ERIC Educational Resources Information Center
Skaalvik, Einar M.; Federici, Roger A.
2016-01-01
The purpose of this study was to test possible interactions between mastery and performance goal structures in mathematics classrooms when predicting students' goal orientations. More specifically, we tested if the degree of performance goal structure moderated the associations between mastery goal structure and students' goal orientations.…
NASA Astrophysics Data System (ADS)
Bhatia, Parmeet S.; Reda, Fitsum; Harder, Martin; Zhan, Yiqiang; Zhou, Xiang Sean
2017-02-01
Automatically detecting anatomy orientation is an important task in medical image analysis. Specifically, the ability to automatically detect coarse orientation of structures is useful to minimize the effort of fine/accurate orientation detection algorithms, to initialize non-rigid deformable registration algorithms or to align models to target structures in model-based segmentation algorithms. In this work, we present a deep convolution neural network (DCNN)-based method for fast and robust detection of the coarse structure orientation, i.e., the hemi-sphere where the principal axis of a structure lies. That is, our algorithm predicts whether the principal orientation of a structure is in the northern hemisphere or southern hemisphere, which we will refer to as UP and DOWN, respectively, in the remainder of this manuscript. The only assumption of our method is that the entire structure is located within the scan's field-of-view (FOV). To efficiently solve the problem in 3D space, we formulated it as a multi-planar 2D deep learning problem. In the training stage, a large number coronal-sagittal slice pairs are constructed as 2-channel images to train a DCNN to classify whether a scan is UP or DOWN. During testing, we randomly sample a small number of coronal-sagittal 2-channel images and pass them through our trained network. Finally, coarse structure orientation is determined using majority voting. We tested our method on 114 Elbow MR Scans. Experimental results suggest that only five 2-channel images are sufficient to achieve a high success rate of 97.39%. Our method is also extremely fast and takes approximately 50 milliseconds per 3D MR scan. Our method is insensitive to the location of the structure in the FOV.
Adaptation to implied tilt: extensive spatial extrapolation of orientation gradients
Roach, Neil W.; Webb, Ben S.
2013-01-01
To extract the global structure of an image, the visual system must integrate local orientation estimates across space. Progress is being made toward understanding this integration process, but very little is known about whether the presence of structure exerts a reciprocal influence on local orientation coding. We have previously shown that adaptation to patterns containing circular or radial structure induces tilt-aftereffects (TAEs), even in locations where the adapting pattern was occluded. These spatially “remote” TAEs have novel tuning properties and behave in a manner consistent with adaptation to the local orientation implied by the circular structure (but not physically present) at a given test location. Here, by manipulating the spatial distribution of local elements in noisy circular textures, we demonstrate that remote TAEs are driven by the extrapolation of orientation structure over remarkably large regions of visual space (more than 20°). We further show that these effects are not specific to adapting stimuli with polar orientation structure, but require a gradient of orientation change across space. Our results suggest that mechanisms of visual adaptation exploit orientation gradients to predict the local pattern content of unfilled regions of space. PMID:23882243
Effect of grain orientation on aluminum relocation at incipient melt conditions
Yilmaz, Nadir; Vigil, Francisco M.; Vigil, Miquela S.; ...
2015-09-01
Aluminum is commonly used for structural applications in the aerospace industry because of its high strength in relation to its weight. It is necessary to understand the mechanical response of aluminum structures at elevated temperatures such as those experienced in a fire. Additionally, aluminum alloys exhibit many complicated behaviors that require further research and understanding, such as aluminum combustion, oxide skin formation and creep behavior. This paper discusses the effect of grain orientation on aluminum deformation subjected to heating at incipient melt conditions. Experiments were conducted by applying a vertical compressive force to aluminum alloy 7075 block test specimens. Furthermore,more » compression testing was done on test specimens with the applied load on the long transverse and short transverse orientations. Our results showed that the grain orientation significantly influences aluminum’s strength and mode of failure.« less
Decoding the future from past experience: learning shapes predictions in early visual cortex.
Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe
2015-05-01
Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.
The Cyclic Stress-Strain Behavior of a Single Crystal Nickel-Base Superalloy. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.
1988-01-01
The cyclic stress-strain response and similar deformation structures of the single crystal nickel based superalloy was described under a specific set of conditions. The isothermal low cycle fatigue response and deformation structures were described at a typical intermediate temperature and at high temperature. Specimens oriented near the (001) and (111) crystallographic orientations were tested at 1050 C, where more moderate orientation effects were expected. This enabled the description of the deformation structures at each of the 2 temperatures and their relationship to the observed cyclic stress-strain behavior. The initial yield strength of all specimens tested at 650 C was controlled by the shearing of the gamma prime precipitates by dislocation pairs. Low cycle fatigue tests at 650 C had cyclic hardening, which was associated with dislocation interactions in the gamma matrix. The initial yield strength of specimens tested at 1050 C was associated with dislocation bypassing of the gamma prime precipitates. Low cycle fatigue tests at 1050 C had cyclic softening, associated with extensive dislocation recovery at the gamma-gamma prime interfaces along with some gamma prime precipitate coarsening.
An Investigation of the Connection between Outdoor Orientation and Thriving
ERIC Educational Resources Information Center
Rude, Wally James; Bobilya, Andrew J.; Bell, Brent J.
2017-01-01
This study explored the contribution of outdoor orientation experiences to student thriving. Participants included 295 first-year college students from three institutions across North America. A thriving model was tested using structural equation modeling and included the following variables: outdoor orientation, thriving, involvement,…
Predicting helix orientation for coiled-coil dimers
Apgar, James R.; Gutwin, Karl N.; Keating, Amy E.
2008-01-01
The alpha-helical coiled coil is a structurally simple protein oligomerization or interaction motif consisting of two or more alpha helices twisted into a supercoiled bundle. Coiled coils can differ in their stoichiometry, helix orientation and axial alignment. Because of the near degeneracy of many of these variants, coiled coils pose a challenge to fold recognition methods for structure prediction. Whereas distinctions between some protein folds can be discriminated on the basis of hydrophobic/polar patterning or secondary structure propensities, the sequence differences that encode important details of coiled-coil structure can be subtle. This is emblematic of a larger problem in the field of protein structure and interaction prediction: that of establishing specificity between closely similar structures. We tested the behavior of different computational models on the problem of recognizing the correct orientation - parallel vs. antiparallel - of pairs of alpha helices that can form a dimeric coiled coil. For each of 131 examples of known structure, we constructed a large number of both parallel and antiparallel structural models and used these to asses the ability of five energy functions to recognize the correct fold. We also developed and tested three sequenced-based approaches that make use of varying degrees of implicit structural information. The best structural methods performed similarly to the best sequence methods, correctly categorizing ∼81% of dimers. Steric compatibility with the fold was important for some coiled coils we investigated. For many examples, the correct orientation was determined by smaller energy differences between parallel and antiparallel structures distributed over many residues and energy components. Prediction methods that used structure but incorporated varying approximations and assumptions showed quite different behaviors when used to investigate energetic contributions to orientation preference. Sequence based methods were sensitive to the choice of residue-pair interactions scored. PMID:18506779
Kaolinite flocculation induced by smectite addition - a transmission X-ray microscopic study.
Zbik, Marek S; Song, Yen-Fang; Frost, Ray L
2010-09-01
The influence of smectite addition on kaolinite suspensions in water was investigated by transmission X-ray microscopy (TXM) and Scanning Electron Microscopy (SEM). Sedimentation test screening was also conducted. Micrographs were processed by the STatistic IMage Analysing (STIMAN) program and structural parameters were calculated. From the results of the sedimentation tests important influences of small smectite additions to about 3wt.% on kaolinite suspension flocculation has been found. In order to determine the reason for this smectite impact on kaolinite suspension, macroscopic behaviour micro-structural examination using Transmission X-ray Microscope (TXM) and SEM has been undertaken. TXM & SEM micrographs of freeze-dried kaolinite-smectite suspensions with up to 20% smectite showed a high degree of orientation of the fabric made of highly oriented particles and greatest density when 3wt.% of smectite was added to the 10wt.% dense kaolinite suspension. In contrast, suspensions containing pure kaolinite do not show such platelet mutual orientation but homogenous network of randomly oriented kaolinite platelets. This suggests that in kaolinite-smectite suspensions, smectite forms highly oriented basic framework into which kaolinite platelets may bond in face to face preferential contacts strengthening structure and allowing them to show plastic behaviour which is cause of platelets orientation. Copyright 2010 Elsevier Inc. All rights reserved.
Improved prediction of antibody VL–VH orientation
Marze, Nicholas A.; Lyskov, Sergey; Gray, Jeffrey J.
2016-01-01
Antibodies are important immune molecules with high commercial value and therapeutic interest because of their ability to bind diverse antigens. Computational prediction of antibody structure can quickly reveal valuable information about the nature of these antigen-binding interactions, but only if the models are of sufficient quality. To achieve high model quality during complementarity-determining region (CDR) structural prediction, one must account for the VL–VH orientation. We developed a novel four-metric VL–VH orientation coordinate frame. Additionally, we extended the CDR grafting protocol in RosettaAntibody with a new method that diversifies VL–VH orientation by using 10 VL–VH orientation templates rather than a single one. We tested the multiple-template grafting protocol on two datasets of known antibody crystal structures. During the template-grafting phase, the new protocol improved the fraction of accurate VL–VH orientation predictions from only 26% (12/46) to 72% (33/46) of targets. After the full RosettaAntibody protocol, including CDR H3 remodeling and VL–VH re-orientation, the new protocol produced more candidate structures with accurate VL–VH orientation than the standard protocol in 43/46 targets (93%). The improved ability to predict VL–VH orientation will bolster predictions of other parts of the paratope, including the conformation of CDR H3, a grand challenge of antibody homology modeling. PMID:27276984
Avian orientation: the pulse effect is mediated by the magnetite receptors in the upper beak
Wiltschko, Wolfgang; Munro, Ursula; Ford, Hugh; Wiltschko, Roswitha
2009-01-01
Migratory silvereyes treated with a strong magnetic pulse shift their headings by approximately 90°, indicating an involvement of magnetite-based receptors in the orientation process. Structures containing superparamagnetic magnetite have been described in the inner skin at the edges of the upper beak of birds, while single-domain magnetite particles are indicated in the nasal cavity. To test which of these structures mediate the pulse effect, we subjected migratory silvereyes, Zosterops l. lateralis, to a strong pulse, and then tested their orientation, while the skin of their upper beak was anaesthetized with a local anaesthetic to temporarily deactivate the magnetite-containing structures there. After the pulse, birds without anaesthesia showed the typical shift, whereas when their beak was anaesthetized, they maintained their original headings. This indicates that the superparamagnetic magnetite-containing structures in the skin of the upper beak are most likely the magnetoreceptors that cause the change in headings observed after pulse treatment. PMID:19324756
Muftić, Lisa R
2006-12-01
Institutional anomie theory (IAT) contends that crime can be explained by an examination of American society, particularly the exaggerated emphasis on economic success inherent in American culture, which has created a "cheating orientation" that permeates structural institutions, including academia. Consistent with its macrosocial perspective, previous tests of IAT have examined IAT variables at the structural level only. The current study tests the robustness of IAT by operationalizing IAT variables at the individual level and looking at a minor form of deviance, student cheating. The author also examines the role statistical modeling has in testing the theory at the microlevel. Undergraduates, 122 American born and 48 international, were surveyed about their cheating behaviors and adherence to economic goal orientations. Results related to the hypothesis that American students, relative to foreign-born students, will have an increased adherence to economic goal orientations that increase cheating behaviors are presented, as are suggestions for future studies.
ERIC Educational Resources Information Center
Li, Cheng-Hsien
2012-01-01
Of the several measures of optimism presently available in the literature, the Life Orientation Test (LOT; Scheier & Carver, 1985) has been the most widely used in empirical research. This article explores, confirms, and cross-validates the factor structure of the Chinese version of the LOT with ordinal data by using robust weighted least…
Risk-Based Object Oriented Testing
NASA Technical Reports Server (NTRS)
Rosenberg, Linda H.; Stapko, Ruth; Gallo, Albert
2000-01-01
Software testing is a well-defined phase of the software development life cycle. Functional ("black box") testing and structural ("white box") testing are two methods of test case design commonly used by software developers. A lesser known testing method is risk-based testing, which takes into account the probability of failure of a portion of code as determined by its complexity. For object oriented programs, a methodology is proposed for identification of risk-prone classes. Risk-based testing is a highly effective testing technique that can be used to find and fix the most important problems as quickly as possible.
NASA Astrophysics Data System (ADS)
McClelland, Arthur; Ahn, Seokhoon; Matzger, Adam J.; Chen, Zhan
2009-03-01
Supplemented by computed models, Scanning Tunneling Microscopy (STM) can provide detailed structure of 2D crystals formed at the liquid/solid interface with atomic resolution. However, some structural information such as functional group orientations in such 2D crystals needs to be tested experimentally to ensure the accuracy of the deduced structures. Due to the limited sensitivity, many other experimental techniques such as Raman and infrared spectroscopy have not been allowed to provide such structural information of 2D crystals. Here we showed that Sum Frequency Generation Vibrational Spectroscopy (SFG) can measure average orientation of functional groups in such 2D crystals, or physisorbed monolayers, providing key experimental data to aid in the modeling and interpretation of the STM images. The usefulness of combining these two techniques is demonstrated with a phthalate diesters monolayer formed at the 1-phenyloctane/ highly oriented pyrolytic graphite (HOPG) interface. The spatial orientation of the ester C=O of the monolayer was successfully determined using SFG.
Monsma, Eva
2016-01-01
This paper examines the factor structure and measurement invariance of the Task and Ego Orientation in Sport Questionnaire (TEOSQ) across American and Chinese samples. Results based on the mean and covariance structure analyses supported configural invariance, metric invariance and scalar invariance across groups. Latent means analyses revealed that American sample had significantly higher mean scores on task and ego orientations than the Chinese sample. The findings suggest that the TEOSQ is a valid and reliable instrument in assessing achievement motivation across these two diverse populations. PMID:27399869
Kinnear, Frances B; Fulbrook, Paul
2017-01-01
Aim To assess the utility of a multiple-encounter in-situ (MEIS) simulation as an orientation tool for multidisciplinary staff prior to opening a new paediatric emergency service. Methods A single-group pretest/post-test study was conducted. During the MEIS simulation, multidisciplinary staff with participant or observer roles managed eight children (mannequins) who attended triage with their parent/guardians (clinical facilitators) for a range of emergency presentations (structured scenarios designed to represent the expected range of presentations plus test various clinical pathways/systems). Participants were debriefed to explore clinical, systems and crisis-resource management issues. Participants also completed a pre-intervention and post-intervention questionnaire comprising statements about role confidence and orientation adequacy. Pre-test and post-test results were analysed using t-test and Wilcoxon signed rank test. Results Eighty-nine staff participated in the MEIS simulation, with the majority completing the pre-simulation and post-simulation questionnaire. There was a significant improvement in post-intervention versus pre-intervention Likert scores for role confidence and orientation adequacy (p=0.001 and <0.001, respectively); effect sizes suggested the greatest impact was on orientation adequacy. Nearly all scenarios resulted in significant increases in participants’ confidence levels. Conclusions The MEIS simulation was of utility in orientation of staff, at least with respect to self-reported role confidence and orientation adequacy. Its effectiveness in practice or compared with other orientation techniques was not assessed, but it did identify several flaws in planned systems allowing remediation prior to opening. PMID:29354279
Davison, Michelle; Kinnear, Frances B; Fulbrook, Paul
2017-10-01
To assess the utility of a multiple-encounter in-situ (MEIS) simulation as an orientation tool for multidisciplinary staff prior to opening a new paediatric emergency service. A single-group pretest/post-test study was conducted. During the MEIS simulation, multidisciplinary staff with participant or observer roles managed eight children (mannequins) who attended triage with their parent/guardians (clinical facilitators) for a range of emergency presentations (structured scenarios designed to represent the expected range of presentations plus test various clinical pathways/systems). Participants were debriefed to explore clinical, systems and crisis-resource management issues. Participants also completed a pre-intervention and post-intervention questionnaire comprising statements about role confidence and orientation adequacy. Pre-test and post-test results were analysed using t-test and Wilcoxon signed rank test. Eighty-nine staff participated in the MEIS simulation, with the majority completing the pre-simulation and post-simulation questionnaire. There was a significant improvement in post-intervention versus pre-intervention Likert scores for role confidence and orientation adequacy (p=0.001 and <0.001, respectively); effect sizes suggested the greatest impact was on orientation adequacy. Nearly all scenarios resulted in significant increases in participants' confidence levels. The MEIS simulation was of utility in orientation of staff, at least with respect to self-reported role confidence and orientation adequacy. Its effectiveness in practice or compared with other orientation techniques was not assessed, but it did identify several flaws in planned systems allowing remediation prior to opening.
Harnessing Multivariate Statistics for Ellipsoidal Data in Structural Geology
NASA Astrophysics Data System (ADS)
Roberts, N.; Davis, J. R.; Titus, S.; Tikoff, B.
2015-12-01
Most structural geology articles do not state significance levels, report confidence intervals, or perform regressions to find trends. This is, in part, because structural data tend to include directions, orientations, ellipsoids, and tensors, which are not treatable by elementary statistics. We describe a full procedural methodology for the statistical treatment of ellipsoidal data. We use a reconstructed dataset of deformed ooids in Maryland from Cloos (1947) to illustrate the process. Normalized ellipsoids have five degrees of freedom and can be represented by a second order tensor. This tensor can be permuted into a five dimensional vector that belongs to a vector space and can be treated with standard multivariate statistics. Cloos made several claims about the distribution of deformation in the South Mountain fold, Maryland, and we reexamine two particular claims using hypothesis testing: 1) octahedral shear strain increases towards the axial plane of the fold; 2) finite strain orientation varies systematically along the trend of the axial trace as it bends with the Appalachian orogen. We then test the null hypothesis that the southern segment of South Mountain is the same as the northern segment. This test illustrates the application of ellipsoidal statistics, which combine both orientation and shape. We report confidence intervals for each test, and graphically display our results with novel plots. This poster illustrates the importance of statistics in structural geology, especially when working with noisy or small datasets.
Development of eddy current probe for fiber orientation assessment in carbon fiber composites
NASA Astrophysics Data System (ADS)
Wincheski, Russell A.; Zhao, Selina
2018-04-01
Measurement of the fiber orientation in a carbon fiber composite material is crucial in understanding the load carrying capability of the structure. As manufacturing conditions including resin flow and molding pressures can alter fiber orientation, verification of the as-designed fiber layup is necessary to ensure optimal performance of the structure. In this work, the development of an eddy current probe and data processing technique for analysis of fiber orientation in carbon fiber composites is presented. A proposed directional eddy current probe is modeled and its response to an anisotropic multi-layer conductor simulated. The modeling results are then used to finalize specifications of the eddy current probe. Experimental testing of the fabricated probe is presented for several samples including a truncated pyramid part with complex fiber orientation draped to the geometry for resin transfer molding. The inductively coupled single sided measurement enables fiber orientation characterization through the thickness of the part. The fast and cost-effective technique can be applied as a spot check or as a surface map of the fiber orientations across the structure. This paper will detail the results of the probe design, computer simulations, and experimental results.
A Structural Equation Model of Conceptual Change in Physics
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Sinatra, Gale M.
2011-01-01
A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…
Kobler, Aaron; Kübel, Christian
2018-01-01
To relate the internal structure of a volume (crystallite and phase boundaries) to properties (electrical, magnetic, mechanical, thermal), a full 3D reconstruction in combination with in situ testing is desirable. In situ testing allows the crystallographic changes in a material to be followed by tracking and comparing the individual crystals and phases. Standard transmission electron microscopy (TEM) delivers a projection image through the 3D volume of an electron-transparent TEM sample lamella. Only with the help of a dedicated TEM tomography sample holder is an accurate 3D reconstruction of the TEM lamella currently possible. 2D crystal orientation mapping has become a standard method for crystal orientation and phase determination while 3D crystal orientation mapping have been reported only a few times. The combination of in situ testing with 3D crystal orientation mapping remains a challenge in terms of stability and accuracy. Here, we outline a method to 3D reconstruct the crystal orientation from a superimposed diffraction pattern of overlapping crystals without sample tilt. Avoiding the typically required tilt series for 3D reconstruction enables not only faster in situ tests but also opens the possibility for more stable and more accurate in situ mechanical testing. The approach laid out here should serve as an inspiration for further research and does not make a claim to be complete.
Horst, Renata; Maicki, Tomasz; Trąbka, Rafał; Albrecht, Sindy; Schmidt, Katharina; Mętel, Sylwia; von Piekartz, Harry
2017-05-01
To compare the short- and long-term effects of a structural-oriented (convential) with an activity-oriented physiotherapeutic treatment in patients with frozen shoulder. Double-blinded, randomized, experimental study. Outpatient clinic. We included patients diagnosed with a limited range of motion and pain in the shoulder region, who had received a prescription for physiotherapy treatment, without additional symptoms of dizziness, a case history of headaches, pain and/or limited range of motion in the cervical spine and/or temporomandibular joint. The study group received treatment during the performance of activities. The comparison group was treated with manual therapy and proprioceptive neuromuscular facilitation (conventional therapy). Both groups received 10 days of therapy, 30 minutes each day. Range of motion, muscle function tests, McGill pain questionnaire and modified Upper Extremity Motor Activity Log were measured at baseline, after two weeks of intervention and after a three-month follow-up period without therapy. A total of 66 patients were randomized into two groups: The activity-oriented group ( n = 33, mean = 44 years, SD = 16 years) including 20 male (61%) and the structural-oriented group ( n = 33, mean = 47 years, SD = 17 years) including 21 male (64%). The activity-oriented group revealed significantly greater improvements in the performance of daily life activities and functional and structural tests compared with the group treated with conventional therapy after 10 days of therapy and at the three-month follow-up ( p < 0.05). Therapy based on performing activities seems to be more effective for pain reduction and the ability to perform daily life activities than conventional treatment methods.
Z-direction fiber orientation in paperboard
John M. Considine; David W. Vahey; Roland Gleisner; Alan Rudie; Sabine Rolland du Roscoat; Jean-Francis Bloch
2010-01-01
This work evaluated the use of conventional tests to show beneficial attributes of z-direction fiber orientation (ZDFO) for structural paperboards. A survey of commercial linerboards indicated the presence of ZDFO in one material that had higher Taber stiffness, out-of-plane shear strength, directional dependence of Scott internal bond strength and directional...
A Model of Metacognition, Achievement Goal Orientation, Learning Style and Self-Efficacy
ERIC Educational Resources Information Center
Coutinho, Savia A.; Neuman, George
2008-01-01
Structural equation modelling was used to test a model integrating achievement goal orientation, learning style, self-efficacy and metacognition into a single framework that explained and predicted variation in performance. Self-efficacy was the strongest predictor of performance. Metacognition was a weak predictor of performance. Deep processing…
NASA Astrophysics Data System (ADS)
Basavalingappa, Adarsh
Copper interconnects are typically polycrystalline and follow a lognormal grain size distribution. Polycrystalline copper interconnect microstructures with a lognormal grain size distribution were obtained with a Voronoi tessellation approach. The interconnect structures thus obtained were used to study grain growth mechanisms, grain boundary scattering, scattering dependent resistance of interconnects, stress evolution, vacancy migration, reliability life times, impact of orientation dependent anisotropy on various mechanisms, etc. In this work, the microstructures were used to study the impact of microstructure and elastic anisotropy of copper on thermal and electromigration induced failure. A test structure with copper and bulk moduli values was modeled to do a comparative study with the test structures with textured microstructure and elastic anisotropy. By subjecting the modeled test structure to a thermal stress by ramping temperature down from 400 °C to 100 °C, a significant variation in normal stresses and pressure were observed at the grain boundaries. This variation in normal stresses and hydrostatic stresses at the grain boundaries was found to be dependent on the orientation, dimensions, surroundings, and location of the grains. This may introduce new weak points within the metal line where normal stresses can be very high depending on the orientation of the grains leading to delamination and accumulation sites for vacancies. Further, the hydrostatic stress gradients act as a driving force for vacancy migration. The normal stresses can exceed certain grain orientation dependent critical threshold values and induce delamination at the copper and cap material interface, thereby leading to void nucleation and growth. Modeled test structures were subjected to a series of copper depositions at 250 °C followed by copper etch at 25 °C to obtain initial stress conditions. Then the modeled test structures were subjected to 100,000 hours ( 11.4 years) of simulated thermal stress at an elevated temperature of 150 °C. Vacancy migration due to concentration gradients, thermal gradients, and mechanical stress gradients were considered under the applied thermal stress. As a result, relatively high concentrations of vacancies were observed in the test structure due to a driving force caused by the pressure gradients resulting from the elastic anisotropy of copper. The grain growth mechanism was not considered in these simulations. Studies with two grain analysis demonstrated that the stress gradients developed will be severe when (100) grains are adjacent to (111) grains, therefore making them the weak points for potentially reliability failures. Ilan Blech discovered that electromigration occurs above a critical product of the current density and metal length, commonly referred as Blech condition. Electromigration stress simulations in this work were carried out by subjecting test structures to scaled current densities to overcome the Blech condition of (jL)crit for small dimensions of test structure and the low temperature stress condition used. Vacancy migration under the electromigration stress conditions was considered along with the vacancy migration induced stress evolution. A simple void growth model was used which assumes voids start to form when vacancies reach a critical level. Increase of vacancies in a localized region increases the resistance of the metal line. Considering a 10% increase in resistance as a failure criterion, the distributions of failure times were obtained for given electromigration stress conditions. Bimodal/multimodal failure distributions were obtained as a result. The sigma values were slightly lower than the ones commonly observed from experiments. The anisotropy of the elastic moduli of copper leads to the development of significantly different stress values which are dependent on the orientation of the grains. This results in some grains having higher normal stress than the others. This grain orientation dependent normal stress can reach a critical stress necessary to induce delamination at the copper and cap interface. Time taken to reach critical stress was considered as time to fail and distributions of failure times were obtained for structures with different grain orientations in the microstructure for different critical stress values. The sigma values of the failure distributions thus obtained for different constant critical stress values had a strong dependence of on the critical stress. It is therefore critical to use the appropriate critical stress value for the delamination of copper and cap interface. The critical stress necessary to overcome the local adhesion of the copper and the cap material interface is dependent on grain orientation of the copper. Simulations were carried out by considering grain orientation dependent critical normal stress values as failure criteria. The sigma value thus obtained with selected critical stress values were comparable to sigma values commonly observed from experiments.
Embodied memory allows accurate and stable perception of hidden objects despite orientation change.
Pan, Jing Samantha; Bingham, Ned; Bingham, Geoffrey P
2017-07-01
Rotating a scene in a frontoparallel plane (rolling) yields a change in orientation of constituent images. When using only information provided by static images to perceive a scene after orientation change, identification performance typically decreases (Rock & Heimer, 1957). However, rolling generates optic flow information that relates the discrete, static images (before and after the change) and forms an embodied memory that aids recognition. The embodied memory hypothesis predicts that upon detecting a continuous spatial transformation of image structure, or in other words, seeing the continuous rolling process and objects undergoing rolling observers should accurately perceive objects during and after motion. Thus, in this case, orientation change should not affect performance. We tested this hypothesis in three experiments and found that (a) using combined optic flow and image structure, participants identified locations of previously perceived but currently occluded targets with great accuracy and stability (Experiment 1); (b) using combined optic flow and image structure information, participants identified hidden targets equally well with or without 30° orientation changes (Experiment 2); and (c) when the rolling was unseen, identification of hidden targets after orientation change became worse (Experiment 3). Furthermore, when rolling was unseen, although target identification was better when participants were told about the orientation change than when they were not told, performance was still worse than when there was no orientation change. Therefore, combined optic flow and image structure information, not mere knowledge about the rolling, enables accurate and stable perception despite orientation change. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
High-Strength Composite Fabric Tested at Structural Benchmark Test Facility
NASA Technical Reports Server (NTRS)
Krause, David L.
2002-01-01
Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.
Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes
NASA Astrophysics Data System (ADS)
Markoulidis, F.; Lei, C.; Lekakou, C.
2013-04-01
High-performance supercapacitors with organic electrolyte 1 M TEABF4 (tetraethyl ammonium tetrafluoroborate) in PC (propylene carbonate) were fabricated and tested, based on multiwall carbon nanotubes (MWNTs) deposited by electrophoresis on three types of alternative substrates: aluminium foil, ITO (indium tin oxide) coated PET (polyethylene terephthalate) film and PET film. In all cases, SEM (scanning electron microscopy) and STEM (scanning transmission electron microscopy) micrographs demonstrated that protruding, transversely oriented MWNT structures were formed, which should increase the transverse conductivity of these MWNT electrodes. The best supercapacitor cell of MWNT electrodes deposited on aluminium foil displayed good transverse orientation of the MWNT structures as well as an in-plane MWNT network at the feet of the protruding structures, which ensured good in-plane conductivity. Capacitor cells with MWNT electrodes deposited either on ITO-coated PET film or on PET film demonstrated lower but still very good performance due to the high density of transversely oriented MWNT structures (good transverse conductivity) but some in-plane inhomogeneities. Capacitor cells with drop-printed MWNTs on aluminium foil, without any transverse orientation, had 16-30 times lower specific capacitance and 5-40 times lower power density than the capacitor cells with the electrophoretically deposited MWNT electrodes.
Observation-Oriented Modeling: Going beyond "Is It All a Matter of Chance"?
ERIC Educational Resources Information Center
Grice, James W.; Yepez, Maria; Wilson, Nicole L.; Shoda, Yuichi
2017-01-01
An alternative to null hypothesis significance testing is presented and discussed. This approach, referred to as observation-oriented modeling, is centered on model building in an effort to explicate the structures and processes believed to generate a set of observations. In terms of analysis, this novel approach complements traditional methods…
ERIC Educational Resources Information Center
Neimeyer, Greg J.; And Others
1989-01-01
Tested possibility that sex differences in vocational structure derived from type of construct (personally elicited/experimentally provided) and sex-role orientation (stereotyped/androgynous) of 251 college students. Results replicated earlier results concerning men's higher level of differentiation, but lower levels of integration, vis-a-vis…
The Structuring Principle: Political Socialization and Belief Systems
ERIC Educational Resources Information Center
Searing, Donald D.; And Others
1973-01-01
Assesses the significance of data on childhood political learning to political theory by testing the structuring principle,'' considered one of the central assumptions of political socialization research. This principle asserts that basic orientations acquired during childhood structure the later learning of specific issue beliefs.'' The…
Material property for designing, analyzing, and fabricating space structures
NASA Technical Reports Server (NTRS)
Kolkailah, Faysal A.
1991-01-01
An analytical study was made of plasma assisted bullet projectile. The finite element analysis and the micro-macromechanic analysis was applied to an optimum design technique for the multilayered graphite-epoxy composite projectile that will achieve hypervelocity of 6 to 10 Km/s. The feasibility was determined of dialectics to monitor cure of graphite-epoxies. Several panels were fabricated, cured, and tested with encouraging results of monitoring the cure of graphite-epoxies. The optimum cure process for large structures was determined. Different orientation were used and three different curing cycles were employed. A uniaxial tensile test was performed on all specimens. The optimum orientation with the optimum cure cycle were concluded.
Ji, Hong-Mei; Zhang, Wen-Qian; Wang, Xu; Li, Xiao-Wu
2015-01-01
The three-point bending strength and fracture behavior of single oriented crossed-lamellar structure in Scapharca broughtonii shell were investigated. The samples for bending tests were prepared with two different orientations perpendicular and parallel to the radial ribs of the shell, which corresponds to the tiled and stacked directions of the first-order lamellae, respectively. The bending strength in the tiled direction is approximately 60% higher than that in the stacked direction, primarily because the regularly staggered arrangement of the second-order lamellae in the tiled direction can effectively hinder the crack propagation, whereas the cracks can easily propagate along the interfaces between lamellae in the stacked direction. PMID:28793557
NASA Astrophysics Data System (ADS)
Li, ZhaoYu; Chen, Tao; Yan, GuangQing
2016-10-01
A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope (MFR) via multipoint analysis of the magnetic-field structure is developed. The method is devised under the following geometrical assumptions: (1) on its cross section, the structure is left-right symmetric; (2) the projected structure velocity is vertical to the line of symmetry. The two conditions can be naturally satisfied for cylindrical MFRs and are expected to be satisfied for MFRs that are flattened within current sheets. The model test demonstrates that, for determining the axial orientation of such structures, the new method is more efficient and reliable than traditional techniques such as minimum-variance analysis of the magnetic field, Grad-Shafranov (GS) reconstruction, and the more recent method based on the cylindrically symmetric assumption. A total of five flux transfer events observed by Cluster are studied using the proposed approach, and the application results indicate that the observed structures, regardless of their actual physical properties, fit the assumed geometrical model well. For these events, the inferred axial orientations are all in excellent agreement with those obtained using the multi-GS reconstruction technique.
Orientation domains: A mobile grid clustering algorithm with spherical corrections
NASA Astrophysics Data System (ADS)
Mencos, Joana; Gratacós, Oscar; Farré, Mercè; Escalante, Joan; Arbués, Pau; Muñoz, Josep Anton
2012-12-01
An algorithm has been designed and tested which was devised as a tool assisting the analysis of geological structures solely from orientation data. More specifically, the algorithm was intended for the analysis of geological structures that can be approached as planar and piecewise features, like many folded strata. Input orientation data is expressed as pairs of angles (azimuth and dip). The algorithm starts by considering the data in Cartesian coordinates. This is followed by a search for an initial clustering solution, which is achieved by comparing the results output from the systematic shift of a regular rigid grid over the data. This initial solution is optimal (achieves minimum square error) once the grid size and the shift increment are fixed. Finally, the algorithm corrects for the variable spread that is generally expected from the data type using a reshaped non-rigid grid. The algorithm is size-oriented, which implies the application of conditions over cluster size through all the process in contrast to density-oriented algorithms, also widely used when dealing with spatial data. Results are derived in few seconds and, when tested over synthetic examples, they were found to be consistent and reliable. This makes the algorithm a valuable alternative to the time-consuming traditional approaches available to geologists.
Ishaak, Fariel; de Vries, Nanne Karel; van der Wolf, Kees
2014-06-11
In this article, the test implementation of a school-oriented drug prevention program "Study without Drugs" is discussed. The aims of this study were to determine the results of the process evaluation and to determine whether the proposed school-oriented drug prevention program during a pilot project was effective for the participating pupils. Sixty second-grade pupils at a junior high school in Paramaribo, Suriname participated in the test implementation. They were divided into two classes. For the process evaluation the students completed a structured questionnaire focusing on content and teaching method after every lesson. Lessons were qualified with a score from 0-10. The process was also evaluated by the teachers through structured interviews. Attention was paid to reach, dose delivered, dose received, fidelity, connection, achieved effects/observed behaviors, areas for improvement, and lesson strengths. The effect evaluation was conducted by using the General Liniair Model (repeated measure). The research (-design) was a pre-experimental design with pre-and post-test. No class or sex differences were detected among the pupils with regard to the assessment of content, methodology, and qualification of the lessons. Post-testing showed that participating pupils obtained an increased knowledge of drugs, their drug-resisting skills were enhanced, and behavior determinants (attitude, subjective norm, self-efficacy, and intention) became more negative towards drugs. From the results of the test implementation can be cautiously concluded that the program "Study without Drugs" may yield positive results when applied in schools). Thus, this pilot program can be considered a step towards the development and implementation of an evidence-based school-oriented program for pupils in Suriname.
2014-01-01
Background In this article, the test implementation of a school-oriented drug prevention program “Study without Drugs” is discussed. The aims of this study were to determine the results of the process evaluation and to determine whether the proposed school-oriented drug prevention program during a pilot project was effective for the participating pupils. Methods Sixty second-grade pupils at a junior high school in Paramaribo, Suriname participated in the test implementation. They were divided into two classes. For the process evaluation the students completed a structured questionnaire focusing on content and teaching method after every lesson. Lessons were qualified with a score from 0–10. The process was also evaluated by the teachers through structured interviews. Attention was paid to reach, dose delivered, dose received, fidelity, connection, achieved effects/observed behaviors, areas for improvement, and lesson strengths. The effect evaluation was conducted by using the General Liniair Model (repeated measure). The research (-design) was a pre-experimental design with pre-and post-test. Results No class or sex differences were detected among the pupils with regard to the assessment of content, methodology, and qualification of the lessons. Post-testing showed that participating pupils obtained an increased knowledge of drugs, their drug-resisting skills were enhanced, and behavior determinants (attitude, subjective norm, self-efficacy, and intention) became more negative towards drugs. Conclusions From the results of the test implementation can be cautiously concluded that the program “Study without Drugs” may yield positive results when applied in schools). Thus, this pilot program can be considered a step towards the development and implementation of an evidence-based school-oriented program for pupils in Suriname. PMID:24920468
Li, F; Harmer, P
1996-12-01
Self-determination theory (Deci & Ryan, 1985) suggests that motivational orientation or regulatory styles with respect to various behaviors can be conceptualized along a continuum ranging from low (a motivation) to high (intrinsic motivation) levels of self-determination. This pattern is manifested in the rank order of correlations among these regulatory styles (i.e., adjacent correlations are expected to be higher than those more distant) and is known as a simplex structure. Using responses from the Sport Motivation Scale (Pelletier et al., 1995) obtained from a sample of 857 college students (442 men, 415 women), the present study tested the simplex structure underlying SMS subscales via structural equation modeling. Results confirmed the simplex model structure, indicating that the various motivational constructs are empirically organized from low to high self-determination. The simplex pattern was further found to be invariant across gender. Findings from this study support the construct validity of the SMS and have important implications for studies focusing on the influence of motivational orientation in sport.
Tranel, Daniel; Vianna, Eduardo; Manzel, Kenneth; Damasio, Hanna; Grabowski, Thomas
2009-02-01
Two of the most successful and widely used tests developed by Arthur Benton and colleagues are the Facial Recognition Test (FRT) and Judgment of Line Orientation Test (JLO), which probe visuoperceptual and visuospatial functions typically associated with right hemisphere structures, especially parietal, occipitoparietal, and occipitotemporal structures. Taking advantage of a large database of focal lesion patients (the Iowa Neurological Patient Registry), we used a new lesion-deficit mapping technique to investigate the neuroanatomical correlates of FRT and JLO performance. For the FRT, there were 201 patients with relevant data; of these, 38 were impaired on the FRT, and failure was most strongly associated with lesions in the right posterior-inferior parietal and right ventral occipitotemporal (fusiform gyrus) areas. For the JLO, there were 181 patients with relevant data; of these, 23 were impaired on the JLO, and failure was most strongly associated with lesions in the right posterior parietal region. These findings put new empirical teeth in the localizing value of the FRT and JLO tests, and they extend and sharpen previous work that had pointed to right posterior structures as being important for FRT and JLO performance
Tranel, Daniel; Vianna, Eduardo; Manzel, Kenneth; Damasio, Hanna; Grabowski, Thomas
2010-01-01
Two of the most successful and widely used tests developed by Arthur Benton and colleagues are the Facial Recognition Test (FRT) and Judgment of Line Orientation test (JLO), which probe visuoperceptual and visuospatial functions typically associated with right hemisphere structures, especially parietal, occipitoparietal, and occipitotemporal structures. Taking advantage of a large database of focal lesion patients (the Iowa Neurological Patient Registry), we used a new lesion-deficit mapping technique to investigate the neuroanatomical correlates of FRT and JLO performance. For the FRT, there were 201 patients with relevant data; of these, 38 were impaired on the FRT, and failure was most strongly associated with lesions in the right posterior-inferior parietal and right ventral occipitotemporal (fusiform gyrus) areas. For the JLO, there were 181 patients with relevant data; of these, 23 were impaired on the JLO, and failure was most strongly associated with lesions in the right posterior parietal region. These findings put new empirical teeth in the localizing value of the FRT and JLO tests, and extend and sharpen previous work which had pointed to right posterior structures as being important for FRT and JLO performance. PMID:19051129
De Cuyper, Kathleen; Claes, Laurence; Hermans, Dirk; Pieters, Guido; Smits, Dirk
2015-01-01
We administered the Dutch Multidimensional Perfectionism Scale of Hewitt and Flett (1991, 2004) in a large student sample (N = 959) and performed a confirmatory factor analysis to test the factorial structure proposed by the original authors. The existence of a method factor referring to the negatively keyed items in the questionnaire was investigated by including it in the tested models. Next, we investigated how the 3 perfectionism dimensions are associated with the Five-factor model (FFM) of personality. The 3-factor structure originally observed by the authors was confirmed, at least when a method factor that refers to the negatively keyed items was included in the model. Self-oriented and socially prescribed perfectionism were both distinguished by low extraversion and low emotional stability. Self-oriented perfectionism's positive relationship with both conscientiousness and openness to experience differentiated the 2 perfectionism dimensions from each other. Other-oriented perfectionism was not well-characterized by the Big Five personality traits.
Boudjemad, Valérian; Gana, Kamel
2009-12-01
ABSTRACTThis article presents two studies dealing with ageism. The objective of the first study was to adapt to French language and validate the Fraboni of Ageism Scale-Revised (FSA-R) which contains 23 items, while the objective of the second study was to test a structural model containing ageism as measured by the FSA-R and the "Big Three": empathy, social dominance orientation, and dogmatism, controlled for by sex and age. The results of the first study (n = 323) generated a version of the FSA-R comprising 14 items, of which the psychometric properties were very satisfactory. Using structural equation modelling and bootstrap procedure, the results of the second study (n = 284) showed a direct negative and significant effect of empathy on agism. They also showed that this negative effect was mediated by dogmatism and social dominance orientation, which both exerted a positive effect on ageism.
Evaluation of Heating Methods for Thermal Structural Testing of Large Structures
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Sikora, Joseph G.; Caldwell, Darrell L., Jr.
1998-01-01
An experimental study was conducted to evaluate different heating methods for thermal structural testing of large scale structures at temperatures up to 350 F as part of the High Speed Research program. The heating techniques evaluated included: radiative/convective, forced convective, and conductive. The radiative/convective heaters included finned strip heaters, and clear and frosted quartz lamps. The forced convective heating was accomplished by closed loop circulation of heated air. The conductive heater consisted of heating blankets. The tests were conducted on an 1/8 inch thick stainless steel plate in a custom-built oven. The criteria used for comparing the different heating methods included test specimen temperature uniformity, heater response time, and consumed power. The parameters investigated included air circulation in the oven, reflectance of oven walls, and the orientation of the test specimen and heaters (vertical and horizontal). It was found that reflectance of oven walls was not an important parameter. Air circulation was necessary to obtain uniform temperatures only for the vertically oriented specimen. Heating blankets provided unacceptably high temperature non-uniformities. Quartz lamps with internal air circulation had the lowest power consumption levels. Using frosted quartz lamps with closed loop circulation of cool air, and closed loop circulation of heated air provided the fastest response time.
Wong, David T; Yau, Brian; Thapar, Shikha; Adhikary, Sanjib D
2010-10-01
This study examined the effect of external fibreoptic bronchoscope (FOB) rotations on endotracheal tube (ETT) orientations at the glottic level. Using a mannequin, a nasal FOB was inserted for image capture. A second FOB with a preloaded ETT taped to its top was inserted orally into mid-trachea. The FOB with the taped ETT was rotated as a unit in the axial plane to five different external angles (-90°, -45°, 0°, +45°, +90°). At each external rotation, the ETT was advanced into the trachea. The image of the ETT at the glottic level was captured. Endotracheal tube orientation was quantified according to the glottic zone faced by the ETT. The ETT orientations were compared amongst the five external FOB rotations using the Kruskal-Wallis Test, while the ETT orientations at -90°, -45°, +45°, and +90° FOB rotations were compared with 0° rotation using the Mann-Whitney U test. There was a significant difference in the ETT orientations amongst the five FOB rotations (P < 0.001). The ETT orientations at -90°, -45°, +45°, and +90° FOB rotations were different from the 0° rotation (P < 0.001 for all comparisons). A -90° FOB rotation was most effective in turning the ETT tip away from the right laryngeal structures and the interarytenoid tissue. With the ETT loaded on a FOB, rotation of the FOB prior to advancing the ETT is effective in changing the ETT orientation at the glottis. A -90° FOB rotation is most effective in turning the ETT tip away from the right laryngeal structures and interarytenoid tissue.
Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material
NASA Technical Reports Server (NTRS)
Abdul-Aziz, A.; August, R.; Nagpal, V.
1993-01-01
Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.
Effect of environmental conditions on the flexural properties of wood I-beams and lumber
Gwo-Huang Chen; R.C. Tang; E.W. Price
1989-01-01
Flexural properties as affected by environmental conditions were evaluated for full-sized wood composite I-beams webbed with oriented strand board (OSB), randomly oriented flakeboard (RF) and 3-ply Structural I plywood (PLY). Solid-sawn southern pine 2 by 10's, ordinarily used in light-frame building construction, were also tested for comparative purposes....
ERIC Educational Resources Information Center
Claes, Michel; Lacourse, Eric; Ercolani, Anna-Paula; Pierro, Antonio; Leone, Luigi; Presaghi, Fabio
2005-01-01
The objective of this study was to investigate the links between maternal and paternal bonding, parental practices, orientation toward peers, and the prevalence of drug use and antisocial behavior during late adolescence. A model was tested using structural equation modeling in order to verify the robustness of the investigated links across 3…
A Model of Factors Contributing to STEM Learning and Career Orientation
NASA Astrophysics Data System (ADS)
Nugent, Gwen; Barker, Bradley; Welch, Greg; Grandgenett, Neal; Wu, ChaoRong; Nelson, Carl
2015-05-01
The purpose of this research was to develop and test a model of factors contributing to science, technology, engineering, and mathematics (STEM) learning and career orientation, examining the complex paths and relationships among social, motivational, and instructional factors underlying these outcomes for middle school youth. Social cognitive career theory provided the foundation for the research because of its emphasis on explaining mechanisms which influence both career orientations and academic performance. Key constructs investigated were youth STEM interest, self-efficacy, and career outcome expectancy (consequences of particular actions). The study also investigated the effects of prior knowledge, use of problem-solving learning strategies, and the support and influence of informal educators, family members, and peers. A structural equation model was developed, and structural equation modeling procedures were used to test proposed relationships between these constructs. Results showed that educators, peers, and family-influenced youth STEM interest, which in turn predicted their STEM self-efficacy and career outcome expectancy. STEM career orientation was fostered by youth-expected outcomes for such careers. Results suggest that students' pathways to STEM careers and learning can be largely explained by these constructs, and underscore the importance of youth STEM interest.
Barium ferrite thin-film recording media
NASA Astrophysics Data System (ADS)
Sui, Xiaoyu; Scherge, Matthias; Kryder, Mark H.; Snyder, John E.; Harris, Vincent G.; Koon, Norman C.
1996-03-01
Both longitudinal and perpendicular barium ferrite thin films are being pursued as overcoatless magnetic recording media. In this paper, prior research on thin-film Ba ferrite is reviewed and the most recent results are presented. Self-textured high-coercivity longitudinal Ba ferrite thin films have been achieved using conventional rf diode sputtering. Microstructural studies show that c-axis in-plane oriented grains have a characteristic acicular shape, while c-axis perpendicularly oriented grains have a platelet shape. Extended X-ray absorption fine structure (EXAFS) measurements indicate that the crystal orientations are predetermined by the structural anisotropy in the as-sputtered 'amorphous' state. Recording tests on 1500 Oe coercivity longitudinal Ba ferrite disks show performance comparable with that of a 1900 Oe Co alloy disk. To further improve the recording performance, both grain size and aspect ratio need to be reduced. Initial tribological tests indicate high hardness of Ba ferrite thin films. However, surface roughness needs to be reduced. For future ultrahigh-density contact recording, it is believed that perpendicular recording may be used. A thin Pt underlayer has been found to be capable of producing Ba ferrite thin films with excellent c-axis perpendicular orientation.
Domínguez-Rodrigo, Manuel; García-Pérez, Alfonso
2013-01-01
Orientation of archaeological and paleontological materials plays a prominent role in the interpretation of site formation processes. Allochthony and authochthony are frequently assumed from orientation patterns or lack thereof. Although it is still debated to what extent orientation of items can be produced in original depositional contexts, the recent use of GIS tools to measure orientations has highlighted several ways of reproducing A-axes with which to address these taphonomic issues. In the present study, the three most relevant A-axis types are compared to test their accuracy in reproducing water current direction. Although results may be similar in specific bone shapes, differences are important in other shapes. As known in engineering working with wind and fluid mechanics (developing shape optimization), longitudinal symmetrical axes (LSA) are the one that best orient structures against or in the same direction of wind and water. The present work shows that this is also the case for bones (regardless of shape), since LSA produce the most accurate estimates of flow direction. This has important consequences for the interpretation of orientation patterns at sites, since this type of axis is still not properly reproduced by GIS available tools. PMID:23874825
Future orientation and suicide ideation and attempts in depressed adults ages 50 and over.
Hirsch, Jameson K; Duberstein, Paul R; Conner, Kenneth R; Heisel, Marnin J; Beckman, Anthony; Franus, Nathan; Conwell, Yeates
2006-09-01
The objective of this study was to test the hypothesis that future orientation is associated with lower levels of suicide ideation and lower likelihood of suicide attempt in a sample of patients in treatment for major depression. Two hundred two participants (116 female, 57%) ages 50-88 years were recruited from inpatient and outpatient settings. All were diagnosed with major depression using a structured diagnostic interview. Suicide ideation was assessed with the Scale for Suicide Ideation (both current and worst point ratings), and a measure of future orientation was created to assess future expectancies. The authors predicted that greater future orientation would be associated with less current and worst point suicide ideation, and would distinguish current and lifetime suicide attempters from nonattempters. Hypotheses were tested using multivariate logistic regression and linear regression analyses that accounted for age, gender, hopelessness, and depression. As hypothesized, higher future orientation scores were associated with lower current suicidal ideation, less intense suicidal ideation at its worst point, and lower probability of a history of attempted suicide after accounting for covariates. Future orientation was not associated with current attempt status. Future orientation holds promise as a cognitive variable associated with decreased suicide risk; a better understanding of its putative protective role is needed. Treatments designed to enhance future orientation might decrease suicide risk.
Nierenberger, Mathieu; Fargier, Guillaume; Ahzi, Saïd; Rémond, Yves
2015-08-01
The collagen fibers' three-dimensional architecture has a strong influence on the mechanical behavior of biological tissues. To accurately model this behavior, it is necessary to get some knowledge about the structure of the collagen network. In the present paper, we focus on the in situ characterization of the collagenous structure, which is present in porcine jugular vein walls. An observation of the vessel wall is first proposed in an unloaded configuration. The vein is then put into a mechanical tensile testing device. As the vein is stretched, three-dimensional images of its collagenous structure are acquired using multiphoton microscopy. Orientation analyses are provided for the multiple images recorded during the mechanical test. From these analyses, the reorientation of the two families of collagen fibers existing in the vein wall is quantified. We noticed that the reorientation of the fibers stops as the tissue stiffness starts decreasing, corresponding to the onset of damage. Besides, no relevant evolutions of the out of plane collagen orientations were observed. Due to the applied loading, our analysis also allowed for linking the stress relaxation within the tissue to its internal collagenous structure. Finally, this analysis constitutes the first mechanical test performed under a multiphoton microscope with a continuous three-dimensional observation of the tissue structure all along the test. It allows for a quantitative evaluation of microstructural parameters combined with a measure of the global mechanical behavior. Such data are useful for the development of structural mechanical models for living tissues.
Testing Model with "Check Technique" for Physics Education
ERIC Educational Resources Information Center
Demir, Cihat
2016-01-01
As the number, date and form of the written tests are structured and teacher-oriented, it is considered that it creates fear and anxiety among the students. It has been found necessary and important to form a testing model which will keep the students away from the test anxiety and allows them to learn only about the lesson. For this study,…
Anti-Transgender Prejudice: A Structural Equation Model of Associated Constructs
ERIC Educational Resources Information Center
Tebbe, Esther N.; Moradi, Bonnie
2012-01-01
This study aimed to identify theoretically relevant key correlates of anti-transgender prejudice. Specifically, structural equation modeling was used to test the unique relations of anti-lesbian, gay, and bisexual (LGB) prejudice; traditional gender role attitudes; need for closure; and social dominance orientation with anti-transgender prejudice.…
ENGINEERING TEST REACTOR, TRA642. CONTEXTUAL VIEW ORIENTATING ETR TO MTR. ...
ENGINEERING TEST REACTOR, TRA-642. CONTEXTUAL VIEW ORIENTATING ETR TO MTR. CAMERA IS ON ROOF OF MTR BUILDING AND FACES DUE SOUTH. MTR SERVICE BUILDING, TRA-635, IN LOWER RIGHT CORNER. STEEL FRAMES SHOW BUILDINGS TO BE ATTACHED TO ETR BUILDING. HIGH-BAY SECTION IN CENTER IS REACTOR BUILDING. TWO-STORY CONTROL ROOM AND OFFICE BUILDING, TRA-647, IS BETWEEN IT AND MTR SERVICE BUILDING. STRUCTURE TO THE LEFT (WITH NO FRAMING YET) IS COMPRESSOR BUILDING, TRA-643, AND BEYOND IT WILL BE HEAT EXCHANGER BUILDING, TRA-644, GREAT SOUTHERN BUTTE ON HORIZON. INL NEGATIVE NO. 56-2382. Jack L. Anderson, Photographer, 6/10/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronowski, D.R.; Madsen, M.M.
The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in threemore » orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.« less
Evaluating Measures of Optimism and Sport Confidence
ERIC Educational Resources Information Center
Fogarty, Gerard J.; Perera, Harsha N.; Furst, Andrea J.; Thomas, Patrick R.
2016-01-01
The psychometric properties of the Life Orientation Test-Revised (LOT-R), the Sport Confidence Inventory (SCI), and the Carolina SCI (CSCI) were examined in a study involving 260 athletes. The study aimed to test the dimensional structure, convergent and divergent validity, and invariance over competition level of scores generated by these…
Transmural variation in elastin fiber orientation distribution in the arterial wall.
Yu, Xunjie; Wang, Yunjie; Zhang, Yanhang
2018-01-01
The complex three-dimensional elastin network is a major load-bearing extracellular matrix (ECM) component of an artery. Despite the reported anisotropic behavior of arterial elastin network, it is usually treated as an isotropic material in constitutive models. Our recent multiphoton microscopy study reported a relatively uniform elastin fiber orientation distribution in porcine thoracic aorta when imaging from the intima side (Chow et al., 2014). However it is questionable whether the fiber orientation distribution obtained from a small depth is representative of the elastin network structure in the arterial wall, especially when developing structure-based constitutive models. To date, the structural basis for the anisotropic mechanical behavior of elastin is still not fully understood. In this study, we examined the transmural variation in elastin fiber orientation distribution in porcine thoracic aorta and its association with elastin anisotropy. Using multi-photon microscopy, we observed that the elastin fibers orientation changes from a relatively uniform distribution in regions close to the luminal surface to a more circumferential distribution in regions that dominate the media, then to a longitudinal distribution in regions close to the outer media. Planar biaxial tensile test was performed to characterize the anisotropic behavior of elastin network. A new structure-based constitutive model of elastin network was developed to incorporate the transmural variation in fiber orientation distribution. The new model well captures the anisotropic mechanical behavior of elastin network under both equi- and nonequi-biaxial loading and showed improvements in both fitting and predicting capabilities when compared to a model that only considers the fiber orientation distribution from the intima side. We submit that the transmural variation in fiber orientation distribution is important in characterizing the anisotropic mechanical behavior of elastin network and should be considered in constitutive modeling of an artery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application of Single Crystal Failure Criteria: Theory and Turbine Blade Case Study
NASA Technical Reports Server (NTRS)
Sayyah, Tarek; Swanson, Gregory R.; Schonberg, W. P.
1999-01-01
The orientation of the single crystal material within a structural component is known to affect the strength and life of the part. The first stage blade of the High Pressure Fuel Turbopump (HPFTP)/ Alternative Turbopump Development (ATD), of the Space Shuttle Main Engine (SSME) was used to study the effects of secondary axis'orientation angles on the failure rate of the blade. A new failure criterion was developed based on normal and shear strains on the primary crystallographic planes. The criterion was verified using low cycle fatigue (LCF) specimen data and a finite element model of the test specimens. The criterion was then used to study ATD/HPFTP first stage blade failure events. A detailed ANSYS finite element model of the blade was used to calculate the failure parameter for the different crystallographic orientations. A total of 297 cases were run to cover a wide range of acceptable orientations within the blade. Those orientations are related to the base crystallographic coordinate system that was created in the ANSYS finite element model. Contour plots of the criterion as a function of orientation for the blade tip and attachment were obtained. Results of the analysis revealed a 40% increase in the failure parameter due to changing of the primary and secondary axes of material orientations. A comparison between failure criterion predictions and actual engine test data was then conducted. The engine test data comes from two ATD/HPFTP builds (units F3- 4B and F6-5D), which were ground tested on the SSME at the Stennis Space Center in Mississippi. Both units experienced cracking of the airfoil tips in multiple blades, but only a few cracks grew all the way across the wall of the hollow core airfoil.
Fraser, Clarissa M L; Seebacher, Frank; Lathlean, Justin; Coleman, Ross A
2016-01-01
A key challenge for ecologists is to quantify, explain and predict the ecology and behaviour of animals from knowledge of their basic physiology. Compared to our knowledge of many other types of distribution and behaviour, and how these are linked to individual function, we have a poor level of understanding of the causal basis for orientation behaviours. Most explanations for patterns of animal orientation assume that animals will modify their exposure to environmental factors by altering their orientation. We used a keystone grazer on rocky shores, the limpet Cellana tramoserica, to test this idea. Manipulative experiments were done to evaluate whether orientation during emersion affected limpet desiccation or body temperature. Body temperature was determined from infrared thermography, a technique that minimises disturbance to the test organism. No causal relationships were found between orientation and (i) level of desiccation and (ii) their body temperature. These results add to the growing knowledge that responses to desiccation and thermal stress may be less important in modifying the behaviour of intertidal organisms than previously supposed and that thermoregulation does not always reflect patterns of animal orientation. Much of what we understand about orientation comes from studies of animals able to modify orientation over very short time scales. Our data suggests that for animals whose location is less flexible, orientation decisions may have less to do with responses to environmental factors and more to do with structural habitat properties or intrinsic individual attributes. Therefore we suggest future studies into processes affecting orientation must include organisms with differing levels of behavioural plasticity.
