been characterized by a series of physical techniques, including Fourier-transform infrared, X-ray diffraction, and multinuclear solid-state NMR. The results are very similar to those obtained for the geopolymers prepared from natural kaolinite. We believe that our synthetic approach can offer a good opportunity for the medical applications of geopolymer. -- Graphical abstract:more » Geopolymer prepared by the sol-gel route has the same spectroscopic properties as the sample prepared from the natural kaolinite. Display Omitted« less

  17. Solid sampling determination of magnesium in lithium niobate crystals by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dravecz, Gabriella; Laczai, Nikoletta; Hajdara, Ivett; Bencs, László

    2016-12-01

    The vaporization/atomization processes of Mg in high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS) were investigated by evaporating solid (powder) samples of lithium niobate (LiNbO3) optical single crystals doped with various amounts of Mg in a transversally heated graphite atomizer (THGA). Optimal analytical conditions were attained by using the Mg I 215.4353 nm secondary spectral line. An optimal pyrolysis temperature of 1500 °C was found for Mg, while the compromise atomization temperature in THGAs (2400 °C) was applied for analyte vaporization. The calibration was performed against solid (powered) lithium niobate crystal standards. The standards were prepared with exactly known Mg content via solid state fusion of the oxide components of the matrix and analyte. The correlation coefficient (R value) of the linear calibration was not worse than 0.9992. The calibration curves were linear in the dopant concentration range of interest (0.74-7.25 mg/g Mg), when dosing 3-10 mg of the powder samples into the graphite sample insertion boats. The Mg content of the studied 19 samples was in the range of 1.69-4.13 mg/g. The precision of the method was better than 6.3%. The accuracy of the results was verified by means of flame atomic absorption spectrometry with solution sample introduction after digestion of several crystal samples.

  18. Study of fluorescence quenching due to 2, 3, 5, 6-tetrafluoro-7, 7', 8, 8'-tetracyano quinodimethane and its solid state diffusion analysis using photoluminescence spectroscopy.

    PubMed

    Tyagi, Priyanka; Tuli, Suneet; Srivastava, Ritu

    2015-02-07

    In this work, we have studied the fluorescence quenching and solid state diffusion of 2, 3, 5, 6-tetrafluoro-7,  7',  8,  8'-tetracyano quinodimethane (F4-TCNQ) using photoluminescence (PL) spectroscopy. Quenching studies were performed with tris (8-hydroxyquinolinato) aluminum (Alq3) in solid state samples. Thickness of F4-TCNQ was varied in order to realize different concentrations and study the effect of concentration. PL intensity has reduced with the increase in F4-TCNQ thicknesses. Stern-Volmer and bimolecular quenching constants were evaluated to be 13.8 M(-1) and 8.7 × 10(8) M(-1) s(-1), respectively. The quenching mechanism was found to be of static type, which was inferred by the independent nature of excited state life time from the F4-TCNQ thickness. Further, solid state diffusion of F4-TCNQ was studied by placing a spacing layer of α-NPD between F4-TCNQ and Alq3, and its thickness was varied to probe the diffusion length. PL intensity was found to increase with the increase in this thickness. Quenching efficiency was evaluated as a function of distance between F4-TCNQ and Alq3. These studies were performed for the samples having 1, 2.5, and 5.5 nm thicknesses of F4-TCNQ to study the thickness dependence of diffusion length. Diffusion lengths were evaluated to be 12.5, 15, and 20 nm for 1, 2.5, and 5.5 nm thicknesses of F4-TCNQ. These diffusion lengths were found to be very close to that of determined by secondary ion mass spectroscopy technique.

  19. The morphology of blends of linear and branched polyethylenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Alamo, R.G.

    1995-12-31

    The state of mixing in blends of high density (HD), low density (LD) and linear low density (LLD) polyethylenes (PE) in the melt and solid states has been examined by small-angle x-ray and neutron scattering (SAXS and SANS). In the melt, SANS results indicate that HDPE/LDPE mixtures (with 1-2 branches/100 C) form a single phase. HDPE/LLDPE blends are also homogeneous when the branch content is low, but phase separate as the branching increases. In the solid state, after slow-cooling from the melt, the HDPE/LDPE system segregates into domains {approximately}10{sup 2} in size. For high concentrations of linear polymer ({phi} {ge}more » 0.5), there are separate stacks of HDPE and LDPE lamellae, and the measured SANS cross section agrees closely with the theoretical calculation based on the assumption of complete phase separation of the components. For predominantly branched blends ({phi} < 0.5), the phase segregation is less complete, and the components are separated within the same lamellar stack. Moreover, the phases no longer consist of the pure components, and the HDPE lamellae contain up to 15% LDPE. The segregation of components in the solid state is a consequence of crystallization mechanisms and the blend morphology is a strong function of the cooling rate. Rapid quenching to -78{degrees}C produces only one lamellar stack and these blends show extensive cocrystallization. Samples quenched less rapidly (e.g., into water at 23{degrees}C) show a similar structure to slowly cooled samples. The solid state morphology also depends on the type of branching and differences between HDPE/LDPE and HDPE/LLDPE blends will be reviewed.« less

  20. United States Air Force Guide to Operational Surveillance of Medically Important Vectors and Pests Operational Entomology

    DTIC Science & Technology

    2006-08-15

    Programs Section 3. Sampling Equipment Sampling Equipment Solid-State Army Miniature (SSAM) trap ABC style trap Encephalitis Vector Survey Trap CDC...Baseline Survey - these are conducted to determine the types of vectors and pests occurring in the area of operations, their respective breeding sites...or source habitat, and seasonal activity patterns. Operational Survey - data collected in an operational survey are used specifically to aid pest

  1. How Water’s Properties Are Encoded in Its Molecular Structure and Energies

    PubMed Central

    2017-01-01

    How are water’s material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth’s living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies—water’s solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions—hydroxide and protons—diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water’s molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and interact with each other through van der Waals forces. Unlike simpler liquids, water’s orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties. PMID:28949513

  2. Monte Carlo simulations for the free energies of C60 and C70 fullerene crystals by acceptance ratio method and expanded ensemble method

    NASA Astrophysics Data System (ADS)

    Kim, Minkyu; Chang, Jaeeon; Sandler, Stanley I.

    2014-02-01

    Accurate values of the free energies of C60 and C70 fullerene crystals are obtained using expanded ensemble method and acceptance ratio method combined with the Einstein-molecule approach. Both simulation methods, when tested for Lennard-Jones crystals, give accurate results of the free energy differing from each other in the fifth significant digit. The solid-solid phase transition temperature of C60 crystal is determined from free energy profiles, and found to be 260 K, which is in good agreement with experiment. For C70 crystal, using the potential model of Sprik et al. [Phys. Rev. Lett. 69, 1660 (1992)], low-temperature solid-solid phase transition temperature is found to be 160 K determined from the free energy profiles. Whereas this is somewhat lower than the experimental value, it is in agreement with conventional molecular simulations, which validates the methodological consistency of the present simulation method. From the calculations of the free energies of C60 and C70 crystals, we note the significance of symmetry number for crystal phase needed to properly account for the indistinguishability of orientationally disordered states.

  3. Systematic Comparison of Crystal and NMR Protein Structures Deposited in the Protein Data Bank

    PubMed Central

    Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero

    2010-01-01

    Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR – X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution. PMID:21293729

  4. OCCURRENCE AND SIGNIFICANCE OF TETRAVALENT LEAD IN NEW ENGLAND

    EPA Science Inventory

    USEPA analyses of lead service line specimens throughout the United States have found evidence of substantial tetravalent lead (Pb+4 in the form of PbO2 solids) in one or more samples from over 25% of systems who have submitted pipe samples. The most “newsworthy” instance of the ...

  5. Room temperature luminescence and ferromagnetism of AlN:Fe

    NASA Astrophysics Data System (ADS)

    Li, H.; Cai, G. M.; Wang, W. J.

    2016-06-01

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  6. Investigation of IRGANOX®1076 as a dosimeter for clinical X-ray, electron and proton beams and its EPR angular response

    NASA Astrophysics Data System (ADS)

    Smith, Clare L.; Ankers, Elizabeth; Best, Stephen P.; Gagliardi, Frank; Katahira, Kai; Tsunei, Yseu; Tominaga, Takahiro; Geso, Moshi

    2017-12-01

    The suitability of IRGANOX®1076 in paraffin wax as a near-tissue equivalent radiation dosimeter was investigated for various radiotherapy beam types; kV and MV X-rays, electrons and protons over clinically-relevant doses (2 -20 Gy). The radical formed upon exposure to ionising radiations was measured by Electron Paramagnetic Resonance (EPR) spectroscopy, and the single peak signal obtained for solid solutions of IRGANOX®1076 in wax is attributed to the phenoxyl radical obtained by net loss of H•. Irradiation of solid IRGANOX®1076 gives a doublet consistent with the formation of the phenol cation radical, obtained by electron loss. Solid solutions of IRGANOX®1076 in paraffin wax give a linear dose response for all types of radiations examined, which was energy independent for MV, electron and proton beams, and energy-dependent for kV X-ray irradiation. Reliable dose measurements were obtained with exposures as low as 2 Gy, and comparisons with alanine wax-pellets containing the same amount of dosimeter material (w/w) gave similar responses for all beam types investigated. Post-irradiation measurements (up to 77 days for proton irradiation for samples stored in the dark and at room temperature) indicate good signal stability with minimal signal fading (between 1.6 to 3.8%). Relative to alanine dosimeters, solid solutions of IRGANOX®1076 in wax give EPR signals with better sensitivity at low dose and do not significantly change with the orientation of the sample. Solid solutions of IRGANOX®1076 are ideal for applications in radiotherapy dosimetry for X-rays and charged particles, as IRGANOX®1076 is relatively cheap, can easily and reproducibly prepared in wax and be moulded to different shapes.

  7. Uptake of Ra during the recrystallization of barite: a microscopic and time of flight-secondary ion mass spectrometry study.

    PubMed

    Klinkenberg, Martina; Brandt, Felix; Breuer, Uwe; Bosbach, Dirk

    2014-06-17

    A combined macroscopic and microanalytical approach was applied on two distinct barite samples from Ra uptake batch experiments using time of flight-secondary ion mass spectrometry (ToF-SIMS) and detailed scanning electron microscopy (SEM) investigations. The experiments were set up at near to equilibrium conditions to distinguish between two possible scenarios for the uptake of Ra by already existent barite: (1) formation of a Ba1-xRaxSO4 solid solution surface layer on the barite or (2) a complete recrystallization, leading to homogeneous Ba1-xRaxSO4 crystals. It could be clearly shown that Ra uptake in all barite particles analyzed within this study is not limited to the surface but extends to the entire solid. For most grains a homogeneous distribution of Ra could be determined, indicating a complete recrystallization of barite into a Ba1-xRaxSO4 solid solution. The maxima of the Ra/Ba intensity ratio distribution histograms calculated from ToF-SIMS are identical with the expected Ra/Ba ratios calculated from mass balance assuming a complete recrystallization. In addition, the role of Ra during the recrystallization of barite was examined via detailed SEM investigations. Depending on the type of barite used, an additional coarsening effect or a strong formation of oriented aggregates was observed compared to blank samples without Ra. In conclusion, the addition of Ra to a barite at close to equilibrium conditions has a major impact on the system leading to a fast re-equilibration of the solid to a Ba1-xRaxSO4 solid solution and visible effects on the particle size distribution, even at room temperature.

  8. Use of in situ FT-Raman spectroscopy to study the kinetics of the transformation of carbamazepine polymorphs.

    PubMed

    O'Brien, Laura E; Timmins, Peter; Williams, Adrian C; York, Peter

    2004-10-29

    The solid-state transformation of carbamazepine from form III to form I was examined by Fourier Transform Raman spectroscopy. Using a novel environmental chamber, the isothermal conversion was monitored in situ at 130 degrees C, 138 degrees C, 140 degrees C and 150 degrees C. The rate of transformation was monitored by taking the relative intensities of peaks arising from two CH bending modes; this approach minimised errors due to thermal artefacts and variations in power intensities or scattering efficiencies from the samples in which crystal habit changed from a characteristic prism morphology (form III) to whiskers (form I). The solid-state transformation at the different temperatures was fitted to various solid-state kinetic models of which four gave good fits, thus indicating the complexity of the process which is known to occur via a solid-gas-solid mechanism. Arrhenius plots from the kinetic models yielded activation energies from 344 kJ mol(-1) to 368 kJ mol(-1) for the transformation. The study demonstrates the value of a rapid in situ analysis of drug polymorphic type which can be of value for at-line in-process control.

  9. Order and gelation of cellulose nanocrystal suspensions: an overview of some issues

    NASA Astrophysics Data System (ADS)

    Gray, Derek G.

    2017-12-01

    Cellulose nanocrystals (CNCs) are polydisperse rod-shaped particles of crystalline cellulose I, typically prepared by sulfuric acid hydrolysis of natural cellulose fibres to give aqueous colloidal suspensions stabilized by sulfate half-ester groups. Sufficiently dilute suspensions are isotropic fluids, but as the concentration of CNC in water is increased, a critical concentration is reached where a spontaneously ordered phase is observed. The (equilibrium) phase separation of the ordered chiral nematic phase is in competition with a tendency of the CNC suspension to form a gel. Qualitatively, factors that reduce the stability of the CNC suspension favour the onset of gelation. The chiral nematic structure is preserved, at least partially, when the suspension dries. Solid chiral nematic films of cellulose are of interest for their optical and templating properties, but the preparation of the films requires improvement. The processes that govern the formation of solid chiral nematic films from CNC suspensions include phase separation, gelation and also the effects of shear on CNC orientation during evaporation. Some insight into these processes is provided by polarized light microscopy, which indicates that the relaxation of shear-induced orientation to give a chiral nematic structure may occur via an intermediate twist-bend state. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  10. Lunar Science from Lunar Laser Ranging

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2013-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, tidal Love number k2, and moment of inertia differences. There is weaker sensitivity to flattening of the core/mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to variations in lunar rotation, orientation and tidal displacements. Past solutions using the LLR data have given results for Love numbers plus dissipation due to solid-body tides and fluid core. Detection of the fluid core polar minus equatorial moment of inertia difference due to CMB flattening is weakly significant. This strengthens the case for a fluid lunar core. Future approaches are considered to detect a solid inner core.

  11. Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy

    PubMed Central

    Gray, Derek G.; Mu, Xiaoyue

    2015-01-01

    Cellulosic liquid crystalline solutions and suspensions form chiral nematic phases that show a rich variety of optical textures in the liquid crystalline state. These ordered structures may be preserved in solid films prepared by evaporation of solvent or suspending medium. Film formation from aqueous suspensions of cellulose nanocrystals (CNC) was investigated by polarized light microscopy, optical profilometry and atomic force microscopy (AFM). An attempt is made to interpret qualitatively the observed textures in terms of the orientation of the cellulose nanocrystals in the suspensions and films, and the changes in orientation caused by the evaporative process. Mass transfer within the evaporating droplet resulted in the formation of raised rings whose magnitude depended on the degree of pinning of the receding contact line. AFM of dry films at short length scales showed a radial orientation of the CNC at the free surface of the film, along with a radial height variation with a period of approximately P/2, ascribed to the anisotropic shrinkage of the chiral nematic structure. PMID:28793684

  12. Change of magnetic domain structure by mechanically induced twin boundary motion in Ni-Mn-Ga single crystal

    NASA Astrophysics Data System (ADS)

    Kopecký, Vít; Heczko, Oleg

    2017-10-01

    The single variant state exhibits usual labyrinth and band magnetic domains depending on orientation of easy magnetization axis. By the passage of single twin boundary induced by mechanical stress the rake and granular domain patterns are formed. These domain patterns are further modified by repeated passage of the twin boundary resulting in similar domain patterns in the sample even though the orientation of the magnetization is different.

