Sample records for original geologic map-unit

  1. Geologic map of the Khanneshin carbonatite complex, Helmand Province, Afghanistan, modified from the 1976 original map compilation of V.G. Cheremytsin

    USGS Publications Warehouse

    Tucker, Robert D.; Peters, Stephen G.; Schulz, Klaus J.; Renaud, Karine M.; Stettner, Will R.; Masonic, Linda M.; Packard, Patricia H.

    2011-01-01

    This map is a modified version of the Geological map of the Khanneshin carbonatite complex, scale 1:10,000, which was compiled by V.G. Cheremytsin in 1976. Scientists from the U.S. Geological Survey, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original map and also visited the field area in September 2009, August 2010, and February 2011. This modified map, which includes cross sections, illustrates the geologic structure of the Khanneshin carbonatite complex. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross sections and includes modifications based on our examination of that map and a related report, and based on observations made during our field visits. (Refer to the References section in the Map PDF for complete citations of the original map and related report.) Elevations on the cross section are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  2. Geologic map of the Haji-Gak iron deposit, Bamyan Province, Afghanistan, modified from the 1965 original map compilation of M.S. Smirnov and I.K. Kusov

    USGS Publications Warehouse

    Renaud, Karine M.; Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2011-01-01

    This map is a modified version of Geological-structural map of Hajigak iron-ore deposit, scale 1:10,000, which was compiled by M.S. Smirnov and I.K. Kusov in 1965. (Refer to the References Cited section in the Map PDF for complete citations of the original map and a related report.) USGS scientists, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original documents and also visited the field area in November 2009. This modified map illustrates the geological structure of the Haji-Gak iron deposit and includes cross sections of the same area. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross sections and includes modifications based on our examination of these documents. Elevations on the cross sections are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  3. Geologic Map of Quadrangles 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Fridrich, Chris J.; Lindsay, Charles R.; Snee, Lawrence W.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. Geologic Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Part of Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Maldonado, Florian; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. Geologic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lindsay, Charles R.; Snee, Lawrence W.; Bohannon, Robert G.; Wahl, Ronald R.; Sawyer, David A.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. Geologic Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    USGS Publications Warehouse

    McKinney, Kevin C.; Sawyer, David A.; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. Geologic Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. Geologic Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.; Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. Geologic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lidke, David J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Geologic Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Wahl, Ronald R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. Geologic Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. Geologic Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Wahl, Ronald R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. Geologic Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Stoeser, Douglas B.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. Geologic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lindsay, Charles R.; Snee, Lawrence W.; Bohannon, Robert G.; Wahl, Ronald R.; Sawyer, David A.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. Geologic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Yount, James

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. Geologic Map of Quadrangles 3870 and 3770, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Stoeser, Douglas B.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. Geologic Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. Geologic Map of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Williams, Van S.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Geologic Map of Quadrangles 3064, 3066, 2964, and 2966, Laki-Bander (611), Jahangir-Naweran (612), Sreh-Chena (707), Shah-Esmail (617), Reg-Alaqadari (618), and Samandkhan-Karez (713) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.; Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. Geologic Map of Quadrangle 3470 and the Northern Edge of Quadrangle 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  1. Geologic Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Maldonado, Florian

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. Geologic Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. Geologic Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Sawyer, David A.; Stoeser, Douglas B.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. Geologic Map of Quadrangles 3560, 3562, and 3662, Sir Band (402), Khawja-Jir (403), Bala-Murghab (404), and Darah-I-Shor-I-Karamandi (122) Quadrangles, Afghanistan

    USGS Publications Warehouse

    McKinney, Kevin C.; Lidke, David J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. Geologic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    McKinney, Kevin C.; Sawyer, David A.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. Geologic Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. Geologic Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. Geologic Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. Geologic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Geologic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Yount, James C.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. Geologic Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. Geologic Map of Quadrangle 3468, Chak Wardak-Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. Geologic Map of Quadrangles 3772, 3774, 3672, and 3674, Gaz-Khan (313), Sarhad (314), Kol-I-Chaqmaqtin (315), Khandud (319), Deh-Ghulaman (320), and Ertfah (321) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. Geologic Map of Quadrangles 3460 and 3360, Kol-I-Namaksar (407), Ghuryan (408), Kawir-I-Naizar (413), and Kohe-Mahmudo-Esmailjan (414) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Williams, Van S.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. Geologic map of the western Haji-Gak iron deposit, Bamyan Province, Afghanistan, modified from the 1965 original map compilation of V.V. Reshetniak and I.K. Kusov

    USGS Publications Warehouse

    Renaud, Karine M.; Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2011-01-01

    This map is a modified version of Geologic-prospecting plan of western area of Hajigak iron-ore deposit, scale 1:2,000, which was compiled by V.V. Reshetniak and I.K. Kusov in 1965. (Refer to the References Cited section in the Map PDF for complete citations of the original map and related reports.) USGS scientists, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original documents and also visited the field area in November 2009. This modified map illustrates the geological structure of the western Haji-Gak iron deposit and includes cross sections of the same area. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and includes modifications based on our examination of that document. We constructed the cross sections from data derived from the original map. Elevations on the cross sections are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  16. Geologic map of the Shaida deposit and Misgaran prospect, Herat Province, Afghanistan, modified from the 1973 original map compilation of V.I. Tarasenko and others

    USGS Publications Warehouse

    Tucker, Robert D.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2014-01-01

    This map is a modified version of Geological map and map of useful minerals, Shaida area, scale 1:50,000, which was compiled by V.I. Tarasenko, N.I. Borozenets, and others in 1973. Scientists from the U.S. Geological Survey, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original document and related reports and also visited the field area in August 2010.This modified map illustrates the geological structure of the Shaida copper-lead-zinc deposit and Misgaran copper-lead-zinc prospect in western Afghanistan and includes cross sections of the same area. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross sections and includes modifications based on our examination of these documents and on observations made during our field visit. Elevations on the cross sections are derived from the original Soviet topography and might not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map.The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  17. Preliminary geologic map of the Piru 7.5' quadrangle, southern California: a digital database

    USGS Publications Warehouse

    Yerkes, R.F.; Campbell, Russell H.

    1995-01-01

    This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. This digital map database is compiled from previously published sources combined with some new mapping and modifications in nomenclature. The geologic map database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U. S. Geological Survey. For detailed descriptions of the units, their stratigraphic relations and sources of geologic mapping consult Yerkes and Campbell (1995). More specific information about the units may be available in the original sources.

  18. Hydrology of the Helena area bedrock, west-central Montana, 1993-98; with a section on geologic setting and a generalized bedrock geologic map

    USGS Publications Warehouse

    Thamke, Joanna N.; Reynolds, Mitchell W.

    2000-01-01

    The Generalized Bedrock Geologic Map of the Helena Area, West-Central Montana (plate 1 in the report) provides an intermediate-scale overview of bedrock in the Helena area. The geologic map has been compiled at a scale of 1:100,000 from the most widely available sources of geologic map information (see index to geologic mapping on pl. 1). That information has been updated by M.W. Reynolds for this report with more recent geologic mapping and field revision of published maps. All well locations and all bedrock units penetrated during drilling have been confirmed on geologic maps at the largest scale available. Source geologic maps are all at scales larger than 1:100,000 scale. Care has been taken to ensure accurate representation of the original geology at the compilation scale. However, positional accuracy of some features might be somewhat diminished at the smaller scale of the base map when compared with the original data source. Also, line thicknesses for contacts and faults necessarily assume a greater width, relative to the real geologic feature, at the scale of the generalized map than on any original map. The map is not intended for large-scale, site-specific detailed planning. Bedrock units throughout the Helena area are generally covered by young surficial deposits such as alluvium, colluvium, glacial debris, or windblown sediment. Thickness of such deposits varies from veneers through which the underlying bedrock is clearly discernible to major thicknesses that conceal all underlying bedrock and structure. Boundaries of major accumulations of surficial deposits are attributed separately from bedrock contacts. These boundaries should not be considered precise at the map scale or at larger scales. Boundaries shown may be less accurate positionally than bedrock contacts and faults because (1) surficial deposits commonly thin to a knife edge; (2) different mappers will interpret the edge differently when drawing a boundary; or (3) the original geologic map maker was concerned principally with bedrock units and structure and thus overlooked, or did not originally map as consistently, some surficial deposits. Veneers of surficial sediment, when saturated, can be local sources of recharge to underlying bedrock. Use of the generalized map to define their distribution does not substitute for site specific mapping of such deposits. Specific knowledge is needed to determine the water-bearing properties of the geologic units at and surrounding a site because the units, including the igneous and metamorphic rocks, have internal differences in stratigraphy, composition, mineralogy and grain size or crystallinity. These differences, together with structural imprints such as faults, folds, and the spacing, orientation, degree of openness of fractures, and extent and type of mineral filling in fractures and faults, all affect the ability of rocks to store and transmit water.

  19. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution: Introduction. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The relative ages of various geologic units and structures place tight constraints on the origin of the Moon and the planet Mercury, and thus provide a better understanding of the geologic histories of these bodies. Crater statistics, a reexamination of lunar geologic maps, and the compilation of a geologic map of a quarter of Mercury's surface based on plains units dated relative to crater degradation classes were used to determine relative ages. This provided the basis for deducing the origin of intercrater plains and their role in terrestrial planet evolution.

  20. Geologic and Mineral Resource Map of Afghanistan

    USGS Publications Warehouse

    Doebrich, Jeff L.; Wahl, Ronald R.; With Contributions by Ludington, Stephen D.; Chirico, Peter G.; Wandrey, Craig J.; Bohannon, Robert G.; Orris, Greta J.; Bliss, James D.; Wasy, Abdul; Younusi, Mohammad O.

    2006-01-01

    Data Summary The geologic and mineral resource information shown on this map is derived from digitization of the original data from Abdullah and Chmyriov (1977) and Abdullah and others (1977). The U.S. Geological Survey (USGS) has made no attempt to modify original geologic map-unit boundaries and faults as presented in Abdullah and Chmyriov (1977); however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. Labeling of map units has not been attempted where they are small or narrow, in order to maintain legibility and to preserve the map's utility in illustrating regional geologic and structural relations. Users are encouraged to refer to the series of USGS/AGS (Afghan Geological Survey) 1:250,000-scale geologic quadrangle maps of Afghanistan that are being released concurrently as open-file reports. The classification of mineral deposit types is based on the authors' interpretation of existing descriptive information (Abdullah and others, 1977; Bowersox and Chamberlin, 1995; Orris and Bliss, 2002) and on limited field investigations by the authors. Deposit-type nomenclature used for nonfuel minerals is modified from published USGS deposit-model classifications, as compiled in Stoeser and Heran (2000). New petroleum localities are based on research of archival data by the authors. The shaded-relief base is derived from Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data having 85-meter resolution. Gaps in the original SRTM DEM dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). The marginal extent of geologic units corresponds to the position of the international boundary as defined by Abdullah and Chmyriov (1977), and the international boundary as shown on this map was acquired from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af) in September 2005. Non-coincidence of these boundaries is due to differences in the respective data sources and to inexact registration of the geologic data to the DEM base. Province boundaries, province capital locations, and political names were also acquired from the AIMS Web site in September 2005. The AIMS data were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Version 2 differs from Version 1 in that (1) map units are colored according to the color scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org), (2) the minerals database has been updated, and (3) all data presented on the map are also available in GIS format.

  1. Digital geologic map and Landsat image map of parts of Loralai, Sibi, Quetta, and Khuzar Divisions, Balochistan Province, west-central Pakistan

    USGS Publications Warehouse

    Maldonado, Florian; Menga, Jan Mohammad; Khan, Shabid Hasan; Thomas, Jean-Claude

    2011-01-01

    This generalized digital geologic map of west-central Pakistan is a product of the Balochistan Coal-Basin Synthesis Study, which was part of a cooperative program of the Geological Survey of Pakistan and the United States Geological Survey. The original nondigital map was published by Maldonado and others (1998). Funding was provided by the Government of Pakistan and the United States Agency for International Development. The sources of geologic map data are primarily 1:253,440-scale geologic maps obtained from Hunting Survey Corporation (1961) and the geologic map of the Muslim Bagh Ophiolite Complex and Bagh Complex area. The geology was modified based on reconnaissance field work and photo interpretation of 1:250,000-scale Landsat Thematic Mapper photo image. The descriptions and thicknesses of map units were based on published and unpublished reports and converted to U.S. Geological Survey format. In the nomenclature of the Geological Survey of Pakistan, there is both an Urak Group and an Urak Formation.

  2. Database of the Geology and Thermal Activity of Norris Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Flynn, Kathryn; Graham Wall, Brita; White, Donald E.; Hutchinson, Roderick A.; Keith, Terry E.C.; Clor, Laura; Robinson, Joel E.

    2008-01-01

    This dataset contains contacts, geologic units and map boundaries from Plate 1 of USGS Professional Paper 1456, 'The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming.' The features are contained in the Annotation, basins_poly, contours, geology_arc, geology_poly, point_features, and stream_arc feature classes as well as a table of geologic units and their descriptions. This dataset was constructed to produce a digital geologic map as a basis for studying hydrothermal processes in Norris Geyser Basin. The original map does not contain registration tic marks. To create the geodatabase, the original scanned map was georegistered to USGS aerial photographs of the Norris Junction quadrangle collected in 1994. Manmade objects, i.e. roads, parking lots, and the visitor center, along with stream junctions and other hydrographic features, were used for registration.

  3. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Geologic mapping of Mercury and the Moon. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The geologic framework of the intercrater plains on Mercury and the Moon as determined through geologic mapping is presented. The strategies used in such mapping are discussed first. Then, because the degree of crater degradation is applied to both mapping and crater statistics, the correlation of degradation classification of lunar and Mercurian craters is thoroughly addressed. Different imaging systems can potentially affect this classification, and are therefore also discussed. The techniques used in mapping Mercury are discussed in Section 2, followed by presentation of the Geologic Map of Mercury in Section 3. Material units, structures, and relevant albedo and color data are discussed therein. Preliminary conclusions regarding plains' origins are given there. The last section presents the mapping analyses of the lunar intercrater plains, including tentative conclusions of their origin.

  4. One perspective on spatial variability in geologic mapping

    USGS Publications Warehouse

    Markewich, H.W.; Cooper, S.C.

    1991-01-01

    This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.

  5. Preliminary geologic map of the Oat Mountain 7.5' quadrangle, Southern California: a digital database

    USGS Publications Warehouse

    Yerkes, R.F.; Campbell, Russell H.

    1995-01-01

    This database, identified as "Preliminary Geologic Map of the Oat Mountain 7.5' Quadrangle, southern California: A Digital Database," has been approved for release and publication by the Director of the USGS. Although this database has been reviewed and is substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. This database is released on condition that neither the USGS nor the U. S. Government may be held liable for any damages resulting from its use. This digital map database is compiled from previously published sources combined with some new mapping and modifications in nomenclature. The geologic map database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U. S. Geological Survey. For detailed descriptions of the units, their stratigraphic relations and sources of geologic mapping consult Yerkes and Campbell (1993). More specific information about the units may be available in the original sources.

  6. Global geologic mapping of Mars: The western equatorial region

    USGS Publications Warehouse

    Scott, D.H.

    1985-01-01

    Global geologic mapping of Mars was originally accomplished following acquisition of orbital spacecraft images from the Mariner 9 mission. The mapping program represented a joint enterprise by the U.S. Geological Survey and other planetary scientists from universities in the United States and Europe. Many of the Mariner photographs had low resolution or poor albedo contrast caused by atmospheric haze and high-sun angles. Some of the early geologic maps reflect these deficiencies in their poor discrimination and subdivision of rock units. New geologic maps made from higher resolution and better quality Viking images also represent a cooperative effort, by geologists from the U.S. Geological Survey, Arizona State University, and the University of London. This second series of global maps consists of three parts: 1) western equatorial region, 2) eastern equatorial region, and 3) north and south polar regions. These maps, at 1:15 million scale, show more than 60 individual rock-stratigraphic units assigned to three Martian time-stratigraphic systems. The first completed map of the series covers the western equatorial region of Mars. Accompanying the map is a description of the sequence and distribution of major tectonic, volcanic, and fluvial episodes as recorded in the stratigraphic record. ?? 1985.

  7. Geologic map of Yosemite National Park and vicinity, California

    USGS Publications Warehouse

    Huber, N.K.; Bateman, P.C.; Wahrhaftig, Clyde

    1989-01-01

    This digital map database represents the general distribution of bedrock and surficial deposits of the Yosemite National Park vicinity. It was produced directly from the file used to create the print version in 1989. The Yosemite National Park region is comprised of portions of 15 7.5 minute quadrangles. The original publication of the map in 1989 included the map, described map units and provided correlations, as well as a geologic summary and references, all on the same sheet. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:125,000 or smaller.

  8. Preliminary geologic map of the Big Bear City 7.5' Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, Fred K.; Cossette, Digital preparation by Pamela M.

    2004-01-01

    This data set maps and describes the geology of the Big Bear City 7.5' quadrangle, San Bernardino County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a rock-unit coverage and attribute tables (polygon and arc) containing geologic contacts, units and rock-unit labels as annotation which are also included in a separate annotation coverage, bbc_anno (2) a point coverage containing structural point data and (3) a coverage containing fold axes. In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map, topography, cultural data, a Correlation of Map Units (CMU) diagram, a Description of Map Units (DMU), an index map, a regional geologic and structure map, and an explanation for point and line symbols; (2) PDF files of the Readme (including the metadata file as an appendix), and a screen graphic of the plot produced by the PostScript plot file. The geologic map describes a geologically complex area on the north side of the San Bernardino Mountains. Bedrock units in the Big Bear City quadrangle are dominated by (1) large Cretaceous granitic bodies ranging in composition from monzogranite to gabbro, (2) metamorphosed sedimentary rocks ranging in age from late Paleozoic to late Proterozoic, and (3) Middle Proterozoic gneiss. These rocks are complexly deformed by normal, reverse, and thrust faults, and in places are tightly folded. The geologic map database contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map data was compiled on base-stable cronoflex copies of the Big Bear City 7.5' topographic map, transferred to a scribe-guide and subsequently digitized. Lines, points, and polygons were edited at the USGS using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:24,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.

  9. Geoscientific Mapping of Vesta by the Dawn Mission

    NASA Technical Reports Server (NTRS)

    Jaumann, R.; Pieters, C. M.; Neukum, G.; Mottola, S.; DeSanctis, M. C.; Russell, C. T.; Raymond, C. A.; McSween, H. Y.; Roatsch, T.; Nathues, A.; hide

    2011-01-01

    The geologic objectives of the Dawn Mission are to derive Vesta's shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids' origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results into the stratigraphic context and thusrevealing the geologic history of Vesta.

  10. Geologic road guides for the Southern Canadian Cordillera--Viewing geology and tectonics along major highways

    USGS Publications Warehouse

    Nokleberg, Warren J.; Price, Raymond A.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    The Geologic Road Guides for the Southern Canadian Cordillera provide a layperson’s understanding of the major geologic units and their tectonic origins along portions of two sets of major highways corridors, herein termed the Southern Road Guide and the Northern Road Guide. The two routes are shown on the Southern Canadian Cordillera Geologic Map. The first page of each Road Guide is this map that has Hot Spots for each site.

  11. Geologic mapping of Argyre Planitia

    NASA Technical Reports Server (NTRS)

    Gorsline, Donn S.; Parker, Timothy J.

    1995-01-01

    This report describes the results from the geologic mapping of the central and southern Argyre basin of Mars. At the Mars Geologic Mapper's Meeting in Flagstaff during July, 1993, Dave Scott (United States Geological Survey, Mars Geologic Mapping Steering Committee Chair) recommended that all four quadrangles be combined into a single 1:1,000,000 scale map for publication. It was agreed that this would be cost-effective and that the decrease in scale would not compromise the original science goals of the mapping. Tim Parker completed mapping on the 1:500,000 scale base maps, for which all the necessary materials had already been produced, and included the work as a chapter in his dissertation, which was completed in the fall of 1994. Geologic mapping of the two southernmost quadrangles (MTM -55036 and MTM -55043; MTM=Mars Transverse Mercator) was completed as planned during the first year of work. These maps and a detailed draft of the map text were given a preliminary review by Dave Scott during summer, 1993. Geologic mapping of the remaining two quadrangles (MTM -50036 and MTM -50043) was completed by summer, 1994. Results were described at the Mars Geologic Mappers Meeting, held in Pocatello, Idaho, during July, 1994. Funds for the third and final year of the project have been transferred to the Jet Propulsion Laboratory, where Tim Parker will revise and finalize all maps and map text for publication by the United States Geological Survey at the 1:1,000,000 map scale.

  12. Spatial Digital Database for the Geologic Map of Oregon

    USGS Publications Warehouse

    Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.

    2003-01-01

    Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.

  13. Geologic map of the Chewelah 30' x 60' Quadrangle, Washington and Idaho

    USGS Publications Warehouse

    Miller, F.K.

    2001-01-01

    This data set maps and describes the geology of the Chewelah 30' X 60' quadrangle, Washington and Idaho. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage containing geologic contacts and units, (2) a point coverage containing site-specific geologic structural data, (3) two coverages derived from 1:100,000 Digital Line Graphs (DLG); one of which represents topographic data, and the other, cultural data, (4) two line coverages that contain cross-section lines and unit-label leaders, respectively, and (5) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map, topography, cultural data, and two cross sections, and on a separate sheet, a Correlation of Map Units (CMU) diagram, an abbreviated Description of Map Units (DMU), modal diagrams for granitic rocks, an index map, a regional geologic and structure map, and a key for point and line symbols; (2) PDF files of the Readme text-file and expanded Description of Map Units (DMU), and (3) this metadata file. The geologic map database contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map was compiled from geologic maps of eight 1:48,000 15' quadrangle blocks, each of which was made by mosaicing and reducing the four constituent 7.5' quadrangles. These 15' quadrangle blocks were mapped chiefly at 1:24,000 scale, but the detail of the mapping was governed by the intention that it was to be compiled at 1:48,000 scale. The compilation at 1:100,000 scale entailed necessary simplification in some areas and combining of some geologic units. Overall, however, despite a greater than two times reduction in scale, most geologic detail found on the 1:48,000 maps is retained on the 1:100,000 map. Geologic contacts across boundaries of the eight constituent quadrangles required minor adjustments, but none significant at the final 1:100,000 scale. The geologic map was compiled on a base-stable cronoflex copy of the Chewelah 30' X 60' topographic base and then scribed. The scribe guide was used to make a 0.007 mil-thick blackline clear-film, which was scanned at 1200 DPI by Optronics Specialty Company, Northridge, California. This image was converted to vector and polygon GIS layers and minimally attributed by Optronics Specialty Company. Minor hand-digitized additions were made at the USGS. Lines, points, and polygons were subsequently edited at the USGS by using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:100,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.

  14. National Atlas of the United States Maps

    USGS Publications Warehouse

    ,

    2001-01-01

    The "National Atlas of the United States of America®", published by the U.S. Geological Survey (USGS) in 1970, is out of print, but many of its maps can be purchased separately. Maps that span facing pages in the atlas are printed on one sheet. Maps dated after 1970 and before 1997 are either revisions of original atlas maps or new maps published in the original atlas format. The USGS and its partners in government and industry began work on a new "National Atlas" in 1997. Though most new atlas products are designed for the World Wide Web, we are continuing our tradition of printing high-quality maps of America. In 1998, the first completely redesigned maps of the "National Atlas of the United States®" were published.

  15. Geologic Map of the San Luis Hills Area, Conejos and Costilla Counties, Colorado

    USGS Publications Warehouse

    Thompson, Ren A.; Machette, Michael N.

    1989-01-01

    This report is a digital image of the U.S. Geological Survey Miscellaneous Investigations Series Map I-1906, 'Geologic map of the San Luis Hills area, Conejos and Costilla Counties, Colorado,' which was published in 1989 by Thompson and Machette, scale 1:50,000 but has been unavailable in a digital version. The map area represents the southwestern portion of the Alamosa 30' x 60' quadrangle, which is currently being remapped by the U.S. Geological Survey. The northern and eastern margins of the San Luis Hills area have been remapped at greater detail and thus small portions of the map area have been updated. The northern margin is shown on U.S. Geological Survey Open-File Report 2005-1392, the northeastern portion is shown on U.S. Geological Survey Open-File Report 2008-1124, and the eastern margin is shown on U.S. Geological Survey Open-File Report 2007-1074. The most significant changes to the 1989 map area are recognition of Lake Alamosa and its deposits (Alamosa Formation), remapping of bedrock in the northeastern San Luis Hills, and redating of volcanic units in the San Luis Hills. Although unpublished, new 40Ar/39Ar ages for volcanic units in the Conejos and Hinsdale Formations add precision to the previous K/Ar-dated rocks, but do not change the basic chronology of the units. The digital version of this map was prepared by Theodore R. Brandt by scanning the original map at 300 pixels per inch, prior to creating the press-quality (96 Mb) and standard (5 Mb) .pdf files.

  16. Preliminary Geologic Map of the Topanga 7.5' Quadrangle, Southern California: A Digital Database

    USGS Publications Warehouse

    Yerkes, R.F.; Campbell, R.H.

    1995-01-01

    INTRODUCTION This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. This digital map database is compiled from previously published sources combined with some new mapping and modifications in nomenclature. The geologic map database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U. S. Geological Survey. For detailed descriptions of the units, their stratigraphic relations and sources of geologic mapping consult Yerkes and Campbell (1994). More specific information about the units may be available in the original sources. The content and character of the database and methods of obtaining it are described herein. The geologic map database itself, consisting of three ARC coverages and one base layer, can be obtained over the Internet or by magnetic tape copy as described below. The processes of extracting the geologic map database from the tar file, and importing the ARC export coverages (procedure described herein), will result in the creation of an ARC workspace (directory) called 'topnga.' The database was compiled using ARC/INFO version 7.0.3, a commercial Geographic Information System (Environmental Systems Research Institute, Redlands, California), with version 3.0 of the menu interface ALACARTE (Fitzgibbon and Wentworth, 1991, Fitzgibbon, 1991, Wentworth and Fitzgibbon, 1991). It is stored in uncompressed ARC export format (ARC/INFO version 7.x) in a compressed UNIX tar (tape archive) file. The tar file was compressed with gzip, and may be uncompressed with gzip, which is available free of charge via the Internet from the gzip Home Page (http://w3.teaser.fr/~jlgailly/gzip). A tar utility is required to extract the database from the tar file. This utility is included in most UNIX systems, and can be obtained free of charge via the Internet from Internet Literacy's Common Internet File Formats Webpage http://www.matisse.net/files/formats.html). ARC/INFO export files (files with the .e00 extension) can be converted into ARC/INFO coverages in ARC/INFO (see below) and can be read by some other Geographic Information Systems, such as MapInfo via ArcLink and ESRI's ArcView (version 1.0 for Windows 3.1 to 3.11 is available for free from ESRI's web site: http://www.esri.com). 1. Different base layer - The original digital database included separates clipped out of the Los Angeles 1:100,000 sheet. This release includes a vectorized scan of a scale-stable negative of the Topanga 7.5 minute quadrangle. 2. Map projection - The files in the original release were in polyconic projection. The projection used in this release is state plane, which allows for the tiling of adjacent quadrangles. 3. File compression - The files in the original release were compressed with UNIX compression. The files in this release are compressed with gzip.

  17. Geologic Map of The Volcanoes Quadrangle, Bernalillo and Sandoval Counties, New Mexico

    USGS Publications Warehouse

    Thompson, Ren A.; Shroba, Ralph R.; Menges, Christopher M.; Schmidt, Dwight L.; Personius, Stephen F.; Brandt, Theodore R.

    2009-01-01

    This geologic map, in support of the U.S. Geological Survey Middle Rio Grande Basin Geologic Mapping Project, shows the spatial distribution of surficial deposits, lava flows, and related sediments of the Albuquerque volcanoes, upper Santa Fe Group sediments, faults, and fault-related structural features. These deposits are on, along, and beneath the Llano de Albuquerque (West Mesa) west of Albuquerque, New Mexico. Some of these deposits are in the western part of Petroglyph National Monument. Artificial fill deposits are mapped chiefly beneath and near the City of Albuquerque Soil Amendment Facility and the Double Eagle II Airport. Alluvial deposits were mapped in and along stream channels, beneath terrace surfaces, and on the Llano de Albuquerque and its adjacent hill slopes. Deposits composed of alluvium and colluvium are also mapped on hill slopes. Wedge-shaped deposits composed chiefly of sandy sheetwash deposits, eolian sand, and intercalated calcic soils have formed on the downthrown-sides of faults. Deposits of active and inactive eolian sand and sandy sheetwash deposits mantle the Llano de Albuquerque. Lava flows and related sediments of the Albuquerque volcanoes were mapped near the southeast corner of the map area. They include eleven young lava flow units and, where discernable, associated vent and near-vent pyroclastic deposits associated with cinder cones. Upper Santa Fe Group sediments are chiefly fluvial in origin, and are well exposed near the western boundary of the map area. From youngest to oldest they include a gravel unit, pebbly sand unit, tan sand and mud unit, tan sand unit, tan sand and clay unit, and silty sand unit. Undivided upper Santa Fe Group sediments are mapped in the eastern part of the map area. Faults were identified on the basis of surface expression determined from field mapping and interpretation of aeromagnetic data where concealed beneath surficial deposits. Fault-related structural features are exposed and were mapped near the western boundary of the map area.

  18. Geology of the conterminous United States at 1:2,500,000 scale a digital representation of the 1974 P.B. King and H.M. Beikman map

    USGS Publications Warehouse

    Schruben, Paul G.; Arndt, Raymond E.; Bawiec, Walter J.

    1998-01-01

    This CD-ROM contains a digital version of the Geologic Map of the United States, originally published at a scale of 1:2,500,000 (King and Beikman, 1974b). It excludes Alaska and Hawaii. In addition to the graphical formats, the map key is included in ASCII text. A geographic information system (GIS) allows combining and overlaying of layers for analysis of spatial relations not readily apparent in the standard paper publication. This disc contains only geology. However, digital data on geology, geophysics, and geochemistry can be combined to create useful derivative products-- for example, see Phillips and others (1993). This CD-ROM contains a copy of the text and figures from Professional Paper 901 by King and Beikman (1974a). This text describes the historical background of the map, details of the compilation process, and limitations to interpretation. The digital version of the text can be searched for keywords or phrases.

  19. Database for the geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    USGS Publications Warehouse

    Barron, Andrew D.; Ramsey, David W.; Smith, James G.

    2014-01-01

    This digital database contains information used to produce the geologic map published as Sheet 1 in U.S. Geological Survey Miscellaneous Investigations Series Map I-2005. (Sheet 2 of Map I-2005 shows sources of geologic data used in the compilation and is available separately). Sheet 1 of Map I-2005 shows the distribution and relations of volcanic and related rock units in the Cascade Range of Washington at a scale of 1:500,000. This digital release is produced from stable materials originally compiled at 1:250,000 scale that were used to publish Sheet 1. The database therefore contains more detailed geologic information than is portrayed on Sheet 1. This is most noticeable in the database as expanded polygons of surficial units and the presence of additional strands of concealed faults. No stable compilation materials exist for Sheet 1 at 1:500,000 scale. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map sheet, main report text, and accompanying mapping reference sheet from Map I-2005. For more information on volcanoes in the Cascade Range in Washington, Oregon, or California, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  20. Intrusive Rock Database for the Digital Geologic Map of Utah

    USGS Publications Warehouse

    Nutt, C.J.; Ludington, Steve

    2003-01-01

    Digital geologic maps offer the promise of rapid and powerful answers to geologic questions using Geographic Information System software (GIS). Using modern GIS and database methods, a specialized derivative map can be easily prepared. An important limitation can be shortcomings in the information provided in the database associated with the digital map, a database which is often based on the legend of the original map. The purpose of this report is to show how the compilation of additional information can, when prepared as a database that can be used with the digital map, be used to create some types of derivative maps that are not possible with the original digital map and database. This Open-file Report consists of computer files with information about intrusive rocks in Utah that can be linked to the Digital Geologic Map of Utah (Hintze et al., 2000), an explanation of how to link the databases and map, and a list of references for the databases. The digital map, which represents the 1:500,000-scale Geologic Map of Utah (Hintze, 1980), can be obtained from the Utah Geological Survey (Map 179DM). Each polygon in the map has a unique identification number. We selected the polygons identified on the geologic map as intrusive rock, and constructed a database (UT_PLUT.xls) that classifies the polygons into plutonic map units (see tables). These plutonic map units are the key information that is used to relate the compiled information to the polygons on the map. The map includes a few polygons that were coded as intrusive on the state map but are largely volcanic rock; in these cases we note the volcanic rock names (rhyolite and latite) as used in the original sources Some polygons identified on the digital state map as intrusive rock were misidentified; these polygons are noted in a separate table of the database, along with some information about their true character. Fields may be empty because of lack of information from references used or difficulty in finding information. The information in the database is from a variety of sources, including geologic maps at scales ranging from 1:500,000 to 1:24,000, and thesis monographs. The references are shown twice: alphabetically and by region. The digital geologic map of Utah (Hintze and others, 2000) classifies intrusive rocks into only 3 categories, distinguished by age. They are: Ti, Tertiary intrusive rock; Ji, Upper to Middle Jurassic granite to quartz monzonite; and pCi, Early Proterozoic to Late Archean intrusive rock. Use of the tables provided in this report will permit selection and classification of those rocks by lithology and age. This database is a pilot study by the Survey and Analysis Project of the U.S. Geological Survey to characterize igneous rocks and link them to a digital map. The database, and others like it, will evolve as the project continues and other states are completed. We release this version now as an example, as a reference, and for those interested in Utah plutonic rocks.

  1. Geologic map of Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mull, Charles G.; Karl, Susan M.

    2015-12-31

    This Alaska compilation is unique in that it is integrated with a rich database of information provided in the spatial datasets and standalone attribute databases. Within the spatial files every line and polygon is attributed to its original source; the references to these sources are contained in related tables, as well as in stand-alone tables. Additional attributes include typical lithology, geologic setting, and age range for the map units. Also included are tables of radiometric ages.

  2. Investigating the volcanic versus aqueous origin of the surficial deposits in Eastern Elysium Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Voigt, Joana R. C.; Hamilton, Christopher W.

    2018-07-01

    The Elysium Volcanic Province consists of numerous overlapping flow units and may include the youngest lava flows on Mars. However, it is possible that these volcanic units have been modified or overprinted by aqueous processes. Understanding the timing of the igneous and aqueous events in this region is therefore essential for constraining the geological and environmental history of Mars during the Amazonian Period. We investigate the geologic evolution of Eastern Elysium Planitia to determine the relationship between major units, with the support of a geological map and chronological constraints from crater size-frequency distributions. We also evaluate the hypothesized origin of these units via volcanic, fluvial, and/or fluvioglacial processes using a detailed facies-mapping approach. The study area includes the Eastern Cerberus Fossae, Rahway Valles, and Marte Vallis. The surficial deposits in Rahway Valles were formerly interpreted to be modified by fluvial and fluvioglacial processes. However, our facies map reveals that the surface of Eastern Elysium Planitia includes nineteen morphologically distinct regions (i.e., facies), which are interpreted to be the products of flood lava volcanism, including: ´a´ā, pāhoehoe, and transitional lava flow types. In contrast to previous studies, which determined that Rahway Valles and Marte Vallis consist of two distinct geologic units with Middle to Late Amazonian ages, the results of this work show that the region was resurfaced by at least two volcanic flows with much younger ages of 20.0 Ma and 8.8 Ma. Furthermore, by coupling results of our geologic and facies mapping with chronological constraints as well as subsurface information provided by Shallow Radar reflectors, we show that there is an erosional unconformity located between the two youngest lava flow units in Marte Vallis. We interpret that this unconformity was generated by a catastrophic aqueous flooding event that occurred only 8.8 - 20.0 Ma ago. This implies alternating episodes of volcanism and aqueous flooding that have continued into the geologically recent past on Mars, and may again occur within Elysium Planitia.

  3. About the geologic map in the National Atlas of the United States of America

    USGS Publications Warehouse

    Reed, John C.; Bush, Charles A.

    2007-01-01

    Introduction The geologic map in the National Atlas of the United States of America shows the age, distribution, and general character of the rocks that underlie the Nation, including Alaska, Hawaii, Puerto Rico, and the Virgin Islands (but excluding other small island possessions). (The National Atlas of the United States can be accessed at URL http://nationalatlas.gov/natlas/Natlasstart.asp.) The map depicts the bedrock that lies immediately beneath soils or surficial deposits except where these deposits are so thick and extensive that the type of bedrock beneath them can only be inferred by deep drilling or geophysical methods, or both. Thus, it does not show the extensive glacial deposits of the North Central and Northeastern States, the deep residuum of the Southeastern and South Central States, the relatively thin alluvium along many major rivers and basins, and extensive eolian deposits on the high plains. However, it does show, in a general way, the thick alluvial deposits along the lower Mississippi River and on the Atlantic and Gulf Coastal Plains, and in the deep basins of the western cordillera. The rocks are classified as either sedimentary, volcanic, plutonic, or metamorphic, and their geologic ages are given in terms using a simplified version of the 1999 Geological Society of America geologic time scale. In some places rocks depicted as sedimentary are interlayered with volcanic rocks, including tuff, volcanic breccia, and volcanic flows. Conversely, many of the rocks shown as volcanic include interlayered sedimentary rocks. Plutonic rocks are classified by age and as granitic, intermediate, mafic, or ultramafic, but no similar classification has been attempted for the volcanic rocks in this version of the map. Where sedimentary or volcanic rocks have been metamorphosed but still retain clear evidence of their depositional age and origin, the extent of the metamorphism is shown by a pattern. Where the metamorphism has been so intense that the rocks bear little resemblance to the rocks from which they were derived, they are mapped as gneiss, but the age given is generally the age of the original rocks. The map in the National Atlas is a generalization of a new geologic map of North America that has recently been published by the Geological Society of America. The original compilation was prepared at a scale of 1:2,500,000 for publication at a scale of 1:5,000,000. This generalized version is intended for viewing at scales between about 1:10,000,000 and 1:7,500,000.

  4. Merging of the USGS Atlas of Mercury 1:5,000,000 Geologic Series

    NASA Technical Reports Server (NTRS)

    Frigeri, A.; Federico, C.; Pauselli, C.; Coradini, A.

    2008-01-01

    After 30 years, the planet Mercury is going to give us new information. The NASA MESSENGER [1] already made its first successful flyby on December 2007 while the European Space Agency and the Japanese Space Agency ISAS/JAXA are preparing the upcoming mission BepiColombo [2]. In order to contribute to current and future analyses on the geology of Mercury, we have started to work on the production of a single digital geologic map of Mercury derived from the merging process of the geologic maps of the Atlas of Mercury, produced by the United States Geological Survey, based on Mariner 10 data. The aim of this work is to merge the nine maps so that the final product reflects as much as possible the original work. Herein we describe the data we used, the working environment and the steps made for producing the final map.

  5. Geologic Map of the Mount Trumbull 30' X 60' Quadrangle, Mohave and Coconino Counties, Northwestern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Wellmeyer, Jessica L.

    2003-01-01

    The geologic map of the Mount Trumbull 30' x 60' quadrangle is a cooperative product of the U.S. Geological Survey, the National Park Service, and the Bureau of Land Management that provides geologic map coverage and regional geologic information for visitor services and resource management of Grand Canyon National Park, Lake Mead Recreational Area, and Grand Canyon Parashant National Monument, Arizona. This map is a compilation of previous and new geologic mapping that encompasses the Mount Trumbull 30' x 60' quadrangle of Arizona. This digital database, a compilation of previous and new geologic mapping, contains geologic data used to produce the 100,000-scale Geologic Map of the Mount Trumbull 30' x 60' Quadrangle, Mohave and Coconino Counties, Northwestern Arizona. The geologic features that were mapped as part of this project include: geologic contacts and faults, bedrock and surficial geologic units, structural data, fold axes, karst features, mines, and volcanic features. This map was produced using 1:24,000-scale 1976 infrared aerial photographs followed by extensive field checking. Volcanic rocks were mapped as separate units when identified on aerial photographs as mappable and distinctly separate units associated with one or more pyroclastic cones and flows. Many of the Quaternary alluvial deposits that have similar lithology but different geomorphic characteristics were mapped almost entirely by photogeologic methods. Stratigraphic position and amount of erosional degradation were used to determine relative ages of alluvial deposits having similar lithologies. Each map unit and structure was investigated in detail in the field to ensure accuracy of description. Punch-registered mylar sheets were scanned at the Flagstaff Field Center using an Optronics 5040 raster scanner at a resolution of 50 microns (508 dpi). The scans were output in .rle format, converted to .rlc, and then converted to ARC/INFO grids. A tic file was created in geographic coordinates and projected into the base map projection (Polyconic) using a central meridian of -113.500. The tic file was used to transform the grid into Universal Transverse Mercator projection. The linework was vectorized using gridline. Scanned lines were edited interactively in ArcEdit. Polygons were attributed in ArcEdit and all artifacts and scanning errors visible at 1:100,000 were removed. Point data were digitized onscreen. Due to the discovery of digital and geologic errors on the original files, the ARC/INFO coverages were converted to a personal geodatabase and corrected in ArcMap. The feature classes which define the geologic units, lines and polygons, are topologically related and maintained in the geodatabase by a set of validation rules. The internal database structure and feature attributes were then modified to match other geologic map databases being created for the Grand Canyon region. Faults were edited with the downthrown block, if known, on the 'right side' of the line. The 'right' and 'left' sides of a line are determined from 'starting' at the line's 'from node' and moving to the line's end or 'to node'.

  6. Quaternary geologic map of the Winnipeg 4 degrees x 6 degrees quadrangle, United States and Canada

    USGS Publications Warehouse

    Fullerton, D. S.; Ringrose, S.M.; Clayton, Lee; Schreiner, B.T.; Goebel, J.E.

    2000-01-01

    The Quaternary Geologic Map of the Winnipeg 4? ? 6? Quadrangle, United States and Canada, is a component of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420), an effort to produce 4? ? 6? Quaternary geologic maps, at 1:1 million scale, of the entire conterminous United States and adjacent Canada. The map and the accompanying text and supplemental illustrations provide a regional overview of the areal distributions and characteristics of surficial deposits and materials of Quaternary age (~1.8 Ma to present) in parts of North Dakota, Minnesota, Manitoba, and Saskatchewan. The map is not a map of soils as soils are recognized in agriculture. Rather, it is a map of soils as recognized in engineering geology, or of substrata or parent materials in which agricultural soils are formed. The map units are distinguished chiefly on the basis of (1)genesis (processes of origin) or environments of deposition: for example, sediments deposited primarily by glacial ice (glacial deposits or till), sediments deposited in lakes (lacustrine deposits), or sediments deposited by wind (eolian deposits); (2) age: for example, how long ago the deposits accumulated; (3) texture (grain size)of the deposits or materials; (4) composition (particle lithology) of the deposits or materials; (5) thickness; and (6) other physical, chemical, and engineering properties. Supplemental illustrations show (1) temporal correlation of the map units, (2) the areal relationships of late Wisconsin glacial ice lobes and sublobes, (3) temporal and spatial correlation of late Wisconsin glacial phases, readvance limits, and ice margin stillstands, (4) temporal and stratigraphic correlation of surface and subsurface glacial deposits in the Winnipeg quadrangle and in adjacent 4? ? 6? quadrangles, and (5) responsibility for state and province compilations. The database provides information related to geologic hazards (for example, materials that are characterized by expansive clay minerals; landslide deposits or landslide-prone deposits), natural resources (for example, sources of aggregate, peat, and clay; potential shallow sources of groundwater), and areas of environmental concern (for example, areas that are potentially suitable for specific ecosystem habitats; areas of potential soil and groundwater contamination). All of these aspects of the database relate directly to land use, management, and policy. The map, text, and accompanying illustrations provide a database of regional scope related to geologic history, climatic changes, the stratigraphic and chronologic frameworks of surface and subsurface deposits and materials of Quaternary age, and other problems and concerns.

  7. The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history

    USGS Publications Warehouse

    Tanaka, K.L.; Robbins, S.J.; Fortezzo, C.M.; Skinner, J.A.; Hare, T.M.

    2014-01-01

    A new global geologic map of Mars has been completed in a digital, geographic information system (GIS) format using geospatially controlled altimetry and image data sets. The map reconstructs the geologic history of Mars, which includes many new findings collated in the quarter century since the previous, Viking-based global maps were published, as well as other discoveries that were made during the course of the mapping using new data sets. The technical approach enabled consistent and regulated mapping that is appropriate not only for the map's 1:20,000,000 scale but also for its widespread use by diverse audiences. Each geologic unit outcrop includes basic attributes regarding identity, location, area, crater densities, and chronostratigraphic age. In turn, units are grouped by geographic and lithologic types, which provide synoptic global views of material ages and resurfacing character for the Noachian, Hesperian, and Amazonian periods. As a consequence of more precise and better quality topographic and morphologic data and more complete crater-density dating, our statistical comparisons identify significant refinements for how Martian geologic terrains are characterized. Unit groups show trends in mean elevation and slope that relate to geographic occurrence and geologic origin. In comparison with the previous global geologic map series based on Viking data, the new mapping consists of half the number of units due to simpler, more conservative and globally based approaches to discriminating units. In particular, Noachian highland surfaces overall have high percentages of their areas now dated as an epoch older than in the Viking mapping. Minimally eroded (i.e., pristine) impact craters ≥3 km in diameter occur in greater proportion on Hesperian surfaces. This observation contrasts with a deficit of similarly sized craters on heavily cratered and otherwise degraded Noachian terrain as well as on young Amazonian surfaces. We interpret these as reflecting the relatively stronger, lava-rich, yet less-impacted materials making up much of the younger units. Reconstructions of resurfacing of Mars by its eight geologic epochs using the Hartmann and Neukum chronology models indicate high rates of highland resurfacing during the Noachian (peaking at 0.3 km2/yr during the Middle Noachian), modest rates of volcanism and transition zone and lowland resurfacing during the Hesperian (∼0.1 km2/yr), and low rates of mainly volcanic and polar resurfacing (∼0.01 km2/yr) for most of the Amazonian. Apparent resurfacing increased in the Late Amazonian (∼0.03 km2/yr), perhaps due to better preservation of this latest record.

  8. Geologic Mapping of Ejecta Deposits in Oppia Quadrangle, Asteroid (4) Vesta

    NASA Technical Reports Server (NTRS)

    Garry, W. Brent; Williams, David A.; Yingst, R. Aileen; Mest, Scott C.; Buczkowski, Debra L.; Tosi, Federico; Schafer, Michael; LeCorre, Lucille; Reddy, Vishnu; Jaumann, Ralf; hide

    2014-01-01

    Oppia Quadrangle Av-10 (288-360 deg E, +/- 22 deg) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA's Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (approximately 45 km diameter) and Oppia (approximately 40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as 'dark mantle' material because it appears dark orange in the Framing Camera 'Clementine-type' colorratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera 'Clementine-type' color-ratio image as 'light mantle material' supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced greater than 5 crater radii away) in a microgravity environment.

  9. Reports and maps of the Military Geology Unit, 1942-1975

    USGS Publications Warehouse

    Leith, William; Bonham, Selma

    1997-01-01

    Included here are reports and maps which were prepared in the Military Geology Unit of the U. S. Geological Survey from 1942 through 1975. In addition to the references prepared primarily for military use and listed here, more than 200 reports of more general geologic interest were prepared for publication as Survey bulletins and professional papers and in outside journals. These reports are listed in "Publications of the Geological Survey" and other bibliographies. Military Geology reports generally include basic subjects such as rock types, soils, water resources, landforms and vegetation, as well as interpretive subjects such as suitability of terrain for cross-country movement and for construction of roads and airfields in areas throughout the world. Reports on specific areas range from generalized texts with small scab maps derived from published sources to detailed texts with large-scale maps commonly based on photo-interpretation and, especially for Alaska and western Pacific islands, involving field mapping. Other reports treat topics of interest in military geology without reference to specific areas. A number of reports covering the moon include the first photogeologic map of the near side.Authors are cited for some kinds of reports; however, many intelligence reports were published anonymously. Most of the reports were prepared by teams made up mainly of geologists but commonly including soils scientists, botanists, climatologists and geographers. Nearly all the soil scientists and climatologists were members of the World Soil Geography Unit, Soil Survey, Soil Conservation Service, U. S. Department of Agriculture. Manuscripts from this Unit were passed through a common review and other processing, as were the manuscripts originating in the Military Geology office, to be issued under the aegis of the latter. In some instances where it has not been possible to list all authors, names of project supervisors are given.File copies of many of the Military Geology reports prepared since 1975 are kept in the Special Geologic Studies Group, U.S. Geological Survey, National Center, Reston, and may be examined there by appropriately cleared persons. Additionally, copies of many of the unclassified studies are in the U.S. Geological Survey Library. Some of the older reports are in the files of the Terrain Analysis Center, Fort Belvoir, Virginia, and other offices within the Corps of Engineers. Most of the reports are out of print and many of the other studies are no longer available.

  10. Mapping Vesta: First Results from Dawn's Survey Orbit

    NASA Technical Reports Server (NTRS)

    Jaumann, R.; Yingst, A. R.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.; Neukum, G.; Mottola, S.; Keller, H. U.; Nathues, A.; Sierks, H.; hide

    2011-01-01

    The geologic objectives of the Dawn Mission [1] are to derive Vesta s shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results, thus revealing the geologic history of Vesta. We present here the first results of the Dawn mission from data collected during the approach to Vesta, and its first discrete orbit phase - the Survey Orbit, which lasts 21 days after the spacecraft had established a circular polar orbit at a radius of approx.3000 km with a beta angle of 10deg-15deg.

  11. Preliminary geologic map of the Fontana 7.5' quadrangle, Riverside and San Bernardino Counties, California

    USGS Publications Warehouse

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.

    2003-01-01

    Open-File Report 03-418 is a digital geologic data set that maps and describes the geology of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California. The Fontana quadrangle database is one of several 7.5’ quadrangle databases that are being produced by the Southern California Areal Mapping Project (SCAMP). These maps and databases are, in turn, part of the nation-wide digital geologic map coverage being developed by the National Cooperative Geologic Map Program of the U.S. Geological Survey (USGS). General Open-File Report 03-418 contains a digital geologic map database of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file (fon_map.ps) to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. An Encapsulated PostScript (EPS) file (fon_grey.eps) created in Adobe Illustrator 10.0 to plot the geologic map on a grey topographic base, and containing a Correlation of Map Units (CMU), a Description of Map Units (DMU), and an index map. 4. Portable Document Format (.pdf) files of: a. the Readme file; includes in Appendix I, data contained in fon_met.txt b. The same graphics as plotted in 2 and 3 above.Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (4b above) or plotting the postscript files (2 or 3 above).

  12. Geologic Mapping of V-19

    NASA Technical Reports Server (NTRS)

    Martin, Paula; Stofan, E. R.; Guest, J. E.