Fraser, Clarissa M. L.; Seebacher, Frank; Lathlean, Justin; Coleman, Ross A.
2016-01-01
A key challenge for ecologists is to quantify, explain and predict the ecology and behaviour of animals from knowledge of their basic physiology. Compared to our knowledge of many other types of distribution and behaviour, and how these are linked to individual function, we have a poor level of understanding of the causal basis for orientation behaviours. Most explanations for patterns of animal orientation assume that animals will modify their exposure to environmental factors by altering their orientation. We used a keystone grazer on rocky shores, the limpet Cellana tramoserica, to test this idea. Manipulative experiments were done to evaluate whether orientation during emersion affected limpet desiccation or body temperature. Body temperature was determined from infrared thermography, a technique that minimises disturbance to the test organism. No causal relationships were found between orientation and (i) level of desiccation and (ii) their body temperature. These results add to the growing knowledge that responses to desiccation and thermal stress may be less important in modifying the behaviour of intertidal organisms than previously supposed and that thermoregulation does not always reflect patterns of animal orientation. Much of what we understand about orientation comes from studies of animals able to modify orientation over very short time scales. Our data suggests that for animals whose location is less flexible, orientation decisions may have less to do with responses to environmental factors and more to do with structural habitat properties or intrinsic individual attributes. Therefore we suggest future studies into processes affecting orientation must include organisms with differing levels of behavioural plasticity. PMID:26959815
Miñano Pérez, Pablo; Castejón Costa, Juan-Luis; Gilar Corbí, Raquel
2012-03-01
As a result of studies examining factors involved in the learning process, various structural models have been developed to explain the direct and indirect effects that occur between the variables in these models. The objective was to evaluate a structural model of cognitive and motivational variables predicting academic achievement, including general intelligence, academic self-concept, goal orientations, effort and learning strategies. The sample comprised of 341 Spanish students in the first year of compulsory secondary education. Different tests and questionnaires were used to evaluate each variable, and Structural Equation Modelling (SEM) was applied to contrast the relationships of the initial model. The model proposed had a satisfactory fit, and all the hypothesised relationships were significant. General intelligence was the variable most able to explain academic achievement. Also important was the direct influence of academic self-concept on achievement, goal orientations and effort, as well as the mediating ability of effort and learning strategies between academic goals and final achievement.
Zhang, Y; Paris, O; Terrill, N J; Gupta, H S
2016-05-23
The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.
2016-05-01
The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.
NASA Astrophysics Data System (ADS)
Lin, Ye; Zhang, Haijiang; Jia, Xiaofeng
2018-03-01
For microseismic monitoring of hydraulic fracturing, microseismic migration can be used to image the fracture network with scattered microseismic waves. Compared with conventional microseismic location-based fracture characterization methods, microseismic migration can better constrain the stimulated reservoir volume regardless of the completeness of detected and located microseismic sources. However, the imaging results from microseismic migration may suffer from the contamination of other structures and thus the target fracture zones may not be illuminated properly. To solve this issue, in this study we propose a target-oriented staining algorithm for microseismic reverse-time migration. In the staining algorithm, the target area is first stained by constructing an imaginary velocity field and then a synchronized source wavefield only concerning the target structure is produced. As a result, a synchronized image from imaging with the synchronized source wavefield mainly contains the target structures. Synthetic tests based on a downhole microseismic monitoring system show that the target-oriented microseismic reverse-time migration method improves the illumination of target areas.
Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.
2016-01-01
The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales. PMID:27211574
Cross-Ethnicity Measurement Equivalence of Family Coping for Breast Cancer Survivors
ERIC Educational Resources Information Center
Lim, Jung-won; Townsend, Aloen
2012-01-01
Objective: The current study examines the equivalence of a measure of family coping, the Family Crisis Oriented Personal Evaluation scales (F-COPES), in Chinese American and Korean American breast cancer survivors (BCS). Methods: Factor structure and cross-ethnicity equivalence of the F-COPES were tested using structural equation modeling with 157…
The foamed structures in numerical testing
NASA Astrophysics Data System (ADS)
John, Antoni; John, Małgorzata
2018-01-01
In the paper numerical simulation of the foamed metal structures using numerical homogenization algorithm is prescribed. From the beginning, numerical model of heterogeneous porous simplified structures of typical foamed metal, based on the FEM was built and material parameters (coefficients of elasticity matrix of the considered structure) were determined with use of numerical homogenization algorithm. During the work the different RVE models of structure were created and their properties were compared at different relative density, different numbers and the size and structure of the arrangement of voids. Finally, obtained results were used in modeling of typical elements made from foam metals structures - sandwich structure and profile filled with metal foam. Simulation were performed for different dimensions of cladding and core. Additionally, the test of influence material orientation (arrangement of voids in RVE element) on the maximum stresses and displacement during bending test was performed.
Job Knowledge Test Design: A Cognitively-Oriented Approach. Institute Report No. 241.
ERIC Educational Resources Information Center
DuBois, David; And Others
Selected cognitive science methods were used to modify existing test development procedures so that the modified procedures could in turn be used to improve the usefulness of job knowledge tests as a proxy for hands-on performance. A plan-goal graph representation was used to capture the knowledge content and goal structure of the task of using a…
"On solid ground": family and school connectedness promotes adolescents' future orientation.
Crespo, Carla; Jose, Paul E; Kielpikowski, Magdalena; Pryor, Jan
2013-10-01
The present study investigated the role of connectedness to the family and school contexts on future orientation of New Zealand adolescents. Participants were 1774 young people (51.9% female) aged between 9 and 16 years at time 1 of the study, who reported their connectedness to family and school and their perceptions of future orientation at three times of measurement one year apart. Structural equation modelling was used to test the combined role of family and school connectedness on future orientation over time. Findings supported a multiple mediation model in that adolescents' connectedness to family and school predicted more positive perceptions of future orientation both directly and indirectly via the effect of the context variables on each other. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Bulk magnetic domain structures visualized by neutron dark-field imaging
NASA Astrophysics Data System (ADS)
Grünzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kühne, G.; Schäfer, R.; Pofahl, S.; Rønnow, H. M. R.; Pfeiffer, F.
2008-09-01
We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs.
Background Oriented Schlieren Implementation in a Jet-Surface Interaction Test
NASA Technical Reports Server (NTRS)
Clem, Michelle M.; Brown, Clifford A.; Fagan, Amy
2013-01-01
Many current and future aircraft designs rely on the wing or other aircraft surfaces to shield the engine noise from observers on the ground. However the available data regarding how a planar surface interacts with a jet to shield and/or enhance the jet noise are currently limited. Therefore, the Jet-Surface Interaction Tests supported by NASA's Fundamental Aeronautics Program's Fixed Wing Project were undertaken to supply experimental data covering a wide range of surface geometries and positions interacting with high-speed jet flows in order to support the development of noise prediction methods. Phase 1 of the Test was conducted in the Aero-Acoustic Propulsion Laboratory at NASA Glenn Research Center and consisted of validating noise prediction schemes for a round nozzle interacting with a planar surface. Phased array data and far-field acoustic data were collected for both the shielded and reflected sides of the surface. Phase 1 results showed that the broadband shock noise was greatly reduced by the surface when the jet was operated at the over-expanded condition, however, it was unclear whether this reduction was due a change in the shock cell structure by the surface. In the present study, Background Oriented Schlieren is implemented in Phase 2 of the Jet-Surface Interaction Tests to investigate whether the planar surface interacts with the high-speed jet ow to change the shock cell structure. Background Oriented Schlieren data are acquired for under-expanded, ideally-expanded, and over-expanded ow regimes for multiple axial and radial positions of the surface at three different plate lengths. These data are analyzed with far-field noise measurements to relate the shock cell structure to the broadband shock noise produced by a jet near a surface.
Studying the orientation of bio-objects by nematic liquid crystals
NASA Astrophysics Data System (ADS)
Zubtsova, Yu. A.; Kamanin, A. A.; Kamanina, N. V.
2017-05-01
We have studied the ability of a liquid-crystal (LC) matrix to visualize and orient DNA molecules. It is established that the relief of the interface between the LC mesophase and conducting contact can be improved without using an additional high-ohmic polymer layer. Spectroscopic and ellipsometric techniques revealed changes in the refractive properties and structure of composites. The obtained results can be used in creating devices for rapid DNA testing with retained form of biostructures.
Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burch, Alexandra; Yeager, John; Bahr, David
Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less
Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity
Burch, Alexandra; Yeager, John; Bahr, David
2017-11-01
Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less
Multiscale structure and damage tolerance of coconut shells.
Gludovatz, B; Walsh, F; Zimmermann, E A; Naleway, S E; Ritchie, R O; Kruzic, J J
2017-12-01
We investigated the endocarp of the fruit of Cocos nucifera (i.e., the inner coconut shell), examining the structure across multiple length scales through advanced characterization techniques and in situ testing of mechanical properties. Like many biological materials, the coconut shell possesses a hierarchical structure with distinct features at different length scales that depend on orientation and age. Aged coconut was found to have a significantly stronger (ultimate tensile strength, UTS = 48.5MPa), stiffer (Young's modulus, E = 1.92GPa), and tougher (fracture resistance (R-curve) peak of K J = 3.2MPa m 1/2 ) endocarp than the younger fruit for loading in the latitudinal orientation. While the mechanical properties of coconut shell were observed to improve with age, they also become more anisotropic: the young coconut shell had the same strength (17MPa) and modulus (0.64GPa) values and similar R-curves for both longitudinal and latitudinal loading configurations, whereas the old coconut had 82% higher strength for loading in the latitudinal orientation, and >50% higher crack growth toughness for cracking on the latitudinal plane. Structural aspects affecting the mechanical properties across multiple length scales with aging were identified as improved load transfer to the cellulose crystalline nanostructure (identified by synchrotron x-ray diffraction) and sclerification of the endocarp, the latter of which included closing of the cell lumens and lignification of the cell walls. The structural changes gave a denser and mechanically superior micro and nanostructure to the old coconut shell. Additionally, the development of anisotropy was attributed to the formation of an anisotropic open channel structure throughout the shell of the old coconut that affected both crack initiation during uniaxial tensile tests and the toughening mechanisms of crack trapping and deflection during crack propagation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reber, J. E.; Schmalholz, S. M.; Burg, J.-P.
2010-10-01
Two orthogonal sets of veins, both orthogonal to bedding, form chocolate tablet structures on the limbs of folded quartzwackes of Carboniferous turbidites in SW Portugal. Structural observations suggest that (1) mode 1 fractures transverse to the fold axes formed while fold amplitudes were small and limbs were under layer-subparallel compression and (2) mode 1 fractures parallel to the fold axes formed while fold amplitudes were large and limbs were brought to be under layer-subparallel tension. We performed two- and three-dimensional numerical simulations investigating the evolution of stress orientations during viscous folding to test whether and how these two successive sets of fractures were related to folding. We employed ellipses and ellipsoids for the visualization and quantification of the local stress field. The numerical simulations show a change in the orientation of the local σ1 direction by almost 90° with respect to the bedding plane in the fold limbs. The coeval σ3 direction rotates from parallel to the fold axis at low fold amplitudes to orthogonal to the fold axis at high fold amplitudes. The stress orientation changes faster in multilayers than in single-layers. The numerical simulations are consistent with observation and provide a mechanical interpretation for the formation of the chocolate tablet structures through consecutive sets of fractures on rotating limbs of folded competent layers.
Large, low cost composite wind turbine blades
NASA Technical Reports Server (NTRS)
Gewehr, H. W.
1979-01-01
A woven roving E-glass tape, having all of its structural fibers oriented across the tape width was used in the manufacture of the spar for a wind turbine blade. Tests of a 150 ft composite blade show that the transverse filament tape is capable of meeting structural design requirements for wind turbine blades. Composite blades can be designed for interchangeability with steel blades in the MOD-1 wind generator system. The design, analysis, fabrication, and testing of the 150 ft blade are discussed.
Dynamic test/analysis correlation using reduced analytical models
NASA Technical Reports Server (NTRS)
Mcgowan, Paul E.; Angelucci, A. Filippo; Javeed, Mehzad
1992-01-01
Test/analysis correlation is an important aspect of the verification of analysis models which are used to predict on-orbit response characteristics of large space structures. This paper presents results of a study using reduced analysis models for performing dynamic test/analysis correlation. The reduced test-analysis model (TAM) has the same number and orientation of DOF as the test measurements. Two reduction methods, static (Guyan) reduction and the Improved Reduced System (IRS) reduction, are applied to the test/analysis correlation of a laboratory truss structure. Simulated test results and modal test data are used to examine the performance of each method. It is shown that selection of DOF to be retained in the TAM is critical when large structural masses are involved. In addition, the use of modal test results may provide difficulties in TAM accuracy even if a large number of DOF are retained in the TAM.
Orientation dependence of microfracture behavior in a dual-phase high-strength low-alloy steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, D.; Lee, S.; Kim, N.J.
1997-02-01
In selecting the processing conditions and evaluating the reliability of structural materials, microscopic observations and identification of the fracture mechanisms in local cracking behavior are required. An important instance in the failure of the local brittle zone (LBZ) in the welding zone. The LBZ, which is very brittle, is the coarse-grained heat-affected zone near the fusion line, a zone known to be critical to the fracture toughness of welded parts. Thus, maintaining stable fracture resistance by predicting the microfracture behavior is important when using high-strength low-alloy (HSLA) steels in offshore structural steel welds. Depending on the thermal cycles involved duringmore » welding, the ferrite/martensite structure can have various morphologies of martensite particles, for example, fibrous and blocky martensite. In summary, in situ SEM fracture tests reveal that in the L-oriented IQ DCB specimen, a microcrack tends to propagate relatively uniformly throughout the ferrite and well-distributed fine fibrous martensite, yielding good elongation with high strength level. Also, the IQ structure in the T orientation shows similar microfracture behavior. On the other hand, in the SQ structure, where blocky-type martensite is mixed with ferrite, strain is localized into shear bands mostly in the ferrite region, and a local microcrack propagates along the strain-localized band formed in the ferrite, resulting in the SQ structure in the T orientation, where the ferrite-martensite bands are parallel to the notch direction, the martensite cannot act as an efficient barrier to microcrack advance, and thus the tensile ductility is decreased.« less
Peters, Ryan M.; Staibano, Phillip
2015-01-01
The ability to resolve the orientation of edges is crucial to daily tactile and sensorimotor function, yet the means by which edge perception occurs is not well understood. Primate cortical area 3b neurons have diverse receptive field (RF) spatial structures that may participate in edge orientation perception. We evaluated five candidate RF models for macaque area 3b neurons, previously recorded while an oriented bar contacted the monkey's fingertip. We used a Bayesian classifier to assign each neuron a best-fit RF structure. We generated predictions for human performance by implementing an ideal observer that optimally decoded stimulus-evoked spike counts in the model neurons. The ideal observer predicted a saturating reduction in bar orientation discrimination threshold with increasing bar length. We tested 24 humans on an automated, precision-controlled bar orientation discrimination task and observed performance consistent with that predicted. We next queried the ideal observer to discover the RF structure and number of cortical neurons that best matched each participant's performance. Human perception was matched with a median of 24 model neurons firing throughout a 1-s period. The 10 lowest-performing participants were fit with RFs lacking inhibitory sidebands, whereas 12 of the 14 higher-performing participants were fit with RFs containing inhibitory sidebands. Participants whose discrimination improved as bar length increased to 10 mm were fit with longer RFs; those who performed well on the 2-mm bar, with narrower RFs. These results suggest plausible RF features and computational strategies underlying tactile spatial perception and may have implications for perceptual learning. PMID:26354318
Oriented Scintillation Spectrometer Experiment (OSSE). Revision A. Volume 1
1988-05-19
SYSTEM-LEVEL ENVIRONMENTAL TESTS ................... 108 3.5.1 OPERATION REPORT, PROOF MODEL STRUCTURE TESTS.. .108 3.5.1.1 PROOF MODEL MODAL SURVEY...81 3-21 ALIGNMENT ERROR BUDGET, FOV, A4 ................ 82 3-22 ALIGNMENT ERROR BUDGET, ROTATION AXIS, A4 ...... 83 3-23 OSSE PROOF MODEL MODAL SURVEY...PROOF MODEL MODAL SURVEY .................. 112 3-27-1 OSSE PROOF MODEL STATIC LOAD TEST ............. 116 3-27-2 OSSE PROOF MODEL STATIC LOAD TEST
NASA Astrophysics Data System (ADS)
Muslimin, A. N.; Sugiarti, E.; Aritonang, T.; Purawiardi, R. I.; Desiati, R. D.
2018-03-01
Ni-based superalloy is widely used for high performance components in power generation turbine due to its excellent mechanical properties. However, Ni-based superalloy has low oxidation resistantance. Therefore, surface coating is required to improve oxidation resistance at high temperatures. Al-Si as a coting material was successfully co-deposited on Ni-based substrate by pack cementation method at 900 °C for about 4 hours. The oxidation test was carried out at high temperature of 1000 °C for 100 hours. Micro structural characterization and analysis on crystal orientation were perfomed by using Field Emission Scanning Electron Microscope (FE-SEM) and Electron Back Scatter Diffraction (EBSD) technique, respectively. The results showed that the coating layer with a homogenous layer and had a thickness of 53 μm consisting of β-NiAl with cubic structure and Ni2Al3 with hexagonal structure. TGO layer was developed after oxidation and had a thickness of about 5 μm consisting of α-Al2O3 and spinel NiCr2O4. The phase composition map and crystal orientation acquired by EBSD technique was also discussed both in TGO and coating layers.
Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring
NASA Technical Reports Server (NTRS)
Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa
2010-01-01
Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.
Intermediate Bandgap Solar Cells From Nanostructured Silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Marcie
2014-10-30
This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.
Live and Web-based orientations are comparable for a required rotation.
Prunuske, Jacob
2010-03-01
Studies show equivalency in knowledge when measured following Web-based learning and live lecture. However, the effectiveness of a Web-based orientation for a required clinical rotation is unknown. Medical students viewed a Web-based orientation and completed a 13-item evaluation before beginning a required 6-week community medicine rotation. Evaluation data from 2007-2008 live orientation sessions were compared to responses from 2008-2009 Web-based orientation sessions. Data were analyzed by two-sample tests of proportion. A total of 169 students completed surveys during the study period--78 following the live and 91 following the Web-based orientation. Response rates were equal in the two groups. The survey tool had a high level of reliability (Cronbach's alpha=0.96). There was no statistical difference in student evaluations for 12 of 13 orientation evaluation items. Live and Web-based formats are comparable for presenting orientation materials to a required clinical rotation. Students felt the purpose of the rotation, educational goals, course structure, and requirements were clearly presented regardless of format. Transition from a live to Web-based format reduced faculty time required to present at rotation orientations.
Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales
Chon, Michael J.; Daly, Matthew; Wang, Bin; ...
2017-06-10
Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this paper, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration,more » reaching up to ~ 25 kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. Finally, the results of this study are expected to be useful as design principles for high performance biomimetic applications.« less
Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales.
Chon, Michael J; Daly, Matthew; Wang, Bin; Xiao, Xianghui; Zaheri, Alireza; Meyers, Marc A; Espinosa, Horacio D
2017-12-01
Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this study, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration, reaching up to ~ 25kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. The results of this study are expected to be useful as design principles for high performance biomimetic applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chon, Michael J.; Daly, Matthew; Wang, Bin
Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this paper, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration,more » reaching up to ~ 25 kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. Finally, the results of this study are expected to be useful as design principles for high performance biomimetic applications.« less
Xiao, Min; Ge, Haitao; Khundrakpam, Budhachandra S.; Xu, Junhai; Bezgin, Gleb; Leng, Yuan; Zhao, Lu; Tang, Yuchun; Ge, Xinting; Jeon, Seun; Xu, Wenjian; Evans, Alan C.; Liu, Shuwei
2016-01-01
Functional neuroimaging studies have indicated the involvement of separate brain areas in three distinct attention systems: alerting, orienting, and executive control (EC). However, the structural correlates underlying attention remains unexplored. Here, we utilized graph theory to examine the neuroanatomical substrates of the three attention systems measured by attention network test (ANT) in 65 healthy subjects. White matter connectivity, assessed with diffusion tensor imaging deterministic tractography was modeled as a structural network comprising 90 nodes defined by the automated anatomical labeling (AAL) template. Linear regression analyses were conducted to explore the relationship between topological parameters and the three attentional effects. We found a significant positive correlation between EC function and global efficiency of the whole brain network. At the regional level, node-specific correlations were discovered between regional efficiency and all three ANT components, including dorsolateral superior frontal gyrus, thalamus and parahippocampal gyrus for EC, thalamus and inferior parietal gyrus for alerting, and paracentral lobule and inferior occipital gyrus for orienting. Our findings highlight the fundamental architecture of interregional structural connectivity involved in attention and could provide new insights into the anatomical basis underlying human behavior. PMID:27777556
Characterization of Anisotropic Behavior for High Grade Pipes
NASA Astrophysics Data System (ADS)
Yang, Kun; Huo, Chunyong; Ji, Lingkang; Li, Yang; Zhang, Jiming; Ma, Qiurong
With the developing requirement of nature gas, the property needs of steel for pipe line are higher and higher, especially in strength and toughness. It is necessary to improve the steel grade in order to ensure economic demand and safety. However, with the rise of steel grade, the differences on properties in different orientations (anisotropic behaviors) become more and more obvious after the process of hot rolling, which may affect the prediction of fracture for the pipes seriously (Thinking of isotropic mechanical properties for material in traditional predict way). In order to get the reason for anisotropic mechanics, a series of tests are carried out for high grade steel pipes, including not only mechanical properties but also microstructures. Result indicates that there are obviously anisotropic behaviors for high grade steel pipes in two orientations (rolling orientation and transverse orientation). Strength is better in T orientation because Rm is higher and Rt 0.5 rises more in T orientation, and toughness is better in L orientation because of the higher Akv and SA in L orientation under a same temperature. Banded structures are formed in T orientation, and the spatial distribution of inclusion and precipitated phases are different in T, L and S orientation. The anisotropic arrangement for the matrix in space (banded structures), which is formed after the process of hot rolling, may affect the mechanical properties in different orientation. Moreover, the elasticity modulus of particles is different from the elasticity modulus of matrix, deformation between particles and matrix may cause stress concentration, and damage forms in this place. Because of the different distribution of particles in space, the level of damage is anisotropic in different orientations, and the anisotropic mechanical properties occur finally. Therefore, the anisotropic mechanical properties are determined by the anisotropic microstructures, both the anisotropic of matrix and the anisotropic of particles are included.
A cost-constrained model of strategic service quality emphasis in nursing homes.
Davis, M A; Provan, K G
1996-02-01
This study employed structural equation modeling to test the relationship between three aspects of the environmental context of nursing homes; Medicaid dependence, ownership status, and market demand, and two basic strategic orientations: low cost and differentiation based on service quality emphasis. Hypotheses were proposed and tested against data collected from a sample of nursing homes operating in a single state. Because of the overwhelming importance of cost control in the nursing home industry, a cost constrained strategy perspective was supported. Specifically, while the three contextual variables had no direct effect on service quality emphasis, the entire model was supported when cost control orientation was introduced as a mediating variable.
Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.
A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture x-ray microscopy on a sparse grid across the microstructure volume of interest. Resulting orientation data are clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi implicit interface method, progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surface reconstruction errormore » provides an objective termination criterion for boundary relaxation.« less
Schmidt, Carissa J; Zimmerman, Marc A; Stoddard, Sarah A
2018-06-07
Exposure to violence (ETV) during adolescence has been associated with negative effects in later life, and may negatively affect an individual's future orientation. Future orientation has important health implications and warrants being studied. Yet, few researchers have examined how ETV affects an individual's future orientation as a young adult. The purpose of this study was to examine the indirect effect of ETV during adolescence on future orientation as a young adult through perceived stress. We also tested the moderating effect of family participation on the relationship between perceived stress and future orientation. Longitudinal data from a sample of 316 African American participants (42.10% male and 57.90% female, Mage = 14.76 at Wave 1) from low socioeconomic backgrounds recruited from a Midwestern school district were used in the analysis. Multigroup structural equation modeling (SEM) was used to test our hypotheses. Our findings indicated that greater ETV during adolescence is associated with higher levels of perceived stress and, in turn, a more negative outlook on one's future as a young adult. This indirect effect occurred for individuals with lower family participation, but was not evident for individuals with greater family participation. These findings provide important implications for youth development interventions. © Society for Community Research and Action 2018.
Moreno-Murcia, Juan A.; Sicilia, Alvaro; Cervelló, Eduardo; Huéscar, Elisa; Dumitru, Delia C.
2011-01-01
The purpose of this study was to test a motivational model on the links between situational and dispositional motivation and self-reported indiscipline/discipline based on the achievement goals theory. The model postulates that a task-involving motivational climate facilitates self-reported discipline, either directly or mediated by task orientation. In contrast, an ego-involving motivational climate favors self-reported indiscipline, either directly or by means of ego orientation. An additional purpose was to examine gender differences according to the motivational model proposed. Children (n = 565) from a large Spanish metropolitan school district were participants in this study and completed questionnaires assessing goal orientations, motivational climates and self-reported discipline. The results from the analysis of structural equation model showed the direct effect of motivational climates on self-reported discipline and provided support to the model. Furthermore, the gender differences found in self-reported discipline were associated with the differences found in the students’ dispositional and situational motivation pursuant to the model tested. The implications of these results with regard to teaching instructional actions in physical education classes are discussed. Key points A task-involving motivational climate predicts self-reported discipline behaviors, either directly or mediated by task orientation. An ego-involving motivational climate favors self-reported undisciplined, either directly or mediated by ego orientation. A significant gender difference was found in the motivational disposition perceived climate and self-reported discipline. PMID:24149304
NASA Astrophysics Data System (ADS)
Ang, W. C.; Kropelnicki, P.; Soe, Oak; Ling, J. H. L.; Randles, A. B.; Hum, A. J. W.; Tsai, J. M. L.; Tay, A. A. O.; Leong, K. C.; Tan, C. S.
2012-08-01
This paper describes the novel development of a micro-tensile testing method that allows testing at elevated temperatures. Instead of using a furnace, a titanium/platinum thin film micro-heater was fabricated on a conventional dog-bone-shaped test structure to heat up its gauge section locally. An infrared (IR) camera with 5 µm resolution was employed to verify the temperature uniformity across the gauge section of the test structure. With this micro-heater-integrated test structure, micro-tensile tests can be performed at elevated temperatures using any conventional tensile testing system without any major modification to the system. In this study, the tensile test of the single crystal silicon (SCS) thin film with (1 0 0) surface orientation and <1 1 0> tensile direction was performed at room temperature and elevated temperatures, up to 300 °C. Experimental results for Young's modulus as a function of temperature are presented. A micro-sized SCS film showed a low dependence of mechanical properties on temperature up to 300 °C.
NASA Astrophysics Data System (ADS)
Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.
2016-05-01
The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.
Reddy, Guda Mallikarjuna; Garcia, Jarem Raul; Reddy, Vemulapati Hanuman; de Andrade, Ageo Meier; Camilo, Alexandre; Pontes Ribeiro, Renan Augusto; de Lazaro, Sergio Ricardo
2016-11-10
Trisubstituted thiazoles were synthesized and studied for their antimicrobial activity and supported by theoretical calculations. In addition, MIC, MBC and MFC were also tested. Moreover, the present study was analyzed to scrutinize comprehensive structure-activity relationships. In fact, LUMO orbital energy and orbital orientation was reliable to explain their antibacterial and antifungal assay. Amongst the tested compounds, tri-methyl-substituted thiazole compound showed higher antimicrobial activity and low MIC value due to highest LUMO energy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Towards aspect-oriented functional--structural plant modelling.
Cieslak, Mikolaj; Seleznyova, Alla N; Prusinkiewicz, Przemyslaw; Hanan, Jim
2011-10-01
Functional-structural plant models (FSPMs) are used to integrate knowledge and test hypotheses of plant behaviour, and to aid in the development of decision support systems. A significant amount of effort is being put into providing a sound methodology for building them. Standard techniques, such as procedural or object-oriented programming, are not suited for clearly separating aspects of plant function that criss-cross between different components of plant structure, which makes it difficult to reuse and share their implementations. The aim of this paper is to present an aspect-oriented programming approach that helps to overcome this difficulty. The L-system-based plant modelling language L+C was used to develop an aspect-oriented approach to plant modelling based on multi-modules. Each element of the plant structure was represented by a sequence of L-system modules (rather than a single module), with each module representing an aspect of the element's function. Separate sets of productions were used for modelling each aspect, with context-sensitive rules facilitated by local lists of modules to consider/ignore. Aspect weaving or communication between aspects was made possible through the use of pseudo-L-systems, where the strict-predecessor of a production rule was specified as a multi-module. The new approach was used to integrate previously modelled aspects of carbon dynamics, apical dominance and biomechanics with a model of a developing kiwifruit shoot. These aspects were specified independently and their implementation was based on source code provided by the original authors without major changes. This new aspect-oriented approach to plant modelling is well suited for studying complex phenomena in plant science, because it can be used to integrate separate models of individual aspects of plant development and function, both previously constructed and new, into clearly organized, comprehensive FSPMs. In a future work, this approach could be further extended into an aspect-oriented programming language for FSPMs.
Towards aspect-oriented functional–structural plant modelling
Cieslak, Mikolaj; Seleznyova, Alla N.; Prusinkiewicz, Przemyslaw; Hanan, Jim
2011-01-01
Background and Aims Functional–structural plant models (FSPMs) are used to integrate knowledge and test hypotheses of plant behaviour, and to aid in the development of decision support systems. A significant amount of effort is being put into providing a sound methodology for building them. Standard techniques, such as procedural or object-oriented programming, are not suited for clearly separating aspects of plant function that criss-cross between different components of plant structure, which makes it difficult to reuse and share their implementations. The aim of this paper is to present an aspect-oriented programming approach that helps to overcome this difficulty. Methods The L-system-based plant modelling language L+C was used to develop an aspect-oriented approach to plant modelling based on multi-modules. Each element of the plant structure was represented by a sequence of L-system modules (rather than a single module), with each module representing an aspect of the element's function. Separate sets of productions were used for modelling each aspect, with context-sensitive rules facilitated by local lists of modules to consider/ignore. Aspect weaving or communication between aspects was made possible through the use of pseudo-L-systems, where the strict-predecessor of a production rule was specified as a multi-module. Key Results The new approach was used to integrate previously modelled aspects of carbon dynamics, apical dominance and biomechanics with a model of a developing kiwifruit shoot. These aspects were specified independently and their implementation was based on source code provided by the original authors without major changes. Conclusions This new aspect-oriented approach to plant modelling is well suited for studying complex phenomena in plant science, because it can be used to integrate separate models of individual aspects of plant development and function, both previously constructed and new, into clearly organized, comprehensive FSPMs. In a future work, this approach could be further extended into an aspect-oriented programming language for FSPMs. PMID:21724653
Progress on control experiments of flexible structures
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1990-01-01
Progress at the NASA Langley Research Center in the area of control experiments for flexible structures is described. First the author presents the experimental results for a linear model which represents slewing maneuvers of a generic space station solar panel carried out to evaluate experimentally some control technologies. Then the status of the rotational/translational maneuvering experiment of a flexible steel panel carried by a translation cart is presented. Finally, experimental results of the NASA minimast testbed using velocity command stepper motors as reaction mass reactors are shown. All the test configurations are briefly described, including actuator and sensor, test setup, and test software. The status of some research activities oriented primarily to the experimental methods for control of flexible structures is presented.
Enhanced retinal vasculature imaging with a rapidly configurable aperture
Sapoznik, Kaitlyn A.; Luo, Ting; de Castro, Alberto; Sawides, Lucie; Warner, Raymond L.; Burns, Stephen A.
2018-01-01
In adaptive optics scanning laser ophthalmoscope (AOSLO) systems, capturing multiply scattered light can increase the contrast of the retinal microvasculature structure, cone inner segments, and retinal ganglion cells. Current systems generally use either a split detector or offset aperture approach to collect this light. We tested the ability of a spatial light modulator (SLM) as a rapidly configurable aperture to use more complex shapes to enhance the contrast of retinal structure. Particularly, we varied the orientation of a split detector aperture and explored the use of a more complex shape, the half annulus, to enhance the contrast of the retinal vasculature. We used the new approach to investigate the influence of scattering distance and orientation on vascular imaging. PMID:29541524
Perepelkin, Jason; Dobson, Roy Thomas
2010-12-01
Ownership of community pharmacies is increasingly being controlled by a relatively small number of corporate entities. The influence of this ownership type should not be ignored, because ownership has the ability to impact pharmacy practice. To examine the relationship between ownership type and community pharmacy managers with regard to role orientation, role affinity, and role conflict. This study consisted of a cross-sectional survey of community pharmacy managers in Canada by means of a self-administered postal questionnaire sent to a stratified sample of community pharmacies. Statistical analysis consisted of exploratory factor analysis with reliability testing on identified constructs. Frequencies, 1-way analyses of variance, and Scheffe post hoc tests were used to determine significant differences among groups, including ownership structure, on each of the constructs. A total of 646 completed questionnaires were received (32.9% response rate). Most of the respondents were males (60.8%), with slightly less than half of the respondents identifying their practice type as an independent pharmacy (44.6%). There were 5 multi-item scale constructs (professional orientation, business orientation, professional affinity, business affinity, and role conflict) arising from the data, which were analyzed against the pharmacy ownership structure (independent, franchise, corporate) independent variable. Analysis revealed significant differences for 3 of the 5 constructs; however, no differences were seen regarding the 2 professionally focused constructs. Community pharmacy managers/owners are generally oriented to their professional role; however, those working in a corporate pharmacy environment are less oriented to their business role when compared with those working in an independent or franchise pharmacy environment. Further research is needed to identify different practice cultures that may exist in various practice settings and the extent to which these cultures attract or define the managers working in them. Copyright © 2010 Elsevier Inc. All rights reserved.
Aeroelastic Optimization Study Based on the X-56A Model
NASA Technical Reports Server (NTRS)
Li, Wesley W.; Pak, Chan-Gi
2014-01-01
One way to increase the aircraft fuel efficiency is to reduce structural weight while maintaining adequate structural airworthiness, both statically and aeroelastically. A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. This paper presents two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. Such an approach exploits the anisotropic capabilities of the fiber composite materials chosen for this analytical exercise with ply stacking sequence. A hybrid and discretization optimization approach improves accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study for the fabricated flexible wing of the X-56A model since a desired flutter speed band is required for the active flutter suppression demonstration during flight testing. The results of the second study provide guidance to modify the wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished successfully. The second case also demonstrates that the object-oriented MDAO tool can handle multiple analytical configurations in a single optimization run.
Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming
2016-07-14
In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.
NASA Astrophysics Data System (ADS)
Rubio-Pereda, Pamela; H. Cocoletzi, Gregorio
2018-01-01
Recent experimental studies have found that phosphorene, the two-dimensional counterpart of black phosphorus, is more biological-friendly, in comparison with graphene, for the design of bio-integrated electronics based devices for biomedical applications. Following this research line, we theoretically investigate by first principle calculations, accounting for van der Waals effects, the interactions between phosphorene and typical amino acids (nonpolar, aromatic, positively charged and negatively charged). Testing different possible molecular orientations adsorption calculations have been done. Structural analysis, Löwdin electron population analysis and the study of the hydrophobic effect upon adsorption orientation were carried out in order to reveal the nature of the composite system interactions. Results show that amino acid molecules physisorb, mediated by an electron transfer process, on the phosphorene surface with a minimum disruption of their structure. Furthermore, the hydrophilic nature of phosphorene dictates the more energetically preferred adsorbed amino acid orientation. Ultimately, the nature of these interactions manifests the biological-friendly characteristic of phosphorene and its potential to be used as part of bioinorganic interfaces.
Orientation selectivity based structure for texture classification
NASA Astrophysics Data System (ADS)
Wu, Jinjian; Lin, Weisi; Shi, Guangming; Zhang, Yazhong; Lu, Liu
2014-10-01
Local structure, e.g., local binary pattern (LBP), is widely used in texture classification. However, LBP is too sensitive to disturbance. In this paper, we introduce a novel structure for texture classification. Researches on cognitive neuroscience indicate that the primary visual cortex presents remarkable orientation selectivity for visual information extraction. Inspired by this, we investigate the orientation similarities among neighbor pixels, and propose an orientation selectivity based pattern for local structure description. Experimental results on texture classification demonstrate that the proposed structure descriptor is quite robust to disturbance.
Bahadori, Mohammadkarim; Yaghoubi, Maryam; Javadi, Marzieh; Rahimi, Zahreh Agha
2015-01-01
Considering globalization of health care and quality improvement trend to respond to competition and customer orientation, attention to organizational structure and its relationship with market orientation is essential. Therefore, this study reviews the relationship between organizational structure and market orientation in selected hospitals of Isfahan (Iran). This study was a descriptive survey. The study population comprised nurse managers from selected hospitals (n = 80). Data collection tools were two questionnaires (market orientation questionnaire and organizational structure) that the validity and reliability were confirmed (r = 0.83 for market orientation questionnaire and r = 0.87 for organizational structure). SPSS (Ver. 16) software was used for the analyses. The mean score of organizational structure was 65.4 (11.2) and total mean of market orientation was 51.14 (17.6). All aspects of the organizational structure (Organization Centralization, Formalization in Organization, and Organization Complication) and market orientation (responding to competition, accountability, customer satisfaction, intelligent organization)-except by responding to clients with Formalization in Organization-as well as all aspects of the Systemic attitude (the system of internal coordination and communication systems_ and market orientation (responding to competition, accountability, customer satisfaction, intelligent organization), there was a meaningful relationship (P < 0.05). Market orientation and its dimensions have a significant relationship with organizational structure and can lead managers' view to the analysis and recognizing elements of success and achievement to goals. With increasing competition in markets, globalization of health services, and presence in international markets and more attention to patients' satisfaction, hospitals need to understand and use of market orientation in order to promote quality and services in the health care system.
Bahadori, Mohammadkarim; Yaghoubi, Maryam; Javadi, Marzieh; Rahimi, Zahreh Agha
2015-01-01
Background: Considering globalization of health care and quality improvement trend to respond to competition and customer orientation, attention to organizational structure and its relationship with market orientation is essential. Therefore, this study reviews the relationship between organizational structure and market orientation in selected hospitals of Isfahan (Iran). Materials and Methods: This study was a descriptive survey. The study population comprised nurse managers from selected hospitals (n = 80). Data collection tools were two questionnaires (market orientation questionnaire and organizational structure) that the validity and reliability were confirmed (r = 0.83 for market orientation questionnaire and r = 0.87 for organizational structure). SPSS (Ver. 16) software was used for the analyses. Results: The mean score of organizational structure was 65.4 (11.2) and total mean of market orientation was 51.14 (17.6). All aspects of the organizational structure (Organization Centralization, Formalization in Organization, and Organization Complication) and market orientation (responding to competition, accountability, customer satisfaction, intelligent organization)—except by responding to clients with Formalization in Organization—as well as all aspects of the Systemic attitude (the system of internal coordination and communication systems_ and market orientation (responding to competition, accountability, customer satisfaction, intelligent organization), there was a meaningful relationship (P < 0.05). Conclusion: Market orientation and its dimensions have a significant relationship with organizational structure and can lead managers’ view to the analysis and recognizing elements of success and achievement to goals. With increasing competition in markets, globalization of health services, and presence in international markets and more attention to patients’ satisfaction, hospitals need to understand and use of market orientation in order to promote quality and services in the health care system. PMID:25861660
Crush Testing at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Matthew R
2011-01-01
The dynamic crush test is required in the certification testing of some small Type B transportation packages. International Atomic Energy Agency regulations state that the test article must be 'subjected to a dynamic crush test by positioning the specimen on the target so as to suffer maximum damage.' Oak Ridge National Laboratory (ORNL) Transportation Technologies Group performs testing of Type B transportation packages, including the crush test, at the National Transportation Research Center in Knoxville, Tennessee (United States). This paper documents ORNL's experiences performing crush tests on several different Type B packages. ORNL has crush tested five different drum-type packagemore » designs, continuing its 60 year history of RAM package testing. A total of 26 crush tests have been performed in a wide variety of package orientations and crush plate CG alignments. In all cases, the deformation of the outer drum created by the crush test was significantly greater than the deformation damage caused by the 9 m drop test. The crush test is a highly effective means for testing structural soundness of smaller nondense Type B shipping package designs. Further regulatory guidance could alleviate the need to perform the crush test in a wide range of orientations and crush plate CG alignments.« less
Ott, R. T.; Geng, J.; Besser, M. F.; ...
2015-06-27
Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is in contrast with what has beenmore » reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong <111> fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: 1) untwinned grains and 2) nanowinned grains that are not oriented with <111> along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with <111> along the growth direction are softer than nanotwinned grains that are oriented with <111> along the growth direction. We reveal that an ultrafine-grained (150-200 nm) structure consisting of a mixture of nanotwinned (~ 8-12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility.« less
Italian version of the task and ego orientation in sport questionnaire.
Bortoli, Laura; Robazza, Claudio
2005-02-01
The 1992 Task and Ego Orientation in Sport Questionnaire developed by Duda and Nicholls was translated into Italian and administered to 802 young athletes, 248 girls and 554 boys aged 8 to 14 years, drawn from a range of individual and team sports, to examine its factor structure. Data sets of a calibration sample (boys 12-14 years) and of four cross-validation samples (boys 8-11 years, girls 8-11 years, boys 12-14 years, and girls 12-14 years) were subjected to confirmatory factor analysis specifying, as in the original questionnaire, an Ego Orientation scale (6 items) and a Task Orientation scale (7 items). Results across sex and age yielded chi2/df ratios ranging from 1.95 to 3.57, GFI indices above .90, AGFI indices ranging from .90 to .92, and RMSEA values not above .10. Findings provided acceptable support for the two-dimension structure of the test. In the whole sample, the Ego factor accounted for the 27.2% of variance and the Task factor accounted for the 33.5% of variance. Acceptable internal consistency of the two scales was also shown, with Cronbach alpha values ranging from .73 to .85.
Orientation-dependent integral equation theory for a two-dimensional model of water
NASA Astrophysics Data System (ADS)
Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.
2003-03-01
We develop an integral equation theory that applies to strongly associating orientation-dependent liquids, such as water. In an earlier treatment, we developed a Wertheim integral equation theory (IET) that we tested against NPT Monte Carlo simulations of the two-dimensional Mercedes Benz model of water. The main approximation in the earlier calculation was an orientational averaging in the multidensity Ornstein-Zernike equation. Here we improve the theory by explicit introduction of an orientation dependence in the IET, based upon expanding the two-particle angular correlation function in orthogonal basis functions. We find that the new orientation-dependent IET (ODIET) yields a considerable improvement of the predicted structure of water, when compared to the Monte Carlo simulations. In particular, ODIET predicts more long-range order than the original IET, with hexagonal symmetry, as expected for the hydrogen bonded ice in this model. The new theoretical approximation still errs in some subtle properties; for example, it does not predict liquid water's density maximum with temperature or the negative thermal expansion coefficient.
Barrick, Murray R; Stewart, Greg L; Piotrowski, Mike
2002-02-01
Research shows consistent relations between personality and job performance. In this study the authors develop and test a model of job performance that examines the mediating effects of cognitive-motivational work orientations on the relationships between personality traits and performance in a sales job (N = 164). Covariance structural analyses revealed proximal motivational variables to be influential mechanisms through which distal personality traits affect job performance. Specifically, striving for status and accomplishment mediate the effects of Extraversion and Conscientiousness on ratings of sales performance. Although Agreeableness was related to striving for communion, neither Agreeableness nor communion striving was related to success in this sales job. The importance of the proposed motivational orientations model is discussed.
Miki, Kaori; Yamauchi, Hirotsugu
2005-08-01
We examined the relations among students' perceptions of classroom goal structures (mastery and performance goal structures), students' achievement goal orientations (mastery, performance, and work-avoidance goals), and learning strategies (deep processing, surface processing and self-handicapping strategies). Participants were 323 5th and 6th grade students in elementary schools. The results from structural equation modeling indicated that perceptions of classroom mastery goal structures were associated with students' mastery goal orientations, which were in turn related positively to the deep processing strategies and academic achievement. Perceptions of classroom performance goal stractures proved associated with work avoidance-goal orientations, which were positively related to the surface processing and self-handicapping strategies. Two types of goal structures had a positive relation with students' performance goal orientations, which had significant positive effects on academic achievement. The results of this study suggest that elementary school students' perceptions of mastery goal structures are related to adaptive patterns of learning more than perceptions of performance goal structures are. The role of perceptions of classroom goal structure in promoting students' goal orientations and learning strategies is discussed.
Marco, José H; Perpiñá, Conxa; Roncero, María; Botella, Cristina
2017-06-01
The main aim of this study was to confirm the factorial structure of the Spanish version of the Multidimensional Body-Self Relations Questionnaire-Appearance Scales in early adolescents from 12 to 14 years. The sample included 355 participants, 189 girls and 166 boys, with ages ranging from 12 to 14 years old. The original MBSRQ-AS 5-factor structure was confirmed, and the model showed a good fit to the data: Appearance Evaluation, Appearance Orientation, Body Areas Satisfaction, Overweight Preoccupation, and Self-Classified Weight. The internal consistency of the test scores was adequate. Girls had higher score s than boys on Appearance Orientation, Overweight Preoccupation, and Self-Classified Weight, and lower scores on Appearance Evaluation and Body Areas Satisfaction. This study confirms the factor structure of the MBSRQ-AS. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Xinyu; Ma, Xinlong; Ning, Guoqing; Gao, Daowei; Yu, Zhiqing; Xiao, Zhihua
2018-06-01
The orientation construction of S and N dual-doped discoid-like graphene (labeled as SNDG) is achieved by regular arrangement of the polycyclic aromatics in pitch molecules using natural diatomites as templates. The superior electrochemical energy storage ability of SNDG is demonstrated by cathode and anode tests, respectively. The synergistic effects of the robust scaffold coupled with the hollow structure, unique porous structure, the excellent structural stability and the dual-doping of S and N lead to the electrode property enhancement in terms of rate capability and durability. The Li ion hybrid capacitor using SNDG as both anode and cathode, presents excellent long-term cycling stability and markedly energy and power densities (up to 143 Wh kg-1 and 13,548 W kg-1). This work provides a novel pathway to realize the mass production of high-rate electrode materials via the high value-added utilization of pitch.
An object programming based environment for protein secondary structure prediction.
Giacomini, M; Ruggiero, C; Sacile, R
1996-01-01
The most frequently used methods for protein secondary structure prediction are empirical statistical methods and rule based methods. A consensus system based on object-oriented programming is presented, which integrates the two approaches with the aim of improving the prediction quality. This system uses an object-oriented knowledge representation based on the concepts of conformation, residue and protein, where the conformation class is the basis, the residue class derives from it and the protein class derives from the residue class. The system has been tested with satisfactory results on several proteins of the Brookhaven Protein Data Bank. Its results have been compared with the results of the most widely used prediction methods, and they show a higher prediction capability and greater stability. Moreover, the system itself provides an index of the reliability of its current prediction. This system can also be regarded as a basis structure for programs of this kind.
Test anxiety, perfectionism, goal orientation, and academic performance.
Eum, KoUn; Rice, Kenneth G
2011-03-01
Dimensions of perfectionism and goal orientation have been reported to have differential relationships with test anxiety. However, the degree of inter-relationship between different dimensions of perfectionism, the 2 × 2 model of goal orientations proposed by Elliot and McGregor, cognitive test anxiety, and academic performance indicators is not known. Based on data from 134 university students, we conducted correlation and regression analyses to test associations between adaptive and maladaptive perfectionism, four types of goal orientations, cognitive test anxiety, and two indicators of academic performance: proximal cognitive performance on a word list recall test and distal academic performance in terms of grade point average. Cognitive test anxiety was inversely associated with both performance indicators, and positively associated with maladaptive perfectionism and avoidance goal orientations. Adaptive and maladaptive perfectionism accounted for significant variance in cognitive test anxiety after controlling for approach and avoidance goal orientations. Overall, nearly 50% of the variance in cognitive test anxiety could be attributed to gender, goal orientations, and perfectionism. Results suggested that students who are highly test anxious are likely to be women who endorse avoidance goal orientations and are maladaptively perfectionistic.
Plasma-electric field controlled growth of oriented graphene for energy storage applications
NASA Astrophysics Data System (ADS)
Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya
2018-04-01
It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.
Design and development of a 3D printed UAV
NASA Astrophysics Data System (ADS)
Banfield, Christopher P.
The purpose of this project was to investigate the viability and practicality of using a desktop 3D printer to fabricate small UAV airframes. To that end, ASTM based bending and tensile tests were conducted to assess the effects of print orientation, infill density, infill pattern, and infill orientation on the structural properties of 3D printed components. A Vernier Structures & Materials Tester was used to record force and displacement data from which stress-strain diagrams, yielding strength, maximum strength, and the moduli of elasticity were found. Results indicated that print orientation and infill density had the greatest impact on strength. In bending, vertically printed test pieces showed the greatest strength, with yield strengths 1.6 - 10.4% higher than conventionally extruded ABS's 64.0MPa average flexural strength. In contrast, the horizontally printed specimens showed yield strengths reduced anywhere from 17.0 - 34.9%. The tensile test specimens also exhibited reduced strength relative to ABS's average tensile yield strength of 40.7MPa. Test pieces with 20% infill density saw strength reductions anywhere from 47.8 - 55.6%, and those with 50% saw strength reductions from 33.6 - 47.8%. Only a single test piece with 100%, 45° crisscross infill achieved tensile performance on par with that of conventionally fabricated ABS. Its yield strength was 43MPa, a positive strength difference of 5.5%. As a supplement to the tensile and bending tests, a prototype printable airplane, the Phoebe, was designed. Its development process in turn provided the opportunity to develop techniques for printing various aircraft components such as fuselage sections, airfoils, and live-in hinges. Initial results seem promising, with the prototype's first production run requiring 19 hours of print time and an additional 4 - 5 hours of assembly time. The maiden flight test demonstrated that the design was stable and controllable in sustained flight.
2007-01-01
Background For effective deterrence methods, individual, systemic and situational factors that make an athlete or athlete group more susceptible to doping than others should be fully investigated. Traditional behavioural models assume that the behaviour in question is the ultimate end. However, growing evidence suggests that in doping situations, the doping behaviour is not the end but a means to an end, which is gaining competitive advantage. Therefore, models of doping should include and anti-doping policies should consider attitudes or orientations toward the specific target end, in addition to the attitude toward the 'tool' itself. Objectives The aim of this study was to empirically test doping related dispositions and attitudes of competitive athletes with the view of informing anti-doping policy developments and deterrence methods. To this end, the paper focused on the individual element of the drug availability – athlete's personality – situation triangle. Methods Data were collected by questionnaires containing a battery of psychological tests among competitive US male college athletes (n = 199). Outcome measures included sport orientation (win and goal orientation and competitiveness), doping attitude, beliefs and self-reported past or current use of doping. A structural equation model was developed based on the strength of relationships between these outcome measures. Results Whilst the doping model showed satisfactory fit, the results suggested that athletes' win and goal orientation and competitiveness do not play a statistically significant role in doping behaviour, but win orientation has an effect on doping attitude. The SEM analysis provided empirical evidence that sport orientation and doping behaviour is not directly related. Conclusion The considerable proportion of doping behaviour unexplained by the model suggests that other factors play an influential role in athletes' decisions regarding prohibited methods. Future research, followed by policy development, should incorporate these factors to capture the complexity of the doping phenomenon and to identify points for effective anti-doping interventions. Sport governing bodies and anti-doping organisations need to recognise that using performance enhancements may be more of a rational, outcome optimizing behaviour than deviance and consider offering acceptable alternative performance-enhancing methods to doping. PMID:17996097
Sukhareva, L M; Pavlovich, K E; Druzhinin, P V; Sakharova, V G; Kvasov, G I
2000-01-01
Prospects for equipment of present-day school with computing machinery allow fresh approaches to be applied to the improvement of means for diagnosis and health prophylaxis in children and to professional orientation. Automatic systems have been developed for diagnosing diseases and monitoring the sociomental health of children and the adaptation of junior and middle schoolchildren to school activities. The systems provide a real way of successfully following the development of major mental functions for prenosological diagnosis of detected abnormalities and their subsequent correction. An automatic system for professional orientation of middle- and senior-form pupils has been devised on the basis of mental diagnostic testing of the schoolchildren's professional orientation, interests, inclinations, psychophysiological and personality traits.
Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.
A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture X-ray microscopy (DAXM) on a sparse grid across the microstructure volume of interest. Resulting orientation data is clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi Implicit Interface Method (VIIM), progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surfacemore » reconstruction error provides an objective termination criterion for boundary relaxation.« less
2007-12-01
system can only be precisely determined by examining all the materials used in the mat, their structure , orientation, dimensions, etc. and determining...ER D C/ G SL T R- 07 -3 3 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad...ERDC/GSL TR-07-33 December 2007 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad A
Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu
2018-04-01
Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise pinwheel centers in the surface orientation map. The results were confirmed by comparisons with conventional optical imaging and electrophysiological recordings.
Hallquist, Michael N; Wright, Aidan G C
2014-01-01
Over the past 75 years, the study of personality and personality disorders has been informed considerably by an impressive array of psychometric instruments. Many of these tests draw on the perspective that personality features can be conceptualized in terms of latent traits that vary dimensionally across the population. A purely trait-oriented approach to personality, however, might overlook heterogeneity that is related to similarities among subgroups of people. This article describes how factor mixture modeling (FMM), which incorporates both categories and dimensions, can be used to represent person-oriented and trait-oriented variability in the latent structure of personality. We provide an overview of different forms of FMM that vary in the degree to which they emphasize trait- versus person-oriented variability. We also provide practical guidelines for applying FMM to personality data, and we illustrate model fitting and interpretation using an empirical analysis of general personality dysfunction.
Imamoğlu, E Olcay; Beydoğan, Başak
2011-01-01
The authors (a) explored the impact of individual differences in self-orientations (i.e., relatedness and individuation) of 383 Turkish public- and private-sector employees on their basic need satisfaction at work and their well-being (i.e., life satisfaction and psychological well-being); (b) considered differences in perceived autonomy- and relatedness-supportiveness of the work contexts; and (c) tested a model in which the relationship between self-orientations and well-being is partially mediated by the perceived supportiveness of the work context and the need satisfaction of employees at work, using structural equation modeling. Results suggest that self-orientations of employees predict their well-being both directly and indirectly through the mediation of perceived supportiveness and need satisfaction provided by the work context, which seem to vary according to sector type.
Vertically oriented structure and its fracture behavior of the Indonesia white-pearl oyster.
Chen, Guowei; Luo, Hongyun; Luo, Shunfei; Lin, Zhenying; Ma, Yue
2017-02-01
Structural calcites, aragonites, and the bonding organic network decide the growth, structure and mechanical properties of the mollusk bivalvia shell. Here, it was found out that the calcite prisms together with the coated organics construct another kind of 'brick and mortar' structure similar to the aragonite tablets. The calcite layer can be divided into three sublayers and direct evidences show that the calcite prisms are produced by two methods: nucleation and growing in the first sublayer; or fusing from the aragonites, which is quite different from some previous reports. The crystallographic orientation, micro hardness and crack propagations were tested and observed by XRD, micro harness tester, SEM and TEM. Submicron twin crystals were observed in the immature aragonite tablets. The fracture processes and the micro deformation of the aragonite tablets are detected by acoustic emission (AE) in the tensile tests, which gave the interpretation of the dynamical fracture processes: plastic deformation and fracture of the organics, and friction of the minerals at the first two stages; wear and fracture of the minerals at the third stage. Calcites and aragonites are combined and working together, like two layers of vertical 'brick and mortar's, ensuring the stable mechanical properties of the whole shell. Copyright © 2016 Elsevier Ltd. All rights reserved.
A discrete polar Stockwell transform for enhanced characterization of tissue structure using MRI.
Pridham, Glen; Steenwijk, Martijn D; Geurts, Jeroen J G; Zhang, Yunyan
2018-05-02
The purpose of this study was to present an effective algorithm for computing the discrete polar Stockwell transform (PST), investigate its unique multiscale and multi-orientation features, and explore potentially new applications including denoising and tissue segmentation. We investigated PST responses using both synthetic and MR images. Moreover, we compared the features of PST with both Gabor and Morlet wavelet transforms, and compared the PST with two wavelet approaches for denoising using MRI. Using a synthetic image, we also tested the edge effect of PST through signal-padding. Then, we constructed a partially supervised classifier using radial, marginal PST spectra of T2-weighted MRI, acquired from postmortem brains with multiple sclerosis. The classification involved three histology-verified tissue types: normal appearing white matter (NAWM), lesion, or other, along with 5-fold cross-validation. The PST generated a series of images with varying orientations or rotation-invariant scales. Radial frequencies highlighted image structures of different size, and angular frequencies enhanced structures by orientation. Signal-padding helped suppress boundary artifacts but required attention to incidental artifacts. In comparison, the Gabor transform produced more redundant images and the wavelet spectra appeared less spatially smooth than the PST. In addition, the PST demonstrated lower root-mean-square errors than other transforms in denoising and achieved a 93% accuracy for NAWM pixels (296/317), and 88% accuracy for lesion pixels (165/188) in MRI segmentation. The PST is a unique local spectral density-assessing tool which is sensitive to both structure orientations and scales. This may facilitate multiple new applications including advanced characterization of tissue structure in standard MRI. © 2018 International Society for Magnetic Resonance in Medicine.
Chang, Ching Sheng; Chang, Hae Ching
2010-12-01
There is a gap in the literature about the influence of customer-oriented perception on nursing personnel's organizational citizenship behaviors. Organizational citizenship behaviors are the type of contextual behaviors that are difficult to observe and measure as such behaviors are usually generated in quite subtle and unpredictable ways. This study tested the hypothesis: Customer-oriented perception is associated with increased organizational citizenship behaviors for nurses. If nursing personnel's customer-oriented perception can increase their willingness to display organizational citizenship behaviors, it may facilitate hospital operation and enhance organizational effectiveness. A cross-sectional design using a questionnaire survey of nurses in 10 medical centers was used. Five hundred copies of the questionnaire were distributed, and 232 effective copies were retrieved, with a valid response rate of 46.4%. Structural equation modeling was performed in SPSS 11.0 and Amos 7.0 (SPSS Inc., Chicago, IL, USA) statistical software packages. The main finding was that favorable customer-oriented perception is associated with increased organizational citizenship behaviors for nurses. Extensive training and customer-oriented performance evaluation are proposed in the hope of creating customer-oriented perception among nursing personnel and subsequently inspiring the display of organizational citizenship behaviors. ©2010 Sigma Theta Tau International.