  13. Accelerated Enveloping Distribution Sampling: Enabling Sampling of Multiple End States while Preserving Local Energy Minima.

    PubMed

    Perthold, Jan Walther; Oostenbrink, Chris

    2018-05-17

    Enveloping distribution sampling (EDS) is an efficient approach to calculate multiple free-energy differences from a single molecular dynamics (MD) simulation. However, the construction of an appropriate reference-state Hamiltonian that samples all states efficiently is not straightforward. We propose a novel approach for the construction of the EDS reference-state Hamiltonian, related to a previously described procedure to smoothen energy landscapes. In contrast to previously suggested EDS approaches, our reference-state Hamiltonian preserves local energy minima of the combined end-states. Moreover, we propose an intuitive, robust and efficient parameter optimization scheme to tune EDS Hamiltonian parameters. We demonstrate the proposed method with established and novel test systems and conclude that our approach allows for the automated calculation of multiple free-energy differences from a single simulation. Accelerated EDS promises to be a robust and user-friendly method to compute free-energy differences based on solid statistical mechanics.

  14. High field (33)S solid state NMR and first-principles calculations in potassium sulfates.

    PubMed

    Moudrakovski, Igor; Lang, Stephen; Patchkovskii, Serguei; Ripmeester, John

    2010-01-14

    A set of potassium sulfates presenting a variety of sulfur environments (K(2)SO(4), KHSO(4), K(2)S(2)O(7), and K(2)S(2)O(8)) has been studied by (33)S solid state NMR at 21 T. Low natural abundance (0.75%) and small gyromagnetic ratio of (33)S presented a serious challenge even at such a high magnetic field. Nevertheless, using the QCPMG technique we were able to obtain good signals from the sites with C(Q) values approaching 16 MHz. Assignment of the sites and the relative orientations of the EFG tensors were assisted by quantum mechanical calculations using the Gaussian 98 and CASTEP packages. The Gaussian 98 calculations were performed using the density functional method and gauge independent atomic orbitals on molecular clusters of about 100-120 atoms. The CASTEP calculations utilized periodic boundary conditions and a gauge-including projector augmented-wave pseudopotential approach. Although only semiquantitative agreement is observed between the experimental and calculated parameters, the calculations are a very useful aid in the interpretation of experimental data.

  15. Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode.

    PubMed

    Li, Xiaoyan; Wang, Jun; Zhao, Yaping; Ge, Fengyan; Komarneni, Sridhar; Cai, Zaisheng

    2016-10-05

    The proposed approach for fabricating ultralight self-sustained electrodes facilitates the structural integration of highly flexible carbon nanofibers, amino-modified multiwalled carbon nanotubes (AM-MWNT), and MnO 2 nanoflakes for potential use in wearable supercapacitors. Because of the higher orientation of AM-MWNT and the sublimation of terephthalic acid (PTA) in the carbonization process, freestanding electrodes could be realized with high porosity and flexibility and could possess remarkable electrochemical properties without using polymer substrates. Wearable symmetric solid-state supercapacitors were further assembled using a LiCl/PVA gel electrolyte, which exhibit a maximum energy density of 44.57 Wh/kg (at a power density of 337.1 W/kg) and a power density of 13330 W/kg (at an energy density of 19.64 Wh/kg) with a working voltage as high as 1.8 V. Due to the combination of several favorable traits such as flexibility, high energy density, and excellent electrochemical cyclability, the presently developed wearable supercapacitors with wide potential windows are expected to be useful for new kinds of portable electric devices.

  16. Heliosphere Instrument for Spectra, Composition and Anisotropy at Low Energies

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.

    1992-01-01

    The Heliosphere Instrument for Spectra, Composition, and Anisotropy at Low Energies (HI-SCALE) is designed to make measurements of interplanetary ions and electrons throughout the entire Ulysses mission. The ions (E(i) greater than about 50 keV) and electrons (E(e) greater than about 30 keV) are identified uniquely and detected by five separate solid-state detector telescopes that are oriented to give nearly complete pitch-angle coverage from the spinning spacecraft. Ion elemental abundances are determined by Delta E vs E telescope using a thin (5 microns) front solid state detector element in a three-element telescope. Experimental operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on telescope covers which can be closed for calibration purposes and for radiation protection during the course of the mission. Ion and electron spectral information is determined using both broad-energy-range rate channels and a 32 channel pulse-height analyzer for more detailed spectra. Some initial in-ecliptic measurements are presented which demonstrate the features of the instrument.

  17. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy

    NASA Astrophysics Data System (ADS)

    Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.

    2014-09-01

    We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.

  18. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences.

    PubMed

    Rinaldelli, Mauro; Ravera, Enrico; Calderone, Vito; Parigi, Giacomo; Murshudov, Garib N; Luchinat, Claudio

    2014-04-01

    The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably `ideal' geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state.

  19. Electromigration and solid state aging of flip chip solder joints and analysis of tin whisker on lead-frame

    NASA Astrophysics Data System (ADS)

    Lee, Taekyeong

    Electromigration and solid state aging in flip chip joint, and whisker on lead frame of Pb-containing (eutectic SnPb) and Pb-free solders (SnAg 3.5, SnAg3.8Cu0.7, and SnCu0.7), have been studied systematically, using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), and synchrotron radiation. The high current density in flip chip joint drives the diffusion of atoms of eutectic SnPb and SnAgCu. A marker is used to measure the diffusion flux in a half cross-sectioned solder joint. SnAgCu shows higher resistance against electromigration than eutectic SnPb. In the half cross-sectioned solder joint, void growth is the dominant failure mechanism. However, the whole solder balls in the underfill show that the failure mechanism is a result from the dissolution of electroless Ni under bump metallization (UBM) of about 10 mum thickness. The growth rate between intermetallic compounds in molten and solid solders differed by four orders of magnitude. In liquid solder, the growth rate is about 1 mum/min; the growth rate in solid solder is only about 10 -4 mum/min. The difference is not resulting from factors of thermodynamics, which is the change of Gibbs free energy before and after intermetallic compound formation, but from kinetic factors, which is the rate of change of Gibbs free energy. Even though the difference in growth rate between eutectic SnPb and Pb-free solders during solid state aging was found, the reason behind such difference shown is unclear. The orientation and stress levels of whiskers are measured by white X-ray of synchrotron radiation. The growth direction is nearly parallel to one of the principal axes of tin. The compressive stress level is quite low because the residual stress is relaxed by the whisker growth.

  20. Disruption of an Aligned Dendritic Network by Bubbles During Re-Melting in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2012-01-01

    The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.

  1. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  2. Orientation decoding depends on maps, not columns

    PubMed Central

    Freeman, Jeremy; Brouwer, Gijs Joost; Heeger, David J.; Merriam, Elisha P.

    2011-01-01

    The representation of orientation in primary visual cortex (V1) has been examined at a fine spatial scale corresponding to the columnar architecture. We present functional magnetic resonance imaging (fMRI) measurements providing evidence for a topographic map of orientation preference in human V1 at a much coarser scale, in register with the angular-position component of the retinotopic map of V1. This coarse-scale orientation map provides a parsimonious explanation for why multivariate pattern analysis methods succeed in decoding stimulus orientation from fMRI measurements, challenging the widely-held assumption that decoding results reflect sampling of spatial irregularities in the fine-scale columnar architecture. Decoding stimulus attributes and cognitive states from fMRI measurements has proven useful for a number of applications, but our results demonstrate that the interpretation cannot assume decoding reflects or exploits columnar organization. PMID:21451017

  3. Photo-physical properties and triplet-triplet absorption of platinum(II) acetylides in solid PMMA matrices

    NASA Astrophysics Data System (ADS)

    Glimsdal, Eirik; Westlund, Robert; Lindgren, Mikael

    2009-05-01

    Because of their strong nonlinear optical properties, Platinum(II) acetylides are investigated as potential chromophores for optical power limiting (OPL) applications. The strong excited state absorption and efficient intersystem crossing to the triplet states in these materials are desired properties for good OPL performance. We recently reported on OPL and photo-physical properties of Pt(II)-acetylide chromophores in solution, modified with thiophenyl or triazole groups. [R. Westlund et al. J. Mater. Chem. 18, 166 (2008); E. Glimsdal et al. Proc. SPIE 6740, 67400M (2007)] The chromophores were later incorporated into poly(methyl-methacrylate) (PMMA) glasses. A variety of doped organic solids were prepared, reaching concentrations of up to 13 wt% of the guest molecule. Raman spectra of the doped solid devices proved that the chemical structure of the nonlinear dyes remains intact upon the polymerization of the solid matrix. Luminescence spectra confirm that the basic photo-physical properties (absorption, emission and inter-system crossing) observed for the solute molecules in THF are maintained also in the solid state. In particular, the phosphorescence lifetime stays in the order of μs to ms, just as in the oxygen evacuated liquid samples. Also, the wavelength dependence and time-dynamics of the triplet absorption spectra of the dyes, dissolved in THF solution and dispersed in solid PMMA matrices, were investigated and compared. Ground state UV absorption spectra between 300 and 420 nm have corresponding broad band visible triplet-triplet absorption between 400 and 800 nm. The triplet state extinction coefficients were determined to be in the order of 104 M-1cm-1.

  4. Sexual orientation and substance abuse treatment utilization in the United States: results from a national survey.

    PubMed

    McCabe, Sean Esteban; West, Brady T; Hughes, Tonda L; Boyd, Carol J

    2013-01-01

    This study examined substance abuse treatment utilization across three dimensions of sexual orientation (identity, attraction, and behavior) in a large national sample of adults in the United States. Prevalence estimates were based on data collected from the 2004-2005 National Epidemiologic Survey on Alcohol and Related Conditions. The sample consisted of 34,653 adults 20 years and older, and represented a population that was 52% women, 71% White, 12% Hispanic, 11% African American, 4% Asian, and 2% other race/ethnicities. An estimated 2% of the target population self-identified as lesbian, gay or bisexual; 4% reported same-sex sexual behavior, and 6% reported same-sex sexual attraction. Sexual minorities, especially women, had a greater likelihood of lifetime substance use disorders and earlier age of drinking onset. The majority of respondents with substance use disorders were untreated and lifetime substance abuse treatment utilization differed based on sexual orientation. Sexual minorities were found to have more extensive family histories of substance abuse problems. The findings indicate the underutilization of substance abuse treatment among all adults, and highlight some important factors to consider when working with sexual minorities. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Orientation and Order of the Amide Group of Sphingomyelin in Bilayers Determined by Solid-State NMR

    PubMed Central

    Matsumori, Nobuaki; Yamaguchi, Toshiyuki; Maeta, Yoshiko; Murata, Michio

    2015-01-01

    Sphingomyelin (SM) and cholesterol (Chol) are considered essential for the formation of lipid rafts; however, the types of molecular interactions involved in this process, such as intermolecular hydrogen bonding, are not well understood. Since, unlike other phospholipids, SM is characterized by the presence of an amide group, it is essential to determine the orientation of the amide and its order in the lipid bilayers to understand the nature of the hydrogen bonds in lipid rafts. For this study, 1′-13C-2-15N-labeled and 2′-13C-2-15N-labeled SMs were prepared, and the rotational-axis direction and order parameters of the SM amide in bilayers were determined based on 13C and 15N chemical-shift anisotropies and intramolecular 13C-15N dipole coupling constants. Results revealed that the amide orientation was minimally affected by Chol, whereas the order was enhanced significantly in its presence. Thus, Chol likely promotes the formation of an intermolecular hydrogen-bond network involving the SM amide without significantly changing its orientation, providing a higher order to the SM amide. To our knowledge, this study offers new insight into the significance of the SM amide orientation with regard to molecular recognition in lipid rafts, and therefore provides a deeper understanding of the mechanism of their formation. PMID:26083921

  6. Stabilization of photon collapse and revival dynamics by a non-Markovian phonon bath

    NASA Astrophysics Data System (ADS)

    Carmele, Alexander; Knorr, Andreas; Milde, Frank

    2013-10-01

    Solid state-based light emitters such as semiconductor quantum dots (QDs) have been demonstrated to be versatile candidates to study the fundamentals of light-matter interaction. In contrast to optics with isolated atomic systems, in the solid-state dissipative processes are induced by the inherent coupling to the environment and are typically perceived as a major obstacle toward stable performances in experiments and applications. In this theoretical model study we show that this is not necessarily the case. In fact, in certain parameter regimes, the memory of the solid-state environment can enhance coherent quantum optical effects. In particular, we demonstrate that the non-Markovian coupling to an incoherent phonon bath can exhibit a stabilizing effect on the coherent QD cavity-quantum electrodynamics by inhibiting irregular oscillations and allowing for regular collapse and revival patterns. For self-assembled GaAs/InAs QDs at low photon numbers we predict dynamics that deviate dramatically from the well-known atomic Jaynes-Cummings model. Even if the required sample parameters are not yet available in recent experimental achievements, we believe our proposal opens the way to a systematic and deliberate design of photon quantum effects via specifically engineered solid-state environments.

  7. Oriented polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) films by Langmuir–Blodgett deposition: A synchrotron X-ray diffraction study

    DOE PAGES

    Lindemann, W. R.; Philiph, R. L.; Chan, D. W. W.; ...

    2015-10-07

    Langmuir–Blodgett films of polyvinylidene fluoride trifluoroethylene – P(VDF–TrFE)-copolymers possess substantially improved electrocaloric and pyroelectric properties, when compared with conventionally spin-cast films. In order to rationalize this, we prepared single-layered films of P(VDF–TrFE) (70:30) using both deposition techniques. Grazing incidence wide-angle X-ray scattering (GIWAXS), reveals that Langmuir–Blodgett deposited films have a higher concentration of the ferroelectric β-phase crystals, and that these films are highly oriented with respect to the substrate. Based on these observations, we suggest alternative means of deposition, which may substantially enhance the electrocaloric effect in P(VDF–TrFE) films. As a result, this development has significant implications for the potentialmore » use of P(VDF–TrFE) in solid-state refrigeration.« less

  8. Solid-state characterization of nevirapine.

    PubMed

    Sarkar, Mahua; Perumal, O P; Panchagnula, R

    2008-09-01

    The purpose of this investigation is to characterize nevirapine from commercial samples and samples crystallized from different solvents under various conditions. The solid-state behavior of nevirapine samples was investigated using a variety of complementary techniques such as microscopy (optical, polarized, hot stage microscopy), differential scanning calorimeter, thermogravimetric analysis, Fourier transform infrared spectroscopy and powder X-ray diffractometry. The commercial samples of nevirapine had the same polymorphic crystalline form with an anhedral crystal habit. Intrinsic dissolution of nevirapine was similar for both the commercial batches. Powder dissolution showed pH dependency, with maximum dissolution in acidic pH and there was no significant effect of particle size. The samples recrystallized from different solvent systems with varying polarity yielded different crystal habits. Stirring and degrees of supersaturation influenced the size and shape of the crystals. The recrystallized samples did not produce any new polymorphic form, but weak solvates with varying crystal habit were produced. Recrystallized samples showed differences in the x-ray diffractograms. However, all the samples had the same internal crystal lattice as revealed from their similar melting points and heat of fusion. The intrinsic dissolution rate of recrystallized samples was lower than the commercial sample. It was found that the compression pressure resulted in desolvation and partial conversion of the crystal form. After compression, the recrystallized samples showed similar x-ray diffractograms to the commercial sample. Amorphous form showed slightly higher aqueous solubility than the commercial crystalline form.