    2010-01-01

    A geologic map of the Sedna Planitia (V-19) quadrangle is being completed at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program, and will be submitted for review by September 2010. Overview: The Sedna Planitia quadrangle (V-19) extends from 25 N - 50 N latitude, 330 - 0 longitude. The quadrangle contains the northernmost portion of western Eistla Regio and the Sedna Planitia lowlands. Sedna Planitia consists of low-lying plains units, with numerous small volcanic edifices including shields, domes and cones. The quadrangle also contains several tholi, the large flowfield Neago Fluctus, the Manzan-Gurme Tesserae, and Zorile Dorsa and Karra-mahte Fossae which run NW-SE through the southwestern part of the quadrangle. There are six coronae in the quadrangle (Table 1), the largest of which is Nissaba (300 km x 220 km), and there are fourteen impact craters (Table 2). The V-19 quadrangle contains a variety of mappable volcanic landforms including two shield volcanoes (Evaki Tholus and Toci Tholus) and the southern portion of a large flow field (Neago Fluctus). A total of sixteen units associated with volcanoes have been mapped in this quadrangle, with multiple units mapped at Sif Mons, Sachs Patera and Neago Fluctus. An oddly textured, radarbright flow is also mapped in the Sedna plains, which appears to have originated from a several hundred kilometer long fissure. The six coronae within V-19 have a total of eighteen associated flow units. Several edifice fields are also mapped, in which the small volcanic edifices both predate and postdate the other units. Impact crater materials are also mapped.

  13. Geologic map of the Devore 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Matti, Jonathan C.

    2001-01-01

    This Open-File Report contains a digital geologic map database of the Devore 7.5' quadrangle, San Bernardino County, California, that includes: 1. ARC/INFO (Environmental Systems Research Institute) version 7.2.1 coverages of the various components of the geologic map 2. A PostScript (.ps) file to plot the geologic map on a topographic base, containing a Correlation of Map Units diagram, a Description of Map Units, an index map, and a regional structure map 3. Portable Document Format (.pdf) files of: a. This Readme; includes an Appendix, containing metadata details found in devre_met.txt b. The same graphic as plotted in 2 above. (Test plots from this .pdf do not produce 1:24,000-scale maps. Adobe Acrobat page-size settings control map scale.) The Correlation of Map Units and Description of Map Units are in the editorial format of USGS Miscellaneous Investigations Series maps (I-maps) but have not been edited to comply with I-map standards. Within the geologic-map data package, map units are identified by such standard geologic-map criteria as formation name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Devore 7.5’ topographic quadrangle in conjunction with the geologic map.

  14. Geologic map of Chickasaw National Recreation Area, Murray County, Oklahoma

    USGS Publications Warehouse

    Blome, Charles D.; Lidke, David J.; Wahl, Ronald R.; Golab, James A.

    2013-01-01

    This 1:24,000-scale geologic map is a compilation of previous geologic maps and new geologic mapping of areas in and around Chickasaw National Recreation Area. The geologic map includes revisions of numerous unit contacts and faults and a number of previously “undifferentiated” rock units were subdivided in some areas. Numerous circular-shaped hills in and around Chickasaw National Recreation Area are probably the result of karst-related collapse and may represent the erosional remnants of large, exhumed sinkholes. Geospatial registration of existing, smaller scale (1:72,000- and 1:100,000-scale) geologic maps of the area and construction of an accurate Geographic Information System (GIS) database preceded 2 years of fieldwork wherein previously mapped geology (unit contacts and faults) was verified and new geologic mapping was carried out. The geologic map of Chickasaw National Recreation Area and this pamphlet include information pertaining to how the geologic units and structural features in the map area relate to the formation of the northern Arbuckle Mountains and its Arbuckle-Simpson aquifer. The development of an accurate geospatial GIS database and the use of a handheld computer in the field greatly increased both the accuracy and efficiency in producing the 1:24,000-scale geologic map.

  15. Preliminary geologic map of the Perris 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.; Alvarez, Rachel M.

    2003-01-01

    Open-File Report 03-270 contains a digital geologic map database of the Perris 7.5’ quadrangle, Riverside County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. Portable Document Format (.pdf) files of: a. A Readme file b. The same graphic as described in 2 above. Test plots have not produced precise 1:24,000- scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formationname, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc.

  16. Edwin James' and John Hinton's revisions of Maclure's geologic map of the United States

    NASA Astrophysics Data System (ADS)

    Aalto, K. R.

    2012-03-01

    William Maclure's pioneering geologic map of the eastern United States, published first in 1809 with Observations on the Geology of the United States, provided a foundation for many later maps - a template from which geologists could extend their mapping westward from the Appalachians. Edwin James, botanist, geologist and surgeon for the 1819/1820 United States Army western exploring expedition under Major Stephen H. Long, published a full account of this expedition with map and geologic sections in 1822-1823. In this he extended Maclure's geology across the Mississippi Valley to the Colorado Rockies. John Howard Hinton (1791-1873) published his widely read text: The History and Topography of the United States in 1832, which included a compilations of Maclure's and James' work in a colored geologic map and vertical sections. All three men were to some degree confounded in their attempts to employ Wernerian rock classification in their mapping and interpretations of geologic history, a common problem in the early 19th Century prior to the demise of Neptunist theory and advent of biostratigraphic techniques of correlation. However, they provided a foundation for the later, more refined mapping and geologic interpretation of the eastern United States.

  17. Geologic map of the Valjean Hills 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Calzia, J.P.; Troxel, Bennie W.; digital database by Raumann, Christian G.

    2003-01-01

    FGDC-compliant metadata for the ARC/INFO coverages. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3 above) or plotting the postscript file (2 above).

  18. Three-Dimensional Geologic Map of the Hayward Fault Zone, San Francisco Bay Region, California

    USGS Publications Warehouse

    Phelps, G.A.; Graymer, R.W.; Jachens, R.C.; Ponce, D.A.; Simpson, R.W.; Wentworth, C.M.

    2008-01-01

    A three-dimensional (3D) geologic map of the Hayward Fault zone was created by integrating the results from geologic mapping, potential field geophysics, and seismology investigations. The map volume is 100 km long, 20 km wide, and extends to a depth of 12 km below sea level. The map volume is oriented northwest and is approximately bisected by the Hayward Fault. The complex geologic structure of the region makes it difficult to trace many geologic units into the subsurface. Therefore, the map units are generalized from 1:24,000-scale geologic maps. Descriptions of geologic units and structures are offered, along with a discussion of the methods used to map them and incorporate them into the 3D geologic map. The map spatial database and associated viewing software are provided. Elements of the map, such as individual fault surfaces, are also provided in a non-proprietary format so that the user can access the map via open-source software. The sheet accompanying this manuscript shows views taken from the 3D geologic map for the user to access. The 3D geologic map is designed as a multi-purpose resource for further geologic investigations and process modeling.

  19. Geologic map of the Fifteenmile Valley 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, F.K.; Matti, J.C.

    2001-01-01

    Open-File Report OF 01-132 contains a digital geologic map database of the Fifteenmile Valley 7.5’ quadrangle, San Bernardino County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A PostScript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram, a Description of Map Units, an index map, and a regional structure map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. (Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale.) The Correlation of Map Units (CMU) and Description of Map Units (DMU) is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Fifteenmile Valley 7.5’ topographic quadrangle in conjunction with the geologic map.

  20. Geologic map of Big Bend National Park, Texas

    USGS Publications Warehouse

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and interpretation, was from the USGS Crustal Geophysics and Geochemistry Science Center. Mapping contributed from university professors and students was mostly funded by independent sources, including academic institutions, private industry, and other agencies.

  1. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States

    USGS Publications Warehouse

    Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.

    2017-06-30

    The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.

  2. Preliminary geologic map of the Elsinore 7.5' Quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Weber, F. Harold; Digital preparation: Alvarez, Rachel M.; Burns, Diane

    2003-01-01

    Open-File Report 03-281 contains a digital geologic map database of the Elsinore 7.5’ quadrangle, Riverside County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in els_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  3. A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration

    NASA Astrophysics Data System (ADS)

    Moosdorf, N.; Richard, S. M.

    2012-12-01

    A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the lithologic character of such units in a meaningful way. A lithogenetic unit category scheme accessible as a GeoSciML-portrayal-based OGC Styled Layer Description resource is key to enabling OneGeology (http://oneGeology.org) geologic map services to achieve a high degree of visual harmonization.

  4. Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Tanaka, K. L.; Hare, T. M.

    2009-01-01

    The southern Utopia highland-lowland boundary (HLB) extends >1500 km westward from Hyblaeus Dorsa to the topographic saddle that separates Isidis and Utopia Planitiae. It contains bench-like platforms that contain depressions, pitted cones (some organized into arcuate chains and thumb-print terrain), isolated domes, buried circular depressions, ring fractures, polygonal fractures, and other locally- to regionally-dispersed landforms [1-2]. The objective of this map project is to clarify the geologic evolution of the southern Utopia Planitia HLB by identifying the geologic, structural, and stratigraphic relationships of surface materials in MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247. The project was originally awarded in April, 2007 and is in its final year of support. Mapping is on-schedule and formal map submission will occur by December, 2009, with finalization anticipated by April, 2010. Herein, we (1) review specifics regarding mapping data and methods, (2) present nomenclature requests that we feel will assist with unit descriptions, (3) describe Year 2 mapping and science accomplishments, and (4) outline Year 3 technical and managerial approaches for finalizing the geologic map.

  5. Surficial geology and shaded seafloor relief of Georges Bank, Fundian Channel and Northeast Channel, Gulf of Maine

    USGS Publications Warehouse

    Todd, B.J.; Valentine, Page C.

    2015-01-01

    Georges Bank is a shallow submarine bank that lies south of Nova Scotia and east of Cape Cod and bounds the seaward side of the Gulf of Maine. The international boundary between Canada and the United States transects the bank, and the eastern part of the bank (~7500 square kilometres) lies in Canadian territory. This map shows the surficial geology of a part of Georges Bank at a scale of 1:50 000. This map has companion topographic and backscatter strength maps. These companion maps provide a basis for interpreting the origin of seafloor features and the nature of materials that form the seafloor. The maps are based on multibeam-sonar surveys conducted in 1999 and 2000 to map 11,965 square kilometres of the seafloor.

  6. The North America tapestry of time and terrain

    USGS Publications Warehouse

    Barton, Kate E.; Howell, David G.; Vigil, Jose F.

    2003-01-01

    The North America Tapestry of Time and Terrain (1:8,000,000 scale) is a product of the US Geological Survey in the I-map series (I-2781). This map was prepared in collaboration with the Geological Survey of Canada and the Mexican Consejo Recursos de Minerales. This cartographic Tapestry is woven from a geologic map and a shaded relief image. This digital combination reveals the geologic history of North America through the interrelation of rock type, topography and time. Regional surface processes as well as continent-scale tectonic events are exposed in the three dimensions of space and the fourth dimension, geologic time. The large map shows the varying age of bedrock underlying North America, while four smaller maps show the distribution of four principal types of rock: sedimentary, volcanic, plutonic and metamorphic.This map expands the original concept of the 2000 Tapestry of Time and Terrain, by José F. Vigil, Richard J. Pike and David G. Howell, which covered the conterminous United States. The U.S. Tapestry poster and website have been popular in classrooms, homes, and even the Google office building, and we anticipate the North America Tapestry will have a similarly wide appeal, and to a larger audience.

  7. Geologic Mapping of the Marius Quadrangle, the Moon

    NASA Technical Reports Server (NTRS)

    Gregg, Tracy K. P.; Yingst, Aileen

    2008-01-01

    The authors seek to construct a 1:2,500,000-scale map of Lunar Quadrangle 10 (LQ10 or the Marius Quadrangle) to address outstanding questions about the Moon's volcanologic history and the role of impact basins in lunar geologic evolution. The selected quadrangle contains Aristarchus plateau and the Marius hills, Reiner Gamma, and Hevelius crater. By generating a geologic map of this region, we can constrain the temporal (and possibly genetic) relations between these features, revealing more information about the Moon's chemical and thermal evolution. Although many of these individual sites have been investigated using Lunar Orbiter, Clementine, Lunar Prospector and Galileo data, no single investigation has yet attempted to constrain the stratigraphic and geologic relationships between these features. Furthermore, we will be able to compare our unit boundaries on the eastern boundary of the proposed map area with those already mapped in the Copernicus Quadrangle. Geologic mapping of the Marius Quadrangle would provide insight to the following questions: the origin, evolution, and distribution of mare volcanism; the timing and effects of the major basin-forming impacts on lunar crustal stratigraphy; and, the Moon's important resources, where they are concentrated, and how they can be accessed.

  8. Lithology and aggregate quality attributes for the digital geologic map of Colorado

    USGS Publications Warehouse

    Knepper, Daniel H.; Green, Gregory N.; Langer, William H.

    1999-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map.

  9. The Depositional and Erosional History of Northwestern Aeolis Mons, Gale Crater, Mars: Insights from Detailed 1:2K Geologic Mapping

    NASA Astrophysics Data System (ADS)

    Edgar, L. A.; Calef, F. J., III; Thomson, B. J.

    2017-12-01

    The Mars Science Laboratory (MSL) Curiosity rover is currently exploring the stratigraphy exposed in Aeolis Mons, the central mound of Gale crater. Gale crater has been the target of numerous remote sensing studies, aimed at understanding the origin and evolution of the mound, informally known as Mt. Sharp. A number of efforts have produced geologic maps of the mound and the MSL traverse path, in order to investigate the stratigraphic relationships between different sedimentary units. However, a scale gap exists between local mapping and stratigraphic analyses of the area explored by Curiosity and regional mapping of Aeolis Mons. As Curiosity explores the northwest flank of Aeolis Mons, there is a critical need for investigations to bridge this gap to enable rover-scale observations to be tied to orbital interpretations. This study is focused on detailed geologic mapping and stratigraphic correlations for the northwest flank of Aeolis Mons, including an area that the Curiosity rover will likely explore. The study region covers a 5.8 x 10 km area from approximately 137.27 to 137.44 °E and -4.70 to -4.82 °N. A 25 cm/pixel mosaic produced from images acquired by the High Resolution Imaging Science Experiment (HiRISE) camera provides a basemap for all mapping, and topographic information is provided by a HiRISE 1 m Digital Terrain Model. Preliminary digital geologic mapping was carried out at a scale of 1:10,000 to provide a framework for detailed geologic mapping efforts. Higher-resolution geologic mapping was then conducted at a scale of 1:2,000, and type localities were identified. As a result of newer, higher-resolution datasets that are now available and more narrowly focused mapping, we identify a number of new geologic units. Erosional remnants of some units point to a substantial erosional history. Collectively, the stratigraphy records diverse sedimentary environments and more variability in the depositional and erosional histories than previously identified. This study helps bridge the gap between previous mapping efforts and detailed rover-scale mapping, and will enable rover observations to be more closely tied to orbital interpretations across the northwest flank of Aeolis Mons.

  10. SHARAD Penetrates Only the Youngest Geological Units on Mars

    NASA Astrophysics Data System (ADS)

    Stillman, D.; Grimm, R. E.

    2009-12-01

    The SHAllow RADar (SHARAD) instrument on the Mars Reconnaissance Orbiter was intended to receive echoes from up to 1 km deep in the rocky martian subsurface. Such deep penetration only occurs in the icy polar caps and in certain ice-rich units. In fact, over the majority of the rocky units of Mars, only surface echoes are detected. Therefore, rocky units are more attenuating than expected. To gain insight into the cause of this attenuation, we correlated SHARAD subsurface reflectors with a geologic map of the northern plains of Mars [Tanaka et al., 2005]. Our survey was restricted to this area due to general smoother topography and hence less potential influence of surface scattering (clutter). All released SHARAD data (approximately 1,500 radargrams) overlying the geologic map were individually interpreted. Geologic units were categorized by their map description into ice-rich, pristine volcanic, and water-altered units. The last category comprises units interpreted to be fluvial, lacustrine, or periglacial in origin, as well as volcanic and other units that were subsequently altered by water or ice. Radar reflections in each unit were further categorized as abundant, occasional, or none. We found that abundant reflections are only detected in geologic units that are Amazonian in age, and ice-rich or pristine volcanic. No reflections are seen in water altered units. Occasional reflections are detected in Hesperian-aged pristine volcanic units. We propose two endmember hypotheses for this attenuation behavior, scattering and absorption, but they could act jointly. The young pristine volcanic units that SHARAD penetrates consist of thick (about 50 m) flood basalts or tuff. These units are expected to have cooling joints in them, but little if any other heterogeneity; therefore their scattering loss should be small. With increasing age and thermoelastic stress due to global cooling and contraction, these previously homogeneous volcanics could become increasingly fractured, thus more efficient at scattering. Under this hypothesis, all of the water-altered units have significant subwavelength heterogeneity due to their primary mode of origin or secondary alteration. Alternatively, absorption due to the dielectric relaxation of adsorbed water could influence the attenuation. Alteration minerals such as phyllosilicates and palagonite drastically increase the surface area and can hold up to three monolayers of adsorbed water at martian temperatures. Our lab measurements indicate that about 6% phyllosilicates or 15% palagonite by volume can completely attenuate the reflected signal of an interface at a depth of 30 m; which is the shallowest depth SHARAD can detect due to sidelobe effects. These minerals would not be confined to Noachian units as currently suggested by orbital spectroscopy. A smaller proportion of hydrated minerals could be accommodated if the shallow geotherm is steep, or if alteration minerals are below the detection threshold due to their degree of hydration or grain size. In either case, subsurface radar attenuation on Mars is less than that of the Earth, but more than that of the Moon. Tanaka, K.L., J.A. Skinner, and T.M. Hare (2005) Geologic map of the northern plains of Mars, USGS Sci. Invest. Map, 2888.

  11. Geologic map of the Zarkashan-Anguri copper and gold deposits, Ghazni Province, Afghanistan, modified from the 1968 original map compilation of E.P. Meshcheryakov and V.P. Sayapin

    USGS Publications Warehouse

    Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2011-01-01

    This map is a modified version of Geological map of the area of Zarkashan-Anguri gold deposits, scale 1:50,000, which was compiled by E.P. Meshcheryakov and V.P. Sayapin in 1968. Scientists from the U.S. Geological Survey, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original document and related reports and also visited the field area in April 2010. This modified map, which includes a cross section, illustrates the geologic setting of the Zarkashan-Anguri copper and gold deposits. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross section and includes modifications based on our examination of that and other documents, and based on observations made and sampling undertaken during our field visit. (Refer to the Introduction and the References in the Map PDF for an explanation of our methodology and for complete citations of the original map and related reports.) Elevations on the cross section are derived from the original Soviet topography and may not match the newer topography used on the current map.

  12. Terrestrial Ecosystems-Surficial Lithology of the Conterminous United States

    USGS Publications Warehouse

    Cress, Jill; Soller, David; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2010-01-01

    As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey (USGS) has generated a new classification of the lithology of surficial materials to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States. The ecosystems classification used in this effort was developed by NatureServe. A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. This ecosystem mapping methodology is transparent, replicable, and rigorous. Surficial lithology strongly influences the differentiation and distribution of terrestrial ecosystems, and is one of the key input layers in this biophysical stratification. These surficial lithology classes were derived from the USGS map 'Surficial Materials in the Conterminous United States,' which was based on texture, internal structure, thickness, and environment of deposition or formation of materials. This original map was produced from a compilation of regional surficial and bedrock geology source maps using broadly defined common map units for the purpose of providing an overview of the existing data and knowledge. For the terrestrial ecosystem effort, the 28 lithology classes of Soller and Reheis (2004) were generalized and then reclassified into a set of 17 lithologies that typically control or influence the distribution of vegetation types.

  13. Geologic map of the Cucamonga Peak 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Morton, D.M.; Matti, J.C.; Digital preparation by Koukladas, Catherine; Cossette, P.M.

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. (Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale.) The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Cucamonga Peak 7.5’ topographic quadrangle in conjunction with the geologic map.

  14. Geologic map of the Telegraph Peak 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Morton, D.M.; Woodburne, M.O.; Foster, J.H.; Morton, Gregory; Cossette, P.M.

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Telegraph Peak 7.5’ topographic quadrangle in conjunction with the geologic map.

  15. Geologic map of the Calamity Mesa quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1955-01-01

    The series of Geologic Quadrangle Maps of the United States continues the series of quadrangle maps begun with the folios of the Geologic Atlas of the United States, which were published from 1894 to 1945. The present series consists of geologic maps, supplemented where possible by structure sections, columnar sections, and other graphic means of presenting geologic data, and accompanied by a brief explanatory text to make the maps useful for general scientific and economic purposes. Full description and interpretation of the geology of the areas shown on these maps are reserved for publication in other channels, such as the Bulletins and Professional Papers of the Geological Survey. Separate maps of the same areas, covering bedrock, surficial, engineering, and other phases of geology, may be published in the geologic quadrangle map series. 

  16. Global geological map of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail A.; Head, James W.

    2011-10-01

    The surface area of Venus (∼460×106 km2) is ∼90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be determined with the available data sets) involved intense deformation and building of regions of thicker crust (tessera). This was followed by the Guineverian Period. Distributed deformed plains, mountain belts, and regional interconnected groove belts characterize the first part and the vast majority of coronae began to form during this time. The second part of the Guineverian Period involved global emplacement of vast and mildly deformed plains of volcanic origin. A period of global wrinkle ridge formation largely followed the emplacement of these plains. The third phase (Atlian Period) involved the formation of prominent rift zones and fields of lava flows unmodified by wrinkle ridges that are often associated with large shield volcanoes and, in places, with earlier-formed coronae. Atlian volcanism may continue to the present. About 70% of the exposed surface of Venus was resurfaced during the Guineverian Period and only about 16% during the Atlian Period. Estimates of model absolute ages suggest that the Atlian Period was about twice as long as the Guineverian and, thus, characterized by significantly reduced rates of volcanism and tectonism. The three major phases of activity documented in the global stratigraphy and geological map, and their interpreted temporal relations, provide a basis for assessing the geodynamical processes operating earlier in Venus history that led to the preserved record.

  17. Geologic map of the San Bernardino North 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, F.K.; Matti, J.C.

    2001-01-01

    3. Portable Document Format (.pdf) files of: a. This Readme; includes an Appendix, containing data found in sbnorth_met.txt . b. The Description of Map Units identical to that found on the plot of the PostScript file. c. The same graphic as plotted in 2 above. (Test plots from this .pdf do not produce 1:24,000-scale maps. Use Adobe Acrobat pagesize setting to control map scale.) The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS San Bernardino North 7.5’ topographic quadrangle in conjunction with the geologic map.

  18. Global Geologic Map of Europa

    NASA Technical Reports Server (NTRS)

    Doggett, T.; Figueredo, P.; Greeley, R.; Hare, T.; Kolb, E.; Mullins, K.; Senske, D.; Tanaka, K.; Weiser, S.

    2008-01-01

    Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.

  19. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Tuscarora—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross‐sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  20. Structural lineaments of Gaspe from ERTS imagery

    NASA Technical Reports Server (NTRS)

    Steffensen, R.

    1973-01-01

    A test study was conducted to assess the value of ERTS images for mapping geologic features of the Gaspe Peninsula, Quebec. The specific objectives of the study were: 1) to ascertain the best procedure to follow in order to obtain valuable geologic data as a result of interpretation; and 2) to indicate in which way these data could relate to mineral exploration. Of the four spectral bands of the Multispectral scanner, the band from 700 to 800 nanometers, which seems to possess the best informational content for geologic study, was selected for analysis. The original ERTS image at a scale of 1:3,700,000 was enlarged about 15 times and reproduced on film. Geologically meaningful lines, called structural lineaments, were outlined and classified according to five categories: morpho-lithologic boundaries, morpho-lithologic lineaments, fault traces, fracture zones and undefined lineaments. Comparison with the geologic map of Gaspe shows that morpho-lithologic boundaries correspond to contacts between regional stratigraphic units. Morpholithologic lineaments follow bedding trends, whereas fracture traces appear as sets of parallel lineaments, intersecting at high angles the previous category of lineaments. Fault traces mark more precisely the location of faults already mapped and spot the presence of presumable faults, not indicated on the geologic map.

  1. Geologic map of the Bobs Flat Quadrangle, Eureka County, Nevada

    USGS Publications Warehouse

    Peters, Stephen G.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Bobs Flat Quadrangle in Eureka County with one cross section and descriptions of 28 geologic units. Accompanying text describes the geologic history and structural geology of the quadrangle.

  2. Wyoming Geology and Geography, Unit I.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on the geology and geography of Wyoming for elementary school students provides activities for map and globe skills. Goals include reading and interpreting maps and globes, interpreting map symbols, comparing maps and drawing inferences, and understanding time and chronology. Outlines and charts are provided for Wyoming geology and…

  3. The First Global Geological Map of Mercury

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  4. Geologic Map and Map Database of Eastern Sonoma and Western Napa Counties, California

    USGS Publications Warehouse

    Graymer, R.W.; Brabb, E.E.; Jones, D.L.; Barnes, J.; Nicholson, R.S.; Stamski, R.E.

    2007-01-01

    Introduction This report contains a new 1:100,000-scale geologic map, derived from a set of geologic map databases (Arc-Info coverages) containing information at 1:62,500-scale resolution, and a new description of the geologic map units and structural relations in the map area. Prepared as part of the San Francisco Bay Region Mapping Project, the study area includes the north-central part of the San Francisco Bay region, and forms the final piece of the effort to generate new, digital geologic maps and map databases for an area which includes Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Santa Cruz, Solano, and Sonoma Counties. Geologic mapping in Lake County in the north-central part of the map extent was not within the scope of the Project. The map and map database integrates both previously published reports and new geologic mapping and field checking by the authors (see Sources of Data index map on the map sheet or the Arc-Info coverage eswn-so and the textfile eswn-so.txt). This report contains new ideas about the geologic structures in the map area, including the active San Andreas Fault system, as well as the geologic units and their relations. Together, the map (or map database) and the unit descriptions in this report describe the composition, distribution, and orientation of geologic materials and structures within the study area at regional scale. Regional geologic information is important for analysis of earthquake shaking, liquifaction susceptibility, landslide susceptibility, engineering materials properties, mineral resources and hazards, as well as groundwater resources and hazards. These data also assist in answering questions about the geologic history and development of the California Coast Ranges.

  5. Geologic maps of the eastern Alaska Range, Alaska (1:63,360 scale)

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Bond, Gerard C.; Ferrians, Oscar J.; Herzon, Paige L.; Lange, Ian M.; Miyaoka, Ronny T.; Richter, Donald H.; Schwab, Carl E.; Silva, Steven R.; Smith, Thomas E.; Zehner, Richard E.

    2015-01-01

    This report provides a description of map units for a suite of 44 inch-to-mile (1:63,360-scale) geologic quadrangle maps of the eastern Alaska Range. This report also contains a geologic and tectonic summary and a comprehensive list of references pertaining to geologic mapping and specialized studies of the region. In addition to the geologic maps of the eastern Alaska Range, this package includes a list of map units and an explanation of map symbols and abbreviations. The geologic maps display detailed surficial and bedrock geology, structural and stratigraphic data, portrayal of the active Denali fault that bisects the core of the east–west-trending range, and portrayal of other young faults along the north and south flanks of the range.

  6. Mapping urban geology of the city of Girona, Catalonia

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour lines of the top of the pre-Quaternary basement surface. The most representative complementary maps are the quaternary map, the subsurface bedrock map and the isopach map of thickness of superficial deposits (Quaternary and anthropogenic). The map sheets also include charts and tables of relevant physic-chemical parameters of the geological materials, harmonized downhole lithological columns from selected boreholes, stratigraphic columns, and, photographs and figures illustrating the geology of the mapped area and how urbanization has changed the natural environment. The development of systematic urban geological mapping projects, such as the example of Girona's case, which provides valuable resources to address targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal with in the future.

  7. Map of surficial deposits and materials in the eastern and central United States (east of 102 degrees West longitude)

    USGS Publications Warehouse

    Fullerton, David S.; Bush, Charles A.; Pennell, Jean N.

    2003-01-01

    This data set contains surficial geologic units in the Eastern and Central United States, as well as a glacial limit line showing the position of maximum glacial advance during various geologic time periods. The geologic units represent surficial deposits and other surface materials that accumulated or formed during the past 2+ million years, such as soils, alluvium, and glacial deposits. These surface materials are referred to collectively by many geologists as regolith, the mantle of fragmented and generally unconsolidated material that overlies the bedrock foundation of a continent. This data set and the printed map produced from it, U.S. Geological Survey (USGS) Geologic Investigation Series I-2789, were based on 31 published maps in the USGS's Quaternary Geologic Atlas of the United States map series (USGS Miscellaneous Investigations Series I-1420). The data were compiled at 1:1,000,000 scale, to be viewed as a digital map at 1:2,000,000 nominal scale and to be printed as a conventional paper map at 1:2,500,000 scale.

  8. Digital engineering aspects of Karst map: a GIS version of Davies, W.E., Simpson, J.H., Ohlmacher, G.C., Kirk, W.S., and Newton, E.G., 1984, Engineering aspects of Karst: U.S. Geological Survey, National Atlas of the United States of America, Scale 1:7,500,000

    USGS Publications Warehouse

    Tobin, Bret D.; Weary, David J.

    2004-01-01

    These data are digital facsimiles of the original 1984 Engineering Aspects of Karst map by Davies and others. This data set was converted from a printed map to a digital GIS coverage to provide users with a citable national scale karst data set to use for graphic and demonstration purposes until new, improved data are developed. These data may be used freely with proper citation. Because it has been converted to GIS format, these data can be easily projected, displayed and queried for multiple uses in GIS. The karst polygons of the original map were scanned from the stable base negatives of the original, vectorized, edited and then attributed with unit descriptions. All of these processes potentially introduce small errors and distortions to the geography. The original map was produced at a scale of 1:7,500,000; this coverage is not as accurate, and should be used for broad-scale purposes only. It is not intended for any site-specific studies.

  9. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization

    USGS Publications Warehouse

    Bouligand, C.; Glen, J.M.G.; Blakely, R.J.

    2009-01-01

    We have revisited the problem of mapping depth to the Curie temperature isotherm from magnetic anomalies in an attempt to provide a measure of crustal temperatures in the western United States. Such methods are based on the estimation of the depth to the bottom of magnetic sources, which is assumed to correspond to the temperature at which rocks lose their spontaneous magnetization. In this study, we test and apply a method based on the spectral analysis of magnetic anomalies. Early spectral analysis methods assumed that crustal magnetization is a completely uncorrelated function of position. Our method incorporates a more realistic representation where magnetization has a fractal distribution defined by three independent parameters: the depths to the top and bottom of magnetic sources and a fractal parameter related to the geology. The predictions of this model are compatible with radial power spectra obtained from aeromagnetic data in the western United States. Model parameters are mapped by estimating their value within a sliding window swept over the study area. The method works well on synthetic data sets when one of the three parameters is specified in advance. The application of this method to western United States magnetic compilations, assuming a constant fractal parameter, allowed us to detect robust long-wavelength variations in the depth to the bottom of magnetic sources. Depending on the geologic and geophysical context, these features may result from variations in depth to the Curie temperature isotherm, depth to the mantle, depth to the base of volcanic rocks, or geologic settings that affect the value of the fractal parameter. Depth to the bottom of magnetic sources shows several features correlated with prominent heat flow anomalies. It also shows some features absent in the map of heat flow. Independent geophysical and geologic data sets are examined to determine their origin, thereby providing new insights on the thermal and geologic crustal structure of the western United States.

  10. Surficial geologic maps along the riparian zone of the Animas River and its headwater tributaries, Silverton to Durango, Colorado, with upper Animas River watershed gradient profiles

    USGS Publications Warehouse

    Blair, R.W.; Yager, D.B.; Church, S.E.

    2002-01-01

    This product consists of Adobe Acrobat .PDF format documents for 10 surficial geologic strip maps along the Animas River watershed from its major headwater tributaries, south to Durango, Colorado. The Animas River originates in the San Juan Mountains north of the historic mining town of Silverton, Colorado. The surficial geologic maps identify surficial deposits, such as flood-plain and terrace gravels, alluvial fans, glacial till, talus, colluvium, landslides, and bogs. Sixteen primary units were mapped that included human-related deposits and structures, eight alluvial, four colluvial, one glacial, travertine deposits, and undifferentiated bedrock. Each of the surficial geologic strip maps has .PDF links to surficial geology photographs, which enable the user to take a virtual tour of these deposits. Geochemical data collected from mapped surficial deposits that pre- and postdate mining activity have aided in determining the geochemical baseline in the watershed. Several photographs with their corresponding geochemical baseline profiles are accessible through .PDF links from several of the maps. A single coverage for all surficial deposits mapped is included as an ArcInfo shape file as an Arc Export format .e00 file. A gradient map for major headwater tributary streams to the Animas River is also included. The gradient map has stream segments that are color-coded based on relative variations in slope and .PDF format links to each stream gradient profile. Stream gradients were derived from U.S. Geological Survey 10-m digital elevation model data. This project was accomplished in support of the U.S. Geological Survey's Abandoned Mine Lands Initiative in the San Juan Mountains, Colorado.

  11. Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars: Introductory Report

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III; Crown, David A.

    2008-01-01

    Geologic mapping studies at the 1:1M-scale will be used to characterize geologic processes that have shaped the highlands along the Arabia Terra dichotomy boundary. In particular, this mapping will evaluate the distribution, stratigraphic position, and lateral continuity of compositionally distinct outcrops in Mawrth Vallis and Nili Fossae as identified by spectral instruments currently in orbit. Placing these landscapes, their material units, structural features, and unique compositional outcrops into spatial and temporal context with the remainder of the Arabia Terra dichotomy boundary will provide the ability to: 1) further test original dichotomy formation hypotheses, 2) constrain ancient paleoenvironments and climate conditions, and 3) evaluate various fluvial-nival modification processes related to past and present volatile distribution and their putative reservoirs (aquifers, lakes and oceans, surface and ground ice) and the influences of nearby volcanic and tectonic features on hydrologic processes in these regions. The result will be two 1:1M scale geologic maps of twelve MTM quadrangles (Mawrth Vallis - 20022, 20017, 20012, 25022, 25017, and 25012; and Nili Fossae - 20287, 20282, 25287, 25282, 30287, 30282).

  12. Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III; Crown, David A.

    2009-01-01

    Geologic mapping studies at the 1:1M-scale are being used to assess geologic materials and processes that shape the highlands along the Arabia Terra dichotomy boundary. In particular, this mapping will evaluate the distribution, stratigraphic position, and lateral continuity of compositionally distinct outcrops in Mawrth Vallis and Nili Fossae as identified by spectral instruments currently in orbit. Placing these landscapes, their material units, structural features, and unique compositional outcrops into spatial and temporal context with the remainder of the Arabia Terra dichotomy boundary may provide constraints on: 1) origin of the dichotomy boundary, 2) paleo-environments and climate conditions, and 3) various fluvial-nival modification processes related to past and present volatile distribution and their putative reservoirs (aquifers, lakes and oceans, surface and ground ice) and the influences of nearby volcanic and tectonic features on hydrologic processes in these regions. The results of this work will include two 1:1M scale geologic maps of twelve MTM quadrangles (Mawrth Vallis - 20022, 20017, 20012, 25022, 25017, and 25012; and Nili Fossae - 20287, 20282, 25287, 25282, 30287, 30282).

  13. Aniakchak National Monument and Preserve: Geologic resources inventory report

    USGS Publications Warehouse

    Hults, Chad P.; Neal, Christina

    2015-01-01

    This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.

  14. Geologic Mapping of the Nili Fossae Region of Mars: MTM Quadrangles 20287, 20282, 25287, 25282, 30287, and 30282

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III; Crown, David A.

    2010-01-01

    Geologic mapping studies at the 1:1M-scale are being used to assess geologic materials and processes that shape the highlands along the Arabia Terra dichotomy boundary. In particular, this mapping will provide a regional context and evaluate the distribution, stratigraphic position, and potential lateral continuity of compositionally distinct outcrops identified by spectral instruments currently in orbit (i.e., CRISM and OMEGA). Placing these landscapes, their material units, structural features, and unique compositional outcrops into spatial and temporal context with the remainder of the Arabia Terra dichotomy boundary may provide constraints on: 1) origin of the dichotomy boundary, 2) paleoenvironments and climate conditions, and 3) various fluvial-nival modification processes related to past and present volatile distribution and their putative reservoirs (aquifers, lakes and oceans, surface and ground ice) and the influences of nearby volcanic and tectonic features on hydrologic processes, including hydrothermal alteration, across the region.

  15. Quaternary geologic map of the Wolf Point 1° × 2° quadrangle, Montana and North Dakota

    USGS Publications Warehouse

    Fullerton, David S.; Colton, Roger B.; Bush, Charles A.

    2016-09-08

    The Wolf Point quadrangle encompasses approximately 16,084 km2 (6,210 mi2). The northern boundary is the Montana/Saskatchewan (U.S.-Canada) boundary. The quadrangle is in the Northern Plains physiographic province and it includes the Peerless Plateau and Flaxville Plain. The primary river is the Missouri River.The map units are surficial deposits and materials, not landforms. Deposits that comprise some constructional landforms (for example, ground-moraine deposits, end-moraine deposits, and stagnation-moraine deposits, all composed of till) are distinguished for purposes of reconstruction of glacial history. Surficial deposits and materials are assigned to 23 map units on the basis of genesis, age, lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized in pedology or agronomy.  Rather, it is a generalized map of soils recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed.  Glaciotectonic (ice-thrust) structures and deposits are mapped separately, represented by a symbol. The surficial deposits are glacial, ice-contact, glaciofluvial, alluvial, lacustrine, eolian, colluvial, and mass-movement deposits.Till of late Wisconsin age is represented by three map units. Till of Illinoian age also is mapped.  Till deposited during pre-Illinoian glaciations is not mapped, but is widespread in the subsurface.  Linear ice-molded landforms (primarily drumlins), shown by symbol, indicate directions of ice flow during late Wisconsin and Illinoian glaciations. The Quaternary geologic map of the Wolf Point quadrangle, northeastern Montana and North Dakota, was prepared to provide a database for compilation of a Quaternary geologic map of the Regina 4° × 6° quadrangle, United States and Canada, at scale 1:1,000,000, for the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series.  This map was compiled from data from many sources, at several different map scales.  That information was generalized and simplified, and then transferred to a base map at 1:250,000 scale to serve as the base for final reduction to 1:1,000,000, the nominal reading scale of maps in the Quaternary Geologic Atlas of the United States map series.  This map is the generalized and simplified 1:250,000 scale compilation.  Letter symbols for the map units are those used for the same units in the Quaternary Geologic Atlas of the United States map series. The map summarizes new, and selected published and unpublished, geologic information for public use and for use by Federal, State, and local governmental agencies for land use planning, including assessment of natural resources, natural hazards, recreation potential, and land use management.  It also is a base from which a variety of maps relating to earth surface processes and Quaternary geologic history can be derived.

  16. Preliminary Integrated Geologic Map Databases for the United States: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, Rhode Island and Vermont

    USGS Publications Warehouse

    Nicholson, Suzanne W.; Dicken, Connie L.; Horton, John D.; Foose, Michael P.; Mueller, Julia A.L.; Hon, Rudi

    2006-01-01

    The rapid growth in the use of Geographic Information Systems (GIS) has highlighted the need for regional and national scale digital geologic maps that have standardized information about geologic age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. Although two digital geologic maps (Schruben and others, 1994; Reed and Bush, 2004) of the United States currently exist, their scales (1:2,500,000 and 1:5,000,000) are too general for many regional applications. Most states have digital geologic maps at scales of about 1:500,000, but the databases are not comparably structured and, thus, it is difficult to use the digital database for more than one state at a time. This report describes the result for a seven state region of an effort by the U.S. Geological Survey to produce a series of integrated and standardized state geologic map databases that cover the entire United States. In 1997, the United States Geological Survey's Mineral Resources Program initiated the National Surveys and Analysis (NSA) Project to develop national digital databases. One primary activity of this project was to compile a national digital geologic map database, utilizing state geologic maps, to support studies in the range of 1:250,000- to 1:1,000,000-scale. To accomplish this, state databases were prepared using a common standard for the database structure, fields, attribution, and data dictionaries. For Alaska and Hawaii new state maps are being prepared and the preliminary work for Alaska is being released as a series of 1:250,000 scale quadrangle reports. This document provides background information and documentation for the integrated geologic map databases of this report. This report is one of a series of such reports releasing preliminary standardized geologic map databases for the United States. The data products of the project consist of two main parts, the spatial databases and a set of supplemental tables relating to geologic map units. The datasets serve as a data resource to generate a variety of stratigraphic, age, and lithologic maps. This documentation is divided into four main sections: (1) description of the set of data files provided in this report, (2) specifications of the spatial databases, (3) specifications of the supplemental tables, and (4) an appendix containing the data dictionaries used to populate some fields of the spatial database and supplemental tables.

  17. Geologic map of the Sunnymead 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Matti, Jonathan C.

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in sun_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  18. Geologic Map of the Thaumasia Region, Mars

    USGS Publications Warehouse

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The extensive structural deformation of the map region, which is without parallel on Mars in both complexity and diversity, occurred largely throughout the Noachian and Hesperian periods (Tanaka and Davis, 1988; Scott and Dohm, 1990a). The deformation produced small and large extensional and contractional structures (fig. 2, sheet 3) that resulted from stresses related to the formation of Tharsis (Frey, 1979; Wise and others, 1979; Plescia and Saunders, 1982; Banerdt and others, 1982, 1992; Watters and Maxwell, 1986; Tanaka and Davis, 1988; Francis, 1988; Watters, 1993; Schultz and Tanaka, 1994), from magmatic-driven uplifts, such as at Syria Planum (Tanaka and Davis, 1988; Dohm and others, 1998; Dohm and Tanaka, 1999) and central Valles Marineris (Dohm and others, 1998, Dohm and Tanaka, 1999), and from the Argyre impact (Wilhelms, 1973; Scott and Tanaka, 1986). In addition, volcanic, eolian, and fluvial processes have highly modified older surfaces in the map region. Local volcanic and tectonic activity often accompanied episodes of valley formation. Our mapping depicts and describes the diverse terrains and complex geologic history of this unique ancient tectonic region of Mars. The geologic (sheet 1), paleotectonic (sheet 2), and paleoerosional (sheet 3) maps of the Thaumasia region were compiled on a Viking 1:5,000,000-scale digital photomosaic base. The base is a combination of four quadrangles: the southeast part of Phoenicis Lacus (MC–17), most of the southern half of Coprates (MC–18), a large part of Thaumasia (MC–25), and the northwest margin of Argyre (MC–26). The medium-resolution Viking images used for mapping and base preparation also formed the basis of the 1:2,000,000 scale subquadrangle series. Earlier geologic maps of all or parts of the region include: (1) maps of the Phoenicis Lacus, Coprates, Thaumasia, and Argyre quadrangles at 1:5,000,000 scale based mainly on Mariner 9 images (respectively, Masursky and others, 1978; McCauley, 1978; McGill, 1978; and Hodges, 1980), (2) the global map of Mars at 1:25,000,000 (Scott and Carr, 1978) compiled largely from the 1:5,000,000 scale geologic maps, (3) maps showing lava flows in the Tharsis region at 1:2,000,000 scale compiled from Viking and Mariner 9 images (Scott, 1981; Scott and Tanaka, 1981a, b; Scott and others, 1981), (4) the map of the western equatorial region of Mars at 1:15,000,000 scale based on Viking images (Scott and Tanaka, 1986), and (5) the map of the Valles Marineris region at 1:2,000,000 scale compiled from Viking images (Witbeck and others, 1991). The previous maps have described the overall geology and geomorphology of the region but have not unraveled the detailed stratigraphy and complex evolution of this unique and geologically diverse martian province. The main purpose of this comprehensive mapping project is to reconstruct the stratigraphic, structural, and erosional histories of the Thaumasia region. The region is the last major province of the Tharsis region to undergo detailed structural mapping using Viking images; its history is essential to documenting the overall tectonic history of Tharsis. Other provinces of Tharsis that have been structurally mapped include Syria Planum (Tanaka and Davis, 1988), Tempe Terra and Ulysses Patera (Scott and Dohm, 1990b), and Alba Patera (Tanaka, 1990). Another primary mapping objective is to determine the region's volcanic history and assess the relations among fault systems and volcanoes (Wise and others, 1979; Scott and Tanaka, 1980; Whitford-Stark, 1982; Scott and Dohm, 1990a). A secondary mapping objective is to determine the distribution and ages of valleys. In our study, we incorporated detailed photogeologic mapping, comprehensive crater statistics (table 1), and geologic, paleotectonic, and paleoerosional Geographic Information System (GIS) databases. Sheets 1–3 show geologic units, faults and other significant structures, and valleys, respectively. To help unravel the complex geologic history of the Thaumasia region, we transferred the highly detailed geologic unit, paleotectonic, and paleoerosional information of sheets 1–3 into a multilayered GIS database for comparative analysis. The geologic information was transferred from hard copy into a digital format by scanning at 25 micron resolution on a drum scanner. The 2-bit scanned image was then converted to an x,y coordinate system using ARC/INFO's vectorization routine. The geologic unit, structural, and erosional data were transformed into the original map projection, Lambert Conformal. The average transformation root mean square error was 0.25 km (acceptable for the Thaumasia map base at 1:5,000,000 scale). After transformation, the features were properly attributed and tediously checked. Once digitized, the map data can be transformed into any map projection depending on the type of data analysis. For example, the equal-area sinusoidal projection was used for determining the precise area of geologic units (table 1). In addition to the geologic map and its attendant stratigraphic section, correlation chart, and description of map units, we include text sections that clarify the histories and temporal, spatial, and causal relations of the various geologic units and landforms of the Thaumasia region. The geologic summary section defines the sequence of major geologic events.

  19. Digital geologic map and GIS database of Venezuela

    USGS Publications Warehouse

    Garrity, Christopher P.; Hackley, Paul C.; Urbani, Franco

    2006-01-01

    The digital geologic map and GIS database of Venezuela captures GIS compatible geologic and hydrologic data from the 'Geologic Shaded Relief Map of Venezuela,' which was released online as U.S. Geological Survey Open-File Report 2005-1038. Digital datasets and corresponding metadata files are stored in ESRI geodatabase format; accessible via ArcGIS 9.X. Feature classes in the geodatabase include geologic unit polygons, open water polygons, coincident geologic unit linework (contacts, faults, etc.) and non-coincident geologic unit linework (folds, drainage networks, etc.). Geologic unit polygon data were attributed for age, name, and lithologic type following the Lexico Estratigrafico de Venezuela. All digital datasets were captured from source data at 1:750,000. Although users may view and analyze data at varying scales, the authors make no guarantee as to the accuracy of the data at scales larger than 1:750,000.

  20. Preliminary surficial geologic map of the Newberry Springs 30' x 60' quadrangle, California

    USGS Publications Warehouse

    Phelps, G.A.; Bedford, D.R.; Lidke, D.J.; Miller, D.M.; Schmidt, K.M.

    2012-01-01

    The Newberry Springs 30' x 60' quadrangle is located in the central Mojave Desert of southern California. It is split approximately into northern and southern halves by I-40, with the city of Barstow at its western edge and the town of Ludlow near its eastern edge. The map area spans lat 34°30 to 35° N. to long -116 °to -117° W. and covers over 1,000 km2. We integrate the results of surficial geologic mapping conducted during 2002-2005 with compilations of previous surficial mapping and bedrock geologic mapping. Quaternary units are subdivided in detail on the map to distinguish variations in age, process of formation, pedogenesis, lithology, and spatial interdependency, whereas pre-Quaternary bedrock units are grouped into generalized assemblages that emphasize their attributes as hillslope-forming materials and sources of parent material for the Quaternary units. The spatial information in this publication is presented in two forms: a spatial database and a geologic map. The geologic map is a view (the display of an extracted subset of the database at a given time) of the spatial database; it highlights key aspects of the database and necessarily does not show all of the data contained therein. The database contains detailed information about Quaternary geologic unit composition, authorship, and notes regarding geologic units, faults, contacts, and local vegetation. The amount of information contained in the database is too large to show on a single map, so a restricted subset of the information was chosen to summarize the overall nature of the geology. Refer to the database for additional information. Accompanying the spatial data are the map documentation and spatial metadata. The map documentation (this document) describes the geologic setting and history of the Newberry Springs map sheet, summarizes the age and physical character of each map unit, and describes principal faults and folds. The Federal Geographic Data Committee (FGDC) compliant metadata provides detailed information about the digital files and file structure of the spatial data.

  1. Database for the geologic map of Upper Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Abendini, Atosa A.; Robinson, Joel E.; Muffler, L. J. Patrick; White, D. E.; Beeson, Melvin H.; Truesdell, A. H.

    2015-01-01

    This dataset contains contacts, geologic units, and map boundaries from Miscellaneous Investigations Series Map I-1371, "The Geologic map of upper Geyser Basin, Yellowstone, National Park, Wyoming". This dataset was constructed to produce a digital geologic map as a basis for ongoing studies of hydrothermal processes.

  2. Database for geologic maps of pyroclastic-flow and related deposits of the 1980 eruptions of Mount St. Helens, Washington

    USGS Publications Warehouse

    Furze, Andrew J.; Bard, Joseph A.; Robinson, Joel; Ramsey, David W.; Kuntz, Mel A.; Rowley, Peter D.; MacLeod, Norman S.

    2017-10-31

    This publication releases digital versions of the geologic maps in U.S. Geological Survey Miscellaneous Investigations Map 1950 (USGS I-1950), “Geologic maps of pyroclastic-flow and related deposits of the 1980 eruptions of Mount St. Helens, Washington” (Kuntz, Rowley, and MacLeod, 1990) (https://pubs.er.usgs.gov/publication/i1950). The 1980 Mount St. Helens eruptions on May 18, May 25, June 12, July 22, August 7, and October 16–18 produced pyroclastic-flow and related deposits. The distribution and morphology of these deposits, as determined from extensive field studies and examination of vertical aerial photographs, are shown on four maps in I-1950 (maps A–D) on two map sheets. Map A shows the May 18, May 25, and June 12 deposits; map B shows the July 22 deposits; map C shows the August 7 deposits; and map D shows the October 16–18 deposits. No digital geospatial versions of the geologic data were made available at the time of publication of the original maps. This data release consists of attributed vector features, data tables, and the cropped and georeferenced scans from which the features were digitized, in order to enable visualization and analysis of these data in GIS software. This data release enables users to digitally re-create the maps and description of map units of USGS I-1950; map sheet 1 includes text sections (Introduction, Physiography of Mount St. Helens at the time of the 1980 eruptions, Processes of the 1980 eruptions, Deposits of the 1980 eruptions, Limitations of the maps, Preparation of the maps, and References cited) and associated tables and figures that are not included in this data release.

  3. A spatial database of bedding attitudes to accompany Geologic map of the greater Denver area, Front Range Urban Corridor, Colorado

    USGS Publications Warehouse

    Trimble, Donald E.; Machette, Michael N.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.

    2003-01-01

    This digital map shows bedding attitude symbols display over the geographic extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette 1973-1977 and published in 1979 (U.S. Geological Survey Map I-856-H) under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999), was digitized under the USGS Front Range Infrastructure Resources Project (see cross-reference). In general, the mountainous areas in the west part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  4. Quaternary Geologic Map of the Lake of the Woods 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    USGS Publications Warehouse

    Sado, Edward V.; Fullerton, David S.; Goebel, Joseph E.; Ringrose, Susan M.; Edited and Integrated by Fullerton, David S.

    1995-01-01

    The Quaternary Geologic Map of the Lake of the Woods 4 deg x 6 deg Quadrangle, United States and Canada, was mapped as part of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420, NM-15). The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the Minnesota Geological Survey, the Manitoba Department of Energy and Mines, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the description of map units. Deposits of some constructional landforms, such as kame moraine deposits, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, and lacustrine deposits that are mapped may be terraced. As a Quaternary geologic map, it serves as a base from which a variety of maps relating Quaternary geologic history can be derived. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map, it serves as a base from which a variety of maps for use in planning engineering, land-use, or land-management projects can be derived.