[Men who have sex with men and human immunodeficiency virus testing in dental practice].
Elizondo, Jesús Eduardo; Treviño, Ana Cecilia; Violant, Deborah; Rivas-Estilla, Ana María; Álvarez, Mario Moisés
To explore the attitudes of men who have sex with men (MSM) towards the implementation of rapid HIV-1/2 testing in the dental practice, and to evaluate MSM's perceptions of stigma and discrimination related to sexual orientation by dental care professionals. Cross-sectional study using a self-administered, anonymous, structured analytical questionnaire answered by 185 MSM in Mexico. The survey included sociodemographic variables, MSM's perceptions towards public and private dental providers, and dental services, as well as their perception towards rapid HIV-1/2 testing in the dental practice. In addition, the perception of stigma and discrimination associated with their sexual orientation was explored by designing a psychometric Likert-type scale. The statistical analysis included factor analysis and non-hierarchical cluster analysis. 86.5% of the respondents expressed their willingness to take a rapid HIV-1/2 screening test during their dental visit. Nevertheless, 91.9% of them considered it important that dental professionals must be well-trained before administering any rapid HIV-1/2 tests. Factor analysis revealed two factors: experiences of sexual orientation stigma and discrimination in dental settings, and feelings of concern about the attitude of the dentist and dental staff towards their sexual orientation. Based on these factors and cluster analysis, three user profiles were identified: users who have not experienced stigma and discrimination (90.3%); users who have not experienced stigma and discrimination, but feel a slight concern (8.1%), and users who have experienced some form of discrimination and feel concern (1.6%). The dental practice may represent a potential location for rapid HIV-1/2 testing contributing to early HIV infection diagnosis. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Ambulatory position and orientation tracking fusing magnetic and inertial sensing.
Roetenberg, Daniel; Slycke, Per J; Veltink, Peter H
2007-05-01
This paper presents the design and testing of a portable magnetic system combined with miniature inertial sensors for ambulatory 6 degrees of freedom (DOF) human motion tracking. The magnetic system consists of three orthogonal coils, the source, fixed to the body and 3-D magnetic sensors, fixed to remote body segments, which measure the fields generated by the source. Based on the measured signals, a processor calculates the relative positions and orientations between source and sensor. Magnetic actuation requires a substantial amount of energy which limits the update rate with a set of batteries. Moreover, the magnetic field can easily be disturbed by ferromagnetic materials or other sources. Inertial sensors can be sampled at high rates, require only little energy and do not suffer from magnetic interferences. However, accelerometers and gyroscopes can only measure changes in position and orientation and suffer from integration drift. By combing measurements from both systems in a complementary Kalman filter structure, an optimal solution for position and orientation estimates is obtained. The magnetic system provides 6 DOF measurements at a relatively low update rate while the inertial sensors track the changes position and orientation in between the magnetic updates. The implemented system is tested against a lab-bound camera tracking system for several functional body movements. The accuracy was about 5 mm for position and 3 degrees for orientation measurements. Errors were higher during movements with high velocities due to relative movement between source and sensor within one cycle of magnetic actuation.
Aly, Aly Mousaad
2014-01-01
Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings.
2014-01-01
Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings. PMID:24701140
Tensile and burning properties of clay/phenolic/GF composite and its application
NASA Astrophysics Data System (ADS)
Diharjo, Kuncoro; Armunanto, V. Bram; Kristiawan, S. Adi
2016-03-01
Composite material has been widely used in automotive due to its properties can be improved by combining with reinforcement, like fiber and particle to enhance mechanical properties and burning resistance. This study aims to investigate the tensile and burning properties of hybrid composite combining glass fiber and clay in phenolic resin. The clay was produced from roof tile rejected by tile industries in Sokka, Kebumen, Indonesia. The composite was made using a press mold method for different number of laminates and orientation of woven-roving-glass-fiber/ WRGF (0/90 and ±45), and the total volume fraction of fiber and clay is constant 40%. The specimens were tested using universal testing machine for tensile properties and burning tests apparatus for burning resistance (time to ignite/ TTI and burning rate/ BR). The enhancing of the Clay/Penolic/GF composite can be performed by the increasing of GF laminates, and the composite with 0/90 orientation of WRGF has higher tensile strength and modulus compared to that with ±45 orientation of WRGF. Both composite with 0/90 and ±45 orientation of WRGF have similar burning resistance (TTI and BR) and the composite containing 13 laminates of WR-GF shows the best burning resistance. According to these properties, this composite has good opportunity to be applied as car body panels or other structure in industries due to save weight and high burning resistance.
Shuttle structural dynamics characteristics: The analysis and verification
NASA Technical Reports Server (NTRS)
Modlin, C. T., Jr.; Zupp, G. A., Jr.
1985-01-01
The space shuttle introduced a new dimension in the complexity of the structural dynamics of a space vehicle. The four-body configuration exhibited structural frequencies as low as 2 hertz with a model density on the order of 10 modes per hertz. In the verification process, certain mode shapes and frequencies were identified by the users as more important than others and, as such, the test objectives were oriented toward experimentally extracting those modes and frequencies for analysis and test correlation purposes. To provide the necessary experimental data, a series of ground vibration tests (GVT's) was conducted using test articles ranging from the 1/4-scale structural replica of the space shuttle to the full-scale vehicle. The vibration test and analysis program revealed that the mode shapes and frequency correlations below 10 hertz were good. The quality of correlation of modes between 10 and 20 hertz ranged from good to fair and that of modes above 20 hertz ranged from poor to good. Since the most important modes, based on user preference, were below 10 hertz, it was judged that the shuttle structural dynamic models were adequate for flight certifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jun; Burghardt, Wesley R.; Bubeck, Robert A.
The development of molecular orientation in thermotropic liquid crystalline polymers (TLCPs) during injection molding has been investigated using two-dimensional wide-angle X-ray scattering coordinated with numerical computations employing the Larson-Doi polydomain model. Orientation distributions were measured in 'short shot' moldings to characterize structural evolution prior to completion of mold filling, in both thin and thick rectangular plaques. Distinct orientation patterns are observed near the filling front. In particular, strong extension at the melt front results in nearly transverse molecular alignment. Far away from the flow front shear competes with extension to produce complex spatial distributions of orientation. The relative influence ofmore » shear is stronger in the thin plaque, producing orientation along the filling direction. Exploiting an analogy between the Larson-Doi model and a fiber orientation model, we test the ability of process simulation tools to predict TLCP orientation distributions during molding. Substantial discrepancies between model predictions and experimental measurements are found near the flow front in partially filled short shots, attributed to the limits of the Hele-Shaw approximation used in the computations. Much of the flow front effect is however 'washed out' by subsequent shear flow as mold filling progresses, leading to improved agreement between experiment and corresponding numerical predictions.« less
Job Knowledge Test Design: A Cognitively-Oriented Approach
1993-07-01
protocol analyses and related methods. We employed a plan-goal graph representation to capture the knowledge content and goal structure of the studied task...between job knowledge and hands-on performance from previous studies was .38. For the subset of Marines in this sample who had recently been examined...the job knowledge test provided similar results to conventional, total number correct scoring. Conclusion The evidence provided by this study supports
NASA Technical Reports Server (NTRS)
Parsons, David S.; Ordway, David; Johnson, Kenneth
2013-01-01
This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.
NASA Technical Reports Server (NTRS)
Parsons, David S.; Ordway, David O.; Johnson, Kenneth L.
2013-01-01
This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.
Leadership Styles and Moral Judgment Competence of Community College Personnel
ERIC Educational Resources Information Center
McFadden, Cheryl; Miller, Brian; Sypawka, William; Clay, Maria; Hoover-Plonk, Shelly
2013-01-01
This study investigated the convergence of leadership styles and moral judgment competence of community college personnel participating in a leadership institute using the Leadership Orientation Instrument (Bolman & Deal, 1984) and the Moral Judgment Test (Lind, 1978). Results indicated that the human resource and structural frames were the…
Fire performance of oriented strandboard
Robert H. White; Jerrold E. Winandy
2006-01-01
Wood-based composites represent a continuously increasing share of the wood products market. Commercial construction will be important for future expansion of the structural panels market. Use of engineered wood products as an alternative to traditional solid wood lumber is also increasing. A recent series of cone calorimeter tests evaluated the performance of several...
Metallurgical characterization of the fracture of several high strength aluminum alloys
NASA Technical Reports Server (NTRS)
Bhandarkar, M. D.; Lisagor, W. B.
1977-01-01
The fracture behavior for structural aluminum alloys (2024, 6061, 7075, and 7178) was examined in selected heat treatments. The investigation included tensile, shear, and precracked notch-bend specimens fractured at ambient temperature under monotonic loading. Specimens were obtained from thin sheets and thick plates and were tested in longitudinal and transverse orientations at different strain rates. Microstructures of alloys were examined using the optical microscope and the scanning electron microscope with associated energy dispersive X ray chemical analysis. Several different types of second phase particles, some not reported by other investigators, were identified in the alloys. Fracture morphology was related to microstructural variables, test variables, and type of commercial product. Specimen orientation examined in the present investigation had little effect on fracture morphology. Test strain rate changes resulted in some change in shear fracture morphology, but not in fracture morphology of tensile specimens.
Structural Orientations Adjacent to Some Colorado Geothermal Systems
Richard
2012-02-01
Structural orientations (fractures, joints, faults, lineaments, bedding orientations, etc.) were collected with a standard Brunton compass during routine field examinations of geothermal phenomena in Colorado. Often multiple orientations were taken from one outcrop. Care was taken to ensure outcrops were "in place". Point data was collected with a hand-held GPS unit. The structural data is presented both as standard quadrant measurements and in format suitable for ESRI symbology
Taxel-addressable matrix of vertical nanowire piezotronic transistors
Wang, Zhong Lin; Wu, Wenzhuo; Wen, Xiaonan
2015-05-05
A tactile sensing matrix includes a substrate, a first plurality of elongated electrode structures, a plurality of vertically aligned piezoelectric members, an insulating layer infused into the piezoelectric members and a second plurality of elongated electrode structures. The first plurality of elongated electrode structures is disposed on the substrate along a first orientation. The vertically aligned piezoelectric members is disposed on the first plurality of elongated electrode structures and form a matrix having columns of piezoelectric members disposed along the first orientation and rows of piezoelectric members disposed along a second orientation that is transverse to the first orientation. The second plurality of elongated electrode structures is disposed on the insulating layer along the second orientation. The elongated electrode structures form a Schottky contact with the piezoelectric members. When pressure is applied to the piezoelectric members, current flow therethrough is modulated.
An application of an optimal statistic for characterizing relative orientations
NASA Astrophysics Data System (ADS)
Jow, Dylan L.; Hill, Ryley; Scott, Douglas; Soler, J. D.; Martin, P. G.; Devlin, M. J.; Fissel, L. M.; Poidevin, F.
2018-02-01
We present the projected Rayleigh statistic (PRS), a modification of the classic Rayleigh statistic, as a test for non-uniform relative orientation between two pseudo-vector fields. In the application here, this gives an effective way of investigating whether polarization pseudo-vectors (spin-2 quantities) are preferentially parallel or perpendicular to filaments in the interstellar medium. For example, there are other potential applications in astrophysics, e.g. when comparing small-scale orientations with larger scale shear patterns. We compare the efficiency of the PRS against histogram binning methods that have previously been used for characterizing the relative orientations of gas column density structures with the magnetic field projected on the plane of the sky. We examine data for the Vela C molecular cloud, where the column density is inferred from Herschel submillimetre observations, and the magnetic field from observations by the Balloon-borne Large-Aperture Submillimetre Telescope in the 250-, 350- and 500-μm wavelength bands. We find that the PRS has greater statistical power than approaches that bin the relative orientation angles, as it makes more efficient use of the information contained in the data. In particular, the use of the PRS to test for preferential alignment results in a higher statistical significance, in each of the four Vela C regions, with the greatest increase being by a factor 1.3 in the South-Nest region in the 250 - μ m band.
Jiao, D; Liu, Z Q; Qu, R T; Zhang, Z F
2016-02-01
Crossed-lamellar structure is one of the most common organizations found in mollusk shells and may serve as a natural mimetic model for designing bio-inspired synthetic materials. Nonetheless, the mechanical behaviors and corresponding mechanisms have rarely been investigated for individual macro-layer of such structure. The integrated effects of orientation and hydration also remain unclear. In this study, the mechanical behaviors and their structural dependences of pure crossed-lamellar structure in Saxidomus purpuratus shell were systematically examined by three-point bending and compression tests. Mechanical properties and fracture mechanisms were revealed to depend strongly on the orientation, hydration state and loading condition. Three basic cracking modes of inter-platelet, trans-platelet, and along the interfaces between first-order lamellae were identified, and the interfacial separation was enhanced by hydration. Macroscopic compressive fracture was accomplished through axial splitting during which multiple toughening mechanisms were activated. The competition among different cracking modes was quantitatively evaluated by analyzing their driving stresses and resistances from fundamental mechanics. This study helps to clarify the mechanical behaviors of naturally occurring crossed-lamellar structure, and accordingly, aids in designing new bio-inspired synthetic materials by mimicking it. Copyright © 2015 Elsevier B.V. All rights reserved.
The impact of sedimentary anisotropy on solute mixing in stacked scour-pool structures
NASA Astrophysics Data System (ADS)
Bennett, Jeremy P.; Haslauer, Claus P.; Cirpka, Olaf A.
2017-04-01
The spatial variability of hydraulic conductivity is known to have a strong impact on solute spreading and mixing. In most investigations, its local anisotropy has been neglected. Recent studies have shown that spatially varying orientation in sedimentary anisotropy can lead to twisting flow enhancing transverse mixing, but most of these studies used geologically implausible geometries. We use an object-based approach to generate stacked scour-pool structures with either isotropic or anisotropic filling which are typically reported in glacial outwash deposits. We analyze how spatially variable isotropic conductivity and variation of internal anisotropy in these features impacts transverse plume deformation and both longitudinal and transverse spreading and mixing. In five test cases, either the scalar values of conductivity or the spatial orientation of its anisotropy is varied between the scour-pool structures. Based on 100 random configurations, we compare the variability of velocity components, stretching and folding metrics, advective travel-time distributions, one and two-particle statistics in advective-dispersive transport, and the flux-related dilution indices for steady state advective-dispersive transport among the five test cases. Variation in the orientation of internal anisotropy causes strong variability in the lateral velocity components, which leads to deformation in transverse directions and enhances transverse mixing, whereas it hardly affects the variability of the longitudinal velocity component and thus longitudinal spreading and mixing. The latter is controlled by the spatial variability in the scalar values of hydraulic conductivity. Our results demonstrate that sedimentary anisotropy is important for transverse mixing, whereas it may be neglected when considering longitudinal spreading and mixing.
Differences in perceptual learning transfer as a function of training task.
Green, C Shawn; Kattner, Florian; Siegel, Max H; Kersten, Daniel; Schrater, Paul R
2015-01-01
A growing body of research--including results from behavioral psychology, human structural and functional imaging, single-cell recordings in nonhuman primates, and computational modeling--suggests that perceptual learning effects are best understood as a change in the ability of higher-level integration or association areas to read out sensory information in the service of particular decisions. Work in this vein has argued that, depending on the training experience, the "rules" for this read-out can either be applicable to new contexts (thus engendering learning generalization) or can apply only to the exact training context (thus resulting in learning specificity). Here we contrast learning tasks designed to promote either stimulus-specific or stimulus-general rules. Specifically, we compare learning transfer across visual orientation following training on three different tasks: an orientation categorization task (which permits an orientation-specific learning solution), an orientation estimation task (which requires an orientation-general learning solution), and an orientation categorization task in which the relevant category boundary shifts on every trial (which lies somewhere between the two tasks above). While the simple orientation-categorization training task resulted in orientation-specific learning, the estimation and moving categorization tasks resulted in significant orientation learning generalization. The general framework tested here--that task specificity or generality can be predicted via an examination of the optimal learning solution--may be useful in building future training paradigms with certain desired outcomes.
Fiedler, Kathrin
2015-01-01
Functional morphology and biomechanical properties of hook structures functioning as attachment devices in the leaning climbers Rosa arvensis, Rosa arvensis ‘Splendens‘, Asparagus falcatus and Asparagus setaceus are analysed in order to investigate the variability in closely related species as well as convergent developments of hook structure and properties in distant systematic lineages (monocots and dicots). Prickles and spines were characterised by their size, orientation and the maximum force measured at failure in mechanical tests performed with traction forces applied at different angles. In Rosa arvensis and Rosa arvensis ‘Splendens‘ three types of prickles differing largely in geometrical and mechanical properties are identified (prickles of the wild species and two types of prickles in the cultivar). In prickles of Rosa arvensis no particular orientation of the prickle tip is found whereas in the cultivar Rosa arvensis ‘Splendens‘ prickles gradually gain a downward-orientation due to differential growth in the first weeks of their development. Differences in mechanical properties and modes of failure are correlated to geometrical parameters. In Asparagus falcatus and Asparagus setaceus spines are composed of leaf tissue, stem tissue and tissue of the axillary bud. Between species spines differ in size, orientation, distribution along the stem, tissue contributions and mechanical properties. The prickles of Rosa arvensis and its cultivar and the spines of the studied Asparagus species have several traits in common: (1) a gradual change of cell size and cell wall thickness, with larger cells in the centre and smaller thick-walled cells at the periphery of the hooks, (2) occurrence of a diversity of shape and geometry within one individual, (3) failure of single hooks when submitted to moderate mechanical stresses (Fmax/basal area < 35 N/mm²) and (4) failure of the hooks without severe stem damage (at least in the tested wild species). PMID:26629690
Gallenmüller, Friederike; Feus, Amélie; Fiedler, Kathrin; Speck, Thomas
2015-01-01
Functional morphology and biomechanical properties of hook structures functioning as attachment devices in the leaning climbers Rosa arvensis, Rosa arvensis 'Splendens', Asparagus falcatus and Asparagus setaceus are analysed in order to investigate the variability in closely related species as well as convergent developments of hook structure and properties in distant systematic lineages (monocots and dicots). Prickles and spines were characterised by their size, orientation and the maximum force measured at failure in mechanical tests performed with traction forces applied at different angles. In Rosa arvensis and Rosa arvensis 'Splendens' three types of prickles differing largely in geometrical and mechanical properties are identified (prickles of the wild species and two types of prickles in the cultivar). In prickles of Rosa arvensis no particular orientation of the prickle tip is found whereas in the cultivar Rosa arvensis 'Splendens' prickles gradually gain a downward-orientation due to differential growth in the first weeks of their development. Differences in mechanical properties and modes of failure are correlated to geometrical parameters. In Asparagus falcatus and Asparagus setaceus spines are composed of leaf tissue, stem tissue and tissue of the axillary bud. Between species spines differ in size, orientation, distribution along the stem, tissue contributions and mechanical properties. The prickles of Rosa arvensis and its cultivar and the spines of the studied Asparagus species have several traits in common: (1) a gradual change of cell size and cell wall thickness, with larger cells in the centre and smaller thick-walled cells at the periphery of the hooks, (2) occurrence of a diversity of shape and geometry within one individual, (3) failure of single hooks when submitted to moderate mechanical stresses (Fmax/basal area < 35 N/mm²) and (4) failure of the hooks without severe stem damage (at least in the tested wild species).
NASA Astrophysics Data System (ADS)
Fang, Jun
Thermotropic liquid crystalline polymers (TLCPs) are a class of promising engineering materials for high-demanding structural applications. Their excellent mechanical properties are highly correlated to the underlying molecular orientation states, which may be affected by complex flow fields during melt processing. Thus, understanding and eventually predicting how processing flows impact molecular orientation is a critical step towards rational design work in order to achieve favorable, balanced physical properties in finished products. This thesis aims to develop deeper understanding of orientation development in commercial TLCPs during processing by coordinating extensive experimental measurements with numerical computations. In situ measurements of orientation development of LCPs during processing are a focal point of this thesis. An x-ray capable injection molding apparatus is enhanced and utilized for time-resolved measurements of orientation development in multiple commercial TLCPs during injection molding. Ex situ wide angle x-ray scattering is also employed for more thorough characterization of molecular orientation distributions in molded plaques. Incompletely injection molded plaques ("short shots") are studied to gain further insights into the intermediate orientation states during mold filling. Finally, two surface orientation characterization techniques, near edge x-ray absorption fine structure (NEXAFS) and infrared attenuated total reflectance (FTIR-ATR) are combined to investigate the surface orientation distribution of injection molded plaques. Surface orientation states are found to be vastly different from their bulk counterparts due to different kinematics involved in mold filling. In general, complex distributions of orientation in molded plaques reflect the spatially varying competition between shear and extension during mold filling. To complement these experimental measurements, numerical calculations based on the Larson-Doi polydomain model are performed. The implementation of the Larson-Doi in complex processing flows is performed using a commercial process modeling software suite (MOLDFLOWRTM), exploiting a nearly exact analogy between the Larson-Doi model and a fiber orientation model that has been widely used in composites processing simulations. The modeling scheme is first verified by predicting many qualitative and quantitative features of molecular orientation distributions in isothermal extrusion-fed channel flows. In coordination with experiments, the model predictions are found to capture many qualitative features observed in injection molded plaques (including short shots). The final, stringent test of Larson-Doi model performance is prediction of in situ transient orientation data collected during mold filling. The model yields satisfactory results, though certain numerical approximations limit performance near the mold front.
Optimization of the Manufacturing Process of Conical Shell Structures Using Prepreg Laminatees
NASA Astrophysics Data System (ADS)
Khakimova, Regina; Zimmermann, Rolf; Burau, Florian; Siebert, Marc; Arbelo, Mariano; Castro, Saullo; Degenhardt, Richard
2014-06-01
The design and manufacture of an unstiffened composite conical structure which is a scaled-down version of the Ariane 5 Midlife Evolution Equipment Bay Structure is presented. For such benchmarking structures the fiber orientation error is critical and then the manufacturing process becomes a big challenge. The paper therefore is focused on the implementation of a tailoring study and on the manufacturing process. The conical structure will be tested to validate a new design approach.This study contributes to the European Union (EU) project DESICOS, whose aim is to develop less conservative design guidelines for imperfection sensitive thin-walled structures.
Moral Foundations Predict Religious Orientations in New Zealand
Bulbulia, Joseph; Osborne, Danny; Sibley, Chris G.
2013-01-01
The interplay between religion, morality, and community-making is a core theme across human experience, yet scholars have only recently begun to quantify these links. Drawing on a sample of 1512 self-identified religious – mainly Christian (86.0%) – New Zealanders, we used structural equation modeling to test hypothesized associations between Religious Orientations (Quest, Intrinsic, Extrinsic Personal, Extrinsic Social) and Moral Foundations (Care/Harm, Fairness/Cheating, Loyalty/Betrayal, Authority/Subversion, Sanctity/Degradation). Our results show, for the first time in a comprehensive model, how different ways of valuing communities are associated with different ways of valuing religion. PMID:24339872
Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement.
McCoy, Airlie J; Oeffner, Robert D; Millán, Claudia; Sammito, Massimo; Usón, Isabel; Read, Randy J
2018-04-01
Descriptions are given of the maximum-likelihood gyre method implemented in Phaser for optimizing the orientation and relative position of rigid-body fragments of a model after the orientation of the model has been identified, but before the model has been positioned in the unit cell, and also the related gimble method for the refinement of rigid-body fragments of the model after positioning. Gyre refinement helps to lower the root-mean-square atomic displacements between model and target molecular-replacement solutions for the test case of antibody Fab(26-10) and improves structure solution with ARCIMBOLDO_SHREDDER.
NASA Astrophysics Data System (ADS)
Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin
2006-08-01
The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10° greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.
Orientation-dependent potential of mean force for protein folding
NASA Astrophysics Data System (ADS)
Mukherjee, Arnab; Bhimalapuram, Prabhakar; Bagchi, Biman
2005-07-01
We present a solvent-implicit minimalistic model potential among the amino acid residues of proteins, obtained by using the known native structures [deposited in the Protein Data Bank (PDB)]. In this model, the amino acid side chains are represented by a single ellipsoidal site, defined by the group of atoms about the center of mass of the side chain. These ellipsoidal sites interact with other sites through an orientation-dependent interaction potential which we construct in the following fashion. First, the site-site potential of mean force (PMF) between heavy atoms is calculated [following F. Melo and E. Feytsman, J. Mol. Biol. 267, 207 (1997)] from statistics of their distance separation obtained from crystal structures. These site-site potentials are then used to calculate the distance and the orientation-dependent potential between side chains of all the amino acid residues (AAR). The distance and orientation dependencies show several interesting results. For example, we find that the PMF between two hydrophobic AARs, such as phenylalanine, is strongly attractive at short distances (after the obvious repulsive region at very short separation) and is characterized by a deep minimum, for specific orientations. For the interaction between two hydrophilic AARs, such a deep minimum is absent and in addition, the potential interestingly reveals the combined effect of polar (charge) and hydrophobic interactions among some of these AARs. The effectiveness of our potential has been tested by calculating the Z-scores for a large set of proteins. The calculated Z-scores show high negative values for most of them, signifying the success of the potential to identify the native structure from among a large number of its decoy states.
The three-dimensional structure of anosteocytic lamellated bone of fish.
Atkins, Ayelet; Reznikov, Natalie; Ofer, Lior; Masic, Admir; Weiner, Steve; Shahar, Ron
2015-02-01
Fish represent the most diverse and numerous of the vertebrate clades. In contrast to the bones of all tetrapods and evolutionarily primitive fish, many of the evolutionarily more advanced fish have bones that do not contain osteocytes. Here we use a variety of imaging techniques to show that anosteocytic fish bone is composed of a sequence of planar layers containing mainly aligned collagen fibrils, in which the prevailing principal orientation progressively spirals. When the sequence of fibril orientations completes a rotation of around 180°, a thin layer of poorly oriented fibrils is present between it and the next layer. The thick layer of aligned fibrils and the thin layer of non-aligned fibrils constitute a lamella. Although both basic components of mammalian lamellar bone are found here as well, the arrangement is unique, and we therefore call this structure lamellated bone. We further show that the lamellae of anosteocytic fish bone contain an array of dense, small-diameter (1-4 μm) bundles of hypomineralized collagen fibrils that are oriented mostly orthogonal to the lamellar plane. Results of mechanical tests conducted on beams from anosteocytic fish bone and human cortical bone show that the fish bones are less stiff but much tougher than the human bones. We propose that the unique lamellar structure and the orthogonal hypomineralized collagen bundles are responsible for the unusual mechanical properties and mineral distribution in anosteocytic fish bone. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Crystal structure of solid molecular hydrogen under high pressures
NASA Astrophysics Data System (ADS)
Cui, T.; Ma, Y.; Zou, G.
2002-11-01
In an effort to achieve a comprehensive understanding of the structure of dense H2, we have performed path-integral Monte Carlo simulations for three combinations of pressures and temperatures corresponding to three phases of solid hydrogen. Our results suggest three kinds of distribution of molecules: orientationally disordered hexagonal close packed (hcp), orientationally ordered hcp with Pa3-type local orientation order and orientationally ordered orthorhombic structure of Cmca symmetry, for the three phases.
Optomechanical stability design of space optical mapping camera
NASA Astrophysics Data System (ADS)
Li, Fuqiang; Cai, Weijun; Zhang, Fengqin; Li, Na; Fan, Junjie
2018-01-01
According to the interior orientation elements and imaging quality requirements of mapping application to mapping camera and combined with off-axis three-mirror anastigmat(TMA) system, high optomechanical stability design of a space optical mapping camera is introduced in this paper. The configuration is a coaxial TMA system used in off-axis situation. Firstly, the overall optical arrangement is described., and an overview of the optomechanical packaging is provided. Zerodurglass, carbon fiber composite and carbon-fiber reinforced silicon carbon (C/SiC) are widely used in the optomechanical structure, because their low coefficient of thermal expansion (CTE) can reduce the thermal sensitivity of the mirrors and focal plane. Flexible and unloading support are used in reflector and camera supporting structure. Epoxy structural adhesives is used for bonding optics to metal structure is also introduced in this paper. The primary mirror is mounted by means of three-point ball joint flexures system, which is attach to the back of the mirror. Then, In order to predict flexural displacements due to gravity, static finite element analysis (FEA) is performed on the primary mirror. The optical performance peak-to-valley (PV) and root-mean-square (RMS) wavefront errors are detected before and after assemble. Also, the dynamic finite element analysis(FEA) of the whole optical arrangement is carried out as to investigate the performance of optomechanical. Finally, in order to evaluate the stability of the design, the thermal vacuum test and vibration test are carried out and the Modulation Transfer Function (MTF) and elements of interior orientation are presented as the evaluation index. Before and after the thermal vacuum test and vibration test, the MTF, focal distance and position of the principal point of optical system are measured and the result is as expected.
Dual-task results and the lateralization of spatial orientation: artifact of test selection?
Bowers, C A; Milham, L M; Price, C
1998-01-01
An investigation was conducted to identify the degree to which results regarding the lateralization of spatial orientation among men and women are artifacts of test selection. A dual-task design was used to study possible lateralization differences, providing baseline and dual-task measures of spatial-orientation performance, right- and left-hand tapping, and vocalization of "cat, dog, horse." The Guilford-Zimmerman Test (Guilford & Zimmerman, 1953), the Eliot-Price Test (Eliot & Price, 1976), and the Stumpf-Fay Cube Perspectives Test (Stumpf & Fay, 1983) were the three spatial-orientation tests used to investigate possible artifacts of test selection. Twenty-eight right-handed male and 39 right-handed female undergraduates completed random baseline and dual-task sessions. Analyses indicated no significant sex-related differences in spatial-orientation ability for all three tests. Furthermore, there was no evidence of differential lateralization of spatial orientation between the sexes.
Robust and Accurate Image-Based Georeferencing Exploiting Relative Orientation Constraints
NASA Astrophysics Data System (ADS)
Cavegn, S.; Blaser, S.; Nebiker, S.; Haala, N.
2018-05-01
Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2-3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.
Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James
2013-01-01
The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.
White, Rebecca M B; Updegraff, Kimberly A; Umaña-Taylor, Adriana J; Zeiders, Katharine H; Perez-Brena, Norma; Burleson, Elizabeth
2017-03-01
The ethnic and racial structuring of U.S. neighborhoods may have important implications for developmental competencies during adolescence, including the development of heritage and mainstream cultural orientations. In particular, living in highly concentrated Latino neighborhoods during early adolescence-which channels adolescents into related school environments-may promote retention of the ethnic or heritage culture, but it also may constrain adaptation to the mainstream U.S. culture. We tested these hypotheses longitudinally in a sample of 246 Mexican origin adolescents (50.8% girls) and their parents. Data were collected 4 times over 8 years, with adolescents averaging 12.5 (SD = .58) to 19.6 (SD = .66) years of age across the period of the study. Latino ethnic concentration in early adolescents' neighborhoods promoted the retention of Mexican cultural orientations; Latino ethnic concentration in middle schools undermined the development of mainstream U.S cultural orientations. Findings are discussed in terms of integrating cultural-developmental theory with mainstream neighborhood theory to improve understandings of neighborhood and school ethnic concentration effects on adolescent development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Neighborhood and School Ethnic Structuring and Cultural Adaptations Among Mexican-Origin Adolescents
White, Rebecca M. B.; Updegraff, Kimberly A.; Umaña-Taylor, Adriana J.; Zeiders, Katharine H.; Perez-Brena, Norma; Burleson, Elizabeth
2016-01-01
The ethnic and racial structuring of U.S. neighborhoods may have important implications for developmental competencies during adolescence, including the development of heritage and mainstream cultural orientations. In particular, living in highly concentrated Latino neighborhoods during early adolescence – which channels adolescents into related school environments – may promote retention of the ethnic or heritage culture, but it also may constrain adaptation to the mainstream U.S. culture. We tested these hypotheses longitudinally in a sample of 246 Mexican origin adolescents (50.8% girls) and their parents. Data were collected four times over eight years, with adolescents averaging 12.5 (SD = .58) to 19.6 (SD = .66) years of age across the period of the study. Latino ethnic concentration in early adolescents' neighborhoods promoted the retention of Mexican cultural orientations; Latino ethnic concentration in middle schools undermined the development of mainstream U.S cultural orientations. Findings are discussed in terms of integrating cultural-developmental theory with mainstream neighborhood theory to improve understandings of neighborhood and school ethnic concentration effects on adolescent development. PMID:27936822
Inferences About Sexual Orientation: The Roles of Stereotypes, Faces, and The Gaydar Myth.
Cox, William T L; Devine, Patricia G; Bischmann, Alyssa A; Hyde, Janet S
2016-01-01
In the present work, we investigated the pop cultural idea that people have a sixth sense, called "gaydar," to detect who is gay. We propose that "gaydar" is an alternate label for using stereotypes to infer orientation (e.g., inferring that fashionable men are gay). Another account, however, argues that people possess a facial perception process that enables them to identify sexual orientation from facial structure. We report five experiments testing these accounts. Participants made gay-or-straight judgments about fictional targets that were constructed using experimentally manipulated stereotypic cues and real gay/straight people's face cues. These studies revealed that orientation is not visible from the face-purportedly "face-based" gaydar arises from a third-variable confound. People do, however, readily infer orientation from stereotypic attributes (e.g., fashion, career). Furthermore, the folk concept of gaydar serves as a legitimizing myth: Compared to a control group, people stereotyped more often when led to believe in gaydar, whereas people stereotyped less when told gaydar is an alternate label for stereotyping. Discussion focuses on the implications of the gaydar myth and why, contrary to some prior claims, stereotyping is highly unlikely to result in accurate judgments about orientation.
García-Ruiz, Marta; Rodrigo, María José; Hernández-Cabrera, Juan A; Máiquez, María Luisa
2013-12-01
This study examined the contribution to parent-adolescent conflict resolution of parental adult attachment styles and attitudes toward adolescent separation. Questionnaires were completed by 295 couples with early to late adolescent children. Structural equation models were used to test self and partner influences on conflict resolution for three attachment orientations: confidence (model A), anxiety (model B) and avoidance (model C). Model A showed self influences between parents' confidence orientation and negotiation and also via positive attitudes towards separation. Also, the fathers' use of negotiation was facilitated by the mothers' confidence orientation and vice versa, indicating partner influences as well. Model B showed self influences between parents' anxiety orientation and the use of dominance and withdrawal and also via negative attitudes towards separation. Model C showed self influences between parents' avoidance orientation and dominance and withdrawal, and a partner influence between fathers' avoidance and mothers' use of dominance. The results indicated that the parents' adult attachment system and the parenting system were related in the area of conflict resolution, and that self influences were stronger than partner influences. © 2013 The Scandinavian Psychological Associations.
ERIC Educational Resources Information Center
Ueno, Koji; Wright, Eric R.; Gayman, Mathew D.; McCabe, Janice M.
2012-01-01
Homophily promotes the development of social relationships within social groups and increases segregation across groups. Although prior research has demonstrated that network segregation operates in many dimensions such as race and gender, sexual orientation has received little attention. This study investigates what accounts for the segregation…
Enhancing Sensitivity to Human Needs: EFL Learners in Taiwan.
ERIC Educational Resources Information Center
Li, Li-Te
It is proposed that English-as-a-Foreign-Language (EFL) instruction can go beyond learning driven by structures and tests and address universal human needs through an orientation toward meaning and discussion. Application of the concepts of the Whole Language Approach to EFL instruction is explored, drawing on experience with junior college…
Using Student Ratings to Measure Quality of Teaching in Six European Countries
ERIC Educational Resources Information Center
Kyriakides, Leonidas; Creemers, Bert P. M.; Panayiotou, Anastasia; Vanlaar, Gudrun; Pfeifer, Michael; Cankar, Gašper; McMahon, Léan
2014-01-01
This paper argues for the value of using student ratings to measure quality of teaching. An international study to test the validity of the dynamic model of educational effectiveness was conducted. At classroom level, the model consists of eight factors relating to teacher behaviour: orientation, structuring, questioning, teaching modelling,…
Monzani, Dario; Steca, Patrizia; Greco, Andrea
2014-02-01
Dispositional optimism is an individual difference promoting psychosocial adjustment and well-being during adolescence. Dispositional optimism was originally defined as a one-dimensional construct; however, empirical evidence suggests two correlated factors in the Life Orientation Test - Revised (LOT-R). The main aim of the study was to evaluate the dimensionality of the LOT-R. This study is the first attempt to identify the best factor structure, comparing congeneric, two correlated-factor, and two orthogonal-factor models in a sample of adolescents. Concurrent validity was also assessed. The results demonstrated the superior fit of the two orthogonal-factor model thus reconciling the one-dimensional definition of dispositional optimism with the bi-dimensionality of the LOT-R. Moreover, the results of correlational analyses proved the concurrent validity of this self-report measure: optimism is moderately related to indices of psychosocial adjustment and well-being. Thus, the LOT-R is a useful, valid, and reliable self-report measure to properly assess optimism in adolescence. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Rae, Charlotte L; Davies, Geoff; Garfinkel, Sarah N; Gabel, Matt C; Dowell, Nicholas G; Cercignani, Mara; Seth, Anil K; Greenwood, Kathryn E; Medford, Nick; Critchley, Hugo D
2017-11-15
Structural abnormalities across multiple white matter tracts are recognized in people with early psychosis, consistent with dysconnectivity as a neuropathological account of symptom expression. We applied advanced neuroimaging techniques to characterize microstructural white matter abnormalities for a deeper understanding of the developmental etiology of psychosis. Thirty-five first-episode psychosis patients, and 19 healthy controls, participated in a quantitative neuroimaging study using neurite orientation dispersion and density imaging, a multishell diffusion-weighted magnetic resonance imaging technique that distinguishes white matter fiber arrangement and geometry from changes in neurite density. Fractional anisotropy (FA) and mean diffusivity images were also derived. Tract-based spatial statistics compared white matter structure between patients and control subjects and tested associations with age, symptom severity, and medication. Patients with first-episode psychosis had lower regional FA in multiple commissural, corticospinal, and association tracts. These abnormalities predominantly colocalized with regions of reduced neurite density, rather than aberrant fiber bundle arrangement (orientation dispersion index). There was no direct relationship with active symptoms. FA decreased and orientation dispersion index increased with age in patients, but not control subjects, suggesting accelerated effects of white matter geometry change. Deficits in neurite density appear fundamental to abnormalities in white matter integrity in early psychosis. In the first application of neurite orientation dispersion and density imaging in psychosis, we found that processes compromising axonal fiber number, density, and myelination, rather than processes leading to spatial disruption of fiber organization, are implicated in the etiology of psychosis. This accords with a neurodevelopmental origin of aberrant brain-wide structural connectivity predisposing individuals to psychosis. Copyright © 2017 Society of Biological Psychiatry. All rights reserved.
Test stand for Titan 34D SRM static firing
NASA Technical Reports Server (NTRS)
Glozman, Vladimir; Shipway, George
1988-01-01
An existing liquid engine test stand at the AF Astronautics Laboratory was refurbished and extensively modified to accommodate the static firing of the Titan 34D solid rocket motor (SRM) in the vertical nozzle down orientation. The main load restraint structure was designed and built to secure the SRM from lifting off during the firing. In addition, the structure provided weather protection, temperature conditioning of the SRM, and positioning of the measurement and recording equipment. The structure was also used for stacking/de-stacking of SRM segments and other technological processes. The existing stand, its foundation and anchorage were thoroughly examined and reanalyzed. Necessary stand modifications were carried out to comply with the requirements of the Titan 34D SRM static firing.
Perception of Sexual Orientation from Facial Structure: A Study with Artificial Face Models.
González-Álvarez, Julio
2017-07-01
Research has shown that lay people can perceive sexual orientation better than chance from face stimuli. However, the relation between facial structure and sexual orientation has been scarcely examined. Recently, an extensive morphometric study on a large sample of Canadian people (Skorska, Geniole, Vrysen, McCormick, & Bogaert, 2015) identified three (in men) and four (in women) facial features as unique multivariate predictors of sexual orientation in each sex group. The present study tested the perceptual validity of these facial traits with two experiments based on realistic artificial 3D face models created by manipulating the key parameters and presented to Spanish participants. Experiment 1 included 200 White and Black face models of both sexes. The results showed an overall accuracy (0.74) clearly above chance in a binary hetero/homosexual judgment task and significant differences depending on the race and sex of the face models. Experiment 2 produced five versions of 24 artificial faces of both sexes varying the key parameters in equal steps, and participants had to rate on a 1-7 scale how likely they thought that the depicted person had a homosexual sexual orientation. Rating scores displayed an almost perfect linear regression as a function of the parameter steps. In summary, both experiments demonstrated the perceptual validity of the seven multivariate predictors identified by Skorska et al. and open up new avenues for further research on this issue with artificial face models.
Koehler Leman, Julia; Bonneau, Richard
2018-04-03
Membrane proteins composed of soluble and membrane domains are often studied one domain at a time. However, to understand the biological function of entire protein systems and their interactions with each other and drugs, knowledge of full-length structures or models is required. Although few computational methods exist that could potentially be used to model full-length constructs of membrane proteins, none of these methods are perfectly suited for the problem at hand. Existing methods require an interface or knowledge of the relative orientations of the domains or are not designed for domain assembly, and none of them are developed for membrane proteins. Here we describe the first domain assembly protocol specifically designed for membrane proteins that assembles intra- and extracellular soluble domains and the transmembrane domain into models of the full-length membrane protein. Our protocol does not require an interface between the domains and samples possible domain orientations based on backbone dihedrals in the flexible linker regions, created via fragment insertion, while keeping the transmembrane domain fixed in the membrane. For five examples tested, our method mp_domain_assembly, implemented in RosettaMP, samples domain orientations close to the known structure and is best used in conjunction with experimental data to reduce the conformational search space.
Enhancing the isotropy of lateral resolution in coherent structured illumination microscopy
Park, Joo Hyun; Lee, Jae Yong; Lee, Eun Seong
2014-01-01
We present a method to improve the isotropy of spatial resolution in a structured illumination microscopy (SIM) implemented for imaging non-fluorescent samples. To alleviate the problem of anisotropic resolution involved with the previous scheme of coherent SIM that employs the two orthogonal standing-wave illumination, referred to as the orthogonal SIM, we introduce a hexagonal-lattice illumination that incorporates three standing-wave fields simultaneously superimposed at the orientations equally divided in the lateral plane. A theoretical formulation is worked out rigorously for the coherent image formation with such a simultaneous multiple-beam illumination and an explicit Fourier-domain framework is derived for reconstructing an image with enhanced resolution. Using a computer-synthesized resolution target as a 2D coherent sample, we perform numerical simulations to examine the imaging characteristics of our three-angle SIM compared with the orthogonal SIM. The investigation on the 2D resolving power with the various test patterns of different periods and orientations reveal that the orientation-dependent undulation of lateral resolution can be reduced from 27% to 8% by using the three-angle SIM while the best resolution (0.54 times the resolution limit of conventional coherent imaging) in the directions of structured illumination is slightly deteriorated by 4.6% from that of the orthogonal SIM. PMID:24940548
Creep prediction of a layered fiberglass plastic
NASA Astrophysics Data System (ADS)
Aniskevich, K.; Korsgaard, J.; Mālmeisters, A.; Jansons, J.
1998-05-01
The results of short-term creep tests of a layered glass fiber/polyester resin plastic in tension at angles of 90, 70, and 45° to the direction of the principal fiber orientation are presented. The applicability of the principle of time-temperature analogy for the prediction of long-term creep of the composite and its structural components is revealed. The possibility of evaluating the viscoelastic properties of the composite from the properties of structural components is shown.
NASA Astrophysics Data System (ADS)
Belikov, S. B.; Andrienko, A. G.; Gaiduk, S. V.; Kononov, V. V.; Zamkovoi, V. E.
2008-01-01
A high-resistant corrosion-resistant nickel-based alloy has been developed for monocrystalline casting using the directional crystallization method. Its mechanical properties are close to those of aircraft alloys ZhS6K-VI and ZhS6U-VI with an equiaxial structure and ZhS26-VI with an oriented structure. The technology of producing blades for turboprop engines from the new alloy has been developed and tested.
Koumpoula, M; Tsopani, D; Flessas, K; Chairopoulou, C
2011-09-01
The present study examines the sport motivation and the goal orientations in the competitive and non-competitive structure of rhythmic gymnastics. Participation of individuals in one or the other structure of the sport differs in line with the goals they want to achieve and possibly also with respect to the factors that impulse them to take part in one or the other. The purpose of this study is to examine how individuals who participate in different structures of the sport of rhythmic gymnastics differentiate with regard to the type of motivation (intrinsic, extrinsic, amotivation) and goal orientations. The study involved 98 young female rhythmic gymnastics athletes (aged 14 years and up), out of which 40 were athletes of competitive clubs or members of national teams, and 58 were athletes of non-competitive clubs. For the evaluation of motivation and goal orientations the following tools were used: the Sport Motivation Scale (SMS) and the Task and Ego Orientation in Sport Questionnaire (TEOSQ). Descriptive and inductive statistical data analysis was conducted. The results showed that the athletes of the non-competitive structure presented higher levels of introjected regulation (extrinsic motivation), amotivation and lower levels of ego orientation (P<0.05). Rhythmic gymnastics athletes' (regardless of the structure of the sport) presented high level in task orientation while the high levels of task orientation is positively associated with high levels of intrinsic motivation regardless of the levels of ego orientation. The intrinsic motivation of athletes participating in rhythmic gymnastics runs at high levels. The amotivation of rhythmic gymnastics athletes' is a phenomenon which is also presented in the the non-competitive sport structure. It is important that the two different structures of sports be determined with accurate criteria.
Tectonic lineations and frictional faulting on a relatively simple body (Ariel)
NASA Astrophysics Data System (ADS)
Nyffenegger, Paul; Davis, Dan M.; Consolmagno, Guy J.
1997-09-01
Anderson's model of faulting and the Mohr-Coulomb failure criterion can predict the orientations of faults generated in laboratory triaxial compression experiments, but do a much poorer job of explaining the orientations of outcrop- and map-scale faults on Earth. This failure may be due to the structural complexity of the Earth's lithosphere, the failure of laboratory experiments to predict accurately the strength of natural faults, or some fundamental flaw in the model. A simpler environment, such as the lithosphere of an icy satellite, allows us to test whether this model can succeed in less complex settings. A mathematical method is developed to analyze patterns in fracture orientations that can be applied to fractures in the lithospheres of icy satellites. In a initial test of the method, more than 300 lineations on Uranus' satellite Ariel are examined. A nonrandom pattern of lineations is looked for, and the source of the stresses that caused those features and the strength of the material in which they occur are constrained. It is impossible to observe directly the slip on these fractures. However, their orientations are clearly nonrandom and appear to be consistent with Andersonian strike-slip faulting in a relatively weak frictional lithosphere during one or more episodes of tidal flexing.
Scherrer, Vsevolod; Roberts, Richard; Preckel, Franzis
2016-01-01
Meta-analyses suggest that morning-oriented students obtain better school grades than evening-oriented students. This finding has generally been found for students in high school using self-report data for the assessment of circadian preference. Two studies (N = 2718/192) investigated whether these findings generalize across samples (i.e. elementary school-aged students) and methods (i.e. parent reports). These studies also explored whether the relation between circadian preference and school achievement could be explained within an expectancy-value framework. To this end, the Lark-Owl Chronotype Indicator (LOCI) was modified to obtain parents' evaluations of their children's circadian preference, while students completed a battery of assessments designed to explore the test-criterion evidence. Structural equation modeling and correlational analyses revealed: (1) morning and evening orientation were two separable factors of children's circadian preference; (2) correlations with behavioral (e.g. sleep and eating times) and psychological (e.g. cognitive ability) data supported the test-criterion validity of both factors; (3) morning orientation was positively related to school achievement and (4) consistent with an expectancy-value framework this relation was mediated by children's academic self-concept (ASC). These findings have important research and policy implications for considering circadian preference in the schooling of elementary students.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2002-07-01
The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.
SCC of Alloy 690 and its Weld Metals
NASA Astrophysics Data System (ADS)
Andresen, Peter L.; Morra, Martin M.; Ahluwalia, Kawaljit
Alloy 690 base metal, HAZ and weld metal were tested in representative PWR primary water at 290 to 360°C. Intergranular cracking was observed in all materials. Growth rates as high as 1.2 × 10-6 mm/s were observed in the S-L orientation with micro structural banded material after cold rolling or forging to align the planes of banding, rolling and cracking. However, not all banded material has exhibited such high growth rates. Growth rates on homogeneous Alloy 690, including extruded CRDM tubing, often showed growth rates in the range of 2 - 8 × 10-8 mm/s in cold worked condition and an S-L orientation. Crack growth rates in some Alloy 690 tests were in the range of 1 to 10 × 10-9 mm/s, primarily in orientations other than S-L. For cracks aligned along the HAZ, growth rates as high as 1.2 × 10-8 mm/s were observed. Alloy 152/52/52i weld metals always exhibited low growth rates, apart from a weld that was further cold worked by 20%, which grew at 7 × 10-9 mm/s.
Hoy-Ellis, Charles P; Fredriksen-Goldsen, Karen I
2016-11-01
This study aims to: (1) test whether the minority stressors disclosure of sexual orientation; and (2) internalized heterosexism are predictive of chronic physical health conditions; and (3) depression; (4) to test direct and indirect relationships between these variables; and (5) whether chronic physical health conditions are further predictive of depression, net of disclosure of sexual orientation and internalized heterosexism. Secondary analysis of national, community-based surveys of 2349 lesbian, gay, and bisexual adults aged 50 and older residing in the US utilizing structural equation modeling. Congruent with minority stress theory, disclosure of sexual orientation is indirectly associated with chronic physical health conditions and depression, mediated by internalized heterosexism with a suppressor effect. Internalized heterosexism is directly associated with chronic physical health conditions and depression, and further indirectly associated with depression mediated by chronic physical health conditions. Finally, chronic physical health conditions have an additional direct relationship with depression, net of other predictor variables. Minority stressors and chronic physical health conditions independently and collectively predict depression, possibly a synergistic effect. Implications for depression among older sexual minority adults are discussed.
Application of the critical pathway and integrated case teaching method to nursing orientation.
Goodman, D
1997-01-01
Nursing staff development programs must be responsive to current changes in healthcare. New nursing staff must be prepared to manage continuous change and to function competently in clinical practice. The orientation pathway, based on a case management model, is used as a structure for the orientation phase of staff development. The integrated case is incorporated as a teaching strategy in orientation. The integrated case method is based on discussion and analysis of patient situations with emphasis on role modeling and integration of theory and skill. The orientation pathway and integrated case teaching method provide a useful framework for orientation of new staff. Educators, preceptors and orientees find the structure provided by the orientation pathway very useful. Orientation that is developed, implemented and evaluated based on a case management model with the use of an orientation pathway and incorporation of an integrated case teaching method provides a standardized structure for orientation of new staff. This approach is designed for the adult learner, promotes conceptual reasoning, and encourages the social and contextual basis for continued learning.
Lost and forgotten? Orientation versus memory in Alzheimer's disease and frontotemporal dementia.
Yew, Belinda; Alladi, Suvarna; Shailaja, Mekala; Hodges, John R; Hornberger, Michael
2013-01-01
Recent studies suggest that significant memory problems are not specific to Alzheimer's disease (AD) but can be also observed in other neurodegenerative conditions, such as behavioral variant frontotemporal dementia (bvFTD). We investigated whether orientation (spatial & temporal) information is a better diagnostic marker for AD compared to memory and whether their atrophy correlates of orientation and memory differ. A large sample (n = 190) of AD patients (n = 73), bvFTD patients (n = 54), and healthy controls (n = 63) underwent testing. A subset of the patients (n = 72) underwent structural imaging using voxel-based morphometry analysis of magnetic resonance brain imaging. Orientation and memory scores from the Addenbrooke's Cognitive Examination showed that AD patients had impaired orientation and memory, while bvFTD patients performing at control level for orientation but had impaired memory. A logistic regression showed that 78% of patients could be classified on the basis of orientation and memory scores alone at clinic presentation. Voxel-based morphometry analysis was conducted using orientation and memory scores as covariates, which showed that the neural correlates for orientation and memory also dissociated with posterior hippocampus cortex being related to orientation in AD, while the anterior hippocampus was associated with memory performance in the AD and bvFTD patients. Orientation and memory measures discriminate AD and bvFTD to a high degree and tap into different hippocampal regions. Disorientation and posterior hippocampus appears therefore specific to AD and will allow clinicians to discriminate AD patients from other neurodegenerative conditions with similar memory deficits at clinic presentation.
Checking an integrated model of web accessibility and usability evaluation for disabled people.
Federici, Stefano; Micangeli, Andrea; Ruspantini, Irene; Borgianni, Stefano; Corradi, Fabrizio; Pasqualotto, Emanuele; Olivetti Belardinelli, Marta
2005-07-08
A combined objective-oriented and subjective-oriented method for evaluating accessibility and usability of web pages for students with disability was tested. The objective-oriented approach is devoted to verifying the conformity of interfaces to standard rules stated by national and international organizations responsible for web technology standardization, such as W3C. Conversely, the subjective-oriented approach allows assessing how the final users interact with the artificial system, accessing levels of user satisfaction based on personal factors and environmental barriers. Five kinds of measurements were applied as objective-oriented and subjective-oriented tests. Objective-oriented evaluations were performed on the Help Desk web page for students with disability, included in the website of a large Italian state university. Subjective-oriented tests were administered to 19 students labeled as disabled on the basis of their own declaration at the University enrolment: 13 students were tested by means of the SUMI test and six students by means of the 'Cooperative evaluation'. Objective-oriented and subjective-oriented methods highlighted different and sometimes conflicting results. Both methods have pointed out much more consistency regarding levels of accessibility than of usability. Since usability is largely affected by individual differences in user's own (dis)abilities, subjective-oriented measures underscored the fact that blind students encountered much more web surfing difficulties.
Anti-transgender prejudice: a structural equation model of associated constructs.
Tebbe, Esther N; Moradi, Bonnie
2012-04-01
This study aimed to identify theoretically relevant key correlates of anti-transgender prejudice. Specifically, structural equation modeling was used to test the unique relations of anti-lesbian, gay, and bisexual (LGB) prejudice; traditional gender role attitudes; need for closure; and social dominance orientation with anti-transgender prejudice. Social desirability was controlled as a covariate in the model. Analyses of data from 250 undergraduate students indicated that anti-LGB prejudice, traditional gender role attitudes, and need for closure each had positive unique relations with anti-transgender prejudice beyond the negative association of social desirability with such prejudice. By contrast, social dominance orientation was not related uniquely to anti-transgender prejudice. Additional analyses indicated that women's mean level of anti-transgender prejudice was lower than that of men's, but the pattern of relations between the predictor variables and anti-transgender prejudice did not differ between women and men. A confirmatory factor analysis also supported the unidimensional structure of anti-transgender prejudice as operationalized by Nagoshi et al.'s (2008) Transphobia Scale.
LOOS: an extensible platform for the structural analysis of simulations.
Romo, Tod D; Grossfield, Alan
2009-01-01
We have developed LOOS (Lightweight Object-Oriented Structure-analysis library) as an object-oriented library designed to facilitate the rapid development of tools for the structural analysis of simulations. LOOS supports the native file formats of most common simulation packages including AMBER, CHARMM, CNS, Gromacs, NAMD, Tinker, and X-PLOR. Encapsulation and polymorphism are used to simultaneously provide a stable interface to the programmer and make LOOS easily extensible. A rich atom selection language based on the C expression syntax is included as part of the library. LOOS enables students and casual programmer-scientists to rapidly write their own analytical tools in a compact and expressive manner resembling scripting. LOOS is written in C++ and makes extensive use of the Standard Template Library and Boost, and is freely available under the GNU General Public License (version 3) LOOS has been tested on Linux and MacOS X, but is written to be portable and should work on most Unix-based platforms.
NASA Astrophysics Data System (ADS)
Könst, Zef A.; Szklarski, Anne R.; Pellegrino, Simone; Michalak, Sharon E.; Meyer, Mélanie; Zanette, Camila; Cencic, Regina; Nam, Sangkil; Voora, Vamsee K.; Horne, David A.; Pelletier, Jerry; Mobley, David L.; Yusupova, Gulnara; Yusupov, Marat; Vanderwal, Christopher D.
2017-11-01
The lissoclimides are unusual succinimide-containing labdane diterpenoids that were reported to be potent cytotoxins. Our short semisynthesis and analogue-oriented synthesis approaches provide a series of lissoclimide natural products and analogues that expand the structure-activity relationships (SARs) in this family. The semisynthesis approach yielded significant quantities of chlorolissoclimide (CL) to permit an evaluation against the National Cancer Institute's 60-cell line panel and allowed us to obtain an X-ray co-crystal structure of the synthetic secondary metabolite with the eukaryotic 80S ribosome. Although it shares a binding site with other imide-based natural product translation inhibitors, CL engages in a particularly interesting and novel face-on halogen-π interaction between the ligand's alkyl chloride and a guanine residue. Our analogue-oriented synthesis provides many more lissoclimide compounds, which were tested against aggressive human cancer cell lines and for protein synthesis inhibitory activity. Finally, computational modelling was used to explain the SARs of certain key compounds and set the stage for the structure-guided design of better translation inhibitors.
Consolidation of metallic hollow spheres by electric sintering
NASA Astrophysics Data System (ADS)
Mironov, V.; Tatarinov, A.; Lapkovsky, V.
2017-07-01
This paper considers peculiarities of the technology of production of structures from metallic hollow spheres (MHS) using magnetic fields and electric sintering. In these studies, the raw material was MHS obtained by burning of polystyrene balls coated by carbon steel. MHS had an outer diameter of 3-5 mm and a steel wall thickness of 70-120 microns. Pulsed current generators were used for electric sintering of MHS to obtain different spatial structures. Since MHS have small strength, the compressive pressure during sintering should be minimal. To improve the adhesion strength and reduce the required energy for sintering, hollow spheres were coated with copper by ion-plasma sputtering in vacuum. The coating thickness was 10-15 microns. The ferromagnetic properties of MHS allowed using of magnet fields for orientation of the spheres in the structures, as well as using of perforated tapes acting as orienting magnetic cores. Ultrasonic testing of MHS structures has been tried using through propagation of ultrasound in low kilohertz frequency range. Sensitivity of the propagation parameters to water filling of inter-spheres space and sintering temperature was demonstrated.