  9. Extreme ultraviolet photoionization of aldoses and ketoses

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.

    2011-04-01

    Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.

  10. Multiferroic properties in NdFeO3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder

    2018-05-01

    The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.

  11. Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2017-10-01

    In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.

  12. Evaluation of the photoprotective effect of β-cyclodextrin on the emission of volatile degradation products of ranitidine.

    PubMed

    Jamrógiewicz, Marzena; Wielgomas, Bartosz; Strankowski, Michał

    2014-09-01

    The process of the photo-excitation of ranitidine hydrochloride (RAN) in a solid state makes visible changes to its colour and generates an unpleasant odour. The purpose of the present study was to observe the protective effects of β-cyclodextrin (CD) complexation as well as the effect of the mixture of two stoichiometries 1:1 and 1:2 (RAN:CD, IC) on the photostability of samples in a solid state. Samples of inclusion complexes (IC) and physical mixtures (PM) were prepared and irradiated for 48h in a Suntest CPS+ chamber. Irradiated samples were analyzed using nuclear magnetic resonance ((1)H NMR), infrared spectroscopy (FT-IR), the differential scanning calorimetry method (DSC) and thermogravimetry analysis (TGA). Volatiles were monitored with the use of headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The protective effect of CD was noticed with respect to IC, and also PM. Achieved photostabilization of complexed RAN against photodegradation could be explained due to either the inclusion of the furan part of RAN into the CD cavity as shown by the (1)H NMR ROESY (rotation frame nuclear Overhauser effect spectroscopy) spectrum or the screening effect of CD. FT-IR spectra, DSC curves and microscope images of irradiated samples of protected RAN did not indicate any physical changes, such as phase transfer. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Attosecond transient absorption instrumentation for thin film materials: Phase transitions, heat dissipation, signal stabilization, timing correction, and rapid sample rotation.

    PubMed

    Jager, Marieke F; Ott, Christian; Kaplan, Christopher J; Kraus, Peter M; Neumark, Daniel M; Leone, Stephen R

    2018-01-01

    We present an extreme ultraviolet (XUV) transient absorption apparatus tailored to attosecond and femtosecond measurements on bulk solid-state thin-film samples, specifically when the sample dynamics are sensitive to heating effects. The setup combines methodology for stabilizing sub-femtosecond time-resolution measurements over 48 h and techniques for mitigating heat buildup in temperature-dependent samples. Single-point beam stabilization in pump and probe arms and periodic time-zero reference measurements are described for accurate timing and stabilization. A hollow-shaft motor configuration for rapid sample rotation, raster scanning capability, and additional diagnostics are described for heat mitigation. Heat transfer simulations performed using a finite element analysis allow comparison of sample rotation and traditional raster scanning techniques for 100 Hz pulsed laser measurements on vanadium dioxide, a material that undergoes an insulator-to-metal transition at a modest temperature of 340 K. Experimental results are presented confirming that the vanadium dioxide (VO 2 ) sample cannot cool below its phase transition temperature between laser pulses without rapid rotation, in agreement with the simulations. The findings indicate the stringent conditions required to perform rigorous broadband XUV time-resolved absorption measurements on bulk solid-state samples, particularly those with temperature sensitivity, and elucidate a clear methodology to perform them.

  14. Attosecond transient absorption instrumentation for thin film materials: Phase transitions, heat dissipation, signal stabilization, timing correction, and rapid sample rotation

    NASA Astrophysics Data System (ADS)

    Jager, Marieke F.; Ott, Christian; Kaplan, Christopher J.; Kraus, Peter M.; Neumark, Daniel M.; Leone, Stephen R.

    2018-01-01

    We present an extreme ultraviolet (XUV) transient absorption apparatus tailored to attosecond and femtosecond measurements on bulk solid-state thin-film samples, specifically when the sample dynamics are sensitive to heating effects. The setup combines methodology for stabilizing sub-femtosecond time-resolution measurements over 48 h and techniques for mitigating heat buildup in temperature-dependent samples. Single-point beam stabilization in pump and probe arms and periodic time-zero reference measurements are described for accurate timing and stabilization. A hollow-shaft motor configuration for rapid sample rotation, raster scanning capability, and additional diagnostics are described for heat mitigation. Heat transfer simulations performed using a finite element analysis allow comparison of sample rotation and traditional raster scanning techniques for 100 Hz pulsed laser measurements on vanadium dioxide, a material that undergoes an insulator-to-metal transition at a modest temperature of 340 K. Experimental results are presented confirming that the vanadium dioxide (VO2) sample cannot cool below its phase transition temperature between laser pulses without rapid rotation, in agreement with the simulations. The findings indicate the stringent conditions required to perform rigorous broadband XUV time-resolved absorption measurements on bulk solid-state samples, particularly those with temperature sensitivity, and elucidate a clear methodology to perform them.

  15. Transition mechanism of the reaction interface of the thermal decomposition of calcite

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhao, Zhen; Wang, Qi; Wang, Guocheng

    2018-06-01

    Even the reaction layer (excited state CaCO3) is so thin that it is difficult to detect, it is significantly restrict the orientation of the solid product (excited state CaO) of the thermal decomposition of calcite. Quantum chemical calculation with GGA-PW91 functional reveals that the ground-state (CaCO3)m clusters are more stable than the hybrid objects (CaCO3)m-(CaO)n clusters. The lowest-energy (CaCO3)m clusters are more kinetically stable than that of (CaCO3)m-n(CaO)n clusters and then than that of (CaO)n clusters except (CaCO3)(CaO)3 clusters from the HOMO-LUMO gaps. (CaCO3)2 clusters should co-exist at room temperature and they prefer to decompose with the temperature increasing.

  16. Synthesis of Cu/CuO nanoparticles in mesoporous material by solid state reaction

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Valipour, A.

    2013-10-01

    The Mobil Composition of Matter No. 41 (MCM-41) containing 1.0 and 5.0 wt.% of Cu was synthesized under solid state reaction. The calcinations of samples were done at two different temperatures, 500 and 300 °C. X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) were used for samples characterization. Powder X-ray diffraction showed that when Cu(CH3COO)2 content is about 1.0 wt.% in Cu/MCM-41, the guest CuO-NPs and copper ions is formed on the silica channel wall, and more exists in the crystalline state. When Cu(CH3COO)2 content exceeds this value (5.0 wt.%), CuO nanoparticles and Cu2+ ions can be observed in low crystalline state. From the diffuse reflectance spectra it was confirmed that 5 wt.% Cu/MCM-41 sample calcined at 500 °C show plasmon resonance band due to Cu nanoparticles in the range between 500 and 600 nm and small copper clusters Cun in 450 nm. It also shows that some of the Cu2+ ions are present octahedrally in extraframework position in all samples. Both fourier transform infrared and diffuse reflectance spectra indicate that some of Cu2+ ions are tetrahedrally within the framework position in 1 wt.% Cu/MCM-41 samples. TEM images indicated that nanoparticles size of CuO is in range of 30-40 nm.

  17. Strategic planning in hospitals in two Australian states: an exploratory study of its practice using planning documentation.

    PubMed

    Jayasuriya, R; Sim, A B

    1998-01-01

    Hospitals are under pressure to respond to new challenges and competition. Many hospitals have used strategic planning to respond to these environmental changes. This exploratory study examines the extent of strategic planning in hospitals in two Australian States, New South Wales and Victoria, using a sample survey. Based on planning documentation, the study indicated that 47% of the hospitals surveyed did not have a strategic or business plan. A significant difference was found in the comprehensiveness of the plans between the two States. Plans from Victorian hospitals had more documented evidence of external/internal analysis, competitor orientation and customer orientation compared with plans from New South Wales hospitals. The paper discusses the limitations of the study and directions for future research.

  18. Far infrared spectra of solid state aliphatic amino acids in different protonation states

    NASA Astrophysics Data System (ADS)

    Trivella, Aurélien; Gaillard, Thomas; Stote, Roland H.; Hellwig, Petra

    2010-03-01

    Far infrared spectra of zwitterionic, cationic, and anionic forms of aliphatic amino acids in solid state have been studied experimentally. Measurements were done on glycine, L-alanine, L-valine, L-leucine, and L-isoleucine powder samples and film samples obtained from dried solutions prepared at pH ranging from 1 to 13. Solid state density functional theory calculations were also performed, and detailed potential energy distributions were obtained from normal mode results. A good correspondence between experimental and simulated spectra was achieved and this allowed us to propose an almost complete band assignment for the far infrared spectra of zwitterionic forms. In the 700-50 cm-1 range, three regions were identified, each corresponding to a characteristic set of normal modes. A first region between 700 and 450 cm-1 mainly contained the carboxylate bending, rocking, and wagging modes as well as the ammonium torsional mode. The 450-250 cm-1 region was representative of backbone and sidechain skeletal bending modes. At last, the low wavenumber zone, below 250 cm-1, was characteristic of carboxylate and skeletal torsional modes and of lattice modes. Assignments are also proposed for glycine cationic and anionic forms, but could not be obtained for all aliphatic amino acids due to the lack of structural data. This work is intended to provide fundamental information for the understanding of peptides vibrational properties.

  19. Hate Crimes and Stigma-Related Experiences among Sexual Minority Adults in the United States: Prevalence Estimates from a National Probability Sample

    ERIC Educational Resources Information Center

    Herek, Gregory M.

    2009-01-01

    Using survey responses collected via the Internet from a U.S. national probability sample of gay, lesbian, and bisexual adults (N = 662), this article reports prevalence estimates of criminal victimization and related experiences based on the target's sexual orientation. Approximately 20% of respondents reported having experienced a person or…

  20. Process and Formulation Effects on Protein Structure in Lyophilized Solids using Mass Spectrometric Methods

    PubMed Central

    Iyer, Lavanya K.; Sacha, Gregory A.; Moorthy, Balakrishnan S.; Nail, Steven L.; Topp, Elizabeth M.

    2016-01-01

    Myoglobin (Mb) was lyophilized in the absence (Mb-A) and presence (Mb-B) of sucrose in a pilot-scale lyophilizer with or without controlled ice nucleation. Cake morphology was characterized using scanning electron microscopy (SEM) and changes in protein structure were monitored using solid-state Fourier-transform infrared spectroscopy (ssFTIR), solid-state hydrogen-deuterium exchange-mass spectrometry (ssHDX-MS) and solid-state photolytic labeling-mass spectrometry (ssPL-MS). The results showed greater variability in nucleation temperature and irregular cake structure for formulations lyophilized without controlled nucleation. Controlled nucleation resulted in nucleation at ~ −5 °C and uniform cake structure. Formulations containing sucrose showed better retention of protein structure by all measures than formulations without sucrose. Samples lyophilized with and without controlled nucleation were similar by most measures of protein structure. However, ssPL-MS showed the greatest pLeu incorporation and more labeled regions for Mb-B lyophilized with controlled nucleation. The data support the use of ssHDX-MS and ssPL-MS to study formulation and process-induced conformational changes in lyophilized proteins. PMID:27044943

  1. Lunar Rotation and the Lunar Interior

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.

    2003-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/ solid-mantle boundary, and tidal Love number k2. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core plus Love number. Past detection of CMB flattening has been marginal but is improving, while direct detection of the core moment has not yet been achieved. Three decades of Lunar Laser Ranging (LLR) data are analyzed using a weighted least-squares approach. The lunar solution parameters include dissipation at the fluid-core/solid-mantle boundary, tidal dissipation, dissipation-related coefficients for rotation and orientation terms, potential Love number k2, a correction to the constant term in the tilt of the equator to the ecliptic which is meant to approximate the influence of core-mantle boundary flattening, and displacement Love numbers h2 and l2. Several solutions, with different combinations of solution parameters and constraints, are considered.

  2. Spontaneous Generation of Chirality in Simple Diaryl Ethers.

    PubMed

    Lennartson, Anders; Hedström, Anna; Håkansson, Mikael

    2015-07-01

    We studied the spontaneous formation of chiral crystals of four diaryl ethers, 3-phenoxybenzaldehyde, 1; 1,3-dimethyl-2-phenoxybenzene, 2; di(4-aminophenyl) ether, 3; and di(p-tolyl) ether, 4. Compounds 1, 3, and 4 form conformationally chiral molecules in the solid state, while the chirality of 2 arises from the formation of supramolecular helices. Compound 1 is a liquid at ambient temperature, but 2-4 are crystalline, and solid-state CD-spectroscopy showed that they could be obtained as optically active bulk samples. It should be noted that the optical activity arise upon crystallization, and no optically active precursors were used. Indeed, even commercial samples of 3 and 4 were found to be optically active, giving evidence for the ease at which total spontaneous resolution may occur in certain systems. © 2015 Wiley Periodicals, Inc.

  3. Innovative acoustic techniques for studying new materials and new developments in solid state physics

    NASA Astrophysics Data System (ADS)

    Maynard, Julian D.

    1994-06-01

    The goals of this project involve the use of innovative acoustic techniques to study new materials and new developments in solid state physics. Major accomplishments include (a) the preparation and publication of a number of papers and book chapters, (b) the measurement and new analysis of more samples of aluminum quasicrystal and its cubic approximant to eliminate the possibility of sample artifacts, (c) the use of resonant ultrasound to measure acoustic attenuation and determine the effects of heat treatment on ceramics, (d) the extension of our technique for measuring even lower (possibly the lowest) infrared optical absorption coefficient, and (e) the measurement of the effects of disorder on the propagation of a nonlinear pulse, and (f) the observation of statistical effects in measurements of individual bond breaking events in fracture.

  4. Vibrational Spectroscopy on Photoexcited Dye-Sensitized Films via Pump-Degenerate Four-Wave Mixing.

    PubMed

    Abraham, Baxter; Fan, Hao; Galoppini, Elena; Gundlach, Lars

    2018-03-01

    Molecular sensitization of semiconductor films is an important technology for energy and environmental applications including solar energy conversion, photocatalytic hydrogen production, and water purification. Dye-sensitized films are also scientifically complex and interesting systems with a long history of research. In most applications, photoinduced heterogeneous electron transfer (HET) at the molecule/semiconductor interface is of critical importance, and while great progress has been made in understanding HET, many open questions remain. Of particular interest is the role of combined electronic and vibrational effects and coherence of the dye during HET. The ultrafast nature of the process, the rapid intramolecular vibrational energy redistribution, and vibrational cooling present complications in the study of vibronic coupling in HET. We present the application of a time domain vibrational spectroscopy-pump-degenerate four-wave mixing (pump-DFWM)-to dye-sensitized solid-state semiconductor films. Pump-DFWM can measure Raman-active vibrational modes that are triggered by excitation of the sample with an actinic pump pulse. Modifications to the instrument for solid-state samples and its application to an anatase TiO 2 film sensitized by a Zn-porphyrin dye are discussed. We show an effective combination of experimental techniques to overcome typical challenges in measuring solid-state samples with laser spectroscopy and observe molecular vibrations following HET in a picosecond time window. The cation spectrum of the dye shows modes that can be assigned to the linker group and a mode that is localized on the Zn-phorphyrin chromophore and that is connected to photoexcitation.

  5. Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts

    NASA Astrophysics Data System (ADS)

    Hanson, Cynthia; Phongikaroon, Supathorn; Scott, Jill R.