  5. Bedrock geologic map of Vermont

    USGS Publications Warehouse

    Ratcliffe, Nicholas M.; Stanley, Rolfe S.; Gale, Marjorie H.; Thompson, Peter J.; Walsh, Gregory J.; With contributions by Hatch, Norman L.; Rankin, Douglas W.; Doolan, Barry L.; Kim, Jonathan; Mehrtens, Charlotte J.; Aleinikoff, John N.; McHone, J. Gregory; Cartography by Masonic, Linda M.

    2011-01-01

    The Bedrock Geologic Map of Vermont is the result of a cooperative agreement between the U.S. Geological Survey (USGS) and the State of Vermont. The State's complex geology spans 1.4 billion years of Earth's history. The new map comes 50 years after the most recent map of the State by Charles G. Doll and others in 1961 and a full 150 years since the publication of the first geologic map of Vermont by Edward Hitchcock and others in 1861. At a scale of 1:100,000, the map shows an uncommon level of detail for State geologic maps. Mapped rock units are primarily based on lithology, or rock type, to facilitate derivative studies in multiple disciplines. The 1961 map was compiled from 1:62,500-scale or smaller maps. The current map was created to integrate more detailed (1:12,000- to 1:24,000-scale) modern and older (1:62,500-scale) mapping with the theory of plate tectonics to provide a framework for geologic, tectonic, economic, hydrogeologic, and environmental characterization of the bedrock of Vermont. The printed map consists of three oversize sheets (52 x 76 inches). Sheets 1 and 2 show the southern and northern halves of Vermont, respectively, and can be trimmed and joined so that the entire State can be displayed as a single entity. These sheets also include 10 cross sections and a geologic structure map. Sheet 3 on the front consists of descriptions of 486 map units, a correlation of map units, and references cited. Sheet 3 on the back features a list of the 195 sources of geologic map data keyed to an index map of 7.5-minute quadrangles in Vermont, as well as a table identifying ages of rocks dated by uranium-lead zircon geochronology.

  6. Preliminary integrated geologic map databases for the United States: Digital data for the geology of southeast Alaska

    USGS Publications Warehouse

    Gehrels, George E.; Berg, Henry C.

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set of 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  7. Minerals, lands, and geology for the common defence and general welfare, Volume 4, 1939-1961: A history of geology in relation to the development of public-land, federal science, and mapping policies and the development of mineral resources in the United States from the 60th to the 82d year of the U.S. Geological Survey

    USGS Publications Warehouse

    Rabbitt, Mary C.; Nelson, Clifford M.

    2015-01-01

    After preparing Volumes 1–3, Rabbitt wrote a brief report summarizing the agency's history in its first century, “The United States Geological Survey: 1879‒1989,” which was originally issued as USGS Circular 1050 in 1989. It was reissued in 2000 as part of USGS Circular 1179, which also contains Renée M. Jaussaud’s inventory of documents accessioned through 1997 into Record Group 57 (USGS) at the National Archives and Records Administration’s Archives II facility (NARA II) in College Park, Maryland.

  8. Geologic Map and GIS Data for the Wabuska Geothermal Area

    DOE Data Explorer

    Hinz, Nick

    2013-09-30

    Wabuska—ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross‐section.

  9. Geologic Map of the Hellas Region of Mars

    USGS Publications Warehouse

    Leonard, Gregory J.; Tanaka, Kenneth L.

    2001-01-01

    INTRODUCTION This geologic map of the Hellas region focuses on the stratigraphic, structural, and erosional histories associated with the largest well-preserved impact basin on Mars. Along with the uplifted rim and huge, partly infilled inner basin (Hellas Planitia) of the Hellas basin impact structure, the map region includes areas of ancient highland terrain, broad volcanic edifices and deposits, and extensive channels. Geologic activity recorded in the region spans all major epochs of martian chronology, from the early formation of the impact basin to ongoing resurfacing caused by eolian activity. The Hellas region, whose name refers to the classical term for Greece, has been known from telescopic observations as a prominent bright feature on the surface of Mars for more than a century (see Blunck, 1982). More recently, spacecraft imaging has greatly improved our visual perception of Mars and made possible its geologic interpretation. Here, our mapping at 1:5,000,000 scale is based on images obtained by the Viking Orbiters, which produced higher quality images than their predecessor, Mariner 9. Previous geologic maps of the region include those of the 1:5,000,000-scale global series based on Mariner 9 images (Potter, 1976; Peterson, 1977; King, 1978); the 1:15,000,000-scale global series based on Viking images (Greeley and Guest, 1987; Tanaka and Scott, 1987); and detailed 1:500,000-scale maps of Tyrrhena Patera (Gregg and others, 1998), Dao, Harmakhis, and Reull Valles (Price, 1998; Mest and Crown, in press), Hadriaca Patera (D.A. Crown and R. Greeley, map in preparation), and western Hellas Planitia (J.M. Moore and D.E. Wilhelms, map in preparation). We incorporated some of the previous work, but our map differs markedly in the identification and organization of map units. For example, we divide the Hellas assemblage of Greeley and Guest (1987) into the Hellas Planitia and Hellas rim assemblages and change the way units within these groupings are identified and mapped (table 1). The new classification scheme includes broad, geographically related categories and local, geologically and geomorphically related subgroups. Because of our mapping at larger scale, many of our map units were incorporated within larger units of the global-scale mapping (see table 1). Available Viking images of the Hellas region vary greatly in several aspects, which has complicated the task of producing a consistent photogeologic map. Best available image resolution ranges from about 30 to 300 m/pixel from place to place. Many images contain haze caused by dust clouds, and contrast and shading vary among images because of dramatic seasonal changes in surface albedo, opposing sun azimuths, and solar inclination. Enhancement of selected images on a computer-display system has greatly improved our ability to observe key geologic relations in several areas. Determination of the geologic history of the region includes reconstruction of the origin and sequence of formation, deformation, and modification of geologic units constituting (1) the impact-basin rim and surrounding highlands, (2) volcanic and channel assemblages on the northeast and south sides of the basin, (3) interior basin deposits, and (4) slope and surficial materials throughout the map area. Various surface modifications are attributed to volcanic, fluvial, eolian, mass-wasting, and possibly glacial and periglacial processes. Structures include basin faults (mostly inferred), wrinkle ridges occurring mainly in volcanic terrains and interior plains, volcanic collapse craters, and impact craters. Our interpretations in some cases rely on previous work, but in many significant cases we have offered new interpretations that we believe are more consistent with the observations documented by our mapping. Our primary intent for this mapping has been to elucidate the history of emplacement and modification of Hellas Planitia materials, which form the basis for analysis of their r

  10. Geologic map of the greater Denver area, Front Range urban corridor, Colorado

    USGS Publications Warehouse

    Trimble, Donald E.; Machette, Michael N.

    1979-01-01

    This digital map shows the areal extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette from 1973 to 1977 and published in 1979 under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999) was digitized under the USGS Front Range Infrastructure Resources Project. In general, the mountainous areas in the western part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle comprises eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and a few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  11. Geologic map of the Riverside East 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Cox, Brett F.

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in rse_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  12. Geologic map of the Corona North 7.5' quadrangle, Riverside and San Bernardino counties, California

    USGS Publications Warehouse

    Morton, Douglas M.; Gray, C.H.; Bovard, Kelly R.; Dawson, Michael

    2002-01-01

    a. This Readme; includes in Appendix I, data contained in crn_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced precise 1:24,000- scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  13. Geologic map of the Corona South 7.5' quadrangle, Riverside and Orange counties, California

    USGS Publications Warehouse

    Gray, C.H.; Morton, Douglas M.; Weber, F. Harold; Digital preparation by Bovard, Kelly R.; O'Brien, Timothy

    2002-01-01

    a. A Readme file; includes in Appendix I, data contained in crs_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  14. Geologic map of the Steele Peak 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; digital preparation by Alvarez, Rachel M.; Diep, Van M.

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in stp_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  15. Geologic map of the Riverside West 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Cox, Brett F.

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in rsw_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f.Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  16. Preliminary integrated geologic map databases for the United States : Central states : Montana, Wyoming, Colorado, New Mexico, Kansas, Oklahoma, Texas, Missouri, Arkansas, and Louisiana

    USGS Publications Warehouse

    Stoeser, Douglas B.; Green, Gregory N.; Morath, Laurie C.; Heran, William D.; Wilson, Anna B.; Moore, David W.; Van Gosen, Bradley S.

    2005-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for regional and national digital geologic maps attributed with age and lithology information. Such maps can be conveniently used to generate derivative maps for purposes including mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This Open-File Report is a preliminary version of part of a series of integrated state geologic map databases that cover the entire United States. The only national-scale digital geologic maps that portray most or all of the United States for the conterminous U.S. are the digital version of the King and Beikman (1974a, b) map at a scale of 1:2,500,000, as digitized by Schruben and others (1994) and the digital version of the Geologic Map of North America (Reed and others, 2005a, b) compiled at a scale of 1:5,000,000 which is currently being prepared by the U.S. Geological Survey. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. In a few cases, new digital compilations were prepared (e.g. OH, SC, SD) or existing paper maps were digitized (e.g. KY, TX). For Alaska and Hawaii, new regional maps are being compiled and ultimately new state maps will be produced. The digital geologic maps are presented in standardized formats as ARC/INFO (.e00) export files and as ArcView shape (.shp) files. Accompanying these spatial databases are a set of five supplemental data tables that relate the map units to detailed lithologic and age information. The maps for the CONUS have been fitted to a common set of state boundaries based on the 1:100,000 topographic map series of the United States Geological Survey (USGS). When the individual state maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps. No attempt has been made to reconcile differences in mapped geology across state lines. This is the first version of this product and it will be subsequently updated to include four additional states (North Dakota, South Dakota, Nebraska, and Iowa)

  17. Geologic map of the Nepenthes Planum Region, Mars

    USGS Publications Warehouse

    Skinner, James A.; Tanaka, Kenneth L.

    2018-03-26

    This map product contains a map sheet at 1:1,506,000 scale that shows the geology of the Nepenthes Planum region of Mars, which is located between the cratered highlands that dominate the southern hemisphere and the less-cratered sedimentary plains that dominate the northern hemisphere.  The map region contains cone- and mound-shaped landforms as well as lobate materials that are morphologically similar to terrestrial igneous or mud vents and flows. This map is part of an informal series of small-scale (large-area) maps aimed at refining current understanding of the geologic units and structures that make up the highland-to-lowland transition zone. The map base consists of a controlled Thermal Emission Imaging System (THEMIS) daytime infrared image mosaic (100 meters per pixel resolution) supplemented by a Mars Orbiter Laser Altimeter (MOLA) digital elevation model (463 meters per pixel resolution). The map includes a Description of Map Units and a Correlation of Map Units that describes and correlates units identified across the entire map region. The geologic map was assembled using ArcGIS software by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS project, geodatabase, base map, and all map components are included online as supplemental data.

  18. Environmental aspects of engineering geological mapping in the United States

    USGS Publications Warehouse

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  19. Earth-Base: testing the temporal congruency of paleontological collections and geologic maps of North America

    NASA Astrophysics Data System (ADS)

    Heim, N. A.; Kishor, P.; McClennen, M.; Peters, S. E.

    2012-12-01

    Free and open source software and data facilitate novel research by allowing geoscientists to quickly and easily bring together disparate data that have been independently collected for many different purposes. The Earth-Base project brings together several datasets using a common space-time framework that is managed and analyzed using open source software. Earth-Base currently draws on stratigraphic, paleontologic, tectonic, geodynamic, seismic, botanical, hydrologic and cartographic data. Furthermore, Earth-Base is powered by RESTful data services operating on top of PostgreSQL and MySQL databases and the R programming environment, making much of the functionality accessible to third-parties even though the detailed data schemas are unknown to them. We demonstrate the scientific potential of Earth-Base and other FOSS by comparing the stated age of fossil collections to the age of the bedrock upon which they are geolocated. This analysis makes use of web services for the Paleobiology Database (PaleoDB), Macrostrat, the 2005 Geologic Map of North America (Garrity et al. 2009) and geologic maps of the conterminous United States. This analysis is a way to quickly assess the accuracy of temporal and spatial congruence of the paleontologic and geologic map datasets. We find that 56.1% of the 52,593 PaleoDB collections have temporally consistent ages with the bedrock upon which they are located based on the Geologic Map of North America. Surprisingly, fossil collections within the conterminous United States are more consistently located on bedrock with congruent geological ages, even though the USA maps are spatially and temporally more precise. Approximately 57% of the 37,344 PaleoDB collections in the USA are located on similarly aged geologic map units. Increased accuracy is attributed to the lumping of Pliocene and Quaternary geologic map units along the Atlantic and Gulf coastal plains in the Geologic Map of North America. The abundant Pliocene fossil collections are thus located on geologic map units that have an erroneous age designation of Quaternary. We also demonstrate the power of the R programming environment for performing analyses and making publication-quality maps for visualizing results.

  20. Geologic Map of the Frederick 30' x 60' Quadrangle, Maryland, Virginia, and West Virginia

    USGS Publications Warehouse

    Southworth, Scott; Brezinski, David K.; Drake, Avery Ala; Burton, William C.; Orndorff, Randall C.; Froelich, Albert J.; Reddy, James E.; Denenny, Danielle; Daniels, David L.

    2007-01-01

    The Frederick 30? ? 60? quadrangle lies within the Potomac River watershed of the Chesapeake Bay drainage basin. The map area covers parts of Montgomery, Howard, Carroll, Frederick, and Washington Counties in Maryland; Loudoun, Clarke, and Fairfax Counties in Virginia; and Jefferson and Berkeley Counties in West Virginia. Many geologic features (such as faults and folds) are named for geographic features that may or may not be shown on the 1:100,000-scale base map. The geology of the Frederick 30? ? 60? quadrangle, Maryland, Virginia, and West Virginia, was first mapped on the 32 1:24,000-scale 7.5-minute quadrangle base maps between 1989 and 1994. The geologic data were compiled manually at 1:100,000 scale in 1997 and were digitized between 1998 and 1999. The geologic map and database may be used to support activities such as land-use planning, soil mapping, groundwater availability and quality studies, identifying aggregate resources, and conducting engineering and environmental studies. The map area covers distinct geologic provinces and sections of the central Appalachian region that are defined by unique bedrock and resulting landforms. From west to east, the provinces include the Great Valley section of the Valley and Ridge province, the Blue Ridge province, and the Piedmont province; in the extreme southeastern corner, a small part of the Coastal Plain province is present. The Piedmont province is divided into several sections; from west to east, hey are the Frederick Valley synclinorium, the Culpeper and Gettysburg basins, the Sugarloaf Mountain anticlinorium, the Westminster terrane, and the Potomac terrane. The geology of the Frederick quadrangle is discussed by geologic province and sections; the geologic units within each province are discussed from oldest to youngest. Where applicable, the discussion includes information on tectonic origins. For more information concerning the report, please contact the author.

  1. Geologic map of the Galaxias quadrangle (MTM 35217) of Mars

    USGS Publications Warehouse

    De Hon, Rene A.; Mouginis-Mark, Peter J.; Brick, Eugene E.

    1999-01-01

    The Galaxias region (MTM 35217) is one of a series of 1:500,000-scale science study areas on Mars sponsored by NASA's Planetary Geology and Geophysics Program. Situated near the northern limit of lava flows associated with Elysium Mons, this region includes a mixture of volcanic and nonvolcanic terrains. The region is also of interest for the fluvial systems that originate along the distal margins of the Elysium lava flows. Resolution of Viking Orbiter images used to prepare the base map ranges from 40 to 160 m/pixel. High-resolution frames (40 to 80 m/pixel) are found in the southeastern part of the map area and along the north edge of the quadrangle, but over half the quadrangle is included in medium-resolution frames (150 m/pixel). Two 8 m/pixel, very high resolution scenes are available (see fig. 1). Interpretation is complicated by variable resolution and sun angles that vary from east to west illumination on different images. Mapping methods and principles are adapted from those developed for lunar photogeologic mapping by Shoemaker and Hackman (1962), refined by Wilhelms (1972), and successfully applied by many workers to a variety of planetary surfaces. Mapping units are distinguished by topography and texture and are ranked by relative age on the basis of superposition and transection relations. Material units are assigned to time-stratigraphic systems defined by Scott and Carr (1978) and Tanaka (1986). This area is included within earlier maps that used Mariner 9 images at 1:5,000,000 scale (Elston, 1979) and globally at 1:25,000,000 scale (Scott and Carr, 1978). Regional maps based on the much higher resolutions of Viking Orbiter allowed more detailed discrimination of materials by Greeley and Guest (1987) at 1:15,000,000 scale and Tanaka and others (1992) at 1:5,000,000 scale. Some map units on this 1:500,000-scale map correspond to, or are partially equivalent to, units on the larger scale maps of Greeley and Guest (1987) and Tanaka and others (1992). Established terminology is used where feasible, but the scale of this map requires that some new units be introduced and that some previous terminology be redefined. Photogeologic methods are limited; therefore, more than one geologic explanation is given for some material units that do not readily lend themselves to an unequivocal interpretation.

  2. Geologic map and digital database of the Romoland 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.; Morton, Gregory

    2003-01-01

    Portable Document Format (.pdf) files of: This Readme; includes in Appendix I, data contained in rom_met.txt The same graphic as plotted in 2 above. Test plots have not produced precise 1:24,000- scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formationname, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). This Readme file describes the digital data, such as types and general contents of files making up the database, and includes information on how to extract and plot the map and accompanying graphic file. Metadata information can be accessed at http://geo-nsdi.er.usgs.gov/metadata/open-file/03-102 and is included in Appendix I of this Readme.

  3. Bedrock and structural geologic maps of eastern Candor Sulci, western Ceti Mensa, and southeastern Ceti Mensa, Candor Chasma, Valles Marineris region of Mars

    USGS Publications Warehouse

    Okubo, Chris H.; Gaither, Tenielle A.

    2017-05-12

    This map product contains a set of three 1:18,000-scale maps showing the geology and structure of study areas in the western Candor Chasma region of Valles Marineris, Mars. These maps are part of an informal series of large-scale maps and map-based topical studies aimed at refining current understanding of the geologic history of western Candor Chasma. The map bases consist of digital elevation models and orthorectified images derived from High Resolution Imaging Science Experiment (HiRISE) data. These maps are accompanied by geologic cross sections, colorized elevation maps, and cutouts of HiRISE images showing key superposition relations. Also included in this product is a Correlation of Map Units that integrates units across all three map areas, as well as an integrated Description of Map Units and an integrated Explanation of Map Symbols. The maps were assembled using ArcGIS software produced by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS projects and databases associated with each map are included online as supplemental data.

  4. Geologic map of the Republic of Armenia

    USGS Publications Warehouse

    Maldonado, Florian; Castellanos, Esther S.

    2000-01-01

    This map is a product that resulted from a project by the U.S. Agency for International Development (Participating Agency Service Agreement No. CCN-0002-P-ID-3097-00) to conduct an evaluation of coal and other fossil fuels in the Republic of Armenia. The original map has been translated to English from Russian (Marlen Satian, Academy of Sciences, Armenian Institute of Geological Sciences, written commun., 1994), digitized, and slightly modified in some areas. The original format has been modified to follow the U.S. Geological Survey's format. The map projection is not known. Latitude and longitude tics are approximately located.

  5. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance bedrock geologic map for the northern Alaska peninsula area, southwest Alaska

    USGS Publications Warehouse

    ,

    2006-01-01

    he growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  6. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance geologic map of the western Aleutian Islands, Alaska

    USGS Publications Warehouse

    ,

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO Exportfiles/ and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  7. Preliminary integrated geologic map databases for the United States: Digital data for the generalized bedrock geologic map, Yukon Flats region, east-central Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Phillips, Jeffrey D.; Stanley, Richard G.; Crews, Jessie

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  8. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance geologic map of the lower Yukon River region, Alaska

    USGS Publications Warehouse

    ,

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  9. Beta Regio - Phoebe Regio on Venus: Geologic mapping with the Magellan data

    NASA Technical Reports Server (NTRS)

    Nikishin, A. M.; Borozdin, V. K.; Bobina, N. N.; Burba, G. A.

    1993-01-01

    The geologic maps of C1-15N283 and C1-00N283 sheets were produced (preliminary versions) with Magellan SAR images. This work was undertaken as a part of Russia's contribution into C1 geologic mapping efforts. The scale of the original maps is 1:8,000,000, and the maps are reproduced here at a reduced size.

  10. Geologic Map and GIS Data for the Patua Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2011-10-31

    Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

  11. Geologic Map and GID Data for the Salt Wells Geothermal Area

    DOE Data Explorer

    Hinz, Nick

    2011-10-31

    Salt Wells—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Locations of 40Ar/39Ar samples.

  12. Quaternary Geologic Map of the Lake Nipigon 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    USGS Publications Warehouse

    Sado, Edward V.; Fullerton, David S.; Farrand, William R.; Edited and Integrated by Fullerton, David S.

    1994-01-01

    The Quaternary Geologic Map of the Lake Nipigon 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the University of Michigan, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the map unit descriptions. Deposits of some constructional landforms, such as kame moraine deposits, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, and lacustrine deposits that are mapped may be terraced. As a Quaternary geologic map it serves as a base from which a variety of maps relating Quaternary geologic history can be derived. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map it serves as a base from which a variety of maps for use in planning engineering, land use, or land management projects can be derived.

  13. Mars Global Geologic Mapping Progress and Suggested Geographic-Based Hierarchal Systems for Unit Grouping and Naming

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Dohm, J. M.; Irwin, R.; Kolb, E. J.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    We are in the fourth year of a fiveyear effort to map the global geology of Mars at 1:20M scale using mainly Mars Global Surveyor, Mars Express, and Mars Odyssey image and altimetry datasets. Previously, we reported on details of project management, mapping datasets (local and regional), initial and anticipated mapping approaches, and tactics of map unit delineation and description [1-2]. Last year, we described mapping and unit delineation results thus far, a new unit identified in the northern plains, and remaining steps to complete the map [3].

  14. Mars Global Geologic Mapping: About Half Way Done

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Dohm, J. M.; Irwin, R.; Kolb, E. J.; Skinner, J. A., Jr.; Hare, T. M.

    2009-01-01

    We are in the third year of a five-year effort to map the geology of Mars using mainly Mars Global Surveyor, Mars Express, and Mars Odyssey imaging and altimetry datasets. Previously, we have reported on details of project management, mapping datasets (local and regional), initial and anticipated mapping approaches, and tactics of map unit delineation and description [1-2]. For example, we have seen how the multiple types and huge quantity of image data as well as more accurate and detailed altimetry data now available allow for broader and deeper geologic perspectives, based largely on improved landform perception, characterization, and analysis. Here, we describe mapping and unit delineation results thus far, a new unit identified in the northern plains, and remaining steps to complete the map.

  15. Geologic Map of the Neal Hot Springs Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2013-03-31

    Neal Hot Springs—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross‐sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  16. Preliminary Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    USGS Publications Warehouse

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2006-01-01

    This report presents a preliminary map of the bedrock geology of the Old Lyme quadrangle, New London and Middlesex Counties, Connecticut. The map depicts contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The map was published as part of a study of fractured bedrock aquifers and regional tectonics.

  17. Digital geologic map of the Butler Peak 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, Fred K.; Matti, Jonathan C.; Brown, Howard J.; digital preparation by Cossette, P. M.

    2000-01-01

    Open-File Report 00-145, is a digital geologic map database of the Butler Peak 7.5' quadrangle that includes (1) ARC/INFO (Environmental Systems Research Institute) version 7.2.1 Patch 1 coverages, and associated tables, (2) a Portable Document Format (.pdf) file of the Description of Map Units, Correlation of Map Units chart, and an explanation of symbols used on the map, btlrpk_dcmu.pdf, (3) a Portable Document Format file of this Readme, btlrpk_rme.pdf (the Readme is also included as an ascii file in the data package), and (4) a PostScript plot file of the map, Correlation of Map Units, and Description of Map Units on a single sheet, btlrpk.ps. No paper map is included in the Open-File report, but the PostScript plot file (number 4 above) can be used to produce one. The PostScript plot file generates a map, peripheral text, and diagrams in the editorial format of USGS Geologic Investigation Series (I-series) maps.

  18. Geologic map of the Willow Creek Reservoir SE Quadrangle, Elko, Eureka, and Lander Counties, Nevada

    USGS Publications Warehouse

    Wallace, Alan R.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Willow CreekReservoir 7.5-minute SE Quadrangle in Elko, Eureka, and LanderCounties, Nevada, with two cross sections and descriptions of 24 rock units. Accompanying text discusses the geology, paleogeography, and formation of the Ivanhoe Hg-Au district.

  19. Geologic map of the Callville Bay Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Anderson, R. Ernest

    2003-01-01

    Report: 139 Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map and four cross sections of the Callville Bay 7-minute quadrangle in Clark County, Nevada and Mohave County, Arizona. An accompanying text describes 21 stratigraphic units of Paleozoic and Mesozoic sedimentary rocks and 40 units of Cenozoic sedimentary, volcanic, and intrusive rocks. It also discusses the structural setting, framework, and history of the quadrangle and presents a model for its tectonic development.

  20. Earthquakes in the Central United States, 1699-2010

    USGS Publications Warehouse

    Dart, Richard L.; Volpi, Christina M.

    2010-01-01

    This publication is an update of an earlier report, U.S. Geological Survey (USGS) Geologic Investigation I-2812 by Wheeler and others (2003), titled ?Earthquakes in the Central United States-1699-2002.? Like the original poster, the center of the updated poster is a map showing the pattern of earthquake locations in the most seismically active part of the central United States. Arrayed around the map are short explanatory texts and graphics, which describe the distribution of historical earthquakes and the effects of the most notable of them. The updated poster contains additional, post 2002, earthquake data. These are 38 earthquakes covering the time interval from January 2003 to June 2010, including the Mount Carmel, Illinois, earthquake of 2008. The USGS Preliminary Determination of Epicenters (PDE) was the source of these additional data. Like the I-2812 poster, this poster was prepared for a nontechnical audience and designed to inform the general public as to the widespread occurrence of felt and damaging earthquakes in the Central United States. Accordingly, the poster should not be used to assess earthquake hazard in small areas or at individual locations.

  1. Map of assessed shale gas in the United States, 2012

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2013-01-01

    The U.S. Geological Survey has compiled a map of shale-gas assessments in the United States that were completed by 2012 as part of the National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the U.S. Geological Survey quantitatively estimated potential volumes of undiscovered gas within shale-gas assessment units. These shale-gas assessment units are mapped, and square-mile cells are shown to represent proprietary shale-gas wells. The square-mile cells include gas-producing wells from shale intervals. In some cases, shale-gas formations contain gas in deeper parts of a basin and oil at shallower depths (for example, the Woodford Shale and the Eagle Ford Shale). Because a discussion of shale oil is beyond the scope of this report, only shale-gas assessment units and cells are shown. The map can be printed as a hardcopy map or downloaded for interactive analysis in a Geographic Information System data package using the ArcGIS map document (file extension MXD) and published map file (file extension PMF). Also available is a publications access table with hyperlinks to current U.S. Geological Survey shale gas assessment publications and web pages. Assessment results and geologic reports are available as completed at the U.S. Geological Survey Energy Resources Program Web Site, http://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx. A historical perspective of shale gas activity in the United States is documented and presented in a video clip included as a PowerPoint slideshow.

  2. Revised Geologic Map of the Fort Garland Quadrangle, Costilla County, Colorado

    USGS Publications Warehouse

    Wallace, Alan R.; Machette, Michael N.

    2008-01-01

    The map area includes Fort Garland, Colo., and the surrounding area, which is primarily rural. Fort Garland was established in 1858 to protect settlers in the San Luis Valley, then part of the Territory of New Mexico. East of the town are the Garland mesas (basalt-covered tablelands), which are uplifted as horsts with the Central Sangre de Cristo fault zone. The map also includes the northern part of the Culebra graben, a deep structural basin that extends from south of San Luis (as the Sanchez graben) to near Blanca, about 8 km west of Fort Garland. The oldest rocks exposed in the map area are early Proterozic basement rocks (granites in Ikes Creek block) that occupy an intermediate structural position between the strongly uplifted Blanca Peak block and the Culebra graben. The basement rocks are overlain by Oligocene volcanic and volcaniclastic rocks of unknown origin. The volcanic rocks were buried by a thick sequence of basin-fill deposits of the Santa Fe Group as the Rio Grande rift formed about 25 million years ago. The Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts, was deposited within sediment, and locally provides a basis for dividing the group into upper and lower parts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Exposures of the sediment beneath the basalt and within the low foothills east of the Central Sangre de Cristo fault zone are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) is preserved as isolated remnants that cap high surfaces north and east of Fort Garland. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. The Central Sangre de Cristo fault zone shows evidence for latest Pleistocene to possible early Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. This revised geologic map is based on previous mapping by Wallace (1997) and new mapping, primarily of the Quaternary deposits, by Machette.

  3. Geologic Mapping of the Martian Impact Crater Tooting

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter; Boyce, Joseph M.

    2008-01-01

    Tooting crater is approximately 29 km in diameters, is located at 23.4 deg N, 207.5 deg E and is classified as a multi-layered ejecta crater. Tooting crater is a very young crater, with an estimated age of 700,000 to 2M years. The crater formed on virtually flat lava flows within Amazonis Planitia where there appears to have been no major topographic features prior to the impact, so that we can measure ejecta thickness and cavity volume. In the past 12 months, the authors have: published their first detailed analysis of the geometry of the crater cavity and the distribution of the ejecta layers; refined the geologic map of the interior of Tooting crater through mapping of the cavity at a scale of 1:1100K; and continued the analysis of an increasing number of high resolution images obtained by the CTX and HiRISE instruments. Currently the authors seek to resolve several science issues that have been identified during this mapping, including: what is the origin of the lobate flows on the NW and SW rims of the crater?; how did the ejecta curtain break apart during the formation of the crater, and how uniform was the emplacement process for the ejecta layers; and, can we infer physical characteristics about the ejecta? Future study plans include the completion of a draft geologic map of Tooting crater and submission of it to the U.S. Geological survey for a preliminary review, publishing a second research paper on the detailed geology of the crater cavity and the distribution of the flows on the crater rim, and completing the map text for the 1:100K geologic map description of units at Tooting crater.

  4. Sudbury project (University of Muenster-Ontario Geological Survey): Petrology, chemistry, and origin of breccia formations

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Deutsch, A.; Avermann, M.; Brockmeyer, P.; Lakomy, R.; Mueller-Mohr, V.

    1992-01-01

    Within the Sudbury Project of the University of Muenster and the Ontario Geological Survey special emphasis was put on the breccia formations exposed at the Sudbury structure (SS) because of their crucial role for the impact hypothesis. They were mapped and sampled in selected areas of the north, east, and south ranges of the SS. The relative stratigraphic positions of these units are summarized. Selected samples were analyzed by optical microscopy, SEM, microprobe, XRF and INAA, Rb-Sr and SM-Nd-isotope geochemistry, and carbon isotope analysis. The results of petrographic and chemical analysis for those stratigraphic units that were considered the main structural elements of a large impact basin are summarized.

  5. Martian crater counts on Elysium Mons

    NASA Technical Reports Server (NTRS)

    Mcbride, Kathleen; Barlow, Nadine G.

    1990-01-01

    Without returned samples from the Martian surface, relative age chronologies and stratigraphic relationships provide the best information for determining the ages of geomorphic features and surface regions. Crater-size frequency distributions of six recently mapped geological units of Elysium Mons were measured to establish their relative ages. Most of the craters on Elysium Mons and the adjacent plains units are between 500 and 1000 meters in diameter. However, only craters 1 km in diameter or larger were used because of inadequate spatial resolution of some of the Viking images and to reduce probability of counting secondary craters. The six geologic units include all of the Elysium Mons construct and a portion of the plains units west of the volcano. The surface area of the units studied is approximately 128,000 sq km. Four of the geologic units were used to create crater distribution curves. There are no craters larger than 1 km within the Elysium Mons caldera. Craters that lacked raised rims, were irregularly shaped, or were arranged in a linear pattern were assumed to be endogenic in origin and not counted. A crater frequency distribution analysis is presented.

  6. Mineral deposits of Central America, with a section on manganese deposits of Panama

    USGS Publications Warehouse

    Roberts, Ralph Jackson; Irving, Earl Montgomery; Simons, F.S.

    1957-01-01

    The mineral deposits of Central America were studied between 1942 and 1945, in cooperation with the United States Department of State and the Foreign Economic Administration. Emphasis was originally placed on the study of strategic-mineral deposits, especially of antimony, chromite, manganese, quartz, and mica, but deposits of other minerals that offered promise of significant future production were also studied. A brief appraisal of the base-metal deposits was made, and deposits of iron ore in Honduras and of lead and zinc ores in Guatemala were mapped. In addition, studies were made of the regional geology of some areas, data were collected from many sources, and a new map of the geology of Central America was compiled.

  7. Geologic map of the MTM -85280 quadrangle, Planum Australe region of Mars

    USGS Publications Warehouse

    Herkenhoff, Ken

    1998-01-01

    The polar deposits on Mars are of great interest because they probably record martian climate variations (Thomas and others, 1992). The area shown on this map includes polar layered deposits with distinct low-albedo features and a sharp boundary between the layered deposits and the moderately cratered unit that forms the floor of Chasma Australe. Detailed mapping of this quadrangle was undertaken to further investigate the geologic relations between the albedo features and the layered deposits and to better constrain the recent geologic history of the south polar region. Dark dunes in the north polar region appear to be derived from erosion of the layered deposits, but the source of dark material in the south polar region is less clear (Thomas and Weitz, 1989). The presence of dark material in the brighter, redder layered deposits is paradoxical (Herkenhoff and Murray, 1990a); resolving this paradox is likely to result in a better understanding of the origin and evolution of the layered deposits and, therefore, the mechanisms by which global climate variations are recorded. Published geologic maps of the south polar region of Mars have been based on images acquired by either Mariner 9 (Condit and Soderblom, 1978; Scott and Carr, 1978) or the Viking Orbiters (Tanaka and Scott, 1987). The extent of the layered deposits mapped previously from Mariner 9 data is different from that mapped using Viking Orbiter images, and the present map agrees with the map by Tanaka and Scott (1987): the floor of Chasma Australe is not mapped as layered deposits. The residual polar ice cap, areas of partial frost cover, the layered deposits, and two nonvolatile surface units - the dust mantle and the dark material - were mapped by Herkenhoff and Murray (1990a) at 1:2,000,000 scale using a color mosaic of Viking Orbiter images. This mosaic and an additional Viking color mosaic were used to confirm the identification of the nonvolatile Amazonian units for this map and to test hypotheses for their origin and evolution. The colors and albedos of these units, as measured in places outside this map area, are presented in table 1 and figure 1. Accurately measuring the color and albedo of the units in this map area was not possible due to low signal/noise in the part of the red/violet mosaic (corrected for atmospheric scattering) that includes this area (Herkenhoff and Murray, 1990a). However, color/albedo unit boundaries in this area are visible in color mosaics that have not been corrected for atmospheric scattering effects. Therefore, while the color and albedo of various units on this map cannot be precisely quantified and compared with the values in table 1 and figure 1, color/albedo units can still be recognized. Because the resolution of the color mosaics is not sufficient to map these units in detail at 1:500,000 scale, contacts between them were recognized and mapped using higher resolution black-and-white Viking and Mariner 9 images. Only two possible impact craters in the layered deposits have been found in the area mapped; both are slightly elongate rather than circular. One, 1.6 km in diameter at lat 86.6° S., long 268°, was recognized by Plaut and others (1988); the other, about 3 km in diameter, is at lat 82.8° S., long 277°. Although the crater statistics are poor (only 16 likely impact craters found in the entire south polar layered deposits), these observations generally support the conclusions that the south polar layered deposits are Late Amazonian in age and that some areas have been exposed for at least 120 million years (Plaut and others, 1988; Herkenhoff and Murray, 1992, 1994). However, the recent cratering flux on Mars is poorly constrained, so inferred ages of surface units are uncertain. The Viking Orbiter 2 images used to construct the base were taken during the southern summer of 1977, with resolutions no better than 180 m/pixel. (The "less than 100 m per picture element" in Notes on Base of the controlled photomosaic base [U.S. Geological Survey, 1986] is incorrect.) A digital mosaic of Mariner 9 images was also constructed to aid in mapping. The Mariner 9 images were taken during the southern summer of 1971-72 and have resolutions as high as 90 m/pixel. However, usefulness of the Mariner 9 mosaic is limited by incomplete coverage and atmospheric dust opacity.

  8. Map of assessed continuous (unconventional) oil resources in the United States, 2014

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2015-01-01

    The U.S. Geological Survey (USGS) conducts quantitative assessments of potential oil and gas resources of the onshore United States and associated coastal State waters. Since 2000, the USGS has completed assessments of continuous (unconventional) resources in the United States based on geologic studies and analysis of well-production data and has compiled digital maps of the assessment units classified into four categories: shale gas, tight gas, coalbed gas, and shale oil or tight oil (continuous oil). This is the fourth digital map product in a series of USGS unconventional oil and gas resource maps; its focus being shale-oil or tight-oil (continuous-oil) assessments. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, which includes an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and a published map file (.pmf). Supporting geologic studies of total petroleum systems and assessment units, as well as studies of the methodology used in the assessment of continuous-oil resources in the United States, are listed with hyperlinks in table 1. Assessment results and geologic reports are available at the USGS websitehttp://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx.

  9. Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Other Natural Occurrences of Asbestos in Oregon and Washington

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2010-01-01

    This map and its accompanying dataset provide information for 51 natural occurrences of asbestos in Washington and Oregon, using descriptions found in the geologic literature. Data on location, mineralogy, geology, and relevant literature for each asbestos site are provided. Using the map and digital data in this report, the user can examine the distribution of previously reported asbestos occurrences and their geological characteristics in the Pacific Northwest States of Washington and Oregon. This report is part of an ongoing study by the U.S. Geological Survey to identify and map reported natural asbestos occurrences in the United States, which thus far includes similar maps and datasets of natural asbestos occurrences within the Eastern United States (http://pubs.usgs.gov/of/2005/1189/), the Central United States (http://pubs.usgs.gov/of/2006/1211/), the Rocky Mountain States (http://pubs.usgs.gov/of/2007/1182/), and the Southwestern United States (http://pubs.usgs.gov/of/2008/1095/). These reports are intended to provide State and local government agencies and other stakeholders with geologic information on natural occurrences of asbestos in the United States.

  10. Geologic Map of the Umiat Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2004-01-01

    This geologic map of the Umiat quadrangle is a compilation of previously published USGS geologic maps and unpublished mapping done for the Richfield Oil Corporation. Geologic mapping from these three primary sources was augmented with additional unpublished map data from British Petroleum Company. This report incorporates recent revisions in stratigraphic nomenclature. Stratigraphic and structural interpretations were revised with the aid of modern high-resolution color infrared aerial photographs. The revised geologic map was checked in the field during the summers of 2001 and 2002. The geologic unit descriptions on this map give detailed information on thicknesses, regional distributions, age determinations, and depositional environments. The paper version of this map is available for purchase from the USGS Store.

  11. A guided inquiry approach to learning the geology of the U.S

    USGS Publications Warehouse

    Leech, M.L.; Howell, D.G.; Egger, A.E.

    2004-01-01

    A guided inquiry exercise has been developed to help teach the geology of the U.S. This exercise is intended for use early in the school term when undergraduate students have little background knowledge of geology. Before beginning, students should be introduced to rock types and have a basic understanding of geologic time. This exercise uses three maps: the U.S. Geological Survey's "A Tapestry of Time and Terrain" and "Landforms of the Conterminous United States" maps, and a geologic map of the United States. Using these maps, groups of 3 to 5 students are asked to identify between 8 and 12 geologic provinces based on topography, the age of rocks, and rock types. Each student is given a blank outline map of the contiguous U.S. and each group is given a set of the three maps and colored pencils; as a group, students work to define regions in the U.S. with similar geology. A goal of 8 to 12 geologic provinces is given to help establish the level of detail being asked of students. One member of each group is asked to present their group's findings to the class, describing their geologic provinces and the reasoning behind their choices.

  12. Geodesy- and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps

    USGS Publications Warehouse

    Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne

    2014-01-01

    The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.

  13. Mapping NEHRP VS30 site classes

    USGS Publications Warehouse

    Holzer, T.L.; Padovani, A.C.; Bennett, M.J.; Noce, T.E.; Tinsley, J. C.

    2005-01-01

    Site-amplification potential in a 140-km2 area on the eastern shore of San Francisco Bay, California, was mapped with data from 210 seismic cone penetration test (SCPT) soundings. NEHRP VS30 values were computed on a 50-m grid by both taking into account the thickness and using mean values of locally measured shear-wave velocities of shallow geologic units. The resulting map of NEHRP VS30 site classes differs from other published maps that (1) do not include unit thickness and (2) are based on regional compilations of velocity. Although much of the area in the new map is now classified as NEHRP Site Class D, the velocities of the geologic deposits within this area are either near the upper or lower VS30 boundary of Class D. If maps of NEHRP site classes are to be based on geologic maps, velocity distributions of geologic units may need to be considered in the definition of VS30 boundaries of NEHRP site classes. ?? 2005, Earthquake Engineering Research Institute.

  14. Geologic map of the Lake Mathews 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Weber, F. Harold

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in lkm_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous.Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand.In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  15. Geology of the Sklodowska Region, Lunar Farside. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Kauffman, J. D.

    1974-01-01

    Investigation of an area on the lunar farside has resulted in a geologic map, development of a regional stratigraphic sequence, and interpretation of surface materials. Apollo 15 metric photographs were used in conjunction with photogrammetric techniques to produce a base map to which geologic units were later added. Geologic units were first delineated on the metric photographs and then transferred to the base map. Materials were defined and described from selected Lunar Orbiter and Apollo 15 metric, panoramic, and Hasselblad photographs on the basis of distinctive morphologic characteristics.

  16. Geologic map of Gunnison Gorge National Conservation Area, Delta and Montrose Counties, Colorado

    USGS Publications Warehouse

    Kellogg, Karl; Hansen, Wallace R.; Tucker, Karen S.; VanSistine, D. Paco

    2004-01-01

    This publication consists of a geologic map database and printed map sheet. The map sheet has a geologic map as the center piece, and accompanying text describes (1) the various geological units, (2) the uplift history of the region and how it relates to canyon downcutting, (3) the ecology of the gorge, and (4) human history. The map is intended to be used by the general public as well as scientists and goes hand-in-hand with a separate geological guide to Gunnison Gorge.

  17. Geologic map of Detrital, Hualapai, and Sacramento Valleys and surrounding areas, northwest Arizona

    USGS Publications Warehouse

    Beard, L. Sue; Kennedy, Jeffrey; Truini, Margot; Felger, Tracey

    2011-01-01

    A 1:250,000-scale geologic map and report covering the Detrital, Hualapai, and Sacramento valleys in northwest Arizona is presented for the purpose of improving understanding of the geology and geohydrology of the basins beneath those valleys. The map was compiled from existing geologic mapping, augmented by digital photogeologic reconnaissance mapping. The most recent geologic map for the area, and the only digital one, is the 1:1,000,000-scale Geologic Map of Arizona. The larger scale map presented here includes significantly more detailed geology than the Geologic Map of Arizona in terms of accuracy of geologic unit contacts, number of faults, fault type, fault location, and details of Neogene and Quaternary deposits. Many sources were used to compile the geology; the accompanying geodatabase includes a source field in the polygon feature class that lists source references for polygon features. The citations for the source field are included in the reference section.

  18. Lunar and Planetary Science XXXV: Venus

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session"Venus" included the following reports:Venera-Vega Geochemical Analyses: What Geologic Units are the Source of the Analyzed Material?; Mapping of Rift Zones on Venus, Preliminary Results: Spatial Distribution, Relationship with Regional Plains, Morphology of Fracturing, Topography and Style of Volcanism; An Effect of Stimulated Radiation Processes on Radio Emission from Major Planets; and Venusian Craters and the Origin of Coronae.

  19. Porphyry copper deposit tract definition - A global analysis comparing geologic map scales

    USGS Publications Warehouse

    Raines, G.L.; Connors, K.A.; Chorlton, L.B.

    2007-01-01

    Geologic maps are a fundamental data source used to define mineral-resource potential tracts for the first step of a mineral resource assessment. Further, it is generally believed that the scale of the geologic map is a critical consideration. Previously published research has demonstrated that the U.S. Geological Survey porphyry tracts identified for the United States, which are based on 1:500,000-scale geology and larger scale data and published at 1:1,000,000 scale, can be approximated using a more generalized 1:2,500,000-scale geologic map. Comparison of the USGS porphyry tracts for the United States with weights-of-evidence models made using a 1:10,000,000-scale geologic map, which was made for petroleum applications, and a 1:35,000,000-scale geologic map, which was created as context for the distribution of porphyry deposits, demonstrates that, again, the USGS US porphyry tracts identified are similar to tracts defined on features from these small scale maps. In fact, the results using the 1:35,000,000-scale map show a slightly higher correlation with the USGS US tract definition, probably because the conceptual context for this small-scale map is more appropriate for porphyry tract definition than either of the other maps. This finding demonstrates that geologic maps are conceptual maps. The map information shown in each map is selected and generalized for the map to display the concepts deemed important for the map maker's purpose. Some geologic maps of small scale prove to be useful for regional mineral-resource tract definition, despite the decrease in spatial accuracy with decreasing scale. The utility of a particular geologic map for a particular application is critically dependent on the alignment of the intention of the map maker with the application. ?? International Association for Mathematical Geology 2007.

  20. Quaternary geologic map of the Blue Ridge 4 degrees x 6 degrees quadrangle, United States

    USGS Publications Warehouse

    Howard, Alan D.; Behling, Robert E.; Wheeler, Walter H.; Daniels, Raymond B.; Swadley, W.C.; Richmond, Gerald M.; Goldthwait, Richard P.; Fullerton, David S.; Sevon, William D.; Miller, Robert A.; Bush, Charles A.; Richmond, Gerald M.; Fullerton, David S.; Christiansen, Ann Coe

    1991-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1986. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Blue Ridge 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the "ground" on which we walk, the "dirt" in which we dig foundations, and the "soil" in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  1. Quaternary geologic map of the Hatteras 4° x 6° quadrangle, United States

    USGS Publications Warehouse

    State compilations by Johnson, Gerald H.; Richmond, Gerald Martin; edited and integrated by Richmond, G. M.; Fullerton, D.S.; Weide, D.L.; Bush, Charles A.

    1986-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1986. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Hatteras 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the "ground" on which we walk, the "dirt" in which we dig foundations, and the "soil" in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  2. Reported historic asbestos mines, historic asbestos prospects, and other natural occurrences of asbestos in California

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Clinkenbeard, John P.

    2011-01-01

    The map (Plate.pdf), pamphlet (Pamphlet.pdf), and the accompanying datasets in this report provide information for 290 sites in California where asbestos occurs in natural settings, using descriptions found in the geologic literature. Data on location, mineralogy, geology, and relevant literature for each asbestos site are provided. Using the map and digital data in this report, the user can examine the distribution of previously reported asbestos and their geological characteristics in California. This report is part of an ongoing study by the U.S. Geological Survey to identify and map sites where asbestos mineralization occurs in the United States, which includes similar maps and datasets of natural asbestos localities within the Eastern United States (http://pubs.usgs.gov/of/2005/1189/), the Central United States (http://pubs.usgs.gov/of/2006/1211/), the Rocky Mountain States (http://pubs.usgs.gov/of/2007/1182/), the Southwestern United States (http://pubs.usgs.gov/of/2008/1095/), and the Northwestern United States (Oregon and Washington) (http://pubs.usgs.gov/of/2010/1041/). These reports are intended to provide State and local government agencies and other stakeholders with geologic information on reported asbestos mineralization in the United States.

  3. Three-dimensional geologic map of the Hayward fault, northern California: Correlation of rock unites with variations in seismicity, creep rate, and fault dip

    USGS Publications Warehouse

    Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.

    2005-01-01

    In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.

  4. Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The Fortuna Tessera quadrangle (50-75 N, 0-60 E) is a large region of tessera [1] that includes the major portion of Fortuna and Laima Tesserae [2]. Near the western edge of the map area, Fortuna Tessera is in contact with the highest moun-tain belt on Venus, Maxwell Montes. Deformational belts of Sigrun-Manto Fossae (extensional structures) and Au ra Dorsa (contractional structures) separate the tessera regions. Highly deformed terrains correspond to elevated regions and mildly deformed units are with low-lying areas. The sets of features within the V-2 quadrangle permit us to address the following important questions: (1) the timing and processes of crustal thickening/thinning, (2) the nature and origin of tesserae and deformation belts and their relation to crustal thickening processes, (3) the existence or absence of major evolutionary trends of volcanism and tectonics. The key feature in all of these problems is the regional sequence of events. Here we present description of units that occur in the V-2 quadrangle, their regional correlation chart (Fig. 1), and preliminary geological map of the region (Fig. 2).

  5. Creating Geologically Based Radon Potential Maps for Kentucky

    NASA Astrophysics Data System (ADS)

    Overfield, B.; Hahn, E.; Wiggins, A.; Andrews, W. M., Jr.

    2017-12-01

    Radon potential in the United States, Kentucky in particular, has historically been communicated using a single hazard level for each county; however, physical phenomena are not controlled by administrative boundaries, so single-value county maps do not reflect the significant variations in radon potential in each county. A more accurate approach uses bedrock geology as a predictive tool. A team of nurses, health educators, statisticians, and geologists partnered to create 120 county maps showing spatial variations in radon potential by intersecting residential radon test kit results (N = 60,000) with a statewide 1:24,000-scale bedrock geology coverage to determine statistically valid radon-potential estimates for each geologic unit. Maps using geology as a predictive tool for radon potential are inherently more detailed than single-value county maps. This mapping project revealed that areas in central and south-central Kentucky with the highest radon potential are underlain by shales and karstic limestones.

  6. Radon potential, geologic formations, and lung cancer risk

    PubMed Central

    Hahn, Ellen J.; Gokun, Yevgeniya; Andrews, William M.; Overfield, Bethany L.; Robertson, Heather; Wiggins, Amanda; Rayens, Mary Kay

    2015-01-01

    Objective Exposure to radon is associated with approximately 10% of U.S. lung cancer cases. Geologic rock units have varying concentrations of uranium, producing fluctuating amounts of radon. This exploratory study examined the spatial and statistical associations between radon values and geological formations to illustrate potential population-level lung cancer risk from radon exposure. Method This was a secondary data analysis of observed radon values collected in 1987 from homes (N = 309) in Kentucky and geologic rock formation data from the Kentucky Geological Survey. Radon value locations were plotted on digital geologic maps using ArcGIS and linked to specific geologic map units. Each map unit represented a package of different types of rock (e.g., limestone and/or shale). Log-transformed radon values and geologic formation categories were compared using one-way analysis of variance. Results Observed radon levels varied significantly by geologic formation category. Of the 14 geologic formation categories in north central Kentucky, four were associated with median radon levels, ranging from 8.10 to 2.75 pCi/L. Conclusion Radon potential maps that account for geologic factors and observed radon values may be superior to using observed radon values only. Knowing radon-prone areas could help target population-based lung cancer prevention interventions given the inequities that exist related to radon. PMID:26844090

  7. Surficial geologic map of the Gates of the Arctic National Park and Preserve, Alaska

    USGS Publications Warehouse

    Hamilton, Thomas D.; Labay, Keith A.