Family and sexual orientation: the family-demographic correlates of homosexuality in men and women.
Francis, Andrew M
2008-01-01
Using a nationally representative sample of young adults, I identify the family-demographic correlates of sexual orientation in men and women. Hence, I test the maternal immune hypothesis, which posits that the only biodemographic correlate of male homosexuality is the number of older brothers, and there are no biodemographic correlates of female homosexuality. For men, I find that having one older brother does not raise the likelihood of homosexuality. Although having multiple older brothers has a positive coefficient, it is not significant. Moreover, having any older sisters lowers the likelihood of homosexual or bisexual identity. For women, I find that having an older brother or having any sisters decreases the likelihood of homosexuality. Family structure, ethnicity, and education are also significantly correlated with male and female sexual orientation. Therefore, the maternal immune hypothesis cannot explain the entire pattern of family-demographic correlates. The findings are consistent with either biological or social theories of sexual orientation.
Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing.
Sehaqui, Houssine; Ezekiel Mushi, Ngesa; Morimune, Seira; Salajkova, Michaela; Nishino, Takashi; Berglund, Lars A
2012-02-01
To exploit the mechanical potential of native cellulose fibrils, we report on the preparation of nanopaper with preferred orientation of nanofibrillated cellulose (TEMPO-NFC) by cold drawing. The preparation route is papermaking-like and includes vacuum filtering of a TEMPO-oxidated NFC water dispersion, drawing in wet state and drying. The orientation of the fibrils in the nanopaper was assessed by AFM and wide-angle X-ray diffraction analysis, and the effect on mechanical properties of the resulting nanopaper structure was investigated by tensile tests. At high draw ratio, the degree of orientation is as high as 82 and 89% in-the-plane and cross-sectional planes of the nanopaper, respectively, and the Young's modulus is 33 GPa. This is much higher than mechanical properties of isotropic nanopaper. The cold drawing method can be also applied to NFC nanocomposites as demonstrated by preparation of TEMPO-NFC/hydroxyethyl cellulose (HEC) nanocomposites. The introduction of the soft HEC matrix allows further tailoring of the mechanical properties.
Slip Analysis in a Ni-base Superalloy
NASA Technical Reports Server (NTRS)
Westbrooke, Eboni F.; Forero, Luis E.; Ebrahimi, Fereshteh
2004-01-01
A Ni-base superalloy single crystal with Gamma/Gamma' structure was tested at room temperature along the
Structural stigma and sexual orientation disparities in adolescent drug use.
Hatzenbuehler, Mark L; Jun, Hee-Jin; Corliss, Heather L; Bryn Austin, S
2015-07-01
Although epidemiologic studies have established the existence of large sexual orientation disparities in illicit drug use among adolescents and young adults, the determinants of these disparities remain understudied. This study sought to determine whether sexual orientation disparities in illicit drug use are potentiated in states that are characterized by high levels of stigma surrounding sexual minorities. State-level structural stigma was coded using a previously established measure based on a 4-item composite index: (1) density of same-sex couples; (2) proportion of Gay-Straight Alliances per public high school; (3) 5 policies related to sexual orientation discrimination (e.g., same-sex marriage, employment non-discrimination); and (4) public opinion toward homosexuality (aggregated responses from 41 national polls). The index was linked to individual-level data from the Growing Up Today Study, a prospective community-based study of adolescents (2001-2010). Sexual minorities report greater illicit drug use than their heterosexual peers. However, for both men and women, there were statistically significant interactions between sexual orientation status and structural stigma, such that sexual orientation disparities in marijuana and illicit drug use were more pronounced in high-structural stigma states than in low-structural stigma states, controlling for individual- and state-level confounders. For instance, among men, the risk ratio indicating the association between sexual orientation and marijuana use was 24% greater in high- versus low-structural stigma states, and for women it was 28% greater in high- versus low-structural stigma states. Stigma in the form of social policies and attitudes may contribute to sexual orientation disparities in illicit drug use. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tomita, Yoshiyuki
1990-09-01
Commercial low-alloy structural steels, 0.45 pct C (AISI 1045 grade), 0.40 pct C-Cr-Mo (AISI 4140 grade), and 0.40 pct C-Ni-Cr-Mo (AISI 4340 grade), have been studied to determine the effect of the decreased hot-rolling reduction treatment (DHRRT) from 98 to 80 pct on fracture toughness of quenched and highly tempered low-alloy structural steels. The significant conclusions are as follows: (1) the sulfide inclusions were modified through the DHRRT from a stringer (mean aspect ratio: 16.5 to 17.6) to an ellipse (mean aspect ratio: 3.8 to 4.5), independent of the steels studied; (2) the DHRRT significantly improved J Ic in the long-transverse and shorttransverse orientations, independent of the steels studied; and (3) the shelf energy in the Charpy V-notch impact test is also greatly improved by the DHRRT, independent of testing orientation and steels studied; however, (4) the ductile-to-brittle transition temperature was only slightly affected by the DHRRT. The beneficial effect on the J Ic is briefly discussed in terms of a crack extension model involving the formation of voids at the inclusion sites and their growth and eventual linking up through the rupture of the intervening ligaments by local shear.
D'Amore, Antonio; Amoroso, Nicholas; Gottardi, Riccardo; Hobson, Christopher; Carruthers, Christopher; Watkins, Simon; Wagner, William R.; Sacks, Michael S.
2014-01-01
In the present work, we demonstrate that the mesoscopic in-plane mechanical behavior of membrane elastomeric scaffolds can be simulated by replication of actual quantified fibrous geometries. Elastomeric electrospun polyurethane (ES-PEUU) scaffolds, with and without particulate inclusions, were utilized. Simulations were developed from experimentally-derived fiber network geometries, based on a range of scaffold isotropic and anisotropic behaviors. These were chosen to evaluate the effects on macro-mechanics based on measurable geometric parameters such as fiber intersections, connectivity, orientation, and diameter. Simulations were conducted with only the fiber material model parameters adjusted to match the macro-level mechanical test data. Fiber model validation was performed at the microscopic level by individual fiber mechanical tests using AFM. Results demonstrated very good agreement to the experimental data, and revealed the formation of extended preferential fiber orientations spanning the entire model space. We speculate that these emergent structures may be responsible for the tissue-like macroscale behaviors observed in electrospun scaffolds. To conclude, the modeling approach has implications for (1) gaining insight on the intricate relationship between fabrication variables, structure, and mechanics to manufacture more functional devices/materials, (2) elucidating the effects of cell or particulate inclusions on global construct mechanics, and (3) fabricating better performing tissue surrogates that could recapitulate native tissue mechanics. PMID:25128869
Hatzenbuehler, Mark L
2017-01-01
Psychological research on stigma has focused largely on the perceptions of stigmatized individuals and their interpersonal interactions with the nonstigmatized. This work has been critical in documenting many of the ways in which stigma operates to harm those who are targeted. However, this research has also tended to overlook broader structural forms of stigma, which refer to societal-level conditions, cultural norms, and institutional policies and practices that constrain the lives of the stigmatized. In this article I describe the emerging field of research on structural stigma and review evidence documenting the harmful consequences of structural stigma for the mental/behavioral health of lesbian, gay, and bisexual youth. This research demonstrates that structural stigma represents an important, but thus far largely underrecognized, mechanism underlying mental health disparities related to sexual orientation among youth. I offer several suggestions to advance research in this area, including (a) adopting a life-course approach to the study of structural stigma; (b) developing novel measures of structural stigma; (c) expanding both the range of methods used for studying structural stigma and the sequelae of structural stigma that are evaluated; (d) identifying potential mediators and moderators of the structural stigma-health relationship; (e) examining intersectionalities; and (f) testing generalizability of structural stigma across other groups, with a particular focus on transgender youth. The implications of this research for preventive interventions and for public policy are also discussed.
[Action-oriented versus state-oriented reactions to experimenter-induced failures].
Brunstein, J C
1989-01-01
The present study assessed different effects of action-oriented versus state-oriented styles of coping with failure on achievement-related performance and cognition. In a learned helplessness experiment, students were exposed to an academic failure situation and were then tested on a series of problem-solving tasks, either immediately after the pretreatment or after a delay of 24 hours. Performance and cognitive concomitants were measured during both experimental periods. Results demonstrated that action orientation was associated with self-immunizing cognitions during helplessness training. Action-oriented participants improved their performance level even after repeated failure feedbacks. Moreover, action-oriented students assigned to the delayed test condition responded with increased striving for success and showed performance increments, even in comparison with control subjects. In contrast, state-oriented participants developed symptoms of helplessness and showed impaired performance during failure inductions. In later tests on problem-solving tasks, state-oriented groups responded with increased fear of failure. Independent of immediate or delayed test conditions, they soon lapsed into new performance decrements.
McQuilken, Molly; La Riviere, Patrick J.; Occhipinti, Patricia; Verma, Amitabh; Oldenbourg, Rudolf; Gladfelter, Amy S.; Tani, Tomomi
2016-01-01
Regulation of order, such as orientation and conformation, drives the function of most molecular assemblies in living cells but remains difficult to measure accurately through space and time. We built an instantaneous fluorescence polarization microscope, which simultaneously images position and orientation of fluorophores in living cells with single-molecule sensitivity and a time resolution of 100 ms. We developed image acquisition and analysis methods to track single particles that interact with higher-order assemblies of molecules. We tracked the fluctuations in position and orientation of molecules from the level of an ensemble of fluorophores down to single fluorophores. We tested our system in vitro using fluorescently labeled DNA and F-actin, in which the ensemble orientation of polarized fluorescence is known. We then tracked the orientation of sparsely labeled F-actin network at the leading edge of migrating human keratinocytes, revealing the anisotropic distribution of actin filaments relative to the local retrograde flow of the F-actin network. Additionally, we analyzed the position and orientation of septin-GFP molecules incorporated in septin bundles in growing hyphae of a filamentous fungus. Our data indicate that septin-GFP molecules undergo positional fluctuations within ∼350 nm of the binding site and angular fluctuations within ∼30° of the central orientation of the bundle. By reporting position and orientation of molecules while they form dynamic higher-order structures, our approach can provide insights into how micrometer-scale ordered assemblies emerge from nanoscale molecules in living cells. PMID:27679846
Galindo-Cardona, A; Monmany, A C; Diaz, G; Giray, T
2015-08-01
Honey bees [Apis mellifera L. (Apidae, Hymenoptera)] show spatial learning behavior or orientation, in which animals make use of structured home ranges for their daily activities. Worker (female) orientation has been studied more extensively than drone (male) orientation. Given the extensive and large flight range of drones as part of their reproductive biology, the study of drone orientation may provide new insight on landscape features important for orientation. We report the return rate and orientation of drones released at three distances (1, 2, and 4 km) and at the four cardinal points from an apiary located in Gurabo, Puerto Rico. We used high-resolution aerial photographs to describe landscape characteristics at the releasing sites and at the apiary. Analyses of variance were used to test significance among returning times from different distances and directions. A principal components analysis was used to describe the landscape at the releasing sites and generalized linear models were used to identify landscape characteristics that influenced the returning times of drones. Our results showed for the first time that drones are able to return from as far as 4 km from the colony. Distance to drone congregation area, orientation, and tree lines were the most important landscape characteristics influencing drone return rate. We discuss the role of landscape in drone orientation. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Control Oriented Modeling and Validation of Aeroservoelastic Systems
NASA Technical Reports Server (NTRS)
Crowder, Marianne; deCallafon, Raymond (Principal Investigator)
2002-01-01
Lightweight aircraft design emphasizes the reduction of structural weight to maximize aircraft efficiency and agility at the cost of increasing the likelihood of structural dynamic instabilities. To ensure flight safety, extensive flight testing and active structural servo control strategies are required to explore and expand the boundary of the flight envelope. Aeroservoelastic (ASE) models can provide online flight monitoring of dynamic instabilities to reduce flight time testing and increase flight safety. The success of ASE models is determined by the ability to take into account varying flight conditions and the possibility to perform flight monitoring under the presence of active structural servo control strategies. In this continued study, these aspects are addressed by developing specific methodologies and algorithms for control relevant robust identification and model validation of aeroservoelastic structures. The closed-loop model robust identification and model validation are based on a fractional model approach where the model uncertainties are characterized in a closed-loop relevant way.
Static structure of active Brownian hard disks
NASA Astrophysics Data System (ADS)
de Macedo Biniossek, N.; Löwen, H.; Voigtmann, Th; Smallenburg, F.
2018-02-01
We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.
Analysis of the rivets from the RMS Titanic using experimental and theoretical techniques
NASA Astrophysics Data System (ADS)
Hooper, Jennifer Jo
Earlier studies of Titanic wrought iron rivets revealed an anisotropic, inhomogeneous composite material composed of glassy iron silicate (slag) particles embedded in a ferrite matrix. Micrographs indicated a directional character to the slag "stringers" that follows the method of processing---aligned parallel to the shaft in the center of the rivet, but oriented perpendicular to the shaft within the inner section of each head. It was proposed that the re-orientation of large slag particles in the rivet head weakened this region, predisposing the rivets to fail as a result of collision with the iceberg. Using quantitative metallography, mechanical testing, and a combination of modeling techniques, this hypothesis was tested using 35 Titanic rivets and additional contemporary wrought iron. Results revealed that the wrought iron microstructure showed a high slag content that was very coarse and unevenly distributed. Results from micro structural, chemical and mechanical analysis, as well as supporting historical evidence, suggested that two types of rivets, both wrought iron and steel, were used on the Titanic. Tensile testing results indicated that the longitudinal orientation in wrought iron possesses an average of 20% higher tensile strength and nearly four times the ductility of the transverse orientation. Results for Titanic rivet steel suggest a 100MPa enhancement in yield strength and tensile strength over wrought iron. Sequential imaging during mechanical testing, supported by micromechanical modeling predictions, indicated that the mechanical behavior of wrought iron is strongly affected by the orientation, distribution and content of slag within the matrix. Finite element analysis of a wrought iron rivet with anisotropic properties demonstrated that, because of poor ductility produced by the re-orientation of slag within the head, a Titanic rivet could not withstand a 5mm displacement of the hull's steel plates. Due to its low ultimate tensile strength, the wrought iron rivet would fail after an additional load that is 2.5 times less than that required for the steel rivet failure. This evidence suggests that as a result of the collision with the iceberg, failure at the junction of the head and shaft caused "popping" of rivet's heads and the opening of riveted seams.
Spatially oriented plasmonic ‘nanograter’ structures
Liu, Zhe; Cui, Ajuan; Gong, Zhijie; Li, Hongqiang; Xia, Xiaoxiang; Shen, Tiehan H.; Li, Junjie; Yang, Haifang; Li, Wuxia; Gu, Changzhi
2016-01-01
One of the key motivations in producing 3D structures has always been the realization of metamaterials with effective constituent properties that can be tuned in all propagation directions at various frequencies. Here, we report the investigation of spatially oriented “Nanograter” structures with orientation-dependent responses over a wide spectrum by focused-ion-beam based patterning and folding of thin film nanostructures. Au nano units of different shapes, standing along specifically designated orientations, were fabricated. Experimental measurements and simulation results show that such structures offer an additional degree of freedom for adjusting optical properties with the angle of inclination, in additional to the size of the structures. The response frequency can be varied in a wide range (8 μm–14 μm) by the spatial orientation (0°–180°) of the structures, transforming the response from magnetic into electric coupling. This may open up prospects for the fabrication of 3D nanostructures as optical interconnects, focusing elements and logic elements, moving toward the realization of 3D optical circuits. PMID:27357610
Morphology, orientation, and mechanical properties of gelatin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanton, T.N.; Tsou, A.H.
1996-12-31
Gelatin is a polypeptide derived from degradation and disorganization of collagen fibers and is the primary binder in photographic emulsions. Gelatin provides the mechanical integrity and strength to the photographic emulsion allowing for packaging, handling, and photofinishing operations. Gelatin films generated from aqueous-solution casting can exist in a semicrystalline or an amorphous state. When a gelatin solution is cooled below its helix-coil transition temperature, partial renaturation of gelatin to form triple helices can occur. The degree of renaturation in a coated film is dependent upon the drying temperature and the drying rate. During the drying process, gelatin crystals can bemore » formed by lateral association of the triple helices through a mechanism of nucleation and growth of a fringed micelle structure. X-ray scattering techniques have been utilized to examine the morphology and orientation of gelatin films. Based on X-ray diffraction data, it is observed that aggregates of triple-helix rods lie parallel to the film plane but are symmetrically distributed within the film plane. Since a material`s physical and mechanical properties are related to its structure, it is necessary to understand and to characterize the morphological development in gelatin film formation. In this study, an X-ray diffractometer and pole figure goniometer were utilized to examine the structural development and orientation anisotropy in solid-state gelatin films. Also, in this study, the in-plane mechanical properties of a gelatin film were determined from a uniaxial tensile test, and the gelatin film properties in the thickness direction were extracted from an indentation test based on the finite element analysis of the indentation results using a viscoelastic material model.« less
Aşkar, Petek; Altun, Arif; Cangöz, Banu; Cevik, Vildan; Kaya, Galip; Türksoy, Hasan
2012-04-01
The purpose of this study was to assess whether a computerized battery of neuropsychological tests could produce similar results as the conventional forms. Comparisons on 77 volunteer undergraduates were carried out with two neuropsychological tests: Line Orientation Test and Enhanced Cued Recall Test. Firstly, students were assigned randomly across the test medium (paper-and-pencil versus computerized). Secondly, the groups were given the same test in the other medium after a 30-day interval between tests. Results showed that the Enhanced Cued Recall Test-Computer-based did not correlate with the Enhanced Cued Recall Test-Paper-and-pencil results. Line Orientation Test-Computer-based scores, on the other hand, did correlate significantly with the Line Orientation Test-Paper-and-pencil version. In both tests, scores were higher on paper-and-pencil tests compared to computer-based tests. Total score difference between modalities was statistically significant for both Enhanced Cued Recall Tests and for the Line Orientation Test. In both computer-based tests, it took less time for participants to complete the tests.
Spatial disorientation in right-hemisphere infarction: a study of the speed of recovery.
Meerwaldt, J D
1983-01-01
Sixteen patients with an infarct in the posterior region of the right hemisphere were tested at fixed intervals after a stroke (2 weeks, 6 weeks, 3 months, 6 months, 1 year) with the rod orientation test and the line orientation test. All patients initially showed spatial disorientation on the rod orientation test, while only three had a defective performance on the line orientation test. The recovery on the rod orientation test was parallel with the neurological improvement. Recovery mainly took place in the first six months after the stroke. Most patients then performed at a normal level. A relation between the size of the lesion (assessed from CT scans) and the speed of recovery was found. PMID:6101178
Significance of dual polarized long wavelength radar for terrain analysis
NASA Technical Reports Server (NTRS)
Macdonald, H. C.; Waite, W. P.
1978-01-01
Long wavelength systems with improved penetration capability have been considered to have the potential for minimizing the vegetation contribution and enhancing the surface return variations. L-band imagery of the Arkansas geologic test site provides confirmatory evidence of this effect. However, the increased wavelength increases the sensitivity to larger scale structure at relatively small incidence angles. The regularity of agricultural and urban scenes provides large components in the low frequency-large scale portion of the roughness spectrum that are highly sensitive to orientation. The addition of a cross polarized channel is shown to enable the interpreter to distinguish vegetation and orientational perturbations in the surface return.
Orosz, Gábor; Tóth-Király, István; Büki, Noémi; Ivaskevics, Krisztián; Bőthe, Beáta; Fülöp, Márta
2018-01-01
To date, no short scale exists with established factor structure that can assess individual differences in competition. The aim of the present study was to uncover and operationalize the facets of competitive orientations with theoretical underpinning and strong psychometric properties. A total of 2676 respondents were recruited for four studies. The items were constructed based on qualitative research in different cultural contexts. A combined method of exploratory structural equation modeling (ESEM) and confirmatory factor analysis (CFA) was employed. ESEM resulted in a four-factor structure of the competitive orientations and this structure was supported by a series of CFAs on different comprehensive samples. The Multidimensional Competitive Orientation Inventory (MCOI) included 12 items and four factors: hypercompetitive orientation, self-developmental competitive orientation, anxiety-driven competition avoidance, and lack of interest toward competition. Strong gender invariance was established. The four facets of competition have differentiated relationship patterns with adaptive and maladaptive personality and motivational constructs. The MCOI can assess the adaptive and maladaptive facets of competitive orientations with a short, reliable, valid and theoretically underlined multidimensional measure. PMID:29872415
Video-microscopy of NCAP films: the observation of LC droplets in real time
NASA Astrophysics Data System (ADS)
Reamey, Robert H.; Montoya, Wayne; Wong, Abraham
1992-06-01
We have used video-microscopy to observe the behavior of liquid crystal (LC) droplets within nematic droplet-polymer films (NCAP) as the droplets respond to an applied electric field. The textures observed at intermediate fields yielded information about the process of liquid crystal orientation dynamics within droplets. The nematic droplet-polymer films had low LC content (less than 1 percent) to allow the observation of individual droplets in a 2 - 6 micrometers size range. The aqueous emulsification technique was used to prepare the films as it allows the straightforward preparation of low LC content films with a controlled droplet size range. Standard electro-optical (E-O) tests were also performed on the films, allowing us to correlate single droplet behavior with that of the film as a whole. Hysteresis measured in E-O tests was visually confirmed by droplet orientation dynamics; a film which had high hysteresis in E-O tests exhibited distinctly different LC orientations within the droplet when ramped up in voltage than when ramped down in voltage. Ramping the applied voltage to well above saturation resulted in some droplets becoming `stuck'' in a new droplet structure which can be made to revert back to bipolar with high voltage pulses or with heat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCree-Grey, Jonathan; Cole, Jacqueline M.; Evans, Peter J.
2015-07-21
The dye…TiO2 interfacial structure in working electrodes of dye-sensitized solar cells (DSCs) is known to influence its photovoltaic device performance. Despite this, direct and quantitative reports of such structure remain sparse. This case study presents the application of X-ray reflectometry to determine the preferred structural orientation and molecular packing of the organic dye, coumarin 343, adsorbed onto amorphous TiO2. Results show that the dye molecules are, on average, tilted by 61.1° relative to the TiO2 surface, and are separated from each other by 8.2 Å. These findings emulate the molecular packing arrangement of a monolayer of coumarin 343 within itsmore » crystal structure. This suggests that the dye adsorbs onto TiO2 in one of its lowest energy configurations, i.e. dye…TiO2 self assembly is driven more by thermodynamic rather than kinetic means. Complementary DSC device tests illustrate that this interfacial structure compromises photovoltaic performance, unless a suitably sized co-adsorbant is interdispersed between the coumarin 343 chromophores on the TiO2 surface.« less
The Influence of Founder Type on Charter School Structures and Operations
ERIC Educational Resources Information Center
Henig, Jeffrey R.; Holyoke, Thomas T.; Brown, Heath; Lacireno-Paquet, Natalie
2005-01-01
Much of the literature on charter schools treats them as an undifferentiated mass. Here we present and test a typology of charter schools that is grounded in the norms, traditions, and perspectives of the founding organization or organizers. We suggest that there are two broad categories of charter founders--those who are more mission oriented and…
2014-11-01
such as orthogonal (Z- fiber) weave, layer-to-layer, and angle interlock. Figure 1 provides an example of 2 different types of 3-D woven structures...o.~os~~~o. t Deflection (in) (c) 90° Orientation 18 6.4 LCC Test Specimen Failure Analysis LCC posttest failure analysis was conducted
ERIC Educational Resources Information Center
Schmid, S.; Bogner, F. X.
2017-01-01
Three subscales of the "Science Motivation Questionnaire II" (SMQII; motivational components: career motivation, self-efficacy and self-determination), with 4 items each, were applied to a sample of 209 secondary school students to monitor the impact of a 3-hour structured inquiry lesson. Four testing points (before, immediately after, 6…
Production of yarns composed of oriented nanofibers for ophthalmological implants
NASA Astrophysics Data System (ADS)
Shynkarenko, A.; Klapstova, A.; Krotov, A.; Moucka, M.; Lukas, D.
2017-10-01
Parallelized nanofibrous structures are commonly used in medical sector, especially for the ophthalmological implants. In this research self-fabricated device is tested for improved collection and twisting of the parallel nanofibers. Previously manual techniques are used to collect the nanofibers and then twist is given, where as in our device different parameters can be optimized to obtained parallel nanofibers and further twisting can be given. The device is used to bring automation to the technique of achieving parallel fibrous structures for medical applications.
Action versus state orientation and self-control performance after depletion.
Gröpel, Peter; Baumeister, Roy F; Beckmann, Jürgen
2014-04-01
Three studies investigated the role of action versus state orientation in how people deal with depletion of self-control resources. Action-oriented persons were expected to continue allocating resources and hence to perform better than state-oriented persons who were expected to conserve strength. Consistent with this, action-oriented persons performed better on the d2 test of attention than state-oriented persons after a strenuous physical exercise (Study 1), showed higher acuity on the critical fusion frequency test after a test of vigilance (Study 2), and performed better on the Stroop test after a depleting sensorimotor task (Study 3). No differences emerged between action- and state-oriented persons in their initial performance and in a non-depleting context. The impact of depletion on subsequent performance is thus not fixed, but moderated by personality.
Hesterberg, Stephen G; Duckett, C Cole; Salewski, Elizabeth A; Bell, Susan S
2017-04-01
Identifying and quantifying the relevant properties of habitat structure that mediate predator-prey interactions remains a persistent challenge. Most previous studies investigate effects of structural density on trophic interactions and typically quantify refuge quality using one or two-dimensional metrics. Few consider spatial arrangement of components (i.e., orientation and shape) and often neglect to measure the total three-dimensional (3D) space available as refuge. This study tests whether the three-dimensionality of interstitial space, an attribute produced by the spatial arrangement of oyster (Crassostrea virginica) shells, impacts the foraging success of nektonic predators (primary blue crab, Callinectes sapidus) on mud crab prey (Eurypanopeus depressus) in field and mesocosm experiments. Interstices of 3D-printed shell mimics were manipulated by changing either their orientation (angle) or internal shape (crevice or channel). In both field and mesocosm experiments, under conditions of constant structural density, predator foraging success was influenced by 3D aspects of interstitial space. Proportional survivorship of tethered mud crabs differed significantly as 3D interstitial space varied by orientation, displaying decreasing prey survivorship as angle of orientation increased (0° = 0.76, 22.5° = 0.13, 45° = 0.0). Tethered prey survivorship was high when 3D interstitial space of mimics was modified by internal shape (crevice survivorship = 0.89, channel survivorship = 0.96) and these values did not differ significantly. In mesocosms, foraging success of blue crabs varied with 3D interstitial space as mean proportional survivorship (± SE) of mud crabs was significantly lower in 45° (0.27 ± 0.06) vs. 0° (0.86 ± 0.04) orientations and for crevice (0.52 ± 0.11) vs. channel shapes (0.95 ± 0.02). These results suggest that 3D aspects of interstitial space, which have direct relevance to refuge quality, can strongly influence foraging success in our oyster reef habitat. Our findings highlight the importance of spatial arrangement in mediating consumptive pathways in hard-structured habitats and demonstrate how quantifying the three-dimensionality of living space captures aspects of habitat structure that have been missing from previous empirical studies of trophic interactions and structural complexity. © 2017 by the Ecological Society of America.
Comparison of fiber orientation and tensile-stiffness orientation measurements in paper
David W. Vahey; John M. Considine; Andy Kahra; Mark Scotch
2008-01-01
We have had the opportunity to subject cross-machine paper strips from two mills to both ultrasound and optical "fiber-orientation" tests to examine the relationships between the results. Both determine an orientation angle, in degrees. Both measure sheet anisotropy as an MD/CD orientation ratio. The optical test has no counterpart to the ultrasonic...
ERIC Educational Resources Information Center
Cheng, Hong-Yu; Guan, Shu-Yi
2015-01-01
This study was designed to investigate how cognitive style affects Chinese students' learning behaviours in the classroom. A concept labelled as the structure-oriented vs. depth-oriented learning approach was constructed, and its mediating effects in the link between cognitive style and learning behaviour were proposed and examined in this study.…
Developing a MATLAB(registered)-Based Tool for Visualization and Transformation
NASA Technical Reports Server (NTRS)
Anderton, Blake J.
2003-01-01
An important step in the structural design and development of spacecraft is the experimental identification of a structure s modal characteristics, such as its natural frequencies and modes of vibration. These characteristics are vital to developing a representative model of any given structure or analyzing the range of input frequencies that can be handled by a particular structure. When setting up such a representative model of a structure, careful measurements using precision equipment (such as accelerometers and instrumented hammers) must be made on many individual points of the structure in question. The coordinate location of each data point is used to construct a wireframe geometric model of the structure. Response measurements obtained from the accelerometers is used to generate the modal shapes of the particular structure. Graphically, this is displayed as a combination of the ways a structure will ideally respond to a specified force input. Two types of models of the tested structure are often used in modal analysis: an analytic model showing expected behavior of the structure, and an experimental model showing measured results due to observed phenomena. To evaluate the results from the experimental model, a comparison of analytic and experimental results must be made between the two models. However, comparisons between these two models become difficult when the two coordinate orientations differ in a manner such that results are displayed in an unclear fashion. Such a problem proposes the need for a tool that not only communicates a graphical image of a structure s wireframe geometry based on various measurement locations (called nodes), but also allows for a type of transformation of the image s coordinate geometry so that a model s coordinate orientation is made to match the orientation of another model. Such a tool should also be designed so that it is able to construct coordinate geometry based on many different listings of node locations and is able to transform the wireframe coordinate orientation to match almost any possible orientation (i.e. it should not be a problem specific application) if it is to be of much value in modal analysis. Also, since universal files are used to store modal parameters and wireframe geometry, the tool must be able to read and extract information from universal files and use these files to exchange model data.The purpose of this project is to develop such a tool as a computer graphical user interface (GUI) capable of performing the following tasks: 1) Browsing for a particular universal file within the computer directory and displaying the name of this file to the screen; 2) Plotting each of the nodes within the universal file in a useful, descriptive, and easily understood figure; 3) Reading the node numbers from the selected file and listing these node numbers to the user for selection in an easily accessible format; 4) Allowing for user selection of a new model orientation defined by three selected nodes; and 5) Allowing the user to specify a directory to which the transformed model s node locations will be saved, and saving the transformed node locations to the specified file.
ERIC Educational Resources Information Center
Richards, R. Lynn; And Others
1990-01-01
Describes the three major influences on theme-oriented groups: theme-centered interactional, structured, and behavioral groups. Provides a comparison of the composition and structure of theme groups during the current decade. Summarizes the general principles thought to be important in the construction and development of theme-oriented groups.…
Structure formation in fibrous materials based on poly-3-hydroxybutyrate for traumatology
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Sklyanchuk, E. D.; Staroverova, O. V.; Abbasov, T. A.; Guryev, V. V.; Akatov, V. S.; Fadeyeva, I. S.; Fesenko, N. I.; Filatov, Yu. N.; Iordanskii, A. L.
2015-10-01
The paper reviews the structure formation of fibrous materials based on poly-3-hydroxybutyrate depending on parameters of electrospinning and characteristics of polymer solution. Fiber structure was studied by DSC, ESR and SEM. The molecular weight affects the diameter and uniformity of the fiber. An electromechanical impact leads to an orientation of crystalline structure in the fiber. The design of an artificial bioresorbable implant based on nano- and microfibers of poly-3-hydroxybutyrate is created. Dynamics of growth of mesenchymal stem cells on poly-3-hydroxybutyrate scaffolds is studied. Successful field tests of implants of the Achilles tendon in Wistar rats are conducted.
Dragoni, Lisa; Kuenzi, Maribeth
2012-09-01
With a multisource sample comprising 1,150 employees and 230 supervisors, we investigate the effect of leader goal orientation on leader's perceptions of unit performance. We propose that a leader's goal orientation indirectly impacts performance perceptions via the shared achievement goal adopted within the unit (i.e., unit goal orientation). Further, we hypothesize that the presence and impact of unit goal orientation depend on the work unit structure. We find general support for this moderated mediation model, with the strongest evidence being associated with the learning and prove dimensions of goal orientation.
McAuley, J Devin; Henry, Molly J; Wedd, Alan; Pleskac, Timothy J; Cesario, Joseph
2012-02-01
Two experiments investigated the effects of musicality and motivational orientation on auditory category learning. In both experiments, participants learned to classify tone stimuli that varied in frequency and duration according to an initially unknown disjunctive rule; feedback involved gaining points for correct responses (a gains reward structure) or losing points for incorrect responses (a losses reward structure). For Experiment 1, participants were told at the start that musicians typically outperform nonmusicians on the task, and then they were asked to identify themselves as either a "musician" or a "nonmusician." For Experiment 2, participants were given either a promotion focus prime (a performance-based opportunity to gain entry into a raffle) or a prevention focus prime (a performance-based criterion that needed to be maintained to avoid losing an entry into a raffle) at the start of the experiment. Consistent with a regulatory-fit hypothesis, self-identified musicians and promotion-primed participants given a gains reward structure made more correct tone classifications and were more likely to discover the optimal disjunctive rule than were musicians and promotion-primed participants experiencing losses. Reward structure (gains vs. losses) had inconsistent effects on the performance of nonmusicians, and a weaker regulatory-fit effect was found for the prevention focus prime. Overall, the findings from this study demonstrate a regulatory-fit effect in the domain of auditory category learning and show that motivational orientation may contribute to musician performance advantages in auditory perception.
NASA Astrophysics Data System (ADS)
Na, Suok-Min; Smith, Malcolm; Flatau, Alison B.
2018-06-01
In this work, deformation mechanism related to recrystallization behavior in single-crystal disks of Galfenol (Fe-Ga alloy) was investigated to gain insights into the influence of crystal orientations on structural changes and selective grain growth that take place during secondary recrystallization. We started with the three kinds of single-crystal samples with (011)[100], (001)[100], and (001)[110] orientations, which were rolled and annealed to promote the formation of different grain structures and texture evolutions. The initial Goss-oriented (011)[100] crystal mostly rotated into {111}<112> orientations with twofold symmetry and shear band structures by twinning resulted in the exposure of rolled surface along {001}<110> orientation during rolling. In contrast, the Cube-oriented (001)[100] single crystal had no change in texture during rolling with the thickness reduction up to 50 pct. The {123}<111> slip systems were preferentially activated in these single crystals during deformation as well as {112}<111> slip systems that are known to play a role in primary slip of body-centered cubic (BCC) materials such as α-iron and Fe-Si alloys. After annealing, the deformed Cube-oriented single crystal had a small fraction (<10 pct) of recrystallized Goss-oriented grains. The weak Goss component remained in the shear bands of the 50 pct rolled Goss-oriented single crystal, and it appeared to be associated with coalescence of subgrains inside shear band structures during primary recrystallization. Rolling of the (001)[110] single crystal led to the formation of a tilted (001)[100] component close to the <120> orientation, associated with {123}<111> slip systems as well. This was expected to provide potential sites of nucleation for secondary recrystallization; however, no Goss- and Cube-oriented components actually developed in this sample during secondary recrystallization. Those results illustrated how the recrystallization behavior can be influenced by deformed structure and the slip systems.
NASA Astrophysics Data System (ADS)
Bulbul, Ferhat
2011-02-01
Electroless Ni-B coatings were deposited on AISI 304 stainless steels by electroless deposition method, which was performed for nine different test conditions at various levels of temperature, concentration of NaBH4, concentration of NiCl2, and time, using the Taguchi L9(34) experimental method. The effects of deposition parameters on the crystallographic orientation of electroless Ni-B coatings were investigated using SEM and XRD equipment. SEM analysis revealed that the Ni-B coatings developed six types (pea-like, maize-like, primary nodular, blackberry-like or grapes-like, broccoli-like, and cauliflower-like) of morphological structures depending on the deposition parameters. XRD results also showed that these structures exhibited different levels of amorphous character. The concentration of NaBH4 had the most dominant effect on the morphological and crystallographic development of electroless Ni-B coatings.
Chang, Wei-Lung; Liu, Hsiang-Te; Lin, Tai-An; Wen, Yung-Sung
2008-01-01
The purpose of this research was to study the relationship between family communication structure, vanity trait, and related consumption behavior. The study used an empirical method with adolescent students from the northern part of Taiwan as the subjects. Multiple statistical methods and the SEM model were used for testing the hypotheses. The major findings were: (1) Socio-orientation has a significant effect on how physical appearance is viewed, and concept-orientation has a significant positive effect on achievement vanity. (2) how physical appearance is viewed has a significant positive effect on all dimensions of materialism, concerns about clothing, and use of cosmetics. (3) Achievement vanity has a significant positive relationship with price-based prestige sensitivity and concerns regarding clothing. The findings have implications for marketing theory as well as for practical applications in marketing.
Large structural, thin-wall castings made of metals subject to hot tearing, and their fabrication
NASA Technical Reports Server (NTRS)
Smashey, Russell W. (Inventor)
2001-01-01
An article, such as a gas turbine engine mixer, is made by providing a mold structure defining a thin-walled, hollow article, and a base metal that is subject to hot tear cracking when cast in a generally equiaxed polycrystalline form, such as Rene' 108 and Mar-M247. The article is fabricated by introducing the molten base metal into the mold structure, and directionally solidifying the base metal in the mold structure to form a directionally oriented structure. The directionally oriented structure may be formed of a single grain or oriented multiple grains.
The Motor Subsystem as a Predictor of Success in Young Football Talents: A Person-Oriented Study
Zibung, Marc; Zuber, Claudia; Conzelmann, Achim
2016-01-01
Motor tests play a key role in talent selection in football. However, individual motor tests only focus on specific areas of a player’s complex performance. To evaluate his or her overall performance during a game, the current study takes a holistic perspective and uses a person-oriented approach. In this approach, several factors are viewed together as a system, whose state is analysed longitudinally. Based on this idea, six motor tests were aggregated to form the Motor Function subsystem. 104 young, top-level, male football talents were tested three times (2011, 2012, 2013; Mage, t2011 = 12.26, SD = 0.29), and their overall level of performance was determined one year later (2014). The data were analysed using the LICUR method, a pattern-analytical procedure for person-oriented approaches. At all three measuring points, four patterns could be identified, which remained stable over time. One of the patterns found at the third measuring point identified more subsequently successful players than random selection would. This pattern is characterised by above-average, but not necessarily the best, performance on the tests. Developmental paths along structurally stable patterns that occur more often than predicted by chance indicate that the Motor Function subsystem is a viable means of forecasting in the age range of 12–15 years. Above-average, though not necessary outstanding, performance both on fitness and technical tests appears to be particularly promising. These findings underscore the view that a holistic perspective may be profitable in talent selection. PMID:27508929
NASA Technical Reports Server (NTRS)
Sharma, A. V.
1980-01-01
The effect of low velocity projectile impact on sandwich-type structural components was investigated. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, the dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failure in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension-and compression-loaded laminates. The specific-strengths and -modulii for the various laminates tested are also given.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1979-01-01
A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.
Default contagion risks in Russian interbank market
NASA Astrophysics Data System (ADS)
Leonidov, A. V.; Rumyantsev, E. L.
2016-06-01
Systemic risks of default contagion in the Russian interbank market are investigated. The analysis is based on considering the bow-tie structure of the weighted oriented graph describing the structure of the interbank loans. A probabilistic model of interbank contagion explicitly taking into account the empirical bow-tie structure reflecting functionality of the corresponding nodes (borrowers, lenders, borrowers and lenders simultaneously), degree distributions and disassortativity of the interbank network under consideration based on empirical data is developed. The characteristics of contagion-related systemic risk calculated with this model are shown to be in agreement with those of explicit stress tests.
Inferences About Sexual Orientation: The Role of Stereotypes, Faces, and The Gaydar Myth
Cox, William T. L.; Devine, Patricia G.; Bischmann, Alyssa A.; Hyde, Janet S.
2015-01-01
In the present work, we investigate the pop cultural idea that people have a sixth sense, called “gaydar,” to detect who is gay. We propose that “gaydar” is an alternate label for using stereotypes to infer orientation (e.g., inferring that fashionable men are gay). Another account, however, argues that people possess a facial perception process that enables them to identify sexual orientation from facial structure (Rule et al., 2008). We report five experiments testing these accounts. Participants made gay-or-straight judgments about fictional targets that were constructed using experimentally-manipulated stereotypic cues and real gay/straight people’s face cues. These studies revealed that orientation is not visible from the face—purportedly “face-based” gaydar arises from a third-variable confound. People do, however, readily infer orientation from stereotypic attributes (e.g., fashion, career). Furthermore, the folk concept of gaydar serves as a legitimizing myth: Compared to a control group, people stereotyped more when led to believe in gaydar, whereas people stereotyped less when told gaydar is an alternate label for stereotyping. Discussion focuses on the implications of the gaydar myth and why, contrary to some prior claims, stereotyping is highly unlikely to result in accurate judgments about orientation. PMID:26219212
Dyar, Christina; Feinstein, Brian A; Eaton, Nicholas R; London, Bonita
2018-01-01
The negative impact of discrimination on mental health among lesbian, gay, and bisexual populations has been well documented. However, the possible mediating roles of sexual orientation rejection sensitivity and rejection-based proximal stress in the association between discrimination and internalizing symptoms remain unclear. Rejection-based proximal stress is a subset of proximal stressors that are theorized to arise from concerns about and expectations of sexual orientation-based rejection and discrimination. Drawing on minority stress theory, we tested potential mediating effects using indirect effects structural equation modeling in a sample of 300 sexual minority women. Results indicated that the indirect effect of discrimination on internalizing symptoms (a latent variable indicated by depression and anxiety symptoms) through sexual orientation rejection sensitivity and rejection-based proximal stress (a latent variable indicated by preoccupation with stigma, concealment motivation, and difficulty developing a positive sexual identity) was significant. Additionally, the indirect effects of discrimination on rejection-based proximal stress through sexual orientation rejection sensitivity and of sexual orientation rejection sensitivity on internalizing symptoms through rejection-based proximal stress were also significant. These findings indicate that sexual orientation rejection sensitivity plays an important role in contributing to rejection-based proximal stress and internalizing symptoms among sexual minority women.
Basic Values, Career Orientations, and Career Anchors: Empirical Investigation of Relationships
Abessolo, Marc; Rossier, Jérôme; Hirschi, Andreas
2017-01-01
In today's dynamic and uncertain career context, values play an important role for career choice and lifelong career self-management. Values are desirable goals that are sought by individuals to satisfy their needs and are important for understanding career orientations in terms of protean and boundaryless career orientations and career anchors. However, how career orientations or career anchors fit into a well-established and supported model and into the structure of basic human values remains an important and under-investigated question. The aim of this study was to use Schwartz's model of structural values to empirically explore the relationships and structural correspondences among basic values, career orientations, and career anchors. A heterogeneous sample of 238 employees from French-speaking Switzerland (Mage = 35.60, SD = 13.03) completed the Portrait Values Questionnaire (PVQ5X), the Protean and Boundaryless Career Attitudes Scales (PCAS, BCAS), and the Career Orientation Inventory (COI) via an anonymous and confidential survey questionnaire. The results showed that it was possible to meaningfully position both career orientations and career anchors in Schwartz's values structure. The protean and boundaryless career orientations were positively related to Schwartz's basic values that emphasized openness to change and career anchors meaningfully followed the motivational continuum of these basic values. Overall, the overlap among the basic values, career orientations, and career anchors appeared relatively important, suggesting that these basic values, orientations, and anchors should be considered simultaneously to understand and address the factors and processes underlying individuals' career choices and paths. PMID:28955275
Basic Values, Career Orientations, and Career Anchors: Empirical Investigation of Relationships.
Abessolo, Marc; Rossier, Jérôme; Hirschi, Andreas
2017-01-01
In today's dynamic and uncertain career context, values play an important role for career choice and lifelong career self-management. Values are desirable goals that are sought by individuals to satisfy their needs and are important for understanding career orientations in terms of protean and boundaryless career orientations and career anchors. However, how career orientations or career anchors fit into a well-established and supported model and into the structure of basic human values remains an important and under-investigated question. The aim of this study was to use Schwartz's model of structural values to empirically explore the relationships and structural correspondences among basic values, career orientations, and career anchors. A heterogeneous sample of 238 employees from French-speaking Switzerland (Mage = 35.60, SD = 13.03) completed the Portrait Values Questionnaire (PVQ5X), the Protean and Boundaryless Career Attitudes Scales (PCAS, BCAS), and the Career Orientation Inventory (COI) via an anonymous and confidential survey questionnaire. The results showed that it was possible to meaningfully position both career orientations and career anchors in Schwartz's values structure. The protean and boundaryless career orientations were positively related to Schwartz's basic values that emphasized openness to change and career anchors meaningfully followed the motivational continuum of these basic values. Overall, the overlap among the basic values, career orientations, and career anchors appeared relatively important, suggesting that these basic values, orientations, and anchors should be considered simultaneously to understand and address the factors and processes underlying individuals' career choices and paths.
NASA Astrophysics Data System (ADS)
Zeilinger, Gerold; Parra, Mauricio; Kober, Florian
2017-04-01
It is widely accepted, that drainage patterns are often controlled by tectonics/climate and geology/rheology. Classical drainage patterns can be found 1) in fault-and-thrust belt, where rives follow the valleys parallel or cut perpendicular to strike trough the ridges, forming a trellis pattern, 2) at dome structures where the drainage form a radial pattern or 3) rectangular patterns in strongly fractured regions. In this study, we focus on fault-and-thrust belts, that undergone different phases of tectonic activity. According to classical models, the deformation is propagating into the foreland, hence being youngest at the frontal part and getting successively older towards the axis of the orogen. Drainage patterns in the more interior parts of the orogenic wedge should be then less influenced by the direction of structures, as landscape evolution is changing to a tectonic passive stage. This relationship might represent the transience and maturity of drainage pattern evolution. Here we study drainage patterns of the Bolivian and the eastern Colombian Andes by comparing the relative orientation of the drainage network with the orogen structural grain. The drainage is extracted from Digital Elevation Models (SRTM 30 m) and indexed by their Strahler Order. Order 1 channels have an upstream area of 1 km2. The direction of all segments is analyzed by linear directional mean function that results in the mean orientation of input channels with approx. 500 m average length. The orientation of structures for different structural domains is calculated using the same function on digitized faults and fold-axis. Rose diagrams show the length-weighted directional distribution of structures, of higher (>= 4) and of lower order (<= 3) channels. The structural trend in the Bolivian Andes is controlled by the orocline, where a predominant NW-SE trend turns into an N-S trend at 18°S and where the eastern orogen comprise from west to east, the Eastern Cordillera (EC), the Interandean Zone and the Subandean Zone (SA), exhibiting a catchment relief of up to 5000 m. While the structural trend in the EC is predominately NW-SE with a uniform (no preferred orientation) distribution of lower order fluvial channels, it changes in the SA into a distinct N-S trend with a pronounced E-W orientation of lower order fluvial channels. A similar pattern is recognized in the Eastern Andes of Colombia, where the structural trend is NE-SW. The Eastern Cordillera comprise a frontal thin-skinned Neogene and Paleogene domain (FR) and the more interior lower Cretaceous an Upper Paleozoic thick-skinned region (IR). The trend of higher order channels is, as expected, parallel to the structures in the interior parts and perpendicular in the frontal part. However, the trend of lower order channels reveal no directional correlation to the structural trend in the interior, but a significant correlation to the structures in the frontal range that suffered relatively to the interior domains younger deformation phases. We therefore postulate a dependency of the directional evolution of drainage patterns on the relative timing of tectonic activity. The only weakly preferred orientation of drainages in the interior parts (EC and IR) suggests a balance between structural control and drainage occupation, and higher maturity of the landscape. In contrast, the distinct pattern of drainages oblique to the structural grain in the frontal ranges (SA and FR) highlights the alignment of tributaries and suggests an ongoing tectonic control on drainage orientation. We test the hypothesis whether the correlation between the direction of small order rivers and the direction of structures can be used as a proxy for relative tectonic activity, which might be relevant in questions on 1) dominance of tectonics over climate, 2) dynamics of deformation propagation in fault-and-thrust-belts and 3) occurrence of higher erosion rates despite "limited" relief or threshold slopes. Ongoing efforts will investigate the possibility to quantify or compare relative tectonic activity across sites.
Do gamblers eat more salt? Testing a latent trait model of covariance in consumption.
Goodwin, Belinda C; Browne, Matthew; Rockloff, Matthew; Donaldson, Phillip
2015-09-01
A diverse class of stimuli, including certain foods, substances, media, and economic behaviours, may be described as 'reward-oriented' in that they provide immediate reinforcement with little initial investment. Neurophysiological and personality concepts, including dopaminergic dysfunction, reward sensitivity and rash impulsivity, each predict the existence of a latent behavioural trait that leads to increased consumption of all stimuli in this class. Whilst bivariate relationships (co-morbidities) are often reported in the literature, to our knowledge, a multivariate investigation of this possible trait has not been done. We surveyed 1,194 participants (550 male) on their typical weekly consumption of 11 types of reward-oriented stimuli, including fast food, salt, caffeine, television, gambling products, and illicit drugs. Confirmatory factor analysis was used to compare models in a 3×3 structure, based on the definition of a single latent factor (none, fixed loadings, or estimated loadings), and assumed residual covariance structure (none, a-priori / literature based, or post-hoc / data-driven). The inclusion of a single latent behavioural 'consumption' factor significantly improved model fit in all cases. Also confirming theoretical predictions, estimated factor loadings on reward-oriented indicators were uniformly positive, regardless of assumptions regarding residual covariances. Additionally, the latent trait was found to be negatively correlated with the non-reward-oriented indicators of fruit and vegetable consumption. The findings support the notion of a single behavioural trait leading to increased consumption of reward-oriented stimuli across multiple modalities. We discuss implications regarding the concentration of negative lifestyle-related health behaviours.
NASA Astrophysics Data System (ADS)
Herrmann, Kelsey M.
Research to date indicates that traditional composite material failure analysis methods are not appropriate for thin laminates in flexure. Thin composite structures subjected to large bending deformations often attain significantly higher strain-to-failure than previously anticipated tensile and compression coupon test data and linear material model assumption predict. At NASA Langley Research Center, a new bend test method is being developed for High Strain Composite (HSC) structures. This method provides an adequate approximation of a pure moment, large deformation bend test for thin-ply, high strain composites to analyze the large strain flexure response of the laminates. The objective of this research was to further develop this new test method to measure the true bending stiffness and strain-to-failure of high strain composite materials. Of primary importance is the ability to characterize composite laminates that are of interest for current NASA deployable structures in both materials and layups. Two separate testing campaigns were performed for the development of the testing procedure. Initially six laminates were bend tested in three different fiber orientations. These laminates were some combination of unidirectional intermediate modulus (IM) carbon, high tenacity (HT) carbon plain weave, and astroquartz plain weave composite materials. The second test campaign was performed as a more detailed look into the simplest composite laminates at thicknesses that better represented deployable boom structures. The second campaign tested three basic, thinner laminates, again in three different fiber orientations. All testing was monotonic loading to failure. The thickness of the laminates tested ranged from 0.166mm (campaign 2) to 0.45mm (campaign 1). The measured strains at failure for the unidirectional material were approximately 2.1% and 1.4% at the compression and tension sides, respectively, failing as fiber tensile fracture. Both of these values differ from what would be expected from considering much thicker coupons tested under pure compression and tension, that show a strain-to-failure of 1.0-1.1% and 1.6-1.7%, respectively. The significant differences in strain values obtained at the outer surfaces of the coupon is thought to be related to the shift in neutral axis that the specimen experiences during the large deformation bending test as a result of fiber material nonlinearities at higher strains. The vertical test nature of the CBT when compared to other test methods proves to be helpful for visually capturing with Digital Image Correlation the distinct behavior of the flexure on both the compressive and tensile sides. It was found that the thinner the laminate tested, the more confirmation of a nonlinear response of this classification of composites. The moment versus curvature curves were predominantly nonlinear resulting in a near linear bending stiffness versus curvature response. At these large strains, carbon fibers are highly nonlinear resulting in the laminate flexure modulus increasing by up to 5x. The theoretical bending stiffness values calculated using Classical Lamination Theory analysis are within small differences with respect to the experimentally measured values: errors of approximately 5-10% for both D11 and D22. The error between the finite element model computed strain response and the experimental values was on average around 22%, with 35% of the laminates and orientation having errors less than 7%. Comparison between CLT, FEA, and experimentation show that the Column Bend Test appears to be a promising candidate for characterization of large deformation bending behavior of thin-ply high strain composite laminates.
Fugitt, Jessica L; Ham, Lindsay S; Bridges, Ana J
2017-05-12
Alcohol misuse has historically affected men more than women. However, the differences in drinking behaviors across sex have steadily decreased over time and accumulating research suggests that gender role orientation, or culturally scripted gender-specific characteristics, and negative reinforcement drinking motives may better explain risk for alcohol use and related problems than sex. The current study tested a mediational model of the undifferentiated orientation (low masculinity and low femininity), an oft neglected orientation despite evidence that it could carry much weight in drinking behaviors, versus the other three gender role orientations, coping and conformity drinking motives, and hazardous alcohol use. Participants were 426 current drinkers over age 21 (41% men; 77.8% Caucasian; M age = 34.5, range = 21-73) residing across the United States who completed an online survey. Structural equation modeling analyses suggested that individuals with an undifferentiated orientation (n = 99), compared to masculine (high masculinity, low femininity; n = 102), feminine (high femininity, low masculinity; n = 113), or androgynous (high masculinity, high femininity; n = 112) orientations, reported higher coping drinking motives, which were positively associated with levels of hazardous alcohol use. Although analyses suggested that undifferentiated individuals reported drinking for conformity motives more often than masculine and androgynous individuals, conformity motives were not associated with increased use. Conclusions/Importance: An undifferentiated gender role orientation may contribute a unique risk for alcohol use and related problems by increasing frequency of drinking to cope, a motive specifically associated with hazardous use trajectories.
Enceladus Jet Orientations: Effects of Surface Structure
NASA Astrophysics Data System (ADS)
Helfenstein, P.; Porco, C.; DiNino, D.
2013-12-01
Jetting activity across the South Polar Terrain (SPT) of Enceladus is now known to erupt directly from tiger-stripe rifts and associated fracture systems. However, details of the vent conduit geometry are hidden below the icy surface. The three-dimensional orientations of the erupting jets may provide important clues. Porco et al. (2013, Lunar Planet. Sci. Conf. 44th, p.1775) surveyed jet locations and orientations as imaged at high resolution (< 1.3 km/pixel) by Cassini ISS from 2005 through May 2012. Ninety-eight (98) jets were identified either on the main trunks or branches of the 4 tiger-stripes. The azimuth angles of the jets are seen to vary across the SPT. Here, we use histogram analysis of the survey data to test if the jet azimuths are influenced by their placement relative to surface morphology and tectonic structures. Azimuths are measured positive counterclockwise with zero pointing along the fracture in the direction of the sub-Saturn hemisphere, and rosette histograms were binned in 30° increments. Overall, the jet azimuths are not random and only about 11% of them are co-aligned with the tiger stripe valley. There are preferred diagonal orientations between 105°-165° and again between 255°-345°. These trends are dominant along the Damascus and Baghdad tiger-stripes where more than half of the jets are found. Histograms for Cairo and Alexandria show less-distinct trends, fewer jets being measured there, but combining data from both suggests a different pattern of preferred orientations; from 45°-75° and 265°-280°. Many possible factors could affect the orientations of jets, for example, the conduit shape, the presence of obstacles like narrow medial ridges called 'shark-fins' along tiger-stripe valleys, the possibility that jets may breach the surface at some point other than the center of a tiger-stripe, and the presence of structural fabrics or mechanical weaknesses, such as patterns of cross-cutting fractures. The dominance of diagonally crossing azimuths for Damascus and Baghdad suggest that cross-cutting fractures may significantly control jet orientations. At the 100 m/pixel scale of our Enceladus basemap at least 24% of the jets have azimuth orientations that point along or parallel to nearby fractures or fabrics of parallel fractures that approach or intersect the tiger stripe. Structural control of jet orientations by local tectonism is especially suggested by a systematic pattern of jet orientations at the distal end of Damascus Sulcus where it bifurcates into a northern and a southern branch, respectively. The five most distal jets along the northern branch are nearly parallel and point northward while the three most distal jets along the southern branch are also nearly parallel, but they point in the opposite direction. Additional work is needed to show the extent to which jet orientations may be affected at smaller scales by quasi-parallel systems of cross-cutting gossamer fractures or by curving axial discontinuities along the tiger stripes (cf. Helfenstein et al. 2011, http://encfg.ciclops.org/reg/uploads/20110425220109_helfenstein_enceladus_workshop_2011.pdf).
Heinrich, Frank; Nanda, Hirsh; Goh, Haw Zan; Bachert, Collin; Lösche, Mathias; Linstedt, Adam D.
2014-01-01
The mammalian Golgi reassembly stacking protein (GRASP) proteins are Golgi-localized homotypic membrane tethers that organize Golgi stacks into a long, contiguous ribbon-like structure. It is unknown how GRASPs undergo trans pairing given that cis interactions between the proteins in the plane of the membrane are intrinsically favored. To test the hypothesis that myristoylation of the self-interacting GRASP domain restricts its orientation on the membrane to favor trans pairing, we established an in vitro assay that recapitulates GRASP-dependent membrane tethering and used neutron reflection under similar conditions to determine the orientation of the GRASP domain. In vivo, the membrane association of GRASP proteins is conferred by the simultaneous insertion of an N-terminal myristic acid and binding to a Golgi-associated binding partner. In our assay, the latter contact was replaced using a C-terminal hexa-His moiety, which bound to Ni2+-conjugated lipids incorporated into a substrate-supported bilayer lipid membrane. Nonmyristoylated protein lacked a fixed orientation on the membrane and inefficiently tethered liposomes. In contrast, myristoylated GRASP promoted tethering and exhibited a unique membrane complex. Thus, myristoylation restricts the membrane orientation of the GRASP domain favoring interactions in trans for membrane tethering. PMID:24505136
Object-oriented fault tree evaluation program for quantitative analyses
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Koen, B. V.