    2014-07-01

    Laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential analytical tool to improve operations and safeguards for electrorefiners, such as those used in processing spent nuclear fuel. This study set out to better understand the effect of sample temperature and physical state on LIBS spectra of molten and solid salts by building calibration curves of cerium and assessing self-absorption, plasma temperature, electron density, and local thermal equilibrium (LTE). Samples were composed of a LiCl-KCl eutectic salt, an internal standard of MnCl2, and varying concentrations of CeCl3 (0.1, 0.3, 0.5, 0.8, and 1.0 wt.% Ce) under different temperatures (773, 723, 673, 623, and 573 K). Analysis of salts in their molten form is preferred as plasma plumes from molten samples experienced less self-absorption, less variability in plasma temperature, and higher clearance of the minimum electron density required for local thermal equilibrium. These differences are attributed to plasma dynamics as a result of phase changes. Spectral reproducibility was also better in the molten state due to sample homogeneity.

  6. Experimental aspect of solid-state nuclear magnetic resonance studies of biomaterials such as bones.

    PubMed

    Singh, Chandan; Rai, Ratan Kumar; Sinha, Neeraj

    2013-01-01

    Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly becoming a popular technique to probe micro-structural details of biomaterial such as bone with pico-meter resolution. Due to high-resolution structural details probed by SSNMR methods, handling of bone samples and experimental protocol are very crucial aspects of study. We present here first report of the effect of various experimental protocols and handling methods of bone samples on measured SSNMR parameters. Various popular SSNMR experiments were performed on intact cortical bone sample collected from fresh animal, immediately after removal from animal systems, and results were compared with bone samples preserved in different conditions. We find that the best experimental conditions for SSNMR parameters of bones correspond to preservation at -20 °C and in 70% ethanol solution. Various other SSNMR parameters were compared corresponding to different experimental conditions. Our study has helped in finding best experimental protocol for SSNMR studies of bone. This study will be of further help in the application of SSNMR studies on large bone disease related animal model systems for statistically significant results. © 2013 Elsevier Inc. All rights reserved.

  7. Combined, solid-state molecular property and gamma spectrometers for CBRNE detection

    NASA Astrophysics Data System (ADS)

    Rogers, Ben; Grate, Jay; Pearson, Brett; Gallagher, Neal; Wise, Barry; Whitten, Ralph; Adams, Jesse

    2013-05-01

    Nevada Nanotech Systems, Inc. (Nevada Nano) has developed a multi-sensor solution to Chemical, Biological, Radiological, Nuclear and Explosives (CBRNE) detection that combines the Molecular Property Spectrometer™ (MPS™)—a micro-electro-mechanical chip-based technology capable of measuring a variety of thermodynamic and electrostatic molecular properties of sampled vapors and particles—and a compact, high-resolution, solid-state gamma spectrometer module for identifying radioactive materials, including isotopes used in dirty bombs and nuclear weapons. By conducting multiple measurements, the system can provide a more complete characterization of an unknown sample, leading to a more accurate identification. Positive identifications of threats are communicated using an integrated wireless module. Currently, system development is focused on detection of commercial, military and improvised explosives, radioactive materials, and chemical threats. The system can be configured for a variety of CBRNE applications, including handheld wands and swab-type threat detectors requiring short sample times, and ultra-high sensitivity detectors in which longer sampling times are used. Here we provide an overview of the system design and operation and present results from preliminary testing.

  8. Expanded interleaved solid-state memory for a wide bandwidth transient waveform recorder

    NASA Technical Reports Server (NTRS)

    Thomas, R. M., Jr.

    1980-01-01

    An interleaved, solid state expanded memory for a 100 MHz bandwidth waveform recorder is described. The memory development resulted in a significant increase in the storage capacity of a commercially available recorder. The motivation for the memory expansion of the waveform recorder, which is used to support in-flight measurement of the electromagnetic characteristics of lightning discharges, was the need for a significantly longer data window than that provided by the commercially available unit. The expanded recorder provides a data window that is 128 times longer than the commercial unit, while maintaining the same time resolution, by increasing the storage capacity from 1024 to 131 072 data samples. The expanded unit operates at sample periods as small as 10 ns. Sampling once every 10 ns, the commercial unit records for about 10 microseconds before the memory is filled, whereas, the expanded unit records for about 1300 microseconds. A photo of the expanded waveform recorder is shown.

  9. Enhancement of dielectric constant at percolation threshold in CaCu3 Ti4 O12 ceramic fabricated by both solid state and sol-gel process

    NASA Astrophysics Data System (ADS)

    Mukherjee, Rupam; Garcia, Lucia; Lawes, Gavin; Nadgorny, Boris

    2014-03-01

    We have investigated the large dielectric enhancement at the percolation threshold by introducing metallic RuO2 grains into a matrix of CaCu3Ti4O12 (CCTO). The intrinsic response of the pure CCTO samples prepared by solid state and sol-gel processes results in a dielectric constant on the order of 104 and 103 respectively with low loss. Scanning electron microscopy and energy dispersive x-ray spectroscopy indicate that a difference in the thickness of the copper oxide enriched grain boundary is the main reason for the different dielectric properties between these two samples. Introducing RuO2 metallic fillers in these CCTO samples yields a sharp increase of the dielectric constant at percolation threshold fc, by a factor of 6 and 3 respectively. The temperature dependence of the dielectric constant shows that the dipolar relaxation plays an important role in enhancing dielectric constant in composite systems.

  10. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun

    In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less

  11. Preliminary analytical results for a mud sample collected from the LUSI Mud Volcano, Sidoarjo, East Java, Indonesia

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Casadevall, Thomas J.; Wibowo, Handoko T.; Rosenbauer, Robert J.; Johnson, Craig A.; Breit, George N.; Lowers, Heather; Wolf, Ruth E.; Hageman, Philip L.; Goldstein, Harland L.; Anthony, Michael W.; Berry, Cyrus J.; Fey, David L.; Meeker, Gregory P.; Morman, Suzette A.

    2008-01-01

    On May 29, 2006, mud and gases began erupting unexpectedly from a vent 150 meters away from a hydrocarbon exploration well near Sidoarjo, East Java, Indonesia. The eruption, called the LUSI (Lumpur 'mud'-Sidoarjo) mud volcano, has continued since then at rates as high as 160,000 m3 per day. At the request of the United States Department of State, the U.S. Geological Survey (USGS) has been providing technical assistance to the Indonesian Government on the geological and geochemical aspects of the mud eruption. This report presents initial characterization results of a sample of the mud collected on September 22, 2007, as well as inerpretive findings based on the analytical results. The focus is on characteristics of the mud sample (including the solid and water components of the mud) that may be of potential environmental or human health concern. Characteristics that provide insights into the possible origins of the mud and its contained solids and waters have also been evaluated.

  12. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging

    DOE PAGES

    Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun; ...

    2015-04-20

    In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less

  13. Advances in Theory of Solid-State Nuclear Magnetic Resonance.

    PubMed

    Mananga, Eugene S; Moghaddasi, Jalil; Sana, Ajaz; Akinmoladun, Andrew; Sadoqi, Mostafa

    Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to describe the time evolution of the spin system at all times are presented. This review article presents a broad view of manipulations of spin systems in solid-state NMR, based on milestones theories including the average Hamiltonian theory and the Floquet theory, and the approaches currently developing such as the Floquet-Magnus expansion and the Fer expansion. All these approaches provide procedures to control and describe the spin dynamics in solid-state NMR. Applications of these theoretical methods to stroboscopic and synchronized manipulations, non-synchronized experiments, multiple incommensurated frequencies, magic-angle spinning samples, are illustrated. We also reviewed the propagators of these theories and discussed their convergences. Note that the FME is an extension of the popular Magnus Expansion and Average Hamiltonian Theory. It aims is to bridge the AHT to the Floquet Theorem but in a more concise and efficient formalism. Calculations can then be performed in a finite-dimensional Hilbert space instead of an infinite dimensional space within the so-called Floquet theory. We expected that the FME will provide means for more accurate and efficient spin dynamics simulation and for devising new RF pulse sequence.

  14. Infrared vibrational nanocrystallography and nanoimaging

    PubMed Central

    Muller, Eric A.; Pollard, Benjamin; Bechtel, Hans A.; van Blerkom, Peter; Raschke, Markus B.

    2016-01-01

    Molecular solids and polymers can form low-symmetry crystal structures that exhibit anisotropic electron and ion mobility in engineered devices or biological systems. The distribution of molecular orientation and disorder then controls the macroscopic material response, yet it is difficult to image with conventional techniques on the nanoscale. We demonstrated a new form of optical nanocrystallography that combines scattering-type scanning near-field optical microscopy with both optical antenna and tip-selective infrared vibrational spectroscopy. From the symmetry-selective probing of molecular bond orientation with nanometer spatial resolution, we determined crystalline phases and orientation in aggregates and films of the organic electronic material perylenetetracarboxylic dianhydride. Mapping disorder within and between individual nanoscale domains, the correlative hybrid imaging of nanoscale heterogeneity provides insight into defect formation and propagation during growth in functional molecular solids. PMID:27730212

  15. A Review of PAT Strategies in Secondary Solid Oral Dosage Manufacturing of Small Molecules.

    PubMed

    Laske, Stephan; Paudel, Amrit; Scheibelhofer, Otto

    2017-03-01

    Pharmaceutical solid oral dosage product manufacturing is a well-established, yet revolutionizing area. To this end, process analytical technology (PAT) involves interdisciplinary and multivariate (chemical, physical, microbiological, and mathematical) methods for material (e.g., materials, intermediates, products) and process (e.g., temperature, pressure, throughput, etc.) analysis. This supports rational process modeling and enhanced control strategies for improved product quality and process efficiency. Therefore, it is often difficult to orient and find the relevant, integrated aspects of the current state-of-the-art. Especially, the link between fundamental research, in terms of sensor and control system development, to the application both in laboratory and manufacturing scale, is difficult to comprehend. This review compiles a nonexhaustive overview on current approaches from the recognized academia and industrial practices of PAT, including screening, selection, and final implementations in solid oral dosage manufacturing, through a wide diversity of use cases. Finally, the authors attempt to extract a common consensus toward developing PAT application guidance for different unit operations of drug product manufacturing. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Real-time control system for adaptive resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flath, L; An, J; Brase, J

    2000-07-24

    Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.

  17. Field-cycling NMR with high-resolution detection under magic-angle spinning: determination of field-window for nuclear hyperpolarization in a photosynthetic reaction center.

    PubMed

    Gräsing, Daniel; Bielytskyi, Pavlo; Céspedes-Camacho, Isaac F; Alia, A; Marquardsen, Thorsten; Engelke, Frank; Matysik, Jörg

    2017-09-21

    Several parameters in NMR depend on the magnetic field strength. Field-cycling NMR is an elegant way to explore the field dependence of these properties. The technique is well developed for solution state and in relaxometry. Here, a shuttle system with magic-angle spinning (MAS) detection is presented to allow for field-dependent studies on solids. The function of this system is demonstrated by exploring the magnetic field dependence of the solid-state photochemically induced nuclear polarization (photo-CIDNP) effect. The effect allows for strong nuclear spin-hyperpolarization in light-induced spin-correlated radical pairs (SCRPs) under solid-state conditions. To this end, 13 C MAS NMR is applied to a photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wildtype (WT). For induction of the effect in the stray field of the magnet and its subsequent observation at 9.4 T under MAS NMR conditions, the sample is shuttled by the use of an aerodynamically driven sample transfer technique. In the RC, we observe the effect down to 0.25 T allowing to determine the window for the occurrence of the effect to be between about 0.2 and 20 T.

  18. MERCURY MEASUREMENTS USING DIRECT-ANALYZER ...

    EPA Pesticide Factsheets

    Under EPA's Water Quality Research Program, exposure studies are needed to determine how well control strategies and guidance are working. Consequently, reliable and convenient techniques that minimize waste production are of special interest. While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighing the solid in a sampling boat and initiating the instrumental analysis for total mercury. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at con

  19. Comparison of the recovery of Mycobacterium bovis isolates using the BACTEC MGIT 960 system, BACTEC 460 system, and Middlebrook 7H10 and 7H11 solid media.

    PubMed

    Hines, Nichole; Payeur, Janet B; Hoffman, Lorraine J

    2006-05-01

    The BACTEC Microbacteria Growth Indicator Tube (MGIT) 960 system was evaluated to determine how it compares with the BACTEC 460 radiometric system and solid media for recovery of Mycobacterium bovis from tissue samples. A total of 506 bovine lymph node samples were collected from abattoirs in the United States and Mexico between November 2003 and September 2004. Processed samples were inoculated into an MGIT 960 tube, BACTEC 460 vial, and Middlebrook 7H10 and Middlebrook 7H11 solid media. Ziehl-Neelsen slides were prepared to check for contaminants and confirm the presence of acid-fast positive bacilli. Samples containing acid-fast bacilli were confirmed as members of the Mycobacterium tuberculosis complex by a nucleic acid assay. Niacin and nitrate biochemical tests were used to distinguish M. bovis from M. tuberculosis isolates. Statistical analyses were performed to compare recovery rate, mean time to detection, contamination rates, as well as pair-wise comparisons in each category. The results showed that the MGIT 960 system had a higher recovery rate of M. bovis (122/129) than did the BACTEC 460 (102/129) and solid media system (96/129). The average time to detection was 15.8 days for the MGIT 960 system, 28.2 days for the BACTEC 460 system, and 43.4 days for solid media. Contamination rates were 6.9% for the MGIT 960 system, 3.4% for the BACTEC 460 system, and 21.7% for solid media. These results indicate the MGIT 960 system can be used as an alternative to the BACTEC 460 system for recovering M. bovis from tissue samples.

  20. A comparison study of rhodamine B photodegradation over nitrogen-doped lamellar niobic acid and titanic acid under visible-light irradiation.

    PubMed

    Li, Xiukai; Kikugawa, Naoki; Ye, Jinhua

    2009-01-01

    A solid-state reaction method with urea as a nitrogen precursor was used to prepare nitrogen-doped lamellar niobic and titanic solid acids (i.e., HNb(3)O(8) and H(2)Ti(4)O(9)) with different acidities for visible-light photocatalysis. The photocatalytic activities of the nitrogen-doped solid acids were evaluated for rhodamine B (RhB) degradation and the results were compared with those obtained over the corresponding nitrogen-doped potassium salts. Techniques such as XRD, BET, SEM, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy were adopted to explore the nature of the materials as well as the characteristics of the doped nitrogen species. It was found that the intercalation of the urea precursor helped to stabilize the layered structures of both lamellar solid acids and enabled easier nitrogen doping. The effects of urea intercalation were more significant for the more acidic HNb(3)O(8) sample than for the less acidic H(2)Ti(4)O(9). Compared with the nitrogen-doped KNb(3)O(8) and K(2)Ti(4)O(9) samples, the nitrogen-doped HNb(3)O(8) and H(2)Ti(4)O(9) solid acids absorb more visible light and exhibit a superior activity for RhB photodegradation under visible-light irradiation. The nitrogen-doped HNb(3)O(8) sample performed the best among all the samples. The results of the current study suggest that the protonic acidity of the lamellar solid-acid sample is a key factor that influences nitrogen doping and the resultant visible-light photocatalysis.

  1. Computed reconstruction of spatial ammonoid-shell orientation captured from digitized grinding and landmark data

    NASA Astrophysics Data System (ADS)

    Lukeneder, Susanne; Lukeneder, Alexander; Weber, Gerhard W.