    2011-01-01

    The surfical geologic map incorporates parts of ten surficial geologic maps previously published at 1:250,000 scale. In addition, a small part of the buffer zone mapped in the southwest corner of the map area was compiled from unpublished surficial geologic mapping of the Shungnak 1:250,000-scale quadrangle. Each of those individual maps was developed from (1) aerial and surface observations of morphology and composition of unconsolidated deposits, (2) tracing the distribution and interrelation of terraces, abandoned meltwater channels, moraines, abandoned lake beds, and other landforms, (3) stratigraphic study of exposures along lake shores and river bluffs, (4) examination of sediments and soil profiles in auger borings and test pits, and exposed in roadcuts and placer workings, and (5) analysis of previously published geologic maps and reports. The map units used for those maps and employed in the present compilation are defined on the basis of their physical character, genesis, and age. Relative and absolute ages of the map units were determined from their geographic locations and from their stratigraphic positions and radiocarbon ages.

  8. Creating Geoscience Leaders

    NASA Astrophysics Data System (ADS)

    Buskop, J.; Buskop, W.

    2013-12-01

    The United Nations Educational, Scientific, and Cultural Organization recognizes 21 World Heritage in the United States, ten of which have astounding geological features: Wrangell St. Elias National Park, Olympic National Park, Mesa Verde National Park, Chaco Canyon, Glacier National Park, Carlsbad National Park, Mammoth Cave, Great Smokey Mountains National Park, Hawaii Volcanoes National Park, and Everglades National Park. Created by a student frustrated with fellow students addicted to smart phones with an extreme lack of interest in the geosciences, one student visited each World Heritage site in the United States and created one e-book chapter per park. Each chapter was created with original photographs, and a geological discovery hunt to encourage teen involvement in preserving remarkable geological sites. Each chapter describes at least one way young adults can get involved with the geosciences, such a cave geology, glaciology, hydrology, and volcanology. The e-book describes one park per chapter, each chapter providing a geological discovery hunt, information on how to get involved with conservation of the parks, geological maps of the parks, parallels between archaeological and geological sites, and how to talk to a ranger. The young author is approaching UNESCO to publish the work as a free e-book to encourage involvement in UNESCO sites and to prove that the geosciences are fun.

  9. Preliminary digital geologic maps of the Mariposa, Kingman, Trona, and Death Valley Sheets, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1995-10-01

    Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35{degree}N; Long. 115{degree}W and lat. 38{degree}N, long. 118{degree}W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. Themore » procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute`s ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado.« less

  10. Mapping variation in radon potential both between and within geological units.

    PubMed

    Miles, J C H; Appleton, J D

    2005-09-01

    Previously, the potential for high radon levels in UK houses has been mapped either on the basis of grouping the results of radon measurements in houses by grid squares or by geological units. In both cases, lognormal modelling of the distribution of radon concentrations was applied to allow the estimated proportion of houses above the UK radon Action Level (AL, 200 Bq m(-3)) to be mapped. This paper describes a method of combining the grid square and geological mapping methods to give more accurate maps than either method can provide separately. The land area is first divided up using a combination of bedrock and superficial geological characteristics derived from digital geological map data. Each different combination of geological characteristics may appear at the land surface in many discontinuous locations across the country. HPA has a database of over 430,000 houses in which long-term measurements of radon concentration have been made, and whose locations are accurately known. Each of these measurements is allocated to the appropriate bedrock--superficial geological combination underlying it. Taking each geological combination in turn, the spatial variation of radon potential is mapped, treating the combination as if it were continuous over the land area. All of the maps of radon potential within different geological combinations are then combined to produce a map of variation in radon potential over the whole land surface.

  11. Geologic map of the southern White Ledge Peak and Matilija quadrangles, Santa Barbara and Ventura Counties, California

    USGS Publications Warehouse

    Minor, Scott A.; Brandt, Theodore R.

    2015-01-01

    A principal aim of the new mapping and associated fault-kinematic measurements is to document and constrain the nature of transpressional strain transfer between various regional, potentially seismogenic faults. In the accompanying pamphlet, surficial and bedrock map units are described in detail as well as a summary of the structural and fault-kinematic framework of the map area. New biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault kinematic observations are embedded in the digital map database. This compilation provides a uniform geologic digital geodatabase and map plot files that can be used for visualization, analysis, and interpretation of the area’s geology, geologic hazards, and natural resources.

  12. Digital Data for the reconnaissance geologic map for the Kuskokwim Bay Region of Southwest Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mohadjer, Solmaz; Coonrad, Warren L.; Shew, Nora B.; Labay, Keith A.

    2008-01-01

    INTRODUCTION The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  13. Geologic setting of the low-level burial grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, K.A.; Jaeger, G.K.; Slate, J.L.

    1994-10-13

    This report describes the regional and site specific geology of the Hanford Sites low-level burial grounds in the 200 East and West Areas. The report incorporates data from boreholes across the entire 200 Areas, integrating the geology of this area into a single framework. Geologic cross-sections, isopach maps, and structure contour maps of all major geological units from the top of the Columbia River Basalt Group to the surface are included. The physical properties and characteristics of the major suprabasalt sedimentary units also are discussed.

  14. Quaternary geologic map of the Glasgow 1° x 2° quadrangle, Montana

    USGS Publications Warehouse

    Fullerton, David S.; Colton, Roger B.; Bush, Charles A.

    2012-01-01

    The Glasgow quadrangle encompasses approximately 16,084 km2 (6,210 mi2). The northern boundary is the Montana/Saskatchewan (U.S./Canada) boundary. The quadrangle is in the Northern Plains physiographic province and it includes the Boundary Plateau, Peerless Plateau, and Larb Hills. The primary river is the Milk River. The map units are surficial deposits and materials, not landforms. Deposits that comprise some constructional landforms (for example, ground-moraine deposits, end-moraine deposits, and stagnation-moraine deposits, all composed of till) are distinguished for purposes of reconstruction of glacial history. Surficial deposits and materials are assigned to 23 map units on the basis of genesis, age, lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized in pedology or agronomy. Rather, it is a generalized map of soils recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. Glaciotectonic (ice-thrust) structures and deposits are mapped separately, represented by a symbol. The surficial deposits are glacial, ice-contact, glaciofluvial, alluvial, lacustrine, eolian, colluvial, and mass-movement deposits. Residuum, a surficial material, also is mapped. Till of late Wisconsin age is represented by three map units. Till of Illinoian age is also represented locally but is widespread in the subsurface. This map was prepared to serve as a database for compilation of a Quaternary geologic map of the United States and Canada (scale 1:1,000,000). Letter symbols for the map units are those used for the same units in the Quaternary Geologic Atlas of the United States map series.

  15. DIGITAL GEOLOGIC MAP OF SHERMAN QUADRANGLE, NORTH CENTRAL TEXAS (CD-ROM)

    EPA Science Inventory

    This compact disc contains digital data sets of the surficial geology and geologic faults for the 1:250,000-scale Sherman quadrangle, North Central Texas, and can be used to make geologic maps, and determine approximate areas and locations of various geologic units. The source d...

  16. Geologic map and map database of parts of Marin, San Francisco, Alameda, Contra Costa, and Sonoma counties, California

    USGS Publications Warehouse

    Blake, M.C.; Jones, D.L.; Graymer, R.W.; digital database by Soule, Adam

    2000-01-01

    This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (mageo.txt, mageo.pdf, or mageo.ps), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (mageo.txt, mageo.pdf, or mageo.ps), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.

  17. Hydrologic unit maps

    USGS Publications Warehouse

    Seaber, Paul R.; Kapinos, F. Paul; Knapp, George L.

    1987-01-01

    A set of maps depicting approved boundaries of, and numerical codes for, river-basin units of the United States has been developed by the U.S . Geological Survey. These 'Hydrologic Unit Maps' are four-color maps that present information on drainage, culture, hydrography, and hydrologic boundaries and codes of (1) the 21 major water-resources regions and the 222 subregions designated by the U.S . Water Resources Council, (2) the 352 accounting units of the U.S. Geological Survey's National Water Data Network, and (3) the 2,149 cataloging units of the U.S . Geological Survey's 'Catalog of information on Water Data:' The maps are plotted on the Geological Survey State base-map series at a scale of 1 :500,000 and, except for Alaska, depict hydrologic unit boundaries for all drainage basins greater than 700 square miles (1,813 square kilometers). A complete list of all the hydrologic units, along with their drainage areas, their names, and the names of the States or outlying areas in which they reside, is contained in the report. These maps and associated codes provide a standardized base for use by water-resources organizations in locating, storing, retrieving, and exchanging hydrologic data, in indexing and inventorying hydrologic data and information, in cataloging water-data acquisition activities, and in a variety of other applications. Because the maps have undergone extensive review by all principal Federal, regional, and State water-resource agencies, they are widely accepted for use in planning and describing water-use and related land-use activities, and in geographically organizing hydrologic data . Examples of these uses are given in the report . The hydrologic unit codes shown on the maps have been approved as a Federal Information Processing Standard for use by the Federal establishment.

  18. Digital database of the geologic map of the island of Hawai'i [Hawaii

    USGS Publications Warehouse

    Trusdell, Frank A.; Wolfe, Edward W.; Morris, Jean

    2006-01-01

    This online publication (DS 144) provides the digital database for the printed map by Edward W. Wolfe and Jean Morris (I-2524-A; 1996). This digital database contains all the information used to publish U.S. Geological Survey Geologic Investigations Series I-2524-A (available only in paper form; see http://pubs.er.usgs.gov/pubs/i/i2524A). The database contains the distribution and relationships of volcanic and surficial-sedimentary deposits on the island of Hawai‘i. This dataset represents the geologic history for the five volcanoes that comprise the Island of Hawai'i. The volcanoes are Kohala, Mauna Kea, Hualalai, Mauna Loa and Kīlauea.This database of the geologic map contributes to understanding the geologic history of the Island of Hawai‘i and provides the basis for understanding long-term volcanic processes in an intra-plate ocean island volcanic system. In addition the database also serves as a basis for producing volcanic hazards assessment for the island of Hawai‘i. Furthermore it serves as a base layer to be used for interdisciplinary research.This online publication consists of a digital database of the geologic map, an explanatory pamphlet, description of map units, correlation of map units diagram, and images for plotting. Geologic mapping was compiled at a scale of 1:100,000 for the entire mapping area. The geologic mapping was compiled as a digital geologic database in ArcInfo GIS format.

  19. USGS EDMAP Program-Training the Next Generation of Geologic Mappers

    USGS Publications Warehouse

    ,

    2010-01-01

    EDMAP is an interactive and meaningful program for university students to gain experience and knowledge in geologic mapping while contributing to national efforts to map the geology of the United States. It is a matching-funds grant program with universities and is one of the three components of the congressionally mandated U.S. Geological Survey (USGS) National Cooperative Geologic Mapping Program. Geology professors whose specialty is geologic mapping request EDMAP funding to support upper-level undergraduate and graduate students at their colleges or universities in a 1-year mentor-guided geologic mapping project that focuses on a specific geographic area. Every Federal dollar that is awarded is matched with university funds.

  20. Digital Data for the reconnaissance geologic map for Prince William Sound and the Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Labay, Keith A.; Shew, Nora B.

    2007-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  1. Geologic Map of the San Luis Quadrangle, Costilla County, Colorado

    USGS Publications Warehouse

    Machette, Michael N.; Thompson, Ren A.; Drenth, Benjamin J.

    2008-01-01

    The map area includes San Luis and the primarily rural surrounding area. San Luis, the county seat of Costilla County, is the oldest surviving settlement in Colorado (1851). West of the town are San Pedro and San Luis mesas (basalt-covered tablelands), which are horsts with the San Luis fault zone to the east and the southern Sangre de Cristo fault zone to the west. The map also includes the Sanchez graben (part of the larger Culebra graben), a deep structural basin that lies between the San Luis fault zone (on the west) and the central Sangre de Cristo fault zone (on the east). The oldest rocks exposed in the map area are the Pliocene to upper Oligocene basin-fill sediments of the Santa Fe Group, and Pliocene Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) forms extensive coalesced alluvial fan and piedmont surfaces, the largest of which is known as the Costilla Plain. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. Machette and Thompson based this geologic map entirely on new mapping, whereas Drenth supplied geophysical data and interpretations.

  2. Geology and mineral resource assessment of the Venezuelan Guayana Shield at 1:500,000 scale; a digital representation of maps published by the U.S. Geological Survey

    USGS Publications Warehouse

    Schruben, Paul G.; Wynn, J.C.; Gray, Floyd; Cox, D.P.; Sterwart, J.H.; Brooks, W.E.

    1997-01-01

    This CD-ROM contains vector-based digital maps of the geology and resource assessment of the Venezuela Guayana Shield originally published as paper maps in 1993 in U. S. Geological Survey Bulletin 2062, at a scale of 1:1 million and revised in 1993-95 as separate maps at a scale of 1:500,000. Although the maps on this disc can be displayed at different scales, they are not intended to be used at any scale more detailed than 1:500,000.

  3. Analysis of the Geologic Structure and Compilation of the Geologic Map of the Northern Part of Planet Venus

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Burba, G. A.; Ivanov, M. A.; Bobina, N. N.; Shashkina, V. P.; Head, J. W.

    Based on an analysis of the images of the Venusian surface obtained by the side-looking radar of the Magellan orbiter, a geologic map of the northern part of Venus (the region extending to the north of the 35°N latitude) at 1 : 10 000 000 scale is compiled. The map of this vast territory, comprising one-fifth of the planet surface, was compiled using only 12 geologic units, which implies a uniform character of terrains and land- forms on the investigated territory and, therefore, the uniformity of geologic processes that occurred on this planet. These units are the products of four main groups of geologic processes that occurred on Venus during the last 0.51 Myr: (1) basaltic volcanism; (2) tectonic compression and tensile deformation; (3) impact crater- ing; and (4) wind-related mobilization, transportation, and deposition of loose fine-grained materials. Basaltic volcanism is the main process that supplies new material on the surface of Venus. Tectonic deformation struc- tures, superposed on the material of different geologic units, determined the morphology of the units and formed the surfaces of unconformity between neighboring units. Ten of 12 geologic units form an age sequence that is virtually identical over the entire mapped territory of the planet. The possible incon- sistency of this sequence caused by anomalous relations existing between smooth plains (Ps) in the southeastern part of Lakshmi Planum and wrinkle ridged plains (Pwr) in the northern part of Sedna Planitia does not destroy this sequence as a whole. The results of our mapping support the model of global stratigraphy of Venus proposed by Basilevsky and Head (19951998) and provide evidence of the quasi-synchronous character of single-type geologic units on different areas of Venus rather than of the absence of synchronism. An analysis of the distribution of impact craters on different geologic units has shown the proximity of mean absolute ages of the material of the surface of Pwr plains, of the entire studied territory, and of the entire Venusian surface. The results of our analysis suggest that, within the area under study, the intensity of the leading geologic processes at the beginning of the studied segment of the geologic history was relatively high but decreased dramatically later.

  4. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Discussion of the nature, origin and role of the intercrater plains of Mercury and the Moon. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The nature and origin of the intercrater plains of Mercury and the Moon as determined through geologic mapping, crater statistics, and remotely sensed data are summarized. Implications of these results regarding scarp formation, absolute ages, and terrestrial planet surfaces are included. The role of the intercrater plains is defined and future work which might lead to a better understanding of these units and terrestrial planet evolution is outlined.

  5. Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    USGS Publications Warehouse

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2009-01-01

    The bedrock geology of the Old Lyme quadrangle consists of Neoproterozoic and Permian gneisses and granites of the Gander and Avalon terranes, Silurian metasedimentary rocks of the Merrimack terrane, and Silurian to Devonian metasedimentary rocks of uncertain origin. The Avalon terrane rocks crop out within the Selden Neck block, and the Gander terrane rocks crop out within the Lyme dome. The Silurian to Devonian rocks crop out between these two massifs. Previous mapping in the Old Lyme quadrangle includes the work by Lawrence Lundgren, Jr. Lundgren's work provides an excellent resource for rock descriptions and detailed modal analyses of rock units that will not be duplicated in this current report. New research that was not covered in detail by Lundgren is the focus of this report and includes (1) evaluation of the rocks in the core of the Lyme dome in an effort to subdivide units in this area; (2) structural analysis of foliations and folds in and around the Lyme dome; (3) geochronology of selected units within the Lyme dome; and (4) analysis of joints and the fracture properties of the rocks.

  6. The stratigraphy of Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.

    1986-01-01

    A global stratigraphy of Mars was developed from a global geologic map series derived from Viking images; the stratigraphy is composed of three maps. A new chronostratigraphic classification system which consists of lower, middle, and upper Noachian, Hesperian, and Amazonian systems is described. The crater-density boundaries of the chronostratigraphic units and the absolute ages of the Martian epochs aer estimated. The relative ages of major geologic units and featues are calculated and analyzed. The geologic history of Mars is summarized on the maps in terms of epochs.

  7. Semantics-informed cartography: the case of Piemonte Geological Map

    NASA Astrophysics Data System (ADS)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico

    2016-04-01

    In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially correlated through the whole region and described using the GeoSciML vocabularies. A hierarchical schema is provided for the Piemonte Geological Map that gives the parental relations between several orders of GeologicUnits referring to mostly recurring geological objects and main GeologicEvents, in a logical framework compliant with GeoSciML and INSPIRE data models. The classification criteria and the Hierarchy Schema used to define the GEOPiemonteMap Legend, as well as the intended meanings of the geological concepts used to achieve the overall classification schema, are explicitly described in several WikiGeo pages (implemented by "MediaWiki" open source software, https://www.mediawiki.org/wiki/MediaWiki). Moreover, a further step toward a formal classification of the contents (both data and interpretation) of the GEOPiemonteMap was triggered, by setting up an ontological framework, named "OntoGeonous", in order to achieve a thorough semantic characterization of the Map.

  8. Database for the geologic map of the Chelan 30-minute by 60-minute quadrangle, Washington (I-1661)

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A.; Whetten, J.T.; Waitt, R.B.; Swanson, D.A.; Byerly, G.R.; Booth, D.B.; Hetherington, M.J.; Zartman, R.E.

    2006-01-01

    This digital map database has been prepared by R. W. Tabor from the published Geologic map of the Chelan 30-Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  9. Database for the geologic map of the Snoqualmie Pass 30-minute by 60-minute quadrangle, Washington (I-2538)

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A.; Booth, D.B.; Waitt, R.B.

    2006-01-01

    This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Snoqualmie Pass 30' X 60' Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  10. Geologic Map of the Wenatchee 1:100,000 Quadrangle, Central Washington: A Digital Database

    USGS Publications Warehouse

    Tabor, R.W.; Waitt, R.B.; Frizzell, V.A.; Swanson, D.A.; Byerly, G.R.; Bentley, R.D.

    2005-01-01

    This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Wenatchee 1:100,000 Quadrangle, Central Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  11. Environmental geology of the Wilcox Group Lignite Belt, east Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, C.D.; Basciano, J.M.

    This report provides a data base for decisions about lignite mining and reclamation in the Wilcox Group of East Texas. A set of environmental geologic maps, which accompanies this report, depicts the character of the land that will be affected by mining. The environmental geologic maps of the East Texas lignite belt provide an accurate inventory of land resources. The maps identify areas where mining is most likely to occur, areas of critical natural resources that could be affected by mining, such as aquifer recharge areas, and areas of natural hazards, such as floodplains. Principal areas of both active andmore » planned surface mining are also located. The seven environmental geologic maps cover the outcrop area of the Wilcox Group, the major lignite host, and adjacent geologic units from Bastrop County to Texarkana. This report begins with a discussion of various physical aspects of the lignite belt, including geology, hydrology, soils, climate, and land use, to aid in understanding the maps. The criteria and methodology used to delineate the environmental geologic units are discussed. Varied applications of the environmental geologic maps are considered. 23 references, 9 figures, 3 tables.« less

  12. Digital data for the geology of the Southern Brooks Range, Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Harris, Anita G.; Moore, Thomas E.; Bleick, Heather A.; Siwiec, Benjamin; Labay, Keith A.; Wilson, Frederic H.; Shew, Nora B.

    2008-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  13. Reconnaissance Geologic Map of the Duncan Canal-Zarembo Island Area, Southeastern Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Haeussler, Peter J.; McCafferty, Anne E.

    1999-01-01

    The geologic map of the Duncan Canal-Zarembo Island area is the result of a multidisciplinary investigation of an area where an airborne geophysical survey was flown in the spring of 1997. The area was chosen for the geophysical survey because of its high mineral potential, a conclusion of the Petersburg Mineral Resource Assessment Project, conducted by the U.S. Geological Survey from 1978 to 1982. The City of Wrangell, in southeastern Alaska, the Bureau of Land Management, and the State of Alaska provided funding for the airborne geophysical survey. The geophysical data from the airborne survey were released in September 1997. The U.S. Geological Survey conducted field investigations in the spring and fall of 1998 to identify and understand the sources of the geophysical anomalies from the airborne survey. This geologic map updates the geologic maps of the same area published by David A. Brew at 1:63,360 (Brew, 1997a-m; Brew and Koch, 1997). This update is based on 3 weeks of field work, new fossil collections, and the geophysical maps released by the State of Alaska ( DGGS, Staff, and others, 1997a-o). Geologic data from outcrops, fossil ages, radiometric ages, and geochemical signatures were used to identify lithostratigraphic units. Where exposure is poor, geophysical characteristics were used to help control the boundaries of these units. No unit boundaries were drawn based on geophysics alone. The 7200 Hertz resistivity maps (DGGS, Staff, and others, 1997k-o) were particularly helpful for controlling unit boundaries, because different stratigraphic units have distinctive characteristic conductive signatures (Karl and others, 1998). Increased knowledge of unit ages, unit structure, and unit distribution, led to improved understanding of the nature of unit contacts. Northwest- to southwest-directed thrust faults, particularly on Kupreanof Island, are new discovery. Truncated faults and map patterns suggest there were at least 2 generations of thrusting, and that the thrust faults have been folded. Subsequent right-lateral strike-slip NW-SE faults, have offset thrust faults, and these in turn are offset by N-S right-lateral strike-slip faults. Our fieldwork raised as many questions as it answered, and we see this map as a progress report at a reconnaissance level. The main contributions of this map are 1) the greater distribution of Triassic rocks, 2) increased fossil age information, and 3) the identification of thrust faults within and between units.

  14. Geologic map and structure sections of the Clear Lake Volcanics, Northern California

    USGS Publications Warehouse

    Hearn, B.C.; Donnelly-Nolan, J. M.; Goff, F.E.

    1995-01-01

    The Clear Lake Volcanics are located in the California Coast Ranges about 150 km north of San Francisco. This Quaternary volcanic field has erupted intermittently since 2.1 million years ago. This volcanic field is considered a high-threat volcanic system (Ewert and others, 2005) The adjacent Geysers geothermal field, largest power-producing geothermal field in the world, is powered by the magmatic heat source for the volcanic field. This report consists of three sheets that include the geologic map, one table, two figures, three cross sections, description of map units, charts of standard and diagrammatic correlation of map units, and references. This map supersedes U.S. Geological Survey Open-File Report 76-751. Descriptions of map units are grouped by geographic area. Summaries of the evolution, chemistry, structure, and tectonic setting of the Clear Lake Volcanics are given in Hearn and others (1981) and Donnelly-Nolan and others (1981). The geology of parts of the area underlain by the Cache Formation is based on mapping by Rymer (1981); the geology of parts of the areas underlain by the Sonoma Volcanics, Franciscan assemblage, and Great Valley sequence is based on mapping by McLaughlin (1978). Volcanic compositional map units are basalt, basaltic andesite, andesite, dacite, rhyodacite, and rhyolite, based on SiO2 content. Included in this report are maps showing the distribution of volcanic rocks through time and a chart showing erupted volumes of different lava types through time. A table gives petrographic data for each map unit by mineral type, abundance, and size. Most ages are potassium-argon (K/Ar) ages determined for whole-rock samples and mineral separates by Donnelly-Nolan and others (1981), unless otherwise noted. A few ages are carbon-14 ages or were estimated from geologic relationships. Magnetic polarities are from Mankinen and others (1978; 1981) or were determined in the field by B.C. Hearn, Jr., using a portable fluxgate magnetometer. Thickness for most units is estimated from topographic relief except where drill-hole data were available.

  15. Geologic map of outcrop areas of sedimentary units in the eastern part of the Hailey 1 degree x 2 degrees quadrangle and part of the southern part of the Challis 1 degree x 2 degrees quadrangle, south-central Idaho

    USGS Publications Warehouse

    Link, P.K.; Mahoney, J.B.; Bruner, D.J.; Batatian, L.D.; Wilson, Eric; Williams, F.J.C.

    1995-01-01

    The paper version of the Geologic map of outcrop areas of sedimentary units in the eastern part of the Hailey 1x2 Quadrangle and part of the southern part of the Challis 1x2 Quadrangle, south-central Idaho was compiled by Paul Link and others in 1995. The plate was compiled on a 1:100,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a GIS database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  16. Quaternary Geologic Map of the Des Moines 4 Degrees x 6 Degrees Quadrangle, United States

    USGS Publications Warehouse

    Hallberg, George R.; Lineback, Jerry A.; Mickelson, David M.; Knox, James C.; Goebel, Joseph E.; Hobbs, Howard C.; Whitfield, John W.; Ward, Ronald A.; Boellstorff, John D.; Swinehart, James B.; Dreeszen, Vincent H.; edited and integrated by Richmond, Gerald Martin; Fullerton, David S.; Christiansen, Ann Coe

    1994-01-01

    The Quaternary Geologic Map of the Des Moines 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1994. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files.

  17. Quaternary Geologic Map of the Platte River 4 Degrees x 6 Degrees Quadrangle, United States

    USGS Publications Warehouse

    Swinehart, James B.; Dreeszen, Vincent H.; Richmond, Gerald Martin; Tipton, Merlin J.; Bretz, Richard F.; Steece, Fred V.; Hallberg, George R.; Goebel, Joseph E.; edited and integrated by Richmond, Gerald Martin

    1994-01-01

    The Quaternary Geologic Map of the Platte River 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1994. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files.

  18. Geologic Interpretation of Data Sets Collected by Planetary Analog Geology Traverses and by Standard Geologic Field Mapping. Part 1; A Comparison Study

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara

    2013-01-01

    Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively smaller gains in geologic knowledge.

  19. Geologic map of the Kechumstuk fault zone in the Mount Veta area, Fortymile mining district, east-central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O’Neill, J. Michael; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Siron, Christopher R.

    2014-01-01

    This map was developed by the U.S. Geological Survey Mineral Resources Program to depict the fundamental geologic features for the western part of the Fortymile mining district of east-central Alaska, and to delineate the location of known bedrock mineral prospects and their relationship to rock types and structural features. This geospatial map database presents a 1:63,360-scale geologic map for the Kechumstuk fault zone and surrounding area, which lies 55 km northwest of Chicken, Alaska. The Kechumstuk fault zone is a northeast-trending zone of faults that transects the crystalline basement rocks of the Yukon-Tanana Upland of the western part of the Fortymile mining district. The crystalline basement rocks include Paleozoic metasedimentary and metaigneous rocks as well as granitoid intrusions of Triassic, Jurassic, and Cretaceous age. The geologic units represented by polygons in this dataset are based on new geologic mapping and geochronological data coupled with an interpretation of regional and new geophysical data collected by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys. The geochronological data are reported in the accompanying geologic map text and represent new U-Pb dates on zircons collected from the igneous and metaigneous units within the map area.

  20. Geologic Map Database of Texas

    USGS Publications Warehouse

    Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.

    2005-01-01

    The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.

  1. New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir

    USGS Publications Warehouse

    Wells, Ray E.; Haugerud, Ralph A.; Niem, Alan; Niem, Wendy; Ma, Lina; Madin, Ian; Evarts, Russell C.

    2018-04-10

    A geologic map of the greater Portland, Oregon, metropolitan area is planned that will document the region’s complex geology (currently in review: “Geologic map of the greater Portland metropolitan area and surrounding region, Oregon and Washington,” by Wells, R.E., Haugerud, R.A., Niem, A., Niem, W., Ma, L., Evarts, R., Madin, I., and others). The map, which is planned to be published as a U.S. Geological Survey Scientific Investigations Map, will consist of 51 7.5′ quadrangles covering more than 2,500 square miles, and it will represent more than 100 person-years of geologic mapping and studies. The region was mapped at the relatively detailed scale of 1:24,000 to improve understanding of its geology and its earthquake hazards. More than 100 geologic map units will record the 50-million-year history of volcanism, sedimentation, folding, and faulting above the Cascadia Subduction Zone. The geology contributes to the varied terroir of four American Viticultural Areas (AVAs) in the northwestern Willamette Valley: the Yamhill-Carlton, Dundee Hills, Chehalem Mountains, and Ribbon Ridge AVAs. Terroir is defined as the environmental conditions, especially climate and soils, that influence the quality and character of a region’s crops—in this case, grapes for wine.On this new poster (“New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir”), we present the geologic map at a reduced scale (about 1:175,000) to show the general distribution of geologic map units, and we highlight, discuss, and illustrate six major geologic events that helped shape the region and form its terrior. We also discuss the geologic elements that contribute to the character of each of the four AVAs in the northwestern Willamette Valley.

  2. Geologic map of the Lada Terra quadrangle (V-56), Venus

    USGS Publications Warehouse

    Kumar, P. Senthil; Head, James W.

    2013-01-01

    This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.

  3. Sudbury project (University of Muenster-Ontario Geological Survey): Summary of results - an updated impact model

    NASA Technical Reports Server (NTRS)

    Avermann, M.; Bischoff, L.; Brockmeyer, P.; Buhl, D.; Deutsch, A.; Dressler, B. O.; Lakomy, R.; Mueller-Mohr, V.; Stoeffler, D.

    1992-01-01

    In 1984 the Ontario Geological Survey initiated a research project on the Sudbury structure (SS) in cooperation with the University of Muenster. The project included field mapping (1984-1989) and petrographic, chemical, and isotope analyses of the major stratigraphic units of the SS. Four diploma theses and four doctoral theses were performed during the project (1984-1992). Specific results of the various investigations are reported. Selected areas of the SS were mapped and sampled: Footwall rocks; Footwall breccia and parts of the sublayer and lower section of the Sudbury Igneous Complex (SIC); Onaping Formation and the upper section of the SIC; and Sudbury breccia and adjacent Footwall rocks along extended profiles up to 55 km from the SIC. All these stratigraphic units of the SS were studied in substantial detail by previous workers. The most important characteristic of the previous research is that it was based either on a volcanic model or on a mixed volcanic-impact model for the origin of the SS. The present project was clearly directed toward a test of the impact origin of the SS without invoking an endogenic component. In general, our results confirm the most widely accepted stratigraphic division of the SS. However, our interpretation of some of the major stratigraphic units is different from most views expressed. The stratigraphy of the SS and its new interpretation is given as a basis for discussion.

  4. Geologic Map of the Olympia Cavi Region of Mars (MTM 85200): A Summary of Tactical Approaches

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Herkenhoff, K.

    2010-01-01

    The 1:500K-scale geologic map of MTM 85200 - the Olympia Cavi region of Mars - has been submitted for peer review [1]. Physiographically, the quadrangle includes portions of Olympia Rupes, a set of sinuous scarps which elevate Planum Boreum 800 meters above Olympia Planum. The region includes the high-standing, spiral troughs of Boreales Scopuli, the rugged and deep depressions of Olympia Cavi, and the vast dune fields of Olympia Undae. Geologically, the mapped units and landforms reflect the recent history of repeated accumulation and degradation. The widespread occurrence of both weakly and strongly stratified units implicates the drape-like accumulation of ice, dust, and sand through climatic variations. Similarly, the occurrence of layer truncations, particularly at unit boundaries, implicates punctuated periods of both localized and regional erosion and surface deflation whereby underlying units were exhumed and their material transported and re-deposited. Herein, we focus on the iterative mapping approaches that allowed not only the accommodation of the burgeoning variety and volume of data sets, but also facilitated the efficient presentation of map information. Unit characteristics and their geologic history are detailed in past abstracts [2-3].

  5. Geology of Point Reyes National Seashore and vicinity, California: a digital database

    USGS Publications Warehouse

    Clark, Jospeh C.; Brabb, Earl E.

    1997-01-01

    This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, a PostScript plot file containing an image of the geologic map sheet with explanation, as well as the accompanying text describing the geology of the area. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled 'For Those Who Aren't Familiar With Digital Geologic Map Databases' below. This digital map database, compiled from previously published and unpublished data and new mapping by the authors, represents the general distribution of surficial deposits and rock units in Point Reyes and surrounding areas. Together with the accompanying text file (pr-geo.txt or pr-geo.ps), it provides current information on the stratigraphy and structural geology of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:48,000 or smaller.

  6. Preliminary Geologic Map of the Sanchez Reservoir Quadrangle and Eastern Part of the Garcia Quadrangle, Costilla County, Colorado

    USGS Publications Warehouse

    Thompson, Ren A.; Machette, Michael N.; Drenth, Benjamin J.

    2007-01-01

    This geologic map is based entirely on new mapping by Thompson and Machette, whereas the geophysical data and interpretations were supplied by Drenth. The map area includes most of San Pedro Mesa, a basalt covered mesa that is uplifted as a horst between the Southern Sangre de Cristo fault zone (on the west) and the San Luis fault zone on the east. The map also includes most of the Sanchez graben, a deep structural basin that lies between the San Luis fault zone (on the west) and the Central Sangre de Cristo fault zone on the east. The oldest rocks in the map area are Proterozoic granites and Paleozoic sedimentary rocks, which are only exposed in a small hill on the west-central part of the mesa. The low hills that rise above San Pedro mesa are comprised of middle(?) Miocene volcanic rocks that are undated, but possibly correlative with mapped rocks to the east of Sanchez Reservoir. The bulk of the map area is comprised of the Servilleta Basalt, a regional series of flood basalts of Pliocene age. The west, north, and northeast margins of the mesa are covered by extensive landslide deposits that rest on poorly exposed sediment of the Santa Fe Group. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesa is covered by surficial deposits of Quaternary age. The piedmont alluvium is subdivided into three Pleistocene units, and three Holocene units. The oldest Pleistocene gravel (unit Qao) forms an extensive coalesced alluvial fan and piedmont surface that is known as the Costilla Plains. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map are are from earthquakes and landslides. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. Two generations of landslides are mapped (younger and older), and both may have seismogenic origins.

  7. Preliminary geologic map of the northeast Dillingham quadrangle (D-1, D-2, C-1, and C-2), Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hudson, Travis L.; Grybeck, Donald; Stoeser, Douglas B.; Preller, Cindi C.; Bickerstaff, Damon; Labay, Keith A.; Miller, Martha L.

    2003-01-01

    The Correlation of Map Units and Description of Map Units are in a format similar to that of the USGS Geologic Investigations Series (I-series) maps but have not been edited to comply with I-map standards. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the Stratigraphic Nomenclature of the U.S. Geological Survey. ARC/INFO symbolsets (shade and line) as used for these maps have been made available elsewhere as part of Geologic map of Central (Interior) Alaska, published as a USGS Open-File Report (Wilson and others, 1998, http://geopubs.wr.usgs.gov/open-file/of98-133-a/). This product does not include the digital topographic base or land-grid files used to produce the map, nor does it include the AML and related ancillary key and other files used to assemble the components of the map.

  8. Mars Global Geologic Mapping: Amazonian Results

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Dohm, J. M.; Irwin, R.; Kolb, E. J.; Skinner, J. A., Jr.; Hare, T. M.

    2008-01-01

    We are in the second year of a five-year effort to map the geology of Mars using mainly Mars Global Surveyor, Mars Express, and Mars Odyssey imaging and altimetry datasets. Previously, we have reported on details of project management, mapping datasets (local and regional), initial and anticipated mapping approaches, and tactics of map unit delineation and description [1-2]. For example, we have seen how the multiple types and huge quantity of image data as well as more accurate and detailed altimetry data now available allow for broader and deeper geologic perspectives, based largely on improved landform perception, characterization, and analysis. Here, we describe early mapping results, which include updating of previous northern plains mapping [3], including delineation of mainly Amazonian units and regional fault mapping, as well as other advances.

  9. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    NASA Technical Reports Server (NTRS)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  10. Geologic map of the Boulder-Fort Collins-Greeley Area, Colorado

    USGS Publications Warehouse

    Colton, Roger B.

    1978-01-01

    This digital map shows the geographic extent of rock stratigraphic units (formations) as compiled by Colton in 1976 under the Front Range Urban Corridor Geology Program. Colton used his own geologic mapping and previously published geologic maps to compile one map having a single classification of geologic units. The resulting published color paper map (USGS Map I-855-G, Colton, 1978) was intended for land-use planning and to depict the regional geology. In 1997-1999, another USGS project designed to address urban growth issues was undertaken. This project, the USGS Front Range Infrastructure Resources Project, undertook to digitize Colton's map at 1:100,000 scale, making it useable in Geographical Information Systems (GIS). That product is described here. In general, the digitized map depicts in its western part Precambrian igneous and metamorphic rocks, Pennsylvanian and younger sedimentary rock units, major faults, and brecciated zones along an eastern strip (5-20 km wide) of the Front Range. The central and eastern parts of the map (Colorado Piedmont) show a mantle of Quaternary unconsolidated deposits and interspersed outcrops of sedimentary rock of Cretaceous or Tertiary age. A surficial mantle of unconsolidated deposits of Quaternary age is differentiated and depicted as eolium (wind-blown sand and silt), alluvium (river gravel, sand, and silt of variable composition), colluvium, and a few landslide deposits. At the mountain front, north-trending, Paleozoic and Mesozoic formations of sandstone, shale, and minor limestone dip mostly eastward and form folds, fault blocks, hogbacks and intervening valleys. Local dikes and sills of Tertiary rhyodacite and basalt intrude rocks near the range front, mostly in the Boulder area.

  11. Preliminary bedrock geologic map of the Seward Peninsula, Alaska, and accompanying conodont data

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Werdon, Melanie B.; Bleick, Heather A.

    2010-01-01

    This 1:500,000-scale geologic map depicts the bedrock geology of Seward Peninsula, western Alaska, on the North American side of the Bering Strait. The map encompasses all of the Teller, Nome, Solomon, and Bendeleben 1:250,000-scale quadrangles, and parts of the Shishmaref, Kotzebue, Candle, and Norton Bay 1:250,000-scale quadrangles (sheet 1; sheet 2). The geologic map is presented on Sheet 1. The pamphlet includes an introductory text, unit descriptions, tables of geochronologic data, and an appendix containing conodont (microfossil) data and a text about those data. Sheet 2 shows metamorphic and tectonic units, conodont color alteration indices, key metamorphic minerals, and locations of geochronology samples listed in the pamphlet.

  12. Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M)

    NASA Technical Reports Server (NTRS)

    Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.

    2008-01-01

    In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.

  13. SIR-A imagery in geologic studies of the Sierra Madre Oriental, northeastern Mexico. Part 1 (Regional stratigraphy): The use of morphostratigraphic units in remote sensing mapping

    NASA Technical Reports Server (NTRS)

    Longoria, J. F.; Jimenez, O. H.

    1985-01-01

    SIR-A imaging was used in geological studies of sedimentary terrains in the Sierra Madre Oriental, northeastern Mexico. Geological features such as regional strike and dip, bedding, folding and faulting were readily detected on the image. The recognition of morphostructural units in the imagery, coupled with field verification, enabled geological mapping of the region at the scale of 1:250 000. Structural profiling lead to the elaboration of a morphostructural map allowing the recognition of an echelon folds and field trends which were used to postulate the ectonic setting of the region.

  14. Satellite image maps of Pakistan

    USGS Publications Warehouse

    ,

    1997-01-01

    Georeferenced Landsat satellite image maps of Pakistan are now being made available for purchase from the U.S. Geological Survey (USGS). The first maps to be released are a series of Multi-Spectral Scanner (MSS) color image maps compiled from Landsat scenes taken before 1979. The Pakistan image maps were originally developed by USGS as an aid for geologic and general terrain mapping in support of the Coal Resource Exploration and Development Program in Pakistan (COALREAP). COALREAP, a cooperative program between the USGS, the United States Agency for International Development, and the Geological Survey of Pakistan, was in effect from 1985 through 1994. The Pakistan MSS image maps (bands 1, 2, and 4) are available as a full-country mosaic of 72 Landsat scenes at a scale of 1:2,000,000, and in 7 regional sheets covering various portions of the entire country at a scale of 1:500,000. The scenes used to compile the maps were selected from imagery available at the Eros Data Center (EDC), Sioux Falls, S. Dak. Where possible, preference was given to cloud-free and snow-free scenes that displayed similar stages of seasonal vegetation development. The data for the MSS scenes were resampled from the original 80-meter resolution to 50-meter picture elements (pixels) and digitally transformed to a geometrically corrected Lambert conformal conic projection. The cubic convolution algorithm was used during rotation and resampling. The 50-meter pixel size allows for such data to be imaged at a scale of 1:250,000 without degradation; for cost and convenience considerations, however, the maps were printed at 1:500,000 scale. The seven regional sheets have been named according to the main province or area covered. The 50-meter data were averaged to 150-meter pixels to generate the country image on a single sheet at 1:2,000,000 scale

  15. Digital data for preliminary geologic map of the Mount Hood 30- by 60-minute quadrangle, northern Cascade Range, Oregon

    USGS Publications Warehouse

    Lina Ma,; Sherrod, David R.; Scott, William E.

    2014-01-01

    This geodatabase contains information derived from legacy mapping that was published in 1995 as U.S. Geological Survey Open-File Report 95-219. The main component of this publication is a geologic map database prepared using geographic information system (GIS) applications. Included are pdf files to view or print the map sheet, the accompanying pamphlet from Open-File Report 95-219, and links to the original publication, which is available as scanned files in pdf format.

  16. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross‐sections in Adobe Illustrator format. Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics.

  17. Global geological mapping of Ganymede

    NASA Astrophysics Data System (ADS)

    Patterson, G. Wesley; Collins, Geoffrey C.; Head, James W.; Pappalardo, Robert T.; Prockter, Louise M.; Lucchitta, Baerbel K.; Kay, Jonathan P.

    2010-06-01

    We have compiled a global geological map of Ganymede that represents the most recent understanding of the satellite based on Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. We discuss the material properties of geological units defined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS with the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. We also use crater density measurements obtained from our mapping efforts to examine age relationships amongst the various defined units. These efforts have resulted in a more complete understanding of the major geological processes operating on Ganymede, especially the roles of cryovolcanic and tectonic processes in the formation of might materials. They have also clarified the characteristics of the geological units that comprise the satellite's surface, the stratigraphic relationships of those geological units and structures, and the geological history inferred from those relationships. For instance, the characteristics and stratigraphic relationships of dark lineated material and reticulate material suggest they represent an intermediate stage between dark cratered material and light material units.

  18. Bedrock geologic map of the Seward Peninsula, Alaska, and accompanying conodont data

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Werdon, Melanie B.; Bleick, Heather A.

    2011-01-01

    This 1:500,000-scale geologic map depicts the bedrock geology of Seward Peninsula, western Alaska, on the North American side of the Bering Strait. The map encompasses all of the Teller, Nome, Solomon, and Bendeleben 1:250,000-scale quadrangles, and parts of the Shishmaref, Kotzebue, Candle, and Norton Bay 1:250,000-scale quadrangles (sh. 1; sh. 2). The geologic map is presented on Sheet 1. The pamphlet includes an introductory text, detailed unit descriptions, tables of geochronologic data, and an appendix containing conodont (microfossil) data and a text explaining those data. Sheet 2 shows metamorphic and tectonic units, conodont color alteration indices, key metamorphic minerals, and locations of geochronology samples listed in the pamphlet. The map area covers 74,000 km2, an area slightly larger than West Virginia or Ireland.

  19. Application of geologic map information to water quality issues in the southern part of the Chesapeake Bay watershed, Maryland and Virginia, eastern United States

    USGS Publications Warehouse

    McCartan, L.; Peper, J.D.; Bachman, L.J.; Horton, J. Wright

    1999-01-01

    Geologic map units contain much information about the mineralogy, chemistry, and physical attributes of the rocks mapped. This paper presents information from regional-scale geologic maps in Maryland and Virginia, which are in the southern part of the Chesapeake Bay watershed in the eastern United States. The geologic map information is discussed and analyzed in relation to water chemistry data from shallow wells and stream reaches in the area. Two environmental problems in the Chesapeake Bay watershed are used as test examples. The problems, high acidity and high nitrate concentrations in streams and rivers, tend to be mitigated by some rock and sediment types and not by others. Carbonate rocks (limestone, dolomite, and carbonate-cemented rocks) have the greatest capacity to neutralize acidic ground water and surface water in contact with them. Rocks and sediments having high carbon or sulfur contents (such as peat and black shale) potentially contribute the most toward denitrification of ground water and surface water in contact with them. Rocks and sediments that are composed mostly of quartz, feldspar, and light-colored clay (rocks such as granite and sandstone, sediments such as sand and gravel) tend not to alter the chemistry of waters that are in contact with them. The testing of relationships between regionally mapped geologic units and water chemistry is in a preliminary stage, and initial results are encouraging.Geologic map units contain much information about the mineralogy, chemistry, and physical attributes of the rocks mapped. This paper presents information from regional-scale geologic maps in Maryland and Virginia, which are in the southern part of the Chesapeake Bay watershed in the eastern United States. The geologic map information is discussed and analyzed in relation to water chemistry data from shallow wells and stream reaches in the area. Two environmental problems in the Chesapeake Bay watershed are used as test examples. The problems, high acidity and high nitrate concentrations in streams and rivers, tend to be mitigated by some rock and sediment types and not by others. Carbonate rocks (limestone, dolomite, and carbonate-cemented rocks) have the greatest capacity to neutralize acidic ground water and surface water in contact with them. Rocks and sediments having high carbon or sulfur contents (such as peat and black shale) potentially contribute the most toward denitrification of ground water and surface water in contact with them. Rocks and sediments that are composed mostly of quartz, feldspar, and light-colored clay (rocks such as granite and sandstone, sediments such as sand and gravel) tend not to alter the chemistry of waters that are in contact with them. The testing of relationships between regionally mapped geologic units and water chemistry is in a preliminary stage, and initial results are encouraging.

  20. Database for the geologic map of the Sauk River 30-minute by 60-minute quadrangle, Washington (I-2592)

    USGS Publications Warehouse

    Tabor, R.W.; Booth, D.B.; Vance, J.A.; Ford, A.B.

    2006-01-01

    This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Sauk River 30- by 60 Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled most Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  1. Geologic and topographic maps of the Kabul South 30' x 60' quadrangle, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2010-01-01

    This report consists of two map sheets, this pamphlet, and a collection of database files. Sheet 1 is the geologic map with three highly speculative cross sections, and sheet 2 is a topographic map that comprises all the support data for the geologic map. Both maps (sheets 1 and 2) are produced at 1:100,000-scale and are provided in Geospatial PDF format that preserves the georegistration and original layering. The database files include images of the topographic hillshade (shaded relief) and color-topography files used to create the topographic maps, a copy of the Landsat image, and a gray-scale basemap. Vector data from each of the layers that comprise both maps are provided in the form of Arc/INFO shapefiles. Most of the geologic interpretations and all of the topographic data were derived exclusively from images. A variety of image types were used, and each image type corresponds to a unique view of the geology. The geologic interpretations presented here are the result of comparing and contrasting between the various images and making the best uses of the strengths of each image type. A limited amount of fieldwork, in the spring of 2004 and the fall of 2006, was carried out within the quadrangle, but all the war-related dangers present in Afghanistan restricted its scope, duration, and utility. The maps that are included in this report represent works-in-progress in that they are simply intended to be the best possible product for the time available and conditions that exist during the early phases of reconstruction in Afghanistan. This report has been funded by the United States Agency for International Development (USAID) as a part of several broader programs that USAID designed to stimulate growth in the energy and mineral sectors of the Afghan economy. The main objective is to provide maps that will be used by scientists of the Afghan Ministry of Mines, the Afghanistan Geological Survey, and the Afghan Geodesy and Cartography Head Office in their efforts to rebuild the energy and mineral sectors of their economy. The U.S. Geological Survey has also produced a variety of geological, topographic, Landsat natural-color, and Landsat false-color maps covering Afghanistan at the 1:250,000 scale. These maps may be used to compliment the information presented here. For more information about USGS activities in Afghanistan, visit the USGS Projects in Afghanistan Web site at http://afghanistan.cr.usgs.gov/ For scientific questions or comments, please send inquiries to Robert G. Bohannon.

  2. Geologic and Topographic Maps of the Kabul North 30' x 60' Quadrangle, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2010-01-01

    This report consists of two map sheets, this pamphlet, and a collection of database files. Sheet 1 is the geologic map with two highly speculative cross sections, and sheet 2 is a topographic map that comprises all the support data for the geologic map. Both maps (sheets 1 and 2) are produced at 1:100,000-scale and are provided in GeoPDF format that preserves the georegistration and original layering. The database files include images of the topographic hillshade (shaded relief) and color-topography files used to create the topographic maps, a copy of the Landsat image, and a gray-scale basemap. Vector data from each of the layers that comprise both maps are provided in the form of Arc/INFO shapefiles. Most of the geologic interpretations and all of the topographic data were derived exclusively from images. A variety of image types were used, and each image type corresponds to a unique view of the geology. The geologic interpretations presented here are the result of comparing and contrasting between the various images and making the best uses of the strengths of each image type. A limited amount of fieldwork, in the spring of 2004 and the fall of 2006, was carried out within the quadrangle, but all the war-related dangers present in Afghanistan restricted its scope, duration, and utility. The maps that are included in this report represent works-in-progress in that they are simply intended to be the best possible product for the time available and conditions that exist during the early phases of reconstruction in Afghanistan. This report has been funded by the United States Agency for International Development (USAID) as a part of several broader programs that USAID designed to stimulate growth in the energy and mineral sectors of the Afghan economy. The main objective is to provide maps that will be used by scientists of the Afghan Ministry of Mines, the Afghanistan Geological Survey, and the Afghan Geodesy and Cartography Head Office in their efforts to rebuild the energy and mineral sectors of their economy. The U.S. Geological Survey has also produced a variety of geological, topographic, Landsat natural-color, and Landsat false-color maps covering Afghanistan at the 1:250,000 scale. These maps may be used to compliment the information presented here. For more information about USGS activities in Afghanistan, visit the USGS Projects in Afghanistan Web site at http://gisdata.usgs.net/Website/Afghan/ For scientific questions or comments, please send inquiries to Robert G. Bohannon.

  3. Preliminary Geologic Map of the Cook Inlet Region, Alaska-Including Parts of the Talkeetna, Talkeetna Mountains, Tyonek, Anchorage, Lake Clark, Kenai, Seward, Iliamna, Seldovia, Mount Katmai, and Afognak 1:250,000-scale Quadrangles

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Schmoll, Henry R.; Haeussler, Peter J.; Schmidt, Jeanine M.; Yehle, Lynn A.; Labay, Keith A.; Shew, Nora B.

    2009-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  4. Geologic map of the Dusar area, Herat Province, Afghanistan; Modified from the 1973 original map compilations of V.I. Tarasenko and others

    USGS Publications Warehouse

    Tucker, Robert D.; Stettner, Will R.; Masonic, Linda M.; Bogdanow, Anya K.