1988-01-01
Object-oriented programming can be combined with fault free techniques to give a significantly improved environment for evaluating the safety and reliability of large complex systems for space missions. Deep knowledge about system components and interactions, available from reliability studies and other sources, can be described using objects that make up a knowledge base. This knowledge base can be interrogated throughout the design process, during system testing, and during operation, and can be easily modified to reflect design changes in order to maintain a consistent information source. An object-oriented environment for reliability assessment has been developed on a Texas Instrument (TI) Explorer LISP workstation. The program, which directly evaluates system fault trees, utilizes the object-oriented extension to LISP called Flavors that is available on the Explorer. The object representation of a fault tree facilitates the storage and retrieval of information associated with each event in the tree, including tree structural information and intermediate results obtained during the tree reduction process. Reliability data associated with each basic event are stored in the fault tree objects. The object-oriented environment on the Explorer also includes a graphical tree editor which was modified to display and edit the fault trees.
A resource oriented webs service for environmental modeling
NASA Astrophysics Data System (ADS)
Ferencik, Ioan
2013-04-01
Environmental modeling is a largely adopted practice in the study of natural phenomena. Environmental models can be difficult to build and use and thus sharing them within the community is an important aspect. The most common approach to share a model is to expose it as a web service. In practice the interaction with this web service is cumbersome due to lack of standardized contract and the complexity of the model being exposed. In this work we investigate the use of a resource oriented approach in exposing environmental models as web services. We view a model as a layered resource build atop the object concept from Object Oriented Programming, augmented with persistence capabilities provided by an embedded object database to keep track of its state and implementing the four basic principles of resource oriented architectures: addressability, statelessness, representation and uniform interface. For implementation we use exclusively open source software: Django framework, dyBase object oriented database and Python programming language. We developed a generic framework of resources structured into a hierarchy of types and consequently extended this typology with recurses specific to the domain of environmental modeling. To test our web service we used cURL, a robust command-line based web client.
NASA Technical Reports Server (NTRS)
Lameris, J.; Stevenson, S.; Streeter, B.
1982-01-01
The application of fiber reinforced composite materials, such as graphite epoxy and Kevlar, for secondary or primary structures developing in the commercial airplane industry was investigated. A composite panel program was initiated to study the effects of some of the parameters that affect noise reduction of these panels. The fiber materials and the ply orientation were chosen to be variables in the test program. It was found that increasing the damping characteristics of a structural panel will reduce the vibration amplitudes at resonant frequencies with attendant reductions in sound reduction. Test results for a dynamic absorber, a tuned damper, are presented and evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Smith, Mark T.
2008-09-01
The objective of our work is to enable the optimum design of lightweight automotive structural components using injection-molded long fiber thermoplastics (LFTs). To this end, an integrated approach that links process modeling to structural analysis with experimental microstructural characterization and validation is developed. First, process models for LFTs are developed and implemented into processing codes (e.g. ORIENT, Moldflow) to predict the microstructure of the as-formed composite (i.e. fiber length and orientation distributions). In parallel, characterization and testing methods are developed to obtain necessary microstructural data to validate process modeling predictions. Second, the predicted LFT composite microstructure is imported into amore » structural finite element analysis by ABAQUS to determine the response of the as-formed composite to given boundary conditions. At this stage, constitutive models accounting for the composite microstructure are developed to predict various types of behaviors (i.e. thermoelastic, viscoelastic, elastic-plastic, damage, fatigue, and impact) of LFTs. Experimental methods are also developed to determine material parameters and to validate constitutive models. Such a process-linked-structural modeling approach allows an LFT composite structure to be designed with confidence through numerical simulations. Some recent results of our collaborative research will be illustrated to show the usefulness and applications of this integrated approach.« less
A New Built-in Self Test Scheme for Phase-Locked Loops Using Internal Digital Signals
NASA Astrophysics Data System (ADS)
Kim, Youbean; Kim, Kicheol; Kim, Incheol; Kang, Sungho
Testing PLLs (phase-locked loops) is becoming an important issue that affects both time-to-market and production cost of electronic systems. Though a PLL is the most common mixed-signal building block, it is very difficult to test due to internal analog blocks and signals. In this paper, we propose a new PLL BIST (built-in self test) using the distorted frequency detector that uses only internal digital signals. The proposed BIST does not need to load any analog nodes of the PLL. Therefore, it provides an efficient defect-oriented structural test scheme, reduced area overhead, and improved test quality compared with previous approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe
2014-04-28
The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.
Field-controlled structures in ferromagnetic cholesteric liquid crystals.
Medle Rupnik, Peter; Lisjak, Darja; Čopič, Martin; Čopar, Simon; Mertelj, Alenka
2017-10-01
One of the advantages of anisotropic soft materials is that their structures and, consequently, their properties can be controlled by moderate external fields. Whereas the control of materials with uniform orientational order is straightforward, manipulation of systems with complex orientational order is challenging. We show that a variety of structures of an interesting liquid material, which combine chiral orientational order with ferromagnetic one, can be controlled by a combination of small magnetic and electric fields. In the suspensions of magnetic nanoplatelets in chiral nematic liquid crystals, the platelet's magnetic moments orient along the orientation of the liquid crystal and, consequently, the material exhibits linear response to small magnetic fields. In the absence of external fields, orientations of the liquid crystal and magnetization have wound structure, which can be either homogeneously helical, disordered, or ordered in complex patterns, depending on the boundary condition at the surfaces and the history of the sample. We demonstrate that by using different combinations of small magnetic and electric fields, it is possible to control reversibly the formation of the structures in a layer of the material. In such a way, different periodic structures can be explored and some of them may be suitable for photonic applications. The material is also a convenient model system to study chiral magnetic structures, because it is a unique liquid analog of a solid helimagnet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Y.; Kato, H.; Takemura, S.
2009-07-15
The surface of an Al plate was treated with a combination of chemical and electrochemical processes for fabrication of surface nanoscale structures on Al plates. Chemical treatments by using acetone and pure water under supersonic waves were conducted on an Al surface. Additional electrochemical process in H{sub 2}SO{sub 4} solution created a finer and oriented nanoscale structure on the Al surface. Dynamic force microscopy (DFM) measurement clarified that the nanoscale highly oriented line structure was successfully created on the Al surface. The line distance was estimated approximately 30-40 nm. At the next stage, molecular patterning on the highly oriented linemore » structure by functional molecules such as copper phthalocyanine (CuPc) and fullerene C{sub 60} was also conducted. CuPc or C{sub 60} molecules were deposited on the highly oriented line structure on Al. A toluene droplet containing CuPc molecules was cast on the nanostructured Al plate and was extended on the surface. CuPc or C{sub 60} deposition on the nanostructured Al surface proceeded by evaporation of toluene. DFM and x-ray photoemission spectroscopy measurements demonstrated that a unique molecular pattern was fabricated so that the highly oriented groove channels were filled with the functional molecules.« less
Drug Distribution. Part 1. Models to Predict Membrane Partitioning.
Nagar, Swati; Korzekwa, Ken
2017-03-01
Tissue partitioning is an important component of drug distribution and half-life. Protein binding and lipid partitioning together determine drug distribution. Two structure-based models to predict partitioning into microsomal membranes are presented. An orientation-based model was developed using a membrane template and atom-based relative free energy functions to select drug conformations and orientations for neutral and basic drugs. The resulting model predicts the correct membrane positions for nine compounds tested, and predicts the membrane partitioning for n = 67 drugs with an average fold-error of 2.4. Next, a more facile descriptor-based model was developed for acids, neutrals and bases. This model considers the partitioning of neutral and ionized species at equilibrium, and can predict membrane partitioning with an average fold-error of 2.0 (n = 92 drugs). Together these models suggest that drug orientation is important for membrane partitioning and that membrane partitioning can be well predicted from physicochemical properties.
Narcissism: its function in modulating self-conscious emotions.
Uji, Masayo; Nagata, Toshiaki; Kitamura, Toshinori
2012-01-01
This study focused on the functional aspects of narcissism in regulating self-conscious emotions (guilt, shame, hubristic pride, and achievement-oriented pride) as well as two other attribution styles (externalization and detachment). The authors investigated Japanese university students (N = 452) with regard to their self-conscious emotions using the Test of Self-Conscious Affect-3 (TOSCA-3) and their narcissistic personality using the short version of Narcissistic Personality Inventory (NPI-S). Structural equation modeling was used for the analysis. The authors found that narcissism led individuals to feel achievement-oriented pride, hubristic pride, externalization, and detachment, but inhibited feelings of shame. It did not have a significant effect on guilt. Shame-proneness prompted hubristic pride and externalization. Guilt-proneness inclined an individual toward achievement-oriented pride, but deterred externalization. In this article, the authors present and interpret these results in detail and then discuss how they can be utilized in psychotherapy.
Sereda, Valentin; Ralbovsky, Nicole M; Vasudev, Milana C; Naik, Rajesh R; Lednev, Igor K
2016-09-01
Self-assembly of short peptides into nanostructures has become an important strategy for the bottom-up fabrication of nanomaterials. Significant interest to such peptide-based building blocks is due to the opportunity to control the structure and properties of well-structured nanotubes, nanofibrils, and hydrogels. X-ray crystallography and solution NMR, two major tools of structural biology, have significant limitations when applied to peptide nanotubes because of their non-crystalline structure and large weight. Polarized Raman spectroscopy was utilized for structural characterization of well-aligned D-Diphenylalanine nanotubes. The orientation of selected chemical groups relative to the main axis of the nanotube was determined. Specifically, the C-N bond of CNH 3 + groups is oriented parallel to the nanotube axis, the peptides' carbonyl groups are tilted at approximately 54° from the axis and the COO - groups run perpendicular to the axis. The determined orientation of chemical groups allowed the understanding of the orientation of D-diphenylalanine molecule that is consistent with its equilibrium conformation. The obtained data indicate that there is only one orientation of D-diphenylalanine molecules with respect to the nanotube main axis.
Weißmann, Volker; Drescher, Philipp; Seitz, Hermann; Hansmann, Harald; Bader, Rainer; Seyfarth, Anika; Klinder, Annett; Jonitz-Heincke, Anika
2018-05-29
Additive manufacturing of lightweight or functional structures by selective laser beam (SLM) or electron beam melting (EBM) is widespread, especially in the field of medical applications. SLM and EBM processes were applied to prepare Ti6Al4V test specimens with different surface orientations (0°, 45° and 90°). Roughness measurements of the surfaces were conducted and cell behavior on these surfaces was analyzed. Hence, human osteoblasts were seeded on test specimens to determine cell viability (metabolic activity, live-dead staining) and gene expression of collagen type 1 (Col1A1), matrix metalloprotease (MMP) 1 and its natural inhibitor, TIMP1, after 3 and 7 days. The surface orientation of specimens during the manufacturing process significantly influenced the roughness. Surface roughness showed significant impact on cellular viability, whereas differences between the time points day 3 and 7 were not found. Collagen type 1 mRNA synthesis rates in human osteoblasts were enhanced with increasing roughness. Both manufacturing techniques further influenced the induction of bone formation process in the cell culture. Moreover, the relationship between osteoblastic collagen type 1 mRNA synthesis rates and specimen orientation during the building process could be characterized by functional formulas. These findings are useful in the designing of biomedical applications and medical devices.
Tidal Distortion and Disruption of Earth-Crossing Asteriods
NASA Technical Reports Server (NTRS)
Love, Stanley G.; Bottke, William, Jr.
1997-01-01
We represent results of numerical simulations that show Earth's tidal forces can both distort and disrupt Earth-crossing asteriods (ECAs) that have weak rubble-pile structures. Building on previous studies, we consider more realistic asteriod shapes and trajectories, test a variety of spin and rates and axis orientations, and employ a dissipation algorithm to more accurately treat collisions between particles.
Analysis of the Effects of the Implementation of Cooperative Learning in Physical Education
ERIC Educational Resources Information Center
Callado, Carlos Velázquez
2012-01-01
Our research was oriented to test the effects of a structured program of cooperative learning in Physical Education classes with students in grades 5 and 6 of primary school, with and without previous experience with this methodology. In a second phase we sought to determine how students perceived the received classes for a time later. We analysed…
Full waveform inversion for ultrasonic flaw identification
NASA Astrophysics Data System (ADS)
Seidl, Robert; Rank, Ernst
2017-02-01
Ultrasonic Nondestructive Testing is concerned with detecting flaws inside components without causing physical damage. It is possible to detect flaws using ultrasound measurements but usually no additional details about the flaw like position, dimension or orientation are available. The information about these details is hidden in the recorded experimental signals. The idea of full waveform inversion is to adapt the parameters of an initial simulation model of the undamaged specimen by minimizing the discrepancy between these simulated signals and experimentally measured signals of the flawed specimen. Flaws in the structure are characterized by a change or deterioration in the material properties. Commonly, full waveform inversion is mostly applied in seismology on a larger scale to infer mechanical properties of the earth. We propose to use acoustic full waveform inversion for structural parameters to visualize the interior of the component. The method is adapted to US NDT by combining multiple similar experiments on the test component as the typical small amount of sensors is not sufficient for a successful imaging. It is shown that the combination of simulations and multiple experiments can be used to detect flaws and their position, dimension and orientation in emulated simulation cases.
Biaxially oriented CdTe films on glass substrate through nanostructured Ge/CaF2 buffer layers
NASA Astrophysics Data System (ADS)
Lord, R. J.; Su, P.-Y.; Bhat, I.; Zhang, S. B.; Lu, T.-M.; Wang, G.-C.
2015-09-01
Heteroepitaxial CdTe films were grown by metal organic chemical vapor deposition on glass substrates through nanostructured Ge/CaF2 buffer layers which were biaxially oriented. It allows us to explore the structural properties of multilayer biaxial semiconductor films which possess small angle grain boundaries and to test the principle of a solar cell made of such low-cost, low-growth-temperature semiconductor films. Through the x-ray diffraction and x-ray pole figure analysis, the heteroepitaxial relationships of the mutilayered films are determined as [111] in the out-of-plane direction and <1\\bar{1}0>CdTe//<1\\bar{1}0>Ge//{< \\bar{1}10> }{{{CaF}}2} in the in-plane direction. The I-V curves measured from an ITO/CdS/CdTe/Ge/CaF2/glass solar cell test structure shows a power conversion efficiency of ˜η = 1.26%, illustrating the initial success of such an approach. The observed non-ideal efficiency is believed to be due to a low shunt resistance and high series resistance as well as some residual large-angle grain boundary effects, leaving room for significant further improvement.
The Effect of Layer Orientation on the Mechanical Properties and Microstructure of a Polymer
NASA Astrophysics Data System (ADS)
Vega, V.; Clements, J.; Lam, T.; Abad, A.; Fritz, B.; Ula, N.; Es-Said, O. S.
2011-08-01
Rapid Prototyping (RP) is a method used everywhere from the entertainment industry to healthcare. Layer orientation is an important aspect of the final product. The objective of this research was to evaluate the effect of layer orientation on the mechanical strength and toughness of a polymer. The polymer used was a combination of two materials, ZP 130 and ZB 58, fused together in the Z Corporation Spectrum Z510 Rapid Prototyping Machine. ZP 130 is a powder composed of vinyl polymer (2-20%), sulfate salt (0-5%), and plaster that contains <1% crystalline silica (50-95%). ZB 58 is a liquid composed of glycerol (1-10%), preservative (sorbic acid salt) (0-2%), surfactant (<1%), pigment (<1%), and water (85-95%). After removal from the machine the samples were sealed with Z bond 101 which is Beta-methoxyethyl cyanoacrylate (60-100%). The layer orientations studied were the crack arrestor, crack divider, and short transverse with various combinations of the three, for a total of seven orientations. The mechanical strength was evaluated using tensile testing and three-point bend testing. The toughness was evaluated by Izod impact testing. Five samples for tensile testing and three-point bend testing as well as 15 samples for the Izod impact test for each of the seven orientations were made. The total number of samples was 175. The crack arrestor orientation was the strongest main orientation for the tensile and three-point bend test. Weibull analysis was done on the Izod impact testing due to high variation in the results for the crack arrestor and short transverse directions. It was found that the layer orientation and surface roughness played a significant role in the penetration of the Z bond 101 coating and in the overall strength of the samples.
Complex and oriented ZnO nanostructures.
Tian, Zhengrong R; Voigt, James A; Liu, Jun; McKenzie, Bonnie; McDermott, Matthew J; Rodriguez, Mark A; Konishi, Hiromi; Xu, Huifang
2003-12-01
Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.
Figueroa-Castro, Dulce María; Valverde, Pedro Luis; Vite, Fernando; Carrillo-Ruiz, Hortensia
2014-08-01
The positive relationship between productivity and species diversity is well-known. Insect communities associated with the flowers of Cactaceae species represent an interesting system to explore the productivity-diversity relationship because branches facing the equator receive more photosynthetically active radiation and have higher productivity. Thus, flowers with contrasting orientations within an individual, and even within a single branch, might differ in productivity. Therefore, higher abundance, species richness, and diversity are expected for the insect communities associated with south-facing flowers. This hypothesis was tested in Pachycereus weberi (J.M. Coulter) Backeberg (Cactaceae). Insects within flowers with contrasting orientations were collected and its abundance, richness, and diversity were estimated. We also asked if insects prefer big flowers. Thus, flower volume was estimated and regression analyses were conducted to test if there is a positive relationship between flower size and insect abundance. Flower orientation did not affect species richness. However, species abundance and diversity were different in flowers with contrasting orientations. In general, species abundance was higher in flowers facing southwards than in north-facing flowers. On the contrary, species diversity was higher in north-facing flowers. Abundance of Coleoptera was explained by flower volume in south-facing flowers. Contrary to our hypothesis, total diversity was greater in the less productive oriented flowers. Three possible explanations are discussed to explain the low diversity found in the highly productive, south-facing flowers. Our study provides evidence for the effects of productivity on the structure of insect communities at a very small-scale.
Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my
2015-07-22
Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Randommore » orientation of fibers was noted in the composites test bars produced from divergent melt flow.« less
Zarei, Vahhab; Liu, Chao J; Claeson, Amy A; Akkin, Taner; Barocas, Victor H
2017-08-01
The lumbar facet capsular ligament (FCL) primarily consists of aligned type I collagen fibers that are mainly oriented across the joint. The aim of this study was to characterize and incorporate in-plane local fiber structure into a multiscale finite element model to predict the mechanical response of the FCL during in vitro mechanical tests, accounting for the heterogeneity in different scales. Characterization was accomplished by using entire-domain polarization-sensitive optical coherence tomography to measure the fiber structure of cadaveric lumbar FCLs ([Formula: see text]). Our imaging results showed that fibers in the lumbar FCL have a highly heterogeneous distribution and are neither isotropic nor completely aligned. The averaged fiber orientation was [Formula: see text] ([Formula: see text] in the inferior region and [Formula: see text] in the middle and superior regions), with respect to lateral-medial direction (superior-medial to inferior-lateral). These imaging data were used to construct heterogeneous structural models, which were then used to predict experimental gross force-strain behavior and the strain distribution during equibiaxial and strip biaxial tests. For equibiaxial loading, the structural model fit the experimental data well but underestimated the lateral-medial forces by [Formula: see text]16% on average. We also observed pronounced heterogeneity in the strain field, with stretch ratios for different elements along the lateral-medial axis of sample typically ranging from about 0.95 to 1.25 during a 12% strip biaxial stretch in the lateral-medial direction. This work highlights the multiscale structural and mechanical heterogeneity of the lumbar FCL, which is significant both in terms of injury prediction and microstructural constituents' (e.g., neurons) behavior.
NASA Astrophysics Data System (ADS)
Lee, Christine S.; Hayes, Kathryn N.; Seitz, Jeffery; DiStefano, Rachelle; O'Connor, Dawn
2016-01-01
Middle school has been documented as the period in which a drop in students' science interest and achievement occurs. This trend indicates a lack of motivation for learning science; however, little is known about how different aspects of motivation interact with student engagement and science learning outcomes. This study examines the relationships among motivational factors, engagement, and achievement in middle school science (grades 6-8). Data were obtained from middle school students in the United States (N = 2094). The theoretical relationships among motivational constructs, including self-efficacy, and three types of goal orientations (mastery, performance approach, and performance avoid) were tested. The results showed that motivation is best modeled as distinct intrinsic and extrinsic factors; lending evidence that external, performance based goal orientations factor separately from self-efficacy and an internal, mastery based goal orientation. Second, a model was tested to examine how engagement mediated the relationships between intrinsic and extrinsic motivational factors and science achievement. Engagement mediated the relationship between intrinsic motivation and science achievement, whereas extrinsic motivation had no relationship with engagement and science achievement. Implications for how classroom practice and educational policy emphasize different student motivations, and in turn, can support or hinder students' science learning are discussed.
Jiang, Lan; Han, Weina; Li, Xiaowei; Wang, Qingsong; Meng, Fantong; Lu, Yongfeng
2014-06-01
It is widely believed that laser-induced periodic surface structures (LIPSS) are independent of material crystal structures. This Letter reports an abnormal phenomenon of strong dependence of the anisotropic formation of periodic ripples on crystal orientation, when Si (100) is processed by a linearly polarized femtosecond laser (800 nm, 50 fs, 1 kHz). LIPSS formation sensitivity with a π/2 modulation is found along different crystal orientations with a quasi-cosinusoid function when the angle between the crystal orientation and polarization direction is changed from 0° to 180°. Our experiments indicate that it is much easier (or more difficult) to form ripple structures when the polarization direction is aligned with the lattice axis [011]/[011¯] (or [001]). The modulated nonlinear ionization rate along different crystal orientations, which arises from the direction dependence of the effective mass of the electron is proposed to interpret the unexpected anisotropic LIPSS formation phenomenon. Also, we demonstrate that the abnormal phenomenon can be applied to control the continuity of scanned ripple lines along different crystal orientations.
Phenomenology of future-oriented mind-wandering episodes
Stawarczyk, David; Cassol, Helena; D'Argembeau, Arnaud
2013-01-01
Recent research suggests that prospective and non-prospective forms of mind-wandering possess distinct properties, yet little is known about what exactly differentiates between future-oriented and non-future-oriented mind-wandering episodes. In the present study, we used multilevel exploratory factor analyses (MEFA) to examine the factorial structure of various phenomenological dimensions of mind-wandering, and we then investigated whether future-oriented mind-wandering episodes differ from other classes of mind-wandering along the identified factors. We found that the phenomenological dimensions of mind-wandering are structured in four factors: representational format (inner speech vs. visual imagery), personal relevance, realism/concreteness, and structuration. Prospective mind-wandering differed from non-prospective mind-wandering along each of these factors. Specifically, future-oriented mind-wandering episodes involved inner speech to a greater extent, were more personally relevant, more realistic/concrete, and more often part of structured sequences of thoughts. These results show that future-oriented mind-wandering possesses a unique phenomenological signature and provide new insights into how this particular form of mind-wandering may adaptively contribute to autobiographical planning. PMID:23882236
NASA Technical Reports Server (NTRS)
Herr, R. W.
1974-01-01
The effects of several cable suspension configurations on the first free-free flexural frequency of uniform beams have been determined by experiment and analysis. The results of this study confirm that in general the larger the test vehicle the larger is the flexural frequency measurement error attributable to a given cable suspension configuration. For horizontally oriented beams representing modern aerospace vehicles of average size and flexibility, the restraining effects of all but the shortest support cables were minor. The restraining effects of support cables of moderate length attached near the base of vertically oriented vehicles were overshadowed by the effects of beam compression due to gravity.
D'Amore, Antonio; Amoroso, Nicholas; Gottardi, Riccardo; Hobson, Christopher; Carruthers, Christopher; Watkins, Simon; Wagner, William R; Sacks, Michael S
2014-11-01
In the present work, we demonstrate that the mesoscopic in-plane mechanical behavior of membrane elastomeric scaffolds can be simulated by replication of actual quantified fibrous geometries. Elastomeric electrospun polyurethane (ES-PEUU) scaffolds, with and without particulate inclusions, were utilized. Simulations were developed from experimentally-derived fiber network geometries, based on a range of scaffold isotropic and anisotropic behaviors. These were chosen to evaluate the effects on macro-mechanics based on measurable geometric parameters such as fiber intersections, connectivity, orientation, and diameter. Simulations were conducted with only the fiber material model parameters adjusted to match the macro-level mechanical test data. Fiber model validation was performed at the microscopic level by individual fiber mechanical tests using AFM. Results demonstrated very good agreement to the experimental data, and revealed the formation of extended preferential fiber orientations spanning the entire model space. We speculate that these emergent structures may be responsible for the tissue-like macroscale behaviors observed in electrospun scaffolds. To conclude, the modeling approach has implications for (1) gaining insight on the intricate relationship between fabrication variables, structure, and mechanics to manufacture more functional devices/materials, (2) elucidating the effects of cell or particulate inclusions on global construct mechanics, and (3) fabricating better performing tissue surrogates that could recapitulate native tissue mechanics. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moysan, J.; Gueudré, C.; Ploix, M.-A.; Corneloup, G.; Guy, Ph.; Guerjouma, R. El; Chassignole, B.
In the case of multi-pass welds, the material is very difficult to describe due to its anisotropic and heterogeneous properties. Anisotropy results from the metal solidification and is correlated with the grain orientation. A precise description of the material is one of the key points to obtain reliable results with wave propagation codes. A first advance is the model MINA which predicts the grain orientations in multi-pass 316-L steel welds. For flat position welding, good predictions of the grains orientations were obtained using 2D modelling. In case of welding in position the resulting grain structure may be 3D oriented. We indicate how the MINA model can be improved for 3D description. A second advance is a good quantification of the attenuation. Precise measurements are obtained using plane waves angular spectrum method together with the computation of the transmission coefficients for triclinic material. With these two first advances, the third one is now possible: developing an inverse method to obtain the material description through ultrasonic measurements at different positions.
Kuperminc, Gabriel P.; Allen, Joseph P.
2006-01-01
A model of problematic adolescent behavior that expands current theories of social skill deficits in delinquent behavior to consider both social skills and orientation toward the use of adaptive skills was examined in an ethnically and socioeconomically diverse sample of 113 male and female adolescents. Adolescents were selected on the basis of moderate to serious risk for difficulties in social adaptation in order to focus on the population of youth most likely to be targeted by prevention efforts. Structural equation modeling was used to examine cross-sectional data using multiple informants (adolescents, peers, and parents) and multiple methods (performance test and self-report). Adolescent social orientation, as reflected in perceived problem solving effectiveness, identification with adult prosocial values, and self-efficacy expectations, exhibited a direct association to delinquent behavior and an indirect association to drug involvement mediated by demonstrated success in using problem solving skills. Results suggest that the utility of social skill theories of adolescent problem behaviors for informing preventive and remedial interventions can be enhanced by expanding them to consider adolescents’ orientation toward using the skills they may already possess. PMID:16929380
NASA Astrophysics Data System (ADS)
Lazarides, Rebecca; Rubach, Charlott
2017-02-01
This longitudinal study examined relationships between student-perceived teaching for meaning, support for autonomy, and competence in mathematic classrooms (Time 1), and students' achievement goal orientations and engagement in mathematics 6 months later (Time 2). We tested whether student-perceived instructional characteristics at Time 1 indirectly related to student engagement at Time 2, via their achievement goal orientations (Time 2), and, whether student gender moderated these relationships. Participants were ninth and tenth graders (55.2% girls) from 46 classrooms in ten secondary schools in Berlin, Germany. Only data from students who participated at both timepoints were included (N = 746 out of total at Time 1 1118; dropout 33.27%). Longitudinal structural equation modeling showed that student-perceived teaching for meaning and support for competence indirectly predicted intrinsic motivation and effort, via students' mastery goal orientation. These paths were equivalent for girls and boys. The findings are significant for mathematics education, in identifying motivational processes that partly explain the relationships between student-perceived teaching for meaning and competence support and intrinsic motivation and effort in mathematics.
Variable Stiffness Panel Structural Analyses With Material Nonlinearity and Correlation With Tests
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Gurdal, Zafer
2006-01-01
Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric and material nonlinearities are presented. Two of the panels have variable stiffness layups where the fiber orientation angle varies as a continuous function of location on the panel planform. One variable stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform thickness. The third panel has a conventional uniform-thickness [plus or minus 45](sub 5s) layup with straight fibers, providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite element analyses including nonlinear material shear are first compared with material characterization test results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural analyses are then compared to the measured panel structural response. Good correlation is observed between the analysis results and displacement test data throughout deep postbuckling up to global failure, suggesting that nonlinear material behavior is an important component of the actual panel structural response.
Woolery, E.W.; Schaefer, J.A.; Wang, Z.
2003-01-01
Indirect and direct geotechnical measurements revealed the presence of high lateral earth pressure (Ko) in shallow, unlithified sediment at a site in the northernmost Mississippi embayment region of the central United States. Results from pile-load and pressuremeter tests showed maximum Ko values greater than 10; however, the complex geologic environment of the Midcontinent made defining an origin for the anomalous Ko based solely on these measurements equivocal. Although in situ sediment characteristics indicated that indirect tectonic or nontectonic geologic mechanisms that include transient overburden loads (e.g., fluvial deposition/erosion, glacial advance/retreat) and dynamic shear loads (e.g., earthquakes) were not the dominant cause, they were unable to provide indicators for a direct tectonic generation. Localized stresses induced anthropogenically by the geotechnical field tests were also considered, but ruled out as the primary origin. A high-resolution shear-wave (SH) reflection image of geologic structure in the immediate vicinity of the test site revealed compression-style neotectonism, and suggested that the elevated stress was a tectonic manifestation. Post-Paleozoic reflectors exhibit a Tertiary (?) structural inversion, as evidenced by post-Cretaceous fault displacement and pronounced positive folds in the hanging wall of the interpreted faults. The latest stratigraphic extent of the stress effects (i.e., all measurements were in the Late Cretaceous to Tertiary McNairy Formation), as well as the relationship of stress orientation with the orientation of local structure and regional stress, remain unknown. These are the subjects of ongoing studies. ?? 2003 Elsevier Science B.V. All rights reserved.
Transforming the Morbidity and Mortality Conference to Promote Safety and Quality in a PICU.
Cifra, Christina L; Bembea, Melania M; Fackler, James C; Miller, Marlene R
2016-01-01
Determine the effectiveness of a structured systems-oriented morbidity and mortality conference in improving the process of reviewing and responding to adverse events in a PICU. Prospective time series analysis before and after implementation of a systems-oriented morbidity and mortality conference. Single tertiary referral PICU in Baltimore, MD. Thirty-three patients discussed before and 31 patients after implementation of a systems-oriented morbidity and mortality conference over a total of 20 morbidity and mortality conferences, from April 2013 to March 2014. Systems-oriented morbidity and mortality conference incorporating elements of medical incident analysis. There was a significant increase in meeting attendance (mean, 12 vs 31 attendees per morbidity and mortality conference; p < 0.001) after the systems-oriented morbidity and mortality conference was instituted. There was no significant difference in the mean number of cases suggested (4.2 vs 4.6) or discussed (3.3 vs 3.1) per morbidity and mortality conference. There was also no significant difference in the mean number of adverse events identified per morbidity and mortality conference (3.4 vs 4.3). However, there was an increase in the proportion of cases discussed using a standard case review tool, but this did not reach statistical significance (27% vs 45%; p = 0.231). Nevertheless, we observed a significant increase in the mean number of quality improvement interventions suggested (2.4 vs 5.6; p < 0.001) and implemented (1.7 vs 4.4; p < 0.001) per morbidity and mortality conference. All adverse event categories identified had corresponding interventions suggested after the systems-oriented morbidity and mortality conference was instituted compared with before (80% vs 100%). Intervention-to-adverse event ratios per category were also higher (mean, 0.6 vs 1.5). A structured systems-oriented PICU morbidity and mortality conference incorporating elements of medical incident analysis improves the process of reviewing and responding to adverse events by significantly increasing quality improvement interventions suggested and implemented. Future work would involve testing locally adapted versions of the systems-oriented morbidity and mortality conference in multiple inpatient settings.
Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers.
Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian
2016-07-12
Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Qi; Zhu, Fang-Yuan; Cheng, Li-Qian
Crystallographic structure of sol-gel-processed lead-free (K,Na)NbO{sub 3} (KNN) epitaxial films on [100]-cut SrTiO{sub 3} single-crystalline substrates was investigated for a deeper understanding of its piezoelectric response. Lattice parameter measurement by high-resolution X-ray diffraction and transmission electron microscopy revealed that the orthorhombic KNN films on SrTiO{sub 3} (100) surfaces are [010] oriented (b-axis-oriented) rather than commonly identified c-axis orientation. Based on the crystallographic orientation and corresponding ferroelectric domain structure investigated by piezoresponse force microscopy, the superior piezoelectric property along b-axis of epitaxial KNN films than other orientations can be explained.
Using object-oriented analysis techniques to support system testing
NASA Astrophysics Data System (ADS)
Zucconi, Lin
1990-03-01
Testing of real-time control systems can be greatly facilitated by use of object-oriented and structured analysis modeling techniques. This report describes a project where behavior, process and information models built for a real-time control system were used to augment and aid traditional system testing. The modeling techniques used were an adaptation of the Ward/Mellor method for real-time systems analysis and design (Ward85) for object-oriented development. The models were used to simulate system behavior by means of hand execution of the behavior or state model and the associated process (data and control flow) and information (data) models. The information model, which uses an extended entity-relationship modeling technique, is used to identify application domain objects and their attributes (instance variables). The behavioral model uses state-transition diagrams to describe the state-dependent behavior of the object. The process model uses a transformation schema to describe the operations performed on or by the object. Together, these models provide a means of analyzing and specifying a system in terms of the static and dynamic properties of the objects which it manipulates. The various models were used to simultaneously capture knowledge about both the objects in the application domain and the system implementation. Models were constructed, verified against the software as-built and validated through informal reviews with the developer. These models were then hand-executed.
Growth and Crystal Orientation of ZnTe on m-Plane Sapphire with Nanofaceted Structure
NASA Astrophysics Data System (ADS)
Nakasu, Taizo; Sun, Wei-Che; Kobayashi, Masakazu; Asahi, Toshiaki
2017-04-01
ZnTe thin films on sapphire substrate with nanofaceted structure have been studied. The nanofaceted structure of the m-plane (10-10) sapphire was obtained by heating the substrate at above 1100°C in air, and the r-plane (10-12) and S-plane (1-101) were confirmed. ZnTe layers were prepared on the nanofaceted m-plane sapphire substrates by molecular beam epitaxy (MBE). The effect of the nanofaceted structure on the orientation of the thin films was examined based on x-ray diffraction (XRD) pole figures. Transmission electron microscopy (TEM) was also employed to characterize the interface structures. The ZnTe layer on the nanofaceted m-plane sapphire substrate exhibited (331)-plane orientation, compared with (211)-plane without the nanofaceted structure. After thermal treatment, the m-plane surface vanished and (211) layer could not be formed because of the lack of surface lattice matching. On the other hand, (331)-plane thin film was formed on the nanofaceted m-plane sapphire substrate, since the (111) ZnTe domains were oriented on the S-facet. The orientation of the ZnTe epilayer depended on the atomic ordering on the surface and the influence of the S-plane.
Ramírez, David; Caballero, Julio
2018-04-28
Molecular docking is the most frequently used computational method for studying the interactions between organic molecules and biological macromolecules. In this context, docking allows predicting the preferred pose of a ligand inside a receptor binding site. However, the selection of the “best” solution is not a trivial task, despite the widely accepted selection criterion that the best pose corresponds to the best energy score. Here, several rigid-target docking methods were evaluated on the same dataset with respect to their ability to reproduce crystallographic binding orientations, to test if the best energy score is a reliable criterion for selecting the best solution. For this, two experiments were performed: (A) to reconstruct the ligand-receptor complex by performing docking of the ligand in its own crystal structure receptor (defined as self-docking), and (B) to reconstruct the ligand-receptor complex by performing docking of the ligand in a crystal structure receptor that contains other ligand (defined as cross-docking). Root-mean square deviation (RMSD) was used to evaluate how different the obtained docking orientation is from the corresponding co-crystallized pose of the same ligand molecule. We found that docking score function is capable of predicting crystallographic binding orientations, but the best ranked solution according to the docking energy is not always the pose that reproduces the experimental binding orientation. This happened when self-docking was achieved, but it was critical in cross-docking. Taking into account that docking is typically used with predictive purposes, during cross-docking experiments, our results indicate that the best energy score is not a reliable criterion to select the best solution in common docking applications. It is strongly recommended to choose the best docking solution according to the scoring function along with additional structural criteria described for analogue ligands to assure the selection of a correct docking solution.
NASA Astrophysics Data System (ADS)
Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.
2017-07-01
We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.
Polarization-dependent DANES study on vertically-aligned ZnO nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chengjun; Park, Chang-In; Jin, Zhenlan
2016-05-01
The local structural and local density of states of vertically-aligned ZnO nanorods were examined by using a polarization-dependent diffraction anomalous near edge structure (DANES) measurements from c-oriented ZnO nanorods at the Zn K edge with the incident x-ray electric field parallel and perpendicular to the x-ray momentum transfer direction. Orientation-dependent local structures determined by DANES were comparable with polarization-dependent EXAFS results. Unlike other techniques, polarization-dependent DANES can uniquely describe the orientation-dependent local structural properties and the local density of states of a selected element in selected-phased crystals of compounds or mixed-phased structures.
Gonçalves, Nathan B; Nettesheim, Felipe C; Conde, Marilena M S
2018-01-01
Associating description of unrecorded tropical tree community structure to sampling approaches that can help determine mechanisms behind floristic variation is important to further the comprehension of how plant species coexist at tropical forests. Thus, this study had the goals of (i) evaluating tree community structure on the continental island of Marambaia (23°4'37.09"S; 43°59'2.15"W) and (ii) testing the prediction that there are local scale changes in a tropical tree community structure between slopes facing different geographic orientation and with distinct human interference history. We established 60 (0.6 ha) sampling units in three different slope sites with distinct predominant geographic orientation and human interference. We sampled all woody trees with diameter at breast height (dbh) ≥ 5 cm. We found a total of 1.170 individuals representing 220 species, 120 genera and 50 families. The overall tree community structure and structural descriptors (abundance of individuals, basal area, species richness and diversity) varied extensively between the sites. The evidence presented here supports that local scale topography variations and human interference history can be important factors contributing to the known floristic heterogeneity of the Atlantic Rainforest. Future work on the study area should focus on disentangling effects from distinct causal factors over tree community variation and species occurrence.
Numerical Simulation with Experimental Validation of the Draping Behavior of Woven Fabrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, William; Pasupuleti, Praveen; Zhao, Selina
Woven fabric composites are extensively used in molding complex geometrical shapes due to their high conformability compared to other fabrics. Preforming is an important step in the overall process. In this step, the two-dimensional fabric is draped to become the three-dimensional shape of the part prior to resin injection. During preforming, the orientation of the tows may change significantly compared to the initial orientations. Accurate prediction of the tow orientations after molding is important for evaluating the structural performance of the final part. This paper investigates the fiber angle changes for carbon fiber woven fabrics during draping over a truncatedmore » pyramid tool designed and fabricated at the General Motors Research Labs. This aspect of study is a subset of the broad study conducted under the purview of a Department of Energy project funded to GM in developing state of the art computational tools for integrated manufacturing and structural performance prediction of carbon fiber composites. Fabric bending, picture frame testing, and bias-extension evaluations were carried out to determine the material parameters for these fabrics. The PAM-FORM computer program was used to model the draping behavior of these fabrics. Following deformation, fiber angle changes at different locations on the truncated pyramid were measured experimentally. The predicted angles matched the experimental results well as measured along the centerline and at several different locations on the deformed fabric. Details of the test methods used as well as the numerical results with various simulation parameters will be provided.« less
NASA Astrophysics Data System (ADS)
Markelin, L.; Honkavaara, E.; Näsi, R.; Nurminen, K.; Hakala, T.
2014-08-01
Remote sensing based on unmanned airborne vehicles (UAVs) is a rapidly developing field of technology. UAVs enable accurate, flexible, low-cost and multiangular measurements of 3D geometric, radiometric, and temporal properties of land and vegetation using various sensors. In this paper we present a geometric processing chain for multiangular measurement system that is designed for measuring object directional reflectance characteristics in a wavelength range of 400-900 nm. The technique is based on a novel, lightweight spectral camera designed for UAV use. The multiangular measurement is conducted by collecting vertical and oblique area-format spectral images. End products of the geometric processing are image exterior orientations, 3D point clouds and digital surface models (DSM). This data is needed for the radiometric processing chain that produces reflectance image mosaics and multiangular bidirectional reflectance factor (BRF) observations. The geometric processing workflow consists of the following three steps: (1) determining approximate image orientations using Visual Structure from Motion (VisualSFM) software, (2) calculating improved orientations and sensor calibration using a method based on self-calibrating bundle block adjustment (standard photogrammetric software) (this step is optional), and finally (3) creating dense 3D point clouds and DSMs using Photogrammetric Surface Reconstruction from Imagery (SURE) software that is based on semi-global-matching algorithm and it is capable of providing a point density corresponding to the pixel size of the image. We have tested the geometric processing workflow over various targets, including test fields, agricultural fields, lakes and complex 3D structures like forests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, H., E-mail: tanaka@semicon.kuee.kyoto-u.ac.jp; Morioka, N.; Mori, S.
2014-02-07
The conduction band structure and electron effective mass of GaAs nanowires with various cross-sectional shapes and orientations were calculated by two methods, a tight-binding method and an effective mass equation taking the bulk full-band structure into account. The effective mass of nanowires increases as the cross-sectional size decreases, and this increase in effective mass depends on the orientations and substrate faces of nanowires. Among [001], [110], and [111]-oriented rectangular cross-sectional GaAs nanowires, [110]-oriented nanowires with wider width along the [001] direction showed the lightest effective mass. This dependence originates from the anisotropy of the Γ valley of bulk GaAs. Themore » relationship between effective mass and bulk band structure is discussed.« less
Method for adhering a coating to a substrate structure
Taxacher, Glenn Curtis; Crespo, Andres Garcia; Roberts, III, Herbert Chidsey
2015-02-17
A method for adhering a coating to a substrate structure comprises selecting a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress, modifying the outer surface to provide a textured region having steps to adhere a coating thereto, and applying a coating to extend over at least a portion of the textured region, wherein the steps are oriented substantially perpendicular to the direction of radial stress to resist deformation of the coating relative to the substrate structure. A rotating component comprises a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress. The outer surface defines a textured region having steps to adhere a coating thereto, and a coating extends over at least a portion of the textured region. The steps are oriented substantially perpendicular to the direction of radial stress to resist creep.
Structural determinants of nuclear export signal orientation in binding to exportin CRM1
Fung, Ho Yee Joyce; Fu, Szu -Chin; Brautigam, Chad A.; ...
2015-09-08
The Chromosome Region of Maintenance 1 (CRM1) protein mediates nuclear export of hundreds of proteins through recognition of their nuclear export signals (NESs), which are highly variable in sequence and structure. The plasticity of the CRM1-NES interaction is not well understood, as there are many NES sequences that seem incompatible with structures of the NES-bound CRM1 groove. Crystal structures of CRM1 bound to two different NESs with unusual sequences showed the NES peptides binding the CRM1 groove in the opposite orientation (minus) to that of previously studied NESs (plus). A comparison of minus and plus NESs identified structural and sequencemore » determinants for NES orientation. The binding of NESs to CRM1 in both orientations results in a large expansion in NES consensus patterns and therefore a corresponding expansion of potential NESs in the proteome.« less
Freely oriented portable superconducting magnet
Schmierer, Eric N [Los Alamos, NM; Prenger, F Coyne [Los Alamos, NM; Hill, Dallas D [Los Alamos, NM
2010-01-12
A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.
NASA Astrophysics Data System (ADS)
Bessa, Filipa; Rossano, Claudia; Nourisson, Delphine; Gambineri, Simone; Marques, João Carlos; Scapini, Felicita
2013-01-01
Environmental and human controls are widely accepted as the main structuring forces of the macrofauna communities on sandy beaches. A population of the talitrid amphipod Talitrus saltator (Montagu, 1808) was investigated on an exposed sandy beach on the Atlantic coast of Portugal (Leirosa beach) to estimate orientation capabilities and endogenous rhythms in conditions of recent changes in the landscape (artificial reconstruction of the foredune) and beach morphodynamics (stabilization against erosion from the sea). We tested sun orientation of talitrids on the beach and recorded their locomotor activity rhythms under constant conditions in the laboratory. The orientation data were analysed with circular statistics and multiple regression models adapted to angular distributions, to highlight the main factors and variables influencing the variation of orientation. The talitrids used the sun compass, visual cues (landscape and sun visibility) to orient and the precision of orientation varied according to the tidal regime (rising or ebbing tides). A well-defined free-running rhythm (circadian with in addition a bimodal rhythmicity, likely tidal) was highlighted in this population. This showed a stable behavioural adaptation on a beach that has experienced a process of artificial stabilization of the dune through nourishment actions over a decade. Monitoring the conditions of such dynamic environments and the resilience capacity of the inhabiting macroinfauna is a main challenge for sandy beach ecologists.
Future-oriented tweets predict lower county-level HIV prevalence in the United States.
Ireland, Molly E; Schwartz, H Andrew; Chen, Qijia; Ungar, Lyle H; Albarracín, Dolores
2015-12-01
Future orientation promotes health and well-being at the individual level. Computerized text analysis of a dataset encompassing billions of words used across the United States on Twitter tested whether community-level rates of future-oriented messages correlated with lower human immunodeficiency virus (HIV) rates and moderated the association between behavioral risk indicators and HIV. Over 150 million tweets mapped to U.S. counties were analyzed using 2 methods of text analysis. First, county-level HIV rates (cases per 100,000) were regressed on aggregate usage of future-oriented language (e.g., will, gonna). A second data-driven method regressed HIV rates on individual words and phrases. Results showed that counties with higher rates of future tense on Twitter had fewer HIV cases, independent of strong structural predictors of HIV such as population density. Future-oriented messages also appeared to buffer health risk: Sexually transmitted infection rates and references to risky behavior on Twitter were associated with higher HIV prevalence in all counties except those with high rates of future orientation. Data-driven analyses likewise showed that words and phrases referencing the future (e.g., tomorrow, would be) correlated with lower HIV prevalence. Integrating big data approaches to text analysis and epidemiology with psychological theory may provide an inexpensive, real-time method of anticipating outbreaks of HIV and etiologically similar diseases. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Future-Oriented Tweets Predict Lower County-Level HIV Prevalence in the United States
Ireland, Molly E.; Schwartz, Hansen A.; Chen, Qijia; Ungar, Lyle; Albarracín, Dolores
2016-01-01
Objective Future orientation promotes health and well-being at the individual level. Computerized text analysis of a dataset encompassing billions of words used across the United States on Twitter tested whether community-level rates of future-oriented messages correlated with lower HIV rates and moderated the association between behavioral risk indicators and HIV. Method Over 150 million Tweets mapped to US counties were analyzed using two methods of text analysis. First, county-level HIV rates (cases per 100,000) were regressed on aggregate usage of future-oriented language (e.g., will, gonna). A second data-driven method regressed HIV rates on individual words and phrases. Results Results showed that counties with higher rates of future tense on Twitter had fewer HIV cases, independent of strong structural predictors of HIV such as population density. Future-oriented messages also appeared to buffer health risk: Sexually transmitted infection rates and references to risky behavior on Twitter were associated with higher HIV prevalence in all counties except those with high rates of future orientation. Data-driven analyses likewise showed that words and phrases referencing the future (e.g., tomorrow, would be) correlated with lower HIV prevalence. Conclusion Integrating big data approaches to text analysis and epidemiology with psychological theory may provide an inexpensive, real-time method of anticipating outbreaks of HIV and etiologically similar diseases. PMID:26651466
McDonald, J Scott; Seymour, Kiley J; Schira, Mark M; Spehar, Branka; Clifford, Colin W G
2009-05-01
The responses of orientation-selective neurons in primate visual cortex can be profoundly affected by the presence and orientation of stimuli falling outside the classical receptive field. Our perception of the orientation of a line or grating also depends upon the context in which it is presented. For example, the perceived orientation of a grating embedded in a surround tends to be repelled from the predominant orientation of the surround. Here, we used fMRI to investigate the basis of orientation-specific surround effects in five functionally-defined regions of visual cortex: V1, V2, V3, V3A/LO1 and hV4. Test stimuli were luminance-modulated and isoluminant gratings that produced responses similar in magnitude. Less BOLD activation was evident in response to gratings with parallel versus orthogonal surrounds across all the regions of visual cortex investigated. When an isoluminant test grating was surrounded by a luminance-modulated inducer, the degree of orientation-specific contextual modulation was no larger for extrastriate areas than for V1, suggesting that the observed effects might originate entirely in V1. However, more orientation-specific modulation was evident in extrastriate cortex when both test and inducer were luminance-modulated gratings than when the test was isoluminant; this difference was significant in area V3. We suggest that the pattern of results in extrastriate cortex may reflect a refinement of the orientation-selectivity of surround suppression specific to the colour of the surround or, alternatively, processes underlying the segmentation of test and inducer by spatial phase or orientation when no colour cue is available.
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Gayda, J.; Miner, R. V.
1986-01-01
The low cycle fatigue (LCF) properties of a single-crystal nickel-base superalloy Rene N4, have been examined at 760 and 980 C in air. Specimens having crystallographic orientations near the 001, 011, -111, 023, -236, and -145 lines were tested in fully reversed, total-strain-controlled LCF tests at a frequency of 0.1 Hz. At 760 C, this alloy exhibited orientation dependent tension-compression anisotropies of yielding which continued to failure. Also at 760 C, orientations exhibiting predominately single slip exhibited serrated yielding for many cycles. At 980 C, orientation dependencies of yielding behavior were smaller. In spite of the tension-compression anisotropies, cyclic stress range-strain range behavior was not strongly orientation dependent for either test temperature. Fatigue life on a total strain range basis was highly orientation dependent at 760 and 980 C and was related chiefly to elastic modulus, low modulus orientations having longer lives. Stage I crack growth on 111 planes was dominant at 760 C, while Stage II crack growth occurred at 980 C. Crack initiation generally occurred at near-surface micropores, but occasionally at oxidation spikes in the 980 C tests.
X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, J.C.
In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal IImore » EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.« less
Modeling of fiber orientation in viscous fluid flow with application to self-compacting concrete
NASA Astrophysics Data System (ADS)
Kolařík, Filip; Patzák, Bořek
2013-10-01
In recent years, unconventional concrete reinforcement is of growing popularity. Especially fiber reinforcement has very wide usage in high performance concretes like "Self Compacting Concrete" (SCC). The design of advanced tailor-made structures made of SCC can take advantage of anisotropic orientation of fibers. Tools for fiber orientation predictions can contribute to design of tailor made structure and allow to develop casting procedures that enable to achieve the desired fiber distribution and orientation. This paper deals with development and implementation of suitable tool for prediction of fiber orientation in a fluid based on the knowledge of the velocity field. Statistical approach to the topic is employed. Fiber orientation is described by a probability distribution of the fiber angle.
Ye, Changhuai; Wang, Chao; Wang, Jing; ...
2017-08-17
Crystal orientation in semi-crystalline polymers tends to enhance their performance, such as increased yield strength and modulus, along the orientation direction. Zone annealing (ZA) orients the crystal lamellae through a sharp temperature gradient that effectively directs the crystal growth, but the sweep rate (V ZA) of this gradient significantly impacts the extent of crystal orientation. Here in this work, we demonstrate rotational zone annealing (RZA) as an efficient method to elucidate the influence of V ZA on the crystal morphology of thin films in a single experiment using isotactic poly(1-butene), PB-1, as a model semi-crystalline polymer. These RZA results aremore » confirmed using standard, serial linear ZA to tune the structure from an almost unidirectional oriented morphology to weakly oriented spherulites. The overall crystallinity is only modestly changed in comparison to isothermal crystallization (maximum of 55% from ZA vs. 48% for isothermal crystallization). However, the average grain size increases and the spherulites become anisotropic from ZA. Due to these structural changes, the Young's modulus of the oriented films, both parallel and perpendicular to the spherulite orientation direction, is significantly increased by ZA. The modulus does become anisotropic after ZA due to the directionality in the crystal structure, with more than a threefold increase in the modulus parallel to the orientation direction for the highest oriented film in comparison to the modulus from isothermal crystallization. Lastly, RZA enables rapid identification of conditions to maximize orientation of crystals in thin polymer films, which could find utility in determining conditions to improve crystallinity and performance in organic electronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Changhuai; Wang, Chao; Wang, Jing
Crystal orientation in semi-crystalline polymers tends to enhance their performance, such as increased yield strength and modulus, along the orientation direction. Zone annealing (ZA) orients the crystal lamellae through a sharp temperature gradient that effectively directs the crystal growth, but the sweep rate (V ZA) of this gradient significantly impacts the extent of crystal orientation. Here in this work, we demonstrate rotational zone annealing (RZA) as an efficient method to elucidate the influence of V ZA on the crystal morphology of thin films in a single experiment using isotactic poly(1-butene), PB-1, as a model semi-crystalline polymer. These RZA results aremore » confirmed using standard, serial linear ZA to tune the structure from an almost unidirectional oriented morphology to weakly oriented spherulites. The overall crystallinity is only modestly changed in comparison to isothermal crystallization (maximum of 55% from ZA vs. 48% for isothermal crystallization). However, the average grain size increases and the spherulites become anisotropic from ZA. Due to these structural changes, the Young's modulus of the oriented films, both parallel and perpendicular to the spherulite orientation direction, is significantly increased by ZA. The modulus does become anisotropic after ZA due to the directionality in the crystal structure, with more than a threefold increase in the modulus parallel to the orientation direction for the highest oriented film in comparison to the modulus from isothermal crystallization. Lastly, RZA enables rapid identification of conditions to maximize orientation of crystals in thin polymer films, which could find utility in determining conditions to improve crystallinity and performance in organic electronics.« less
Development of a test and flight engineering oriented language, phase 3
NASA Technical Reports Server (NTRS)
Kamsler, W. F.; Case, C. W.; Kinney, E. L.; Gyure, J.
1970-01-01
Based on an analysis of previously developed test oriented languages and a study of test language requirements, a high order language was designed to enable test and flight engineers to checkout and operate the proposed space shuttle and other NASA vehicles and experiments. The language is called ALOFT (a language oriented to flight engineering and testing). The language is described, its terminology is compared to similar terms in other test languages, and its features and utilization are discussed. The appendix provides the specifications for ALOFT.
The primary visual cortex in the neural circuit for visual orienting
NASA Astrophysics Data System (ADS)
Zhaoping, Li
The primary visual cortex (V1) is traditionally viewed as remote from influencing brain's motor outputs. However, V1 provides the most abundant cortical inputs directly to the sensory layers of superior colliculus (SC), a midbrain structure to command visual orienting such as shifting gaze and turning heads. I will show physiological, anatomical, and behavioral data suggesting that V1 transforms visual input into a saliency map to guide a class of visual orienting that is reflexive or involuntary. In particular, V1 receives a retinotopic map of visual features, such as orientation, color, and motion direction of local visual inputs; local interactions between V1 neurons perform a local-to-global computation to arrive at a saliency map that highlights conspicuous visual locations by higher V1 responses. The conspicuous location are usually, but not always, where visual input statistics changes. The population V1 outputs to SC, which is also retinotopic, enables SC to locate, by lateral inhibition between SC neurons, the most salient location as the saccadic target. Experimental tests of this hypothesis will be shown. Variations of the neural circuit for visual orienting across animal species, with more or less V1 involvement, will be discussed. Supported by the Gatsby Charitable Foundation.
Regional mechanics determine collagen fiber structure in healing myocardial infarcts.
Fomovsky, Gregory M; Rouillard, Andrew D; Holmes, Jeffrey W
2012-05-01
Following myocardial infarction, the mechanical properties of the healing infarct are an important determinant of heart function and the risk of progression to heart failure. In particular, mechanical anisotropy (having different mechanical properties in different directions) in the healing infarct can preserve pump function of the heart. Based on reports of different collagen structures and mechanical properties in various animal models, we hypothesized that differences in infarct size, shape, and/or location produce different patterns of mechanical stretch that guide evolving collagen fiber structure. We tested the effects of infarct shape and location using a combined experimental and computational approach. We studied mechanics and collagen fiber structure in cryoinfarcts in 53 Sprague-Dawley rats and found that regardless of shape or orientation, cryoinfarcts near the equator of the left ventricle stretched primarily in the circumferential direction and developed circumferentially aligned collagen, while infarcts at the apex stretched similarly in the circumferential and longitudinal directions and developed randomly oriented collagen. In a computational model of infarct healing, an effect of mechanical stretch on fibroblast and collagen alignment was required to reproduce the experimental results. We conclude that mechanical environment determines collagen fiber structure in healing myocardial infarcts. Our results suggest that emerging post-infarction therapies that alter regional mechanics will also alter infarct collagen structure, offering both potential risks and novel therapeutic opportunities. Copyright © 2012 Elsevier Ltd. All rights reserved.
Regional Mechanics Determine Collagen Fiber Structure in Healing Myocardial Infarcts
Fomovsky, Gregory M.; Rouillard, Andrew D.; Holmes, Jeffrey W.
2012-01-01
Following myocardial infarction, the mechanical properties of the healing infarct are an important determinant of heart function and the risk of progression to heart failure. In particular, mechanical anisotropy (having different mechanical properties in different directions) in the healing infarct can preserve pump function of the heart. Based on reports of different collagen structures and mechanical properties in various animal models, we hypothesized that differences in infarct size, shape, and/or location produce different patterns of mechanical stretch that guide evolving collagen fiber structure. We tested the effects of infarct shape and location using a combined experimental and computational approach. We studied mechanics and collagen fiber structure in cryoinfarcts in 53 Sprague-Dawley rats and found that regardless of shape or orientation, cryoinfarcts near the equator of the left ventricle stretched primarily in the circumferential direction and developed circumferentially aligned collagen, while infarcts at the apex stretched similarly in the circumferential and longitudinal direction and developed randomly oriented collagen. In a computational model of infarct healing, an effect of mechanical stretch on fibroblast and collagen alignment was required to reproduce the experimental results. We conclude that mechanical environment determines collagen fiber structure in healing myocardial infarcts. Our results suggest that emerging post-infarction therapies that alter regional mechanics will also alter infarct collagen structure, offering both potential risks and novel therapeutic opportunities. PMID:22418281
Wood, Richard J.; Schwartz, Eric L.