    2014-03-01

    The internal orientation of fossil mass occurrences can be exploited as useful source of information about their primary depositional conditions. A series of studies, using different kinds of fossils, especially those with elongated shape (e.g., elongated gastropods), deal with their orientation and the subsequent reconstruction of the depositional conditions (e.g., paleocurrents and transport mechanisms). However, disk-shaped fossils like planispiral cephalopods or gastropods were used, up to now, with caution for interpreting paleocurrents. Moreover, most studies just deal with the topmost surface of such mass occurrences, due to the easier accessibility. Within this study, a new method for three-dimensional reconstruction of the internal structure of a fossil mass occurrence and the subsequent calculation of its spatial shell orientation is established. A 234 million-years-old (Carnian, Triassic) monospecific mass occurrence of the ammonoid Kasimlarceltites krystyni from the Taurus Mountains in Turkey, embedded in limestone, is used for this pilot study. Therefore, a 150×45×140 mm3 block of the ammonoid bearing limestone bed has been grinded to 70 slices, with a distance of 2 mm between each slice. By using a semi-automatic region growing algorithm of the 3D-visualization software Amira, ammonoids of a part of this mass occurrence were segmented and a 3D-model reconstructed. Landmarks, trigonometric and vector-based calculations were used to compute the diameters and the spatial orientation of each ammonoid. The spatial shell orientation was characterized by dip and dip-direction and aperture direction of the longitudinal axis, as well as by dip and azimuth of an imaginary sagittal-plane through each ammonoid. The exact spatial shell orientation was determined for a sample of 675 ammonoids, and their statistical orientation analyzed (i.e., NW/SE). The study combines classical orientation analysis with modern 3D-visualization techniques, and establishes a novel spatial orientation analyzing method, which can be adapted to any kind of abundant solid matter.

  2. Predicting protein aggregation during storage in lyophilized solids using solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS).

    PubMed

    Moorthy, Balakrishnan S; Schultz, Steven G; Kim, Sherry G; Topp, Elizabeth M

    2014-06-02

    Solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS) was used to assess the conformation of myoglobin (Mb) in lyophilized formulations, and the results correlated with the extent of aggregation during storage. Mb was colyophilized with sucrose (1:1 or 1:8 w/w), mannitol (1:1 w/w), or NaCl (1:1 w/w) or in the absence of excipients. Immediately after lyophilization, samples of each formulation were analyzed by ssHDX-MS and Fourier transform infrared spectroscopy (FTIR) to assess Mb conformation, and by dynamic light scattering (DLS) and size exclusion chromatography (SEC) to determine the extent of aggregation. The remaining samples were then placed on stability at 25 °C and 60% RH or 40 °C and 75% RH for up to 1 year, withdrawn at intervals, and analyzed for aggregate content by SEC and DLS. In ssHDX-MS of samples immediately after lyophilization (t = 0), Mb was less deuterated in solids containing sucrose (1:1 and 1:8 w/w) than in those containing mannitol (1:1 w/w), NaCl (1:1 w/w), or Mb alone. Deuterium uptake kinetics and peptide mass envelopes also indicated greater Mb structural perturbation in mannitol, NaCl, or Mb-alone samples at t = 0. The extent of deuterium incorporation and kinetic parameters related to rapidly and slowly exchanging amide pools (Nfast, Nslow), measured at t = 0, were highly correlated with the extent of aggregation on storage as measured by SEC. In contrast, the extent of aggregation was weakly correlated with FTIR band intensity and peak position measured at t = 0. The results support the use of ssHDX-MS as a formulation screening tool in developing lyophilized protein drug products.

  3. Room temperature luminescence and ferromagnetism of AlN:Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn; Cai, G. M.; Wang, W. J., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn

    2016-06-15

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe{sup 2+} state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  4. Interplay between membrane curvature and protein conformational equilibrium investigated by solid-state NMR.

    PubMed

    Liao, Shu Y; Lee, Myungwoon; Hong, Mei

    2018-03-01

    Many membrane proteins sense and induce membrane curvature for function, but structural information about how proteins modulate their structures to cause membrane curvature is sparse. We review our recent solid-state NMR studies of two virus membrane proteins whose conformational equilibrium is tightly coupled to membrane curvature. The influenza M2 proton channel has a drug-binding site in the transmembrane (TM) pore. Previous chemical shift data indicated that this pore-binding site is lost in an M2 construct that contains the TM domain and a curvature-inducing amphipathic helix. We have now obtained chemical shift perturbation, protein-drug proximity, and drug orientation data that indicate that the pore-binding site is restored when the full cytoplasmic domain is present. This finding indicates that the curvature-inducing amphipathic helix distorts the TM structure to interfere with drug binding, while the cytoplasmic tail attenuates this effect. In the second example, we review our studies of a parainfluenza virus fusion protein that merges the cell membrane and the virus envelope during virus entry. Chemical shifts of two hydrophobic domains of the protein indicate that both domains have membrane-dependent backbone conformations, with the β-strand structure dominating in negative-curvature phosphatidylethanolamine (PE) membranes. 31 P NMR spectra and 1 H- 31 P correlation spectra indicate that the β-strand-rich conformation induces saddle-splay curvature to PE membranes and dehydrates them, thus stabilizing the hemifusion state. These results highlight the indispensable role of solid-state NMR to simultaneously determine membrane protein structures and characterize the membrane curvature in which these protein structures exist. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Deducing 2D Crystal Structure at the Solid/Liquid Interface with Atomic Resolution by Combined STM and SFG Study

    NASA Astrophysics Data System (ADS)

    McClelland, Arthur; Ahn, Seokhoon; Matzger, Adam J.; Chen, Zhan

    2009-03-01

    Supplemented by computed models, Scanning Tunneling Microscopy (STM) can provide detailed structure of 2D crystals formed at the liquid/solid interface with atomic resolution. However, some structural information such as functional group orientations in such 2D crystals needs to be tested experimentally to ensure the accuracy of the deduced structures. Due to the limited sensitivity, many other experimental techniques such as Raman and infrared spectroscopy have not been allowed to provide such structural information of 2D crystals. Here we showed that Sum Frequency Generation Vibrational Spectroscopy (SFG) can measure average orientation of functional groups in such 2D crystals, or physisorbed monolayers, providing key experimental data to aid in the modeling and interpretation of the STM images. The usefulness of combining these two techniques is demonstrated with a phthalate diesters monolayer formed at the 1-phenyloctane/ highly oriented pyrolytic graphite (HOPG) interface. The spatial orientation of the ester C=O of the monolayer was successfully determined using SFG.

  6. Educational Evaluation: The State of the Field.

    ERIC Educational Resources Information Center

    Wolf, Richard M., Ed.

    1987-01-01

    Educational evaluation is discussed. Topics include: an evaluation framework, educational objectives and study design from a 20-year perspective, a sample study, educational evaluation for local school improvement, decision-oriented evaluation studies, reporting study results, and professional standards for assuring the quality of educational…

  7. Performance-oriented packaging testing of PPP-B-601 ERAPS wood box for packing Group II solid hazardous material. Test report for Oct 91

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, E.

    1991-10-01

    Qualification tests were performed to determine whether the in-service PPP-B-601 ERAPS Wood Box could be utilized to contain properly dunnaged solid type hazardous materials weighing up to a gross weight of 237 kg (523 pounds). The tests were conducted in accordance with Performance Oriented Packaging (POP) requirements specified by the United Nations Recommendations on the Transportation of Dangerous Goods. The box has conformed to the POP performance requirements; i.e., the box successfully retained its contents throughout the stacking, vibration and drop tests.

  8. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico.

    PubMed

    Villalba, L; Colmenero Sujo, L; Montero Cabrera, M E; Cano Jiménez, A; Rentería Villalobos, M; Delgado Mendoza, C J; Jurado Tenorio, L A; Dávila Rangel, I; Herrera Peraza, E F

    2005-01-01

    This paper reports (222)Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited (222)Rn concentrations exceeding 11Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of (222)Rn found may be entirely attributed to the nature of aquifer rocks.

  9. Moving bed reactor setup to study complex gas-solid reactions.

    PubMed

    Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih

    2007-08-01

    A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.

  10. Thermodynamic and kinetic anisotropies in octane thin films.

    PubMed

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-12-07

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵS. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵS, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵS) substrates undergo "pre-freezing," characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵS) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations-proposed in the above-mentioned work-in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing inherent structure calculations, and observe no noticeable difference between the free surface and the bulk in efficiently exploring the potential energy landscape. This is unlike the films of model atomic glass formers that tend to sample their respective landscape more efficiently at free surfaces. We discuss the implications of this finding to the ability of octane-and other n-alkanes-to form ultrastable glasses.

  11. Sexual Orientation Differences in Satisfaction with Healthcare: Findings from the Behavioral Risk Factor Surveillance System, 2014.

    PubMed

    Blosnich, John R

    2017-06-01

    In the United States, the Affordable Care Act and marriage equality may have eased sexual orientation-based differences in access to healthcare coverage, but limited research has investigated sexual orientation-based differences in healthcare satisfaction. The purpose of this study was to examine whether satisfaction with healthcare varied by sexual orientation in a large population-based sample of adults. Data are from the 2014 Behavioral Risk Factor Surveillance System, including items about sexual orientation and healthcare (n = 113,317). Healthcare coverage included employer-based insurance; individually purchased insurance; Medicare; Medicaid; or TRICARE, VA, or military care. Respondents indicated whether they were "very satisfied, somewhat satisfied, or not at all satisfied" with healthcare. After adjusting for several sociodemographic covariates, lesbian, gay, and bisexual status was associated with lower satisfaction with healthcare with individually purchased insurance (adjusted odds ratio = 1.49, 95% confidence interval = 1.24-1.80). Efforts are needed to examine and reduce sexual orientation differences in satisfaction with healthcare.

  12. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.

    PubMed

    Liu, Mingjie; Zheng, Yongmei; Zhai, Jin; Jiang, Lei

    2010-03-16

    Super-antiwetting interfaces, such as superhydrophobic and superamphiphobic surfaces in air and superoleophobic interfaces in water, with special liquid-solid adhesion have recently attracted worldwide attention. Through tuning surface microstructures and compositions to achieve certain solid/liquid contact modes, we can effectively control the liquid-solid adhesion in a super-antiwetting state. In this Account, we review our recent progress in the design and fabrication of these bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Low-adhesion superhydrophobic surfaces are biologically inspired, typically by the lotus leaf. Wettability investigated at micro- and nanoscale reveals that the low adhesion of the lotus surface originates from the composite contact mode, a microdroplet bridging several contacts, within the hierarchical structures. Recently high-adhesion superhydrophobic surfaces have also attracted research attention. These surfaces are inspired by the surfaces of gecko feet and rose petals. Accordingly, we propose two biomimetic approaches for the fabrication of high-adhesion superhydrophobic surfaces. First, to mimic a sticky gecko's foot, we designed structures with nanoscale pores that could trap air isolated from the atmosphere. In this case, the negative pressure induced by the volume change of sealed air as the droplet is pulled away from surface can produce a normal adhesive force. Second, we constructed microstructures with size and topography similar to that of a rose petal. The resulting materials hold air gaps in their nanoscale folds, controlling the superhydrophobicity in a Wenzel state on the microscale. Furthermore, we can tune the liquid-solid adhesion on the same superhydrophobic surface by dynamically controlling the orientations of microstructures without altering the surface composition. The superhydrophobic wings of the butterfly (Morpho aega) show directional adhesion: a droplet easily rolls off the surface of wings along one direction but is pinned tightly against rolling in the opposite direction. Through coordinating the stimuli-responsive materials and appropriate surface-geometry structures, we developed materials with reversible transitions between a low-adhesive rolling state and a high-adhesive pinning state for water droplets on the superhydrophobic surfaces, which were controlled by temperature and magnetic and electric fields. In addition to the experiments done in air, we also demonstrated bioinspired superoleophobic water/solid interfaces with special adhesion to underwater oil droplets and platelets. In these experiments, the high content of water trapped in the micro- and nanostructures played a key role in reducing the adhesion of the oil droplets and platelets. These findings will offer innovative insights into the design of novel antibioadhesion materials.

  13. Specific Conductance and Dissolved-Solids Characteristics for the Green River and Muddy Creek, Wyoming, Water Years 1999-2008

    USGS Publications Warehouse

    Clark, Melanie L.; Davidson, Seth L.

    2009-01-01

    Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy Creek reflect the different basin characteristics. Relations between specific conductance and dissolved-solids concentrations were statistically significant for the Green River (p-value less than 0.001) and Muddy Creek (p-value less than 0.001); therefore, specific conductance can be used to estimate dissolved-solids concentrations. Using continuous specific conductance values to estimate dissolved solids in real-time on the World Wide Web increases the amount and improves the timeliness of data available to water managers for assessing dissolved-solids concentrations in the Colorado River Basin.

  14. Effect of Preferential Orientation of Lamellae in the Interfacial Region between a Block Copolymer-based Pressure-Sensitive Adhesive and a Solid Substrate on the Peel Strength.

    PubMed

    Shimokita, Keisuke; Saito, Itsuki; Yamamoto, Katsuhiro; Takenaka, Mikihito; Yamada, Norifumi L; Miyazaki, Tsukasa

    2018-02-27

    We have investigated the relationship between the peel strength of a block copolymer-based pressure-sensitive adhesive comprising of poly(methyl methacrylate) (PMMA) and poly(n-butyl acrylate) (PnBA) components from the substrate and the microdomain orientations in the interfacial region between the adhesive and the substrate. For the PMMA substrate, the PMMA component in the adhesive with a strong affinity for the substrate is attached to the surface of the substrate during an aging process of the sample at 140 °C. Next, the PMMA layer adjacent to the substrate surface is overlaid with a PnBA layer, which gets covalently connected, resulting in the horizontal alignment of the lamellae in the interfacial region. The peel strength of the adhesive substantially increases during aging at 140 °C, which takes the same time as the completion of the horizontally oriented lamellar structure. However, in the case of the polystyrene (PS) substrate, both the components in the adhesive repel the substrate, leading to the formation of the vertically oriented lamellar structure. As a result, the peel strength of the adhesive with respect to its PS substrate does not entirely increase on aging. It is suggested that the peel strength of the adhesive is highly correlated with the interfacial energy between the adhesive and substrate, which can be estimated from the microdomain orientation in the interfacial region.

  15. Supramolecular self-assemblies of beta-cyclodextrins with aromatic tethers: factors governing the helical columnar versus linear channel superstructures.

    PubMed

    Liu, Yu; Fan, Zhi; Zhang, Heng-Yi; Yang, Ying-Wei; Ding, Fei; Liu, Shuang-Xi; Wu, Xue; Wada, Takehiko; Inoue, Yoshihisa

    2003-10-31

    A series of 6-O-(p-substituted phenyl)-modified beta-cyclodextrin derivatives, i.e., 6-O-(4-bromophenyl)-beta-CD (1), 6-O-(4-nitrophenyl)-beta-CD (2), 6-O-(4-formylphenyl)-beta-CD (3), 6-phenylselenyl-6-deoxy-beta-CD (4), and 6-O-(4-hydroxybenzoyl)-beta-CD (5), were synthesized, and their inclusion complexation behavior in aqueous solution and self-assembling behavior in the solid state were comparatively studied by NMR spectroscopy, microcalorimetry, crystallography, and scanning tunneling microscopy. Interestingly, (seleno)ethers 1-4 and ester 5 displayed distinctly different self-assembling behavior in the solid state, affording a successively threading head-to-tail polymeric helical structure for the (seleno)ethers or a mutually penetrating tail-to-tail dimeric columnar channel structure for the ester. Combining the present and previous structures reported for the relevant beta-CD derivatives, we further deduce that the pivot heteroatom, through which the aromatic substituent is tethered to beta-CD, plays a critical role in determining the helix structure, endowing the 2-fold and 4-fold axes to the N/O- and S/Se-pivoted beta-CD aggregates, respectively. This means that one can control the self-assembling orientation, alignment, and helicity in the solid state by finely tuning the pivot atom and the tether length. Further NMR and calorimetric studies on the self-assembling behavior in aqueous solution revealed that the dimerization step is the key to the formation of linear polymeric supramolecular architecture, which is driven by favorable entropic contributions.