    2017-10-24

    The geologic maps and cross sections presented in this report are redrafted and modified versions of the Geologic map and map of useful minerals of the Dusar area (scale 1:50,000) and Geologic sketch map of the Dusar and Namak-sory ore occurrences (scale 1:10,000), located in the Herat Province, Afghanistan. The original maps and cross sections are contained in unpublished Soviet report no. 0290 (Tarasenko and others, 1973) prepared in cooperation with the Ministry of Mines and Industries of the Royal Government of Afghanistan, in Kabul during 1973 under contract no. 50728. The redrafted maps and cross sections (modified from Tarasenko and others, 1973) illustrate the geological structure and mineral occurrences of the Dusar copper-gold-silver-lead-zinc prospect area of western Afghanistan, located within the Dusar-Shaida copper and tin area of interest (AOI), Herat Province, Afghanistan.Mineralization in the Dusar area is hosted within Early Jurassic to Early Cretaceous stratified volcanic and sedimentary rocks associated with numerous diabase and gabbro-diabase intrusive bodies and is generally near a major northeast-trending system of faults and quartz veins. Host rocks consist of quartz keratophyre and quartz-feldspar porphyry, with layers of schist, phyllite, and quartz-chlorite and chlorite-sericite slate; and limestone and shale, with schist and carbonate-chlorite and chlorite slate. Known mineralization includes an extensive quartz vein system, shown on the map as the “northern occurrence,” as well as the Dusar and Namak-sory gossan zones, interpreted to have formed from remnant pyrite mineralization. The veins of the northern occurrence and their altered host rocks are known to contain anomalous to economic concentrations of precious and base metals, with concentrations locally in excess of 2 parts per million gold, 100 parts per million silver, 5 percent copper, and 1 percent lead. These veins occur in swarms, and are hosted along structures that are approximately concordant with the plane of the metamorphic fabric. The veins consist mostly of quartz, with minor carbonate and sulfide minerals, and display weak alteration halos along their margins. The gossans are locally anomalous in these metals, but their size and extent makes them attractive exploration targets for potential massive sulfide mineralization.The Dusar gossan zone is a massive, ochreous, and siliceous limonitic rock, approximately 2,200 meters long, 30 to 250 meters wide, and 2.0 to 7.2 meters thick. Drilling below the Dusar gossan intersected a siliceous, sericitic, and limonitic rock underlain by quartz keratophyre with abundant disseminated pyrite. Mineralized sections grade 0.06 weight percent copper and up to 0.05 weight percent zinc. The Namak-sory gossan zone contains a similar deposit with anomalous concentrations of copper, zinc, and gold.The redrafted maps and cross sections reproduce the topology of rock units, contacts, and faults of the original Soviet maps and cross sections, and include minor modifications based on examination of the originals and observations made during two brief field visits by USGS staff in August, 2010, and June, 2013.

  5. Michael Tuomey's 1848 geological survey of South Carolina

    USGS Publications Warehouse

    Nystrom, P.G.

    1999-01-01

    One hundred and fifty years ago, Michael Tuomey completed his 'Report on the Geology of South Carolina,' the result of four years of arduous labor. The report is the first detailed and comprehensive geological description of the entire state, and it includes a geological map that shows the distribution of Coastal Plain and Piedmont-Blue Ridge units. In the sesquicentennial of Tuomey's survey, it is fitting that we recognize his important early contribution to the geology of South Carolina and the southeast. Tuomey's report is a 293-page volume with a 48-page appendix and an index. Although he gave a complete depiction of Coastal Plain geology and delineated Cretaceous, Lower Eocene, Eocene, Miocene, Post-Pliocene, and alluvial units on his map, the emphasis herein is on his mapping of the Piedmont and Blue Ridge. The metamorphic units he delineated are clay slate, mica slate, talcose slate, hornblende slate, gneiss, and lime rock. Gneiss is the most extensive unit on the map. His map shows many elements of the geologic framework we recognize today. The distribution of his clay slate unit corresponds closely with the Carolina slate and Bel Air belts as we know them now. The gneiss between the two clay slate areas matches the Kiokee belt. Areas of mica slate approximate the northern part of the Kings Mountain belt and the Chauga belt. He also recognized that his talcose slate unit was associated with gold deposits. Granitic and basaltic intrusive rocks are also delineated on the map. It shows the Newberry, Columbia, and Liberty Hill granites we recognize today. Basaltic intrusives outlined include the Bush River of western Newberry County, Dutchmans Creek, Big Wateree Creek, and Ogden gabbros. He described the regional extent of diabase dikes as occuring from Virginia to Alabama, noted their preferred direction and diagrammed their near-vertical orientation. He also referred to the distinctive soil and topography that develops on the large gabbros. Michael Tuomey's report is truly a benchmark publication, for sixty years passed before the next statewide survey was done. Upon completing the report, he left South Carolina to become director of the Alabama Geological Survey.

  6. Quaternary Geologic Map of the Regina 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    USGS Publications Warehouse

    Fullerton, David S.; Christiansen, Earl A.; Schreiner, Bryan T.; Colton, Roger B.; Clayton, Lee; Bush, Charles A.; Fullerton, David S.

    2007-01-01

    For scientific purposes, the map differentiates Quaternary surficial deposits and materials on the basis of clast lithology or composition, matrix texture or particle size, structure, genesis, stratigraphic relations, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the 'Description of Map Units'. Deposits of some constructional landforms, such as end moraines, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, fluvial, and lacustrine deposits that are mapped may be terraced. Differentiation of sequences of fluvial and glaciofluvial deposits at this scale is not possible. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map, it serves as a base from which a variety of maps for use in planning engineering, land-use planning, or land-management projects can be derived and from which a variety of maps relating to earth surface processes and Quaternary geologic history can be derived.

  7. Geologic map of the Middletown quadrangle, Frederick, Shenandoah, and Warren Counties, Virginia

    USGS Publications Warehouse

    Orndorff, Randall C.; Epstein, Jack Burton; McDowell, Robert C.

    1999-01-01

    The Middletown 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia mapped or being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This map was originally published as a paper product in 1999. It has been converted to GIS-based digital form. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. For more information about the Project see: http://geology.er.usgs.gov/eespteam/Karst/index.html for Geologic Discipline efforts and http://va.water.usgs.gov/va134/index.htm for Water Resources Discipline efforts.

  8. Preliminary geologic map of the Mesquite Quadrangle, Clark and Lincoln Counties, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Williams, Van S.

    1996-01-01

    Original geologic data mapped by the author in 1995 and 1996 with emphasis on structures in Miocene basin-fill deposits of the Muddy Creek Formation that may control availability and quality of groundwater.

  9. Estimation and mapping of uranium content of geological units in France.

    PubMed

    Ielsch, G; Cuney, M; Buscail, F; Rossi, F; Leon, A; Cushing, M E

    2017-01-01

    In France, natural radiation accounts for most of the population exposure to ionizing radiation. The Institute for Radiological Protection and Nuclear Safety (IRSN) carries out studies to evaluate the variability of natural radioactivity over the French territory. In this framework, the present study consisted in the evaluation of uranium concentrations in bedrocks. The objective was to provide estimate of uranium content of each geological unit defined in the geological map of France (1:1,000,000). The methodology was based on the interpretation of existing geochemical data (results of whole rock sample analysis) and the knowledge of petrology and lithology of the geological units, which allowed obtaining a first estimate of the uranium content of rocks. Then, this first estimate was improved thanks to some additional information. For example, some particular or regional sedimentary rocks which could present uranium contents higher than those generally observed for these lithologies, were identified. Moreover, databases on mining provided information on the location of uranium and coal/lignite mines and thus indicated the location of particular uranium-rich rocks. The geological units, defined from their boundaries extracted from the geological map of France (1:1,000,000), were finally classified into 5 categories based on their mean uranium content. The map obtained provided useful data for establishing the geogenic radon map of France, but also for mapping countrywide exposure to terrestrial radiation and for the evaluation of background levels of natural radioactivity used for impact assessment of anthropogenic activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Publications - PIR 2004-3A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ; Bedrock; Bedrock Geology; Cambrian; Caribou Fossils; Cascaden Ridge Unit; Cenozoic; Colluvial Deposits ; Cretaceous; Devonian; Eolian; Fox Fossils; Generalized; Geochemistry; Geochronology; Geologic Map; Geology ; Holocene; Horse Fossils; Igneous Rocks; K-Ar; Livengood Bench; Livengood Dome Chert; Lost Creek Unit

  11. Feature level fusion for enhanced geological mapping of ophiolile complex using ASTER and Landsat TM data

    NASA Astrophysics Data System (ADS)

    Pournamdari, M.; Hashim, M.

    2014-02-01

    Chromite ore deposit occurrence is related to ophiolite complexes as a part of the oceanic crust and provides a good opportunity for lithological mapping using remote sensing data. The main contribution of this paper is a novel approaches to discriminate different rock units associated with ophiolite complex using the Feature Level Fusion technique on ASTER and Landsat TM satellite data at regional scale. In addition this study has applied spectral transform approaches, consisting of Spectral Angle Mapper (SAM) to distinguish the concentration of high-potential areas of chromite and also for determining the boundary between different rock units. Results indicated both approaches show superior outputs compared to other methods and can produce a geological map for ophiolite complex rock units in the arid and the semi-arid region. The novel technique including feature level fusion and Spectral Angle Mapper (SAM) discriminated ophiolitic rock units and produced detailed geological maps of the study area. As a case study, Sikhoran ophiolite complex located in SE, Iran has been selected for image processing techniques. In conclusion, a suitable approach for lithological mapping of ophiolite complexes is demonstrated, this technique contributes meaningfully towards economic geology in terms of identifying new prospects.

  12. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Geologic map analyses: Correlation of geologic and cratering histories. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Geologic map analyses are expanded, beginning with a discussion of particular regions which may illustrate volcanic and ballistic plains emplacement on Mercury. Major attention is focused on the surface history of Mercury through discussion of the areal distribution of plains and craters and the paleogeologic maps of the first quadrant. A summary of the lunar intercrater plains formation similarly interrelates the information from the Moon's geologic and cratering histories.

  13. Geologic Map of the Derain (H-10) Quadrangle on Mercury: The Challenges of Consistently Mapping the Intercrater Plains Unit

    NASA Astrophysics Data System (ADS)

    Whitten, J. L.; Fassett, C. I.; Ostrach, L. R.

    2018-06-01

    We present the initial mapping of the H-10 quadrangle on Mercury, a region that was imaged for the first time by MESSENGER. Geologic map with assist with further characterization of the intercrater plains and their possible formation mechanism(s).

  14. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Kumar, P. Senthil; Head, James W., III

    2009-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  15. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report

    NASA Technical Reports Server (NTRS)

    Kumar, P. Senthil; Head, James W., III

    2008-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationships) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  16. Geologic map of the Sherbrooke-Lewiston area, Maine, New Hampshire, and Vermont, United States, and Quebec, Canada

    USGS Publications Warehouse

    Moench, R.H.; Boone, G.M.; Bothner, Wallace A.; Boudette, E.L.; Hatch, N.L.; Hussey, A. M.; Marvinney, R.G.

    1995-01-01

    This map is part of a folio of maps of the Lewiston 1° x 2° quadrangle, Maine, New Hampshire, and Vermont, and part of the Sherbrooke 1° x 2° quadrangle, Maine, New Hampshire, and Vermont, United States, and Quebec, Canada, prepared under the Conterminous United States Mineral Assessment Program (CUSMAP). Adjacent areas in Quebec are shown, in order to illustrate the geologic continuity between northwestern Maine and northern Vermont and New Hampshire. Other results of the project are contained in reports by Nowlan and others (1990a,b,c; stream sediment geochemistry), and Cox (1990; potential tin resources related to the White Mountain Plutonic-Volcanic Suite), Bothner and others (in press; complete Bouguer gravity and aeromagnetic maps), Moench and Boudette (in press, geologic synthesis and mineral occurrence map), and Moench (in press; metallic mineral resources).

  17. Geologic map of the San Francisco Bay region

    USGS Publications Warehouse

    Graymer, R.W.; Moring, B.C.; Saucedo, G.J.; Wentworth, C.M.; Brabb, E.E.; Knudsen, K. L.

    2006-01-01

    The rocks and fossils of the San Francisco Bay region reveal that the geology there is the product of millions of years at the active western margin of North America. The result of this history is a complex mosaic of geologic materials and structures that form the landscape. A geologic map is one of the basic tools to understand the geology, geologic hazards, and geologic history of a region.With heightened public awareness about earthquake hazards leading up to the 100th anniversary of the 1906 San Francisco earthquake, the U.S. Geological Survey (USGS) is releasing new maps of the San Francisco Bay Area designed to give residents and others a new look at the geologic history and hazards of the region. The “Geologic Map of the San Francisco Bay region” shows the distribution of geologic materials and structures, demonstrates how geologists study the age and origin of the rocks and deposits that we live on, and reveals the complicated geologic history that has led to the landscape that shapes the Bay Area.

  18. A spatial database of bedding attitudes to accompany Geologic Map of Boulder-Fort Collins-Greeley Area, Colorado

    USGS Publications Warehouse

    Colton, Roger B.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.

    2003-01-01

    This digital map shows bedding attitude data displayed over the geographic extent of rock stratigraphic units (formations) as compiled by Colton in 1976 (U.S.Geological Survey Map I-855-G) under the Front Range Urban Corridor Geology Program. Colton used his own mapping and published geologic maps having varied map unit schemes to compile one map with a uniform classification of geologic units. The resulting published color paper map was intended for planning for use of land in the Front Range Urban Corridor. In 1997-1999, under the USGS Front Range Infrastructure Resources Project, Colton's map was digitized to provide data at 1:100,000 scale to address urban growth issues(see cross-reference). In general, the west part of the map shows a variety of Precambrian igneous and metamorphic rocks, major faults and brecciated zones along an eastern strip (5-20 km wide) of the Front Range. The eastern and central part of the map (Colorado Piedmont) depicts a mantle of Quaternary unconsolidated deposits and interspersed Cretaceous or Tertiary-Cretaceous sedimentary rock outcrops. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone and shale formations (and sparse limestone) form hogbacks, intervening valleys, and in range-front folds, anticlines, and fault blocks. Localized dikes and sills of Tertiary rhyodacite and basalt intrude rocks near the range front, mostly in the Boulder area.

  19. Geologic map database of the El Mirage Lake area, San Bernardino and Los Angeles Counties, California

    USGS Publications Warehouse

    Miller, David M.; Bedford, David R.

    2000-01-01

    This geologic map database for the El Mirage Lake area describes geologic materials for the dry lake, parts of the adjacent Shadow Mountains and Adobe Mountain, and much of the piedmont extending south from the lake upward toward the San Gabriel Mountains. This area lies within the western Mojave Desert of San Bernardino and Los Angeles Counties, southeastern California. The area is traversed by a few paved highways that service the community of El Mirage, and by numerous dirt roads that lead to outlying properties. An off-highway vehicle area established by the Bureau of Land Management encompasses the dry lake and much of the land north and east of the lake. The physiography of the area consists of the dry lake, flanking mud and sand flats and alluvial piedmonts, and a few sharp craggy mountains. This digital geologic map database, intended for use at 1:24,000-scale, describes and portrays the rock units and surficial deposits of the El Mirage Lake area. The map database was prepared to aid in a water-resource assessment of the area by providing surface geologic information with which deepergroundwater-bearing units may be understood. The area mapped covers the Shadow Mountains SE and parts of the Shadow Mountains, Adobe Mountain, and El Mirage 7.5-minute quadrangles. The map includes detailed geology of surface and bedrock deposits, which represent a significant update from previous bedrock geologic maps by Dibblee (1960) and Troxel and Gunderson (1970), and the surficial geologic map of Ponti and Burke (1980); it incorporates a fringe of the detailed bedrock mapping in the Shadow Mountains by Martin (1992). The map data were assembled as a digital database using ARC/INFO to enable wider applications than traditional paper-product geologic maps and to provide for efficient meshing with other digital data bases prepared by the U.S. Geological Survey's Southern California Areal Mapping Project.

  20. The role of photogeologic mapping in traverse planning: Lessons from DRATS 2010 activities

    USGS Publications Warehouse

    Skinner, James A.; Fortezzo, Corey M.

    2013-01-01

    We produced a 1:24,000 scale photogeologic map of the Desert Research and Technology Studies (DRATS) 2010 simulated lunar mission traverse area and surrounding environments located within the northeastern part of the San Francisco Volcanic Field (SFVF), north-central Arizona. To mimic an exploratory mission, we approached the region “blindly” by rejecting prior knowledge or preconceived notions of the regional geologic setting and focused instead only on image and topographic base maps that were intended to be equivalent to pre-cursor mission “orbital returns”. We used photogeologic mapping techniques equivalent to those employed during the construction of modern planetary geologic maps. Based on image and topographic base maps, we identified 4 surficial units (talus, channel, dissected, and plains units), 5 volcanic units (older cone, younger cone, older flow, younger flow, and block field units), and 5 basement units (grey-toned mottled, red-toned platy, red-toned layered, light-toned slabby, and light-toned layered units). Comparison of our remote-based map units with published field-based map units indicates that the two techniques yield pervasively similar results of contrasting detail, with higher accuracies linked to remote-based units that have high topographic relief and tonal contrast relative to adjacent units. We list key scientific questions that remained after photogeologic mapping and prior to DRATS activities and identify 13 specific observations that the crew and science team would need to make in order to address those questions and refine the interpreted geologic context. We translated potential observations into 62 recommended sites for visitation and observation during the mission traverse. The production and use of a mission-specific photogeologic map for DRATS 2010 activities resulted in strategic and tactical recommendations regarding observational context and hypothesis tracking over the course of an exploratory mission.

  1. The digital geologic map of Colorado in ARC/INFO format, Part A. Documentation

    USGS Publications Warehouse

    Green, Gregory N.

    1992-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050

  2. The digital geologic map of Colorado in ARC/INFO format, Part B. Common files

    USGS Publications Warehouse

    Green, Gregory N.

    1992-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050

  3. Groundwater resources of the East Mountain area, Bernalillo, Sandoval, Santa Fe, and Torrance Counties, New Mexico, 2005

    USGS Publications Warehouse

    Bartolino, James R.; Anderholm, Scott K.; Myers, Nathan C.

    2010-01-01

    The groundwater resources of about 400 square miles of the East Mountain area of Bernalillo, Sandoval, Santa Fe, and Torrance Counties in central New Mexico were evaluated by using groundwater levels and water-quality analyses, and updated geologic mapping. Substantial development in the study area (population increased by 11,000, or 50 percent, from 1990 through 2000) has raised concerns about the effects of growth on water resources. The last comprehensive examination of the water resources of the study area was done in 1980-this study examines a slightly different area and incorporates data collected in the intervening 25 years. The East Mountain area is geologically and hydrologically complex-in addition to the geologic units, such features as the Sandia Mountains, Tijeras and Gutierrez Faults, Tijeras syncline and anticline, and the Estancia Basin affect the movement, availability, and water quality of the groundwater system. The stratigraphic units were separated into eight hydrostratigraphic units, each having distinct hydraulic and chemical properties. Overall, the major hydrostratigraphic units are the Madera-Sandia and Abo-Yeso; however, other units are the primary source of supply in some areas. Despite the eight previously defined hydrostratigraphic units, water-level contours were drawn on the generalized regional potentiometric map assuming all hydrostratigraphic units are connected and function as a single aquifer system. Groundwater originates as infiltration of precipitation in upland areas (Sandia, Manzano, and Manzanita Mountains, and the Ortiz Porphyry Belt) and moves downgradient into the Tijeras Graben, Tijeras Canyon, San Pedro synclinorium, and the Hagan, Estancia, and Espanola Basins. The study area was divided into eight groundwater areas defined on the basis of geologic, hydrologic, and geochemical information-Tijeras Canyon, Cedar Crest, Tijeras Graben, Estancia Basin, San Pedro Creek, Ortiz Porphyry Belt, Hagan Basin, and Upper Sandia Mountains. View report for unabridged abstract.

  4. Shallow geology, sea-floor texture, and physiographic zones of Buzzards Bay, Massachusetts

    USGS Publications Warehouse

    Foster, David S.; Baldwin, Wayne E.; Barnhardt, Walter A.; Schwab, William C.; Ackerman, Seth D.; Andrews, Brian D.; Pendleton, Elizabeth A.

    2015-01-07

    Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.

  5. Putting Pluto's Geology on the Map

    NASA Image and Video Library

    2016-02-11

    This geological map covers a portion of Pluto's surface that measures 1,290 miles (2,070 kilometers) from top to bottom, and includes the vast nitrogen-ice plain informally named Sputnik Planum and surrounding terrain. The map is overlain with colors that represent different geological terrains. Each terrain, or unit, is defined by its texture and morphology -- smooth, pitted, craggy, hummocky or ridged, for example. How well a unit can be defined depends on the resolution of the images that cover it. All of the terrain in this map has been imaged at a resolution of approximately 1,050 feet (320 meters) per pixel or better, meaning scientists can map units with relative confidence. The various blue and greenish units that fill the center of the map represent different textures seen across Sputnik Planum, from the cellular terrain in the center and north, to the smooth and pitted plains in the south. The black lines represent the troughs that mark the boundaries of cellular regions in the nitrogen ice. The purple unit represents the chaotic, blocky mountain ranges that line Sputnik's western border, and the pink unit represents the scattered, floating hills at its eastern edge. The possible cryovolcanic feature informally named Wright Mons is mapped in red in the southern corner of the map. The rugged highlands of the informally named Cthulhu Regio is mapped in dark brown along the western edge, and is pockmarked by many large impact craters, mapped in yellow. The base map for this geologic map is a mosaic of 12 images obtained by the Long Range Reconnaissance Imager (LORRI) at a resolution of 1,280 feet (about 390 meters) per pixel. The mosaic was obtained at a range of approximately 48,000 miles (77,300 kilometers) from Pluto, about an hour and 40 minutes before New Horizons' closest approach on July 14, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA20465

  6. Digital geologic map of McAlester-Texarkana quadrangles, southeastern Oklahoma

    USGS Publications Warehouse

    Cederstrand, J.R.

    1997-01-01

    This data set consists of digital data and accompanying documentation of the surficial geology of the 1:250,000-scale McAlester and Texarkana quadrangles, Oklahoma. The original data are from the Geologic Map, sheet 1 of 4, included in Oklahoma Geological Survey publication, Reconnaissance of the water resources of the McAlester and Texarkana quadrangles, southeastern Oklahoma, Hydrologic Atlas 9, Marcher and Bergman, 1983. The geology was compiled by M.V. Marcher and D.L. Bergman, 1971, and revised by R.O. Fay, 1978.

  7. Evidence for Buried "Pre-Noachian" Crust Pre-Dating the Oldest Observed Surface Units on Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. V.; Frey, E. L.; Hartmann, W. K.; Tanaka, K. L. T.

    2003-01-01

    Even though the Early Noachian (EN) used in geologic mapping is undefined at the early end, it is often assumed in absolute chronologies to extend back to 4.6 BYA. We explored this assumption by searching for evidence of buried impact basins, in the largest occurrences of Early Noachian terrain. The hypothesis is that if such basins exist, they indicate crust which must predate the surface units mapped as the oldest on Mars, and those units must then be less than 4.6 BY old. Alternatively, if no such buried features are seen, then the surface units may represent crust of the same age below, which could in principle be as old as Mars. Here we show the former alternative is true. There must be crust older than the oldest mapped surface units. We also show that a number of Noachian terrains on Mars appear to have a common total (visible + buried) crater retention age. This might be either the age of the original (planet-wide?) crust of Mars, or may indicate crater saturation.

  8. 43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., geochemical, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...

  9. 43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., geochemical, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...

  10. 43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., geochemical, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...

  11. 43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., geochemical, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...

  12. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    USGS Publications Warehouse

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  13. Database of the Geologic Map of North America - Adapted from the Map by J.C. Reed, Jr. and others (2005)

    USGS Publications Warehouse

    Garrity, Christopher P.; Soller, David R.

    2009-01-01

    The Geological Society of America's (GSA) Geologic Map of North America (Reed and others, 2005; 1:5,000,000) shows the geology of a significantly large area of the Earth, centered on North and Central America and including the submarine geology of parts of the Atlantic and Pacific Oceans. This map is now converted to a Geographic Information System (GIS) database that contains all geologic and base-map information shown on the two printed map sheets and the accompanying explanation sheet. We anticipate this map database will be revised at some unspecified time in the future, likely through the actions of a steering committee managed by the Geological Society of America (GSA) and staffed by scientists from agencies including, but not limited to, those responsible for the original map compilation (U.S. Geological Survey, Geological Survey of Canada, and Woods Hole Oceanographic Institute). Regarding the use of this product, as noted by the map's compilers: 'The Geologic Map of North America is an essential educational tool for teaching the geology of North America to university students and for the continuing education of professional geologists in North America and elsewhere. In addition, simplified maps derived from the Geologic Map of North America are useful for enlightening younger students and the general public about the geology of the continent.' With publication of this database, the preparation of any type of simplified map is made significantly easier. More important perhaps, the database provides a more accessible means to explore the map information and to compare and analyze it in conjunction with other types of information (for example, land use, soils, biology) to better understand the complex interrelations among factors that affect Earth resources, hazards, ecosystems, and climate.

  14. Mercury compositional units inferred by MDIS. A comparison with the geology in support to the BepiColombo mission

    NASA Astrophysics Data System (ADS)

    Zambon, Francesca; Carli, Cristian; Galluzzi, Valentina; Capaccioni, Fabrizio; Filacchione, Gianrico; Giacomini, Lorenza; Massirioni, Matteo; Palumbo, Pasquale

    2016-04-01

    Mercury has been explored by two spatial missions. Mariner 10 acquired 45% of the surface during three Hermean flybys in 1974, giving a first close view of the planet. The recent MESSENGER mission globally mapped the planet and contributed to understand many unsolved issues about Mercury (Solomon et al., 2007). Nevertheless, even after MESSENGER, Mercury surface composition remains still unclear, and the correlation between morphology and compositional heterogeneity is not yet well understood. Thanks to the Mercury Dual Imaging System (MDIS), onboard MESSENGER, a global coverage of Mercury surface with variable spatial resolution has been done. MDIS is equipped with a Narrow Angle Camera (NAC), dedicated to the high-resolution study of the surface morphology and a Wide Angle Camera (WAC) with 12 filters useful to investigate the surface composition (Hawkins et al., 2007). Several works were focused on the different terrains present on Mercury, in particular, Denevi et al. (2013) observes that ~27% of Hermean surface is covered by volcanic origin smooth plains. These plains show differences in composition associated to spectral slope variation. High-reflectance red plains (HRP), with spectral slope greater than the average and low-reflectance blue plains (LBP), with spectral slope lesser than the average has been identified. This spectral variations could be correlated with different chemical composition. The X-Ray Spectrometer (XRS) data show that HRP-type areas are associated with a low-Fe basalt-like composition, while the LBP are also Fe poor but are rich in Mg/Si and Ca/Si and with lower Al/Si and are interpreted as more ultramafic (Nittler et al., 2011; Weider et al., 2012; Denevi at al., 2013, Weider et al., 2014). In these work we produce high resolution multicolor mosaic to found a possible link between morphology and composition. The spectral properties have been used to define the principal units of Mercury's surface or to characterize other globally distributed distinct spectral units. Therefore, integrating the spectral variability to a well defined morpho-stratigraphic (photo-interpreted) map will permit to improve the geologic map itself, defining sub-units, and associating spectral properties to analogue deposits. We are working to produce quadrangles color mosaics and high resolution color mosaics of smaller areas to define color products (common planetary geologic map) and obtain an "advanced" geologic map. The mapping process permits integration of different geological surface information to better understand the planet crust formation and evolution. Merging data from different instruments provides additional information about lithological composition, contributing to the construction of a more complete geological map (e.g., Giacomini et al., 2012). These work has been done in support of the BepiColombo Mission, which has an innovative Spectrometer and Imagers Integrated Observatory SYStem (SIMBIO-SYS). SIMBIO-SYS is composed by three instruments, the visible-near-infrared imaging spectrometer (VIHI), the high-resolution imager (HRIC) and the stereo imaging system (STC) which will be albe to improve the knowledge of Mercury surface form the geological and compositional point of view. This research was supported by the Italian Space Agency (ASI) within the SIMBIOSYS project (ASI-INAF agreement no. I/022/10/0)

  15. Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California

    USGS Publications Warehouse

    Graymer, R.W.

    2000-01-01

    Introduction This report contains a new geologic map at 1:50,000 scale, derived from a set of geologic map databases containing information at a resolution associated with 1:24,000 scale, and a new description of geologic map units and structural relationships in the mapped area. The map database represents the integration of previously published reports and new geologic mapping and field checking by the author (see Sources of Data index map on the map sheet or the Arc-Info coverage pi-so and the textfile pi-so.txt). The descriptive text (below) contains new ideas about the Hayward fault and other faults in the East Bay fault system, as well as new ideas about the geologic units and their relations. These new data are released in digital form in conjunction with the Federal Emergency Management Agency Project Impact in Oakland. The goal of Project Impact is to use geologic information in land-use and emergency services planning to reduce the losses occurring during earthquakes, landslides, and other hazardous geologic events. The USGS, California Division of Mines and Geology, FEMA, California Office of Emergency Services, and City of Oakland participated in the cooperative project. The geologic data in this report were provided in pre-release form to other Project Impact scientists, and served as one of the basic data layers for the analysis of hazard related to earthquake shaking, liquifaction, earthquake induced landsliding, and rainfall induced landsliding. The publication of these data provides an opportunity for regional planners, local, state, and federal agencies, teachers, consultants, and others outside Project Impact who are interested in geologic data to have the new data long before a traditional paper map could be published. Because the database contains information about both the bedrock and surficial deposits, it has practical applications in the study of groundwater and engineering of hillside materials, as well as the study of geologic hazards and the academic research on the geologic history and development of the region.

  16. Standardization of mapping practices in the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Allen, Peter M.

    1997-07-01

    Because the British Geological Survey (BGS) has had, since its foundation in 1835, a mandate to produce geological maps for the whole of Great Britain, there is a long history of introducing standard practices in the way rocks and rock units have been named, classified and illustrated on maps. The reasons for the failure of some of these practices are examined and assessed in relation to the needs of computerized systems for holding and disseminating geological information.

  17. A generalized geologic map of Mars

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Masursky, H.; Saunders, R. S.

    1973-01-01

    A generalized geologic map of Mars has been constructed largely on the basis of differences in the topography of the surface. A number of topographic features on Mars whose form is highly diagnostic of their origin are shown. Of particular note are the shield volcanoes and lava plains. In some areas, the original features have been considerably modified by subsequent erosional and tectonic processes. These have not, however, resulted in homogenization of the planet's surface, but rather have emphasized its variegated character by leaving a characteristic imprint in specific areas. The topography of the planet, therefore, lends itself well to remote geologic interpretation.

  18. Regional Geologic Map of San Andreas and Related Faults in Carrizo Plain, Temblor, Caliente and La Panza Ranges and Vicinity, California; A Digital Database

    USGS Publications Warehouse

    Dibblee, T. W.; Digital database compiled by Graham, S. E.; Mahony, T.M.; Blissenbach, J.L.; Mariant, J.J.; Wentworth, C.M.

    1999-01-01

    This Open-File Report is a digital geologic map database. The report serves to introduce and describe the digital data. There is no paper map included in the Open-File Report. The report includes PostScript and PDF plot files that can be used to plot images of the geologic map sheet and explanation sheet. This digital map database is prepared from a previously published map by Dibblee (1973). The geologic map database delineates map units that are identified by general age, lithology, and clast size following the stratigraphic nomenclature of the U.S. Geological Survey. For descriptions of the units, their stratigraphic relations, and sources of geologic mapping, consult the explanation sheet (of99-14_4b.ps or of99-14_4d.pdf), or the original published paper map (Dibblee, 1973). The scale of the source map limits the spatial resolution (scale) of the database to 1:125,000 or smaller. For those interested in the geology of Carrizo Plain and vicinity who do not use an ARC/INFO compatible Geographic Information System (GIS), but would like to obtain a paper map and explanation, PDF and PostScript plot files containing map images of the data in the digital database, as well as PostScript and PDF plot files of the explanation sheet and explanatory text, have been included in the database package (please see the section 'Digital Plot Files', page 5). The PostScript plot files require a gzip utility to access them. For those without computer capability, we can provide users with the PostScript or PDF files on tape that can be taken to a vendor for plotting. Paper plots can also be ordered directly from the USGS (please see the section 'Obtaining Plots from USGS Open-File Services', page 5). The content and character of the database, methods of obtaining it, and processes of extracting the map database from the tar (tape archive) file are described herein. The map database itself, consisting of six ARC/INFO coverages, can be obtained over the Internet or by magnetic tape copy as described below. The database was compiled using ARC/INFO, a commercial Geographic Information System (Environmental Systems Research Institute, Redlands, California), with version 3.0 of the menu interface ALACARTE (Fitzgibbon and Wentworth, 1991, Fitzgibbon, 1991, Wentworth and Fitzgibbon, 1991). The ARC/INFO coverages are stored in uncompressed ARC export format (ARC/INFO version 7.x). All data files have been compressed, and may be uncompressed with gzip, which is available free of charge over the Internet via links from the USGS Public Domain Software page (http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/public.html). ARC/INFO export files (files with the .e00 extension) can be converted into ARC/INFO coverages in ARC/INFO (see below) and can be read by some other Geographic Information Systems, such as MapInfo via ArcLink and ESRI's ArcView.

  19. Quaternary geologic map of the Florida Keys 4 degrees x 6 degrees quadrangle, United States

    USGS Publications Warehouse

    Compilations: Scott, Thomas M.; Knapp, Michael S.; Weide, David L.; Edited and integrated by Richmond, Gerald M.; Fullerton, David S.; Bush, Charles A.

    2010-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1986. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Florida Keys 4 degrees x 6 degrees Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  20. Quaternary geologic map of the Mobile 4 degrees x 6 degrees quadrangle, United States

    USGS Publications Warehouse

    State compilations by Copeland, Charles W.; Rheams, K.F.; Neathery, T.L.; Gilliland, W.A.; Schmidt, Walter; Clark, W.C.; Pope, D.E.; edited and integrated by Richmond, Gerald Martin; Fullerton, David S.; Weide, David L.; Digital database by Bush, Charles A.

    1988-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1988. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Mobile 4 degrees x 6 degrees Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map

  1. Quaternary geologic map of the Lookout Mountain 4° x 6° quadrangle, United States

    USGS Publications Warehouse

    State compilations by Miller, Robert A.; Maher, Stuart W.; Copeland, Charles W.; Rheams, Katherine F.; Neathery, Thorton L.; Gilliland, William A.; Friddell, Michael S.; Van Nostrand, Arnie K.; Wheeler, Walter H.; Holbrook, Drew F.; Bush, William V.; Edited and integrated by Richmond, Gerald M.; Fullerton, David S.; Bush, Charles A.

    1988-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I–1420). It was first published as a printed edition in 1988. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Lookout Mountain 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the "ground" on which we walk, the "dirt" in which we dig foundations, and the "soil" in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  2. Quaternary geologic map of the Vicksburg 4° x 6° quadrangle, United States

    USGS Publications Warehouse

    State compilations by Holbrook, Drew F.; Gilliland, W.A.; Luza, K.V.; Pope, D.E.; Wermund, E.G.; Miller, R.A.; Bush, W.V.; Jensen, K.N.; Fishman, W.D.; edited and integrated by Richmond, Gerald Martin; Fullerton, David S.; Weide, David L.; Bush, Charles A.

    1990-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1990. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Vicksburg 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  3. Quaternary geologic map of the White Lake 4° x 6° quadrangle, United States

    USGS Publications Warehouse

    State compilations by Pope, David E.; Gilliland, William A.; Wermund, E.G.; edited and integrated by Richmond, Gerald Martin; Weide, David L.; Moore, David W.; Bush, Charles A.

    1990-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1990. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the White Lake 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  4. Quaternary geologic map of the Monterrey 4 degrees x 6 degrees quadrangle, United States

    USGS Publications Warehouse

    Moore, David W.; Wermund, E.G.; edited and integrated by Moore, David W.; Richmond, Gerald Martin

    1993-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1993. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Monterrey 4 degrees x 6 degrees Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  5. Quaternary geologic map of the Austin 4° x 6° quadrangle, United States

    USGS Publications Warehouse

    State compilations by Moore, David W.; Wermund, E.G.; edited and integrated by Moore, David W.; Richmond, Gerald Martin; Christiansen, Ann Coe; Bush, Charles A.

    1993-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1993. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Austin 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  6. Quaternary geologic map of the Wichita 4 degrees x 6 degrees quadrangle, United States

    USGS Publications Warehouse

    State compilations by Denne, Jane E.; Luza, V.; Richmond, Gerald Martin; Jensen, Kathleen M.; Fishman, W.D.; Wermund, E.G.; Richmond, Gerald Martin; Christiansen, Ann Coe; Bush, Charles A.

    1993-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1993. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Wichita 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the "ground" on which we walk, the "dirt" in which we dig foundations, and the "soil" in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  7. Quaternary geologic map of the Jacksonville 4 degrees x 6 degrees quadrangle, United States

    USGS Publications Warehouse

    State compilations by Scott, Thomas M.; Knapp, M.S.; Friddell, M.S.; Weide, David L.; edited and integrated by Richmond, Gerald Martin; Fullerton, David S.

    1986-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1986. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Jacksonville 4 degrees x 6 degrees Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  8. Geologic Map of the Aino Planitia (V46) Quadrangle, Venus 1:5,000,000

    USGS Publications Warehouse

    Stofan, Ellen R.; Guest, John E.

    2003-01-01

    The Aino Planitia quadrangle (V-46) extends from 25?-50? S. latitude, 60?-90? E. longitude. The quadrangle was mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. Aino Planitia is a lowland region in the southern hemisphere of Venus and is southwest of Thetis Regio in western Aphrodite Terra. It is dominated by low-lying plains units that are characterized by northeast-trending wrinkle ridges and numerous small volcanic edifices, including shields, domes, and cones. The quadrangle contains a major volcano, Kunapipi Mons, and portions of Juno Chasma. A northern extension of the Lada Terra highland is in the southwestern portion of the map. Eight coronae are mapped in the quadrangle, the largest of which is the 500-km-diameter Copia Corona. The region is dominated by plains that are interpreted to be of volcanic origin. Most of the plains units are composites of flow units of differing ages. The overall topography of V-46 consists of low-lying plains slightly below Mean Planetary Radius (MPR, 6051.84 km). The summit of Kunapipi Mons is the highest point in the quadrangle, at about 2.2 km above MPR; the lowest points in rifts and troughs are at about 1.7 km below MPR. The regions that are the roughest at Magellan radar wavelengths in the quadrangle occur along the rim of Copia Corona, with most regions being relatively smooth (roughness comparable to the average Venus surface. Emissivity values in the quadrangle vary from 0.82-0.90.

  9. Reported historic asbestos prospects and natural asbestos occurrences in the central United States

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2006-01-01

    This map and its accompanying dataset provide information for 26 natural asbestos occurrences in the Central United States (U.S.), using descriptions found in the geologic literature. Data on location, mineralogy, geology, and relevant literature for each asbestos site are provided. Using the map and digital data in this report, the user can examine the distribution of previously reported asbestos occurrences and their geological characteristics in the Central U.S. This report is part of an ongoing study by the U.S. Geological Survey to identify and map reported natural asbestos occurrences in the U.S., which began with U.S. Geological Survey Open-File Report 2005-1189 (http://pubs.usgs.gov/of/2005/1189/). These reports are intended to provide State and local government agencies and other stakeholders with geologic information on natural occurrences of asbestos in the U.S.

  10. Titan's Xanadu region: Geomorphology and formation scenario

    NASA Astrophysics Data System (ADS)

    Langhans, Migrjam; Lunine, Jonathan I.; Mitri, Giuseppe

    2013-04-01

    Based on comprehensive mapping of the region, the recent theories of Xanadu's origin are examined and a chronology of geologic processes is proposed. The geologic history of Titan's Xanadu region is different from that of the other surface units on Saturn's moon. A previously proposed origin of western Xanadu from a giant impact in the early history of the moon is difficult to confirm given the scarcity of morphologic indications of an impact basin. The basic topographic structure of the landscape is controlled by tectonic processes that date back to the early history of Titan. More recently, the surface is intensely reworked and resurfaced by fluvial processes, which seem to have leveled out and compensated height differences. Although the surface age seems young at first view, the underlying processes that created this surface and the topographic structure appear to be ancient.

  11. Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Tanaka, K. L.

    2010-01-01

    The southern Utopia highland-lowland transitional zone extends from northern Terra Cimmeria to southern Utopia Planitia and contains broad, bench-like platforms with depressions, pitted cones, tholi, and lobate flows. The locally occurring geologic units and landforms contrast other transitional regions and record a spatially partitioned geologic history. We systematically delineated and described the geologic units and landforms of the southern Utopia-Cimmeria highland-lowland transitional zone for the production of a 1:1,000,000-scale geologic map (MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247). Herein, we present technical and scientific results of this mapping project.

  12. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  13. Preliminary Geologic Map of the Lake Mead 30' X 60' Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Beard, L.S.; Anderson, R.E.; Block, D.L.; Bohannon, R.G.; Brady, R.J.; Castor, S.B.; Duebendorfer, E.M.; Faulds, J.E.; Felger, T.J.; Howard, K.A.; Kuntz, M.A.; Williams, V.S.

    2007-01-01

    Introduction The geologic map of the Lake Mead 30' x 60' quadrangle was completed for the U.S. Geological Survey's Las Vegas Urban Corridor Project and the National Parks Project, National Cooperative Geologic Mapping Program. Lake Mead, which occupies the northern part of the Lake Mead National Recreation Area (LAME), mostly lies within the Lake Mead quadrangle and provides recreation for about nine million visitors annually. The lake was formed by damming of the Colorado River by Hoover Dam in 1939. The recreation area and surrounding Bureau of Land Management lands face increasing public pressure from rapid urban growth in the Las Vegas area to the west. This report provides baseline earth science information that can be used in future studies of hazards, groundwater resources, mineral and aggregate resources, and of soils and vegetation distribution. The preliminary report presents a geologic map and GIS database of the Lake Mead quadrangle and a description and correlation of map units. The final report will include cross-sections and interpretive text. The geology was compiled from many sources, both published and unpublished, including significant new mapping that was conducted specifically for this compilation. Geochronologic data from published sources, as well as preliminary unpublished 40Ar/39Ar ages that were obtained for this report, have been used to refine the ages of formal Tertiary stratigraphic units and define new informal Tertiary sedimentary and volcanic units.

  14. Database for the Geologic Map of the Skykomish River 30-Minute by 60-Minute Quadrangle, Washington (I-1963)

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A.; Booth, D.B.; Waitt, R.B.; Whetten, J.T.; Zartman, R.E.

    2006-01-01

    This digital map database has been prepared from the published geologic map of the Skykomish River 30- by 60-minute quadrangle by the senior author. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The Straight Creek Fault, a major Pacific Northwest structure which almost bisects the quadrangle, mostly separates unmetamorphosed and low-grade metamorphic Paleozoic and Mesozoic oceanic rocks on the west from medium- to high-grade metamorphic rocks on the east. Within the quadrangle the lower grade rocks are mostly Mesozoic melange units. To the east, the higher-grade terrane is mostly the Chiwaukum Schist and related gneisses of the Nason terrane and invading mid-Cretaceous stitching plutons. The Early Cretaceous Easton Metamorphic Suite crops out on both sides of the Straight Creek fault and records it's dextral displacement. On the south margin of the quadrangle, the fault separates the lower Eocene Swauk Formation on the east from the upper Eocene and Oligocene(?) Naches Formation and, farther north, its correlative Barlow Pass Volcanics the west. Stratigraphically equivalent rocks of the Puget Group crop out farther to the west. Rocks of the Cascade magmatic arc are mostly represented by Miocene and Oligocene plutons, including the Grotto, Snoqualmie, and Index batholiths. Alpine river valleys in the quadrangle record multiple advances and retreats of alpine glaciers. Multiple advances of the Cordilleran ice sheet, originating in the mountains of British Columbia, Canada, have left an even more complex sequence of outwash and till along the western mountain front, up these same alpine river valleys, and over the Puget Lowland. This database and accompanying plot files depict the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains new information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  15. Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    NASA Astrophysics Data System (ADS)

    Crumpler, L. S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R. V.; Bell, J. F., III; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N. A.; Haldemann, A.; Lewis, Kevin W.; Wang, A. E.; Schröder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, R.; Guinness, E. A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhöfer, G.; McEwen, A.; Rice, J. W., Jr.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-07-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.

  16. Field Reconnaissance Geologic Mapping of the Columbia Hills, Mars: Results from MER Spirit and MRO HiRISE Observations

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, Kevin W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhofer, G.; McEwen, A.; Rice, J. W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.

  17. Discussion on the 3D visualizing of 1:200 000 geological map

    NASA Astrophysics Data System (ADS)

    Wang, Xiaopeng

    2018-01-01

    Using United States National Aeronautics and Space Administration Shuttle Radar Topography Mission (SRTM) terrain data as digital elevation model (DEM), overlap scanned 1:200 000 scale geological map, program using Direct 3D of Microsoft with C# computer language, the author realized the three-dimensional visualization of the standard division geological map. User can inspect the regional geology content with arbitrary angle, rotating, roaming, and can examining the strata synthetical histogram, map section and legend at any moment. This will provide an intuitionistic analyzing tool for the geological practitioner to do structural analysis with the assistant of landform, dispose field exploration route etc.

  18. Map of assessed tight-gas resources in the United States

    USGS Publications Warehouse

    Biewick, Laura R. H.; ,

    2014-01-01

    This report presents a digital map of tight-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within tight-gas assessment units (AUs). This is the second digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hard-copy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS tight-gas assessment publications and web pages.

  19. Map of assessed coalbed-gas resources in the United States, 2014

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2014-01-01

    This report presents a digital map of coalbed-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within coalbed-gas assessment units (AUs). This is the third digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS coalbed-gas assessment publications and web pages.

  20. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    USGS Publications Warehouse

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs. Paleontologists and stratigraphers of the U.S. Geological Survey cooperated closely with the program. Paleontologic studies were concentrated in the Ordovician of central Kentucky, the Pennsylvanian of eastern and western Kentucky, and the Mesozoic and Cenozoic of westernmost Kentucky. In addition to financial support, the Kentucky Geological Survey provided economic data, stratigraphic support, and drillhole records to the field offices. Geologists of the State Survey made subsurface structural interpretations, constructed bedrock topography maps, and mapped several quadrangles. Some of the problems encountered were the inadequacy of much of the existing stratigraphic nomenclature, the uneven quality of some of the mapping, and the effects of relative isolation on the professional development of some of the geologists. The program cost a total of $20,927,500. In terms of 1960 dollars, it cost $16,035,000; this compares with an original estimate of $12,000,000. Although it is difficult to place a monetary value on the geologic mapping, the program has contributed to newly discovered mineral wealth, jobs, and money saved by government and industry. The maps are used widely in the exploration for coal, oil and gas, fluorspar, limestone, and clay. The maps are also used in planning highways and locations of dams, in evaluating foundation and excavation conditions, in preparing environmental impact statements, and in land-use planning.

  1. Geologic map of the Reyes Peak quadrangle, Ventura County, California

    USGS Publications Warehouse

    Minor, Scott A.

    2004-01-01

    New 1:24,000-scale geologic mapping in the Cuyama 30' x 60' quadrangle, in support of the USGS Southern California Areal Mapping Project (SCAMP), is contributing to a more complete understanding of the stratigraphy, structure, and tectonic evolution of the complex junction area between the NW-trending Coast Ranges and EW-trending western Transverse Ranges. The 1:24,000-scale geologic map of the Reyes Peak quadrangle, located in the eastern part of the Cuyama map area, is the final of six contiguous 7 ?' quadrangle geologic maps compiled for a more detailed portrayal and reevaluation of geologic structures and rock units shown on previous maps of the region (Carman, 1964; Dibblee, 1972; Vedder and others, 1973). SCAMP digital geologic maps of the five other contiguous quadrangles have recently been published (Minor, 1999; Kellogg, 1999, 2003; Stone and Cossette, 2000; Kellogg and Miggins, 2002). This digital compilation presents a new geologic map database for the Reyes Peak 7?' quadrangle, which is located in southern California about 75 km northwest of Los Angeles. The map database is at 1:24,000-scale resolution.

  2. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)

    2008-01-01

    Topics discussed include: Merging of the USGS Atlas of Mercury 1:5,000,000 Geologic Series; Geologic Mapping of the V-36 Thetis Regio Quadrangle: 2008 Progress Report; Structural Maps of the V-17 Beta Regio Quadrangle, Venus; Geologic Mapping of Isabella Quadrangle (V-50) and Helen Planitia, Venus; Renewed Mapping of the Nepthys Mons Quadrangle (V-54), Venus; Mapping the Sedna-Lavinia Region of Venus; Geologic Mapping of the Guinevere Planitia Quadrangle of Venus; Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons; Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean; Venus Quadrangle Geological Mapping: Use of Geoscience Data Visualization Systems in Mapping and Training; Geologic Map of the V-1 Snegurochka Planitia Quadrangle: Progress Report; The Fredegonde (V-57) Quadrangle, Venus: Characterization of the Venus Midlands; Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping; Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus: Evidence for Early Formation and Preservation of Regional Topography; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Geologic Mapping of the Juno Chasma Quadrangle, Venus: Establishing the Relation Between Rifting and Volcanism; Geologic Mapping of V-19, V-28, and V-53; Lunar Geologic Mapping Program: 2008 Update; Geologic Mapping of the Marius Quadrangle, the Moon; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars: Introductory Report; New Geologic Map of the Argyre Region of Mars; Geologic Evolution of the Martian Highlands: MTMs -20002, -20007, -25002, and -25007; Mapping Hesperia Planum, Mars; Geologic Mapping of the Meridiani Region, Mars; Geology of Holden Crater and the Holden and Ladon Multi-Ring Impact Basins, Margaritifer Terra, Mars; Geologic Mapping of Athabasca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region of Mars; Geologic Mapping of the Martian Impact Crater Tooting; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: First Year Results and Second Year Plan; Mars Global Geologic Mapping: Amazonian Results; Recent Geologic Mapping Results for the Polar Regions of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars (MC-8 SE and MC-23 NW) and the Northern Lowlands of Venus (V-16 and V-15); Geologic Mapping of the Zal, Hi'iaka, and Shamshu Regions of Io; Global Geologic Map of Europa; Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M); and Global Geologic Mapping of Io: Preliminary Results.

  3. All Are Worthy to Know the Earth: Henry De la Beche and the Origin of Geological Literacy

    ERIC Educational Resources Information Center

    Clary, Renee M.; Wandersee, James H.

    2009-01-01

    Henry T. De la Beche (1796-1855) began his geological career within an elite circle (Geological Society of London, 1817; FRS, 1819), collaborating with influential gentlemen geologists and publishing original research. When his independent income dwindled, De la Beche managed to secure governmental funding for his mapping projects. This led to…

  4. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2010

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)

    2010-01-01

    Topics covered include: Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury; The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2); Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for the Volcanic History of the North Polar Region of Venus; Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report; Geologic Mapping of V-19; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Comparison of Mapping Tessera Terrain in the Phoebe Regio (V-41) and Tellus Tessera (V-10) Quadrangles; Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus; Geologic Mapping of the Aristarchus Plateau Region on the Moon; Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30); The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle; Geologic Mapping of the Nili Fossae Region of Mars: MTM Quadrangles 20287, 20282, 25287, 25282, 30287, and 30282; Geologic Mapping of the Mawrth Vallis Region, Mars: MTM Quadrangles 25022, 25017, 25012, 20022, 20017, and 20012; Evidence for an Ancient Buried Landscape on the NW Rim of Hellas Basin, Mars; New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data; Geologic Mapping in the Hesperia Planum Region of Mars; Geologic Mapping of the Meridiani Region of Mars; Geologic Mapping in Southern Margaritifer Terra; Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars; The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars; Geologic Map of the Olympia Cavi Region of Mars (MTM 85200): A Summary of Tactical Approaches; Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: First Year Results and Second Year Work Plan; Mars Global Geologic Mapping Progress and Suggested Geographic-Based Hierarchal Systems for Unit Grouping and Naming; Progress in the Scandia Region Geologic Map of Mars; Geomorphic Mapping of MTMS -20022 and -20017; Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus; Volcanism on Io: Results from Global Geologic Mapping; Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions; and Planetary Geologic Mapping Handbook - 2010.