1999-03-01
Shear has been known to exist for many years in the topographic structure of the primary visual cortex, but has received little attention in the modeling literature. Although the topographic map of V1 is largely conformal (i.e. zero shear), several groups have observed topographic shear in the region of the V1/V2 border. Furthermore, shear has also been revealed by anisotropy of cortical magnification factor within a single ocular dominance column. In the present paper, we make a functional hypothesis: the major axis of the topographic shear tensor provides cortical neurons with a preferred direction of orientation tuning. We demonstrate that isotropic neuronal summation of a sheared topographic map, in the presence of additional random shear, can provide the major features of cortical functional architecture with the ocular dominance column system acting as the principal source of the shear tensor. The major principal axis of the shear tensor determines the direction and its eigenvalues the relative strength of cortical orientation preference. This hypothesis is then shown to be qualitatively consistent with a variety of experimental results on cat and monkey orientation column properties obtained from optical recording and from other anatomical and physiological techniques. In addition, we show that a recent result of Das and Gilbert (Das, A., & Gilbert, C. D., 1997. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature, 387, 594-598) is consistent with an infinite set of parameterized solutions for the cortical map. We exploit this freedom to choose a particular instance of the Das-Gilbert solution set which is consistent with the full range of local spatial structure in V1. These results suggest that further relationships between ocular dominance columns, orientation columns, and local topography may be revealed by experimental testing.
Conditions for successfully implementing resident-oriented care in nursing homes.
Berkhout, Afke J M B; Boumans, Nicolle P G; Mur, Ingrid; Nijhuis, Frans J N
2009-06-01
This study reports an investigation of the conditions for a successful introduction of a resident-oriented care model on six somatic and psychogeriatric intervention wards in three Dutch nursing homes. This study aims to answer the following research question: 'What are the conditions for successfully implementing resident-oriented care?' To answer the research question, the organisational change process was monitored by using the '7-S' model of Peters and Waterman as a diagnostic framework. Based on this model, the following change characteristics were studied: structure, strategy, systems, staff, skills, style and shared values. Our study involved a one group pretest/post-test design. To measure the conditions for change, we operationalised the factors of the 7-S model serving as a diagnostic framework and studied their presence and nature on the intervention wards. For this purpose qualitative interviews were held with the change agents of the nursing homes and the wards' supervisors. To determine the degree of 'success' of the implementation, we measured the extent to which resident-oriented care was implemented. For this purpose a quantitative questionnaire was filled in by the nurses of the intervention wards. By relating the extent to which resident-oriented care was implemented to the differences in change conditions, we were able to distinguish the 'most' from the 'least' successful intervention ward and so, pointing out the conditions contributing to a successful implementation of resident-oriented care. The results showed that, in contrast to the least successful intervention ward, the most successful intervention ward was characterised by success conditions related to the 7-S model factors strategy, systems, staff and skills. The factor structure did not contribute to the success of the implementation. Success conditions appeared to be related to the ward level and not to the organisational or project level. Especially the supervisors' role appeared to be crucial for a successful implementation.
ERIC Educational Resources Information Center
Pyo, G.; Curtis, K.; Curtis, R.; Markwell, S.
2009-01-01
Background: Decline in orientation skill has been reported as an early indicator of Dementia of Alzheimer's Type (DAT). Orientation subtest of the Working Group's Test Battery was examined whether this test is useful to identify DAT patients among adults with moderate to severe ID. Methods: Sixteen DAT patients and 35 non-demented normal controls…
NASA Technical Reports Server (NTRS)
Johnston, John D.; Blandino, Joseph R.; McEvoy, Kiley C.
2004-01-01
The development of gossamer space structures such as solar sails and sunshields presents many challenges due to their large size and extreme flexibility. The post-deployment structural geometry exhibited during ground testing may significantly depart from the in-space configuration due to the presence of gravity-induced deformations (gravity sag) of lightly preloaded membranes. This paper describes a study carried out to characterize gravity sag in two subscale gossamer structures: a single quadrant from a 2 m, 4 quadrant square solar sail and a 1.7 m membrane layer from a multi-layer sunshield The behavior of the test articles was studied over a range of preloads and in several orientations with respect to gravity. An experimental study was carried out to measure the global surface profiles using photogrammetry, and nonlinear finite element analysis was used to predict the behavior of the test articles. Comparison of measured and predicted surface profiles shows that the finite dement analysis qualitatively predicts deformed shapes comparable to those observed in the laboratory. Quantitatively, finite element analysis predictions for peak gravity-induced deformations in both test articles were within 10% of measured values. Results from this study provide increased insight into gravity sag behavior in gossamer structures, and demonstrates the potential to analytically predict gravity-induced deformations to within reasonable accuracy.
Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...
2018-03-15
Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less
Responses of squirrel monkeys to their experimentally modified mobbing calls
NASA Astrophysics Data System (ADS)
Fichtel, Claudia; Hammerschmidt, Kurt
2003-05-01
Previous acoustic analyses suggested emotion-correlated changes in the acoustic structure of squirrel monkey (Saimiri sciureus) vocalizations. Specifically, calls given in aversive contexts were characterized by an upward shift in frequencies, often accompanied by an increase in amplitude. In order to test whether changes in frequencies or amplitude are indeed relevant for conspecific listeners, playback experiments were conducted in which either frequencies or amplitude of mobbing calls were modified. Latency and first orienting response were measured in playback experiments with six adult squirrel monkeys. After broadcasting yaps with increased frequencies or amplitude, squirrel monkeys showed a longer orienting response towards the speaker than after the corresponding control stimuli. Furthermore, after broadcasting yaps with decreased frequencies or amplitude, squirrel monkeys showed a shorter orienting response towards the speaker than after the corresponding manipulated calls with higher frequencies or amplitude. These results suggest that changes in frequencies or amplitude were perceived by squirrel monkeys, indicating that the relationship between call structure and the underlying affective state of the caller agreed with the listener's assessment of the calls. However, a simultaneous increase in frequencies and amplitude did not lead to an enhanced response, compared to each single parameter. Thus, from the receiver's perspective, both call parameters may mutually replace each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhangxing; Huang, Tianyu; Shao, Yimin
Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less
Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin
2017-09-08
It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.
NASA Astrophysics Data System (ADS)
Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin
2017-09-01
It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.
Fundamental movement skills testing in children with cerebral palsy.
Capio, Catherine M; Sit, Cindy H P; Abernethy, Bruce
2011-01-01
To examine the inter-rater reliability and comparative validity of product-oriented and process-oriented measures of fundamental movement skills among children with cerebral palsy (CP). In total, 30 children with CP aged 6 to 14 years (Mean = 9.83, SD = 2.5) and classified in Gross Motor Function Classification System (GMFCS) levels I-III performed tasks of catching, throwing, kicking, horizontal jumping and running. Process-oriented assessment was undertaken using a number of components of the Test of Gross Motor Development (TGMD-2), while product-oriented assessment included measures of time taken, distance covered and number of successful task completions. Cohen's kappa, Spearman's rank correlation coefficient and tests to compare correlated correlation coefficients were performed. Very good inter-rater reliability was found. Process-oriented measures for running and jumping had significant associations with GMFCS, as did seven product-oriented measures for catching, throwing, kicking, running and jumping. Product-oriented measures of catching, kicking and running had stronger associations with GMFCS than the corresponding process-oriented measures. Findings support the validity of process-oriented measures for running and jumping and of product-oriented measures of catching, throwing, kicking, running and jumping. However, product-oriented measures for catching, kicking and running appear to have stronger associations with functional abilities of children with CP, and are thus recommended for use in rehabilitation processes.
The Work Preference Inventory: assessing intrinsic and extrinsic motivational orientations.
Amabile, T M; Hill, K G; Hennessey, B A; Tighe, E M
1994-05-01
The Work Preference Inventory (WPI) is designed to assess individual differences in intrinsic and extrinsic motivational orientations. Both the college student and the working adult versions aim to capture the major elements of intrinsic motivation (self-determination, competence, task involvement, curiosity, enjoyment, and interest) and extrinsic motivation (concerns with competition, evaluation, recognition, money or other tangible incentives, and constraint by others). The instrument is scored on two primary scales, each subdivided into 2 secondary scales. The WPI has meaningful factor structures, adequate internal consistency, good short-term test-retest reliability, and good longer term stability. Moreover, WPI scores are related in meaningful ways to other questionnaire and behavioral measures of motivation, as well as personality characteristics, attitudes, and behaviors.
MFV-class: a multi-faceted visualization tool of object classes.
Zhang, Zhi-meng; Pan, Yun-he; Zhuang, Yue-ting
2004-11-01
Classes are key software components in an object-oriented software system. In many industrial OO software systems, there are some classes that have complicated structure and relationships. So in the processes of software maintenance, testing, software reengineering, software reuse and software restructure, it is a challenge for software engineers to understand these classes thoroughly. This paper proposes a class comprehension model based on constructivist learning theory, and implements a software visualization tool (MFV-Class) to help in the comprehension of a class. The tool provides multiple views of class to uncover manifold facets of class contents. It enables visualizing three object-oriented metrics of classes to help users focus on the understanding process. A case study was conducted to evaluate our approach and the toolkit.
NASA Technical Reports Server (NTRS)
Dewitt, R. L.; Boyle, R. J.
1977-01-01
It was demonstrated that cryogenic propellants can be stored unvented in space long enough to accomplish a Saturn orbiter mission after 1,200-day coast. The thermal design of a hydrogen-fluorine rocket stage was carried out, and the hydrogen tank, its support structure, and thermal protection system were tested in a vacuum chamber. Heat transfer rates of approximately 23 W were measured in tests to simulate the near-Earth portion of the mission. Tests to simulate the majority of the time the vehicle would be in deep space and sun-oriented resulted in a heat transfer rate of 0.11 W.
Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.
Miranda, Pedro; Pajares, Antonia; Guiberteau, Fernando
2008-11-01
The use of finite element modeling to calculate the stress fields in complex scaffold structures and thus predict their mechanical behavior during service (e.g., as load-bearing bone implants) is evaluated. The method is applied to identifying the fracture modes and estimating the strength of robocast hydroxyapatite and beta-tricalcium phosphate scaffolds, consisting of a three-dimensional lattice of interpenetrating rods. The calculations are performed for three testing configurations: compression, tension and shear. Different testing orientations relative to the calcium phosphate rods are considered for each configuration. The predictions for the compressive configurations are compared to experimental data from uniaxial compression tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waller, M.A.
Under given circumstances, a person will tend to operate in one of four dominant orientations: (1) to perform tasks; (2) to achieve consensus; (3) to achieve understanding, or (4) to maintain structure. Historically, personality survey techniques, such as the Myers-Briggs type indicator, have been used to determine these tendencies. While these techniques can accurately reflect a person's orientation under normal social situations, under different sets of conditions, the same person may exhibit other tendencies, displaying a similar or entirely different orientation. While most do not exhibit extreme tendencies or changes of orientation, the shift in personality from normal to stressfulmore » conditions can be rather dramatic, depending on the individual. Structured personality survey techniques have been used to indicate operator response to stressful situations. These techniques have been extended to indicate the balance between orientations that the control room team has through the various levels of cognizance.« less
Grain Boundary Plane Orientation Fundamental Zones and Structure-Property Relationships
Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.
2015-01-01
Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries. PMID:26498715
Grain boundary plane orientation fundamental zones and structure-property relationships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.
2015-10-26
Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to themore » strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.« less
NASA Astrophysics Data System (ADS)
De Almeida, Wagner B.; O'Malley, Patrick J.
2018-03-01
Ubiquinone is the key electron and proton transfer agent in biology. Its mechanism involves the formation of its intermediate one-electron reduced form, the ubisemiquinone radical. This is formed in a protein-bound form which permits the semiquinone to vary its electronic and redox properties. This can be achieved by hydrogen bonding acceptance by one or both oxygen atoms or as we now propose by restricted orientations for the methoxy groups of the headgroup. We show how the orientation of the two methoxy groups of the quinone headgroup affects the electronic structure of the semiquinone form and demonstrate a large dependence of the ubisemiquinone spin density distribution on the orientation each methoxy group takes with respect to the headgroup ring plane. This is shown to significantly modify associated hyperfine couplings which in turn needs to be accounted for in interpreting experimental values in vivo. The study uncovers the key potential role the methoxy group orientation can play in controlling the electronic structure and spin density of ubisemiquinone and provides an electronic-level insight into the variation in electron affinity and redox potential of ubiquinone as a function of the methoxy orientation. Taken together with the already known influence of cofactor conformation on heme and chlorophyll electronic structure, it reveals a more widespread role for cofactor conformational control of electronic structure and associated electron transfer in biology.
Matsugaki, Aira; Aramoto, Gento; Ninomiya, Takafumi; Sawada, Hiroshi; Hata, Satoshi; Nakano, Takayoshi
2015-01-01
Morphological and directional alteration of cells is essential for structurally appropriate construction of tissues and organs. In particular, osteoblast alignment is crucial for the realization of anisotropic bone tissue microstructure. In this article, the orientation of a collagen/apatite extracellular matrix (ECM) was established by controlling osteoblast alignment using a surface geometry with nanometer-sized periodicity induced by laser ablation. Laser irradiation induced self-organized periodic structures (laser-induced periodic surface structures; LIPSS) with a spatial period equal to the wavelength of the incident laser on the surface of biomedical alloys of Ti-6Al-4V and Co-Cr-Mo. Osteoblast orientation was successfully induced parallel to the grating structure. Notably, both the fibrous orientation of the secreted collagen matrix and the c-axis of the produced apatite crystals were orientated orthogonal to the cell direction. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy is controllable, including the characteristic organization of a collagen/apatite composite orthogonal to the osteoblast orientation, by controlling the cell alignment using periodic surface geometry. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERP evidence for flexible adjustment of retrieval orientation and its influence on familiarity.
Ecker, Ullrich K H; Zimmer, Hubert D
2009-10-01
The assumption was tested that familiarity memory as indexed by a mid-frontal ERP old-new effect is modulated by retrieval orientation. A randomly cued category-based versus exemplar-specific recognition memory test, requiring flexible adjustment of retrieval orientation, was conducted. Results show that the mid-frontal ERP old-new effect is sensitive to the manipulation of study-test congruency-that is, whether the same object is repeated identically or a different category exemplar is presented at test. Importantly, the effect pattern depends on subjects' retrieval orientation. With a specific orientation, only same items elicited an early old-new effect (same > different = new), whereas in the general condition, the old-new effect was graded (same > different > new). This supports the view that both perceptual and conceptual processes can contribute to familiarity memory and demonstrates that the rather automatic process of familiarity is not only data driven but influenced by top-down retrieval orientation, which subjects are able to adjust on a flexible basis.
Application of impact dampers in vibration control of flexible structures
NASA Technical Reports Server (NTRS)
Akl, Fred A.; Butt, Aamir S.
1995-01-01
Impact dampers belong to the category of passive vibration devices used to attenuate the vibration of discrete and continuous systems. An impact damper generally consists of a mass which is allowed to travel freely between two defined stops. Under the right conditions, the vibration of the structure to which the impact damper is attached will cause the mass of the impact damper to strike the structure. Previous analytical and experimental research work on the effect of impact dampers in attenuating the vibration of discrete and continuous systems have demonstrated their effectiveness. It has been shown in this study that impact dampers can increase the intrinsic damping of a lightly-damped flexible structure. The test structure consists of a slender flexible beam supported by a pin-type support at one end and supported by a linear helical flexible spring at another location. Sinusoidal excitation spanning the first three natural frequencies was applied in the horizontal plane. The orientation of the excitation and the test structure in the horizontal plane minimizes the effect of gravity on the behavior of the test structure. The excitation was applied using a linear sine sweep technique. The span of the test structure, the mass of the impact damper, the distance of travel, and the location of the impact damper along the span of the test structure were varied. The damping ratio are estimated for sixty test configurations. The results show that the impact damper significantly increases the damping ratio of the test structure. Statistical analysis of the results using the method of multiple linear regression indicates that a reasonable fit has been accomplished. It is concluded that additional experimental analysis of flexible structures in microgravity environment is needed in order to achieve a better understanding of the behavior of impact damper under conditions of microgravity. Numerical solution of the behavior of flexible structures equipped with impact dampers is also needed to predict stresses and deformations under operating conditions of microgravity in space applications.
NASA Astrophysics Data System (ADS)
Ghafaryasl, Babak; Baart, Robert; de Boer, Johannes F.; Vermeer, Koenraad A.; van Vliet, Lucas J.
2017-02-01
Optical coherence tomography (OCT) yields high-resolution, three-dimensional images of the retina. A better understanding of retinal nerve fiber bundle (RNFB) trajectories in combination with visual field data may be used for future diagnosis and monitoring of glaucoma. However, manual tracing of these bundles is a tedious task. In this work, we present an automatic technique to estimate the orientation of RNFBs from volumetric OCT scans. Our method consists of several steps, starting from automatic segmentation of the RNFL. Then, a stack of en face images around the posterior nerve fiber layer interface was extracted. The image showing the best visibility of RNFB trajectories was selected for further processing. After denoising the selected en face image, a semblance structure-oriented filter was applied to probe the strength of local linear structure in a discrete set of orientations creating an orientation space. Gaussian filtering along the orientation axis in this space is used to find the dominant orientation. Next, a confidence map was created to supplement the estimated orientation. This confidence map was used as pixel weight in normalized convolution to regularize the semblance filter response after which a new orientation estimate can be obtained. Finally, after several iterations an orientation field corresponding to the strongest local orientation was obtained. The RNFB orientations of six macular scans from three subjects were estimated. For all scans, visual inspection shows a good agreement between the estimated orientation fields and the RNFB trajectories in the en face images. Additionally, a good correlation between the orientation fields of two scans of the same subject was observed. Our method was also applied to a larger field of view around the macula. Manual tracing of the RNFB trajectories shows a good agreement with the automatically obtained streamlines obtained by fiber tracking.
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiber/braided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiber/braided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiberbraided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiberbraided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.
NASA Astrophysics Data System (ADS)
Sahingoz, Selcuk
One of the most important goals of science education is preparing effective science teachers which includes the development of a science pedagogical orientation. Helping in-service science teachers improve their orientations toward science teaching begins with identifying their current orientations. While there are many aspects of an effective science teaching orientation, this study specifically focuses on effective pedagogy. The interest of this study is to clarify pedagogical orientations of middle school science teachers in Turkey toward the teaching of science conceptual knowledge. It focuses on what instructional preferences Turkish middle school science teachers have in theory and practice. The purpose of this study is twofold: 1) to elucidate teacher pedagogical profiles toward direct and inquiry instructional approaches. For this purpose, quantitative profile data, using a Turkish version of the Pedagogy of Science Teaching Test (POSTT-TR) assessment instrument, was collected from 533 Turkish middle school science teachers; 2) to identify teaching orientations of middle school science teachers and to identify their reasons for preferring specific instructional practices. For this purpose, descriptive qualitative, interview data was collected from 23 teachers attending a middle school science teacher workshop in addition to quantitative data using the POSTT-TR. These teachers sat for interviews structured by items from the POSTT-TR. Thus, the research design is mixed-method. The design provides a background profile on teacher orientations along with insights on reasons for pedagogical choices. The findings indicate that instructional preference distributions for the large group and smaller group are similar; however, the smaller workshop group is more in favor of inquiry instructional approaches. The findings also indicate that Turkish middle school science teachers appear to have variety of teaching orientations and they have varied reasons. Moreover, the research found that several contextual factors contributed to teachers' instructional practices including internal and external issues such as school environment, limited resources, large class sizes, standardized test pressure, and limited accessibility to professional development. The findings provide insight on the readiness of middle school teachers to implement the Turkish Curriculum Framework, specifically, teacher readiness to put science inquiry instructional approaches into actual classroom practice. Given that new Turkish policy calls for greater inquiry instruction, this study can help inform teacher development efforts directed at promoting science inquiry instruction.
Rialon, Kristy L; Barfield, Michael E; Elfenbein, Dawn M; Lunsford, Keri E; Tracy, Elisabeth T; Migaly, John
2013-01-01
To design an orientation for surgical interns to meet the new Accreditation Council for Graduate Medical Education Common Program Requirements regarding supervision, to test patient-management competencies, and to assess confidence on skills and tasks pre-orientation and post-orientation. Twenty-seven incoming surgical interns participated in a two-day orientation to clinical duties. Activities included a pre-test, lectures, simulation, oral examination, intern shadowing, and a post-test. Incoming interns were surveyed before and after orientation and two months later for confidence in patient-management and surgical intern skills. Paired t-tests were used to determine if confidence improved pre-orientation and post-orientation, and two months following orientation. The study took place at an academic training hospital. All (n = 27) postgraduate year-1 (PGY-1) surgical residents at our institution, which included the categorical and nondesignated preliminary general surgery, urology, orthopedic surgery, otolaryngology, and neurosurgery programs. All interns passed the oral and written examinations, and were deemed able to be indirectly supervised, with direct supervision immediately available. They reported increased confidence in all areas of patient management addressed during orientation, and this confidence was retained after two months. In surgical and floor-related tasks and skills, interns reported no increase in confidence directly following orientation. However, after two months, they reported a significant increase in confidence, particularly in those tasks that are performed often. New requirements for resident supervision require creative ways of verifying resident competency in basic skills. This type of orientation is an effective way to address the new requirements of supervision and teach interns the tasks and skills that are necessary for internship. Copyright © 2013 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Orientation effects on the measurement and analysis of critical CTOA in an aluminum alloy sheet
NASA Technical Reports Server (NTRS)
Sutton, M. A.; Dawicke, D. S.; Newman, J. C., Jr.
1994-01-01
Fracture tests were conducted on 76.2mm wide, 2.3mm thick middle crack tension (M(T)) specimens machined from 2024-T3 aluminum sheet. The specimens were tested on the T-L orientation and comparisons were made to similar tests conducted in the L-T orientation. Measurement of critical crack tip opening angle (CTOA), applied stress, and crack front shape were made as a function of crack extension. A two-dimensional, elastic-plastic finite element analysis was used to simulate the fracture behavior for both orientations. The results indicate that the T-L orientation had a 10 percent lower stress at fracture than similar tests conducted in the L-T orientation. Correspondingly, the critical CTOA in the T-L tests reached a constant value of 4.7 degrees after 2-3mm of crack extension and the L-T tests reached a value of 6 degrees. The fracture surfaces of the T-L specimens were observed to remain flat, while those of the L-T specimens transitioned to a 45 degree slant fracture after about 2-3mm of crack extension. The tunneling behavior of the two orientations also differed; the T-L specimens reached a deeply tunneled stabilized crack front shape while, the L-T specimens were observed to have only a small amount of tunneling once the crack began to grow on the 45 degree slant. The two-dimensional, elastic-plastic finite element analysis was able to simulate the fracture behavior for both the T-L and L-T orientations.
Implications of Orientation in Sheared Cocoa Butter
NASA Astrophysics Data System (ADS)
Guthrie, Sarah E.; Mazzanti, Gianfranco; Marangoni, Alejandro; Idziak, Stefan H. J.
2004-03-01
We will present x-ray and mechanical studies of oriented phases of cocoa butter. The structural elements of foods play an important role in determining such things as quality and shelf stability. The specific structure and properties of cocoa butter, however, are complicated due to the ability of the cocoa butter to form crystals in six polymorphic forms. Recent work has shown that the application of shear not only accelerates the transitions to more stable polymorphs, but also causes orientation of the crystallites[1]. The implications of orientation on the structures formed under conditions of shear and cooling will be described using x-ray diffraction and mechanical measurements. 1 G. Mazzanti, S. E. Guthrie, E. B. Sirota et al., Crystal Growth & Design 3 (5), 721 (2003).
Cho, Joonil; Ishida, Yasuhiro
2017-07-01
Porous materials with molecular-sized periodic structures, as exemplified by zeolites, metal-organic frameworks, or mesoporous silica, have attracted increasing attention due to their range of applications in storage, sensing, separation, and transformation of small molecules. Although the components of such porous materials have a tendency to pack in unidirectionally oriented periodic structures, such ideal types of packing cannot continue indefinitely, generally ceasing when they reach a micrometer scale. Consequently, most porous materials are composed of multiple randomly oriented domains, and overall behave as isotropic materials from a macroscopic viewpoint. However, if their channels could be unidirectionally oriented over a macroscopic scale, the resultant porous materials might serve as powerful tools for manipulating molecules. Guest molecules captured in macroscopically oriented channels would have their positions and directions well-defined, so that molecular events in the channels would proceed in a highly controlled manner. To realize such an ideal situation, numerous efforts have been made to develop various porous materials with macroscopically oriented channels. An overview of recent studies on the synthesis, properties, and applications of macroscopically oriented porous materials is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.
Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica
2018-01-01
The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and implicit temporal orienting processes was considered at the long interval, we found that explicit processes were related to centrality measures of the bilateral inferior parietal lobule. Degree centrality of the same region in the left hemisphere covaried with behavioral measures indexing the process of attentional re-orienting. These results represent a crucial step forward the ordinary predictive processing description, as we identified the patterns of connectivity characterizing the brain organization associated with the ability to generate and update temporal expectancies in case of contextual violations.
1989-01-01
channelling and scanning electron microscopy (SEM) of highly oriented pyrolytic graphite ( HOPG ), comparative scratch testing results and some ideas on...electrode graphite , HOPG and carbon fibers also show enhanced wear resistance followoing irradiation (6), the extent of which depends upon the initial...literature dealing with damage effects and physical property changes following neutron irradiation of graphite (single and polycrystalline ) in nuclear
Multiscale vector fields for image pattern recognition
NASA Technical Reports Server (NTRS)
Low, Kah-Chan; Coggins, James M.
1990-01-01
A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.
Joireman, Jeff; Shaffer, Monte J; Balliet, Daniel; Strathman, Alan
2012-10-01
The authors extended research linking individual differences in consideration of future consequences (CFC) with health behaviors by (a) testing whether individual differences in regulatory focus would mediate that link and (b) highlighting the value of a revised, two-factor CFC-14 scale with subscales assessing concern with future consequences (CFC-Future) and concern with immediate consequences (CFC-Immediate) proper. Exploratory and confirmatory factor analyses of the revised CFC-14 scale supported the presence of two highly reliable factors (CFC-Future and CFC-Immediate; αs from .80 to .84). Moreover, structural equation modeling showed that those high in CFC-Future engage in exercise and healthy eating because they adopt a promotion orientation. Future use of the two-factor CFC-14 scale is encouraged to shed additional light on how concern with future and concern with immediate consequences (proper) differentially impact the way people resolve a host of intertemporal dilemmas (e.g., health, financial, and environmental behavior).
Fitzsimmons-Craft, Ellen E; Bardone-Cone, Anna M; Harney, Megan B
2012-09-01
We constructed and validated a measure of comparison dimensions associated with eating pathology, namely, the body, eating, and exercise comparison orientation measure (BEECOM). Participants were 441 undergraduate women. In Study 1, items were generated and refined via exploratory factor analysis, yielding three interpretable factors (i.e., body, eating, and exercise comparison orientation). Confirmatory factor analysis was then used to confirm the three-factor structure of the BEECOM and to investigate the potential presence of a higher-order factor. Given that the lower-order factors loaded strongly onto a higher-order factor, it is appropriate to use a total BEECOM score, in addition to subscale scores. Further, the BEECOM's scores yielded evidence of internal consistency and construct validity in this sample. Study 2 demonstrated two-week test-retest reliability of the BEECOM among college women. Overall, the BEECOM demonstrated good psychometric properties and may be useful for more comprehensively assessing eating disorder-related social comparison behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.
Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young
2012-07-01
The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of themore » containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)« less
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-02-09
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wiesemeyer, H.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-02-01
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm-2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less
Marsh canopy leaf area and orientation calculated for improved marsh structure mapping
Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.; Bannister, Terri
2015-01-01
An approach is presented for producing the spatiotemporal estimation of leaf area index (LAI) of a highly heterogeneous coastal marsh without reliance on user estimates of marsh leaf-stem orientation. The canopy LAI profile derivation used three years of field measured photosynthetically active radiation (PAR) vertical profiles at seven S. alterniflora marsh sites and iterative transform of those PAR attenuation profiles to best-fit light extinction coefficients (KM). KM sun zenith dependency was removed obtaining the leaf angle distribution (LAD) representing the average marsh orientation and the LAD used to calculate the LAI canopy profile. LAI and LAD reproduced measured PAR profiles with 99% accuracy and corresponded to field documented structures. LAI and LAD better reflect marsh structure and results substantiate the need to account for marsh orientation. The structure indexes are directly amenable to remote sensing spatiotemporal mapping and offer a more meaningful representation of wetland systems promoting biophysical function understanding.
Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers
Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian
2016-01-01
Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers. PMID:27403589
Lee, Bang Yeon; Kang, Su-Tae; Yun, Hae-Bum; Kim, Yun Yong
2016-01-12
The distribution of fiber orientation is an important factor in determining the mechanical properties of fiber-reinforced concrete. This study proposes a new image analysis technique for improving the evaluation accuracy of fiber orientation distribution in the sectional image of fiber-reinforced concrete. A series of tests on the accuracy of fiber detection and the estimation performance of fiber orientation was performed on artificial fiber images to assess the validity of the proposed technique. The validation test results showed that the proposed technique estimates the distribution of fiber orientation more accurately than the direct measurement of fiber orientation by image analysis.
Lee, Bang Yeon; Kang, Su-Tae; Yun, Hae-Bum; Kim, Yun Yong
2016-01-01
The distribution of fiber orientation is an important factor in determining the mechanical properties of fiber-reinforced concrete. This study proposes a new image analysis technique for improving the evaluation accuracy of fiber orientation distribution in the sectional image of fiber-reinforced concrete. A series of tests on the accuracy of fiber detection and the estimation performance of fiber orientation was performed on artificial fiber images to assess the validity of the proposed technique. The validation test results showed that the proposed technique estimates the distribution of fiber orientation more accurately than the direct measurement of fiber orientation by image analysis. PMID:28787839
ERIC Educational Resources Information Center
Zhang, Xihui
2010-01-01
Java is an object-oriented programming language. From a software engineering perspective, object-oriented design and programming is used at the architectural design, and structured design and programming is used at the detailed design within methods. As such, structured programming skills are fundamental to more advanced object-oriented…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reading, Matthew W.
Technologies for making self-erecting structures are described herein. An exemplary self-erecting structure comprises a plurality of shape-memory members that connect two or more hub components. When forces are applied to the self-erecting structure, the shape-memory members can deform, and when the forces are removed the shape-memory members can return to their original pre-deformation shape, allowing the self-erecting structure to return to its own original shape under its own power. A shape of the self-erecting structure depends on a spatial orientation of the hub components, and a relative orientation of the shape-memory members, which in turn depends on an orientation ofmore » joining of the shape-memory members with the hub components.« less
Oral impacts on quality of life and problem-oriented attendance among South East London adults.
Gaewkhiew, Piyada; Bernabé, Eduardo; Gallagher, Jennifer E; Klass, Charlotte; Delgado-Angulo, Elsa K
2017-04-26
Dental care seeking behaviour is often driven by symptoms. The value of oral health related quality of life (OHRQoL) measures to predict utilisation of dental services is unknown. This study aims to explore the association between OHRQoL and problem-oriented dental attendance among adults. We analysed cross-sectional data for 705 adults, aged 16 years and above, living in three boroughs of Inner South East London. Data were collected during structured interviews at home. The short form of the Oral Health Impact Profile (OHIP-14) was used to assess the frequency of oral impacts on daily life in the last year. Problem-oriented attendance was defined based on time elapsed since last visit (last 6 months) and reason for that visit (trouble with teeth). The association between OHIP-14 (total and domain) scores and problem-oriented attendance was tested in logistic regression models adjusting for participants' sociodemographic characteristics. Problem-oriented attenders had a higher OHIP-14 total score than regular attenders (6.73 and 3.73, respectively). In regression models, there was a positive association between OHIP-14 total score and problem-oriented attendance. The odds of visiting the dentist for trouble with teeth were 1.07 greater (95% Confidence Interval: 1.04-1.10) per unit increase in the OHIP-14 total score, after adjustment for participants' sociodemographic characteristics. In subsequent analysis by OHIP-14 domains, greater scores in all domains but handicap were significantly associated with problem-oriented attendance. This study shows that oral impacts on quality of life are associated with recent problem-oriented dental attendance among London adults. Six of the seven domains in the OHIP-14 questionnaire were also associated with dental visits for trouble with teeth.
System and process for ultrasonic characterization of deformed structures
Panetta, Paul D [Williamsburg, VA; Morra, Marino [Richland, WA; Johnson, Kenneth I [Richland, WA
2011-11-22
Generally speaking, the method of the present invention is performed by making various ultrasonic scans at preselected orientations along the length of a material being tested. Data from the scans are then plotted together with various calculated parameters that are calculated from this data. Lines or curves are then fitted to the respective plotted points. Review of these plotted curves allows the location and severity of defects within these sections to be determined and quantified. With this information various other decisions related to how, when or whether repair or replacement of a particular portion of a structure can be made.
Structural data collection with mobile devices: Accuracy, redundancy, and best practices
NASA Astrophysics Data System (ADS)
Allmendinger, Richard W.; Siron, Christopher R.; Scott, Chelsea P.
2017-09-01
Smart phones are equipped with numerous sensors that enable orientation data collection for structural geology at a rate up to an order of magnitude faster than traditional analog compasses. The rapidity of measurement enables field structural geologists, for the first time, to enjoy the benefits of data redundancy and quantitative uncertainty estimates. Recent work, however, has called into question the reliability of sensors on Android devices. We present here our experience with programming a new smart phone app from scratch, and using it and commercial apps on iOS devices along with analog compasses in a series of controlled tests and typical field use cases. Additionally, we document the relationships between iPhone measurements and visible structures in satellite, drawing on a database of 3700 iPhone measurements of coseismic surface cracks we made in northern Chile following the Mw8.1 Pisagua earthquake in 2014. By comparing phone-collected attitudes to orientations determined independently of the magnetic field, we avoid having to assume that the analog compass, which is subject to its own uncertainties, is the canonical instrument. Our results suggest that iOS devices are suitable for all but the most demanding applications as long as particular care is taken with respect to metal and electronic objects that could affect the magnetic field.
Evaluation of oriented lysozyme immobilized with monoclonal antibody
NASA Astrophysics Data System (ADS)
Aoyagi, Satoka; Okada, Keigo; Shigyo, Ayako; Man, Naoki; Karen, Akiya
2008-12-01
The orientation of a lysozyme immobilized with a monoclonal antibody was evaluated based on determination of the uppermost surface structure using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Specific peaks of the oriented lysozyme immobilized with monoclonal anti-lysozyme antibody were obtained in comparison with reference samples, non-oriented immobilized lysozyme and immobilized anti-lysozyme antibody. All samples were freeze-dried before TOF-SIMS measurement, and then each sample was measured using TOF-SIMS with a bismuth cluster ion source. TOF-SIMS spectra were analyzed to select peaks specific to the oriented immobilized lysozyme as well as to identify their chemical formula and ensemble of amino acids. The possible chemical formulae of the lysozyme fragments were then investigated with an element matching program and a residue matching program. The results from TOF-SIMS spectra analysis were compared to the amino acid sequence of the lysozyme and its three-dimensional structure registered in the protein data bank. Finally, the fragment-ion-generating regions of the oriented immobilized lysozyme were determined based on the suggested residues and the three-dimensional structure.
Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS)☟
Xin, Dongyue; Ko, Eunhwa; Perez, Lisa M.; Ioerger, Thomas R.; Burgess, Kevin
2013-01-01
Peptide mimics that display amino acid side-chains on semi-rigid scaffolds (not peptide polyamides) can be referred to as minimalist mimics. Accessible conformations of these scaffolds may overlay with secondary structures giving, for example, “minimalist helical mimics”. It is difficult for researchers who want to apply minimalist mimics to decide which one to use because there is no widely accepted protocol for calibrating how closely these compounds mimic secondary structures. Moreover, it is also difficult for potential practitioners to evaluate which ideal minimalist helical mimics are preferred for a particular set of side-chains. For instance, what mimic presents i, i+4, i+7 side-chains in orientations that best resemble an ideal α-helix, and is a different mimic required for a i, i+3, i+7 helical combination? This article describes a protocol for fitting each member of an array of accessible scaffold conformations on secondary structures. The protocol involves: (i) use quenched molecular dynamics (QMD) to generate an ensemble consisting of hundreds of accessible, low energy conformers of the mimics; (ii) representation of each of these as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds;(iii) similar representation of each combination of three side-chains in each ideal secondary structure as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; and, (iv) overlay Cα and Cβ coordinates of all the conformers on all the sets of side-chain “triads” in the ideal secondary structures and express the goodness of fit in terms of root mean squared deviation (RMSD, Å) for each overlay. We refer to this process as Exploring Key Orientations on Secondary structures (EKOS). Application of this procedure reveals the relative bias of a scaffold to overlay on different secondary structures, the “side-chain correspondences” (eg i, i+4, i+7 or i, i+3, i+4) of those overlays, and the energy of this state relative to the minimum located. This protocol was tested on some of the most widely cited minimalist α-helical mimics (1 – 8 in the text). The data obtained indicates several of these compounds preferentially exist in conformations that resemble other secondary structures as well as α-helices, and many of the α-helical conformations have unexpected side-chain correspondences. These observations imply the featured minimalist mimics have more scope for disrupting PPI interfaces than previously anticipated. Finally, the same simulation method was used to match preferred conformations of minimalist mimics with actual protein/peptide structures at interfaces providing quantitative comparisons of predicted fits of the test mimics at protein-protein interaction sites. PMID:24121516
Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS).
Xin, Dongyue; Ko, Eunhwa; Perez, Lisa M; Ioerger, Thomas R; Burgess, Kevin
2013-11-28
Peptide mimics that display amino acid side-chains on semi-rigid scaffolds (not peptide polyamides) can be referred to as minimalist mimics. Accessible conformations of these scaffolds may overlay with secondary structures giving, for example, "minimalist helical mimics". It is difficult for researchers who want to apply minimalist mimics to decide which one to use because there is no widely accepted protocol for calibrating how closely these compounds mimic secondary structures. Moreover, it is also difficult for potential practitioners to evaluate which ideal minimalist helical mimics are preferred for a particular set of side-chains. For instance, what mimic presents i, i + 4, i + 7 side-chains in orientations that best resemble an ideal α-helix, and is a different mimic required for a i, i + 3, i + 7 helical combination? This article describes a protocol for fitting each member of an array of accessible scaffold conformations on secondary structures. The protocol involves: (i) use quenched molecular dynamics (QMD) to generate an ensemble consisting of hundreds of accessible, low energy conformers of the mimics; (ii) representation of each of these as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; (iii) similar representation of each combination of three side-chains in each ideal secondary structure as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; and, (iv) overlay Cα and Cβ coordinates of all the conformers on all the sets of side-chain "triads" in the ideal secondary structures and express the goodness of fit in terms of root mean squared deviation (RMSD, Å) for each overlay. We refer to this process as Exploring Key Orientations on Secondary structures (EKOS). Application of this procedure reveals the relative bias of a scaffold to overlay on different secondary structures, the "side-chain correspondences" (e.g. i, i + 4, i + 7 or i, i + 3, i + 4) of those overlays, and the energy of this state relative to the minimum located. This protocol was tested on some of the most widely cited minimalist α-helical mimics (1-8 in the text). The data obtained indicates several of these compounds preferentially exist in conformations that resemble other secondary structures as well as α-helices, and many of the α-helical conformations have unexpected side-chain correspondences. These observations imply the featured minimalist mimics have more scope for disrupting PPI interfaces than previously anticipated. Finally, the same simulation method was used to match preferred conformations of minimalist mimics with actual protein/peptide structures at interfaces providing quantitative comparisons of predicted fits of the test mimics at protein-protein interaction sites.
Plastic strain arrangement in copper single crystals in sliding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumaevskii, Andrey V., E-mail: tch7av@gmail.com; Lychagin, Dmitry V., E-mail: dvl-tomsk@mail.ru; Tarasov, Sergei Yu., E-mail: tsy@ispms.tsc.ru
2014-11-14
Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zonesmore » were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.« less
Hwang, Taik Gun; Lee, Younsuk; Shin, Hojung
2011-01-01
The efficiency and quality of a healthcare system can be defined as interactions among the system structure, processes, and outcome. This article examines the effect of structural adjustment (change in floor plan or layout) and process improvement (critical pathway implementation) on performance of emergency room (ER) operations for acute cerebral infarction patients. Two large teaching hospitals participated in this study: Korea University (KU) Guro Hospital and KU Anam Hospital. The administration of Guro adopted a structure-oriented approach in improving its ER operations while the administration of Anam employed a process-oriented approach, facilitating critical pathways and protocols. To calibrate improvements, the data for time interval, length of stay, and hospital charges were collected, before and after the planned changes were implemented at each hospital. In particular, time interval is the most essential measure for handling acute stroke patients because patients' survival and recovery are affected by the promptness of diagnosis and treatment. Statistical analyses indicated that both redesign of layout at Guro and implementation of critical pathways at Anam had a positive influence on most of the performance measures. However, reduction in time interval was not consistent at Guro, demonstrating delays in processing time for a few processes. The adoption of critical pathways at Anam appeared more effective in reducing time intervals than the structural rearrangement at Guro, mainly as a result of the extensive employee training required for a critical pathway implementation. Thus, hospital managers should combine structure-oriented and process-oriented strategies to maximize effectiveness of improvement efforts.
Wayment, Heidi A; Walters, Andrew Schrack
2017-11-01
The present study examined the ability of an interpersonal construct called athletic connectedness to mediate the relationship between task and ego goal orientations and well-being. We operationalised athletic social connectedness as a sense of social belonging and sense of connection with teammates. We hypothesised that athletic social connectedness would be positively associated with task goals, negatively associated with ego goals, and would at least partially mediate the relationship between achievement goals and well-being. We administered questionnaires to female (N = 106; mean age = 20.47, SD = 1.12) and male (N = 100; mean age = 20.95, SD = 1.21) NCAA Division III college athletes. We tested our hypothesised model using structural equation modelling, which included testing a measurement model that specified four latent variables and then comparing the estimates generated by our hypothesised model with our data. We also tested three alternative models and found our hypothesised model to fit best. As predicted, there were significant indirect effects of task and ego motivation on well-being through athletic connectedness, demonstrating formal evidence of mediation. The r 2 coefficient indicated that the model explained 30% of the variance in well-being, a moderate effect size (Cohen, 1988). Discussion focuses on the importance of considering interpersonal constructs as a way to improve our understanding of relationship between task and ego goal orientations to well-being in athletes.
Promotion of Students' Mastery Goal Orientations: Does TARGET Work?
ERIC Educational Resources Information Center
Lüftenegger, Marko; van de Schoot, Rens; Schober, Barbara; Finsterwald, Monika; Spiel, Christiane
2014-01-01
Achievement goal orientations are important for students' ongoing motivation. Students with a mastery goal orientation show the most advantageous achievement and motivational patterns. Much research has been conducted to identify classroom structures which promote students' mastery goal orientation. The TARGET framework is one example of these…
NASA Astrophysics Data System (ADS)
Baumann, Sebastian; Robl, Jörg; Wendt, Lorenz; Willingshofer, Ernst; Hilberg, Sylke
2016-04-01
Automated lineament analysis on remotely sensed data requires two general process steps: The identification of neighboring pixels showing high contrast and the conversion of these domains into lines. The target output is the lineaments' position, extent and orientation. We developed a lineament extraction tool programmed in R using digital elevation models as input data to generate morphological lineaments defined as follows: A morphological lineament represents a zone of high relief roughness, whose length significantly exceeds the width. As relief roughness any deviation from a flat plane, defined by a roughness threshold, is considered. In our novel approach a multi-directional and multi-scale roughness filter uses moving windows of different neighborhood sizes to identify threshold limited rough domains on digital elevation models. Surface roughness is calculated as the vertical elevation difference between the center cell and the different orientated straight lines connecting two edge cells of a neighborhood, divided by the horizontal distance of the edge cells. Thus multiple roughness values depending on the neighborhood sizes and orientations of the edge connecting lines are generated for each cell and their maximum and minimum values are extracted. Thereby negative signs of the roughness parameter represent concave relief structures as valleys, positive signs convex relief structures as ridges. A threshold defines domains of high relief roughness. These domains are thinned to a representative point pattern by a 3x3 neighborhood filter, highlighting maximum and minimum roughness peaks, and representing the center points of lineament segments. The orientation and extent of the lineament segments are calculated within the roughness domains, generating a straight line segment in the direction of least roughness differences. We tested our algorithm on digital elevation models of multiple sources and scales and compared the results visually with shaded relief map of these digital elevation models. The lineament segments trace the relief structure to a great extent and the calculated roughness parameter represents the physical geometry of the digital elevation model. Modifying the threshold for the surface roughness value highlights different distinct relief structures. Also the neighborhood size at which lineament segments are detected correspond with the width of the surface structure and may be a useful additional parameter for further analysis. The discrimination of concave and convex relief structures perfectly matches with valleys and ridges of the surface.
Morales-Orcajo, Enrique; Siebert, Tobias; Böl, Markus
2018-05-25
The mechanical properties of the urinary bladder wall are important to understand its filling-voiding cycle in health and disease. However, much remains unknown about its mechanical properties, especially regarding regional heterogeneities and wall microstructure. The present study aimed to assess the regional differences in the mechanical properties and microstructure of the urinary bladder wall. Ninety (n=90) samples of porcine urinary bladder wall (ten samples from nine different locations) were mechanically and histologically analysed. Half of the samples (n=45) were equibiaxially tested within physiological conditions, and the other half, matching the sample location of the mechanical tests, was frozen, cryosectioned, and stained with Picro-Sirius red to differentiate smooth muscle cells, extracellular matrix, and fat. The bladder wall shows a non-linear stress-stretch relationship with hysteresis and softening effects. Regional differences were found in the mechanical response and in the microstructure. The trigone region presents higher peak stresses and thinner muscularis layer compared to the rest of the bladder. Furthermore, the ventral side of the bladder presents anisotropic characteristics, whereas the dorsal side features perfect isotropic behaviour. This response matches the smooth muscle fibre bundle orientation within the tunica muscularis. This layer, comprising approximately 78% of the wall thickness, is composed of two fibre bundle arrangements that are cross-oriented, one with respect to the other, varying the angle between them across the organ. That is, the ventral side presents a 60°/120° cross-orientation structure, while the muscle bundles were oriented perpendicular in the dorsal side. In the present study, we demonstrate that the mechanical properties and the microstructure of the urinary bladder wall are heterogeneous across the organ. The mechanical properties and the microstructure of the urinary bladder wall within nine specific locations matching explicitly the mechanical and structural variations have been examined. On the one hand, the results of this study contribute to the understanding of bladder mechanics and thus to their functional understanding of bladder filling and voiding. On the other hand, they are relevant to the fields of constitutive formulation of bladder tissue, whole bladder mechanics, and bladder-derived scaffolds i.e., tissue-engineering grafts. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schmid, S.; Bogner, F. X.
2017-11-01
Three subscales of the 'Science Motivation Questionnaire II' (SMQII; motivational components: career motivation, self-efficacy and self-determination), with 4 items each, were applied to a sample of 209 secondary school students to monitor the impact of a 3-hour structured inquiry lesson. Four testing points (before, immediately after, 6 and 12 weeks after) were applied. The modified SMQII was factor-analyzed at each testing cycle and the structure confirmed. Only self-determination was shown to be influenced by an inquiry course, while self-efficacy and career motivation did not. Only self-efficacy and career motivation were intercorrelated and also correlated with science subject grades and subsequent achievement. Implications for using the modified SMQII subscales for research and teaching in secondary school are discussed.
Structure-function relationships of human meniscus.
Danso, Elvis K; Oinas, Joonas M T; Saarakkala, Simo; Mikkonen, Santtu; Töyräs, Juha; Korhonen, Rami K
2017-03-01
Biomechanical properties of human meniscus have been shown to be site-specific. However, it is not known which meniscus constituents at different depths and locations contribute to biomechanical properties obtained from indentation testing. Therefore, we investigated the composition and structure of human meniscus in a site- and depth-dependent manner and their relationships with tissue site-specific biomechanical properties. Elastic and poroelastic properties were analyzed from experimental stress-relaxation and sinusoidal indentation measurements with fibril reinforced poroelastic finite element modeling. Proteoglycan (PG) and collagen contents, as well as the collagen orientation angle, were determined as a function of tissue depth using microscopic and spectroscopic methods, and they were compared with biomechanical properties. For all the measurement sites (anterior, middle and posterior) of lateral and medial menisci (n=26), PG content and collagen orientation angle increased as a function of tissue depth while the collagen content had an initial sharp increase followed by a decrease across tissue depth. The highest values (p<0.05) of elastic parameters (equilibrium and instantaneous moduli) and strain-dependent biomechanical parameters (strain-dependent fibril network modulus and permeability) were observed in the anterior horn of the medial meniscus. This location had also higher (p<0.05) PG content in the deep meniscus, higher (p<0.05) collagen content in the entire tissue depth, and lower (p<0.05) collagen orientation angle at the superficial tissue, as compared to many other locations. On the other hand, in certain comparisons (such as anterior vs. middle sites of the medial meniscus) significantly higher (p<0.05) collagen content and lower orientation angle, without any difference in the PG content, were consistent with increased meniscus modulus and/or nonlinear permeability. This study suggests that nonlinear biomechanical properties of meniscus, caused by the collagen network and fluid, may be strongly influenced by tissue osmotic swelling from the deep meniscus caused by the increased PG content, leading to increased collagen fibril tension. These nonlinear biomechanical properties are suggested to be further amplified by higher collagen content at all tissue depths and superficial collagen fibril orientation. However, these structure-function relationships are suggested to be highly site-specific. Copyright © 2016 Elsevier Ltd. All rights reserved.
Slip re-orientation in the oblique Abiquiu embayment, northern Rio Grande rift
NASA Astrophysics Data System (ADS)
Liu, Y.; Murphy, M. A.; Andrea, R. A.
2015-12-01
Traditional models of oblique rifting predict that an oblique fault accommodates both dip-slip and strike-slip kinematics. However, recent analog experiments suggest that slip can be re-oriented to almost pure dip-slip on oblique faults if a preexisting weak zone is present at the onset of oblique extension. In this study, we use fault slip data from the Abiquiu embayment in northern Rio Grande rift to test the new model. The Rio Grande rift is a Cenozoic oblique rift extending from southern Colorado to New Mexico. From north to south, it comprises three major half grabens (San Luis, Española, and Albuquerque). The Abiquiu embayment is a sub-basin of the San Luis basin in northern New Mexico. Rift-border faults are generally older and oblique to the trend of the rift, whereas internal faults are younger and approximately N-S striking, i.e. orthogonal to the regional extension direction. Rift-border faults are deep-seated in the basement rocks while the internal faults only cut shallow stratigraphic sections. It has been suggested by many that inherited structures may influence the Rio Grande rifting. Particularly, Laramide structures (and possibly the Ancestral Rockies as well) that bound the Abiquiu embayment strike N- to NW. Our data show that internal faults in the Abiquiu embayment exhibit almost pure dip-slip (rake of slickenlines = 90º ± 15º), independent of their orientations with respect to the regional extension direction. On the contrary, border faults show two sets of rakes: almost pure dip-slip (rake = 90º ± 15º) where the fault is sub-parallel to the foliation, and moderately-oblique (rake = 30º ± 15º) where the fault is high angle to the foliation. We conclude that slip re-orientation occurs on most internal faults and some oblique border faults under the influence of inherited structures. Regarding those border faults on which slip is not re-oriented, we hypothesize that it may be caused by the Jemez volcanism or small-scale mantle convection.
NASA Astrophysics Data System (ADS)
Sears, Edie Seldon
2000-12-01
A remote sensing study using reflectance and fluorescence spectra of hydroponically grown Lactuca sativa (lettuce) canopies was conducted. An optical receiver was designed and constructed to interface with a commercial fiber optic spectrometer for data acquisition. Optical parameters were varied to determine effects of field of view and distance to target on vegetation stress assessment over the test plant growth cycle. Feedforward backpropagation neural networks (NN) were implemented to predict the presence of canopy stress. Effects of spatial and spectral resolutions on stress predictions of the neural network were also examined. Visual inspection and fresh mass values failed to differentiate among controls, plants cultivated with 25% of the recommended concentration of phosphorous (P), and those cultivated with 25% nitrogen (N) based on fresh mass and visual inspection. The NN's were trained on input vectors created using reflectance and test day, fluorescence and test day, and reflectance, fluorescence, and test day. Four networks were created representing four levels of spectral resolution: 100-nm NN, 10-nm NN, 1-nm NN, and 0.1-nm NN. The 10-nm resolution was found to be sufficient for classifying extreme nitrogen deficiency in freestanding hydroponic lettuce. As a result of leaf angle and canopy structure broadband scattering intensity in the 700-nm to 1000-nm range was found to be the most useful portion of the spectrum in this study. More subtle effects of "greenness" and fluorescence emission were believed to be obscured by canopy structure and leaf orientation. As field of view was not as found to be as significant as originally believed, systems implementing higher repetitions over more uniformly oriented, i.e. smaller, flatter, target areas would provide for more discernible neural network input vectors. It is believed that this technique holds considerable promise for early detection of extreme nitrogen deficiency. Further research is recommended using stereoscopic digital cameras to quantify leaf area index, leaf shape, and leaf orientation as well as reflectance. Given this additional information fluorescence emission may also prove a more useful biological assay of freestanding vegetation.
NASA Astrophysics Data System (ADS)
Budai, J. D.; Yang, W.; Tischler, J. Z.; Liu, W.; Larson, B. C.; Ice, G. E.
2004-03-01
We describe a new polychromatic x-ray microdiffraction technique providing 3D measurements of lattice structure, orientation and strain with submicron point-to-point spatial resolution. The instrument is located on the UNI-CAT II undulator beamline at the Advanced Photon Source and uses Kirkpatrick-Baez focusing mirrors, differential aperture CCD measurements and automated analysis of spatially-resolved Laue patterns. 3D x-ray structural microscopy is applicable to a wide range of materials investigations and here we describe 3D thermal grain growth studies in polycrystalline aluminum ( ˜1% Fe,Si) from Alcoa. The morphology and orientations of the grains in a hot-rolled aluminum sample were initially mapped. The sample was then annealed to induce grain growth, cooled to room temperature, and the same volume region was re-mapped to determine the thermal migration of all grain boundaries. Significant grain growth was observed after annealing above ˜350^oC where both low-angle and high-angle boundaries were mobile. These measurements will provide the detailed 3D experimental input needed for testing theories and computer models of 3D grain growth in bulk materials.
AACSD: An atomistic analyzer for crystal structure and defects
NASA Astrophysics Data System (ADS)
Liu, Z. R.; Zhang, R. F.
2018-01-01
We have developed an efficient command-line program named AACSD (Atomistic Analyzer for Crystal Structure and Defects) for the post-analysis of atomic configurations generated by various atomistic simulation codes. The program has implemented not only the traditional filter methods like the excess potential energy (EPE), the centrosymmetry parameter (CSP), the common neighbor analysis (CNA), the common neighborhood parameter (CNP), the bond angle analysis (BAA), and the neighbor distance analysis (NDA), but also the newly developed ones including the modified centrosymmetry parameter (m-CSP), the orientation imaging map (OIM) and the local crystallographic orientation (LCO). The newly proposed OIM and LCO methods have been extended for all three crystal structures including face centered cubic, body centered cubic and hexagonal close packed. More specially, AACSD can be easily used for the atomistic analysis of metallic nanocomposite with each phase to be analyzed independently, which provides a unique pathway to capture their dynamic evolution of various defects on the fly. In this paper, we provide not only a throughout overview on various theoretical methods and their implementation into AACSD program, but some critical evaluations, specific testing and applications, demonstrating the capability of the program on each functionality.
NASA Astrophysics Data System (ADS)
Ma, Fuliang; Li, Jinlong; Zeng, Zhixiang; Gao, Yimin
2018-01-01
The CrN monolayer and CrN/AlN nano-multilayer coating were successfully fabricated by reactive magnetron sputtering on F690 steel. The results show that CrN monolayer exhibits a face centered cubic crystalline structure with (111) preferred orientation and CrN/AlN nano-multilayer coating has a (200) preferred orientation. This design of the nano-multilayer can interrupt the continuous growth of columnar crystals making the coating denser. The CrN/AlN nano-multilayer coating has a better wear resistance and corrosion resistance compared with the CrN monolayer coating. The tribocorrosion tests reveal that the evolution of potential and current density of F690 steel and CrN monolayer or CrN/AlN nano-multilayer coating see an opposite trend under the simultaneous action of wear and corrosion, which is attributed to that F690 steel is a non-passive material and PVD coatings is a passive material. The nano-multilayer structure has a good ;Pore Sealing Effect;, and the corrosive solution is difficult to pass through the coating to corrode the substrate.
Do gamblers eat more salt? Testing a latent trait model of covariance in consumption
Goodwin, Belinda C.; Browne, Matthew; Rockloff, Matthew; Donaldson, Phillip
2015-01-01
A diverse class of stimuli, including certain foods, substances, media, and economic behaviours, may be described as ‘reward-oriented’ in that they provide immediate reinforcement with little initial investment. Neurophysiological and personality concepts, including dopaminergic dysfunction, reward sensitivity and rash impulsivity, each predict the existence of a latent behavioural trait that leads to increased consumption of all stimuli in this class. Whilst bivariate relationships (co-morbidities) are often reported in the literature, to our knowledge, a multivariate investigation of this possible trait has not been done. We surveyed 1,194 participants (550 male) on their typical weekly consumption of 11 types of reward-oriented stimuli, including fast food, salt, caffeine, television, gambling products, and illicit drugs. Confirmatory factor analysis was used to compare models in a 3×3 structure, based on the definition of a single latent factor (none, fixed loadings, or estimated loadings), and assumed residual covariance structure (none, a-priori / literature based, or post-hoc / data-driven). The inclusion of a single latent behavioural ‘consumption’ factor significantly improved model fit in all cases. Also confirming theoretical predictions, estimated factor loadings on reward-oriented indicators were uniformly positive, regardless of assumptions regarding residual covariances. Additionally, the latent trait was found to be negatively correlated with the non-reward-oriented indicators of fruit and vegetable consumption. The findings support the notion of a single behavioural trait leading to increased consumption of reward-oriented stimuli across multiple modalities. We discuss implications regarding the concentration of negative lifestyle-related health behaviours. PMID:26551907
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.
Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithmmore » to reconstruct structural information from singleparticle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.« less
Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.
2017-06-26
Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithmmore » to reconstruct structural information from singleparticle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.« less
Circumnuclear Structures in Megamaser Host Galaxies
NASA Astrophysics Data System (ADS)
Pjanka, Patryk; Greene, Jenny E.; Seth, Anil C.; Braatz, James A.; Henkel, Christian; Lo, Fred K. Y.; Läsker, Ronald
2017-08-01
Using the Hubble Space Telescope, we identify circumnuclear (100-500 pc scale) structures in nine new H2O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the ˜100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.