  16. Synthesis and characterization of iron based superconductor Nd-1111

    NASA Astrophysics Data System (ADS)

    Alborzi, Z.; Daadmehr, V.

    2018-06-01

    Polycrystalline sample of NdFeAsO0.8F0.2 was prepared by one-step solid-state reaction method. The structural and electrical properties of sample were characterized through XRD pattern and the 4-probe method. The critical temperature was obtained at 56 K. The crystal structure was tetragonal with P4/nmm:2 symmetry group.

  17. Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing.

    PubMed

    Li, Zhengqiu; Zhao, Xiaowen; Ye, Lin; Coates, Phil; Caton-Rose, Fin; Martyn, Michasel

    2014-03-01

    Highly oriented poly(lactic acid) (PLA)/multi-walled carbon nanotubes (MWNTs) composites were fabricated through solid hot drawing technology in an effort to improve the mechanical properties and blood biocompatibility of PLA as blood-contacting medical devices. It was found that proper MWNTs content and drawing orientation can improve the tensile strength and modulus of PLA dramatically. With the increase in draw ratio, the cold crystallization peak became smaller, and the glass transition and the melting peak of PLA moved to high temperature, while the crystallinity increased, and the grain size decreased, indicating the stress-induced crystallization of PLA during drawing. MWNTs showed a nucleation effect on PLA, leading to the rise in the melting temperature, increase in crystallinity and reduction of spherulite size for the composites. Moreover, the intensity of (002) diffraction of MWNTs increased with draw ratio, indicating that MWNTs were preferentially aligned and oriented during drawing. Microstructure observation demonstrated that PLA matrix had an ordered fibrillar bundle structure, and MWNTs in the composite tended to align parallel to the drawing direction. In addition, the dispersion of MWNTs in PLA was also improved by orientation. Introduction of MWNTs and drawing orientation could significantly enhance the blood compatibility of PLA by prolonging kinetic clotting time, reducing hemolysis ratio and platelet activation.

  18. Investigation of phase segregation using Rietveld refinement in Mg doped BaTiO3 solid solutions and their ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Aanchal, Kaur, Kiranpreet; Singh, Anupinder; Singh, Mandeep

    2018-05-01

    Ba(1-x) Mgx Ti O3 (BMT) samples were synthesised using solid state reaction route with `x' varying from 0.025 to 0.10. The structural and ferroelectric properties of the bulk samples were investigated. The XRD analysis shows the presence of two phases, the first phase being magnesium doped BT (space group P4mm) and the second phase being Ba2TiO4 (space group Pna21). The tetragonal phase was found to be the major phase in the samples. The double phase Rietveld refinement was done and the weight percentage of orthorhombic phase was found to vary from 3.43% to 6.96% for x varying from 0.025≤x≤0.10. The P - E measurements reveal that all the samples exhibit lossy behaviour.

  19. Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997

    USGS Publications Warehouse

    Dawson, Barbara J.

    2001-01-01

    In 1997, the U.S. Geological Survey installed and sampled 28 wells in rice areas in the Sacramento Valley as part of the National Water-Quality Assessment Program. The purpose of the study was to assess the shallow ground-water quality and to determine whether any effects on water quality could be related to human activities and particularly rice agriculture. The wells installed and sampled were between 8.8 and 15.2 meters deep, and water levels were between 0.4 and 8.0 meters below land surface. Ground-water samples were analyzed for 6 field measurements, 29 inorganic constituents, 6 nutrient constituents, dissolved organic carbon, 86 pesticides, tritium (hydrogen- 3), deuterium (hydrogen-2), and oxygen-18. At least one health-related state or federal drinking-water standard (maximum contaminant or long-term health advisory level) was exceeded in 25 percent of the wells for barium, boron, cadmium, molybdenum, or sulfate. At least one state or federal secondary maximum contaminant level was exceeded in 79 percent of the wells for chloride, iron, manganese, specific conductance, or dissolved solids. Nitrate and nitrite were detected at concentrations below state and federal 2000 drinking-water standards; three wells had nitrate concentrations greater than 3 milligrams per liter, a level that may indicate impact from human activities. Ground-water redox conditions were anoxic in 26 out of 28 wells sampled (93 percent). Eleven pesticides and one pesticide degradation product were detected in ground-water samples. Four of the detected pesticides are or have been used on rice crops in the Sacramento Valley (bentazon, carbofuran, molinate, and thiobencarb). Pesticides were detected in 89 percent of the wells sampled, and rice pesticides were detected in 82 percent of the wells sampled. The most frequently detected pesticide was the rice herbicide bentazon, detected in 20 out of 28 wells (71 percent); the other pesticides detected have been used for rice, agricultural, and non-agricultural purposes. All pesticide concentrations were below state and federal 2000 drinking-water standards. The relation of the ground-water quality to natural processes and human activities was tested using statistical methods (Spearman rank correlation, Kruskal?Wallis, or rank-sum tests) to determine whether an influence from rice land-use or other human activities on ground-water chemistry could be identified. The detection of pesticides in 89 percent of the wells sampled indicates that human activities have affected shallow ground-water quality. Concentrations of dissolved solids and inorganic constituents that exceeded state or federal 2000 drinking-water standards showed a statistical relation to geomorphic unit. This is interpreted as a relation to natural processes and variations in geology in the Sacramento River Basin; the high concentrations of dissolved solids and most inorganic constituents did not appear to be related to rice land use. No correlation was found between nitrate concentration and pesticide occurrence, indicating that an absence of high nitrate concentrations is not a predictor of an absence of pesticide contamination in areas with reducing ground-water conditions in the Sacramento Valley. Tritium concentrations, pesticide detections, stable isotope data, and dissolved-solids concentrations suggest that shallow ground water in the ricegrowing areas of the Sacramento Valley is a mix of recently recharged ground water containing pesticides, nitrate, and tritium, and unknown sources of water that contains high concentrations of dissolved solids and some inorganic constituents and is enriched in oxygen-18. Evaporation of applied irrigation water, which leaves behind salt, accounts for some of the elevated concentrations of dissolved solids. More work needs to be done to understand the connections between the land surface, shallow ground water, deep ground water, and the drinking-water supplies in the Sacramento Valley.

  20. Prediction of recrystallization behavior of troglitazone/polyvinylpyrrolidone solid dispersion by solid-state NMR.

    PubMed

    Ito, Atsutoshi; Watanabe, Tomoyuki; Yada, Shuichi; Hamaura, Takeshi; Nakagami, Hiroaki; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2010-01-04

    The purpose of this study was to elaborate the relationship between the (13)C CP/MAS NMR spectra and the recrystallization behavior during the storage of troglitazone solid dispersions. The solid dispersions were prepared by either the solvent method or by co-grinding. The recrystallization behavior under storage conditions at 40 degrees C/94% RH was evaluated by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. Solid dispersions prepared by the solvent method or by prolonged grinding brought about inhibition of the nucleation and the nuclei growth at the same time. No differences in the PXRD profiles were found in the samples prepared by the co-grinding and solvent methods, however, (13)C CP/MAS NMR showed significant differences in the spectra. The correlation coefficients using partial least square regression analysis between the PXRD profiles and the apparent nuclei-growth constant or induction period to nucleation were 0.1305 or 0.6350, respectively. In contrast, those between the (13)C CP/MAS NMR spectra and the constant or the period were 0.9916 or 0.9838, respectively. The (13)C CP/MAS NMR spectra had good correlation with the recrystallization kinetic parameters evaluated by the KJMA equation. Consequently, solid-state NMR was judged to be a useful tool for the prediction of the recrystallization behavior of solid dispersions.

  1. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.

    PubMed

    Takahashi, Hiroki; Ayala, Isabel; Bardet, Michel; De Paëpe, Gaël; Simorre, Jean-Pierre; Hediger, Sabine

    2013-04-03

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.

  2. Thermal Stability and Kinetic Study of Fluvoxamine Stability in Binary Samples with Lactose.

    PubMed

    Ghaderi, Faranak; Nemati, Mahboob; Siahi-Shadbad, Mohammad Reza; Valizadeh, Hadi; Monajjemzadeh, Farnaz

    2017-04-01

    Purpose: In the present study the incompatibility of FLM (fluvoxamine) with lactose in solid state mixtures was investigated. The compatibility was evaluated using different physicochemical methods such as differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy and mass spectrometry. Methods: Non-Isothermally stressed physical mixtures were used to calculate the solid-state kinetic parameters. Different thermal models such as Friedman, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) were used for the characterization of the drug-excipient interaction. Results: Overall, the incompatibility of FLM with lactose as a reducing carbohydrate was successfully evaluated and the activation energy of this interaction was calculated. Conclusion: In this research the lactose and FLM Maillard interaction was proved using physicochemical techniques including DSC and FTIR. It was shown that DSC- based kinetic analysis provides fast and versatile kinetic comparison of Arrhenius activation energies for different pharmaceutical samples.

  3. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.

    14N ultra-wideline (UW), 1H{ 15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH + and RR'NH 2 +) or other (i.e., RNH 2 and RNO 2) nitrogen environments.« less

  4. Sol-gel synthesis, phase composition, morphological and structural characterization of Ca10(PO4)6(OH)2: XRD, FTIR, SEM, 3D SEM and solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Kareiva, Simonas; Klimavicius, Vytautas; Momot, Aleksandr; Kausteklis, Jonas; Prichodko, Aleksandra; Dagys, Laurynas; Ivanauskas, Feliksas; Sakirzanovas, Simas; Balevicius, Vytautas; Kareiva, Aivaras

    2016-09-01

    Aqueous sol-gel chemistry route based on ammonium-hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as source of calcium ions, and 1,2-ethylendiaminetetraacetic acid (EDTA), or 1,2-diaminocyclohexanetetracetic acid (DCTA), or tartaric acid (TA), or ethylene glycol (EG), or glycerol (GL) as complexing agents have been used to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp). The phase transformations, composition, and structural changes in the polycrystalline samples were studied by infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). The local short-range (nano- and mezo-) scale effects in CHAp were studied using solid-state NMR spectroscopy. The spatial 3D data from the SEM images of CHAp samples obtained by TA, EG and GL sol-gel routes were recovered for the first time to our knowledge.

  5. Fine refinement of solid state structure of racemic form of phospho-tyrosine employing NMR Crystallography approach.

    PubMed

    Paluch, Piotr; Pawlak, Tomasz; Oszajca, Marcin; Lasocha, Wieslaw; Potrzebowski, Marek J

    2015-02-01

    We present step by step facets important in NMR Crystallography strategy employing O-phospho-dl-tyrosine as model sample. The significance of three major techniques being components of this approach: solid state NMR (SS NMR), X-ray diffraction of powdered sample (PXRD) and theoretical calculations (Gauge Invariant Projector Augmented Wave; GIPAW) is discussed. Each experimental technique provides different set of structural constraints. From the PXRD measurement the size of the unit cell, space group and roughly refined molecular structure are established. SS NMR provides information about content of crystallographic asymmetric unit, local geometry, molecular motion in the crystal lattice and hydrogen bonding pattern. GIPAW calculations are employed for validation of quality of elucidation and fine refinement of structure. Crystal and molecular structure of O-phospho-dl-tyrosine solved by NMR Crystallography is deposited at Cambridge Crystallographic Data Center under number CCDC 1005924. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Characterization of the reactivity of a silica derived from acid activation of sepiolite with silane by 29Si and 13C solid-state NMR.

    PubMed

    Valentín, J L; López-Manchado, M A; Posadas, P; Rodríguez, A; Marcos-Fernández, A; Ibarra, L

    2006-06-15

    The mechanism of the reaction between a silica sample coming from acid treatment of sepiolite (denominated Silsep) and an organosilane, namely bis(triethoxysilylpropyl)tetrasulfane (TESPT), has been evaluated by solid state NMR spectroscopy, being compared with the silanization reaction of a commercial silica. The effect of the silane concentration and temperature on the course of the reaction was considered. Experimental results indicate that the silanization reaction is more effective in the case of Silsep, favoring both the reaction of silane molecules with the filler surface and the reaction between neighboring silane molecules. This different behavior is attributed to structural factors, moisture, and number of acid centers on silica surface. Environmental scanning electron microscopy (ESEM) was used to deposit micrometric water drops on the surface of these samples and to evaluate the proportion and distribution of the organophylization process.

  7. Advances in Molecular Rotational Spectroscopy for Applied Science

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.

    2017-06-01

    Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.

  8. Improved heteronuclear dipolar decoupling sequences for liquid-crystal NMR

    NASA Astrophysics Data System (ADS)

    Thakur, Rajendra Singh; Kurur, Narayanan D.; Madhu, P. K.

    2007-04-01

    Recently we introduced a radiofrequency pulse scheme for heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance under magic-angle spinning [R.S. Thakur, N.D. Kurur, P.K. Madhu, Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR, Chem. Phys. Lett. 426 (2006) 459-463]. Variants of this sequence, swept-frequency TPPM, employing frequency modulation of different types have been further tested to improve the efficiency of heteronuclear dipolar decoupling. Among these, certain sequences that were found to perform well at lower spinning speeds are demonstrated here on a liquid-crystal sample of MBBA for application in static samples. The new sequences are compared with the standard TPPM and SPINAL schemes and are shown to perform better than them. These modulated schemes perform well at low decoupler radiofrequency power levels and are easy to implement on standard spectrometers.

  9. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGES

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; ...

    2016-06-08

    14N ultra-wideline (UW), 1H{ 15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH + and RR'NH 2 +) or other (i.e., RNH 2 and RNO 2) nitrogen environments.« less

  10. Tiny twists in time; exploring angular resolution of in situ EBSD orientation microstructures in solar system zircon

    NASA Astrophysics Data System (ADS)

    Moser, D. E.

    2012-12-01

    Kikuchi discovered electron diffraction in samples of calcite in the 1920's, and orientation of lattice planes by Electron Backscatter Diffraction (EBSD) is now routinely measured by automated camera systems at a spatial resolution of tens of nanometers using Field Emission Gun SEM. The current methodology is proving particularly powerful when measuring lattice orientation microstructure in U-Pb geochronology minerals such as zircon and baddeleyite that have experienced high temperature deformation or shock metamorphism. These are among the oldest preserved mineral phases in inner solar system materials, and we have been applying EBSD to rare samples of the Early Earth and grains from extraterrestrial environments such as the Moon and Mars. In these cases the EBSD orientation data are useful for identifying high diffusivity pathways that may have afforded isotopic and trace element disturbance, microstructural proxies for shock metamorphic pressures, as well as resolving glide plane systems in ductile zircon and shear twin mechanisms. Blanket estimates of angular resolution for automated EBSD misorientation measurements are often in the range of 0.5 degrees. In some cases strain giving rise to only a few degrees of lattice misorientation has facilitated 100% Pb-loss. In some cases, however, there is a spatial correlation between trace element or cathodoluminescence zoning in zircon and what appears to be low magnitudes misorientation close to the limits of resolution. Given the proven value of performing EBSD analysis on geochronology minerals, a more thorough exploration of the precision and accuracy of EBSD lattice misorientation measurements is warranted. In this talk the relative weighting of the factors that limit EBSD angular resolution will be investigated, focusing on U-Pb dating minerals such as zircon. These factors include; sample surface preparation, phase symmetry, pseudo-symmetry effects, degree of crystallinity, Kikuchi band contrast and indexing, solid solution effects on unit cell, dimension camera calibration and camera-sample distance, beam conditions and focussing, and general microscope operating conditions (e.g. high vacuum vs. variable pressure). An assessment of potential zircon EBSD reference materials and sample preparation protocols will be presented, along with case studies of zircon orientation microstructures from meteorites and terrestrial craters representative of different strain and thermal environments in the inner solar system.BSD lattice misorientation maps of a) crystal-plastically deformed and partly recrystallized zircon, after Rayner et al. (in prep.), and b) shock-metamorphosed lunar zircon (Darling et al., in prep.).