  5. Geology of the United States Seafloor: The View From GLORIA

    NASA Astrophysics Data System (ADS)

    Fulthorpe, Craig S.

    When then-President Ronald Reagan signed into existence the 200-mile Exclusive Economic Zone (EEZ), the U.S. Geological Survey (USGS) was assigned the task of mapping this 13 million km2 area of seafloor, which exceeds the terrestrial area of the United States. Fortunately for scientists interested in the geology of continental margins, the USGS rose quickly to the challenge and took advantage of the unique opportunity offered by this political initiative. Mapping began in 1984, only a year after the proclamation.

  6. Geologic map of the Montoso Peak quadrangle, Santa Fe and Sandoval Counties, New Mexico

    USGS Publications Warehouse

    Thompson, Ren A.; Hudson, Mark R.; Shroba, Ralph R.; Minor, Scott A.; Sawyer, David A.

    2011-01-01

    The Montoso Peak quadrangle is underlain by volcanic rocks and associated sediments of the Cerros del Rio volcanic field in the southern part of the Española Basin that record volcanic, faulting, alluvial, colluvial, and eolian processes over the past three million years. The geology was mapped from 1997 to 1999 and modified in 2004 to 2008. The geologic mapping was carried out in support of the U.S. Geological Survey (USGS) Rio Grande Basin Project, funded by the USGS National Cooperative Geologic mapping Program. The mapped distribution of units is based primarily on interpretation of 1:16,000-scale, color aerial photographs taken in 1992, and 1:40,000-scale, black-and-white, aerial photographs taken in 1996. Most of the contacts on the map were transferred from the aerial photographs using a photogrammetric stereoplotter and subsequently field checked for accuracy and revised based on field determination of allostratigraphic and lithostratigraphic units. Determination of lithostratigraphic units in volcanic deposits was aided by geochemical data, 40Ar/39Ar geochronology, aeromagnetic and paleomagnetic data. Supplemental revision of mapped contacts was based on interpretation of USGS 1-meter orthoimagery. This version of the Montoso Peak quadrangle geologic map uses a traditional USGS topographic base overlain on a shaded relief base generated from 10-m digital elevation model (DEM) data from the USGS National Elevation Dataset (NED). Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in young, brittle volcanic rocks is difficult because (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2) the youth of the deposits has allowed only modest displacements to accumulate for most faults, and (3) many may have significant strike-slip components that do not result in large vertical offsets that are readily apparent in offset of sub-horizontal contacts. Those faults characterized as "certain" either have distinct offset of map units or had slip planes that were directly observed in the field. Faults classed as "inferred" were traced based on linear alignments of geologic, topographic and aerial photo features such as vents, lava flow edges, and drainages inferred to preferentially develop on fractured rock. Lineaments defined from magnetic anomalies form an additional constraint on potential fault locations.

  7. Nature, distribution, and origin of Titan’s Undifferentiated Plains

    USGS Publications Warehouse

    Lopes, Rosaly; Malaska, M. J.; Solomonidou, A.; Le, Gall A.; Janssen, M.A.; Neish, Catherine D.; Turtle, E.P.; Birch, S. P. D.; Hayes, A.G.; Radebaugh, J.; Coustenis, A.; Schoenfeld, A.; Stiles, B.W.; Kirk, Randolph L.; Mitchell, K.L.; Stofan, E.R.; Lawrence, K. J.; ,

    2016-01-01

    The Undifferentiated Plains on Titan, first mapped by Lopes et al. (Lopes, R.M.C. et al., 2010. Icarus, 205, 540–588), are vast expanses of terrains that appear radar-dark and fairly uniform in Cassini Synthetic Aperture Radar (SAR) images. As a result, these terrains are often referred to as “blandlands”. While the interpretation of several other geologic units on Titan – such as dunes, lakes, and well-preserved impact craters – has been relatively straightforward, the origin of the Undifferentiated Plains has remained elusive. SAR images show that these “blandlands” are mostly found at mid-latitudes and appear relatively featureless at radar wavelengths, with no major topographic features. Their gradational boundaries and paucity of recognizable features in SAR data make geologic interpretation particularly challenging. We have mapped the distribution of these terrains using SAR swaths up to flyby T92 (July 2013), which cover >50% of Titan’s surface. We compared SAR images with other data sets where available, including topography derived from the SARTopo method and stereo DEMs, the response from RADAR radiometry, hyperspectral imaging data from Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), and near infrared imaging from the Imaging Science Subsystem (ISS). We examined and evaluated different formation mechanisms, including (i) cryovolcanic origin, consisting of overlapping flows of low relief or (ii) sedimentary origins, resulting from fluvial/lacustrine or aeolian deposition, or accumulation of photolysis products created in the atmosphere. Our analysis indicates that the Undifferentiated Plains unit is consistent with a composition predominantly containing organic rather than icy materials and formed by depositional and/or sedimentary processes. We conclude that aeolian processes played a major part in the formation of the Undifferentiated Plains; however, other processes (fluvial, deposition of photolysis products) are likely to have contributed, possibly in differing proportions depending on location.

  8. Geologic map of the Storm King Mountain quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Bryant, Bruce; Shroba, Ralph R.; Harding, Anne E.; Murray, Kyle E.

    2002-01-01

    New 1:24,000-scale geologic mapping in the Storm King Mountain 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new data on the structure on the south margin of the White River uplift and the Grand Hogback and on the nature, history, and distribution of surficial geologic units. Rocks ranging from Holocene to Proterozoic in age are shown on the map. The Canyon Creek Conglomerate, a unit presently known to only occur in this quadrangle, is interpreted to have been deposited in a very steep sided local basin formed by dissolution of Pennsylvanian evaporite late in Tertiary time. At the top of the Late Cretaceous Williams Fork Formation is a unit of sandstone, siltstone, and claystone from which Late Cretaceous palynomorphs were obtained in one locality. This interval has been mapped previously as Ohio Creek Conglomerate, but it does not fit the current interpretation of the origin of the Ohio Creek. Rocks previously mapped as Frontier Sandstone and Mowry Shale are here mapped as the lower member of the Mancos Shale and contain beds equivalent to the Juana Lopez Member of the Mancos Shale in northwestern New Mexico. The Pennsylvanian Eagle Valley Formation in this quadrangle grades into Eagle Valley Evaporite as mapped by Kirkham and others (1997) in the Glenwood Springs area. The Storm King Mountain quadrangle spans the south margin of the White River uplift and crosses the Grand Hogback monocline into the Piceance basin. Nearly flat lying Mississippian through Cambrian sedimentary rocks capping the White River uplift are bent into gentle south dips and broken by faults at the edge of the uplift. South of these faults the beds dip moderately to steeply to the south and are locally overturned. These dips are interrupted by a structural terrace on which are superposed numerous gentle minor folds and faults. This terrace has an east-west extent similar to that of the Canyon Creek Conglomerate to the north. We interpret that the terrace formed by movement of Eagle Evaporite from below in response to dissolution and diapirism in the area underlain by the conglomerate. A low-angle normal fault dipping gently north near the north margin of the quadrangle may have formed also in response to diapirism and dissolution in the area of the Canyon Creek Conglomerate. Along the east edge of the quadrangle Miocene basalt flows are offset by faults along bedding planes in underlying south-dipping Cretaceous rocks, probably because of diapiric movement of evaporite into the Cattle Creek anticline (Kirkham and Widmann, 1997). Steep topography and weak rocks combine to produce a variety of geologic hazards in the quadrangle.

  9. Geologic map of the Bateman Spring Quadrangle, Lander County, Nevada

    USGS Publications Warehouse

    Ramelli, Alan R.; Wrucke, Chester T.; House, P. Kyle

    2017-01-01

    This 1:24,000-scale geologic map of the Bateman Spring 7.5-minute quadrangle in Lander County, Nevada contains descriptions of 24 geologic units and one cross section. Accompanying text includes full unit descriptions and references. This quadrangle includes lower Paleozoic siliciclastic sedimentary rocks of the Roberts Mountain allochthon, Miocene intrusive dikes, alluvial deposits of the northern Shoshone Range piedmont, and riverine deposits of the Reese and Humboldt rivers.Significant findings include: refined age estimates for the Ordovician-Cambrian Valmy Formation and Devonian Slaven Chert, based on new fossil information; and detailed mapping of late Quaternary fault traces along the Shoshone Range fault system.

  10. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    USGS Publications Warehouse

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to understand that surficial materials (such as alluvium and volcanic ash deposits) are likely to be under-mapped yet are important because they obscure underlying units and contacts; (4) where possible, mapping multiple contact and structure types based on their varying certainty and exposure that reflect the perceived accuracy of the linework; (5) reviewing the regional context and searching for evidence of geologic activity that may have affected the map area yet for which evidence within the map area may be absent; and (6) for multi-authored maps, collectively analyzing the mapping relations, approaches, and methods throughout the duration of the mapping project with the objective of achieving a solid, harmonious product.

  11. Crater-based dating of geological units on Mars: methods and application for the new global geological map

    USGS Publications Warehouse

    Platz, Thomas; Michael, Gregory; Tanaka, Kenneth L.; Skinner, James A.; Fortezzo, Corey M.

    2013-01-01

    The new, post-Viking generation of Mars orbital imaging and topographical data provide significant higher-resolution details of surface morphologies, which induced a new effort to photo-geologically map the surface of Mars at 1:20,000,000 scale. Although from unit superposition relations a relative stratigraphical framework can be compiled, it was the ambition of this mapping project to provide absolute unit age constraints through crater statistics. In this study, the crater counting method is described in detail, starting with the selection of image data, type locations (both from the mapper’s and crater counter’s perspectives) and the identification of impact craters. We describe the criteria used to validate and analyse measured crater populations, and to derive and interpret crater model ages. We provide examples of how geological information about the unit’s resurfacing history can be retrieved from crater size–frequency distributions. Three cases illustrate short-, intermediate, and long-term resurfacing histories. In addition, we introduce an interpretation-independent visualisation of the crater resurfacing history that uses the reduction of the crater population in a given size range relative to the expected population given the observed crater density at larger sizes. From a set of potential type locations, 48 areas from 22 globally mapped units were deemed suitable for crater counting. Because resurfacing ages were derived from crater statistics, these secondary ages were used to define the unit age rather than the base age. Using the methods described herein, we modelled ages that are consistent with the interpreted stratigraphy. Our derived model ages allow age assignments to be included in unit names. We discuss the limitations of using the crater dating technique for global-scale geological mapping. Finally, we present recommendations for the documentation and presentation of crater statistics in publications.

  12. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Constuction of the paleogeologic maps. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The Post Caoris surface was derived from the geologic map by plotting all Class 1 and 2 features. To construct the Caloris surface, Class 3 craters were plotted onto the map, as well as all Class 3 plains. However, if P3 plains were adjacent to P2 units, and appeared continuous with other exposures of P3 material, the P2 unit was assumed to overlie the C3 and P3 material. The younger superposed craters were ignored with respect to the Class 3 surface. The boundaries of P3 materials were then continued under the superposed units, using a minimum of reasonable assumptions. For instance, if P2 and P4 plains were adjacent units, no P3 plains were presumed to lie under the P2 material. Similarly, all C3 craters were considered to have some deposits of impact melt after formation, even if they are mapped containing younger units. C3 craters which were superposed with younger units, C1 or C2 craters, and perhaps P2 plains, were redrawn as if later materials had not been emplaced, i.e., in their post impact, pre-degradation states.

  13. USGS national surveys and analysis projects: Preliminary compilation of integrated geological datasets for the United States

    USGS Publications Warehouse

    Nicholson, Suzanne W.; Stoeser, Douglas B.; Wilson, Frederic H.; Dicken, Connie L.; Ludington, Steve

    2007-01-01

    The growth in the use of Geographic nformation Systems (GS) has highlighted the need for regional and national digital geologic maps attributed with age and rock type information. Such spatial data can be conveniently used to generate derivative maps for purposes that include mineral-resource assessment, metallogenic studies, tectonic studies, human health and environmental research. n 1997, the United States Geological Survey’s Mineral Resources Program initiated an effort to develop national digital databases for use in mineral resource and environmental assessments. One primary activity of this effort was to compile a national digital geologic map database, utilizing state geologic maps, to support mineral resource studies in the range of 1:250,000- to 1:1,000,000-scale. Over the course of the past decade, state databases were prepared using a common standard for the database structure, fields, attributes, and data dictionaries. As of late 2006, standardized geological map databases for all conterminous (CONUS) states have been available on-line as USGS Open-File Reports. For Alaska and Hawaii, new state maps are being prepared, and the preliminary work for Alaska is being released as a series of 1:500,000-scale regional compilations. See below for a list of all published databases.

  14. Bedrock geologic map of the Worcester South quadrangle, Worcester County, Massachusetts

    USGS Publications Warehouse

    Walsh, Gregory J.; Merschat, Arthur J.

    2015-09-29

    The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts. This report presents mapping by Gregory J. Walsh and Arthur J. Merschat from 2008 to 2010. The report consists of a map and GIS database, both of which are available for download at http://dx.doi.org/ 10.3133/sim3345. The database includes contacts of bedrock geologic units, faults, outcrop locations, structural information, and photographs.

  15. Spatial Digital Database for the Geology of the San Pedro River Basin in Cochise, Gila, Graham, Pima, and Pinal Counties, Arizona

    USGS Publications Warehouse

    Bolm, Karen S.

    2002-01-01

    The map area is located in southeastern Arizona. This report describes the map units, the methods used to convert the geologic map data into a digital format, and the ArcInfo GIS file structures and relationships; and it explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. See figures 2 and 3 for page-size versions of the map compilation.

  16. Quaternary geologic map of the Lake Erie 4 degrees x 6 degrees quadrangle, United States and Canada

    USGS Publications Warehouse

    Fullerton, David S.; Richmond, Gerald M.; state compilations by Fullerton, David S.; Cowan, W.R.; Sevon, W.D.; Goldthwait, R.P.; Farrand, W.R.; Muller, E.H.; Behling, R.E.; Stravers, J.A.; edited and integrated by Fullerton, David S.; Richmond, Gerald Martin

    1991-01-01

    The Quaternary Geologic Map of the Lake Erie 4? x 6? Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  17. Quaternary geologic map of the Quebec 4 degrees x 6 degrees quadrangle, United States and Canada

    USGS Publications Warehouse

    State compilations by Borns, H. W.; Gadd, N.R.; LaSalle, Pierre; Martineau, Ghismond; Chauvin, Luc; Fulton, R.J.; Chapman, W.F.; Wagner, W.P.; Grant, D.R.; edited and integrated by Richmond, Gerald Martin; Fullerton, David S.

    1987-01-01

    The Quaternary Geologic Map of the Quebec 4? x 6? Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  18. Quaternary geologic map of the Chicago 4 degrees x 6 degrees quadrangle, United States

    USGS Publications Warehouse

    State compilations by Lineback, Jerry A.; Bleuer, Ned K.; Mickelson, David M.; Farrand, William R.; Goldthwait, Richard P.; Edited and integrated by Richmond, Gerald M.; Fullerton, David S.

    1983-01-01

    The Quaternary Geologic Map of the Chicago 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  19. Quaternary geologic map of the Sudbury 4 degree by 6 degree quadrangle, United States and Canada

    USGS Publications Warehouse

    Fullerton, David S.; Sado, Edward V.; Baker, C.L.; Farrand, William R.

    2004-01-01

    The Quaternary Geologic Map of the Sudbury 4 degrees x 6 degrees Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  20. Quaternary geologic map of the Ottawa 4 degrees x 6 degrees quadrangle, United States and Canada

    USGS Publications Warehouse

    Fullerton, David S.; Gadd, N. R.; Veillette, J.J.; Wagner, P.W.; Chapman, W.F.

    1993-01-01

    The Quaternary Geologic Map of the Ottawa 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  1. Quaternary geologic map of the Dallas 4° x 6° quadrangle, United States

    USGS Publications Warehouse

    State compilations by Luza, Kenneth V.; Jensen, Kathryn M.; Fishman, W.D.; Wermund, E.G.; Richmond, Gerald Martin; edited and integrated by Richmond, Gerald Martin; Christiansen, Ann Coe; Bush, Charles A.

    1994-01-01

    The Quaternary Geologic Map of the Dallas 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  2. Quaternary geologic map of the Chesapeake Bay 4 degrees x 6 degrees quadrangle, United States

    USGS Publications Warehouse

    State compilations by Cleaves, Emery T.; Glaser, John D.; Howard, Alan D.; Johnson, Gerald H.; Wheeler, Walter H.; Sevon, William D.; Judson, Sheldon; Owens, James P.; Peebles, Pamela C.; edited and integrated by Richmond, Gerald Martin; Fullerton, David S.; Weide, David L.

    1987-01-01

    The Quaternary Geologic Map of the Chesapeake Bay 4? x 6? Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  3. Quaternary geologic map of the Lake Superior 4 degrees x 6 degrees quadrangle, United States and Canada

    USGS Publications Warehouse

    Richmond, Gerald M.; Fullerton, David S.; state compilations by Farrand, William R.; Mickelson, D.M.; Cowan, W.R.; Goebel, J.E.; edited and integrated by Richmond, Gerald Martin

    1984-01-01

    The Quaternary Geologic Map of the Lake Superior 4? x 6? Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  4. Quaternary geologic map of the Hudson River 4 degree x 6 degree quadrangle, United States and Canada

    USGS Publications Warehouse

    State and province compilations by Fullerton, David S.; Sevon, William D.; Muller, Ernest H.; Judson, Sheldon; Black, Robert F.; Wagner, Phillip W.; Hartshorn, Joseph H.; Chapman, William F.; Cowan, William D.; edited and integrated by Fullerton, David S.

    1992-01-01

    The Quaternary Geologic Map of the Hudson River 4? x 6? Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  5. Quaternary geologic map of the Ozark Plateau 4 ° x 6 ° quadrangle, United States

    USGS Publications Warehouse

    State compilations by Whitfield, John William; Ward, R.A.; Denne, J.E.; Holbrook, D.F.; Bush, W.V.; Lineback, J.A.; Luza, K.V.; Jensen, Kathleen M.; Fishman, W.D.; Richmond, Gerald Martin; Weide, David L.; Bush, Charles A.

    1993-01-01

    The Quaternary Geologic Map of the Ozark Plateau 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the "ground" on which we walk, the "dirt" in which we dig foundations, and the "soil" in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  6. Quaternary geologic map of the Boston 4 degrees x 6 degrees quadrangle, United States and Canada

    USGS Publications Warehouse

    State compilations by Hartshorn, Joseph H.; Thompson, W.B.; Chapman, W.F.; Black, R.F.; Richmond, Gerald Martin; Grant, D.R.; Fullerton, David S.; edited and integrated by Richmond, Gerald Martin

    1991-01-01

    The Quaternary Geologic Map of the Boston 4 deg x 6 deg Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  7. Geologic map and digital database of the Porcupine Wash 7.5 minute Quadrangle, Riverside County, southern California

    USGS Publications Warehouse

    Powell, Robert E.

    2001-01-01

    This data set maps and describes the geology of the Porcupine Wash 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses parts of the Hexie Mountains, Cottonwood Mountains, northern Eagle Mountains, and south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle and Cottonwood Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle and Hexie Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults and an east-west trending system of high-angle dip- and left-slip faults. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Porcupine Wash database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a scanned topographic base at a scale of 1:24,000, and (5) attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base. The map is accompanied by a marginal explanation consisting of a Description of Map and Database Units (DMU), a Correlation of Map and Database Units (CMU), and a key to point-and line-symbols. (2) Separate .pdf files of the DMU and CMU, individually. (3) A PostScript graphic-file containing the geologic map on a 1:24,000 topographic base accompanied by the marginal explanation. (4) A pamphlet that describes the database and how to access it. Within the database, geologic contacts , faults, and dikes are represented as lines (arcs), geologic units as polygons and regions, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.

  8. Geologic map of Lake Mead and surrounding regions, southern Nevada, southwestern Utah, and northwestern Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, Sue

    2010-01-01

    Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.

  9. Geologic Mapping in Southern Margaritifer Terra

    NASA Technical Reports Server (NTRS)

    Irwin, R. P., III; Grant, J. A.

    2010-01-01

    Margaritifer Terra records a complex geologic history [1-5], and the area from Holden crater through Ladon Valles, Ladon basin, and up to Morava Valles is no exception [e.g., 6-13]. The 1:500,000 geologic map of MTM quadrangles -15027, -20027, -25027, and -25032 (Figs. 1 and 2 [14]) identifies a range of units that delineate the history of water-related activity and regional geologic context.

  10. Citizen-Scientist Digitization of a Complex Geologic Map of the McDowell Mountains (Scottsdale, Arizona).

    NASA Astrophysics Data System (ADS)

    Gruber, D.; Skotnicki, S.; Gootee, B.

    2016-12-01

    The work of citizen scientists has become very important to researchers doing field work and internet-based projects but has not been widely utilized in digital mapping. The McDowell Mountains - located in Scottsdale, Arizona, at the edge of the basin-and-range province and protected as part of the McDowell Sonoran Preserve - are geologically complex. Until recently, no comprehensive geologic survey of the entire range had been done. Over the last 9 years geologist Steven Skotnicki spent 2000 hours mapping the complex geology of the range. His work, born of personal interest and partially supported by the McDowell Sonoran Conservancy, resulted in highly detailed hand-drawn survey maps. Dr. Skotnicki's work provides important new information and raises interesting research questions about the geology of this range. Citizen scientists of the McDowell Sonoran Conservancy Field Institute digitized Dr. Skotnicki's maps. A team of 10 volunteers, trained in ArcMap digitization techniques and led by volunteer project leader Daniel Gruber, performed the digitization work. Technical oversight of mapping using ArcMap, including provision of USGS-based mapping toolbars, was provided by Arizona Geological Survey (AZGS) research geologist Brian Gootee. The map digitization process identified and helped resolve a number of mapping questions. The citizen-scientist team spent 900 hours on training, digitization, quality checking, and project coordination with support and review by Skotnicki and Gootee. The resulting digital map has approximately 3000 polygons, 3000 points, and 86 map units with complete metadata and unit descriptions. The finished map is available online through AZGS and can be accessed in the field on mobile devices. User location is shown on the map and metadata can be viewed with a tap. The citizen scientist map digitization team has made this important geologic information available to the public and accessible to other researchers quickly and efficiently.

  11. The U.S. Geological Survey mapping and cartographic database activities, 2006-2010

    USGS Publications Warehouse

    Craun, Kari J.; Donnelly, John P.; Allord, Gregory J.

    2011-01-01

    The U.S. Geological Survey (USGS) began systematic topographic mapping of the United States in the 1880s, beginning with scales of 1:250,000 and 1:125,000 in support of geological mapping. Responding to the need for higher resolution and more detail, the 1:62,500-scale, 15-minute, topographic map series was begun in the beginning of the 20th century. Finally, in the 1950s the USGS adopted the 1:24,000-scale, 7.5-minute topographic map series to portray even more detail, completing the coverage of the conterminous 48 states of the United States with this series in 1992. In 2001, the USGS developed the vision and concept of The National Map, a topographic database for the 21st century and the source for a new generation of topographic maps (http://nationalmap.gov/). In 2008, the initial production of those maps began with a 1:24,000-scale digital product. In a separate, but related project, the USGS began scanning the existing inventory of historical topographic maps at all scales to accompany the new topographic maps. The USGS also had developed a digital database of The National Atlas of the United States. The digital version of Atlas is now Web-available and supports a mapping engine for small scale maps of the United States and North America. These three efforts define topographic mapping activities of the USGS during the last few years and are discussed below.

  12. Geologic map of the Grand Canyon 30' x 60' quadrangle, Coconino and Mohave Counties, northwestern Arizona

    USGS Publications Warehouse

    Billingsley, G.H.

    2000-01-01

    This digital map database, compiled from previously published and unpublished data as well as new mapping by the author, represents the general distribution of bedrock and surficial deposits in the map area. Together with the accompanying pamphlet, it provides current information on the geologic structure and stratigraphy of the Grand Canyon area. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:100,000 or smaller.

  13. Elevations and distances in the United States

    USGS Publications Warehouse

    ,

    1991-01-01

    The information in this booklet was compiled to answer inquiries received by the U.S. Geological Survey from students; teachers; writers; editors; publishers of encyclopedias, almanacs, and other reference books; and people in many other fields of work. The elevations of features and distances between points in the United States were determined from surveys and topographic maps of the U.S. Geological Survey or obtained from other sources. In most cases, the elevations were determined from surveys and from 1:24,000- and 1:25,000-scale, 7.5-minute topographic quadrangle maps. In Alaska, information was taken from 1:63,360-scale, 15-minute topographic quadrangle maps. In a few cases, data were obtained from older, 1:62,500-scale, 15-minute maps; these maps are being replaced with larger-scale 7.5-minute coverage. Further information about U.S. Geological Survey products can be obtained from: U.S. Geological Survey, Earth Science Information Center, 507 National Center, Reston, VA 22092 or phone 703-860-6045.

  14. Correlation of regional geohydrologic units to geological formations in southern Missouri

    USGS Publications Warehouse

    Smith, Brenda J.; Imes, Jeffrey L.

    1991-01-01

    As part of the U.S Geological Survey's Regional Aquifer-System Analysis Program, geologic formations in southern Missouri (index map) were grouped into eight regional geohydrologic units on the basis of relative rock permeability and well yields (imes and Emmett, in press). Geohydrologic unit boundaries do not necessarily coincide with geologic unit boundaries or geologic time lines, but are determined by regional hydrologic properties, which may vary from one area to another.  The geologic formaitons were grouped into the geohydrologic units to determine the hydrologic characteristics of regional aquifer systems and associated regional confining units in parts of Arkansas, Kansas,Missouri, and Oklahoma.  This report presents a correlation of the regional geohydrologic units to corresponding geologic formations in southern Missouri.  Included in the report is a brief geologic history of southern Missouri.

  15. Geologic and structure map of the Choteau 1 degree by 2 degrees Quadrangle, western Montana

    USGS Publications Warehouse

    Mudge, Melville R.; Earhart, Robert L.; Whipple, James W.; Harrison, Jack E.

    1982-01-01

    The geologic and structure map of Choteau 1 x 2 degree quadrangle (Mudge and others, 1982) was originally converted to a digital format by Jeff Silkwood (U.S. Forest Service and completed by the U.S. Geological Survey staff and contractor at the Spokane Field Office (WA) in 2000 for input into a geographic information system (GIS). The resulting digital geologic map (GIS) database can be queried in many ways to produce a variey of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:250,000 (e.g. 1:100,000 or 1:24,000. The digital geologic map graphics and plot files (chot250k.gra/.hp/.eps and chot-map.pdf) that are provided in the digital package are representations of the digital database. They are not designed to be cartographic products.

  16. Origins of Sinuous and Braided Channels on Ascraeus Mons, Mars — A Keck Geology Consortium Undergraduate Research Project

    NASA Astrophysics Data System (ADS)

    de Wet, A. P.; Bleacher, J. E.; Garry, W. B.

    2012-03-01

    This Keck Geology Consortium project, involving four undergrad geology students, mapped and analyzed sinuous channel features on Ascraeus Mons, Mars, to better understand the role of volcanic and fluvial processes in the geological evolution of Mars.

  17. How semantics can inform the geological mapping process and support intelligent queries

    NASA Astrophysics Data System (ADS)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario

    2017-04-01

    The geologic mapping process requires the organization of data according to the general knowledge about the objects, namely the geologic units, and to the objectives of a graphic representation of such objects in a map, following an established model of geotectonic evolution. Semantics can greatly help such a process in two concerns: the provision of a terminological base to name and classify the objects of the map; on the other, the implementation of a machine-readable encoding of the geologic knowledge base supports the application of reasoning mechanisms and the derivation of novel properties and relations about the objects of the map. The OntoGeonous initiative has built a terminological base of geological knowledge in a machine-readable format, following the Semantic Web tenets and the Linked Data paradigm. The major knowledge sources of the OntoGeonous initiative are GeoScience Markup Language schemata and vocabularies (through its last version, GeoSciML 4, 2015, published by the IUGS CGI Commission) and the INSPIRE "Data Specification on Geology" directives (an operative simplification of GeoSciML, published by INSPIRE Thematic Working Group Geology of the European Commission). The Linked Data paradigm has been exploited by linking (without replicating, to avoid inconsistencies) the already existing machine-readable encoding for some specific domains, such as the lithology domain (vocabulary Simple Lithology) and the geochronologic time scale (ontology "gts"). Finally, for the upper level knowledge, shared across several geologic domains, we have resorted to NASA SWEET ontology. The OntoGeonous initiative has also produced a wiki that explains how the geologic knowledge has been encoded from shared geoscience vocabularies (https://www.di.unito.it/wikigeo/). In particular, the sections dedicated to axiomatization will support the construction of an appropriate data base schema that can be then filled with the objects of the map. This contribution will discuss how the formal encoding of the geological knowledge opens new perspectives for the analysis and representation of the geological systems. In fact, once that the major concepts are defined, the resulting formal conceptual model of the geologic system can hold across different technical and scientific communities. Furthermore, this would allow for a semi-automatic or automatic classification of the cartographic database, where a significant number of properties (attributes) of the recorded instances could be inferred through computational reasoning. So, for example, the system can be queried for showing the instances that satisfy some property (e.g., "Retrieve all the lithostratigraphic units composed of clastic sedimentary rock") or for classifying some unit according to the properties holding for that unit (e.g., "What is the class of the geologic unit composed of siltstone material?").

  18. Geologic and geophysical maps of the El Casco 7.5′ quadrangle, Riverside County, southern California, with accompanying geologic-map database

    USGS Publications Warehouse

    Matti, J.C.; Morton, D.M.; Langenheim, V.E.

    2015-01-01

    Geologic information contained in the El Casco database is general-purpose data applicable to land-related investigations in the earth and biological sciences. The term “general-purpose” means that all geologic-feature classes have minimal information content adequate to characterize their general geologic characteristics and to interpret their general geologic history. However, no single feature class has enough information to definitively characterize its properties and origin. For this reason the database cannot be used for site-specific geologic evaluations, although it can be used to plan and guide investigations at the site-specific level.

  19. NADM Conceptual Model 1.0 -- A Conceptual Model for Geologic Map Information

    USGS Publications Warehouse

    ,

    2004-01-01

    Executive Summary -- The NADM Data Model Design Team was established in 1999 by the North American Geologic Map Data Model Steering Committee (NADMSC) with the purpose of drafting a geologic map data model for consideration as a standard for developing interoperable geologic map-centered databases by state, provincial, and federal geological surveys. The model is designed to be a technology-neutral conceptual model that can form the basis for a web-based interchange format using evolving information technology (e.g., XML, RDF, OWL), and guide implementation of geoscience databases in a common conceptual framework. The intended purpose is to allow geologic information sharing between geologic map data providers and users, independent of local information system implementation. The model emphasizes geoscience concepts and relationships related to information presented on geologic maps. Design has been guided by an informal requirements analysis, documentation of existing databases, technology developments, and other standardization efforts in the geoscience and computer-science communities. A key aspect of the model is the notion that representation of the conceptual framework (ontology) that underlies geologic map data must be part of the model, because this framework changes with time and understanding, and varies between information providers. The top level of the model distinguishes geologic concepts, geologic representation concepts, and metadata. The geologic representation part of the model provides a framework for representing the ontology that underlies geologic map data through a controlled vocabulary, and for establishing the relationships between this vocabulary and a geologic map visualization or portrayal. Top-level geologic classes in the model are Earth material (substance), geologic unit (parts of the Earth), geologic age, geologic structure, fossil, geologic process, geologic relation, and geologic event.

  20. Digital geologic map of part of the Thompson Falls 1:100,000 quadrangle, Idaho

    USGS Publications Warehouse

    Lewis, Reed S.; Derkey, Pamela D.

    1999-01-01

    The geology of the Thompson Falls 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 onto a 1:100,000-scale greenline mylar of the topographic base map for input into a geographic information system (GIS). The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The map area is located in north Idaho. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the Arc/Info GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.

  1. Geomorphological Mapping on the Southern Hemisphere of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Lee, Jui-Chi; Massironi, Matteo; Giacomini, Lorenza; Ip, Wing-Huen; El-Maarry, Mohamed R.

    2016-04-01

    Since its rendezvous with comet 67P/Churyumov-Gerasimenko on the sixth of August, 2014, the Rosetta spacecraft has carried out close-up observations of the nucleus and coma of this Jupiter family comet. The OSIRIS, the Scientific Imaging Camera System onboard the Rosetta spacecraft, which consists of a narrow-angle and wide-angle camera (NAC and WAC), has made detailed investigations of the physical properties and surface morphology of the comet. From May 2015, the southern hemisphere of the comet became visible and the adaptical resolution was high enough for us to do a detailed analysis of the surface. Previous work shows that the fine particle deposits are the most extensive geomorphological unit in the northern hemisphere. On the contrary, southern hemisphere is dominated by rocky-like stratified terrain. The southern hemisphere of the nucleus surface reveals quite different morphologies from the northern hemisphere. This could be linked to the different insolation condition between northern and southern hemisphere. As a result, surface geological processes could operate with a diverse intensity on the different sides of the comet nucleus. In this work, we provide the geomorphological maps of the southern hemisphere with linear features and geological units identified. The geomorphological maps described in this study allow us to understand the processes and the origin of the comet.

  2. Encoding of Geological knowledge in the GeoPiemonte Map Data Base

    NASA Astrophysics Data System (ADS)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia

    2017-04-01

    In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled vocabularies and concepts derived from NASA SWEET ontology (3) (4) (5). At the state of the art the GeoPiemonte Map informative system is thus suitable for integration in trans-national Data Infrastructures and/or WebMap Services that require interoperability and harmonised semantic approaches. References (1)http://www.geosciml.org/geosciml/4.0/documentation/html/ - GeoSciML Data Model - (2)http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0.pdf - INSPIRE DS Technical Guidelines (3)http://resource.geosciml.org/vocabulary/cgi/201211/simplelithology.html (4)http://resource.geosciml.org/vocabulary/cgi/ - CGI GTWG controlled vocabularies repository (5) SWEET (Semantic Web for Earth and Environmental Terminology), http://www.sweet.jpl.nasa.govAppel Piana et al., 2017a. Geology of Piemonte Region (NW Italy, Alps-Apennines junction zone). Journal of Maps, in press. Piana et al., 2017b. The Geodatabase of the Piemonte Geological Map: conceptual design for knowledge encoding. ROL Soc. Geol. It., in press.

  3. Bedrock geologic map of the Hartland and North Hartland quadrangles, Windsor County, Vermont, and Sullivan and Grafton Counties, New Hampshire

    USGS Publications Warehouse

    Walsh, Gregory J.

    2016-08-16

    This report consists of sheets 1 and 2 as well as an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, and photographs. Sheet 2 of this report shows three cross sections, a tectonic map, and two brittle features maps that show measured outcrop-scale strike and dip results with summary stereonets and rose diagrams.

  4. Lidar-revised geologic map of the Uncas 7.5' quadrangle, Clallam and Jefferson Counties, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Haeussler, Peter J.; Haugerud, Ralph A.; Wells, Ray E.

    2011-01-01

    In 2000 and 2001, the Puget Sound Lidar Consortium obtained 1 pulse/m2 lidar data for about 65 percent of the Uncas 7.5' quadrangle. For a brief description of LIDAR (LIght Detection And Ranging) and this data acquisition program, see Haugerud and others (2003). This map combines geologic interpretation (mostly by Haugerud and Tabor) of the 6-ft (2-m) lidar-derived digital elevation model (DEM) with the geology depicted on the Preliminary Geologic Map of the Uncas 7.5' Quadrangle, Clallam and Jefferson Counties, Washington, by Peter J. Haeussler and others (1999). The Uncas quadrangle in the northeastern Olympic Peninsula covers the transition from the accreted terranes of the Olympic Mountains on the west to the Tertiary and Quaternary basin fills of the Puget Lowland to the east. Elevations in the map area range from sea level at Port Discovery to 4,116 ft (1,255 m) on the flank of the Olympic Mountains to the southwest. Previous geologic mapping within and marginal to the Uncas quadrangle includes reports by Cady and others (1972), Brown and others (1960), Tabor and Cady (1978a), Yount and Gower (1991), and Yount and others (1993). Paleontologic and stratigraphic investigations by University of Washington graduate students (Allison, 1959; Thoms, 1959; Sherman, 1960; Hamlin, 1962; Spencer, 1984) also encompass parts of the Uncas quadrangle. Haeussler and Wells mapped in February 1998, following preliminary mapping by Yount and Gower in 1976 and 1979. The description of surficial map units follows Yount and others (1993) and Booth and Waldron (2004). Bedrock map units are modified from Yount and Gower (1991) and Spencer (1984). We used the geologic time scale of Gradstein and others (2005). The Uncas quadrangle lies in the forearc of the Cascadia subduction zone, about 6.25 mi (10 km) east of the Cascadia accretionary complex exposed in the core of the Olympic Mountains (Tabor and Cady, 1978b). Underthrusting of the accretionary complex beneath the forearc uplifted and tilted eastward the Coast Range basalt basement and overlying marginal basin strata, which comprise most of the rocks of the Uncas quadrangle. The Eocene submarine and subaerial tholeiitic basalt of the Crescent Formation on the Olympic Peninsula is thought to be the exposed mafic basement of the Coast Range, which was considered by Snavely and others (1968) to be an oceanic terrane accreted to the margin in Eocene time. In this interpretation, the Coast Range basalt terrane may have originated as an oceanic plateau or by oblique marginal rifting, but its subsequent emplacement history was complex (Wells and others, 1984). Babcock and others (1992) and Haeussler and others (2003) favor the interpretation that the basalts were the product of an oceanic spreading center interacting with the continental margin. Regardless of their origin, onlapping strata in southern Oregon indicate that the Coast Range basalts were attached to North America by 50 Ma; but on southern Vancouver Island, where the terrane-bounding Leech River Fault is exposed, Brandon and Vance (1992) concluded that suturing to North America occurred in the broad interval between 42 and 24 Ma. After emplacement of the Coast Range basalt terrane, the Cascadia accretionary wedge developed by frontal accretion and underplating (Tabor and Cady, 1978b; Clowes and others, 1987). Domal uplift of the part of the accretionary complex beneath the Olympic Mountains occurred after ~18 Ma (Brandon and others, 1998). Continental and alpine glaciation during Quaternary time reshaped the uplifted rocks of the Olympic Mountains.

  5. Geologic map and map database of the Palo Alto 30' x 60' quadrangle, California

    USGS Publications Warehouse

    Brabb, E.E.; Jones, D.L.; Graymer, R.W.

    2000-01-01

    This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (pamf.ps, pamf.pdf, pamf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.

  6. Geologic map and map database of western Sonoma, northernmost Marin, and southernmost Mendocino counties, California

    USGS Publications Warehouse

    Blake, M.C.; Graymer, R.W.; Stamski, R.E.

    2002-01-01

    This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (wsomf.ps, wsomf.pdf, wsomf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.

  7. Relationships between ground and airborne gamma-ray spectrometric survey data, North Ras Millan, Southern Sinai Peninsula, Egypt.

    PubMed

    Youssef, Mohamed A S

    2016-02-01

    In the last decades of years, there was considerable growth in the use of airborne gamma-ray spectrometry. With this growth, there was an increasing need to standardize airborne measurements, so that they can be independent of survey parameters. Acceptable procedures were developed for converting airborne to ground gamma-ray spectrometric measurements of total-count intensity as well as, potassium, equivalent uranium and equivalent thorium concentrations, due to natural sources of radiation. The present study aims mainly to establish relationships between ground and airborne gamma-ray spectrometric data, North Ras Millan, Southern Sinai Peninsula, Egypt. The relationships between airborne and ground gamma-ray spectrometric data were deduced for the original and separated rock units in the study area. Various rocks in the study area, represented by Quaternary Wadi sediments, Cambro-Ordovician sandstones, basic dykes and granites, are shown on the detailed geologic map. The structures are displayed, which located on the detailed geologic map, are compiled from the integration of previous geophysical and surface geological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Shallow geology, sea-floor texture, and physiographic zones of Vineyard and western Nantucket Sounds, Massachusetts

    USGS Publications Warehouse

    Baldwin, Wayne E.; Foster, David S.; Pendleton, Elizabeth A.; Barnhardt, Walter A.; Schwab, William C.; Andrews, Brian D.; Ackerman, Seth D.

    2016-09-02

    Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs/video, and surficial sediment samples collected within the 494-square-kilometer study area. Interpretations of seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.

  9. Digital geologic map of the Thirsty Canyon NW quadrangle, Nye County, Nevada

    USGS Publications Warehouse

    Minor, S.A.; Orkild, P.P.; Sargent, K.A.; Warren, R.G.; Sawyer, D.A.; Workman, J.B.

    1998-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, dike, and caldera wall), and point (i.e., structural attitude) vector data for the Thirsty Canyon NW 7 1/2' quadrangle in southern Nevada. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic and tectonic interest. The Thirsty Canyon NW quadrangle is located in southern Nye County about 20 km west of the Nevada Test Site (NTS) and 30 km north of the town of Beatty. The map area is underlain by extensive layers of Neogene (about 14 to 4.5 million years old [Ma]) mafic and silicic volcanic rocks that are temporally and spatially associated with transtensional tectonic deformation. Mapped volcanic features include part of a late Miocene (about 9.2 Ma) collapse caldera, a Pliocene (about 4.5 Ma) shield volcano, and two Pleistocene (about 0.3 Ma) cinder cones. Also documented are numerous normal, oblique-slip, and strike-slip faults that reflect regional transtensional deformation along the southern part of the Walker Lane belt. The Thirsty Canyon NW map provides new geologic information for modeling groundwater flow paths that may enter the map area from underground nuclear testing areas located in the NTS about 25 km to the east. The geologic map database comprises six component ArcINFO map coverages that can be accessed after decompressing and unbundling the data archive file (tcnw.tar.gz). These six coverages (tcnwpoly, tcnwflt, tcnwfold, tcnwdike, tcnwcald, and tcnwatt) are formatted here in ArcINFO EXPORT format. Bundled with this database are two PDF files for readily viewing and printing the map, accessory graphics, and a description of map units and compilation methods.

  10. Geological mapping of lunar highland crater Lalande: Topographic configuration, morphology and cratering process

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Liu, ChangQing; Bi, Xiangyu

    2018-02-01

    Highland crater Lalande (4.45°S, 8.63°W; D = 23.4 km) is located on the PKT area of the lunar near side, southeast of the Mare Insularum. It is a complex crater in Copernican era and has three distinguishing features: high silicic anomaly, the highest Th abundance and special landforms on its floor. There are some low-relief bulges on the left of Lalande's floor with regular circle or ellipse shapes. They are ∼250-680 m wide and ∼30-91 m high with maximum flank slopes >20°. There are two possible scenarios for the formation of these low-relief bulges which are impact melt products or young silicic volcanic eruptions. We estimated the absolute model ages of the ejecta deposits, several melt ponds and the hummocky floor and determined the ratio of diameter and depth of the crater Lalande. In addition, we found some similar bugle features within other Copernican-aged craters and there were no volcanic source vents on Lalande's floor. Thus, we hypothesized that these low-relief bulges were most consistent with an origin of impact melts during the crater formation instead of small and young volcanic activities occurring on the floor. Based on Kaguya Terrain Camera (TC) ortho-mosaic and Digital Terrain Model (DTM) data produced by TC imagery in stereo, geological units and some linear features on the floor and wall of Lalande have been mapped. Eight geological units are organized by crater floor units: hummocky floor, central peak and low-relief bulges; and crater wall units: terraced walls, channeled and veneered walls, interior walls, mass wasting areas, blocky areas, and melt ponds. These geological units and linear features provided us a chance to understand some details of the cratering process and elevation differences on the floor. We proposed that subsidence due to melt cooling, late-stage wall collapse and rocks uplifted from beneath the surface could be the possible causes of the observed elevation differences on Lalande's floor.

  11. Geologic Evolution of Saturn's Icy Moon Tethys

    NASA Astrophysics Data System (ADS)

    Wagner, Roland; Stephan, K.; Schmedemann, N.; Roatsch, T.; Kersten, E.; Neukum, G.; Porco, C. C.

    2013-10-01

    Tethys, 1072 km in diameter, is a mid-sized icy moon of Saturn imaged for the first time in two Voyager flybys [1][2][3]. Since July 2004, its surface has been imaged by the Cassini ISS cameras at resolutions between 200 and 500 m/pxl. We present results from our ongoing work to define and map geologic units in camera images obtained preferentially during Cassini’s Equinox and Solstice mission phases. In the majority of Tethys’ surface area a densely cratered plains unit [1][2][3][this work] is abundant. The prominent graben system of Ithaca Chasma is mapped as fractured cratered plains. Impact crater and basin materials can be subdivided into three degradational classes. Odysseus is a fresh large impact basin younger than Ithaca Chasma according to crater counts [4]. Heavily degraded craters and basins occur in the densely cratered plains unit. A smooth, less densely cratered plains unit in the trailing hemisphere was previously identified by [2] but mapping of its boundaries is difficult due to varying viewing geometries of ISS images. To the south of Odysseus, we identified a cratered plains unit not seen in Voyager data, characterized by remnants of highly degraded large craters superimposed by younger fresher craters with a lower crater density compared to the densely cratered plains unit. Its distinct linear northern contact with the densely cratered plains suggests a tectonic origin. Sets of minor fractures can be distinguished in the densely cratered plains, and locally, features of mass wasting can be observed. References: [1] Smith B. A. et al. (1981), Science 212, 163-191. [2] Smith B. A. et al. (1982), Science 215, 504-537. [3] Moore J. M. and Ahern J. L. (1983), JGR 88 (suppl.), A577-A584. [4] Giese B. et al. (2007), GRL 34, doi:10.1029/2007GL031467.

  12. The British Geological Survey's Lexicon of Named Rock Units as Online and Linked Data

    NASA Astrophysics Data System (ADS)

    McCormick, T.

    2012-12-01

    The British Geological Survey's Lexicon of Named Rock Units provides freely accessible definitions and supplementary information about geological units of Great Britain, Northern Ireland, and their associated continental shelf. It is an online database that can be searched at www.bgs.ac.uk/Lexicon/. It has existed since 1990 (under different names) but the database and user interface have recently been completely redesigned to improve their semantic capabilities and suitability for describing different styles of geology. The data are also now freely available as linked data from data.bgs.ac.uk/. The Lexicon of Named Rock Units serves two purposes. First, it is a dictionary, defining and constraining the geological units that are referenced in the Survey's data sets, workflows, products and services. These can include printed and digital geological maps at a variety of scales, reports, books and memoirs, and 3- and 4-dimensional geological models. All geological units referenced in any of these must first be present and defined, at least to a basic level of completeness, in the Lexicon database. Only then do they become available for use. The second purpose of the Lexicon is as a repository of knowledge about the geology of the UK and its continental shelf, providing authoritative descriptions written and checked by BGS geoscientists. Geological units are assigned to one of four themes: bedrock, superficial, mass movement and artificial. They are further assigned to one of nine classes: lithostratigraphical, lithodemic intrusive, lithodemic tectono-metamorphic, lithodemic mixed, litho-morpho-genetic, man-made, age-based, composite, and miscellaneous. The combination of theme and class controls the fields that are available to describe each geological unit, so that appropriate fields are offered for each, whether it is a Precambrian tectono-metamorphic complex, a Devonian sandstone formation, or a Devensian river terrace deposit. Information that may be recorded about each unit includes its rank, parentage, previous and alternative names and usage, geochronological age, lithology, environment of deposition / mode of origin, thickness, boundaries, type and reference localities and sections, geographical distribution, associated landforms, and literature references. BGS geoscientists use a web-based 'sandbox' system to write and revise definitions. The Lexicon currently stores information on approximately 13,400 geological units that BGS considers to be 'current', with cross references to some 6,000 other names that are considered to be obsolete or alternative names. The entries span the entire preserved geological history of the UK from Archaean to Recent, onshore and offshore.

  13. Geologic and geophysical maps of the eastern three-fourths of the Cambria 30' x 60' quadrangle, central California Coast Ranges

    USGS Publications Warehouse

    Graymer, R.W.; Langenheim, V.E.; Roberts, M.A.; McDougall, Kristin

    2014-01-01

    The Cambria 30´ x 60´ quadrangle comprises southwestern Monterey County and northwestern San Luis Obispo County. The land area includes rugged mountains of the Santa Lucia Range extending from the northwest to the southeast part of the map; the southern part of the Big Sur coast in the northwest; broad marine terraces along the southwest coast; and broadvalleys, rolling hills, and modest mountains in the northeast. This report contains geologic, gravity anomaly, and aeromagnetic anomaly maps of the eastern three-fourths of the 1:100,000-scale Cambria quadrangle and the associated geologic and geophysical databases (ArcMap databases), as well as complete descriptions of the geologic map units and the structural relations in the mapped area. A cross section is based on both the geologic map and potential-field geophysical data. The maps are presented as an interactive, multilayer PDF, rather than more traditional pre-formatted map-sheet PDFs. Various geologic, geophysical, paleontological, and base map elements are placed on separate layers, which allows the user to combine elements interactively to create map views beyond the traditional map sheets. Four traditional map sheets (geologic map, gravity map, aeromagnetic map, paleontological locality map) are easily compiled by choosing the associated data layers or by choosing the desired map under Bookmarks.

  14. Spatial Modeling for Groundwater Arsenic Levels in North Carolina

    PubMed Central

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E.

    2013-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. PMID:21528844

  15. Spatial modeling for groundwater arsenic levels in North Carolina.

    PubMed

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E

    2011-06-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.

  16. Geology and geomorphology of the Carolina Sandhills, Chesterfield County, South Carolina

    USGS Publications Warehouse

    Swezey, Christopher; Fitzwater, Bradley A.; Whittecar, G. Richard

    2016-01-01

    This two-day field trip focuses on the geology and geomorphology of the Carolina Sandhills in Chesterfield County, South Carolina. This area is located in the updip portion of the U.S. Atlantic Coastal Plain province, supports an ecosystem of longleaf pine (Pinus palustris) and wiregrass (Aristida stricta), and contains three major geologic map units: (1) An ~60–120-m-thick unit of weakly consolidated sand, sandstone, mud, and gravel is mapped as the Upper Cretaceous Middendorf Formation and is interpreted as a fluvial deposit. This unit is capped by an unconformity, and displays reticulate mottling, plinthite, and other paleosol features at the unconformity. The Middendorf Formation is the largest aquifer in South Carolina. (2) A 0.3–10-m-thick unit of unconsolidated sand is mapped as the Quaternary Pinehurst Formation and is interpreted as deposits of eolian sand sheets and dunes derived via remobilization of sand from the underlying Cretaceous strata. This unit displays argillic horizons and abundant evidence of bioturbation by vegetation. (3) A <3-m-thick unit of sand, pebbly sand, sandy mud, and mud is mapped as Quaternary terrace deposits adjacent to modern drainages. In addition to the geologic units listed above, a prominent geomorphologic feature in the study area is a north-trending escarpment (incised by headwater streams) that forms a markedly asymmetric drainage divide. This drainage divide, as well as the Quaternary terraces deposits, are interpreted as evidence of landscape disequilibrium (possibly geomorphic responses to Quaternary climate changes).