First principle calculation in FeCo overlayer on GaAs substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vishal, E-mail: vjain045@gmail.com; Lakshmi, N.; Jain, Vivek Kumar
In this work the first principle electronic structure calculation is reported for FeCo/GaAs thin film system to investigate the effect of orientation on the electronic structural properties. A unit cell describing FeCo layers and GaAs layers is constructed for (100), (110), (111) orientation with vacuum of 30Å to reduce dimensions. It is found that although the (110) orientation is energetically more favorable than others, the magnetic moment is quite large in (100) and (111) system compared to the (110) and is due to the total DOS variation with orientation.
Bond-orientational order in liquid Si
NASA Technical Reports Server (NTRS)
Wang, Z. Q.; Stroud, D.
1991-01-01
Bond-orientational order in liquid Si via Monte Carlo simulation in conjuncation with empirical two- and three-body potentials of the form proposed by Stillinger and Weber are studied. Bond-orientational order (BOO) is described in terms of combinations of spherical harmonic functions. Liquid Si is found to have pronounced short-range BOO corresponding to l = 3, as expected for a structure with local tetrahedral order. No long-range BOO is found either in the equilibrium or the supercooled liquid. When the three-body potential is artificially removed, the tetrahedral bond-orientation order disappears and the liquid assumes a close-packed structure.
Impact-initiated damage thresholds in composites
NASA Technical Reports Server (NTRS)
Sharma, A. V.
1980-01-01
An experimental investigation was conducted to study the effect of low velocity projectile impact on the sandwich-type structural components. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failures in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension- and compression-loaded laminates. The specific-strengths and -moduli for the various laminates tested are also given.
Surface Structure Spread Single Crystals (S4C): Preparation and characterization
NASA Astrophysics Data System (ADS)
de Alwis, A.; Holsclaw, B.; Pushkarev, V. V.; Reinicker, A.; Lawton, T. J.; Blecher, M. E.; Sykes, E. C. H.; Gellman, A. J.
2013-02-01
A set of six spherically curved Cu single crystals referred to as Surface Structure Spread Single Crystals (S4Cs) has been prepared in such a way that their exposed surfaces collectively span all possible crystallographic surface orientations that can be cleaved from the face centered cubic Cu lattice. The method for preparing these S4Cs and for finding the high symmetry pole point is described. Optical profilometry has been used to determine the true shapes of the S4Cs and show that over the majority of the surface, the shape is extremely close to that of a perfect sphere. The local orientations of the surfaces lie within ± 1° of the orientation expected on the basis of the spherical shape; their orientation is as good as that of many commercially prepared single crystals. STM imaging has been used to characterize the atomic level structure of the Cu(111) ± 11°-S4C. This has shown that the average step densities and the average step orientations match those expected based on the spherical shape. In other words, although there is some distribution of step-step spacing and step orientations, there is no evidence of large scale reconstruction or faceting. The Cu S4Cs have local structures based on the ideal termination of the face centered cubic Cu lattice in the direction of termination. The set of Cu S4Cs will serve as the basis for high throughput investigations of structure sensitive surface chemistry on Cu.
Fabrication of highly oriented nanoporous fibers via airflow bubble-spinning
NASA Astrophysics Data System (ADS)
Liu, Fujuan; Li, Shaokai; Fang, Yue; Zheng, Fangfang; Li, Junhua; He, Jihuan
2017-11-01
Highly oriented Poly(lactic acid) (PLA) nanofibers with nanoporous structures has been successfully fabricated via airflow bubble-spinning without electrostatic hazard. In this work, the volatile solvent was necessary for preparing the nanoporous fiber, which was attributed to the competition between phase separation and solvent evaporation. The interconnected porous structures were affected by the processing variables of solution concentration, airflow temperature, collecting distance and relative humidity (RH). Besides, the rheological properties of solutions were studied and the highly oriented PLA nanofibers with nanoporous structure were also completely characterized using scanning electron microscope (SEM). This study provided a novel technique that successfully gets rid of the potential safety hazards caused by unexpected static to prepare highly oriented nanoporous fibers, which would demonstrate an impressive prospect for the fields of adsorption and filtration.
Mental-orientation: A new approach to assessing patients across the Alzheimer's disease spectrum.
Peters-Founshtein, Gregory; Peer, Michael; Rein, Yanai; Kahana Merhavi, Shlomzion; Meiner, Zeev; Arzy, Shahar
2018-05-21
This study aims to assess the role of mental-orientation in the diagnosis of mild cognitive impairment and Alzheimer's disease using a novel task. A behavioral study (Experiment 1) compared the mental-orientation task to standard neuropsychological tests in patients across the Alzheimer's disease spectrum. A functional MRI study (Experiment 2) in young adults compared activations evoked by the mental-orientation and standard-orientation tasks as well as their overlap with brain regions susceptible to Alzheimer's disease pathology. The mental-orientation task differentiated mild cognitively impaired and healthy controls at 95% accuracy, while the Addenbrooke's Cognitive Examination, Mini-Mental State Examination and standard-orientation achieved 74%, 70% and 50% accuracy, respectively. Functional MRI revealed the mental-orientation task to preferentially recruit brain regions exhibiting early Alzheimer's-related atrophy, unlike the standard-orientation test. Mental-orientation is suggested to play a key role in Alzheimer's disease, and consequently in early detection and follow-up of patients along the Alzheimer's disease spectrum. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Shen, Lei; Ulrich, Nathan W.; Mello, Charlene M.; Chen, Zhan
2015-01-01
Surface immobilized peptides/proteins have important applications such as antimicrobial coating and biosensing. We report a study of such peptides/proteins using sum frequency generation vibrational spectroscopy and ATR-FTIR. Immobilization on surfaces via physical adsorption and chemical coupling revealed that structures of chemically immobilized peptides are determined by immobilization sites, chemical environments, and substrate surfaces. In addition, controlling enzyme orientation by engineering the surface immobilization site demonstrated that structures can be well-correlated to measured chemical activity. This research facilitates the development of immobilized peptides/proteins with improved activities by optimizing their surface orientation and structure.
Bae, Won-Gyu; Kim, Jangho; Choung, Yun-Hoon; Chung, Yesol; Suh, Kahp Y; Pang, Changhyun; Chung, Jong Hoon; Jeong, Hoon Eui
2015-11-01
Inspired by the hierarchically organized protein fibers in extracellular matrix (ECM) as well as the physiological importance of multiscale topography, we developed a simple but robust method for the design and manipulation of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with an original wrinkling technique. In this study, based on our proposed fabrication technology, we approached a conceptual platform that can mimic the hierarchically multiscale topographical and orientation cues of the ECM for controlling cell structure and function. We patterned the polyurethane acrylate-based nanotopography with various orientations on the microgrooves, which could provide multiscale topography signals of ECM to control single and multicellular morphology and orientation with precision. Using our platforms, we found that the structures and orientations of fibroblast cells were greatly influenced by the nanotopography, rather than the microtopography. We also proposed a new approach that enables the generation of native ECM having nanofibers in specific three-dimensional (3D) configurations by culturing fibroblast cells on the multiscale substrata. We suggest that our methodology could be used as efficient strategies for the design and manipulation of various functional platforms, including well-defined 3D tissue structures for advanced regenerative medicine applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: llm@ispms.tsc.ru; Meisner, L. L., E-mail: girs@ispms.tsc.ru
The structure of the surface and near-surface layers of single crystals of NiTi, differently oriented relative to the direction of ion beam treatment was investigated. The role of the crystallographic orientation in formation of structure of surface layers after ion-plasma alloying was revealed. It was found that the orientation effects of selective sputtering and channeling determine the thickness of the oxide and amorphous layers, the depth of penetration of ions and impurities, the distribution of Ni with depth.
NASA Astrophysics Data System (ADS)
Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.
1996-05-01
The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.
ERIC Educational Resources Information Center
Wade, Terry C.; And Others
1978-01-01
The occupational specializations and therapeutic orientations of clinical psychologists were related to their use and opinion of testing. The two tests clinicians considered most important to clinical practice were the Rorschach and the Thematic Apperception Test. Among the 10 most frequently recommended test, projective measures were listed 30…
Piezoceramic Actuator Placement for Acoustic Control of Panels
NASA Technical Reports Server (NTRS)
Bevan, Jeffrey S.; Turner, Travis L. (Technical Monitor)
2001-01-01
Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibits enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.
Piezoceramic Actuator Placement for Acoustic Control of Panels
NASA Technical Reports Server (NTRS)
Bevan, Jeffrey S.
2000-01-01
Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibit enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.
García, Luis I; Lechuga, Julia; Zea, María Cecilia
2012-01-01
Individuals who disclose their sexual orientation are more likely to also disclose their HIV status. Disclosure of HIV-serostatus is associated with better health outcomes. The goal of this study was to build and test comprehensive models of sexual orientation that included eight theory-informed predictors of disclosure to mothers, fathers, and closest friends in a sample of HIV-positive Latino gay and bisexual men. US acculturation, gender nonconformity to hegemonic masculinity in self-presentation, comfort with sexual orientation, gay community involvement, satisfaction with social support, sexual orientation and gender of the closest friend emerged as significant predictors of disclosure of sexual orientation.
Lechuga, Julia; Zea, María Cecilia
2012-01-01
Individuals who disclose their sexual orientation are more likely to also disclose their HIV status. Disclosure of HIV-serostatus is associated with better health outcomes. The goal of this study was to build and test comprehensive models of sexual orientation that included 8 theory-informed predictors of disclosure to mothers, fathers, and closest friends in a sample of HIV-positive Latino gay and bisexual men. US acculturation, gender non-conformity to hegemonic masculinity in self-presentation, comfort with sexual orientation, gay community involvement, satisfaction with social support, sexual orientation and gender of the closest friend emerged as significant predictors of disclosure of sexual orientation. PMID:22690708
1996-06-01
for Software Synthesis." KBSE . IEEE, 1993. 51. Kang, Kyo C., et al. Feature-Oriented Domain Analysis ( FODA ) Feasibility Study. Technical Report...and usefulness in domain analysis and modeling. Rumbaugh uses three distinct views to describe a domain: (1) the object model describes structural...Gibbons describe a methodology where Structured Analysis is used to build a hierarchical system structure chart. This structure chart is then translated
Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.
2014-01-01
It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678
Multisource least-squares reverse-time migration with structure-oriented filtering
NASA Astrophysics Data System (ADS)
Fan, Jing-Wen; Li, Zhen-Chun; Zhang, Kai; Zhang, Min; Liu, Xue-Tong
2016-09-01
The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.
The Orientations of the Giza Pyramids and Associated Structures
NASA Astrophysics Data System (ADS)
Nell, Erin; Ruggles, Clive
2014-08-01
Ever since Flinders Petrie undertook a theodolite survey on the Giza plateau in 1881 and drew attention to the extraordinary degree of precision with which the three colossal pyramids are oriented upon the four cardinal directions, there have been a great many suggestions as to how this was achieved and why it was of importance. Surprisingly, given the many astronomical hypotheses and speculations that have been offered in the intervening 130 years, there have been remarkably few attempts to reaffirm or improve on the basic survey data concerning the primary orientations. This paper presents the results of a week-long Total Station survey undertaken by the authors during December 2006 whose principal aim was to clarify the basic data concerning the orientation of each side of the three large pyramids and to determine, as accurately as possible, the orientations of as many as possible of the associated structures. The principal difference between this and all previous surveys is that it focuses upon measurements of sequences of points along multiple straight and relatively well preserved structural segments, with best-fit techniques being used to provide the best estimate of their orientation, as opposed to simple triangulation between directly identified or extrapolated corners. Our results suggest that there is only a very slight difference in orientation (c. 0.5 arc minutes) between the north-south axes of Khufu's and Khafre's pyramids, that the sides of Khafre's are more perfectly perpendicular than those of Khufu's, and that the east-west axis is closer to true cardinality in both cases. The broader context of associated structures suggests that the east-west orientation in relation to sunrise or (in one case) sunset may have been a, or even the, key factor in many cases.
Morphological and performance measures of polyurethane foams using X-ray CT and mechanical testing.
Patterson, Brian M; Henderson, Kevin; Gilbertson, Robert D; Tornga, Stephanie; Cordes, Nikolaus L; Chavez, Manuel E; Smith, Zachary
2014-08-01
Meso-scale structure in polymeric foams determines the mechanical properties of the material. Density variations, even more than variations in the anisotropic void structure, can greatly vary the compressive and tensile response of the material. With their diverse use as both a structural material and space filler, polyurethane (PU) foams are widely studied. In this manuscript, quantitative measures of the density and anisotropic structure are provided by using micro X-ray computed tomography (microCT) to better understand the results of mechanical testing. MicroCT illustrates the variation in the density, cell morphology, size, shape, and orientation in different regions in blown foam due to the velocity profile near the casting surface. "Interrupted" in situ imaging of the material during compression of these sub-regions indicates the pathways of the structural response to the mechanical load and the changes in cell morphology as a result. It is found that molded PU foam has a 6 mm thick "skin" of higher density and highly eccentric morphological structure that leads to wide variations in mechanical performance depending upon sampling location. This comparison is necessary to understand the mechanical performance of the anisotropic structure.
Di Maggio, Ilaria; Ginevra, Maria Cristina; Nota, Laura; Soresi, Salvatore
2016-08-01
The study is aimed at providing the development and initial validation of the Design My Future (DMF), which may be administered in career counseling and research activities to assess adolescents' future orientation and resilience. Two studies with two independent samples of Italian adolescents were conducted to examine psychometric requisites of DMF. Specifically, in the first study, after developing items and examined the content validity, the factorial structure, reliability and discriminant validity of the DMF were tested. In the second study, the measurement invariance across gender, conducing a sequence of nested CFA models, was evaluated. Results showed good psychometric support for the instrument with Italian adolescents. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Does hemipelvis structure and position influence acetabulum orientation?
Musielak, Bartosz; Jóźwiak, Marek; Rychlik, Michał; Chen, Brian Po-Jung; Idzior, Maciej; Grzegorzewski, Andrzej
2016-03-16
Although acetabulum orientation is well established anatomically and radiographically, its relation to the innominate bone has rarely been addressed. If explored, it could open the discussion on patomechanisms of such complex disorders as femoroacetabular impingement (FAI). We therefore evaluated the influence of pelvic bone position and structure on acetabular spatial orientation. We describe this relation and its clinical implications. This retrospective study was based on computed tomography scanning of three-dimensional models of 31 consecutive male pelvises (62 acetabulums). All measurements were based on CT spatial reconstruction with the use of highly specialized software (Rhinoceros). Relations between acetabular orientation (inclination, tilt, anteversion angles) and pelvic structure were evaluated. The following parameters were evaluated to assess the pelvic structure: iliac opening angle, iliac tilt angle, interspinous distance (ISD), intertuberous distance (ITD), height of the pelvis (HP), and the ISD/ITD/HP ratio. The linear and nonlinear dependence of the acetabular angles and hemipelvic measurements were examined with Pearson's product - moment correlation and Spearman's rank correlation coefficient. Correlations different from 0 with p < 0.05 were considered statistically significant. Comparison of the axis position with pelvis structure with orientation in the horizontal plane revealed a significant positive correlation between the acetabular anteversion angle and the iliac opening angle (p = 0.041 and 0.008, respectively). In the frontal plane, there was a positive correlation between the acetabular inclination angle and the iliac tilt angle (p = 0.025 and 0.014, respectively) and the acetabular inclination angle and the ISD/ITD/HP ratio (both p = 0.048). There is a significant correlation of the hemipelvic structure and acetabular orientation under anatomic conditions, especially in the frontal and horizontal planes. In the anteroposterior view, the more tilted-down innominate bone causes a more caudally oriented acetabulum axis, whereas in the horizontal view this relation is reversed. This study may serve as a basis for the discussion on the role of the pelvis in common disorders of the hip.
NASA Astrophysics Data System (ADS)
Stanton, N.; Schmitt, R.; Galdeano, A.; Maia, M.; Mane, M.
2010-07-01
The continental and adjacent marginal features along southeast Brazil were investigated, focusing on the basement structural relationships between onshore and offshore provinces. Lateral and vertical variations in the magnetic anomalies provided a good correlation with the regional tectonic features. The sin-rift dykes and faults are associated with the magnetic lineaments and lie sub parallel to the Precambrian N45E-S45W basement structure of the Ribeira Belt, but orthogonally to the Cabo Frio Tectonic Domain (CFTD) basement, implying that: (1) the upper portion of the continental crust was widely affected by Mesozoic extensional deformation; and (2) tectonic features related to the process of break up of the Gondwana at the CFTD were form regardless of the preexisting structural basement orientation being controlled by the stress orientation during the rift phase. The deep crustal structure (5 km depth) is characterized by NE-SW magnetic "provinces" related to the Ribeira Belt tectonic units, while deep suture zones are defined by magnetic lows. The offshore Campos structural framework is N30E-S30W oriented and resulted from a main WNW-ESE direction of extension in Early Cretaceous. Transfer zones are represented by NW-SE and E-W oriented discontinuities. A slight difference in orientation between onshore (N45E) and offshore (N30E) structural systems seems to reflect a re-orientation of stress during rifting. We proposed a kinematical model to explain the structural evolution of this portion of the margin, characterized by polyphase rifting, associated with the rotation of the South American plate. The Campos Magnetic High (CMH), an important tectonic feature of the Campos Basin corresponds to a wide area of high crustal magnetization. The CMH wass interpreted as a magmatic feature, mafic to ultramafic in composition that extends down to 14 km depth and constitutes an evidence of intense crustal extension at 60 km from the coast.
Park, Jungkap; Saitou, Kazuhiro
2014-09-18
Multibody potentials accounting for cooperative effects of molecular interactions have shown better accuracy than typical pairwise potentials. The main challenge in the development of such potentials is to find relevant structural features that characterize the tightly folded proteins. Also, the side-chains of residues adopt several specific, staggered conformations, known as rotamers within protein structures. Different molecular conformations result in different dipole moments and induce charge reorientations. However, until now modeling of the rotameric state of residues had not been incorporated into the development of multibody potentials for modeling non-bonded interactions in protein structures. In this study, we develop a new multibody statistical potential which can account for the influence of rotameric states on the specificity of atomic interactions. In this potential, named "rotamer-dependent atomic statistical potential" (ROTAS), the interaction between two atoms is specified by not only the distance and relative orientation but also by two state parameters concerning the rotameric state of the residues to which the interacting atoms belong. It was clearly found that the rotameric state is correlated to the specificity of atomic interactions. Such rotamer-dependencies are not limited to specific type or certain range of interactions. The performance of ROTAS was tested using 13 sets of decoys and was compared to those of existing atomic-level statistical potentials which incorporate orientation-dependent energy terms. The results show that ROTAS performs better than other competing potentials not only in native structure recognition, but also in best model selection and correlation coefficients between energy and model quality. A new multibody statistical potential, ROTAS accounting for the influence of rotameric states on the specificity of atomic interactions was developed and tested on decoy sets. The results show that ROTAS has improved ability to recognize native structure from decoy models compared to other potentials. The effectiveness of ROTAS may provide insightful information for the development of many applications which require accurate side-chain modeling such as protein design, mutation analysis, and docking simulation.
Comparative Analysis of the Flexural Stiffness of Pinniped Vibrissae
Ginter Summarell, Carly C.; Ingole, Sudeep; Fish, Frank E.; Marshall, Christopher D.
2015-01-01
Vibrissae are important components of the mammalian tactile sensory system and are used to detect vibrotactile stimuli in the environment. Pinnipeds have the largest and most highly innervated vibrissae among mammals, and the hair shafts function as a biomechanical filter spanning the environmental stimuli and the neural mechanoreceptors deep in the follicle-sinus complex. Therefore, the material properties of these structures are critical in transferring vibrotactile information to the peripheral nervous system. Vibrissae were tested as cantilever beams and their flexural stiffness (EI) was measured to test the hypotheses that the shape of beaded vibrissae reduces EI and that vibrissae are anisotropic. EI was measured at two locations on each vibrissa, 25% and 50% of the overall length, and at two orientations to the point force. EI differed in orientations that were normal to each other, indicating a functional anisotropy. Since vibrissae taper from base to tip, the second moment of area (I) was lower at 50% than 25% of total length. The anterior orientation exhibited greater EI values at both locations compared to the dorsal orientation for all species. Smooth vibrissae were generally stiffer than beaded vibrissae. The profiles of beaded vibrissae are known to decrease the amplitude of vibrations when protruded into a flow field. The lower EI values of beaded vibrissae, along with the reduced vibrations, may function to enhance the sensitivity of mechanoreceptors to detection of small changes in flow from swimming prey by increasing the signal to noise ratio. This study builds upon previous morphological and hydrodynamic analyses of vibrissae and is the first comparative study of the mechanical properties of pinniped vibrissae. PMID:26132102
Xiao, Minyu; Joglekar, Suneel; Zhang, Xiaoxian; Jasensky, Joshua; Ma, Jialiu; Cui, Qingyu; Guo, L Jay; Chen, Zhan
2017-03-08
A wide variety of charge carrier dynamics, such as transport, separation, and extraction, occur at the interfaces of planar heterojunction solar cells. Such factors can affect the overall device performance. Therefore, understanding the buried interfacial molecular structure in various devices and the correlation between interfacial structure and function has become increasingly important. Current characterization techniques for thin films such as X-ray diffraction, cross section scanning electronmicroscopy, and UV-visible absorption spectroscopy are unable to provide the needed molecular structural information at buried interfaces. In this study, by controlling the structure of the hole transport layer (HTL) in a perovskite solar cell and applying a surface/interface-sensitive nonlinear vibrational spectroscopic technique (sum frequency generation vibrational spectroscopy (SFG)), we successfully probed the molecular structure at the buried interface and correlated its structural characteristics to solar cell performance. Here, an edge-on (normal to the interface) polythiophene (PT) interfacial molecular orientation at the buried perovskite (photoactive layer)/PT (HTL) interface showed more than two times the power conversion efficiency (PCE) of a lying down (tangential) PT interfacial orientation. The difference in interfacial molecular structure was achieved by altering the alkyl side chain length of the PT derivatives, where PT with a shorter alkyl side chain showed an edge-on interfacial orientation with a higher PCE than that of PT with a longer alkyl side chain. With similar band gap alignment and bulk structure within the PT layer, it is believed that the interfacial molecular structural variation (i.e., the orientation difference) of the various PT derivatives is the underlying cause of the difference in perovskite solar cell PCE.
Sampath, Sujatha; Yarger, Jeffery L.
2014-11-27
Interaction with water causes shrinkage and significant changes in the structure of spider dragline silks, which has been referred to as supercontraction in the literature. Preferred orientation or alignment of protein chains with respect to the fiber axis is extensively changed during this supercontraction process. Synchrotron X-ray micro-fiber diffraction experiments have been performed on Nephila clavipes and Argiope aurantia major and minor ampullate dragline spider fibers in the native dry, contracted (by immersion in water) and restretched (from contracted) states. Changes in the orientation of β-sheet nanocrystallites and the oriented component of the amorphous network have been determined from wide-anglemore » X-ray diffraction patterns. While both the crystalline and amorphous components lose preferred orientation on wetting with water, the nano-crystallites regain their orientation on wet-restretching, whereas the oriented amorphous components only partially regain their orientation. Dragline major ampullate silks in both the species contract more than their minor ampullate silks.« less
Hiszpanski, Anna M; Baur, Robin M; Kim, Bumjung; Tremblay, Noah J; Nuckolls, Colin; Woll, Arthur R; Loo, Yueh-Lin
2014-11-05
Though both the crystal structure and molecular orientation of organic semiconductors are known to impact charge transport in thin-film devices, separately accessing different polymorphs and varying the out-of-plane molecular orientation is challenging, typically requiring stringent control over film deposition conditions, film thickness, and substrate chemistry. Here we demonstrate independent tuning of the crystalline polymorph and molecular orientation in thin films of contorted hexabenzocoronene, c-HBC, during post-deposition processing without the need to adjust deposition conditions. Three polymorphs are observed, two of which have not been previously reported. Using our ability to independently tune the crystal structure and out-of-plane molecular orientation in thin films of c-HBC, we have decoupled and evaluated the effects that molecular packing and orientation have on device performance in thin-film transistors (TFTs). In the case of TFTs comprising c-HBC, polymorphism and molecular orientation are equally important; independently changing either one affects the field-effect mobility by an order of magnitude.
Substrate Structures For Growth Of Highly Oriented And/Or Epitaxial Layers Thereon
Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Jia, Quanxi
2005-07-26
A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc's of 2.3×106 A/cm2 have been demonstrated with projected Ic's of 320 Amperes across a sample 1 cm wide for a superconducting article including a flexible polycrystalline metallic substrate, an inert oxide material layer upon the surface of the flexible polycrystalline metallic substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the layer of the inert oxide material, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer, a layer of a buffer material upon the oriented cubic oxide material layer, and, a top-layer of a high temperature superconducting material upon the layer of a buffer material.
Polarized photoluminescence of nc-Si–SiO{sub x} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michailovska, E. V.; Indutnyi, I. Z.; Shepeliavyi, P. E.
2016-01-15
The effect of photoluminescence polarization memory in nc-Si–SiO{sub x} light-emitting structures containing Si nanoparticles (nc-Si) in an oxide matrix is for the first time studied. The polarization properties of continuous and porous nanostructures passivated in HF vapors (or solutions) are studied. It is established that the polarization memory effect is manifested only after treatment of the structures in HF. The effect is also accompanied by a shift of the photoluminescence peak to shorter wavelengths and by a substantial increase in the photoluminescence intensity. It is found that, in anisotropic nc-Si–SiO{sub x} samples produced by oblique deposition in vacuum, the degreemore » of linear photoluminescence polarization in the sample plane exhibits a noticeable orientation dependence and correlates with the orientation of SiO{sub x} nanocolumns forming the structure of the porous layer. These effects are attributed to the transformation of symmetrically shaped Si nanoparticles into asymmetric elongated nc-Si particles upon etching in HF. In continuous layers, nc-Si particles are oriented randomly, whereas in porous structures, their preferential orientation coincides with the orientation of oxide nanocolumns.« less
NASA Astrophysics Data System (ADS)
Miyazaki, Masumi; Sakanoue, Tomo; Takenobu, Taishi
2018-03-01
Uniaxially oriented poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) films were prepared on rubbed polyimide substrates and applied to emitting layers of light-emitting electrochemical cells (LECs). The layered structure of the uniaxially oriented F8T2 film and ionic liquid electrolytes enabled us to demonstrate LEC operations with high anisotropic characteristics both in emission and charge transport. Polarized electroluminescence (EL) from electrochemically induced p-n junctions in the uniaxially oriented F8T2 was obtained. The dichroic ratios of EL were the same as those of photoluminescence, suggesting that the doping process into the oriented F8T2 did not interrupt the polymer ordering. This indicates the usefulness of the layered structure of the polymer/electrolyte for the fabrication of LECs based on highly oriented polymer films. In addition, uniaxially oriented F8T2 was found to show reduced threshold energy in optically pumped amplified spontaneous emission. These demonstrations suggest the advantage of uniaxially oriented polymer-based LECs for potential application in future electrically pumped lasers.
Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces
NASA Astrophysics Data System (ADS)
Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao
2018-01-01
In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.
Back to the Consideration of Future Consequences Scale: time to reconsider?
Rappange, David R; Brouwer, Werner B F; van Exel, N Job A
2009-10-01
The Consideration of Future Consequences (CFC) Scale is a measure of the extent to which individuals consider and are influenced by the distant outcomes of current behavior. In this study, the authors conducted factor analysis to investigate the factor structure of the 12-item CFC Scale. The authors found evidence for a multiple factor solution including one completely present-oriented factor consisting of all 7 present-oriented items, and one or two future-oriented factors consisting of the remaining future-oriented items. Further evidence indicated that the present-oriented factor and the 12-item CFC Scale perform similarly in terms of internal consistency and convergent validity. The structure and content of the future-oriented factor(s) is unclear. From the findings, the authors raise questions regarding the construct validity of the CFC Scale, the interpretation of its results, and the usefulness of the CFC scale in its current form in applied research.
NASA Astrophysics Data System (ADS)
Hester, David; Brownjohn, James; Bocian, Mateusz; Xu, Yan; Quattrone, Antonino
2018-05-01
This paper explores the use of wireless Inertial Measurement Units (IMU) originally developed for bio-mechanical research applications for modal testing of civil engineering infrastructure. Due to their biomechanics origin, these devices combine a triaxial accelerometer with gyroscopes and magnetometers for orientation, as well as on board data logging capability and wireless communication for optional data streaming and to coordinate synchronisation with other IMUs in a network. The motivation for application to civil structures is that their capabilities and simple operating procedures make them suitable for modal testing of many types of civil infrastructure of limited dimension including footbridges and floors while also enabling recovering of dynamic forces generated and applied to structures by moving humans. To explore their capabilities in civil applications, the IMUs are evaluated through modal tests on three different structures with increasing challenge of spatial and environmental complexity. These are, a full-scale floor mock-up in a laboratory, a short span road bridge and a seven story office tower. For each case, the results from the IMUs are compared with those from a conventional wired system to identify the limitations. The main conclusion is that the relatively high noise floor and limited communication range will not be a serious limitation in the great majority of typical civil modal test applications where convenient operation is a significant advantage over conventional wired systems.
Oriented matroids—combinatorial structures underlying loop quantum gravity
NASA Astrophysics Data System (ADS)
Brunnemann, Johannes; Rideout, David
2010-10-01
We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator (Ashtekar A and Lewandowski J 1998 Adv. Theor. Math. Phys. 1 388) in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in three-dimensional Riemannian space and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid (Ziegler G M 1998 Electron. J. Comb.; Björner A et al 1999 Oriented Matroids (Cambridge: Cambridge University Press)). Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence, the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of Brunnemann and Rideout (2008 Class. Quantum Grav. 25 065001 and 065002), and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3 (Ziegler G M 1998 Electron. J. Comb.; Björner A et al 1999 Oriented Matroids (Cambridge: Cambridge University Press)), and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.
Effects of reading-oriented tasks on students' reading comprehension of geometry proof
NASA Astrophysics Data System (ADS)
Yang, Kai-Lin; Lin, Fou-Lai
2012-06-01
This study compared the effects of reading-oriented tasks and writing-oriented tasks on students' reading comprehension of geometry proof (RCGP). The reading-oriented tasks were designed with reading strategies and the idea of problem posing. The writing-oriented tasks were consistent with usual proof instruction for writing a proof and applying it. Twenty-two classes of ninth-grade students ( N = 683), aged 14 to 15 years, and 12 mathematics teachers participated in this quasi-experimental classroom study. While the experimental group was instructed to read and discuss the reading tasks in two 45-minute lessons, the control group was instructed to prove and apply the same propositions. Generalised estimating equation (GEE) method was used to compare the scores of the post-test and the delayed post-test with the pre-test scores as covariates. Results showed that the total scores of the delayed post-test of the experimental group were significantly higher than those of the control group. Furthermore, the scores of the experimental group on all facets of reading comprehension except the application facet were significantly higher than those of the control group for both the post-test and delayed post-test.
NASA Astrophysics Data System (ADS)
Yang, Bin; Brazile, Bryn; Jan, Ning-Jiun; Voorhees, Andrew P.; Sigal, Ian A.
2018-02-01
Glaucoma is a disease characterized by progressive and irreversible vision loss leading to blindness. This vision loss is believed to be largely determined by the biomechanics of the optic nerve head region. Optic nerve head biomechanics, in turn, is determined by the properties of the constituent collagen. However, it is challenging to visualize and quantify collagen morphology and orientation in situ, and therefore often studies of the region collagen have used histological sections. Here we describe SPLM, a novel imaging technique that combines structured light illumination and polarized light microscopy (PLM) to enable collagen fiber visualization and fiber orientation mapping without requiring tissue sectioning. We developed a custom automated SPLM imaging system based on an upright microscope and a digital micromirror device (DMD) projector. The high spatial frequency patterns were used to achieve effective background suppression. Enhanced scattering sensitivity with SPLM resulted in images with highly improved visibility of collagen structures, even of tissues covered by pigment. SPLM produced improved fiber orientation maps from superficial layers compared to depth-averaged orientation from regular PLM. SPLM imaging provides valuable information of collagen fiber morphology and orientation in situ thus strengthening the study of ocular collagen fiber biomechanics and glaucoma.
A structurally oriented simulation system
NASA Technical Reports Server (NTRS)
Aran, Z.
1973-01-01
The computer program SOSS (Structurally Oriented Simulation System) is designed to be used as an experimental aid in the study of reliable systems. Basically, SOSS can simulate the structure and behavior of a discrete-time, finite-state, time-invariant system at various levels of structural definition. A general description of the program is given along with its modes of operation, command language of the basic system, future features to be incorporated in SOSS, and an example of usage.
Weidner, Tobias; Breen, Nicholas F.; Li, Kun; Drobny, Gary P.; Castner, David G.
2010-01-01
The power of combining sum frequency generation (SFG) vibrational spectroscopy and solid-state nuclear magnetic resonance (ssNMR) spectroscopy to quantify, with site specificity and atomic resolution, the orientation and dynamics of side chains in synthetic model peptides adsorbed onto polystyrene (PS) surfaces is demonstrated in this study. Although isotopic labeling has long been used in ssNMR studies to site-specifically probe the structure and dynamics of biomolecules, the potential of SFG to probe side chain orientation in isotopically labeled surface-adsorbed peptides and proteins remains largely unexplored. The 14 amino acid leucine-lysine peptide studied in this work is known to form an α-helical secondary structure at liquid-solid interfaces. Selective, individual deuteration of the isopropyl group in each leucine residue was used to probe the orientation and dynamics of each individual leucine side chain of LKα14 adsorbed onto PS. The selective isotopic labeling methods allowed SFG analysis to determine the orientations of individual side chains in adsorbed peptides. Side chain dynamics were obtained by fitting the deuterium ssNMR line shape to specific motional models. Through the combined use of SFG and ssNMR, the dynamic trends observed for individual side chains by ssNMR have been correlated with side chain orientation relative to the PS surface as determined by SFG. This combination provides a more complete and quantitative picture of the structure, orientation, and dynamics of these surface-adsorbed peptides than could be obtained if either technique were used separately. PMID:20628016
Quasi-static elastography comparison of hyaline cartilage structures
NASA Astrophysics Data System (ADS)
McCredie, A. J.; Stride, E.; Saffari, N.
2009-11-01
Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.
NASA Astrophysics Data System (ADS)
Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik
2017-04-01
The Cenozoic evolution of the central segment of the Tethyan belt is dominated by oblique convergence and final collision of Gondwana-derived terranes and the Arabian plate with Eurasia, which created a favorable setting for the formation of the highly mineralized Meghri-Ordubad pluton in the southernmost Lesser Caucasus. Regional strike-slip faults played an important role in the control of the porphyry Cu-Mo and epithermal systems hosted by the Meghri-Ordubad pluton. In this contribution we discuss the paleostress and the kinematic environment of the major strike-slip and oblique-slip ore-controlling faults throughout the Eocene subduction to Mio-Pliocene post-collisional tectonic evolution of the Meghri-Ordubad pluton based on detailed structural field mapping of the ore districts, stereonet compilation of ore-bearing fractures and vein orientations in the major porphyry and epithermal deposits, and the paleostress reconstructions. Paleostress reconstructions indicate that during the Eocene and Early Oligocene, the main paleostress axe orientations reveal a dominant NE-SW-oriented compression, which is compatible with the subduction geometry of the Neotethys along Eurasia. This tectonic setting was favorable for dextral displacements along the two major, regional NNW-oriented Khustup-Giratakh and Salvard-Ordubad strike-slip faults. This resulted in the formation of a NS-oriented transrotational basin, known as the Central magma and ore- controlling zone (Tayan, 1998). It caused a horizontal clockwise rotation of blocks. The EW-oriented faults separating the blocks formed as en-échelon antithetic faults (Voghji, Meghrasar, Bughakyar and Meghriget-Cav faults). The Central zone consists of a network of EW-oriented sinistral and NS-oriented subparallel strike-slip faults (Tashtun, Spetry, Tey, Meghriget and Terterasar faults). They are active since the Eocene and were reactivated during the entire tectonic evolution of the pluton, but with different behaviors. During the Eocene, dextral displacement along the NS-oriented strike-slip faults were favorable for the opening of NE-oriented en-échelon normal faults. The NS-oriented faults, in particular at their intersection with EW- and NE-oriented faults, were important ore-controlling structures for the emplacement of major porphyry Cu-Mo (Dastakert, Aygedzor and Agarak) and epithermal (Tey-Lichkvaz and Terterasar) deposits. In summary, we conclude that from the Eocene to the Oligocene the dominant structural system consisted essentially in dextral strike-slip tectonics along the major NS-oriented faults. During the Oligocene to Miocene, NS-oriented compression and EW-oriented extension predominated, which is consistent with the collisional and post-collisional geodynamic evolution of the study area. This setting resulted in renewed dextral displacement along the NS-oriented ore-controlling faults, and sinistral displacement along the EW-oriented antithetic faults. This setting created the favorable geometry for opening NS- EW- and NE-oriented extension fractures, and the adequate conditions for the emplacement of vein-, stockwork-type porphyry deposits, including the giant Kadjaran deposit. During the Lower Miocene to Pliocene there was a rotation in the main regional stress components according to progressive regional evolution. Paleostress reconstructions indicate a change in compression from NS during the Miocene to NNW during the Pliocene. The Tashtun transcurrent fault had an oblique-slip behavior. It formed a negative flower structure with a sinistral strike-slip component, which resulted in the development of a pull-apart basin and the formation of the Lichk porphyry-epithermal system.
Magnetic domain configuration of (111)-oriented LaFeO 3 epitaxial thin films
Hallsteinsen, I.; Moreau, M.; Chopdekar, R. V.; ...
2017-08-22
In antiferromagnetic spintronics control of the domains and corresponding spin axis orientation is crucial for devices. Here we investigate the antiferromagnetic axis in (111)-oriented LaFeO 3 SrTiO 3 , which is coupled to structural twin domains. The structural domains have either the orthorhombic a- or b-axis along the in-plane <1more » $$\\bar{1}$$0> cubic directions of the substrate, and the corresponding magnetic domains have the antiferromagnetic axis in the sample plane. Six degenerate antiferromagnetic axes are found corresponding to the <1$$\\bar{1}$$0> and <11$$\\bar{2}$$> in-plane directions. This is in contrast to the biaxial anisotropy in (001)-oriented films and reflects how crystal orientation can be used to control magnetic anisotropy in antiferromagnets.« less
Facial Structure Predicts Sexual Orientation in Both Men and Women.
Skorska, Malvina N; Geniole, Shawn N; Vrysen, Brandon M; McCormick, Cheryl M; Bogaert, Anthony F
2015-07-01
Biological models have typically framed sexual orientation in terms of effects of variation in fetal androgen signaling on sexual differentiation, although other biological models exist. Despite marked sex differences in facial structure, the relationship between sexual orientation and facial structure is understudied. A total of 52 lesbian women, 134 heterosexual women, 77 gay men, and 127 heterosexual men were recruited at a Canadian campus and various Canadian Pride and sexuality events. We found that facial structure differed depending on sexual orientation; substantial variation in sexual orientation was predicted using facial metrics computed by a facial modelling program from photographs of White faces. At the univariate level, lesbian and heterosexual women differed in 17 facial features (out of 63) and four were unique multivariate predictors in logistic regression. Gay and heterosexual men differed in 11 facial features at the univariate level, of which three were unique multivariate predictors. Some, but not all, of the facial metrics differed between the sexes. Lesbian women had noses that were more turned up (also more turned up in heterosexual men), mouths that were more puckered, smaller foreheads, and marginally more masculine face shapes (also in heterosexual men) than heterosexual women. Gay men had more convex cheeks, shorter noses (also in heterosexual women), and foreheads that were more tilted back relative to heterosexual men. Principal components analysis and discriminant functions analysis generally corroborated these results. The mechanisms underlying variation in craniofacial structure--both related and unrelated to sexual differentiation--may thus be important in understanding the development of sexual orientation.
NASA Astrophysics Data System (ADS)
Shi, Lei; Chu, Zhenyu; Dong, Xueliang; Jin, Wanqin; Dempsey, Eithne
2013-10-01
Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors.Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors. Electronic supplementary information (ESI) available: Four-probe method for determining the conductivity of the hybrid crystal (Fig. S1); stability comparisons of the hybrid films (Fig. S2); FESEM images of the hybrid microarray (Fig. S3); electrochemical characterizations of the hybrid films (Fig. S4); DFT simulations (Fig. S5); cross-sectional FESEM image of the hybrid microarray (Fig. S6); regeneration and stability tests of the DNA biosensor (Fig. S7). See DOI: 10.1039/c3nr03097k
Orientation Tuning in the Visual Cortex of 3-Month-old Human Infants
Baker, Thomas J.; Norcia, Anthony M.; Candy, T. Rowan
2016-01-01
Sensitivity to orientation is critical for making a whole and complete picture of the world. We measured the orientation tuning of mechanisms inthe visual cortex of typically developing 3-month-olds and adults using a nonlinear analysis of the two-input steady-state visually evoked potential (VEP). Two gratings, one a fixed test and the other a variable orientation masker were tagged with distinct temporal frequencies and the corresponding evoked responses were measured at the harmonics of the test and masker frequencies and at a frequency equal to the sum of the two stimulus frequencies. The magnitude of the sum frequency component depended strongly on the relative orientation of the test and masker in both infants and adults. The VEP tuning bandwidths of the 3-month-olds measured at the sum frequency were similar to those of adults, suggesting that behavioral immaturities in functions such as orientation discrimination and contour integration may result from other immaturities in long-range lateral projections or feedback mechanisms. PMID:21236289
NASA Astrophysics Data System (ADS)
Thiel, Erik; Kreutzbruck, Marc; Studemund, Taarna; Ziegler, Mathias
2018-04-01
Among the photothermal methods, full-field thermal imaging is used to characterize materials, to determine thicknesses of layers, or to find inhomogeneities such as voids or cracks. The use of classical light sources such as flash lamps (impulse heating) or halogen lamps (modulated heating) led to a variety of nondestructive testing methods, in particular, lock-in and flash-thermography. In vertical-cavity surface-emitting lasers (VCSELs), laser light is emitted perpendicularly to the surface with a symmetrical beam profile. Due to the vertical structure, they can be arranged in large arrays of many thousands of individual lasers, which allows power scaling into the kilowatt range. Recently, a high-power yet very compact version of such a VCSEL-array became available that offers both the fast timing behavior of a laser as well as the large illumination area of a lamp. Moreover, it allows a spatial and temporal control of the heating because individual parts of the array can be controlled arbitrarily in frequency, amplitude, and phase. In conjunction with a fast infrared camera, such structured heating opens up a field of novel thermal imaging and testing methods. As a first demonstration of this approach, we chose a testing problem very challenging to conventional thermal infrared testing: The detection of very thin subsurface defects perpendicularly oriented to the surface of metallic samples. First, we generate destructively interfering thermal wave fields, which are then affected by the presence of defects within their reach. It turned out that this technique allows highly sensitive detection of subsurface defects down to depths in excess of the usual thermographic rule of thumb, with no need for a reference or surface preparation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fuxue, E-mail: yanfuxue@126.com; Han, Kai, E-
2017-02-15
C-axis oriented La{sub 0.67}Sr{sub 0.33}MnO{sub 3}(LSMO)/PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}(PZT) films are fabricated successfully by sol-gel method on LaAlO{sub 3} (00l) substrates. The structure, composition and morphology of the films are investigated by X-ray diffractometer (XRD, θ-2θ scan, ω-scan and ϕ-scan), X-ray photoelectron spectroscope (XPS), field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). The electric and magnetic properties of randomly and c-axis oriented LSMO/PZT films are studied comparably using ferroelectric testing apparatus and physical property measurement system (PPMS). It is found that the epitaxial LSMO/PZT composite films show well controlled growth along c-axis, and much bettermore » magnetoelectric properties than the randomly oriented ones. The ME voltage coefficient increases from 23 mV cm{sup −1} Oe{sup −1} for the randomly oriented LSMO/PZT composite films to 52 mV cm{sup −1} Oe{sup −1} for c-axis oriented ones prepared using the low cost sol-gel method presented in this study, which shows high potential in promising applications. - Highlights: •Epitaxial LSMO/PZT films were fabricated successfully by sol-gel method on LAO (00l) substrate. •The prepared films exhibit well-defined multiferroic properties for the epitaxial LSMO/PZT films. •Epitaxial LSMO/PZT films show superior magnetoelectric properties to the randomly oriented ones.« less
Informal Control Networks and Adolescent Orientations Toward Alcohol Use.
ERIC Educational Resources Information Center
Johnson, Kirk Alan
1986-01-01
Investigated the roles parental and peer informal control structures play in predicting adolescent alcohol use and abuse, using data from high school students (N=345). Suggests that "youth world" and "adult world" control structures are predictive of adolescents' orientations toward alcohol, though generally in different…
Teachers' Goal Orientations: Effects on Classroom Goal Structures and Emotions
ERIC Educational Resources Information Center
Wang, Hui; Hall, Nathan C.; Goetz, Thomas; Frenzel, Anne C.
2017-01-01
Background: Prior research has shown teachers' goal orientations to influence classroom goal structures (Retelsdorf "et al.," 2010, "Learning and Instruction, 20," 30) and to also impact their emotions (Schutz "et al.," 2007, "Emotion in Education," Academic Press, Amsterdam, the Netherlands). However,…
Initial stage corrosion of nanocrystalline copper particles and thin films
NASA Astrophysics Data System (ADS)
Tao, Weimin
1997-12-01
Corrosion behavior is an important issue in nanocrystalline materials research and development. A very fine grain size is expected to have significant effects on the corrosion resistance of these novel materials. However, both the macroscopic corrosion properties and the corresponding structure evolution during corrosion have not been fully studied. Under such circumstances, conducting fundamental research in this area is important and necessary. In this study, high purity nanocrystalline and coarse-grained copper were selected as our sample material, sodium nitrite aqueous solution at room temperature and air at a high temperature were employed as corrosive environments. The weight loss testing and electrochemical methods were used to obtain the macroscopic corrosion properties, whereas the high resolution transmission electron microscope was employed for the structure analysis. The weight loss tests indicate that the corrosion rate of nanocrystalline copper is about 5 times higher than that of coarse-grained copper at the initial stage of corrosion. The electrochemical measurements show that the corrosion potential of the nanocrystalline copper has a 230 mV negative shift in comparison with that of the coarse-grained copper. The nanocrystalline copper also exhibits a significantly higher exchange current density than the coarse-grained copper. High resolution TEM revealed that the surface structure changes at the initial stage of corrosion. It was found that the first copper oxide layer formed on the surface of nanocrystalline copper thin film contains a large density of high angle grain boundaries, whereas that formed on the surface of coarse-grained copper shows highly oriented oxide nuclei and appears to show a strong tendency for forming low angle grain boundaries. A correlation between the macroscopic corrosion properties and the structure characteristics is proposed for the nanocrystalline copper based on the concept of the "apparent" exchange current density associated with mass transport of ions in the oxide layer. A hypothesis is developed that the high corrosion rate of the nanocrystalline copper is closely associated with the structure of the copper oxide layer. Therefore, a high "apparent" exchange current density for the nanocrystalline copper is associated with the high angle grain boundary structure in the initial oxide layer. Additional structure analysis was also carried out: (a) High resolution TEM imaging has provided a cross sectional view of the epitaxial interface between nanocrystalline copper and copper (I) oxide and explicitly discloses the presence of interface defects such as misfit dislocations. Based on this observation, a mechanism was proposed to explain the Cu/Cusb2O interface misfit accommodation. This appears to be the first time this interface has been directly examined. (b) A nanocrystalline analogue to a cross-section of Gwathmey's copper single crystal sphere was revealed by high resolution TEM imaging. A partially oxidized nanocrystalline copper particle is used to examine the variation of the Cu/Cusb2O orientation relationship with respect to changes in surface orientation. A new orientation relationship, Cu (011) //Cusb2O (11), ˜ Cu(011)//Cusb2O(111), was found for the oxidation of nanocrystalline copper.
Object-oriented structures supporting remote sensing databases
NASA Technical Reports Server (NTRS)
Wichmann, Keith; Cromp, Robert F.
1995-01-01
Object-oriented databases show promise for modeling the complex interrelationships pervasive in scientific domains. To examine the utility of this approach, we have developed an Intelligent Information Fusion System based on this technology, and applied it to the problem of managing an active repository of remotely-sensed satellite scenes. The design and implementation of the system is compared and contrasted with conventional relational database techniques, followed by a presentation of the underlying object-oriented data structures used to enable fast indexing into the data holdings.
ERIC Educational Resources Information Center
Miller, Mark Alan
2013-01-01
The study tested the 2X2 model of the Achievement Goal Orientation (AGO) theory in a military technical training environment while using the Air Force Officers Qualifying Test's academic aptitude score to control for the differences in the students' academic aptitude. The study method was quantitative and the design was correlational.…
Structural Assessment of Advanced Composite Tow-Steered Shells
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia
2013-01-01
The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.
Structural Analysis of Silicic Lavas Reveals the Importance of Endogenous Flow During Emplacement
NASA Astrophysics Data System (ADS)
Andrews, G. D.; Martens, A.; Isom, S.; Maxwell, A.; Brown, S. R.
2017-12-01
Recent observations of silicic lava flows in Chile strongly suggest sustained, endogeneous flow beneath an insulating carapace, where the flow advances through breakouts at the flow margin. New mapping of vertical exposures around the margin of Obsidian Dome, California, has identified discreet lobe structures in cross-section, suggesting that flow-front breakouts occured there during emplacement. The flow lobes are identified through structural measurements of flow-banding orientation and the stretching directions of vesicles. Newly acquired lidar of the Inyo Domes, including Obsidian Dome, is being analyzed to better understand the patterns of folding on the upper surface of the lavas, and to test for fold vergence patterns that may distinguish between endogenous and exogenous flow.
Bond-orientational analysis of hard-disk and hard-sphere structures.
Senthil Kumar, V; Kumaran, V
2006-05-28
We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.
Deposition and characterization of molybdenum thin films using dc-plasma magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Majid, E-mail: majids@hotmail.com; Islam, Mohammad, E-mail: mohammad.islam@gmail.com
2013-12-15
Molebdenum (Mo) thin films were deposited on well-cleaned soda-lime glass substrates using DC-plasma magnetron sputtering. In the design of experiment deposition was optimized for maximum beneficial characteristics by monitoring effect of process variables such as deposition power (100–200 W). Their electrical, structural and morphological properties were analyzed to study the effect of these variables. The electrical resistivity of Mo thin films could be reduced by increasing deposition power. Within the range of analyzed deposition power, Mo thin films showed a mono crystalline nature and the crystallites were found to have an orientation along [110] direction. The surface morphology of thinmore » films showed that a highly dense micro structure has been obtained. The surface roughness of films increased with deposition power. The adhesion of Mo thin films could be improved by increasing the deposition power. Atomic force microscopy was used for the topographical study of the films and to determine the roughness of the films. X-ray diffractrometer and scanning electron microscopy analysis were used to investigate the crystallinity and surface morphology of the films. Hall effect measurement system was used to find resistivity, carrier mobility and carrier density of deposited films. The adhesion test was performed using scotch hatch tape adhesion test. Mo thin films prepared at deposition power of 200 W, substrate temperature of 23°C and Ar pressure of 0.0123 mbar exhibited a mono crystalline structure with an orientation along (110) direction, thickness of ∼550 nm and electrical resistivity value of 0.57 × 10{sup −4} Ω cm.« less
Synthesis and characterization of mangan oxide coated sand from Capkala kaolin
NASA Astrophysics Data System (ADS)
Destiarti, Lia; Wahyuni, Nelly; Prawatya, Yopa Eka; Sasri, Risya
2017-03-01
Synthesis and characterization of mangan oxide coated sand from quartz sand fraction of Capkala kaolin has been conducted. There were two methods on synthesis of Mangan Oxide Coated Sand (MOCS) from Capkala Kaolin compared in this research. Characterization of MOCS was done by using Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (SEM/EDX) and X-Ray Diffraction (XRD). The MOCS was tested to reduce phosphate in laundry waste. The result showed that the natural sand had bigger agregates and a relatively uniform structural orientation while both MOCS had heterogen structural orientation and manganese oxide formed in cluster. Manganese in first and second methods were 1,93% and 2,63%, respectively. The XRD spectrum showed clear reflections at 22,80°, 36,04°, 37,60° and a broad band at 26,62° (SiO2). Based on XRD spectrum, it can be concluded that mineral constituents of MOCS was verified corresponding to pyrolusite (MnO2). The former MOCS could reduce almost 60% while the later could reduce 70% phosphate in laundry waste.
Zbik, Marek S; Frost, Ray L
2010-06-15
The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using atomic force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concentrations and larger particle diameters (up to 5 microm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 001/020 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction. 2010 Elsevier Inc. All rights reserved.
Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Gaohua; Department of Applied Physics and Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082; Luo, Ning
We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands showmore » rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.« less
Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires
NASA Astrophysics Data System (ADS)
Liao, Gaohua; Luo, Ning; Yang, Zhihu; Chen, Keqiu; Xu, H. Q.
2015-09-01
We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands show rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.
Web Application Design Using Server-Side JavaScript
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, J.; Simons, R.
1999-02-01
This document describes the application design philosophy for the Comprehensive Nuclear Test Ban Treaty Research & Development Web Site. This design incorporates object-oriented techniques to produce a flexible and maintainable system of applications that support the web site. These techniques will be discussed at length along with the issues they address. The overall structure of the applications and their relationships with one another will also be described. The current problems and future design changes will be discussed as well.
Combined VIS-IR spectrometer with vertical probe beam
NASA Astrophysics Data System (ADS)
Protopopov, V.
2017-12-01
A prototype of a combined visible-infrared spectrometer with a vertical probe beam is designed and tested. The combined spectral range is 0.4-20 μ with spatial resolution 1 mm. Basic features include the ability to measure both visibly transparent and opaque substances, as well as buried structures, such as in semiconductor industry; horizontal orientation of a sample, including semiconductor wafers; and reflection mode of operation, delivering twice the sensitivity compared to the transmission mode.
Non-destructive testing of satellite nozzles made of carbon fibre ceramic matrix composite, C/SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebelo Kornmeier, J.; Hofmann, M.; Schmidt, S.
Carbon fibre ceramic matrix composite materials, C/SiC, are excellent candidates as lightweight structural materials for high performance hot structures such as in aerospace applications. Satellite nozzles are manufactured from C/SiC, using, for instance, the Liquid Polymer Infiltration (LPI) process. In this article the applicability of different non-destructive analysis methods for the characterisation of C/SiC components will be discussed. By using synchrotron and neutron tomography it is possible to characterise the C/SiC material in each desired location or orientation. Synchrotron radiation using tomography on small samples with a resolution of 1.4 {mu}m, i.e. the fibre scale, was used to characterise threemore » dimensionally fibre orientation and integrity, matrix homogeneity and dimensions and distributions of micro pores. Neutron radiation tomography with a resolution of about 300 {mu}m was used to analyse the over-all C/SiC satellite nozzle component with respect to the fibre content. The special solder connection of a C/SiC satellite nozzle to a metallic ring was also successfully analysed by neutron tomography. In addition, the residual stress state of a temperature tested satellite nozzle was analysed non-destructively in depth by neutron diffraction. The results revealed almost zero stress for the principal directions, radial, axial and tangential, which can be considered to be the principal directions.« less
Dodel, M; Hemmati Nejad, N; Bahrami, S H; Soleimani, M; Hanaee-Ahvaz, H
2016-08-31
Tissue reconstruction is among the increasing applications of polymer nanofibers. Fibrous scaffolds (mats) can be easily produced using the electrospinning method with structure and biomechanical properties similar to those of a cellular matrix. Electrospinning is widely used in the production of nanofibers and the GAP-method electrospinning is one of the means of producing fully aligned nanofibers. In this research, using the GAP-method, knitted fibrous scaffolds were made of silk fibroin, which is a biocompatible and biodegradable polymer. To extract fibroin from cocoons, the sodium chloride solution as well as dialysis and freeze-drying techniques were employed. The molecular weight of the extracted fibroin was measured with the SDS-Page electrophoresis technique. Moreover, the pure fibroin structure was examined using the ATR-FTIR method, and the viscosity of the solution used for electrospinning was measured with the Brookfield rotational viscometer. The scaffolds were prepared through electrospinning of the silk fibroin in pure formic acid solution. The following three structures were electrospun: 1) a random structure; 2) a knitted structure with an interstitial angle of 60 degrees; 3) a knitted structure with an interstitial angle of 90 degrees. Morphology of the resulting fibers was studied with a SEM (scanning electron microscope). Fibroin scaffolds are degradable in water. Therefore, they were fixated through immersion in methanol to be prepared for assays. The mechanical properties of the scaffolds were also studied using a tensile strength test device. The effect of methanol on the strength properties of the samples was also assessed. The hydrophilic potential of the samples was measured via a contact angle test. To increase the hydrophilicity of the scaffold surfaces, the cold oxygen plasma technique was employed. Finally, the biocompatibility and cell adhesion of the resulting scaffolds were examined through a HEK 293 cell culture, and the results were analyzed through the MTT, DAPI staining, and SEM imaging techniques. Results revealed that the oriented knitted structure contributed to the increase in Young's modulus and the maximum strength of scaffolds as compared to the random samples. Moreover, this structure can also be a suitable alternative to the typical chemical means of increasing strength.
Orientation determination of interfacial beta-sheet structures in situ.
Nguyen, Khoi Tan; King, John Thomas; Chen, Zhan
2010-07-01
Structural information such as orientations of interfacial proteins and peptides is important for understanding properties and functions of such biological molecules, which play crucial roles in biological applications and processes such as antimicrobial selectivity, membrane protein activity, biocompatibility, and biosensing performance. The alpha-helical and beta-sheet structures are the most widely encountered secondary structures in peptides and proteins. In this paper, for the first time, a method to quantify the orientation of the interfacial beta-sheet structure using a combined attenuated total reflectance Fourier transformation infrared spectroscopic (ATR-FTIR) and sum frequency generation (SFG) vibrational spectroscopic study was developed. As an illustration of the methodology, the orientation of tachyplesin I, a 17 amino acid peptide with an antiparallel beta-sheet, adsorbed to polymer surfaces as well as associated with a lipid bilayer was determined using the regular and chiral SFG spectra, together with polarized ATR-FTIR amide I signals. Both the tilt angle (theta) and the twist angle (psi) of the beta-sheet at interfaces are determined. The developed method in this paper can be used to obtain in situ structural information of beta-sheet components in complex molecules. The combination of this method and the existing methodology that is currently used to investigate alpha-helical structures will greatly broaden the application of optical spectroscopy in physical chemistry, biochemistry, biophysics, and structural biology.