  11. The International Mathematical Olympiad Training Session.

    ERIC Educational Resources Information Center

    Rousseau, Cecil; Patruno, Gregg

    1985-01-01

    The Mathematical Olympiad Training Session is designed to give United States students a problem-oriented exposure to subject areas (algebra, geometry, number theory, combinatorics, and inequalities) through an intensive three-week course. Techniques used during the session, with three sample problems and their solutions, are presented. (JN)

  12. Solid-state drawing of post-consumer isotactic poly(propylene): Effect of melt filtration and carbon black on structural and mechanical properties.

    PubMed

    Luijsterburg, B J; Jobse, P S; Spoelstra, A B; Goossens, J G P

    2016-08-01

    Post-consumer plastic waste obtained via mechanical recycling is usually applied in thick-walled products, because of the low mechanical strength due to the presence of contaminants. In fact, sorted post-consumer isotactic poly(propylene) (i-PP) can be considered as a blend of 95% i-PP and 5% poly(ethylene), with traces of poly(ethylene terephthalate) (PET). By applying a treatment such as solid-state drawing (SSD) after melt extrusion, the polymer chains can be oriented in one direction, thereby improving the stiffness and tensile strength. In this research, molecular processes such as crystal break-up and chain orientation of these complex blends were monitored as a function of draw ratio. The melt filter mesh size - used to exclude rigid PET particles - and the addition of carbon black (CB) - often added for coloration in the recycling industry - were varied to investigate their influence on the SSD process. This research shows that despite the blend complexity, the molecular processes during SSD compare to virgin i-PP and that similar draw ratios can be obtained (λmax=20), albeit at reduced stiffness and strength as a result of the foreign polymers present in post-consumer i-PP. It is observed that the process stability improves with decreasing mesh size and that higher draw ratios can be obtained. The addition of carbon black, which resides in the dispersed PE phase, also stabilizes the SSD process. Compared to isotropic post-consumer i-PP, the stiffness can be improved by a factor 10 to over 11GPa, while the tensile strength can be improved by a factor 15-385MPa, which is approx. 70% of the maximum tensile strength achieved for virgin i-PP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Quasi-2D Liquid State at Metal-Organic Interface and Adsorption State Manipulation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Masih

    The metal/organic interface between noble metal close-packed (111) surfaces and organic semiconducting molecules is studied using Scanning tunneling microscopy and Photoelectron Spectroscopy, supplemented by first principles density functional theory calculations and Markov Chain Monte Carlo simulations. Copper Phthalocyanine molecules were shown to have dual adsorption states: a liquid state where intermolecular interactions were shown to be repulsive in nature and largely due to entropic effects, and a disordered immobilized state triggered by annealing or applying a tip-sample bias larger than a certain temperature or voltage respectively where intermolecular forces were demonstrated to be attractive. A methodology for altering molecular orientation on the aforementioned surfaces is also proposed through introduction of a Fullerene C60 buffer layer. Density functional theory calculations demonstrate orientation-switching of Copper Phthalocyanine molecules based on the amount of charges transferred to/from the substrate to the C60-CuPc layers; suggesting existence of critical substrate work functions that cause reorientation.

  14. Approach to Low-Cost High-Efficiency OLED Lighting. Building Technologies Solid State Lighting (SSL) Program Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qibing

    2017-10-06

    This project developed an integrated substrate which organic light emitting diode (OLED) panel developers could employ the integrated substrate to fabricate OLED devices with performance and projected cost meeting the MYPP targets of the Solid State Lighting Program of the Department of Energy. The project optimized the composition and processing conditions of the integrated substrate for OLED light extraction efficiency and overall performance. The process was further developed for scale up to a low-cost process and fabrication of prototype samples. The encapsulation of flexible OLEDs based on this integrated substrate was also investigated using commercial flexible barrier films.

  15. Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies.

    PubMed

    Rada, E C; Ragazzi, M; Fedrizzi, P

    2013-04-01

    Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspects related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. FT-IR spectra of the anti-HIV nucleoside analogue d4T (Stavudine). Solid state simulation by DFT methods and scaling by different procedures

    NASA Astrophysics Data System (ADS)

    Alcolea Palafox, M.; Kattan, D.; Afseth, N. K.

    2018-04-01

    A theoretical and experimental vibrational study of the anti-HIV d4T (stavudine or Zerit) nucleoside analogue was carried out. The predicted spectra in the three most stable conformers in the biological active anti-form of the isolated state were compared. Comparison of the conformers with those of the natural nucleoside thymidine was carried out. The calculated spectra were scaled by using different scaling procedures and three DFT methods. The TLSE procedure leads to the lowest error and is thus recommended for scaling. With the population of these conformers the IR gas-phase spectra were predicted. The crystal unit cell of the different polymorphism forms of d4T were simulated through dimer forms by using DFT methods. The scaled spectra of these dimer forms were compared. The FT-IR spectrum was recorded in the solid state in the 400-4000 cm-1 range. The respective vibrational bands were analyzed and assigned to different normal modes of vibration by comparison with the scaled vibrational values of the different dimer forms. Through this comparison, the polymorphous form of the solid state sample was identified. The study indicates that d4T exist only in the ketonic form in the solid state. The results obtained were in agreement with those determined in related anti-HIV nucleoside analogues.

  17. Rheological Characterization and Cluster Classification of Iranian Commercial Foods, Drinks and Desserts to Recommend for Esophageal Dysphagia Diets

    PubMed Central

    ZARGARAAN, Azizollaah; OMARAEE, Yasaman; RASTMANESH, Reza; TAHERI, Negin; FADAVI, Ghasem; FADAEI, Morteza; MOHAMMADIFAR, Mohammad Amin

    2013-01-01

    Abstract Background In the absence of dysphagia-oriented food products, rheological characterization of available food items is of importance for safe swallowing and adequate nutrient intake of dysphagic patients. In this way, introducing alternative items (with similar ease of swallow) is helpful to improve quality of life and nutritional intake of esophageal cancer dysphagia patients. The present study aimed at rheological characterization and cluster classification of potentially suitable foodstuffs marketed in Iran for their possible use in dysphagia diets. Methods In this descriptive study, rheological data were obtained during January and February 2012 in Rheology Lab of National Nutrition and Food Technology Research Institute Tehran, Iran. Steady state and oscillatory shear parameters of 39 commercial samples were obtained using a Physica MCR 301 rheometer (Anton-Paar, GmbH, Graz, Austria). Matlab Fuzzy Logic Toolbox (R2012 a) was utilized for cluster classification of the samples. Results Using an extended list of rheological parameters and fuzzy logic methods, 39 commercial samples (drinks, main courses and desserts) were divided to 5 clusters and degree of membership to each cluster was stated by a number between 0 and 0.99. Conclusion Considering apparent viscosity of foodstuffs as a single criterion for classification of dysphagia-oriented food products is shortcoming of current guidelines in dysphagia diets. Authors proposed to some revisions in classification of dysphagia-oriented food products and including more rheological parameters (especially, viscoelastic parameters) in the classification. PMID:26060647

  18. Rheological Characterization and Cluster Classification of Iranian Commercial Foods, Drinks and Desserts to Recommend for Esophageal Dysphagia Diets.

    PubMed

    Zargaraan, Azizollaah; Omaraee, Yasaman; Rastmanesh, Reza; Taheri, Negin; Fadavi, Ghasem; Fadaei, Morteza; Mohammadifar, Mohammad Amin

    2013-12-01

    In the absence of dysphagia-oriented food products, rheological characterization of available food items is of importance for safe swallowing and adequate nutrient intake of dysphagic patients. In this way, introducing alternative items (with similar ease of swallow) is helpful to improve quality of life and nutritional intake of esophageal cancer dysphagia patients. The present study aimed at rheological characterization and cluster classification of potentially suitable foodstuffs marketed in Iran for their possible use in dysphagia diets. In this descriptive study, rheological data were obtained during January and February 2012 in Rheology Lab of National Nutrition and Food Technology Research Institute Tehran, Iran. Steady state and oscillatory shear parameters of 39 commercial samples were obtained using a Physica MCR 301 rheometer (Anton-Paar, GmbH, Graz, Austria). Matlab Fuzzy Logic Toolbox (R2012 a) was utilized for cluster classification of the samples. Using an extended list of rheological parameters and fuzzy logic methods, 39 commercial samples (drinks, main courses and desserts) were divided to 5 clusters and degree of membership to each cluster was stated by a number between 0 and 0.99. Considering apparent viscosity of foodstuffs as a single criterion for classification of dysphagia-oriented food products is shortcoming of current guidelines in dysphagia diets. Authors proposed to some revisions in classification of dysphagia-oriented food products and including more rheological parameters (especially, viscoelastic parameters) in the classification.

  19. Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.

    PubMed

    Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier

    2016-09-01

    Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR

    DOE PAGES

    Zinke, Maximilian; Fricke, Pascal; Samson, Camille; ...

    2017-07-07

    Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less

  1. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinke, Maximilian; Fricke, Pascal; Samson, Camille

    Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less

  2. Ionization behavior of polyphosphoinositides determined via the preparation of pH titration curves using solid-state 31P NMR.

    PubMed

    Graber, Zachary T; Kooijman, Edgar E

    2013-01-01

    Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed.

  3. Design and performance of a vacuum-bottle solid-state calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracken, D.S.; Biddle, R.; Cech, R.

    1997-11-01

    EG and G Mound Applied Technologies calorimetry personnel have developed a small, thermos-bottle solid-state calorimeter, which is now undergoing performance testing at Los Alamos National Laboratory. The thermos-bottle solid-state calorimeter is an evaluation prototype for characterizing the heat output of small heat standards and other homogeneous heat sources. The current maximum sample size is 3.5 in. long with a diameter of 0.8 in. The overall size of the thermos bottle and thermoelectric cooling device is 9.25 in. high by 3.75 in. diameter and less than 3 lb. Coupling this unit with compact electronics and a laptop computer makes this calorimetermore » easily hand carried by a single individual. This compactness was achieved by servo controlling the reference temperature below room temperature and replacing the water bath used in conventional calorimeter design with the thermos-bottle insulator. Other design features will also be discussed. The performance of the calorimeter will be presented.« less

  4. The Association Between Sexual Orientation Identity and Behavior Across Race/Ethnicity, Sex, and Age in a Probability Sample of High School Students

    PubMed Central

    Mustanski, Brian; Birkett, Michelle; Greene, George J.; Rosario, Margaret; Bostwick, Wendy; Everett, Bethany G.

    2014-01-01

    Objectives. We examined the prevalence and associations between behavioral and identity dimensions of sexual orientation among adolescents in the United States, with consideration of differences associated with race/ethnicity, sex, and age. Methods. We used pooled data from 2005 and 2007 Youth Risk Behavior Surveys to estimate prevalence of sexual orientation variables within demographic sub-groups. We used multilevel logistic regression models to test differences in the association between sexual orientation identity and sexual behavior across groups. Results. There was substantial incongruence between behavioral and identity dimensions of sexual orientation, which varied across sex and race/ethnicity. Whereas girls were more likely to identify as bisexual, boys showed a stronger association between same-sex behavior and a bisexual identity. The pattern of association of age with sexual orientation differed between boys and girls. Conclusions. Our results highlight demographic differences between 2 sexual orientation dimensions, and their congruence, among 13- to 18-year-old adolescents. Future research is needed to better understand the implications of such differences, particularly in the realm of health and health disparities. PMID:24328662

  5. The association between sexual orientation identity and behavior across race/ethnicity, sex, and age in a probability sample of high school students.

    PubMed

    Mustanski, Brian; Birkett, Michelle; Greene, George J; Rosario, Margaret; Bostwick, Wendy; Everett, Bethany G

    2014-02-01

    We examined the prevalence and associations between behavioral and identity dimensions of sexual orientation among adolescents in the United States, with consideration of differences associated with race/ethnicity, sex, and age. We used pooled data from 2005 and 2007 Youth Risk Behavior Surveys to estimate prevalence of sexual orientation variables within demographic sub-groups. We used multilevel logistic regression models to test differences in the association between sexual orientation identity and sexual behavior across groups. There was substantial incongruence between behavioral and identity dimensions of sexual orientation, which varied across sex and race/ethnicity. Whereas girls were more likely to identify as bisexual, boys showed a stronger association between same-sex behavior and a bisexual identity. The pattern of association of age with sexual orientation differed between boys and girls. Our results highlight demographic differences between 2 sexual orientation dimensions, and their congruence, among 13- to 18-year-old adolescents. Future research is needed to better understand the implications of such differences, particularly in the realm of health and health disparities.

  6. Accurate determination of chemical shift tensor orientations of single-crystals by solid-state magic angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Avadhut, Yamini S.; Weber, Johannes; Schmedt auf der Günne, Jörn

    2017-09-01

    An improved implementation of single-crystal magic-angle-spinning (MAS) NMR is presented which gives access to chemical shift tensors both in orientation (relative to the crystal axis system) and principal axis values. For mounting arbitrary crystals inside ordinary MAS rotors, a mounting tool is described which allows to relate the crystal orientation determined by diffraction techniques to the rotor coordinate system. The crystal is finally mounted into a MAS rotor equipped with a special insert which allows a defined reorientation of the single-crystal by 90°. The approach is based on the idea that the dispersive spectra, which are obtained when applying read-pulses at specific rotor-phases, not only yield the size of the eigenvalues but also encode the orientation of the different chemical shift (rank-2) tensors. For this purpose two 2D-data sets with orthogonal crystal orientation are fitted simultaneously. The presented analysis for chemical shift tensors is supported by an analytical formula which allows fast calculation of phase and amplitude of individual spinning side-bands and by a protocol which solves the problem of finding the correct reference phase of the spectrum. Different rotor-synchronized pulse-sequences are introduced for the same reason. Experiments are performed on L-alanine and O-phosphorylethanolamine and the observed errors are analyzed in detail. The experimental data are opposed to DFT-computed chemical shift tensors which have been obtained by the extended embedded ion method.

  7. Spatial Temperature Mapping within Polymer Nanocomposites Undergoing Ultrafast Photothermal Heating via Gold Nanorods

    PubMed Central

    Maity, Somsubhra; Wu, Wei-Chen; Xu, Chao; Tracy, Joseph B.; Gundogdu, Kenan; Bochinski, Jason R.; Clarke, Laura I.