  17. Indoor radon mapping and its relation to geology in Hungary

    NASA Astrophysics Data System (ADS)

    Minda, Mihály; Tóth, György; Horváth, István; Barnet, Ivan; Hámori, Krisztián; Tóth, Eszter

    2009-04-01

    Indoor radon mapping may show stronger dependence on geological formations if the measured homes are one-storied houses with no basement. In Hungary, 17,244 homes were investigated on the yearly average of indoor radon concentrations; among these homes, there were 6,154, one-storied, no-basement houses. In Hungary, 21 geological units were created relevant for indoor radon index characterized by lithology, the position of the ground water table, and the gas permeability. Maps were drawn of different topography (counties, grid, geological units) and different values (maximum, mean, indoor radon indexes). A kind of standardization of houses was that only the one-storied, no-basement ones were chosen, but from geological point of view some more information was gained when the wall materials (bricks or adobe) were also taken into account. (“Adobe” is made of clay and straw in Hungary, and not burned as brick, just dried on sunshine). Enhanced indoor radon values can be observed on the bedrock of Cenozoic volcanic rocks and their eroded materials deposited on the local alluvial valleys. Another group with relatively increased indoor radon values can be connected to granite bodies. The grid method is useful for covering large state or even continental areas. For practical public use and detailed radon risk mapping geological or administrative unit-systems could yield more reasonable and useful results.

  18. Maps for America: cartographic products of the U.S. Geological Survey and others

    USGS Publications Warehouse

    Thompson, Morris M.

    1988-01-01

    "Maps for America" was originally published in 1979 as a Centennial Volume commemorating the Geological Survey's hundred years of service (1879 - 1979) in the earth sciences. It was an eminently fitting Centennial Year publication, for, since its establishment, the Geological Survey has continuously carried on an extensive program of mapping to provide knowledge of the topography, geology, hydrology, and natural resources of our nation.This volume contains an organized presentation of information about the map produced by the Geological Survey and other American organizations, public and private. Such maps are important tools for those in government and in private endeavors who are working to assure the wisest choices in managing the Nation's resources. They are particularly supportive of the Department of the Interior's role as the Nation's principal conservation agency.The third edition of "Maps for America," like the second edition, is intended primarily to replenish the supply of copies of the book, but it also contains a number of changes to correct or update the text.

  19. The systematic geologic mapping program and a quadrangle-by-quadrangle analysis of time-stratigraphic relations within oil shale-bearing rocks of the Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.

    2012-01-01

    During the 1960s, 1970s, and 1980s, the U.S. Geological Survey mapped the entire area underlain by oil shale of the Eocene Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin contains the largest known oil shale deposit in the world, with an estimated 1.53 trillion barrels of oil in place and as much as 400,000 barrels of oil per acre. This report places the sixty-nine 7½-minute geologic quadrangle maps and one 15-minute quadrangle map published during this period into a comprehensive time-stratigraphic framework based on the alternating rich and lean oil shale zones. The quadrangles are placed in their respective regional positions on one large stratigraphic chart so that tracking the various stratigraphic unit names that have been applied can be followed between adjacent quadrangles. Members of the Green River Formation were defined prior to the detailed mapping, and many inconsistencies and correlation problems had to be addressed as mapping progressed. As a result, some of the geologic units that were defined prior to mapping were modified or discarded. The extensive body of geologic data provided by the detailed quadrangle maps contributes to a better understanding of the distribution and characteristics of the oil shale-bearing rocks across the Piceance Basin.

  20. Surficial Geologic Map of the Tanacross B-4 Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Carrara, Paul E.

    2006-01-01

    The Tanacross B-4 1:63,360-scale quadrangle, through which the Alaska Highway runs, is in east-central Alaska about 100 mi west of the Yukon border. The surficial geologic mapping in the quadrangle is in support of the 'Geologic Mapping in support of land, resources, and hazards issues in Alaska' Project of the USGS National Cooperative Geologic Mapping Program. The Tanacross B-4 quadrangle contains parts of two physiographic provinces, the Yukon-Tanana Upland and the Northway-Tanana Lowland. The gently rolling hills of the Yukon-Tanana Upland, in the northern and eastern map area, rise to about 3,100 ft. The Northway-Tanana Lowland, in the western and southern map area, contains the westerly flowing Tanana River. Elevations along the floor of the lowland generally range between 1,540 and 1,700 ft. The dominant feature within the map is the Tok fan, which occupies about 20 percent of the map area. This large, nearly featureless fan contains a high percentage of volcanic clasts derived from outside the present-day drainage of the Tok River. The map provides interpretations of the Quaternary surficial deposits and associated geologic hazards in this area of the upper Tanana valley. Because the map area is dominated by various surficial deposits, the map depicts 13 different Quaternary surficial units consisting of man-made, alluvial, colluvial, organic, lacustrine, and eolian deposits. Deposits shown on this map are generally greater than 1 m thick. The map is accompanied by a text containing unit descriptions incorporating information pertaining to material type, location, associated hazards, resource use (if any), and thickness.

  1. Europa: Characterization and interpretation of global spectral surface units

    USGS Publications Warehouse

    Nelson, M.L.; McCord, T.B.; Clark, R.N.; Johnson, T.V.; Matson, D.L.; Mosher, J.A.; Soderblom, L.A.

    1986-01-01

    The Voyager global multispectral mosaic of the Galilean satellite Europa (T. V. Johnson, L. A. Soderblom, J. A. Mosher, G. E. Danielson, A. F. Cook, and P. Kupferman, 1983, J. Geophys. Res. 88, 5789-5805) was analyzed to map surface units with similar optical properties (T. B. McCord, M. L. Nelson, R. N. Clark, A. Meloy, W. Harrison, T. V. Johnson, D. L. Matson, J. A. Mosher, and L. Soderblom, 1982, Bull Amer. Astron. Soc. 14, 737). Color assignments in the unit map are indicative of the spectral nature of the unit. The unit maps make it possible to infer extensions of the geologic units mapped by B. K. Lucchitta and L. A. Soderblom (1982, in Satellites of Jupiter, pp. 521-555, Univ. of Arizona Press, Tucson) beyond the region covered in the high-resolution imagery. The most striking feature in the unit maps is a strong hemispheric asymmetry. It is seen most clearly in the ultraviolet/violet albedo ratio image, because the asymmetry becomes more intense as the wavelength decreases. It appears as if the surface has been darkened, most intensely in the center of the trailing hemisphere and decreasing gradually, essentially as the cosine of the angle from the antapex of motion, to a minimum in the center of the leading hemisphere. The cosine pattern suggests that the darkening is exogenic in origin and is interpreted as evidence of alteration of the surface by ion bombardment from the Jovian magnetosphere. ?? 1986.

  2. Maps of the United States

    USGS Publications Warehouse

    ,

    1998-01-01

    The U.S. Geological Survey (USGS) sells a variety of maps of the United States.  Who needs these maps?  Students, land planners, politicians, teachers, marketing specialists, delivery companies, authors and illustrators, attorneys, railroad enthusiasts, travelers, Government agencies, military recruiters, newspapers, map collectors, truckers, boaters, hikers, sales representatives, communication specialists.  Everybody.

  3. Development and testing of a contamination potential mapping system for a portion of the General Separations Area, Savannah River Site, South Carolina

    USGS Publications Warehouse

    Rine, J.M.; Berg, R.C.; Shafer, J.M.; Covington, E.R.; Reed, J.K.; Bennett, C.B.; Trudnak, J.E.

    1998-01-01

    A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.

  4. Geologic map of Kundelan ore deposits and prospects, Zabul Province, Afghanistan; modified from the 1971 original map compilations of K.I. Litvinenko and others

    USGS Publications Warehouse

    Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2015-10-26

    Elevations on the cross sections are derived from the original Soviet topography and may not match the Global Digital Elevation Model (GDEM) topography used on the redrafted map of this report. Most hydrography derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has not been included on our redrafted version of the map because of a poor fit with alluvial deposits from the unmodified original Soviet map (graphical supplement no. 18; Litvinenko and others, 1971).

  5. Geologic Mapping of the Juno Chasma Quadrangle, Venus: Establishing the Relation Between Rifting and Volcanism

    NASA Technical Reports Server (NTRS)

    Senske, D. A.

    2008-01-01

    To understand the spatial and temporal relations between tectonic and volcanic processes on Venus, the Juno Chasma region is mapped. Geologic units are used to establish regional stratigraphic relations and the timing between rifting and volcanism.

  6. Map showing contours on top of the upper Cretaceous Mowry Shale, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1991-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 4,926 of these wells that penetrate the Minnelusa Formation and equivalents.

  7. Map showing structure contours on the top of the upper Jurassic Morrison Formation, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1991-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 2,429 of these wells that penetrate the Minnelusa Formation and equivalents.

  8. Publications of the Western Geologic Mapping Team 1997-1998

    USGS Publications Warehouse

    Stone, Paul; Powell, C.L.

    1999-01-01

    The Western Geologic Mapping Team (WGMT) of the U.S. Geological Survey, Geologic Division (USGS, GD), conducts geologic mapping and related topical earth-science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis currently include southern California, the San Francisco Bay region, the Pacific Northwest, the Las Vegas urban corridor, and selected National Park lands. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WGMT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WGMT released in calendar years 1997 and 1998. Most of the publications listed were authored or coauthored by WGMT staff. However, the list also includes some publications authored by formal non-USGS cooperators with the WGMT, as well as some authored by USGS staff outside the WGMT in cooperation with WGMT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Most of these Web publications are USGS open-file reports that contain large digital databases of geologic map and related information. For these, the bibliographic citation refers specifically to an explanatory pamphlet containing information about the content and accessibility of the database, not to the actual map or related information comprising the database itself.

  9. Geologic mapping of the saturnian satellites based on Cassini ISS images: objectives, methods, and results

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Roatsch, T.; Giese, B.; Wolf, U.; Neukum, G.

    Remote Sensing of the Earth and Planets, Freie Universitaet Berlin, Germany Data set and objectives: Since the Cassini Orbiter has been inserted into orbit around Saturn on July 1, 2004, image data of the major saturnian satellites were collected by the Cassini ISS narrow and wide angle cameras (NAC and WAC respectively) at resolutions up to 10 - 20 m/pxl [1]. Up to now, the surface of each one of these satellites was imaged at least once at distances less than 20000 km. The extended image coverage and much higher resolution compared to Voyager images from more than two decades ago help to define (1) the global distribution of geologic units at regional map scale (100 - 300 m/pxl), (2) to identify units of possibly cryovolcanic origin, (3) to map tectonic landforms in detail, and (4) to use the crater size-frequency distributions measured on geologic units for relative and absolute age dating. Also (5), the stratigraphic column for each satellite can be subdivided into time-stratigraphic systems by the combination of stratigraphy and crater frequency measurements. Methods: All geologic maps are produced on image base maps put together from images of various flybys at each satellite [2]. Geologic units are identified by their specific albedo and morphology. In some cases, topographic data and digital elevation models are available. Cratering chronology models are used to derive absolute model ages from crater size-frequency measurements [3]. Important stratigraphic markers (and their associated crater frequencies and ages) which can be used to subdivide the geological history of a specific satellite are (1) volcanic flows, (2) prominent tectonic landforms, (3) large impact features, such as basins, and (4) craters with extended ray systems. Results: In this paper we focus on regional geologic maps of Dione and Rhea, two neighbours in orbit, and of Enceladus. Dione and Rhea, 1124 and 1538 km in diameter, are characterized (a) by densely cratered plains, (b) smooth, less densely cratered plains, and (3) by tectonic features, mostly horst and graben structures [4][5][6]. Cratering model ages of the densely cratered plains are on the order of 4.2 Gyr [6]. The surface of Rhea appears to be more densely cratered and hence older than the one of Dione. Also, Rhea has a higher abundance of large impact features several 100 km in diameter while only one such basin was found on Dione [6][7]. Ray craters are not abundant at crater sizes larger than 20 km except for one feature found on Rhea. Enceladus (502 km in diameter) shows a wide range of geologic units and surface ages. Densely cratered plains with ages on the order of 4 Gyr are cut by tectonic bands of ridges and grooves with various model ages ranging from 1 to more than 3 Gyr [6]. In the south polar terrain, areas almost devoid of craters and with cratering model ages much less than 4 Myr 1 reveal on-going geologic processes which recently were confirmed by the discovery of cryovolcanic activity on this moon [6][8]. References: [1] Porco, C. C. et al., Space Sci. Rev. 115, 363-497, 2004. [2] Roatsch, T. et al., Planet. Space Sci., in press, 2006. [3] Neukum G. et al., 40th ESLAB Symposium, May 8-12, 2006, abstract book, 235, 2006. [4] Plescia, J., Icarus 56, 401-413, 1983. [5] Moore, J., Icarus 59, 205-220, 1984. [6] Wagner, R. et al., LPSC XXXVII, abstr. No. 1805 [CD-Rom], 2006. [7] Stooke, P. J., LPSC XXXIII, abstr. No. 1553 [CD-Rom], 2002. [8] Porco, C. C. et al., Science 311, 1393-1401, 2006. 2

  10. Reconnaissance geologic map of Kodiak Island and adjacent islands, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.

    2013-01-01

    Kodiak Island and its adjacent islands, located on the west side of the Gulf of Alaska, contain one of the largest areas of exposure of the flysch and melange of the Chugach terrane of southern Alaska. However, in the past 25 years, only detailed mapping covering small areas in the archipelago has been done. This map and its associated digital files (Wilson and others, 2005) present the best available mapping compiled in an integrated fashion. The map and associated digital files represent part of a systematic effort to release geologic map data for the United States in a uniform manner. The geologic data have been compiled from a wide variety of sources, ranging from state and regional geologic maps to large-scale field mapping. The map data are presented for use at a nominal scale of 1:500,000, although individual datasets (see Wilson and others, 2005) may contain data suitable for use at larger scales.

  11. Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Natural Asbestos Occurrences in the Southwestern United States (Arizona, Nevada, and Utah)

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2008-01-01

    This map and its accompanying dataset provide information for 113 natural asbestos occurrences in the Southwestern United States (U.S.), using descriptions found in the geologic literature. Data on location, mineralogy, geology, and relevant literature for each asbestos site are provided. Using the map and digital data in this report, the user can examine the distribution of previously reported asbestos occurrences and their geological characteristics in the Southwestern U.S., which includes sites in Arizona, Nevada, and Utah. This report is part of an ongoing study by the U.S. Geological Survey to identify and map reported natural asbestos occurrences in the U.S., which thus far includes similar maps and datasets of natural asbestos occurrences within the Eastern U.S. (http://pubs.usgs.gov/of/2005/1189/), the Central U.S. (http://pubs.usgs.gov/of/2006/1211/), and the Rocky Mountain States (http://pubs.usgs.gov/of/2007/1182/. These reports are intended to provide State and local government agencies and other stakeholders with geologic information on natural occurrences of asbestos in the U.S.

  12. Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Natural Asbestos Occurrences in the Rocky Mountain States of the United States (Colorado, Idaho, Montana, New Mexico, and Wyoming)

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2007-01-01

    This map and its accompanying dataset provide information for 48 natural asbestos occurrences in the Rocky Mountain States of the United States (U.S.), using descriptions found in the geologic literature. Data on location, mineralogy, geology, and relevant literature for each asbestos site are provided. Using the map and digital data in this report, the user can examine the distribution of previously reported asbestos occurrences and their geological characteristics in the Rocky Mountain States. This report is part of an ongoing study by the U.S. Geological Survey to identify and map reported natural asbestos occurrences in the U.S., which thus far includes similar maps and datasets of natural asbestos occurrences within the Eastern U.S. (http://pubs.usgs.gov/of/2005/1189/) and the Central U.S. (http://pubs.usgs.gov/of/2006/1211/). These reports are intended to provide State and local government agencies and other stakeholders with geologic information on natural occurrences of asbestos in the U.S.

  13. Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, K.W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhfer, G.; McEwen, A.; Rice, J.W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity. Copyright ?? 2011 by the American Geophysical Union.

  14. Geologic map of the Jasper Quadrangle, Newton and Boone counties, Arkansas

    USGS Publications Warehouse

    Hudson, M.R.; Murray, K.E.; Pezzutti, Deborah

    2001-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Jasper 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Jasper quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Jasper quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  15. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  16. Distribution of materials excavated by the lunar crater Bullialdus and implications for the geologic history of the Nubium region

    NASA Technical Reports Server (NTRS)

    Tompkins, Stefanie; Pieters, Carle M.; Mustard, John F.; Pinet, Patrick; Chevrel, Serge D.

    1994-01-01

    Previous spectroscopic studies of the lunar crater Bullialdus, located in the Nubium Basin, indicated an unusual stratigraphy of two gabbroic layers overlying a noritic unit. The possible existence of a layered mafic pluton at Bullialdus was suggested. To investigate the geologic context with more detailed spatial information, charge-coupled device (CCD) images of Bullialdus were obtained using eight filters. A linear mixing model was used to investigate the fractional abundances of spectral end-members chosen from within the multispectral image. Since the reflectance properties of lunar materials over this wavelength range are sensitive to variations in composition and soil maturity, fractional abundance images were used to create a new geologic map of the crater. The spatial relationships of the surface materials confirm the previously inferred stratigraphy, and further reveal the central peaks to exhibit two distinct compositional units: noritic anorthosite and anorthositic norite. Three models for the origin of the observed stratigraphy are considered: Bullialdus has excavated stratigraphic units containing (1) early mare basalt overlying anorthositic-noritic crustal material, (2) part of a layered mafic pluton, and/or (3) part of an impact melt sheet formed by the Nubium Basin impact event.

  17. Regional geology and tectonics

    USGS Publications Warehouse

    Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    This chapter describes the regional geology and tectonic origins of the major geologic units for the Northern Cordillera. The goals of the chapter are to: (1) provide a summary and regional overview of this vast region that contains a complicated geologic history; and (2) describe the major geologic units and tectonic events that cover a broad geologic time span from the Proterozoic to the Holocene (Recent).

  18. Preliminary Geologic Map of the Little Piute Mountains, California; a Digital Database

    USGS Publications Warehouse

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl; Phelps, Geoffrey A.

    1997-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  19. Preliminary Geologic Map of the the Little Piute Mountains, San Bernardino County, California

    USGS Publications Warehouse

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl E.; Phelps, Geoffrey A.

    1995-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  20. Geologic map of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  1. William Maclure's Wernerian Appalachians

    USGS Publications Warehouse

    Lessing, P.

    1999-01-01

    William Maclure (1763-1840), a geologist of Scottish ancestry, was also a man of many other talents and interests including educator, philanthropist, world traveler, prolific writer, patron of science, businessman, bibliophile, and social reformer. He produced the first American printing of a geological map of the United States in 1809 and followed this with four other editions identified as 1811, 1817A, 1817B, and 1817C. All were well received and reproduced by others at least 15 times, as recently as 1989. Maclure has been called 'Father of American Geology,' a title he rightly deserves, primarily for these maps, but also for the first cross sections through the Appalachians, many other geological articles, and substantial donations of specimens, books, and funds to many learned institutions, including the Academy of Natural Sciences of Philadelphia. Maclure's delineation of Appalachian geology followed Werner's geognostic classification of strata using Primary, Transition, Secondary, and Alluvial, but with modifications and considerable doubt concerning their Neptunian origin. He added 'Rock Salt' on his 1809 map as a line on the western edge of the Appalachians and 'Old Red Sand Stone' on the 1811 map for the basins later identified as Triassic. In his later articles, Maclure noted several times that 'trap' or basalt was an igneous rock and not an aqueous precipitate. He further stated that the Secondary and Transition strata are aggregates from the disintegration of the older Primitive rocks. He came to the conclusion near the end of his life that organic remains indicate '...that nature began with the most simple, and gradually proceeded to the more complicated and perfect.'.

  2. Spatial digital database of the geologic map of Catalina Core Complex and San Pedro Trough, Pima, Pinal, Gila, Graham, and Cochise counties, Arizona

    USGS Publications Warehouse

    Dickinson, William R.; digital database by Hirschberg, Douglas M.; Pitts, G. Stephen; Bolm, Karen S.

    2002-01-01

    The geologic map of Catalina Core Complex and San Pedro Trough by Dickinson (1992) was digitized for input into a geographic information system (GIS) by the U.S. Geological Survey staff and contractors in 2000-2001. This digital geospatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information in a geographic information system (GIS) for use in spatial analysis. The resulting digital geologic map database data can be queried in many ways to produce a variety of geologic maps and derivative products. Digital base map data (topography, roads, towns, rivers, lakes, and so forth) are not included; they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:125,000 (for example, 1:100,000 or 1:24,000). The digital geologic map plot files that are provided herein are representations of the database. The map area is located in southern Arizona. This report lists the geologic map units, the methods used to convert the geologic map data into a digital format, the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. The manuscript and digital data review by Lorre Moyer (USGS) is greatly appreciated.

  3. Geologic Map of the Tucson and Nogales Quadrangles, Arizona (Scale 1:250,000): A Digital Database

    USGS Publications Warehouse

    Peterson, J.A.; Berquist, J.R.; Reynolds, S.J.; Page-Nedell, S. S.; Digital database by Oland, Gustav P.; Hirschberg, Douglas M.

    2001-01-01

    The geologic map of the Tucson-Nogales 1:250,000 scale quadrangle (Peterson and others, 1990) was digitized by U.S. Geological Survey staff and University of Arizona contractors at the Southwest Field Office, Tucson, Arizona, in 2000 for input into a geographic information system (GIS). The database was created for use as a basemap in a decision support system designed by the National Industrial Minerals and Surface Processes project. The resulting digital geologic map database can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included; they may be obtained from a variety of commercial and government sources. Additionally, point features, such as strike and dip, were not captured from the original paper map and are not included in the database. This database is not meant to be used or displayed at any scale larger than 1:250,000 (for example, 1:100,000 or 1:24,000). The digital geologic map graphics and plot files that are provided in the digital package are representations of the digital database. They are not designed to be cartographic products.

  4. Database for the Geologic Map of Upper Eocene to Holocene Volcanic and Related Rocks of the Cascade Range, Oregon

    USGS Publications Warehouse

    Nimz, Kathryn; Ramsey, David W.; Sherrod, David R.; Smith, James G.

    2008-01-01

    Since 1979, Earth scientists of the Geothermal Research Program of the U.S. Geological Survey have carried out multidisciplinary research in the Cascade Range. The goal of this research is to understand the geology, tectonics, and hydrology of the Cascades in order to characterize and quantify geothermal resource potential. A major goal of the program is compilation of a comprehensive geologic map of the entire Cascade Range that incorporates modern field studies and that has a unified and internally consistent explanation. This map is one of three in a series that shows Cascade Range geology by fitting published and unpublished mapping into a province-wide scheme of rock units distinguished by composition and age; map sheets of the Cascade Range in Washington (Smith, 1993) and California will complete the series. The complete series forms a guide to exploration and evaluation of the geothermal resources of the Cascade Range and will be useful for studies of volcano hazards, volcanology, and tectonics. This digital release contains all the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2569 (Sherrod and Smith, 2000). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2569.

  5. Computer-assisted photogrammetric mapping systems for geologic studies-A progress report

    USGS Publications Warehouse

    Pillmore, C.L.; Dueholm, K.S.; Jepsen, H.S.; Schuch, C.H.

    1981-01-01

    Photogrammetry has played an important role in geologic mapping for many years; however, only recently have attempts been made to automate mapping functions for geology. Computer-assisted photogrammetric mapping systems for geologic studies have been developed and are currently in use in offices of the Geological Survey of Greenland at Copenhagen, Denmark, and the U.S. Geological Survey at Denver, Colorado. Though differing somewhat, the systems are similar in that they integrate Kern PG-2 photogrammetric plotting instruments and small desk-top computers that are programmed to perform special geologic functions and operate flat-bed plotters by means of specially designed hardware and software. A z-drive capability, in which stepping motors control the z-motions of the PG-2 plotters, is an integral part of both systems. This feature enables the computer to automatically position the floating mark on computer-calculated, previously defined geologic planes, such as contacts or the base of coal beds, throughout the stereoscopic model in order to improve the mapping capabilities of the instrument and to aid in correlation and tracing of geologic units. The common goal is to enhance the capabilities of the PG-2 plotter and provide a means by which geologists can make conventional geologic maps more efficiently and explore ways to apply computer technology to geologic studies. ?? 1981.

  6. Geologic map of the Vancouver and Orchards quadrangles and parts of the Portland and Mount Tabor quadrangles, Clark County, Washington, and Multnomah County, Oregon

    USGS Publications Warehouse

    O'Connor, Jim E.; Cannon, Charles M.; Mangano, Joseph F.; Evarts, Russell C.

    2016-06-03

    IntroductionThis is a 1:24,000-scale geologic map of the Vancouver and Orchards quadrangles and parts of the Portland and Mount Tabor quadrangles in the States of Washington and Oregon. The map area is within the Portland Basin and includes most of the city of Vancouver, Washington; parts of Clark County, Washington; and a small part of northwestern Multnomah County, Oregon. The Columbia River flows through the southern part of the map area, generally forming the southern limit of mapping. Mapped Quaternary geologic units include late Pleistocene cataclysmic flood deposits, eolian deposits, and alluvium of the Columbia River and its tributaries. Older deposits include Miocene to Pleistocene alluvium from an ancestral Columbia River. Regional geologic structures are not exposed in the map area but are inferred from nearby mapping.

  7. Geology and resource assessment of Costa Rica at 1:500,000 scale; a digital representation of maps of the U.S. Geological Survey's 1987 folio I-1865

    USGS Publications Warehouse

    Schruben, Paul G.

    1997-01-01

    This CD-ROM contains digital versions of the geology and resource assessment maps of Costa Rica originally published in USGS Folio I-1865 (U.S. Geological Survey, the Direccion General de Geologia, Minas e Hidrocarburos, and the Universidad de Costa Rica, 1987) at a scale of 1:500,000. The following layers are available on the CD-ROM: geology and faults; favorable domains for selected deposit types; Bouguer gravity data; isostatic gravity contours; mineral deposits, prospects, and occurrences; and rock geochemistry sample points. For DOS users, the CD-ROM contains MAPPER, a user-friendly map display program. Some of the maps are also provided in the following additional formats on the CD-ROM: (1) ArcView 1 and 3, (2) ARC/INFO 6.1.2 Export, (3) Digital Line Graph (DLG) Optional, and (4) Drawing Exchange File (DXF.)

  8. Magellan: Preliminary description of Venus surface geologic units

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Arvidson, R.; Head, J. W., III; Schaber, G. G.; Solomon, S. C.; Stofan, E. R.; Basilevsky, Alexander T.; Guest, J. E.; Mcgill, G. E.; Moore, H. J.

    1991-01-01

    Observations from approximately one-half of the Magellan nominal eight-month mission to map Venus are summarized. Preliminary compilation of initial geologic observations of the planet reveals a surface dominated by plains that are characterized by extensive and intensive volcanism and tectonic deformation. Four broad categories of units have been identified: plains units, linear belts, surficial units, and terrain units.

  9. New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Banks, M.; Buczkowski, D.

    2010-01-01

    The primary objective of the mapping effort is to produce a geologic map of the Argyre basin and surrounding region at 1:5,000,000 scale in both digital and print formats that will detail the stratigraphic and crosscutting relations among rock materials and landforms (30 deg. S to 65 deg. S, 290 deg. E to 340 deg E). There has not been a detailed geologic map produced of the Argyre region since the Viking-era mapping investigation. The mapping tasks include stratigraphic mapping, crater counting, feature mapping, quantitative landform analysis, and spectroscopic/ stratigraphic investigation feature mapping. The regional geologic mapping investigation includes the Argyre basin floor and rim materials, the transition zone that straddles the Thaumasia plateau, which includes Argyre impactrelated modification, and the southeast margin of the Thaumasia plateau using important new data sets from the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter. The geologic information unfolded by this new mapping project will be useful to the community for constraining the regional geology, paleohydrology, and paleoclimate, which includes but is not limited to the assessment of: (1) whether the Argyre basin contained lakes, (2) the extent of reported flooding and glaciation, (3) existing interpretations of the origin of the narrow ridges located in the southeast part of the basin floor, and (4) the extent of Argyre-related tectonism and its influence on the surrounding regions.

  10. Bedrock geologic and structural map through the western Candor Colles region of Mars

    USGS Publications Warehouse

    Okubo, Chris H.

    2014-01-01

    The structure and geology of the layered deposits in the Candor Colles region corresponding to units Avfs, Avme, and Hvl of Witbeck and others (1991) are reevaluated in this 1:18,000-scale map. The objectives herein are to gather high-resolution structural measurements to (1) refine the previous unit boundaries in this area established by Witbeck and others (1991), (2) revise the local stratigraphy where necessary, (3) characterize bed forms to help constrain depositional processes, and (4) determine the styles and extent of deformation to better inform reconstructions of the local post-depositional geologic history.

  11. Folding Digital Mapping into a Traditional Field Camp Program

    NASA Astrophysics Data System (ADS)

    Kelley, D. F.

    2011-12-01

    Louisiana State University runs a field camp with a permanent fixed-base which has continually operated since 1928 in the Front Range just to the south of Colorado Springs, CO. The field camp program which offers a 6-credit hour course in Field Geology follows a very traditional structure. The first week is spent collecting data for the construction of a detailed stratigraphic column of the local geology. The second week is spent learning the skills of geologic mapping, while the third applies these skills to a more geologically complicated mapping area. The final three weeks of the field camp program are spent studying and mapping igneous and metamorphic rocks as well as conducting a regional stratigraphic correlation exercise. Historically there has been a lack of technology involved in this program. All mapping has been done in the field without the use of any digital equipment and all products have been made in the office without the use of computers. In the summer of 2011 the use of GPS units, and GIS software were introduced to the program. The exercise that was chosen for this incorporation of technology was one in which metamorphic rocks are mapped within Golden Gate Canyon State Park in Colorado. This same mapping exercise was carried out during the 2010 field camp session with no GPS or GIS use. The students in both groups had the similar geologic backgrounds, similar grade point averages, and similar overall performances at field camp. However, the group that used digital mapping techniques mapped the field area more quickly and reportedly with greater ease. Additionally, the students who used GPS and GIS included more detailed rock descriptions with their final maps indicating that they spent less time in the field focusing on mapping contacts between units. The outcome was a better overall product. The use of GPS units also indirectly caused the students to produce better field maps. In addition to greater ease in mapping, the use of GIS software to create maps was rewarding to the students and gave them mapping experience that is in line with industry standards.

  12. Updating the planetary time scale: focus on Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Quantin-Nataf, Cathy

    2013-01-01

    Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.

  13. Preliminary lithogeochemical map showing near-surface rock types in the Chesapeake Bay watershed, Virginia and Maryland

    USGS Publications Warehouse

    Peper, John D.; McCartan, Lucy; Horton, J. Wright; Reddy, James E.

    2001-01-01

    This preliminary experimental lithogeochemical map shows the distribution of rock types in the Virginia and Maryland parts of the Chesapeake Bay watershed. The map was produced digitally by classifying geologic-map units according to composition, mineralogy, and texture; rather than by age and stratigraphic relationships as shown on traditional geologic maps. This map differs from most lithologic maps in that the lithogeochemical unit classification distinguishes those rock units having key water-reactive minerals that may induce acid neutralization, or reduction, of hosted water at the weathering interface. The validity of these rock units, however, is independent of water chemistry, because the rock units are derived from geologic maps and rock descriptions. Areas of high soil carbon content, and sulfide metal deposits are also shown. Water-reactive minerals and their weathering reactions yield five lithogeochemical unit classes: 1) carbonate rock and calcareous rocks and sediments, the most acid-neutralizing; 2)carbonaceous-sulfidic rocks and sediments, oxygen-depleting and reducing; 3) quartzofeldspathic rocks and siliciclastic sediments, relatively weakly reactive with water; 4) mafic silicate rocks/sediments, oxygen consuming and high solute-load delivering; and, 5) the rarer calcareous-sulfidic (carbonaceous) rocks, neutralizing and reducing. Earlier studies in some parts of the map area have related solute loads in ground and stream waters to some aspects of bedrock lithology. More recent preliminary tests of relationships between four of the classes of mapped lithogeochemical units and ground water chemistry, in the Mid-Atlantic area using this map, have focused on and verified the nitrate-reducing and acid-neutralizing properties of some bedrock and unconsolidated aquifer rock types. Sulfide mineral deposits and their mine-tailings effects on waters are beginning to be studied by others. Additional testing of relationships among the lithogeochemical units and aspects of ground and surface water chemistry could help to refine the lithogeochemical classification, and this map. The testing could also improve the usefulness of the map for assessing aquifer reactivity and the transport properties of reactive contaminants such as acid rain, and nitrate from agricultural sources, in the Chesapeake Bay watershed.

  14. Surficial geologic map of the Amboy 30' x 60' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.

    2010-01-01

    The surficial geologic map of the Amboy 30' x 60' quadrangle presents characteristics of surficial materials for an area of approximately 5,000 km2 in the eastern Mojave Desert of southern California. This map consists of new surficial mapping conducted between 2000 and 2007, as well as compilations from previous surficial mapping. Surficial geologic units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects following deposition, and, where appropriate, the lithologic nature of the material. Many physical properties were noted and measured during the geologic mapping. This information was used to classify surficial deposits and to understand their ecological importance. We focus on physical properties that drive hydrologic, biologic, and physical processes such as particle-size distribution (PSD) and bulk density. The database contains point data representing locations of samples for both laboratory determined physical properties and semiquantitative field-based information in the database. We include the locations of all field observations and note the type of information collected in the field to help assist in assessing the quality of the mapping. The publication is separated into three parts: documentation, spatial data, and printable map graphics of the database. Documentation includes this pamphlet, which provides a discussion of the surficial geology and units and the map. Spatial data are distributed as ArcGIS Geodatabase in Microsoft Access format and are accompanied by a readme file, which describes the database contents, and FGDC metadata for the spatial map information. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files that provide a view of the spatial database at the mapped scale.

  15. Surficial geology mapping of the Arctic Ocean: using subbottom profiling and multibeam echosounding data sets to constrain the subsea north of 64° as a layer for the IBCAO

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Baldwin, K.; Gebhardt, C.

    2016-12-01

    Barriers to data collection such as perennial ice cover, climate, and remoteness have contributed to a paucity of geologic data in the Arctic. The last decade, however, has seen a multi-national push to increase the quantity and extent of data available at high latitudes. With increased availability of geophysical and geological data holdings, we expand on previous mapping initiatives by creating a comprehensive surficial geology map as a layer to the International Bathymetric Chart of the Arctic Ocean (IBCAO), providing a way to collectively analyze physiography, morphology and geology. Acoustic facies derived from subbottom profiles, combined with morphology illuminated from IBCAO and multibeam bathymetric datasets, and ground truth data compiled from cores and samples are used to map surficial geology units. We identified over 25 seismo-acoustic facies leading to interpretation of 12 distinct geologic units for the Arctic Ocean. The largest variety of seismic facies occurs on the shelves, which demonstrate the complex ice-margin history (e.g. chaotic bottom echoes with amorphous subbottom reflections that imply ice scouring processes). Shelf-crossing troughs generally lead to trough mouth fans on the continental margin with characteristic glaciogenic debris flow deposits (acoustically transparent units) comprising the bulk of the sedimentary succession. Other areas of continental slopes show a variety of facies suggesting sediment mass failure and turbidite deposition. Vast areas of the deep water portion of the Arctic are dominated by parallel reflections, indicative of hemi-pelagic and turbidity current deposition. Some deep water parts of the basin, however, show evidence of current reworking (sigmoidal reflections within bedforms), and contain deep sea channels with thalwegs (bright reflections within channels) and levee deposits (reflection pinch-out). These results delineated in the surficial geology map provide a comprehensive database of regional geologic information of the Arctic Ocean that can be applied to a variety of disciplines, including the study of Arctic sedimentary processes, climatologic and oceanographic processes, environmental and geohazard risk assessment, resource management, and Extended Continental Shelf mapping.

  16. Paleotectonic investigations of the Pennsylvanian System in the United States, part I: introduction and regional analyses of the Pennsylvanian System

    USGS Publications Warehouse

    McKee, Edwin D.; Crosby, Eleanor J.; Bachman, George O.; Bell, Kenneth G.; Dixon, George H.; Frezon, Sherwood E.; Glick, Ernest E.; Irwin, William P.; Mallory, William W.; Mapel, William J.; Maughan, Edwin K.; Prichard, George E.; Shideler, Gerald L.; Stewart, Gary F.; Wanless, Harold R.; Wilson, Richard F.

    1975-01-01

    The Pennsylvanian is the fourth geologic system to be analyzed and synthesized by geologists of the U.S. Geological Survey in the form of a paleotectonic study covering the conterminous United States. Earlier investigations were of the Jurassic, Triassic, and Permian Systems. Results were published as Miscellaneous Geologic Investigation Maps I-175, I-300, and I-450 and in Professional Paper 515. The objective of these investigations is to provide in graphic form the factual basis for recognition of tectonic events of each system on a countrywide scale. The maps in this publication depict rock thickness, generalized lithology, ancient geography, and other regional relations of the Pennsylvanian System. Method of preparation of the maps, the stratigraphic limits of the map units, and various stratigraphic and structural features and their probable tectonic significance are discussed. Pennsylvanian data were largely compiled between 1961 and 196 by 16 geologists, including the late Harold R. Wanless, who covered the five eastern regions and contributed to several of the special studies. The areas of responsibility of the cooperating geologists are indicated in figure 1. Work in Kansas was done by Gary F. Stewart, of the Kansas Geological Survey. Results of this investigation are presented in three units. Part I comprises an introduction and 17 chapters, each describing and discussing one of the regions in which the conterminous United States was divided for purposes of study and mapping. Part II is a synthesis of Pennsylvanian history to accompany interpretive maps of the five divisions of the Pennsylvanian System treated in this publication; it also includes a series of chapters on depositional environments, climatic conditions, and economic products of the system. The final section of part II is devoted to an index of localities and sources used in construction of the principal maps of this publication. Part III consists of the plates on which are presented the major maps and sections.

  17. Watershed Boundary Dataset for Mississippi

    USGS Publications Warehouse

    Wilson, K. Van; Clair, Michael G.; Turnipseed, D. Phil; Rebich, Richard A.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Environmental Quality, U.S. Department of Agriculture-Natural Resources Conservation Service, Mississippi Department of Transportation, U.S. Department of Agriculture-Forest Service, and the Mississippi Automated Resource Information System developed a 1:24,000-scale Watershed Boundary Dataset for Mississippi including watershed and subwatershed boundaries, codes, names, and areas. The Watershed Boundary Dataset for Mississippi provides a standard geographical framework for water-resources and selected land-resources planning. The original 8-digit subbasins (Hydrologic Unit Codes) were further subdivided into 10-digit watersheds (62.5 to 391 square miles (mi2)) and 12-digit subwatersheds (15.6 to 62.5 mi2) - the exceptions being the Delta part of Mississippi and the Mississippi River inside levees, which were subdivided into 10-digit watersheds only. Also, large water bodies in the Mississippi Sound along the coast were not delineated as small as a typical 12-digit subwatershed. All of the data - including watershed and subwatershed boundaries, subdivision codes and names, and drainage-area data - are stored in a Geographic Information System database, which are available at: http://ms.water.usgs.gov/. This map shows information on drainage and hydrography in the form of U.S. Geological Survey hydrologic unit boundaries for water-resource 2-digit regions, 4-digit subregions, 6-digit basins (formerly called accounting units), 8-digit subbasins (formerly called cataloging units), 10-digit watershed, and 12-digit subwatersheds in Mississippi. A description of the project study area, methods used in the development of watershed and subwatershed boundaries for Mississippi, and results are presented in Wilson and others (2008). The data presented in this map and by Wilson and others (2008) supersede the data presented for Mississippi by Seaber and others (1987) and U.S. Geological Survey (1977).

  18. Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury

    NASA Astrophysics Data System (ADS)

    Buczkowski, D.; Seelos, K. D.

    2010-12-01

    The Caloris basin on Mercury is floored by light-toned plains and surrounded by an annulus of dark-toned material interpreted to be ejecta blocks and smooth, dark, ridged plains. Strangely, preliminary crater-counts indicate that these intra-ejecta dark plains are younger than the light-toned plains within the Caloris basin. This would imply a second, younger plains emplacement event, possibly involving lower albedo material volcanics, which resurfaced the original ejecta deposit. On the other hand, the dark plains may be pre-Caloris light plains covered by a thin layer of dark ejecta. Another alternative to the hypothesis of young, dark volcanism is the possibility that previous crater-counts have not thoroughly distinguished between superposed craters (fresh) and partly-buried craters (old) and therefore have not accurately determined the ages of the Caloris units. We here outline the tasks associated with a new mapping project of the Caloris basin, intended to improve our knowledge of the geology and geologic history of the basin, and thus facilitate an understanding of the thermal evolution of this region of Mercury. We will 1) classify craters based on geomorphology and infilling, 2) create a high-resolution map of the intra-ejecta dark plains, 3) perform crater counts of the intra-ejecta dark plains, the ejecta, and the Caloris floor light plains and 4) refine the stratigraphy of Caloris basin units. We will use new high resolution (200-300 m/p) imaging data from the MDIS instrument to create a new geomorphic map of the dark annulus around the Caloris basin. Known Caloris group formations will be mapped where identified and any new units will be defined and mapped as necessary. Specifically, we will delineate hummocks and smooth plains within the Odin formation and map them separately. We will look for unequivocal evidence of volcanic activity within the dark annulus and the Odin Formation, such as vents and flow lobes. The location of any filled craters will be especially noted, to be incorporated into a new crater classification scheme that includes both degradation state and level and type of infilling. We will also distinguish between craters infilled with 1) lava, 2) impact melt and 3) ejecta, based on our interpretation of the MDIS images. We will then determine the crater size-frequency distribution of each geomorphic unit. We will analyze the crater density of the Caloris floor plains unit, the Odin Formation ejecta and the Odin Formation intra-ejecta dark plains. We will do a second count of Caloris floor craters that includes filled craters, to attempt to get a minimum age for the underlying dark basement. Crater counting on any additional geologic units will depend upon results of the geomorphic mapping. Finally, we will refine the stratigraphy of the Caloris basin units. We start in the region where MESSENGER data over-laps Mariner 10 images. By comparing the Caloris group formations mapped in the Tolstoj and Shakespeare quadrangles to the overlapping MDIS images, we determine the distinctive geomorphology of each of these units in the high resolution MESSENGER data. We will then use this as diagnostic criteria as we map the rest of the basin.

  19. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Pour, Amin Beiranvand; Park, Yongcheol; Park, Tae-Yoon S.; Hong, Jong Kuk; Hashim, Mazlan; Woo, Jusun; Ayoobi, Iman

    2018-06-01

    Satellite remote sensing imagery is especially useful for geological investigations in Antarctica because of its remoteness and extreme environmental conditions that constrain direct geological survey. The highest percentage of exposed rocks and soils in Antarctica occurs in Northern Victoria Land (NVL). Exposed Rocks in NVL were part of the paleo-Pacific margin of East Gondwana during the Paleozoic time. This investigation provides a satellite-based remote sensing approach for regional geological mapping in the NVL, Antarctica. Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) datasets were used to extract lithological-structural and mineralogical information. Several spectral-band ratio indices were developed using Landsat-8 and ASTER bands and proposed for Antarctic environments to map spectral signatures of snow/ice, iron oxide/hydroxide minerals, Al-OH-bearing and Fe, Mg-OH and CO3 mineral zones, and quartz-rich felsic and mafic-to-ultramafic lithological units. The spectral-band ratio indices were tested and implemented to Level 1 terrain-corrected (L1T) products of Landsat-8 and ASTER datasets covering the NVL. The surface distribution of the mineral assemblages was mapped using the spectral-band ratio indices and verified by geological expeditions and laboratory analysis. Resultant image maps derived from spectral-band ratio indices that developed in this study are fairly accurate and correspond well with existing geological maps of the NVL. The spectral-band ratio indices developed in this study are especially useful for geological investigations in inaccessible locations and poorly exposed lithological units in Antarctica environments.

  20. Map showing outcrop of the coal-bearing units and land use in the Gulf Coast region

    USGS Publications Warehouse

    Warwick, Peter D.; SanFilipo, John R.; Crowley, Sharon S.; Thomas, Roger E.; Freid, John; Tully, John K.

    1997-01-01

    This map is a preliminary compilation of the outcrop geology of the known coal-bearing units in the Gulf Coast Coal region. The map has been compiled for use in the National Coal Resource Assessment Project currently being conducted by the U.S. Geological Survey, and will be updated as the assessment progresses. The purpose of the map is to show the distribution of coal-bearing rocks in the Gulf Coastal Plain Region and to show stratigraphic correlations, transportation network, fossil-fuel burning power plants, and federally managed lands in the region. It is hoped that this map may aid coal exploration and development in the region. Geologic contacts were digitized from paper copies of the maps listed in the reference section below. The primary source of information was the 1:500,000-scale state geology map series, but larger scale maps were use to better define certain areas, notably the Jackson-Claiborne contact in western Kentucky and Tennessee for example (Olive, 1980). Contacts along state boundaries were modified to best-fit information available from the border areas. Note that coal distribution in the mapped units is not uniform. For example, the Jackson Group contains coal in Texas, but in Mississippi is not presently known to contain significant coal deposits. The unit is widespread and in part non-marine and thus of potential future interest. In contrast, the Jackson Group is not shown in Georgia where it is mostly marine and residuum (weathered material) at the surface. Tertiary age coal has also been noted in the Vicksburg Group (Oligocene) of Louisiana and Mississippi, but is not shown on this map. Contacts with mapped surficial units are not always shown. The locations of coal mine permit boundaries are based on information available at the time of publication and were obtained from the Division of Surface Mining and Reclamation, Railroad Commission of Texas, Austin, and the Injection and Mining Division, Department of Natural Resources, Baton Rouge, Louisiana. The correlation of map units and formation names generally follow Galloway and others (1991). We have placed the Paleocene-Eocene boundary in the middle of the Calvert Bluff Formation in Texas based on unpublished pollen biostratigraphy reports (N.O. Fredericksen, unpublished data, 1993; D.J. Nichols, unpublished data, 1996).

  1. Life on Earth before 3.83 Ga? Carbonaceous Inclusions from Akilia (West Greenland)

    NASA Astrophysics Data System (ADS)

    Mojzsis, S. J.; Papineau, D.; Adam, J. D.; Harrison, T. M.

    2005-12-01

    The earliest records of life on Earth have been obscured by the intense metamorphism experienced by all known terranes older than ca. 3600 Ma; fragile microfossil shapes become obliterated, and chemical/isotopic biosignatures are potentially blurred, overprinted, mimicked or erased. Prior studies sought to overcome this dilemma utilizing chemofossils ~ biosignatures resistant to physical and chemical change since formation ~ in the search for possible traces of a biosphere in pre-3.8 Ga rocks. Interpreting the geology, age and origin of the oldest rocks is fraught with difficulty, yet new field- and laboratory-based techniques permit direct assessment of proposed evidence for early life in the >3.83 Ga paragneisses of the Akilia association in southern West Greenland. A comprehensive program of sampling guided by 1:100 scale mapping of these highly deformed units coupled with structural, geochemical and geochronological analyses, provides a basis for understanding of the petrogenesis of the Akilia rocks (Manning et al., in press). The new studies resolve existing controversies over this complex terrane and (i) corroborate a sedimentary rather than metasomatic origin for Fe-rich quartz pyroxene ( Aqp) units as supported by separate trace element, REE, δ18O, δ33S/δ34S and δ56Fe isotope studies; (ii) validate a >3.83 Ga age for Aqp units on Akilia and related units in southern West Greenland as among the oldest known rocks of sedimentary origin; and (iii) verify the presence of apatite-hosted graphite in Aqp units (cf. Lepland et al., 2005; Moorbath, 2005). This growing list of results lend support to our original interpretation (Mojzsis et al., 1996) that the simplest explanation for depleted 13C in carbonaceous inclusions in apatite from Akilia is that life had emerged on Earth prior to 3.83 Ga. Manning, C.E., Mojzsis, S.J. and Harrison, T.M. (2005) Geology, age and origin of supracrustal rocks, Akilia, Greenland (Amer. J. Sci. in press).

  2. Preliminary Stratigraphic Basis for Geologic Mapping of Venus

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.; Head, J. W.

    1993-01-01

    The age relations between geologic formations have been studied at 36 1000x1000 km areas centered at the dark paraboloid craters. The geologic setting in all these sites could be characterized using only 16 types of features and terrains (units). These units form a basic stratigraphic sequence (from older to younger: (1) Tessera (Tt); (2-3) Densely fractured terrains associated with coronae (COdf) and in the form of remnants among plains (Pdf); (4) Fractured and ridged plains (Pfr); (5) Plains with wrinkle ridges (Pwr); (6-7) Smooth and lobate plains (Ps/Pl); and (8) Rift-associated fractures (Fra). The stratigraphic position of the other units is determined by their relation with the units of the basic sequence: (9) Ridge bells (RB), contemporary with Pfr; (10-11) Ridges of coronae and arachnoids annuli (COar/Aar), contemporary with wrinkle ridges of Pwr; (12) Fractures of coronae annuli (COaf) disrupt Pwr and Ps/Pl; (13) Fractures (F) disrupt Pwr or younger units; (14) Craters with associated dark paraboloids (Cdp), which are on top of all volcanic and tectonic units except the youngest episodes of rift-associated fracturing and volcanism; (15-16) Surficial streaks (Ss) and surficial patches (Sp) are approximately contemporary with Cdp. These units may be used as a tentative basis for the geologic mapping of Venus including VMAP. This mapping should test the stratigraphy and answer the question of whether this stratigraphic sequence corresponds to geologic events which were generally synchronous all around the planet or whether the sequence is simply a typical sequence of events which occurred in different places at diffferent times.

  3. Database for the geologic map of the Mount Baker 30- by 60-minute quadrangle, Washington (I-2660)

    USGS Publications Warehouse

    Tabor, R.W.; Haugerud, R.A.; Hildreth, Wes; Brown, E.H.

    2006-01-01

    This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Mount Baker 30- by 60-Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the geology at 1:100,000. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  4. Earth Science Studies in Support of Public Policy Development and Land Stewardship - Headwaters Province, Idaho and Montana

    USGS Publications Warehouse

    U.S. Geological Survey Headwaters Province Project Team Edited by Lund, Karen

    2007-01-01

    The USGS Headwaters Province project in western Montana and northern and central Idaho was designed to provide geoscience data and interpretations to Federal Land Management Agencies and to respond to specific concerns of USDA Forest Service Regions 1 and 4. The project has emphasized development of digital geoscience data, GIS analyses, topical studies, and new geologic interpretations. Studies were designed to more completely map lithologic units and determine controls of deformation, magmatism, and mineralizing processes. Topical studies of geologic basement control on these processes include study of regional metallogenic patterns and their relation to the composition and architecture of underlying, unexposed basement; timing of igneous and hydrothermal systems, to identify regionally important metallogenic magmatism; and the geologic setting of Proterozoic strata, to better understand how their sedimentary basins developed and to define the origin of sediment-hosted mineral deposits. Interrelated products of the project are at complementary scales.