ERIC Educational Resources Information Center
Dzhamalova, Bika B.; Timonin, Andrey I.; Kolesov, Vladimir I.; Pavlov, Vladimir V.; Evstegneeva, Anastasiia A.
2016-01-01
This article is focused on the development of the structure and content of consolidating orientation of pedagogical functions of university teachers in international students' training. The leading method of research is the modeling method that allows producing of the established structure's and content's justification of consolidating orientation…
ERIC Educational Resources Information Center
Canagarajah, Suresh
2018-01-01
The expanding orientations to translingualism are motivated by a gradual shift from the structuralist paradigm that has been treated as foundational in modern linguistics. Structuralism encouraged scholars to consider language, like other social constructs, as organized as a self-defining and closed structure, set apart from spatiotemporal…
NASA Astrophysics Data System (ADS)
Desmarais, Jacques K.; Smith, Richard S.
2016-03-01
A novel automatic data interpretation algorithm is presented for modelling airborne electromagnetic (AEM) data acquired over resistive environments, using a single-component (vertical) transmitter, where the position and orientation of a dipole conductor is allowed to vary in three dimensions. The algorithm assumes that the magnetic fields produced from compact vortex currents are expressed as a linear combinations of the fields arising from dipoles in the subsurface oriented parallel to the [1, 0, 0], [0, 1, 0], and [0, 0, 1], unit vectors. In this manner, AEM responses can be represented as 12 terms. The relative size of each term in the decomposition can be used to determine geometrical information about the orientation of the subsurface conductivity structure. The geometrical parameters of the dipole (location, depth, dip, strike) are estimated using a combination of a look-up table and a matrix inverted in a least-squares sense. Tests on 703 synthetic models show that the algorithm is capable of extracting most of the correct geometrical parameters of a dipole conductor when three-component receiver data is included in the interpretation procedure. The algorithm is unstable when the target is perfectly horizontal, as the strike is undefined. Ambiguities may occur in predicting the orientation of the dipole conductor if y-component data is excluded from the analysis. Application of our approach to an anomaly on line 15 of the Reid Mahaffy test site yields geometrical parameters in reasonable agreement with previous authors. However, our algorithm provides additional information on the strike and offset from the traverse line of the conductor. Disparities in the values of predicted dip and depth are within the range of numerical precision. The index of fit was better when strike and offset were included in the interpretation procedure. Tests on the data from line 15701 of the Chibougamau MEGATEM survey shows that the algorithm is applicable to situations where three-component AEM data is available.
NASA Astrophysics Data System (ADS)
Espinoza Orias, Alejandro A.
Orthopedics research has made significant advances in the areas of biomechanics, bone implants and bone substitute materials. However, to date there is no definitive model to explain the structure-property relationships in bone as a material to enable better implant designs or to develop a true biomechanical analog of bone. The objective of this investigation was to establish a relationship between the elastic anisotropy of cortical bone tissue and its microstructure. Ultrasonic wave propagation was used to measure stiffness coefficients for specimens sectioned along the length of a human femur. The elastic constants were orthotropic and varied with anatomical location. Stiffness coefficients were generally largest at the midshaft and stiffness anisotropy ratios were largest at the distal and proximal ends. These tests were run on four additional human femurs to assess the influence of phenotypic variation, and in most cases, it was found that phenotypes do not exert a significant effect. Stiffness coefficients were shown to be correlated as a power law relation to apparent density, but anisotropy ratios were not. Texture analysis was performed on selected samples to measure the orientation distribution of the bone mineral crystals. Inverse pole figures showed that bone mineral crystals had a preferred crystallographic orientation, coincident with the long axis of the femur, which is its principal loading direction. The degree of preferred orientation was represented in Multiples of a Random Distribution (MRD), and correlated to the anisotropy ratios. Variation in elastic anisotropy was shown to be primarily due to the bone mineral orientation. The results found in this work can be used to incorporate anisotropy into structural analysis for bone as a material.
Key role of collagen fibers orientation in casing-meat adhesion.
Yang, Shuang; Wang, Jinfeng; Wang, Yuanliang; Luo, Yanfeng
2016-11-01
Meat adhesion of collagen casings is important for the quality of sausages. In view of the crucial role of surface morphology in material adhesion, we hypothesize that the fiber orientation of collagen casings controls the meat adhesion. To verify this hypothesis, the casing-meat adhesion of four manufactured collagen casings (MCCs) was examined by the visual observation and the peeling force detection. The corresponding fiber orientation was investigated by using scanning electric microscope (SEM) and tensile tests. The results showed that MCC1 and MCC2 which had narrower directionality peak (-20° to -40° and -20° to 40°, respectively) and higher axial (σ a ) to radial (σ r ) strength ratios (1.90±0.07 and 1.31±0.02, respectively) demonstrated lower peeling forces than MCC3 and MCC4, indicating that a more isotropic structure is advantageous to the casing-meat adhesion. Further detection of the radial and axial shrink (including free shrinkage (S r , S a ) and shrink force (F r , F a )) and observation of the local meat-casing interfaces by hematoxylin and eosin (HE) staining showed that appropriate S r (15%-20%) and F r (0.2-0.4N) values at 80°C helped to make the sausage tight whereas high F a (>0.7N) promoted the peeling off of the casings from meat. These results imply that an isotropic structure leads to balanced radial and axial shrink of MCCs, which may enhance the casing-meat adhesion. Overall, controlling a uniform fiber orientation should be an effective way to enhance the meat adhesion of collagen casings. Besides, shrinking properties should be efficient indicators for the meat adhesion of collagen casings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Homosexuality as a Discrete Class.
Norris, Alyssa L; Marcus, David K; Green, Bradley A
2015-12-01
Previous research on the latent structure of sexual orientation has returned conflicting results, with some studies finding a dimensional structure (i.e., ranging quantitatively along a spectrum) and others a taxonic structure (i.e., categories of individuals with distinct orientations). The current study used a sample (N = 33,525) from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). A series of taxometric analyses were conducted using three indicators of sexual orientation: identity, behavior, and attraction. These analyses, performed separately for women and men, revealed low-base-rate same-sex-oriented taxa for men (base rate = 3.0%) and women (base rate = 2.7%). Generally, taxon membership conferred an increased risk for psychiatric and substance-use disorders. Although taxa were present for men and women, women demonstrated greater sexual fluidity, such that any level of same-sex sexuality conferred taxon membership for men but not for women. © The Author(s) 2015.
Cordier, Christopher; Morton, Daniel; Murrison, Sarah; O'Leary-Steele, Catherine
2008-01-01
The purpose of diversity-oriented synthesis is to drive the discovery of small molecules with previously unknown biological functions. Natural products necessarily populate biologically relevant chemical space, since they bind both their biosynthetic enzymes and their target macromolecules. Natural product families are, therefore, libraries of pre-validated, functionally diverse structures in which individual compounds selectively modulate unrelated macromolecular targets. This review describes examples of diversity-oriented syntheses which have, to some extent, been inspired by the structures of natural products. Particular emphasis is placed on innovations that allow the synthesis of compound libraries that, like natural products, are skeletally diverse. Mimicking the broad structural features of natural products may allow the discovery of compounds that modulate the functions of macromolecules for which ligands are not known. The ability of innovations in diversity-oriented synthesis to deliver such compounds is critically assessed. PMID:18663392
Surface tension propellant control for Viking 75 Orbiter
NASA Technical Reports Server (NTRS)
Dowdy, M. W.; Hise, R. E.; Peterson, R. G.; Debrock, S. C.
1976-01-01
The paper describes the selection, development and qualification of the surface tension system and includes results of low-g drop tower tests of scale models, 1-g simulation tests of low-g large ullage settling and liquid withdrawal, structural qualification tests, and propellant surface tension/contact angle studies. Subscale testing and analyses were used to evaluate the ability of the system to maintain or recover the desired propellant orientation following possible disturbances during the Viking mission. This effort included drop tower tests to demonstrate that valid wick paths exist for moving any displaced propellant back over the tank outlet. Variations in surface tension resulting from aging, temperature, and lubricant contamination were studied and the effects of surface finish, referee fluid exposure, aging, and lubricant contamination on contact angle were assessed. Results of movies of typical subscale drop tower tests and full scale slosh tests are discussed.
Structural dynamic analysis of turbine blade
NASA Astrophysics Data System (ADS)
Antony, A. Daniel; Gopalsamy, M.; Viswanadh, Chaparala B. V.; Krishnaraj, R.
2017-10-01
In any gas turbine design cycle, blade design is a crucial element which needs maximum attention to meet the aerodynamic performance, structural safety margins, manufacturing feasibility, material availability etc. In present day gas turbine engines, most of the failures occur during engine development test and in-service, in rotor and stator blades due to fatigue and resonance failures. To address this issue, an extensive structural dynamic analysis is carried out to predict the natural frequencies and mode shapes using FE methods. Using the dynamics characteristics, the Campbell diagram is constructed to study the possibility of resonance at various operating speeds. In this work, the feasibility of using composite material in place of titanium alloy from the structural dynamics point of view. This is being attempted in a Low-pressure compressor where the temperatures are relatively low and fixed with the casings. The analysis will be carried out using FE method for different composite material with different lamina orientations chosen through the survey. This study will focus on the sensitivity of blade mode shapes to different laminae orientations, which will be used to alter the natural frequency and tailor the mode shapes. Campbell diagrams of existing titanium alloy are compared with the composite materials with different laminae at all critical operating conditions. The existing manufacturing methods and the proven techniques for blade profiles will also be discussed in this report.
Prakash, E S; Narayan, K A; Sethuraman, K R
2010-09-01
One method of grading responses of the descriptive type is by using Structure of Observed Learning Outcomes (SOLO) taxonomy. The basis of this study was the expectation that if students were oriented to SOLO taxonomy, it would provide them an opportunity to understand some of the factors that teachers consider while grading descriptive responses and possibly develop strategies to improve scores. We first sampled the perceptions of 68 second-year undergraduate medical students doing the Respiratory System course regarding the usefulness of explicit discussion of SOLO taxonomy. Subsequently, in a distinct cohort of 20 second-year medical students doing the Central Nervous System course, we sought to determine whether explicit illustration of SOLO taxonomy combined with some advice on better answering descriptive test questions (to an experimental group) resulted in better student scores in a continuous assessment test compared with providing advice for better answering test questions but without any reference to SOLO taxonomy (the control group). Student ratings of the clarity of the presentation on SOLO taxonomy appeared satisfactory to the authors, as was student understanding of our presentation. The majority of participants indicated that knowledge of SOLO taxonomy would help them study and prepare better answers for questions of the descriptive type. Although scores in the experimental and control group were comparable, this experience nonetheless provided us with the motivation to orient students to SOLO taxonomy early on in the medical program and further research factors that affect students' development of strategies based on knowledge of SOLO taxonomy.
Comprehensive Aspectual UML approach to support AspectJ.
Magableh, Aws; Shukur, Zarina; Ali, Noorazean Mohd
2014-01-01
Unified Modeling Language is the most popular and widely used Object-Oriented modelling language in the IT industry. This study focuses on investigating the ability to expand UML to some extent to model crosscutting concerns (Aspects) to support AspectJ. Through a comprehensive literature review, we identify and extensively examine all the available Aspect-Oriented UML modelling approaches and find that the existing Aspect-Oriented Design Modelling approaches using UML cannot be considered to provide a framework for a comprehensive Aspectual UML modelling approach and also that there is a lack of adequate Aspect-Oriented tool support. This study also proposes a set of Aspectual UML semantic rules and attempts to generate AspectJ pseudocode from UML diagrams. The proposed Aspectual UML modelling approach is formally evaluated using a focus group to test six hypotheses regarding performance; a "good design" criteria-based evaluation to assess the quality of the design; and an AspectJ-based evaluation as a reference measurement-based evaluation. The results of the focus group evaluation confirm all the hypotheses put forward regarding the proposed approach. The proposed approach provides a comprehensive set of Aspectual UML structural and behavioral diagrams, which are designed and implemented based on a comprehensive and detailed set of AspectJ programming constructs.
Risk and Protective Processes Predicting Rural African American Young Men's Substance Abuse.
Cho, Junhan; Kogan, Steven M
2016-12-01
Informed by a life course perspective, this study tested a cascade model linking harsh, unresponsive parenting during childhood to young African American men's substance abuse via precocious transitions, economic instability, and future orientation. The moderating influence of community disadvantage and romantic partner support on the hypothesized pathways was also examined. At the baseline, the sample included 505 African American men between ages 19 and 22 years from high-poverty rural communities. Follow-up data were collected 18 months after baseline. Using structural equation modeling, we identified harsh, unresponsive parenting influenced precocious transitions in adolescence, which in turn increased economic instability during young adulthood. Economic instability was associated with a reduction in future orientation, a proximal influence on increases in substance abuse. Also, residence in a disadvantaged community amplified the influence of precocious transitions on economic instability and the influence of economic instability on future orientation. Involvement with supportive romantic partnership evinced a protective effect, attenuating the influence of precocious transitions on economic instability and the influence of economic instability on a future orientation. This study expands understanding of young adults' substance abuse by demonstrating the risk and protective processes linking substance abuse to developmental factors across childhood, adolescence, and young adulthood. © Society for Community Research and Action 2016.
Comprehensive Aspectual UML Approach to Support AspectJ
Magableh, Aws; Shukur, Zarina; Mohd. Ali, Noorazean
2014-01-01
Unified Modeling Language is the most popular and widely used Object-Oriented modelling language in the IT industry. This study focuses on investigating the ability to expand UML to some extent to model crosscutting concerns (Aspects) to support AspectJ. Through a comprehensive literature review, we identify and extensively examine all the available Aspect-Oriented UML modelling approaches and find that the existing Aspect-Oriented Design Modelling approaches using UML cannot be considered to provide a framework for a comprehensive Aspectual UML modelling approach and also that there is a lack of adequate Aspect-Oriented tool support. This study also proposes a set of Aspectual UML semantic rules and attempts to generate AspectJ pseudocode from UML diagrams. The proposed Aspectual UML modelling approach is formally evaluated using a focus group to test six hypotheses regarding performance; a “good design” criteria-based evaluation to assess the quality of the design; and an AspectJ-based evaluation as a reference measurement-based evaluation. The results of the focus group evaluation confirm all the hypotheses put forward regarding the proposed approach. The proposed approach provides a comprehensive set of Aspectual UML structural and behavioral diagrams, which are designed and implemented based on a comprehensive and detailed set of AspectJ programming constructs. PMID:25136656
de Vries, Reinout E; Bakker-Pieper, Angelique; Oostenveld, Wyneke
2010-09-01
PURPOSE: The purpose of this study was to investigate the relations between leaders' communication styles and charismatic leadership, human-oriented leadership (leader's consideration), task-oriented leadership (leader's initiating structure), and leadership outcomes. METHODOLOGY: A survey was conducted among 279 employees of a governmental organization. The following six main communication styles were operationalized: verbal aggressiveness, expressiveness, preciseness, assuredness, supportiveness, and argumentativeness. Regression analyses were employed to test three main hypotheses. FINDINGS: In line with expectations, the study showed that charismatic and human-oriented leadership are mainly communicative, while task-oriented leadership is significantly less communicative. The communication styles were strongly and differentially related to knowledge sharing behaviors, perceived leader performance, satisfaction with the leader, and subordinate's team commitment. Multiple regression analyses showed that the leadership styles mediated the relations between the communication styles and leadership outcomes. However, leader's preciseness explained variance in perceived leader performance and satisfaction with the leader above and beyond the leadership style variables. IMPLICATIONS: This study offers potentially invaluable input for leadership training programs by showing the importance of leader's supportiveness, assuredness, and preciseness when communicating with subordinates. ORIGINALITY/VALUE: Although one of the core elements of leadership is interpersonal communication, this study is one of the first to use a comprehensive communication styles instrument in the study of leadership.
The individual-oriented and social-oriented Chinese bicultural self: testing the theory.
Lu, Luo
2008-06-01
The author proposes a bicultural self theory for contemporary Chinese individuals, encompassing 2 main components: the individual-oriented self and the social-oriented self. The social orientation is rooted in traditional Chinese conceptualization of the self, whereas the individual orientation has evolved and developed under Western influences along with recent societal modernization. The author conducted a series of 5 studies to test the theory and relate the model to important issues in current personality and social psychological research, such as cultural individualism-collectivism, self-construals, motivation, cognition, emotion, and well-being. A total of 977 university students in Taiwan participated. The author found that contrasting self-aspects were differentially associated with the aforementioned constructs, as theoretically predicted. This evidence thus generally supported the bicultural self model.
Page, S J
2000-10-01
The purposes of this study were to test (1) whether athletes with congenital disabilities exhibited different competitive orientations than athletes with disabilities acquired during their lifespans and (2) whether male athletes with disabilities exhibited different competitive orientations than their female peers. 54 paraplegic, quadriplegic and amputee athletes competing in the 1996 Paralympic Track and Field Trials completed the Sport Orientation Questionnaire. No mean differences were found between men and women, athletes with different onsets of their disabilities across the lifespan, between adolescents and adults, and between athletes with different severity classifications on the Goal orientation, Competitiveness, and Desire to win scales. Larger studies are encouraged to examine competitive orientation, as well as scores on tests specifically constructed to be administered to athletes with disabilities.
DOT National Transportation Integrated Search
2009-06-01
The research explores the costs and impacts of Transit Oriented Development (TOD) and : addresses the rationale for designing transit-oriented neighborhoods. It also documents the : outcomes and the impacts of implementing such projects and examines ...
Job Orientation of Male and Female College Graduates in Business
ERIC Educational Resources Information Center
Manhardt, Philip J.
1972-01-01
There was little overall sex differences in intrinsic job orientation but it was shown that the intrinsic-extrinsic dimension provides neither a complete explanation of the observed differences nor an accurate description of the underlying structure of job orientation. (Author)
Measuring hospital medical staff organizational structure.
Shortell, S M; Getzen, T E
1979-01-01
Based on organization theory and the work of Roemer and Friedman, seven dimensions of hospital medical staff organization structure are proposed and examined. The data are based on a 1973 nationwide survey of hospital medical staffs conducted by the American Hospital Association. Factor analysis yielded six relatively independent dimensions supporting a multidimensional view of medical staff organization structure. The six dimensions include 1) Resource Capability, 2) Generalist Physician Contractual Orientation, 3) Communication/Control, 4) Local Staff Orientation, 5) Participation in Decision Making, and 6) Hospital-Based Physician Contractual Orientation. It is suggested that these dimensions can be used to develop an empirical typology of hospital medical staff organization structure and to investigate the relationship between medical staff organization and public policy issues related to cost containment and quality assurance. PMID:511580
Hydrodynamic fabrication of structurally gradient ZnO nanorods.
Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok
2016-02-26
We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation.
Davatzes, Nicholas C.; Hickman, Stephen H.
2009-01-01
A suite of geophysical logs has been acquired for structural, fluid flow and stress analysis of well 27-15 in the Desert Peak Geothermal Field, Nevada, in preparation for stimulation and development of an Enhanced Geothermal System (EGS). Advanced Logic Technologies Borehole Televiewer (BHTV) and Schlumberger Formation MicroScanner (FMS) image logs reveal extensive drilling-induced tensile fractures, showing that the current minimum compressive horizontal stress, Shmin, in the vicinity of well 27-15 is oriented along an azimuth of 114±17°. This orientation is consistent with the dip direction of recently active normal faults mapped at the surface and with extensive sets of fractures and some formation boundaries seen in the BHTV and FMS logs. Temperature and spinner flowmeter surveys reveal several minor flowing fractures that are well oriented for normal slip, although over-all permeability in the well is quite low. These results indicate that well 27-15 is a viable candidate for EGS stimulation and complements research by other investigators including cuttings analysis, a reflection seismic survey, pressure transient and tracer testing, and micro-seismic monitoring.
Treatment of metaphor interpretation deficits subsequent to traumatic brain injury.
Brownell, Hiram; Lundgren, Kristine; Cayer-Meade, Carol; Milione, Janet; Katz, Douglas I; Kearns, Kevin
2013-01-01
To improve oral interpretation of metaphors by patients with traumatic brain injury (TBI). Both single subject experimental design and group analysis. Patients' homes. Eight adult patients with moderate to severe traumatic brain injury sustained 3 to 20 years before testing. The Metaphor Training Program consisted typically of 10 baseline sessions, 3 to 9 1-hour sessions of structured intervention, and 10 posttraining baseline sessions. Training used extensive practice with simple graphic displays to illustrate semantic associations. Quality of orally produced metaphor interpretation and accuracy of line orientation judgments served as dependent measures obtained during baseline, training, posttraining, and at a 3- to 4-month follow-up. Untrained line orientation judgments provided a control measure. Group data showed significant improvement in metaphor interpretation but not in line orientation. Six of 8 patients individually demonstrated significant improvement in metaphor interpretation. Gains persisted for 3 of the 6 patients at the 3- to 4-month follow-up. The Metaphor Training Program can improve cognitive-communication performance for individuals with moderate to severe traumatic brain injury. Results support the potential for treating patients' residual cognitive-linguistic deficits.
Yang, Yanmin; Zhong, Kehua; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao
2017-07-31
The Electronic structure of PbPdO 2 with (002) and (211) preferred orientations were investigated using first-principles calculation. The calculated results indicate that, (002) and (211) orientations exhibit different electric field dependence of band-gap and carrier concentration. The small band gap and more sensitive electric field modulation of band gap were found in (002) orientation. Moreover, the electric field modulation of the resistivity up to 3-4 orders of magnitude is also observed in (002) slab, which reveals that origin of colossal electroresistance. Lastly, electric field modulation of band gap is well explained. This work should be significant for repeating the colossal electroresistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X.Q.; Chen, J.; Hale, P.D.
1988-01-01
Near edge x-ray absorption fine structure (NEXAFS) and infrared reflection-absorption spectroscopy (IRRAS) have been used to study the orientational behavior of thin films of poly(3-methylthiophene) electrochemically polymerized on a platinum surface. Clear orientational effects, with the thiophene rings predominantly oriented parallel to the platinum surface, were observed when the thickness of the polymer films were within a few hundred /angstrom/A. It was found that more highly ordered films were produced at lower polymerization potential (1.4V vs SCE) than at higher potential (1.8V vs SCE). 5 refs., 4 figs., 2 tabs.
McCombe Waller, Sandy; Whitall, Jill; Jenkins, Toye; Magder, Laurence S; Hanley, Daniel F; Goldberg, Andrew; Luft, Andreas R
2014-12-14
Recovering useful hand function after stroke is a major scientific challenge for patients with limited motor recovery. We hypothesized that sequential training beginning with proximal bilateral followed by unilateral task oriented training is superior to time-matched unilateral training alone. Proximal bilateral training could optimally prepare the motor system to respond to the more challenging task-oriented training. Twenty-six participants with moderate severity hemiparesis Intervention: PARTICIPANTS received either 6-weeks of bilateral proximal training followed sequentially by 6-weeks unilateral task-oriented training (COMBO) or 12-weeks of unilateral task-oriented training alone (SAEBO). A subset of 8 COMB0 and 9 SAEBO participants underwent three functional magnetic resonance imaging (fMRI) scans of hand and elbow movement every 6 weeks. Fugl-Meyer Upper extremity scale, Modified Wolf Motor Function Test, University of Maryland Arm Questionnaire for Stroke, Motor cortex activation (fMRI). The COMBO group demonstrated significantly greater gains between baseline and 12-weeks over all outcome measures (p = .018 based on a MANOVA test) and specifically in the Modified Wolf Motor Function test (time). Both groups demonstrated within-group gains on the Fugl-Meyer Upper Extremity test (impairment) and University of Maryland Arm Questionnaire for Stroke (functional use). fMRI subset analyses showed motor cortex (primary and premotor) activation during hand movement was significantly increased by sequential combination training but not by task-oriented training alone. Sequentially combining a proximal bilateral before a unilateral task-oriented training may be an effective way to facilitate gains in arm and hand function in those with moderate to severe paresis post-stroke compared to unilateral task oriented training alone.
Holland's Theory Applied to Medical Specialty Choice
ERIC Educational Resources Information Center
Borges, Nicole J.; Savickas, Mark L.; Jones, Bonnie J.
2004-01-01
The present study tested the hypothesis that medical specialties classified as technique oriented or patient oriented would be distinguished by RIASEC code, with technique-oriented specialists resembling Investigative-Realistic types and patient-oriented specialists resembling Investigative-Social types. Using longitudinal data obtained from 447…
Lenselink, Eelke B; Beuming, Thijs; Sherman, Woody; van Vlijmen, Herman W T; IJzerman, Adriaan P
2014-06-23
A major challenge in structure-based virtual screening (VS) involves the treatment of explicit water molecules during docking in order to improve the enrichment of active compounds over decoys. Here we have investigated this in the context of the adenosine A2A receptor, where water molecules have previously been shown to be important for achieving high enrichment rates with docking, and where the positions of some binding site waters are known from a high-resolution crystal structure. The effect of these waters (both their presence and orientations) on VS enrichment was assessed using a carefully curated set of 299 high affinity A2A antagonists and 17,337 decoys. We show that including certain crystal waters greatly improves VS enrichment and that optimization of water hydrogen positions is needed in order to achieve the best results. We also show that waters derived from a molecular dynamics simulation - without any knowledge of crystallographic waters - can improve enrichments to a similar degree as the crystallographic waters, which makes this strategy applicable to structures without experimental knowledge of water positions. Finally, we used decision trees to select an ensemble of structures with different water molecule positions and orientations that outperforms any single structure with water molecules. The approach presented here is validated against independent test sets of A2A receptor antagonists and decoys from the literature. In general, this water optimization strategy could be applied to any target with waters-mediated protein-ligand interactions.
Future orientation, impulsivity, and problem behaviors: a longitudinal moderation model.
Chen, Pan; Vazsonyi, Alexander T
2011-11-01
In the current study, based on a sample of 1,873 adolescents between 11.4 and 20.9 years of age from the first 3 waves of the National Longitudinal Study of Adolescent Health, we investigated the longitudinal effects of future orientation on levels of and developmental changes in problem behaviors, while controlling for the effects by impulsivity; we also tested the moderating effects by future orientation on the impulsivity-problem behaviors link over time. Additionally, we examined future orientation operationalized by items measuring education, marriage, and life domains. Findings based on growth curve analyses provided evidence of longitudinal effects by education and life future orientation on both levels of and developmental changes in problem behaviors; the effect of marriage future orientation was not significant for either test. In addition, only life future orientation moderated the effect by impulsivity on levels of problem behaviors over time. More specifically, impulsivity had a weaker effect on levels of problem behaviors over time for adolescents who reported higher levels of life future orientation.
Supramolecular order and structural dynamics: A STM study of 2H-tetraphenylporphycene on Cu(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, Michael; Träg, Johannes; Ditze, Stefanie
2015-03-14
The adsorption of 2H-tetraphenylporphycene (2HTPPc) on Cu(111) was investigated by scanning tunneling microscopy (STM). At medium coverages, supramolecular ordered islands are observed. The individual 2HTPPc molecules appear as two pairs of intense protrusions which are separated by an elongated depression. In the islands, the molecules are organized in rows oriented along one of the close packed Cu(111) substrate rows; the structure is stabilized by T-type interactions of the phenyl substituents of neighboring molecules. Two types of rows are observed, namely, highly ordered rows in which all molecules exhibit the same orientation, and less ordered rows in which the molecules exhibitmore » two perpendicular orientations. Altogether, three different azimuthal orientations of 2HTPPc are observed within one domain, all of them rotated by 15° ± 1° relative to one closed packed Cu direction. The highly ordered rows are always separated by either one or two less ordered rows, with the latter structure being the thermodynamically more stable one. The situation in the islands is highly dynamic, such that molecules in the less ordered rows occasionally change orientation, also complete highly ordered rows can move. The supramolecular order and structural dynamics are discussed on the basis of the specific molecule-substrate and molecule-molecule interactions.« less
Structural Constraints On The Spatial Distribution of Aftershocks
NASA Astrophysics Data System (ADS)
McCloskey, J.; Nalbant, S. S.; Steacy, S.; Nostro, C.; Scotti, O.; Baumont, D.
Real-time, forward modelling of spatial distributions of potentially damaging after- shocks by calculating stress perturbations due to large earthquakes may produce so- cially useful, time- dependent hazard estimates in the foreseeable future. Such calcula- tions, however, rely on the resolution of a stress perturbation tensor (SPT) onto planes whose geometry is unknown and decisions as to the orientations of these planes have a first order effect on the geometry of the resulting hazard distributions. Commonly, these decisions are based on the assumption that structures optimally oriented for fail- ure in the regional stress field, exist everywhere and stress maps are produced by resolving onto these orientations. Here we investigate this proposition using a 3D cal- culation for the optimally oriented planes (OOPs) for the 1992 Landers earthquake (M = 7.3). We examine the encouraged mechanisms as a function of location and show that enhancement for failure exists over a much wider area than in the equivalent, and more usual, 2.5D calculations. Mechanisms predicted in these areas are not consistent with the local structural geology, however, and corresponding aftershocks are gener- ally not observed. We argue that best hazard estimates will result from geometrically restricted versions of the OOP concept in which observed structure constrains possible orientations for failure.
NASA Astrophysics Data System (ADS)
Yao, Xuan; Wang, Yuanbo; Ravanfar, Mohammadreza; Pfeiffer, Ferris M.; Duan, Dongsheng; Yao, Gang
2016-11-01
Collagen fiber orientation plays an important role in determining the structure and function of the articular cartilage. However, there is currently a lack of nondestructive means to image the fiber orientation from the cartilage surface. The purpose of this study is to investigate whether the newly developed optical polarization tractography (OPT) can image fiber structure in articular cartilage. OPT was applied to obtain the depth-dependent fiber orientation in fresh articular cartilage samples obtained from porcine phalanges. For comparison, we also obtained collagen fiber orientation in the superficial zone of the cartilage using the established split-line method. The direction of each split-line was quantified using image processing. The orientation measured in OPT agreed well with those obtained from the split-line method. The correlation analysis of a total of 112 split-lines showed a greater than 0.9 coefficient of determination (R2) between the split-line results and OPT measurements obtained between 40 and 108 μm in depth. In addition, the thickness of the superficial layer can also be assessed from the birefringence images obtained in OPT. These results support that OPT provides a nondestructive way to image the collagen fiber structure in articular cartilage. This technology may be valuable for both basic cartilage research and clinical orthopedic applications.
Predicting neuropsychological test performance on the basis of temporal orientation.
Ryan, Joseph J; Glass, Laura A; Bartels, Jared M; Bergner, CariAnn M; Paolo, Anthony M
2009-05-01
Temporal orientation is often disrupted in the context of psychiatric or neurological disease; tests assessing this function are included in most mental status examinations. The present study examined the relationship between scores on the Temporal Orientation Scale (TOS) and performance on a battery of tests that assess memory, language, and cognitive functioning in a sample of patients with Alzheimer's disease (N = 55). Pearson-product moment correlations showed that, in all but two instances, the TOS was significantly correlated with each neuropsychological measure, p values < or = .05. Also, severely disoriented (i.e., TOS score < or = -8) patients were consistently 'impaired' on memory tests but not on tests of language and general cognitive functioning.
Development of moving spars for active aeroelastic structures
NASA Astrophysics Data System (ADS)
Amprikidis, Michael; Cooper, Jonathan E.
2003-08-01
This paper describes a research program investigating the development of "moving spars" to enable active aeroelastic control of aerospace structures. A number of different concepts have been considered as part of the EU funded Active Aeroelastic Aircraft Structures (3AS) project that enable the control of the bending and torsional stiffness of aircraft wings through changes in the internal aircraft structure. The aeroelastic behaviour, in particular static deflections, can be controlled as desired through changes in the position, orientation and stiffness of the spars. The concept described in this paper is based upon translational movement of the spars. This will result in changes in the torsional stiffness and shear centre position whilst leaving the bending stiffness unaffected. An analytical study of the aeroelastic behaviour demonstrates the benefits of using such an approach. An experimental investigation involving construction and bench testing of the concepts was undertaken to demonstrate its feasibility. Finally, a wind tunnel test of simple wing models constructed using these concepts was performed. The simulated and experimental results show that it is possible to control the wind twist in practice.
Huang, Ruili; Xia, Menghang; Sakamuru, Srilatha; Zhao, Jinghua; Shahane, Sampada A.; Attene-Ramos, Matias; Zhao, Tongan; Austin, Christopher P.; Simeonov, Anton
2016-01-01
Target-specific, mechanism-oriented in vitro assays post a promising alternative to traditional animal toxicology studies. Here we report the first comprehensive analysis of the Tox21 effort, a large-scale in vitro toxicity screening of chemicals. We test ∼10,000 chemicals in triplicates at 15 concentrations against a panel of nuclear receptor and stress response pathway assays, producing more than 50 million data points. Compound clustering by structure similarity and activity profile similarity across the assays reveals structure–activity relationships that are useful for the generation of mechanistic hypotheses. We apply structural information and activity data to build predictive models for 72 in vivo toxicity end points using a cluster-based approach. Models based on in vitro assay data perform better in predicting human toxicity end points than animal toxicity, while a combination of structural and activity data results in better models than using structure or activity data alone. Our results suggest that in vitro activity profiles can be applied as signatures of compound mechanism of toxicity and used in prioritization for more in-depth toxicological testing. PMID:26811972
Increased Alignment in Carbon Nanotube Growth
NASA Technical Reports Server (NTRS)
Delzeit, Lance D. (Inventor)
2007-01-01
Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.
Speed skills: measuring the visual speed analyzing properties of primate MT neurons.
Perrone, J A; Thiele, A
2001-05-01
Knowing the direction and speed of moving objects is often critical for survival. However, it is poorly understood how cortical neurons process the speed of image movement. Here we tested MT neurons using moving sine-wave gratings of different spatial and temporal frequencies, and mapped out the neurons' spatiotemporal frequency response profiles. The maps typically had oriented ridges of peak sensitivity as expected for speed-tuned neurons. The preferred speed estimate, derived from the orientation of the maps, corresponded well to the preferred speed when moving bars were presented. Thus, our data demonstrate that MT neurons are truly sensitive to the object speed. These findings indicate that MT is not only a key structure in the analysis of direction of motion and depth perception, but also in the analysis of object speed.
Object-Oriented MDAO Tool with Aeroservoelastic Model Tuning Capability
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley; Lung, Shun-fat
2008-01-01
An object-oriented multi-disciplinary analysis and optimization (MDAO) tool has been developed at the NASA Dryden Flight Research Center to automate the design and analysis process and leverage existing commercial as well as in-house codes to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic and hypersonic aircraft. Once the structural analysis discipline is finalized and integrated completely into the MDAO process, other disciplines such as aerodynamics and flight controls will be integrated as well. Simple and efficient model tuning capabilities based on optimization problem are successfully integrated with the MDAO tool. More synchronized all phases of experimental testing (ground and flight), analytical model updating, high-fidelity simulations for model validation, and integrated design may result in reduction of uncertainties in the aeroservoelastic model and increase the flight safety.
Burning characteristics and fiber retention of graphite/resin matrix composites
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Two types of burning equipment were used. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a Heat Release Rate Calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested and exposed to a thermal radiation. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burning in air.
[Diagnostics of work motivation (DIAMO): optimization and construct validity].
Ranft, Andreas; Fiedler, Rolf; Greitemann, Bernhard; Heuft, Gereon
2009-01-01
Faced with increasing cost pressure of the social insurance system the carriers of rehabilitation programs focus on the efficacy of their measures. The diagnostic instrument for work motivation (DIAMO) has been developed to assess the influence of job-related motivation on the rehabilitation outcome. The inner structure of the instrument was validated and optimized in a cohort of medical rehabilitation patients (n = 422). Construct validity was further tested by using established instruments. Ten scales related to self-image, intention of action and goodness of fit show good psychometric qualities (Cronbachs alpha: 0.72 - 0.86). The constructs correlate moderately-to-strongly with personality-oriented scales while correlation with disease-related contents is low. The DIAMO is a generic and not disease oriented instrument. It would be expected to facilitate the development of vocational interventions to increase the rehabilitation outcome.
NASA Astrophysics Data System (ADS)
Petryshynets, Ivan; Kováč, František; Puchý, Viktor; Šebek, Martin; Füzer, Ján; Kollár, Peter
2018-04-01
The present paper shows the impact of different laser scribing conditions on possible reduction of magnetic losses in grain oriented electrical steel sheets. The experimental Fe-3%Si steel was taken from industrial line after final box annealing. The surface of investigated steel was subjected to fiber laser processing using both pulse and continuous scribing regimes in order to generate residual thermal stresses inducing the magnetic domains structure refinement. The magnetic losses of experimental samples before and after individual laser scribing regimes were tested in AC magnetic field with 50Hz frequency and induction of 1.5T. The most significant magnetic losses reduction of 38% was obtained at optimized conditions of continuous laser scribing regime. A semi quantitative relationship has been found between the domain patterns and the used fiber laser processing.
Marketing-oriented organizations: an integrated approach.
Stensrud, R; Arrington, B
1988-03-01
Organizations can be oriented toward marketing from a production, product, sales, or marketing perspective. Strategies, structures, and cultures, which reflect a company's basic orientation, must be integrated to ensure that marketing efforts communicate a clear corporate position. In a study of 31 hospitals, the Center for Health Services Education Research, St. Louis University, found that no hospital's organization fit neatly into a single category. For example, a hospital may have some service lines that were marketing oriented while other lines were production oriented. The majority of hospitals, however, were product oriented, focusing on productivity and financial performance rather than on market factors. The most effective sales orientation was observed in the for-profits. Their selling efforts, however, tended to be internally focused, with product development activities divorced from the planning and marketing functions. Only the for-profit hospitals showed the beginning of a marketing orientation. Developing a marketing orientation, especially in line divisions, requires a careful, well-orchestrated effort and the presence of several key factors: Access to capital and an emphasis on long-range planning and strategic spending The availability of hospital-specific market research. Key distribution channels. Talented middle managers. Up-to-date systems and structures equipped to serve new values and strategies. Leaders capable of communicating to the organization a vision of its role in the community.
Seldin, Lindsey; Muroyama, Andrew; Lechler, Terry
2016-01-01
Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA’s MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures. DOI: http://dx.doi.org/10.7554/eLife.12504.001 PMID:26765568
Mechanism of calcite co-orientation in the sea urchin tooth.
Killian, Christopher E; Metzler, Rebecca A; Gong, Y U T; Olson, Ian C; Aizenberg, Joanna; Politi, Yael; Wilt, Fred H; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan N; Gilbert, P U P A
2009-12-30
Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO(3)) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin ( Strongylocentrotus purpuratus ), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction (muXRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO(3) is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.
Structural basis of orientation sensitivity of cat retinal ganglion cells.
Leventhal, A G; Schall, J D
1983-11-10
We investigated the structural basis of the physiological orientation sensitivity of retinal ganglion cells (Levick and Thibos, '82). The dendritic fields of 840 retinal ganglion cells labeled by injections of horseradish peroxidase into the dorsal lateral geniculate nucleus (LGNd) or optic tracts of normal cats. Siamese cats, and cat deprived of patterned visual experience from birth by monocular lid-suture (MD) were studied. Mathematical techniques designed to analyze direction were used to find the dendritic field orientation of each cell. Statistical techniques designed for angular data were used to determine the relationship between dendritic field orientation and angular position on the retina (polar angle). Our results indicate that 88% of retinal ganglion cells have oriented dendritic fields and that dendritic field orientation is related systematically to retinal position. In all regions of retina more that 0.5 mm from the area centralis the dendritic fields of retinal ganglion cells are oriented radially, i.e., like the spokes of a wheel having the area centralis at its hub. This relationship was present in all animals and cell types studied and was strongest for cells located close to the horizontal meridian (visual streak) of the retina. Retinal ganglion cells appear to be sensitive to stimulus orientation because they have oriented dendritic fields.
Estimating Relative Positions of Outer-Space Structures
NASA Technical Reports Server (NTRS)
Balian, Harry; Breckenridge, William; Brugarolas, Paul
2009-01-01
A computer program estimates the relative position and orientation of two structures from measurements, made by use of electronic cameras and laser range finders on one structure, of distances and angular positions of fiducial objects on the other structure. The program was written specifically for use in determining errors in the alignment of large structures deployed in outer space from a space shuttle. The program is based partly on equations for transformations among the various coordinate systems involved in the measurements and on equations that account for errors in the transformation operators. It computes a least-squares estimate of the relative position and orientation. Sequential least-squares estimates, acquired at a measurement rate of 4 Hz, are averaged by passing them through a fourth-order Butterworth filter. The program is executed in a computer aboard the space shuttle, and its position and orientation estimates are displayed to astronauts on a graphical user interface.
Effect of molecular shape on rotation under severe confinement
Dhiman, Indu; Bhowmik, Debsindhu; Shrestha, Utsab R.; ...
2018-01-31
Orientational structure and dynamics of molecules is known to be affected by confinement in space comparable in size to the molecule itself. ZSM-5 with porous channels of ≈0.55 nm is such a porous medium, which offers a strict spatial confinement on low molecular weight hydrocarbons. An important factor that determines these properties is the shape of the confined molecules. In this work, we employed molecular dynamics simulation to study the orientational structure and dynamics of four molecules that differ in shape but have similar kinetic diameters and moments of inertia, confined in ZSM-5. The effect of molecular shape on themore » orientational structure and dynamics of propane, acetonitrile, acetaldehyde and acetone in ZSM-5 is studied by means of probing the differences in the orientational distribution of molecules in the ZSM-5 channels, and extracting time scales of the decay of correlation functions related to rotational motion. Orientational correlation functions of all the four molecules exhibit two regimes of rotational motion. While the short time regime represents free rotation of the molecules before they collide with the pore walls, the long time orientational jumps driven by inter-channel migrations give rise to a very slow varying second regime. Of the molecules studied, orientational structure and dynamics of propane is found to be least affected by confinement under ZSM-5, whereas charge and shape asymmetry of other molecules makes their interchannel migration-driven rotation slow. The time scales involved in the rotational motion for the molecules studied are compared with similar studies reported in literature. Lastly, this study reveals the important role that molecular shape plays in the behavior of confined molecules.« less
Effect of molecular shape on rotation under severe confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhiman, Indu; Bhowmik, Debsindhu; Shrestha, Utsab R.
Orientational structure and dynamics of molecules is known to be affected by confinement in space comparable in size to the molecule itself. ZSM-5 with porous channels of ≈0.55 nm is such a porous medium, which offers a strict spatial confinement on low molecular weight hydrocarbons. An important factor that determines these properties is the shape of the confined molecules. In this work, we employed molecular dynamics simulation to study the orientational structure and dynamics of four molecules that differ in shape but have similar kinetic diameters and moments of inertia, confined in ZSM-5. The effect of molecular shape on themore » orientational structure and dynamics of propane, acetonitrile, acetaldehyde and acetone in ZSM-5 is studied by means of probing the differences in the orientational distribution of molecules in the ZSM-5 channels, and extracting time scales of the decay of correlation functions related to rotational motion. Orientational correlation functions of all the four molecules exhibit two regimes of rotational motion. While the short time regime represents free rotation of the molecules before they collide with the pore walls, the long time orientational jumps driven by inter-channel migrations give rise to a very slow varying second regime. Of the molecules studied, orientational structure and dynamics of propane is found to be least affected by confinement under ZSM-5, whereas charge and shape asymmetry of other molecules makes their interchannel migration-driven rotation slow. The time scales involved in the rotational motion for the molecules studied are compared with similar studies reported in literature. Lastly, this study reveals the important role that molecular shape plays in the behavior of confined molecules.« less
Reducing the orientation influence of Mueller matrix measurements for anisotropic scattering media
NASA Astrophysics Data System (ADS)
Sun, Minghao; He, Honghui; Zeng, Nan; Du, E.; He, Yonghong; Ma, Hui
2014-09-01
Mueller matrix polarimetry techniques contain rich micro-structural information of samples, such as the sizes and refractive indices of scatterers. Recently, Mueller matrix imaging methods have shown great potentials as powerful tools for biomedical diagnosis. However, the orientations of anisotropic fibrous structures in tissues have prominent influence on Mueller matrix measurements, resulting in difficulties for extracting micro-structural information effectively. In this paper, we apply the backscattering Mueller matrix imaging technique to biological samples with different microstructures, such as chicken heart muscle, bovine skeletal muscle, porcine liver and fat tissues. Experimental results show that the directions of the muscle fibers have prominent influence on the Mueller matrix elements. In order to reduce the orientation influence, we adopt the rotation-independent MMT and RLPI parameters, which were proposed in our previous studies, to the tissue samples. Preliminary results in this paper show that the orientation-independent parameters and their statistic features are helpful for analyzing the tissues to obtain their micro-structural properties. Since the micro-structure variations are often related to the pathological changes, the method can be applied to microscope imaging techniques and used to detect abnormal tissues such as cancer and other lesions for diagnosis purposes.
Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces
NASA Astrophysics Data System (ADS)
Sun, Chao; Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef
2017-11-01
In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. This work is financially supported by the Natural Science Foundation of China under Grant No. 11672156, the Dutch Foundation for Fundamental Research on Matter (FOM), the Dutch Technology Foundation (STW) and a VIDI Grant.
Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.
2016-01-01
We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081
Effects of Instruction and Stage-Fright on Intelligence Testing
ERIC Educational Resources Information Center
Meijer, Joost; Oostdam, Ron
2011-01-01
In the present research, it was tried to unravel the influence of various types of instruction on test anxiety levels and, in turn, its influence on intelligence test performance. Three types of instruction were compared: a stressful, achievement-orientated instruction; a reassuring, task-orientated instruction; and an ambiguous instruction.…
Pre-testing Orientation for the Disadvantaged.
ERIC Educational Resources Information Center
Mihalka, Joseph A.
A pre-testing orientation was incorporated into the Work Incentives Program, a pre-vocational program for disadvantaged youth. Test-taking skills were taught in seven and one half hours of instruction and a variety of methods were used to provide a sequential experience with distributed learning, positive reinforcement, and immediate feedback of…
Sexual Orientation Differences in HIV Testing Motivation among College Men
ERIC Educational Resources Information Center
Kort, Daniel N.; Samsa, Gregory P.; McKellar, Mehri S.
2017-01-01
Objective: To investigate sexual orientation differences in college men's motivations for HIV testing. Participants: 665 male college students in the Southeastern United States from 2006 to 2014. Methods: Students completed a survey on HIV risk factors and testing motivations. Logistic regressions were conducted to determine the differences…
NASA Astrophysics Data System (ADS)
Treagust, David F.; Qureshi, Sheila S.; Vishnumolakala, Venkat Rao; Ojeil, Joseph; Mocerino, Mauro; Southam, Daniel C.
2018-04-01
Educational reforms in Qatar have seen the implementation of inquiry-based learning and other student-centred pedagogies. However, there have been few efforts to investigate how these adopted western pedagogies are aligned with the high context culture of Qatar. The study presented in this article highlights the implementation of a student-centred intervention called Process-Oriented Guided Inquiry Learning (POGIL) in selected independent Arabic government schools in Qatar. The study followed a theoretical framework composed of culturally relevant pedagogical practice and social constructivism in teaching and learning. A mixed method research design involving experimental and comparison groups was utilised. Carefully structured learning materials when implemented systematically in a POGIL intervention helped Grade 10 science students improve their perceptions of chemistry learning measured from pre- and post-tests as measured by the What Is Happening In this Class (WIHIC) questionnaire and school-administered achievement test. The study further provided school-based mentoring and professional development opportunities for teachers in the region. Significantly, POGIL was found to be adaptable in the Arabic context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie
A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when themore » orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.« less
NASA Astrophysics Data System (ADS)
Weng, Can; Wang, Fei; Zhou, Mingyong; Yang, Dongjiao; Jiang, Bingyan
2018-04-01
A comparison of processes and wettability characteristics was presented for injection molded superhydrophobic polypropylene surfaces from two fabricating strategies. One is the biomimetic replication of patterns from indocalamus leaf in nature. The contact angle of water sitting on this PP surface was measured as 152 ± 2°, with comparable wetting behavior to natural indocalamus leaf surface. The other strategy is the fabrication of superhydrophobic structure by combining methods that produce structures at different length scales. Regarding both the machinability of mold inserts and function-oriented design, three micro-quadrangular arrays and one hierarchical micro-nano cylinder array were designed with the goal of superhydrophobicity. Particularly, a simple approach to the fabrication of hierarchical structures was proposed by combining the anodized plate and the punching plate. The function-oriented design targets as superhydrophobicity were all reached for the designed four structures. The measured contact angles of droplet for these structures were almost consistent with the calculated equilibrium contact angles from thermodynamic analysis. Among them, the contact angle of droplet on the surface of designed hierarchical structure reached about 163° with the sliding angle of 5°, resulting in self-cleaning characteristic. The superhydrophobicity of function-oriented designed polymer surfaces could be modified and controlled, which is exactly the limitation of replicating from natural organisms.
NASA Astrophysics Data System (ADS)
Tanoto, Yopi Y.; Anggono, Juliana; Siahaan, Ian H.; Budiman, Wesley
2017-01-01
There are several parameters that must be set before manufacturing a product using 3D printing. These parameters include the orientation deposition of that product, type of material, form fill, fill density, and other parameters. The finished product of 3D printing has some responses that can be observed, measured, and tested. Some of those responses are the processing time, the dimensions of the end product, its surface roughness and the mechanical properties, i.e. its yield strength, ultimate tensile strength, and impact resistance. This research was conducted to study the relationship between process parameters of 3D printing machine using a technology of fused deposition modeling (FDM) and the generated responses. The material used was ABS plastic that was commonly used in the industry. Understanding the relationship between the parameters and the responses thus the resulting product can be manufactured to meet the user needs. Three different orientations in depositing the ABS polymer named XY(first orientation), YX (second orientation), and ZX (third orientation) were studied. Processing time, dimensional accuracy, and the product strength were the responses that were measured and tested. The study reports that the printing process with third orientation was the fastest printing process with the processing time 2432 seconds followed by orientation 1 and 2 with a processing time of 2688 and 2780 seconds respectively. Dimension accuracy was also measured from the width and the length of gauge area of tensile test specimens printed in comparison with the dimensions required by ASTM 638-02. It was found that the smallest difference was in thickness dimension, i.e. 0.1 mm thicker in printed sample using second orientation than as required by the standard. The smallest thickness deviation from the standard was measured in width dimension of a sample printed using first orientation (0.13 mm). As with the length dimension, the closest dimension to the standard was resulted from the third orientation product, i.e 0.2 mm. Tensile test done on all the specimens produced with those three orientations shows that the highest tensile strength was obtained in sample from second orientation deposition, i.e. 7.66 MPa followed by the first and third orientations products, i.e. 6.8 MPa and 3.31 MPa, respectively.
Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer.
Ferone, Claudio; Colangelo, Francesco; Roviello, Giuseppina; Asprone, Domenico; Menna, Costantino; Balsamo, Alberto; Prota, Andrea; Cioffi, Raffaele; Manfredi, Gaetano
2013-05-10
In this study the development of a metakaolin based geopolymeric mortar to be used as bonding matrix for external strengthening of reinforced concrete beams is reported. Four geopolymer formulations have been obtained by varying the composition of the activating solution in terms of SiO₂/Na₂O ratio. The obtained samples have been characterized from a structural, microstructural and mechanical point of view. The differences in structure and microstructure have been correlated to the mechanical properties. A major issue of drying shrinkage has been encountered in the high Si/Al ratio samples. In the light of the characterization results, the optimal geopolymer composition was then applied to fasten steel fibers to reinforced concrete beams. The mechanical behavior of the strengthened reinforced beams was evaluated by four-points bending tests, which were performed also on reinforced concrete beams as they are for comparison. The preliminary results of the bending tests point out an excellent behavior of the geopolymeric mixture tested, with the failure load of the reinforced beams roughly twice that of the control beam.
New statistical potential for quality assessment of protein models and a survey of energy functions
2010-01-01
Background Scoring functions, such as molecular mechanic forcefields and statistical potentials are fundamentally important tools in protein structure modeling and quality assessment. Results The performances of a number of publicly available scoring functions are compared with a statistical rigor, with an emphasis on knowledge-based potentials. We explored the effect on accuracy of alternative choices for representing interaction center types and other features of scoring functions, such as using information on solvent accessibility, on torsion angles, accounting for secondary structure preferences and side chain orientation. Partially based on the observations made, we present a novel residue based statistical potential, which employs a shuffled reference state definition and takes into account the mutual orientation of residue side chains. Atom- and residue-level statistical potentials and Linux executables to calculate the energy of a given protein proposed in this work can be downloaded from http://www.fiserlab.org/potentials. Conclusions Among the most influential terms we observed a critical role of a proper reference state definition and the benefits of including information about the microenvironment of interaction centers. Molecular mechanical potentials were also tested and found to be over-sensitive to small local imperfections in a structure, requiring unfeasible long energy relaxation before energy scores started to correlate with model quality. PMID:20226048
NASA Astrophysics Data System (ADS)
Wilkinson, S. J.; Hukins, D. W. L.
1999-08-01
Elastic scattering of X-rays can provide the following information on the fibrous protein collagen: its molecular structure, the axial arrangement of rod-like collagen molecules in a fibril, the lateral arrangement of molecules within a fibril, and the orientation of fibrils within a biological tissue. The first part of the paper reviews the principles involved in deducing this information. The second part describes a new computer program for measuring the equatorial intensity distribution, that provides information on the lateral arrangement of molecules within a fibril, and the angular distribution of the equatorial peaks that provides information on the orientation of fibrils. Orientation of fibrils within a tissue is quantified by the orientation distribution function, g( φ), which represents the probability of finding a fibril oriented between φ and φ+ δφ. The application of the program is illustrated by measurement of g( φ) for the collagen fibrils in demineralised cortical bone from cow tibia.
Development of magnetic and elastic anisotropies in slates during progressive deformation
NASA Astrophysics Data System (ADS)
Hrouda, František; Pros, Zdeněk; Wohlgemuth, Jiří
1993-05-01
Magnetic and elastic anisotropies were investigated in rocks of the Nízký Jeseník Mountains (northeast Bohemian Massif) ranging in lithology from almost unmetamorphosed sediments, through slate, to phyllite, and showing a range of structural styles from sedimentary, through spaced and slaty cleavage, to metamorphic schistosity. In unmetamorphosed and undeformed sedimentary rocks, both the anisotropies display close relationships to the sedimentary fabric. During the development of the spaced and slaty cleavage they are gradually re-oriented into the attitudes of the deformational fabrics, and in the rocks with metamorphic schistosity they are fully related to the deformational fabric elements, which can be oriented in a very different way from the original sedimentary structures. The magnetic anisotropy is mostly due to the preferred orientation of phyllosilicates generated during very weak regional metamorphism, and subordinately due to the preferred orientation of magnetite. The elastic anisotropy is probably controlled by the preferred orientation of phyllosilicates and by the existence of oriented systems of microcracks.
NASA Technical Reports Server (NTRS)
Mitchell, T. R.
1974-01-01
The development of a test engineer oriented language has been under way at the Kennedy Space Center for several years. The result of this effort is the Ground Operations Aerospace Language, GOAL, a self-documenting, high-order language suitable for coding automatic test, checkout and launch procedures. GOAL is a highly readable, writable, retainable language that is easily learned by nonprogramming oriented engineers. It is sufficiently powerful for use at all levels of Space Shuttle ground processing, from line replaceable unit checkout to integrated launch day operations. This paper will relate the language development, and describe GOAL and its applications.
Ye, Shuji; Wei, Feng; Li, Hongchun; Tian, Kangzhen; Luo, Yi
2013-01-01
In situ and real-time characterization of molecular structures and orientation of proteins at interfaces is essential to understand the nature of interfacial protein interaction. Such work will undoubtedly provide important clues to control biointerface in a desired manner. Sum frequency generation vibrational spectroscopy (SFG-VS) has been demonstrated to be a powerful technique to study the interfacial structures and interactions at the molecular level. This paper first systematically introduced the methods for the calculation of the Raman polarizability tensor, infrared transition dipole moment, and SFG molecular hyperpolarizability tensor elements of proteins/peptides with the secondary structures of α-helix, 310-helix, antiparallel β-sheet, and parallel β-sheet, as well as the methodology to determine the orientation of interfacial protein secondary structures using SFG amide I spectra. After that, recent progresses on the determination of protein structure and orientation at different interfaces by SFG-VS were then reviewed, which provides a molecular-level understanding of the structures and interactions of interfacial proteins, specially understanding the nature of driving force behind such interactions. Although this review has focused on analysis of amide I spectra, it will be expected to offer a basic idea for the spectral analysis of amide III SFG signals and other complicated molecular systems such as RNA and DNA. Copyright © 2013 Elsevier Inc. All rights reserved.
Böckers, Anja; Mayer, Christian; Böckers, Tobias Maria
2014-01-01
The preclinical compulsory elective course "Ready for the Operating Room (OR)!?" [in German]: "Fit für den OP (FOP)"] was implemented for students in their second year, who were simultaneously enrolled in the gross anatomy course. The objective of the study was to determine whether the direct practical application of anatomical knowledge within the surgical context of the course led to any improvement in learning motivation, learning orientation, and ultimately examination results in the gross anatomy course, as compared with a control group. Within the scope of five teaching sessions, the students learned surgical hand disinfection, suturing techniques, and the identification of commonly used surgical instruments. In addition, the students attended five surgical demonstrations performed by surgical colleagues on cadavers. Successful learning of these basic skills was then assessed based on an Objectively Structured Practical Examination. Learning motivation and learning orientation in both subgroups was determined using the SELLMO-ST motivation test and the Approaches and Study Skills Inventory test. While a significant increase in work avoidance was identified in the control group, this was not the case for FOP participants. Similarly, an increase in the "deep approach" to learning, as well as a decrease in the "surface approach," was able to be documented among the FOP participants following completion of the course. The results suggest that students enrolled in the gross anatomy course, who were simultaneously provided with the opportunity to learn in clinical context, were more likely to be successful at maintaining learning motivation and learning orientation required for the learning process, than students who attended the gross anatomy course alone. © 2013 American Association of Anatomists.