    2015-01-01

    Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed femtosecond photothermal heating is determined experimentally using two independent ensemble optical techniques. Physical rotation of the nanorods reveals the average local temperature of the polymer melt in the immediate spatial volume surrounding them while fluorescence of homogeneously-distributed perylene molecules monitors temperature over sample regions at larger distances from the GNRs. Polarization-sensitive fluorescence measurements of the perylene probes provide an estimate of the average size of the quasi-molten region surrounding each nanorod (that is, the boundary between softened polymer and solid material as the temperature decreases radially away from each particle) and distinguishes the steady state temperature in the solid and melt regions. Combining these separate methods enables nanoscale spatial mapping of the average steady state temperature distribution caused by ultrafast excitation of the GNRs. These observations definitively demonstrate the presence of a steady-state temperature gradient and indicate that localized heating via the photothermal effect within materials enables nanoscale thermal manipulations without significantly altering the bulk sample temperature in these systems. These quantitative results are further verified by reorienting nanorods within a solid polymer nanofiber without inducing any morphological changes to the highly temperature-sensitive nanofiber surface. Temperature differences of 70 – 90 °C were observed over a distances of ~100 nm. PMID:25379775

  8. Mechanically driven centrifugal pyrolyzer

    DOEpatents

    Linck, Martin Brendan [Mount Prospect, IL; Bush, Phillip Vann [Bartlett, IL

    2012-03-06

    An apparatus for fast pyrolysis of biomass and other solid organic materials including a vertically oriented cylindrical vessel having a solids outlet proximate the bottom thereof, a vapor outlet, a top wall forming at least one opening, and an adjacent heated side wall. Disposed within the cylindrical vessel and extending through the at least one opening in the top wall is a rotor having a rotatable shaft coincident with the longitudinal axis of the cylindrical vessel to which is attached at least one substantially vertically oriented blade having one edge connected directly or indirectly with the rotatable shaft and having an opposite edge spaced apart from the heated side wall, whereby a non-radial, preferably tangential, force is imparted on the feedstock in the cylindrical vessel. Also disclosed is a method for fast pyrolysis of biomass and other solid organic materials.

  9. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  10. Equation of state of solid, liquid and gaseous tantalum from first principles

    DOE PAGES

    Miljacic, Ljubomir; Demers, Steven; Hong, Qi-Jun; ...

    2015-09-18

    Here, we present ab initio calculations of the phase diagram and the equation of state of Ta in a wide range of volumes and temperatures, with volumes from 9 to 180 Å 3/atom, temperature as high as 20000 K, and pressure up to 7 Mbars. The calculations are based on first principles, in combination with techniques of molecular dynamics, thermodynamic integration, and statistical modeling. Multiple phases are studied, including the solid, fluid, and gas single phases, as well as two-phase coexistences. We calculate the critical point by direct molecular dynamics sampling, and extend the equation of state to very lowmore » density through virial series fitting. The accuracy of the equation of state is assessed by comparing both the predicted melting curve and the critical point with previous experimental and theoretical investigations.« less

  11. Ferroelectric materials for applications in sensor protection

    NASA Astrophysics Data System (ADS)

    Bhalla, Amar S.; Cross, L. Eric

    1995-07-01

    The focus of this program has been upon producing and characterizing new functional materials whose properties can be fine tuned to provide eye sensor protection against laser threats and to suit a range of optoelectronic device applications. Material systems that maximize orientational anisotropy (for use in scattering mode systems) and systems that minimize orientational anisotropy (for use in high field modulators and field induced photorefractive applications) were both approached. Relaxor ferroelectric tungsten bronze single crystals (Sr,Ba)Nb2O6 and (Pb,Ba)Nb2O6 solid solution families and relaxor ferroelectric perovskite (1-x)Pb(Mg(1/3)Nb(2/3))O(3-x)PbTiO3 (PMN-PT) families, were studied extensively. The unique capabilities of a laser heated pedestal growth (LHPG) system were utilized for growth of new materials in single crystal fiber form that produces crystals of long interaction length for optical wave in the crystal and high crystal perfection with maximized properties along chosen directions. Hot uniaxial pressing, hot forging, or appropriate solid state reaction processing methods were used to produce transparent polycrystalline ceramics to provide low scattering, high anisotropy ceramics or high scattering, high anisotropy ceramics. This final report summarizes significant results produced from this program through combination of experimental and crystal chemistry approaches in this field, delineates conclusions drawn from the research, and provides recommendations for future research.

  12. Phase Transition of H 2 in Subnanometer Pores Observed at 75 K

    DOE PAGES

    Olsen, Raina J.; Gillespie, Andrew K.; Contescu, Cristian I.; ...

    2017-10-30

    In this paper, we report a phase transition in H 2 adsorbed in a locally graphitic Saran carbon with subnanometer pores 0.5–0.65 nm in width, in which two layers of hydrogen can just barely squeeze, provided they pack tightly. The phase transition is observed at 75 K, temperatures far higher than other systems in which an adsorbent is known to increase phase transition temperatures: for instance, H 2 melts at 14 K in the bulk, but at 20 K on graphite because the solid H 2 is stabilized by the surface structure. Here we observe a transition at 75 Kmore » and 77–200 bar: from a low-temperature, low-density phase to a high-temperature, higher density phase. We model the low-density phase as a monolayer commensurate solid composed mostly of para-H 2 (the ground nuclear spin state, S = 0) and the high-density phase as an orientationally ordered bilayer commensurate solid composed mostly of ortho-H 2 (S = 1). We attribute the increase in density with temperature to the fact that the oblong ortho-H 2 can pack more densely. The transition is observed using two experiments. The high-density phase is associated with an increase in neutron backscatter by a factor of 7.0 ± 0.1. Normally, hydrogen produces no backscatter (scattering angle >90°). This backscatter appears along with a discontinuous increase in the excitation mass from 1.2 amu to 21.0 ± 2.3 amu, which we associate with collective nuclear spin excitations in the orientationally ordered phase. Film densities were measured using hydrogen adsorption. Finally, no phase transition was observed in H 2 adsorbed in control activated carbon materials.« less

  13. Phase Transition of H 2 in Subnanometer Pores Observed at 75 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Raina J.; Gillespie, Andrew K.; Contescu, Cristian I.

    In this paper, we report a phase transition in H 2 adsorbed in a locally graphitic Saran carbon with subnanometer pores 0.5–0.65 nm in width, in which two layers of hydrogen can just barely squeeze, provided they pack tightly. The phase transition is observed at 75 K, temperatures far higher than other systems in which an adsorbent is known to increase phase transition temperatures: for instance, H 2 melts at 14 K in the bulk, but at 20 K on graphite because the solid H 2 is stabilized by the surface structure. Here we observe a transition at 75 Kmore » and 77–200 bar: from a low-temperature, low-density phase to a high-temperature, higher density phase. We model the low-density phase as a monolayer commensurate solid composed mostly of para-H 2 (the ground nuclear spin state, S = 0) and the high-density phase as an orientationally ordered bilayer commensurate solid composed mostly of ortho-H 2 (S = 1). We attribute the increase in density with temperature to the fact that the oblong ortho-H 2 can pack more densely. The transition is observed using two experiments. The high-density phase is associated with an increase in neutron backscatter by a factor of 7.0 ± 0.1. Normally, hydrogen produces no backscatter (scattering angle >90°). This backscatter appears along with a discontinuous increase in the excitation mass from 1.2 amu to 21.0 ± 2.3 amu, which we associate with collective nuclear spin excitations in the orientationally ordered phase. Film densities were measured using hydrogen adsorption. Finally, no phase transition was observed in H 2 adsorbed in control activated carbon materials.« less

  14. Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.

    PubMed

    Prakash, B Shri; Varma, K B R

    2008-11-01

    Nanocrystalline powders of giant dielectric constant material, CaCu3Ti4O12 (CCTO), have been prepared successfully by the molten salt synthesis (MSS) using KCl at 750 degrees C/10 h, which is significantly lower than the calcination temperature (approximately 1000 degrees C) that is employed to obtain phase pure CCTO in the conventional solid-state reaction route. The water washed molten salt synthesized powder, characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) confirmed to be a phase pure CCTO associated with approximately 150 nm sized crystallites of nearly spherical shape. The decrease in the formation temperature/duration of CCTO in MSS method was attributed to an increase in the diffusion rate or a decrease in the diffusion length of reacting ions in the molten salt medium. As a consequence of liquid phase sintering, pellets of as-synthesized KCl containing CCTO powder exhibited higher sinterability and grain size than that of KCl free CCTO samples prepared by both MSS method and conventional solid-state reaction route. The grain size and the dielectric constant of KCl containing CCTO ceramics increased with increasing sintering temperature (900 degrees C-1050 degrees C). Indeed the dielectric constants of these ceramics were higher than that of KCl free CCTO samples prepared by both MSS method and those obtained via the solid-state reaction route and sintered at the same temperature. Internal barrier layer capacitance (IBLC) model was invoked to correlate the observed dielectric constant with the grain size in these samples.

  15. A case study of real-time monitoring of solid-state phase transformations in acoustically levitated particles using near infrared and Raman spectroscopy.

    PubMed

    Rehder, Sönke; Wu, Jian X; Laackmann, Julian; Moritz, Hans-Ulrich; Rantanen, Jukka; Rades, Thomas; Leopold, Claudia S

    2013-01-23

    The objective of this study was to monitor the amorphous-to-crystalline solid-state phase transformation kinetics of the model drug ibuprofen with spectroscopic methods during acoustic levitation. Chemical and physical information was obtained by real-time near infrared (NIRS) and Raman spectroscopy measurements. The recrystallisation kinetic parameters (overall recrystallisation rate constant β and the time needed to reach 50% of the equilibrated level t(50)), were determined using a multivariate curve resolution approach. The acoustic levitation device coupled with non-invasive spectroscopy enabled monitoring of the recrystallisation process of the difficult-to-handle (adhesive) amorphous sample. The application of multivariate curve resolution enabled isolation of the underlying pure spectra, which corresponded well with the reference spectra of amorphous and crystalline ibuprofen. The recrystallisation kinetic parameters were estimated from the recrystallisation profiles. While the empirical recrystallisation rate constant determined by NIR and Raman spectroscopy were comparable, the lag time for recrystallisation was significantly lower with Raman spectroscopy as compared to NIRS. This observation was explained by the high energy density of the Raman laser beam, which might have led to local heating effects of the sample and thus reduced the recrystallisation onset time. It was concluded that acoustic levitation with NIR and Raman spectroscopy combined with multivariate curve resolution allowed direct determination of the recrystallisation kinetics of amorphous drugs and thus is a promising technique for monitoring solid-state phase transformations of adhesive small-sized samples during the early phase of drug development. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A Model of Solid State Gas Sensors

    NASA Astrophysics Data System (ADS)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  17. Effect of starting powder morphology on film texture for bismuth layer-structured ferroelectrics prepared by aerosol deposition method

    NASA Astrophysics Data System (ADS)

    Suzuki, Muneyasu; Tsuchiya, Tetsuo; Akedo, Jun

    2017-06-01

    We report grain orientation control for bismuth layer-structured ferroelectrics (BLSFs) films deposited by aerosol deposition (AD) method at room temperature. Bi4Ti3O12 (BiT), SrBi2Ta2O9 (SBTa), and SrBi4Ti4O15 (SBTi) starting powders with particles of various shape (plate-like, spherical, and angular) were prepared by solid-state reaction and fused salt synthesis. Their AD films represented fine microstructures without pores, which agrees well with previous reports. Although the SBTa AD films deposited by using spherical particles exhibited an extremely low Lotgering factor (F), the BiT AD films deposited by using plate-like particles exhibited a marked c-axis orientation. The F of BiT and SBTi AD films decreased with increasing film thickness (t). We consider that the dispersion of agglomerated plate-like particles on the film surface and the densification of the compacted powder layer occurring while under particle impact are important in obtaining the grain-oriented AD films. These results of using the AD method with shape-controlled particles are expected to result in open up an innovative functional coating technique.

  18. ANALYSIS OF GEOTHERMAL WASTES FOR HAZARDOUS COMPONENTS

    EPA Science Inventory

    Regulations governing the disposal of hazardous wastes led to an assessment for geothermal solid wastes for potentially hazardous properties. Samples were collected from three active geothermal sites in the western United States: The Geysers, Imperial Valley, and northwestern Nev...

  19. Effect of freezing conditions on β-Tricalcium Phosphate /Camphene scaffold with micro sized particles fabricated by freeze casting.

    PubMed

    Singh, Gurdev; Soundarapandian, S

    2018-03-01

    The long standing need of the implant manufacturing industries is to fabricate multi-matrix, customized porous scaffold as cost-effectively. In recent years, freeze casting has shown greater opportunity in the fabrication of porous scaffolds (tricalcium phosphate, hydroxyapatite, bioglass, alumina, etc.) such as at ease and good control over pore size, porosity, a range of materials and economic feasibility. In particular, tricalcium phosphate (TCP) has proved as it possesses good biocompatible (osteoinduction, osteoconduction, etc.) and biodegradability hence beta-tricalcium phosphate (β-TCP, particle size of 10µm) was used as base material and camphene was used as a freezing vehicle in this study. Both freezing conditions such as constant freezing temperature (CFT) and constant freezing rate (CFR) were used for six different conditional samples (CFT: 30, 35 and 40vol% solid loading; similarly CFR: 30, 35 and 40vol% solid loading) to study and understand the effect of various properties (pore size, porosity and compressive strength) of the freeze-cast porous scaffold. It was observed that the average size of the pore was varying linearly as from lower to higher when the solid loading was varying higher to lower. With the help of scanning electron micrographs (SEM), it was observed that the average size of pore during CFR (9.7/ 6.5/ 4.9µm) was comparatively higher than the process of CFT (6.0/ 4.8/ 2.6µm) with respect to the same solid loading (30/ 35/ 40vol%) conditions. From the Gas pycnometer analysis, it was found that the porosity in both freezing conditions (CFT, CFR) were almost near values such as 32.8% and 28.5%. Further to be observed that with the increase in solid loading, the total porosity value has decreased due to the reduction in the concentration of the freezing vehicle. Hence, the freezing vehicle was found as responsible for the formation of appropriate size and orientation of pores during freeze casting. The compressive strength (CS) testing was clearly indicated that the CS was majorly depending on the size of pore which was depending on solid loading. The CS of CFT-based samples (smaller pore sizes and higher resistance to the propagation of crack) were higher due to the higher solid content (pore size) in compared with CFR-based samples on the similar solid loading conditions. As evidently, it was noted that the CFT-based sample with 40% solid loading has given the compressive strength which has come in the range of cancellous bone. The positive note was that the ratio of Ca/P has come as 1.68 (natural bone) after sintering and that was the required value recommended by the food and drug administration (FDI) for manufacturing of bone implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Functional reconstitution of rhodopsin into tubular lipid bilayers supported by nanoporous media.

    PubMed

    Soubias, Olivier; Polozov, Ivan V; Teague, Walter E; Yeliseev, Alexei A; Gawrisch, Klaus

    2006-12-26

    We report on a novel reconstitution method for G-protein-coupled receptors (GPCRs) that yields detergent-free, single, tubular membranes in porous anodic aluminum oxide (AAO) filters at concentrations sufficient for structural studies by solid-state NMR. The tubular membranes line the inner surface of pores that traverse the filters, permitting easy removal of detergents during sample preparation as well as delivery of ligands for functional studies. Reconstitution of bovine rhodopsin into AAO filters did not interfere with rhodopsin function. Photoactivation of rhodopsin in AAO pores, monitored by UV-vis spectrophotometry, was indistinguishable from rhodopsin in unsupported unilamellar liposomes. The rhodopsin in AAO pores is G-protein binding competent as shown by a [35S]GTPgammaS binding assay. The lipid-rhodopsin interaction was investigated by 2H NMR on sn-1- or sn-2-chain perdeuterated 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phospholine as a matrix lipid. Rhodopsin incorporation increased mosaic spread of bilayer orientations and contributed to spectral density of motions with correlation times in the range of nano- to microseconds, detected as a significant reduction in spin-spin relaxation times. The change in lipid chain order parameters due to interaction with rhodopsin was insignificant.

Top