  5. Geologic map of Meridiani Planum, Mars

    USGS Publications Warehouse

    Hynek, Brian M.; Di Achille, Gaetano

    2017-01-31

    Introduction and BackgroundThe Meridiani Planum region of Mars—originally named due to its proximity to the Martian prime meridian—contains a variety of geologic units, including those that are crater‑related, that span the Early Noachian to Late Amazonian Epochs. Mars Global Surveyor (MGS) data indicate this area contains extensive layered deposits, some of which are rich in the mineral hematite. The National Aeronautics and Space Administration’s (NASA) Mars Exploration Rover (MER)  Opportunity  landed in Meridiani Planum in early 2004 and, at the time of this writing, is still conducting operations. A variety of water-altered bedrock outcrops have been studied and contain indications of prolonged surface and near-surface fluid/rock interactions. The purpose of this study is to use the more recent orbiter data to place the rover’s findings in a broader context by assessing the geologic and hydrologic histories of the region.

  6. Detailed Sections from Auger Holes in the Roanoke Rapids 1:100,000 Map Sheet, North Carolina

    USGS Publications Warehouse

    Weems, Robert E.; Lewis, William C.

    2007-01-01

    Introduction The Roanoke Rapids 1:100,000 map sheet straddles the Coastal Plain / Piedmont boundary in northernmost North Carolina (Figure 1). Sediments of the Coastal Plain underlie the eastern three-fourths of this area, and patchy outliers of Coastal Plain units cap many of the higher hills in the western one-fourth of the area. Sediments dip gently to the east and reach a maximum known thickness in the extreme southeast part of the map area (Figure 2). The gentle eastward dip is disrupted in several areas due to faulting. The U.S. Geological Survey recovered one core and augered 97 research test holes within the Roanoke Rapids 1:100,000 map sheet to supplement sparse outcrop data available from the Coastal Plain portion of the map area. The recovered sediments were studied and data from them recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented Coastal Plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries that will be shown on the forthcoming Roanoke Rapids geologic map, but much of the detailed subsurface data cannot be shown readily through this map product. Therefore, detailed descriptions have been collected in this open-file report for geologists, hydrologists, engineers, and community planners to provide a detailed shallow-subsurface stratigraphic framework for much of the Roanoke Rapids map region.

  7. Preliminary Geologic Map of the Buxton 7.5' Quadrangle, Washington County, Oregon

    USGS Publications Warehouse

    Dinterman, Philip A.; Duvall, Alison R.

    2009-01-01

    This map, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits of the Buxton 7.5-minute quadrangle. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:24,000 or smaller. This plot file and accompanying database depict the distribution of geologic materials and structures at a regional (1:24,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains new information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  8. USGS maps

    USGS Publications Warehouse

    ,

    2005-01-01

    Discover a small sample of the millions of maps produced by the U.S. Geological Survey (USGS) in its mission to map the Nation and survey its resources. This booklet gives a brief overview of the types of maps sold and distributed by the USGS through its Earth Science Information Centers (ESIC) and also available from business partners located in most States. The USGS provides a wide variety of maps, from topographic maps showing the geographic relief and thematic maps displaying the geology and water resources of the United States, to special studies of the moon and planets.

  9. State geological surveys: Their growing national role in policy

    USGS Publications Warehouse

    Gerhard, L.C.

    2000-01-01

    State geological surveys vary in organizational structure, but are political powers in the field of geology by virtue of their intimate knowledge of and involvement in legislative and political processes. Origins of state geological surveys lie in the recognition of society that settlement and prosperity depended on access to a variety of natural resources, resources that are most familiar to geologists. As the surveys adapt to modern societal pressures, making geology serve the public has become the new mission for many state geological surveys. Geologic mapping was the foundation of most early surveys, and the state surveys have brought mapping back into the public realm to meet today's challenges of growing population density, living environment desires, and resource access.

  10. Geologic map and map database of northeastern San Francisco Bay region, California, [including] most of Solano County and parts of Napa, Marin, Contra Costa, San Joaquin, Sacramento, Yolo, and Sonoma Counties

    USGS Publications Warehouse

    Graymer, Russell Walter; Jones, David Lawrence; Brabb, Earl E.

    2002-01-01

    This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (nesfmf.ps, nesfmf.pdf, nesfmf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.

  11. Digital Geologic Map of the Rosalia 1:100,000 Quadrangle, Washington and Idaho: A Digital Database for the 1990 S.Z. Waggoner Map

    USGS Publications Warehouse

    Derkey, Pamela D.; Johnson, Bruce R.; Lackaff, Beatrice B.; Derkey, Robert E.

    1998-01-01

    The geologic map of the Rosalia 1:100,000-scale quadrangle was compiled in 1990 by S.Z. Waggoner of the Washington state Division of Geology and Earth Resources. This data was entered into a geographic information system (GIS) as part of a larger effort to create regional digital geology for the Pacific Northwest. The intent was to provide a digital geospatial database for a previously published black and white paper geologic map. This database can be queried in many ways to produce a variety of geologic maps. Digital base map data files are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000) as it has been somewhat generalized to fit the 1:100,000 scale map. The map area is located in eastern Washington and extends across the state border into western Idaho. This open-file report describes the methods used to convert the geologic map data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. We wish to thank J. Eric Schuster of the Washington Division of Geology and Earth Resources for providing the original stable-base mylar and the funding for it to be scanned. We also thank Dick Blank and Barry Moring of the U.S. Geological Survey for reviewing the manuscript and digital files, respectively.

  12. Completion of the 1:1,500,000-Scale Geologic Map of Western Libya Montes and Northwestern Tyrrhena Terra

    NASA Astrophysics Data System (ADS)

    Huff, A. E.; Skinner, J. A.

    2018-06-01

    Final progress report on the 1:1,500,000-scale mapping of western Libya Montes and northwestern Tyrrhena Terra. The final unit names, labels, and descriptions are reported as well as the methodology for age determinations and brief geologic history.

  13. Maps for America: cartographic products of the U.S. Geological Survey and others

    USGS Publications Warehouse

    Thompson, Morris M.

    1981-01-01

    "Maps for America" was originally published in 1979 as a Centennial Volume commemorating the Geological Survey's hundred years of service (1879-1979) in the earth sciences. It was an eminently fitting Centennial Year publication, for, since its establishment, the Geological Survey has continuously carried on an extensive program of mapping to provide knowledge of the topography, geology, hydrology, and natural resources of our Nation. This volume contains an organized presentation of information about the maps produced by the Geological Survey and other American organizations, public and private. Such maps are important tools for those in government and in private endeavors who are working to assure the wisest choices in managing the Nation's resources. They are particularly supportive of the Department of the Interior's role as the Nation's principal conservation agency. The second edition of "Maps for America" is intended primarily to replenish the dwindling supply of copies of the book, but it also contains a number of changes to correct or update the text and to provide more suitable illustrations in certain instances.

  14. Digital Geologic Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Slate, Janet L.; Berry, Margaret E.; Rowley, Peter D.; Fridrich, Christopher J.; Morgan, Karen S.; Workman, Jeremiah B.; Young, Owen D.; Dixon, Gary L.; Williams, Van S.; McKee, Edwin H.; Ponce, David A.; Hildenbrand, Thomas G.; Swadley, W.C.; Lundstrom, Scott C.; Ekren, E. Bartlett; Warren, Richard G.; Cole, James C.; Fleck, Robert J.; Lanphere, Marvin A.; Sawyer, David A.; Minor, Scott A.; Grunwald, Daniel J.; Laczniak, Randell J.; Menges, Christopher M.; Yount, James C.; Jayko, Angela S.

    1999-01-01

    This digital geologic map of the Nevada Test Site (NTS) and vicinity, as well as its accompanying digital geophysical maps, are compiled at 1:100,000 scale. The map compilation presents new polygon (geologic map unit contacts), line (fault, fold axis, metamorphic isograd, dike, and caldera wall) and point (structural attitude) vector data for the NTS and vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California. The map area covers two 30 x 60-minute quadrangles-the Pahute Mesa quadrangle to the north and the Beatty quadrangle to the south-plus a strip of 7.5-minute quadrangles on the east side-72 quadrangles in all. In addition to the NTS, the map area includes the rest of the southwest Nevada volcanic field, part of the Walker Lane, most of the Amargosa Desert, part of the Funeral and Grapevine Mountains, some of Death Valley, and the northern Spring Mountains. This geologic map improves on previous geologic mapping of the same area (Wahl and others, 1997) by providing new and updated Quaternary and bedrock geology, new geophysical interpretations of faults beneath the basins, and improved GIS coverages. Concurrent publications to this one include a new isostatic gravity map (Ponce and others, 1999) and a new aeromagnetic map (Ponce, 1999).

  15. Geologic Map of the Carlton Quadrangle, Yamhill County, Oregon

    USGS Publications Warehouse

    Wheeler, Karen L.; Wells, Ray E.; Minervini, Joseph M.; Block, Jessica L.

    2009-01-01

    The Carlton, Oregon, 7.5-minute quadrangle is located in northwestern Oregon, about 35 miles (57 km) southwest of Portland. It encompasses the towns of Yamhill and Carlton in the northwestern Willamette Valley and extends into the eastern flank of the Oregon Coast Range. The Carlton quadrangle is one of several dozen quadrangles being mapped by the U.S. Geological Survey (USGS) and the Oregon Department of Geology and Mineral Industries (DOGAMI) to provide a framework for earthquake- hazard assessments in the greater Portland, Oregon, metropolitan area. The focus of USGS mapping is on the structural setting of the northern Willamette Valley and its relation to the Coast Range uplift. Mapping was done in collaboration with soil scientists from the National Resource Conservation Service, and the distribution of geologic units is refined over earlier regional mapping (Schlicker and Deacon, 1967). Geologic mapping was done on 7.5-minute topographic base maps and digitized in ArcGIS to produce ArcGIS geodatabases and PDFs of the map and text. The geologic contacts are based on numerous observations and samples collected in 2002 and 2003, National Resource Conservation Service soils maps, and interpretations of 7.5-minute topography. The map was completed before new, high-resolution laser terrain mapping was flown for parts of the northern Willamette Valley in 2008.

  16. Regionalization of local geomorphometric derivations for geological mapping in the sedimentary domain of central Amazônia

    NASA Astrophysics Data System (ADS)

    Valeriano, Márcio de Morisson; Rossetti, Dilce de Fátima

    2017-03-01

    This paper reports procedures to prepare locally derived geomorphometric data for geological mapping at regional scale in central Amazônia. The size of the study area, approximately 1.5 million km2, and the prevailing flat topography of the targeted environment were the constraints motivating the aims, at spatial and numerical synthesis of the detailed geomorphometric information derived from SRTM DEM. The developed approach consisted in assigning single (average) values to terrain patches, to represent the regional distribution of pixel-based geomorphometric information (slope, profile curvature and relative relief). In analogy to the nature of sedimentary packs, patches were established as contiguous elevation strata, constructed through a procedure combining segmentation, filterings and range compressions. For slope only, pre-processing of locally derived data with median filtering effectively avoided the typical flattening of the regionalized results due to input distribution characteristics. Profile curvature was transformed into absolute values and thus a different meaning from the original (pixel) variable was considered in the interpretation, also avoiding the compensation of original values (positive and negative) tending to zero value when averaged through a regionally flat extension. Examinations near major river valleys showed patched elevation to depict alluvial terraces. In the interfluves and floodplains, contrasting patterns in the averaged variables among patches of similar elevations allowed the recognition of important relief features. In addition to the reduction of the distribution ranges, the correlation between regionalized geomorphometric variables was higher than observed in the originally local data, due to the thematic synthesis following regionalization. Depth of dissection, claimed to be related to the relative age of sedimentary units, was the main factor to explain the overall variations of the geomorphometric results. The developed regionalization process improved the potential of local geomorphometric data for updating and revision of geological maps and for guiding future surveys in the sedimentary domain of Amazônia.

  17. GIS representation of coal-bearing areas in Antarctica

    USGS Publications Warehouse

    Merrill, Matthew D.

    2016-03-11

    Understanding the distribution of coal-bearing geologic units in Antarctica provides information that can be used in sedimentary, geomorphological, paleontological, and climatological studies. This report is a digital compilation of information on Antarctica’s coal-bearing geologic units found in the literature. It is intended to be used in small-scale spatial geographic information system (GIS) investigations and as a visual aid in the discussion of Antarctica’s coal resources or in other coal-based geologic investigations. Instead of using spatially insignificant point markers to represent large coal-bearing areas, this dataset uses polygons to represent actual coal-bearing lithologic units. Specific locations of coal deposits confirmed from the literature are provided in the attribution for the coal-bearing unit polygons. Coal-sample-location data were used to confirm some reported coal-bearing geology. The age and extent of the coal deposits indicated in the literature were checked against geologic maps ranging from local scale at 1:50,000 to Antarctic continental scale at 1:5,000,000; if satisfactory, the map boundaries were used to generate the polygons for the coal-bearing localities.

  18. U.S. Geological Survery Oil and Gas Resource Assessment of the Russian Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald Gautier; Timothy Klett

    2008-12-31

    The U.S. Geological Survey (USGS) recently completed a study of undiscovered petroleum resources in the Russian Arctic as a part of its Circum-Arctic Resource Appraisal (CARA), which comprised three broad areas of work: geological mapping, basin analysis, and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. New map compilation was used to identify assessment units. The CARA relied heavily on geological analysis and analog modeling, with numerical input consisting of lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment unitsmore » were statistically aggregated, taking geological dependencies into account. The U.S. Department of Energy (DOE) funds were used to support the purchase of crucial seismic data collected in the Barents Sea, East Siberian Sea, and Chukchi Sea for use by USGS in its assessment of the Russian Arctic. DOE funds were also used to purchase a commercial study, which interpreted seismic data from the northern Kara Sea, and for geographic information system (GIS) support of USGS mapping of geological features, province boundaries, total petroleum systems, and assessment units used in the USGS assessment.« less

  19. Basement domain map of the conterminous United States and Alaska

    USGS Publications Warehouse

    Lund, Karen; Box, Stephen E.; Holm-Denoma, Christopher S.; San Juan, Carma A.; Blakely, Richard J.; Saltus, Richard W.; Anderson, Eric D.; DeWitt, Ed

    2015-01-01

    The tectonic settings for crustal types represented in the basement domains are subdivided into constituent geologic environments and the types of primary metals endowments and deposits in them are documented. The compositions, architecture, and original metals endowments are potentially important to assessments of primary mineral deposits and to the residence and recycling of metals in the crust of the United States portion of the North American continent. The databases can be configured to demonstrate the construction of the United States through time, to identify specific types of crust, or to identify domains potentially containing metal endowments of specific genetic types or endowed with specific metals. The databases can also be configured to illustrate other purposes chosen by users.

  20. Surficial Geologic Map of the Evansville, Indiana, and Henderson, Kentucky, Area

    USGS Publications Warehouse

    Moore, David W.; Lundstrom, Scott C.; Counts, Ronald C.; Martin, Steven L.; Andrews, William M.; Newell, Wayne L.; Murphy, Michael L.; Thompson, Mark F.; Taylor, Emily M.; Kvale, Erik P.; Brandt, Theodore R.

    2009-01-01

    The geologic map of the Evansville, Indiana, and Henderson, Kentucky, area depicts and describes surficial deposits according to their origin and age. Unconsolidated alluvium and outwash fill the Ohio River bedrock valley and attain maximum thickness of 33-39 m under Diamond Island, Kentucky, and Griffith Slough, south of Newburgh, Indiana. The fill is chiefly unconsolidated, fine- to medium-grained, lithic quartz sand, interbedded with clay, clayey silt, silt, coarse sand, granules, and gravel. Generally, the valley fill fines upward from the buried bedrock surface: a lower part being gravelly sand to sandy gravel, a middle part mostly of sand, and a surficial veneer of silt and clay interspersed with sandy, natural levee deposits at river's edge. Beneath the unconsolidated fill are buried and discontinuous, lesser amounts of consolidated fill unconformably overlying the buried bedrock surface. Most of the glaciofluvial valley fill accumulated during the Wisconsin Episode (late Pleistocene). Other units depicted on the map include creek alluvium, slackwater lake (lacustrine) deposits, colluvium, dune sand, loess, and sparse bedrock outcrops. Creek alluvium underlies creek floodplains and consists of silt, clayey silt, and subordinate interbedded fine sand, granules, and pebbles. Lenses and beds of clay are present locally. Silty and clayey slackwater lake (lacustrine) deposits extensively underlie broad flats northeast of Evansville and around Henderson and are as thick as 28 m. Fossil wood collected from an auger hole in the lake and alluvial deposits of Little Creek, at depths of 10.6 m and 6.4 m, are dated 16,650+-50 and 11,120+-40 radiocarbon years, respectively. Fossil wood collected from lake sediment 16 m below the surface in lake sediment was dated 33,100+-590 radiocarbon years. Covering the hilly bedrock upland is loess (Qel), 3-7.5 m thick in Indiana and 9-15 m thick in Kentucky, deposited about 22,000-12,000 years before present. Most mapped surficial deposits in the quadrangle are probably no older than about 55,000 years. Lithologic logs, shear-wave velocities, and other cone penetrometer data are used to interpret depositional environments and geologic history of the surficial deposits. This map, which includes an area of slightly more than seven 7.5-minute quadrangles, serves several purposes. It is a tool for assessing seismic and flood hazards of a major urban area; aids urban planning; conveys geologic history; and locates aggregate resources. The map was produced concurrently with research by seismologists to determine places where the surficial deposits may tend to liquefy and (or) to amplify ground motions during strong earthquakes. Such hazardous responses to shaking are related to the characteristics of the geologic materials and topographic position, which the geologic map depicts. The geologic map is an element in the cooperative seismic hazard assessment program among the States of Indiana, Kentucky, and Illinois and the U.S. Geological Survey, funded by the National Earthquake Hazards Reduction Program and National Cooperative Geologic Mapping Program of the U.S. Geological Survey.

  1. The Aristarchus-Harbinger region of the moon: Surface geology and history from recent remote-sensing observations

    USGS Publications Warehouse

    Zisk, S.H.; Hodges, C.A.; Moore, H.J.; Shorthill, R.W.; Thompson, T.W.; Whitaker, E.A.; Wilhelms, D.E.

    1977-01-01

    The region including the Aristarchus Plateau and Montes Harbinger is probably the most diverse, geologically, of any area of comparble size on the Moon. This part of the northwest quadrant of the lunar near side includes unique dark mantling material; both the densest concentration and the largest of the sinuous rilles; apparent volcanic vents, sinks, and domes; mare materials of various ages and colors; one of the freshest large craters (Aristarchus) with ejecta having unique colors and albedos; and three other large craters in different states of flooding and degradation (krieger, Herodotus, and Prinz). The three best-authenticated lunar transient phenomena were also observed here. This study is based principally on photographic and remote sensing observations made from Earth and Apollo orbiting space craft. Results include (1) delineation of geologic map units and their stratigraphic relationships; (2) discussion of the complex interrelationships between materials of volcanic and impact origin, including the effects of excavation, redistribution and mixing of previously deposited materials by younger impact craters; (3) deduction of physical and chemical properties of certain of the geologic units, based on both the remote-sensing information and on extrapolation of Apollo data to this area; and (4) development of a detailed geologic history of the region, outlining the probable sequence of events that resulted in its present appearance. A primary concern of the investigation has been anomalous red dark mantle on the Plateau. Based on an integration of Earth- and lunar orbit-based data, this layer seems to consist of fine-grained, block-free material containing a relatively large fraction of orange glass. It is probably of pyroclastic origin, laid down at some time during the Imbrian period of mare flooding. ?? 1977 D. Reidel Publishing Company.

  2. Surficial Geologic Map of the Worcester North-Oxford- Wrentham-Attleboro Nine-Quadrangle Area in South- Central Massachusetts

    USGS Publications Warehouse

    Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.

    2008-01-01

    The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of nine 7.5-minute quadrangles (417 mi2 total) in south-central Massachusetts (fig. 1). Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and in resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, or organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. The mapped distribution of surficial materials that lie between the land surface and the bedrock surface is based on detailed geologic mapping of 7.5-minute topographic quadrangles, produced as part of an earlier (1938-1982) cooperative statewide mapping program between the U.S. Geological Survey and the Massachusetts Department of Public Works (now Massachusetts Highway Department) (Page, 1967; Stone, 1982). Each published geologic map presents a detailed description of local geologic map units, the genesis of the deposits, and age correlations among units. Previously unpublished field compilation maps exist on paper or mylar sheets and these have been digitally rendered for the present map compilation. Regional summaries based on the Massachusetts surficial geologic mapping studies discuss the ages of multiple glaciations, the nature of glaciofluvial, glaciolacustrine, and glaciomarine deposits, and the processes of ice advance and retreat across Massachusetts (Koteff and Pessl, 1981; papers in Larson and Stone, 1982; Oldale and Barlow, 1986; Stone and Borns, 1986; Warren and Stone, 1986). This compilation of surficial geologic materials is an interim product that defines the areas of exposed bedrock and the boundaries between glacial till, glacial stratified deposits, and overlying postglacial deposits. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This surficial geologic map layer covering nine quadrangles revises previous digital surficial geologic maps (Stone and others, 1993; MassGIS, 1999) that were compiled on base maps at regional scales of 1:125,000 and 1:250,000. The purpose of this study is to provide fundamental geologic data for the evaluation of natural resources, hazards, and land information within the Commonwealth of Massachusetts.

  3. Novice to Expert Cognition During Geologic Bedrock Mapping

    NASA Astrophysics Data System (ADS)

    Petcovic, H. L.; Libarkin, J.; Hambrick, D. Z.; Baker, K. M.; Elkins, J. T.; Callahan, C. N.; Turner, S.; Rench, T. A.; LaDue, N.

    2011-12-01

    Bedrock geologic mapping is a complex and cognitively demanding task. Successful mapping requires domain-specific content knowledge, visuospatial ability, navigation through the field area, creating a mental model of the geology that is consistent with field data, and metacognition. Most post-secondary geology students in the United States receive training in geologic mapping, however, not much is known about the cognitive processes that underlie successful bedrock mapping, or about how these processes change with education and experience. To better understand cognition during geologic mapping, we conducted a 2-year research study in which 67 volunteers representing a range from undergraduate sophomore to 20+ years professional experience completed a suite of cognitive measures plus a 1-day bedrock mapping task in the Rocky Mountains, Montana, USA. In addition to participants' geologic maps and field notes, the cognitive suite included tests and questionnaires designed to measure: (1) prior geologic experience, via a self-report survey; (2) geologic content knowledge, via a modified version of the Geoscience Concept Inventory; (3) visuospatial ability, working memory capacity, and perceptual speed, via paper-and-pencil and computerized tests; (4) use of space and time during mapping via GPS tracking; and (5) problem-solving in the field via think-aloud audio logs during mapping and post-mapping semi-structured interviews. Data were examined for correlations between performance on the mapping task and other measures. We found that both geological knowledge and spatial visualization ability correlated positively with accuracy in the field mapping task. More importantly, we found a Visuospatial Ability × Geological Knowledge interaction, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. In other words, we found evidence to suggest that visuospatial ability mattered for bedrock mapping for the novices in our sample, but not for the experts. For experienced mappers, we found a significant correlation between GCI scores and the thoroughness with which they covered the map area, plus a relationship between speed and map accuracy such that faster mappers produced better maps. However, fast novice mappers tended to produce the worst maps. Successful mappers formed a mental model of the underlying geologic structure immediately to early in the mapping task, then spent field time collecting observations to confirm, disconfirm, or modify their initial model. In contrast, the least successful mappers (all inexperienced) rarely generated explanations or models of the underlying geologic structure in the field.

  4. Geologic map and digital database of the Conejo Well 7.5 minute quadrangle, Riverside County, Southern California

    USGS Publications Warehouse

    Powell, Robert E.

    2001-01-01

    This data set maps and describes the geology of the Conejo Well 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses part of the northern Eagle Mountains and part of the south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults in the Eagle Mountains and an east-west trending system of high-angle dip- and left-slip faults. In and adjacent to the Conejo Well quadrangle, faults of the northwest-trending set displace Miocene sedimentary rocks and basalt deposited on the Tertiary erosion surface and Pliocene and (or) Pleistocene deposits that accumulated on the oldest pediment. Faults of this system appear to be overlain by Pleistocene deposits that accumulated on younger pediments. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Conejo Well database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a point coverage containing line ornamentation, and (5) a scanned topographic base at a scale of 1:24,000. The coverages include attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base. The map is accompanied by a marginal explanation consisting of a Description of Map and Database Units (DMU), a Correlation of Map and Database Units (CMU), and a key to point-and line-symbols. (2) Separate .pdf files of the DMU and CMU, individually. (3) A PostScript graphic-file containing the geologic map on a 1:24,000 topographic base accompanied by the marginal explanation. (4) A pamphlet that describes the database and how to access it. Within the database, geologic contacts , faults, and dikes are represented as lines (arcs), geologic units as polygons and regions, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.

  5. Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Murray, Kyle E.

    2003-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.

  6. Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan

    NASA Technical Reports Server (NTRS)

    Skiner, J. A., Jr.; Rogers, A. D.; Seelos, K. D.

    2009-01-01

    The highland-lowland boundary (HLB) of Mars is interpreted to be a complex tectonic and erosional transition that may hold evidence for past geologic processes and environments. The HLB-abutting margin of the Libya Montes and the interbasin plains of northern Tyrrhena Terra display an exceptional view of the earliest to middle history of Mars that has yet to be fully characterized. This region contains some of the oldest exposed materials on the Martian surface as well as aqueous mineral signatures that may be potential chemical artifacts of early highland formational processes. However, a full understanding of the regions geologic and stratigraphic evolution is remarkably lacking. Some outstanding questions regarding the geologic evolution of Libya Montes and northern Tyrrhena Terra in-clude: Does combining geomorphology and composition advance our understanding of the region s evolution? Can highland materials be subdivided into stratigraphically discrete rock and sediment sequences? What do major physiographic transitions imply about the balanced tectonism, climate change, and erosion? Where is the erosional origin and what is the post-depositional history of channel and plains units? When and in what types of environments did aqueous mineral signatures arise? This abstract introduces the geologic setting, science rationale, and first year work plan of a recently-funded 4-year geologic mapping proposal (project year = calendar year). The objective is to delineate the geologic evolution of Libya Montes and northern Tyrrhena Terra at 1:1M scale using both classical geomorphological and compositional mapping techniques. The funded quadrangles are MTMs 00282, -05282, -10282, 00277, -05277, and -10277.

  7. Isopach map of the interval from surface elevation to the top of the Pennsylvanian and Permian Minnelusa Formation and equivalents, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1990-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 1,480 of these wells that penetrate the Minnelusa Formation and equivalents.

  8. Map showing contours on the top of the Pennsylvanian and Permian Minnelusa Formation and equivalents, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1990-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 1,480 of these wells that penetrate the Minnelusa Formation and equivalents.

  9. Spatial modeling for groundwater arsenic levels in North Carolina

    USGS Publications Warehouse

    Kim, D.; Miranda, M.L.; Tootoo, J.; Bradley, P.; Gelfand, A.E.

    2011-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. ?? 2011 American Chemical Society.

  10. Digital Bedrock Compilation: A Geodatabase Covering Forest Service Lands in California

    NASA Astrophysics Data System (ADS)

    Elder, D.; de La Fuente, J. A.; Reichert, M.

    2010-12-01

    This digital database contains bedrock geologic mapping for Forest Service lands within California. This compilation began in 2004 and the first version was completed in 2005. Second publication of this geodatabase was completed in 2010 and filled major gaps in the southern Sierra Nevada and Modoc/Medicine Lake/Warner Mountains areas. This digital map database was compiled from previously published and unpublished geologic mapping, with source mapping and review from California Geological Survey, the U.S. Geological Survey and others. Much of the source data was itself compilation mapping. This geodatabase is huge, containing ~107,000 polygons and ~ 280,000 arcs. Mapping was compiled from more than one thousand individual sources and covers over 41,000,000 acres (~166,000 km2). It was compiled from source maps at various scales - from ~ 1:4,000 to 1:250,000 and represents the best available geologic mapping at largest scale possible. An estimated 70-80% of the source information was digitized from geologic mapping at 1:62,500 scale or better. Forest Service ACT2 Enterprise Team compiled the bedrock mapping and developed a geodatabase to store this information. This geodatabase supports feature classes for polygons (e.g, map units), lines (e.g., contacts, boundaries, faults and structural lines) and points (e.g., orientation data, structural symbology). Lookup tables provide detailed information for feature class items. Lookup/type tables contain legal values and hierarchical groupings for geologic ages and lithologies. Type tables link coded values with descriptions for line and point attributes, such as line type, line location and point type. This digital mapping is at the core of many quantitative analyses and derivative map products. Queries of the database are used to produce maps and to quantify rock types of interest. These include the following: (1) ultramafic rocks - where hazards from naturally occurring asbestos are high, (2) granitic rocks - increased erosion hazards, (3) limestone, chert, sedimentary rocks - paleontological resources (Potential Fossil Yield Classification maps), (4) calcareous rocks (cave resources, water chemistry), and (5) lava flows - lava tubes (more caves). Map unit groupings (e.g., belts, terranes, tectonic & geomorphic provinces) can also be derived from the geodatabase. Digital geologic mapping was used in ground water modeling to predict effects of tunneling through the San Bernardino Mountains. Bedrock mapping is used in models that characterize watershed sediment regimes and quantify anthropogenic influences. When combined with digital geomorphology mapping, this geodatabase helps to assess landslide hazards.

  11. Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007

    NASA Technical Reports Server (NTRS)

    Fortezzo, C. M.; Williams, K. K.

    2009-01-01

    As part of a continuing study to understand the relationship between valleys and highland resurfacing through geologic mapping, we are continuing to map seven MTM quads in portions of the Margaritifer, Arabia, and Noachis Terrae. Results from this mapping will also help constrain the role and extent of past water in the region. The MTMs are grouped in two different areas: a 4-quadrangle area (-20002, -20007, -25002, -25007) and an L-shaped area (-15017, -20017, -20022) within the region [1-5]. This abstract focuses on the geologic units and history from mapping in the 4-quadrangle area, but includes a brief update on the L-shaped map area.

  12. The Role of Geologic Mapping in NASA PDSI Planning

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop public awareness of the role and application of geologic map-information to the resolution of national issues relevant to planetary science and eventual off-planet resource assessments, 4) use topical science to drive mapping in areas likely to be determined vital to the welfare of endeavors related to planetary science and exploration.

  13. Geologic Mapping of Vesta

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; hide

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

  14. Tools for groundwater protection planning: An example from McHenry County, Illinois, USA

    USGS Publications Warehouse

    Berg, R.C.; Curry, B. Brandon; Olshansky, R.

    1999-01-01

    This paper presents an approach for producing aquifer sensitivity maps from three-dimensional geologic maps, called stack-unit maps. Stack-unit maps depict the succession of geologic materials to a given depth, and aquifer sensitivity maps interpret the successions according to their ability to transmit potential contaminants. Using McHenry County, Illinois, as a case study, stack-unit maps and an aquifer sensitivity assessment were made to help land-use planners, public health officials, consultants, developers, and the public make informed decisions regarding land use. A map of aquifer sensitivity is important for planning because the county is one of the fastest growing counties in the nation, and highly vulnerable sand and gravel aquifers occur within 6 m of ground surface over 75% of its area. The aquifer sensitivity map can provide guidance to regulators seeking optimal protection of groundwater resources where these resources are particularly vulnerable. In addition, the map can be used to help officials direct waste-disposal and industrial facilities and other sensitive land-use practices to areas where the least damage is likely to occur, thereby reducing potential future liabilities.

  15. Detailed Sections from Auger Holes in the Emporia 1:100,000-Scale Quadrangle, North Carolina and Virginia

    USGS Publications Warehouse

    Weems, Robert E.; Schindler, J. Stephen; Lewis, William C.

    2010-01-01

    The Emporia 1:100,000-scale quadrangle straddles the Tidewater Fall Line in southern Virginia and includes a small part of northernmost North Carolina. Sediments of the coastal plain underlie the eastern three-fifths of this area. These sediments onlap crystalline basement rocks toward the west and dip gently to the east, reaching a maximum known thickness of 821 feet in the extreme southeastern part of the map area. The gentle eastward dip is disrupted in several areas due to faulting delineated during the course of mapping. In order to produce a new geologic map of the Emporia 1:100,000-scale quadrangle, the U.S. Geological Survey drilled one corehole to a depth of 223 feet and augered 192 shallow research test holes (maximum depth 135 feet) to supplement sparse outcrop data available from the coastal plain part of the map area. The recovered sediments were studied and data from them recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented coastal plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries that will be shown on the forthcoming Emporia geologic map, but much of the detailed subsurface data cannot be shown readily through this map product. Therefore, the locations and detailed descriptions of the auger test holes and one corehole are provided in this open-file report for geologists, hydrologists, engineers, and community planners in need of a detailed shallow-subsurface stratigraphic framework for much of the Emporia map region.

  16. Planetary Geology: A Teacher's Guide with Activities in Physical and Earth Sciences.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educator's guide discusses planetary geology. Exercises are grouped into five units: (1) introduction to geologic processes; (2) impact cratering activities; (3) planetary atmospheres; (4) planetary surfaces; and (5) geologic mapping. Suggested introductory exercises are noted at the beginning of each exercise. Each activity includes an…

  17. A generalized geologic map of Mars.

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Masursky, H.; Saunders, R. S.

    1973-01-01

    A geologic map of Mars has been constructed largely on the basis of photographic evidence. Four classes of units are recognized: (1) primitive cratered terrain, (2) sparsely cratered volcanic eolian plains, (3) circular radially symmetric volcanic constructs such as shield volcanoes, domes, and craters, and (4) tectonic erosional units such as chaotic and channel deposits. Grabens are the main structural features; compressional and strike slip features are almost completely absent. Most grabens are part of a set radial to the main volcanic area, Tharsis.

  18. Landslide overview map of the conterminous United States

    USGS Publications Warehouse

    Radbruch-Hall, Dorothy H.; Colton, Roger B.; Davies, William E.; Lucchitta, Ivo; Skipp, Betty A.; Varnes, David J.

    1982-01-01

    The accompanying landslide overview map of the conterminous United States is one of a series of National Environmental Overview Maps that summarize geologic, hydrogeologic, and topographic data essential to the assessment of national environmental problems. The map delineates areas where large numbers of landslides exist and areas which are susceptible to landsliding. It was prepared by evaluating the geologic map of the United States and classifying the geologic units according to high, medium, or low landslide incidence (number) and high, medium, or low susceptibility to landsliding. Rock types, structures, topography, precipitation, landslide type, and landslide incidence are mentioned for each physical subdivision of the United States. The differences in slope stability between the Colorado Plateau, the Appalachian Highlands, the Coast Ranges of California, and the Southern Rocky Mountains are compared in detail, to illustrate the influence of various natural factors on the types of landsliding that occur in regions having different physical conditions. These four mountainous regions are among the most landslide-prone areas in the United States. The Colorado Plateau is a deformed platform where interbedded sedimentary rocks of varied lithologic properties have been gently warped and deeply eroded. The rocks are extensively fractured. Regional fracture systems, joints associated with individual geologic structures, and joints parallel to topographic surfaces, such as cliff faces, greatly influence slope stability. Detached blocks at the edges of mesas, as well as columns, arched recesses, and many natural arches on the Colorado Plateau, were formed wholly or in part by mass movement. In the Appalachian Highlands, earth flows, debris flows, and debris avalanches predominate in weathered bedrock and colluvium. Damaging debris avalanches result when persistent steady rainfall is followed by a sudden heavy downpour. Landsliding in unweathered bedrock is controlled locally by joint systems similar to those on the Colorado Plateau. In some places, outward gravitational movement of valley walls due to stress release has formed anticlines and caused thrusting in the center of valleys. In the Coast Ranges of California, slopes are steep, and rocks are varied and extensively deformed. One of the most slide-prone terrains of the Coast Ranges is the tectonic melange of the Franciscan assemblage, on which huge masses of debris are moving slowly downslope. In southern California, debris flows generated by soil slips are particularly damaging. Similar flows are common in poorly consolidated Tertiary rocks of the central part of the State. Like the debris avalanches of the Appalachian Highlands, the flows form during intense rainfall after previous steady rain. The Southern Rocky Mountains are complex in rock type and climate, so that the landslides there are also complex. Slides range from rock-falls at one extreme to slumps and debris flows at the other. They include ?sackungen,? which are distinguished by ridgetop grabens associated with uphill-facing scarps on ridge sides, both features of gravitational origin. Extensive regional joint patterns have not been recognized, and shallow soil slips are only a minor hazard.

  19. The United States Geological Survey in Alaska: Accomplishments during 1976

    USGS Publications Warehouse

    Blean, Kathleen M.

    1977-01-01

    United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)

  20. A GLOBAL GEOLOGIC MAP OF GANYMEDE

    NASA Astrophysics Data System (ADS)

    Patterson, G.; Collins, G. C.; Head, J. W.; Pappalardo, R. T.; Prockter, L. M.; Lucchitta, B. K.

    2009-12-01

    Ganymede is a planet-sized world, the solar system’s largest satellite with a radius of 2631 km. Its physiography, geology, geophysics, surface composition, and evolution are correspondingly planet-like in intricacy. We have completed a global geological map of Ganymede that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This effort has provided a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships.

  1. Terrain intelligence Chita Oblast (U.S.S.R.)

    USGS Publications Warehouse

    ,

    1943-01-01

    The following folio of maps and explanatory tables outlines the principal terrain features of the Chita Oblast.  Each map and table is devoted to a specialized set of problems; together they cover such subjects as terrain appreciations, rivers, surface-water and ground-water supplies, construction materials, fuels, suitability for temporary roads and airfields, mineral resources, and geology.  These maps and data were complied by the United States Geological Survey.

  2. Lidar-revised geologic map of the Des Moines 7.5' quadrangle, King County, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Booth, Derek B.

    2017-11-06

    This map is an interpretation of a modern lidar digital elevation model combined with the geology depicted on the Geologic Map of the Des Moines 7.5' Quadrangle, King County, Washington (Booth and Waldron, 2004). Booth and Waldron described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Des Moines 7.5' quadrangle. The base map that they used was originally compiled in 1943 and revised using 1990 aerial photographs; it has 25-ft contours, nominal horizontal resolution of about 40 ft (12 m), and nominal mean vertical accuracy of about 10 ft (3 m). Similar to many geologic maps, much of the geology in the Booth and Waldron (2004) map was interpreted from landforms portrayed on the topographic map. In 2001, the Puget Sound Lidar Consortium obtained a lidar-derived digital elevation model (DEM) for much of the Puget Sound area, including the entire Des Moines 7.5' quadrangle. This new DEM has a horizontal resolution of about 6 ft (2 m) and a mean vertical accuracy of about 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM compared to topography constructed from air-photo stereo models have much improved the interpretation of geology, even in this heavily developed area, especially the distribution and relative age of some surficial deposits. For a brief description of the light detection and ranging (lidar) remote sensing method and this data acquisition program, see Haugerud and others (2003). 

  3. Map showing geology, oil and gas fields, and geologic provinces of the Gulf of Mexico region

    USGS Publications Warehouse

    French, Christopher D.; Schenk, Christopher J.

    2006-01-01

    This map was created as part of a worldwide series of geologic maps for the U.S. Geological Survey's World Energy Project. These products are available on CD-ROM and the Internet. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. Two previously published digital geologic data sets (U.S. and Caribbean) were clipped to the map extent, while the dataset for Mexico was digitized for this project. Original attributes for all data layers were maintained, and in some cases, graphically merged with common symbology for presentation purposes. The world has been divided into geologic provinces that are used for allocation and prioritization of oil and gas assessments. For the World Energy Project, a subset of those provinces is shown on this map. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include dominant lithologies, the age of the strata, and/or structural type. The World Geographic Coordinate System of 1984 is used for data storage, and the data are presented in a Lambert Conformal Conic Projection on the OFR 97-470-L map product. Other details about the map compilation and data sources are provided in metadata documents in the data section on this CD-ROM. Several software packages were used to create this map including: Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 8.3, ArcInfo software, Adobe Photoshop CS, Illustrator CS, and Acrobat 6.0.

  4. Description of ecological subregions: sections of the conterminous United States

    Treesearch

    W.H. McNab; D.T. Cleland; J.A. Freeouf; J.E. Keys; G.J. Nowacki; C.A. Carpenter

    2007-01-01

    Preliminary descriptions are presented for the 190 section ecological units delineated on the U.S. Department of Agriculture Forest Service 2007 map “Ecological Subregions: Sections and Subsections of the Conterminous United States.” Brief descriptions of the section map units provide an abstract primarily of the climate, physiography, and geologic substrate that...

  5. Key subsurface data help to refine Trinity aquifer hydrostratigraphic units, south-central Texas

    USGS Publications Warehouse

    Blome, Charles D.; Clark, Allan K.

    2014-01-01

    The geologic framework and hydrologic characteristics of aquifers are important components for studying the nation’s subsurface heterogeneity and predicting its hydraulic budgets. Detailed study of an aquifer’s subsurface hydrostratigraphy is needed to understand both its geologic and hydrologic frameworks. Surface hydrostratigraphic mapping can also help characterize the spatial distribution and hydraulic connectivity of an aquifer’s permeable zones. Advances in three-dimensional (3-D) mapping and modeling have also enabled geoscientists to visualize the spatial relations between the saturated and unsaturated lithologies. This detailed study of two borehole cores, collected in 2001 on the Camp Stanley Storage Activity (CSSA) area, provided the foundation for revising a number of hydrostratigraphic units representing the middle zone of the Trinity aquifer. The CSSA area is a restricted military facility that encompasses approximately 4,000 acres and is located in Boerne, Texas, northwest of the city of San Antonio. Studying both the surface and subsurface geology of the CSSA area are integral parts of a U.S. Geological Survey project funded through the National Cooperative Geologic Mapping Program. This modification of hydrostratigraphic units is being applied to all subsurface data used to construct a proposed 3-D EarthVision model of the CSSA area and areas to the south and west.

  6. Mars: Stratigraphy of Western Highlands and Polar Regions

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Scott, D. H.; Tuesink, M. F.

    1985-01-01

    Geologic mapping and stratigraphic studies of Mars based on Viking images improved knowledge of the relative age and occurrence of geologic units on a global scale. Densities of geologic units or features during the Noarchian, Hesperian, and Amazonian periods are indicated for the North and South polar regions as well as the equatorial region of Mars. Cumulative counts of crater size frequencies for craters larger than 2 km in diameter on plateau units mapped in the western region of Mars counts indicate that the plateau terrain as a whole was thinly resurfaced during the Hesperian Period, and a large proportion of pre-existing craters less than 10 to 15 km in diameter was buried. The formation of northern plains, subpolar highlands, and both polar regions is also described.

  7. Geology of the Cape Mendocino, Eureka, Garberville, and Southwestern Part of the Hayfork 30 x 60 Minute Quadrangles and Adjacent Offshore Area, Northern California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Ellen, S.D.; Blake, M.C.; Jayko, Angela S.; Irwin, W.P.; Aalto, K.R.; Carver, G.A.; Clarke, S.H.; Barnes, J.B.; Cecil, J.D.; Cyr, K.A.

    2000-01-01

    Introduction These geologic maps and accompanying structure sections depict the geology and structure of much of northwestern California and the adjacent continental margin. The map area includes the Mendocino triple junction, which is the juncture of the North American continental plate with two plates of the Pacific ocean basin. The map area also encompasses major geographic and geologic provinces of northwestern California. The maps incorporate much previously unpublished geologic mapping done between 1980 and 1995, as well as published mapping done between about 1950 and 1978. To construct structure sections to mid-crustal depths, we integrate the surface geology with interpretations of crustal structure based on seismicity, gravity and aeromagnetic data, offshore structure, and seismic reflection and refraction data. In addition to describing major geologic and structural features of northwestern California, the geologic maps have the potential to address a number of societally relevant issues, including hazards from earthquakes, landslides, and floods and problems related to timber harvest, wildlife habitat, and changing land use. All of these topics will continue to be of interest in the region, as changing land uses and population density interact with natural conditions. In these interactions, it is critical that the policies and practices affecting man and the environment integrate an adequate understanding of the geology. This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (ceghmf.ps, ceghmf.pdf, ceghmf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:100,000 or smaller.

  8. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the map, whose area is partly covered by a late Holocene andesite flow. Silicic lava flows are mostly confined to the main edifice of the volcano, with the youngest rhyolite flows found in and near the summit caldera, including the rhyolitic Little Glass Mountain (~1,000 yr B.P.) and Glass Mountain (~950 yr B.P.) flows, which are the youngest eruptions at Medicine Lake volcano. In postglacial time, 17 eruptions have added approximately 7.5 km3 to the volcano’s total estimated volume of 600 km3, which may be the largest by volume among Cascade Range volcanoes. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascade volcanoes except Mount St. Helens.

  9. Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California

    USGS Publications Warehouse

    Witter, Robert C.; Knudsen, Keith L.; Sowers, Janet M.; Wentworth, Carl M.; Koehler, Richard D.; Randolph, Carolyn E.; Brooks, Suzanna K.; Gans, Kathleen D.

    2006-01-01

    This report presents a map and database of Quaternary deposits and liquefaction susceptibility for the urban core of the San Francisco Bay region. It supercedes the equivalent area of U.S. Geological Survey Open-File Report 00-444 (Knudsen and others, 2000), which covers the larger 9-county San Francisco Bay region. The report consists of (1) a spatial database, (2) two small-scale colored maps (Quaternary deposits and liquefaction susceptibility), (3) a text describing the Quaternary map and liquefaction interpretation (part 3), and (4) a text introducing the report and describing the database (part 1). All parts of the report are digital; part 1 describes the database and digital files and how to obtain them by downloading across the internet. The nine counties surrounding San Francisco Bay straddle the San Andreas fault system, which exposes the region to serious earthquake hazard (Working Group on California Earthquake Probabilities, 1999). Much of the land adjacent to the Bay and the major rivers and streams is underlain by unconsolidated deposits that are particularly vulnerable to earthquake shaking and liquefaction of water-saturated granular sediment. This new map provides a consistent detailed treatment of the central part of the 9-county region in which much of the mapping of Open-File Report 00-444 was either at smaller (less detailed) scale or represented only preliminary revision of earlier work. Like Open-File Report 00-444, the current mapping uses geomorphic expression, pedogenic soils, inferred depositional environments, and geologic age to define and distinguish the map units. Further scrutiny of the factors controlling liquefaction susceptibility has led to some changes relative to Open-File Report 00-444: particularly the reclassification of San Francisco Bay mud (Qhbm) to have only MODERATE susceptibility and the rating of artificial fills according to the Quaternary map units inferred to underlie them (other than dams - adf). The two colored maps provide a regional summary of the new mapping at a scale of 1:200,000, a scale that is sufficient to show the general distribution and relationships of the map units but not to distinguish the more detailed elements that are present in the database. The report is the product of cooperative work by the National Earthquake Hazards Reduction Program (NEHRP) and National Cooperative Geologic Mapping Program of the U.S. Geological Survey, William Lettis and & Associates, Inc. (WLA), and the California Geological Survey. An earlier version was submitted to the U.S. Geological Survey by WLA as a final report for a NEHRP grant (Witter and others, 2005). The mapping has been carried out by WLA geologists under contract to the NEHRP Earthquake Program (Grant 99-HQ-GR-0095) and by the California Geological Survey.

  10. High performance computing to support multiscale representation of hydrography for the conterminous United States

    USGS Publications Warehouse

    Stanislawski, Larry V.; Liu, Yan; Buttenfield, Barbara P.; Survila, Kornelijus; Wendel, Jeffrey; Okok, Abdurraouf

    2016-01-01

    The National Hydrography Dataset (NHD) for the United States furnishes a comprehensive set of vector features representing the surface-waters in the country (U.S. Geological Survey 2000). The high-resolution (HR) layer of the NHD is largely comprised of hydrographic features originally derived from 1:24,000-scale (24K) U.S. Topographic maps. However, in recent years (2009 to present) densified hydrographic feature content, from sources as large as 1:2,400, have been incorporated into some watersheds of the HR NHD within the conterminous United States to better support the needs of various local and state organizations. As such, the HR NHD is a multiresolution dataset with obvious data density variations because of scale changes. In addition, data density variations exist within the HR NHD that are particularly evident in the surface-water flow network (NHD flowlines) because of natural variations of local geographic conditions; and also because of unintentional compilation inconsistencies due to variations in data collection standards and climate conditions over the many years of 24K hydrographic data collection (US Geological Survey 1955).

  11. Field trip to Nevada test site

    USGS Publications Warehouse

    ,

    1976-01-01

    Two road logs guide the reader through the geologic scene from Las Vegas to Mercury and from Mercury through eight stops on the Nevada Test Site. Maps and cross sections depict the geology and hydrology of the area. Included among the tables is one showing the stratigraphic units in the southwestern Nevada volcanic field and another that lists the geologic maps covering the Nevada Test Site and vicinity. The relation of the geologic environment to nuclear-explosion effects is alluded to in brief discussions of collapse, surface subsidence, and cratering resulting from underground nuclear explosions.

  12. Aerial radiometric and magnetic survey: Aztec National Topographic Map, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Aztec National Topographic Map NJ13-10 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included.more » Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.« less

  13. Aerial radiometric and magnetic survey: Lander National Topographic Map, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Lander National Topographic Map NK12-6 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included.more » Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.« less

  14. A nationwide classification of New Zealand aquifer properties

    NASA Astrophysics Data System (ADS)

    Westerhoff, Rogier; Tschritter, Constanze; Rawlinson, Zara; White, Paul

    2017-04-01

    Groundwater plays an essential role in water provision for domestic, industrial and agricultural use. Groundwater is also vital for ecology and environment, since it provides baseflow to many streams, rivers and wetlands. As groundwater is a 'hidden' resource that is typically poorly understood by the public, simple and informative maps can assist to enhance awareness for understanding groundwater and associated environmental issues. The first national aquifer map for New Zealand (2001) identified 200 aquifers at a scale of approximately 1:5 Million. Subsequently, regional councils and unitary authorities have updated their aquifer boundaries using a variety of methods. However, with increasing demand of groundwater in New Zealand and drought impacts expected to be more significant in the future, more consistent and more advanced aquifer characterisation and mapping techniques are needed to improve our understanding of the available resources. Significant resources have gone into detailed geological mapping in recent years, and the New Zealand 1:250,000 Geological Map (QMAP) was developed and released as a seamless GIS database in 2014. To date, there has been no national assessment of this significant data set for aquifer characterisation purposes. This study details the use of the QMAP lithological and chrono-stratigraphic information to develop a nationwide assessment of hydrogeological units and their properties. The aim of this study is to map hydrogeological units in New Zealand, with a long-term goal to use this as a basis for a nationally-consistent map of aquifer systems and aquifer properties (e.g., hydraulic conductivity estimates). Internationally accepted aquifer mapping studies were reviewed and a method was devised that classifies hydrogeological units based on the geological attributes of the QMAP ArcGIS polygons. The QMAP attributes used in this study were: main rock type; geological age; and secondary rock type. The method was mainly based on values of permeability after global, continental and New Zealand studies. The classification followed a tiered workflow. Tier 1 ('Hydrolithological units') consisted of the classification of only the main rock type, based on median permeability value. Tier 2 ('Hydrogeological units') consisted of a combined classification of main rock type and age, assuming that permeability shows an exponential decay over geological age. Tier 3 ('Hydrogeological units') included all three attributes, where the permeabilities of main and secondary rock types were averaged with weighting. Tier 4 was a simplification of the 10 classes in Tier 3 to four 'Aquifer Potential' classes, i.e., 'Poor', 'Low', 'Medium', and 'High'. The results show a good match with existing overlaying maps of aquifer boundaries The map is capable of refining aquifer boundaries at the regional scale where these boundaries have not been updated since 2001. Additionally, the map provides a quick and simple way to communicate hydrogeological information. This fundamental dataset is essential for future studies of the impact of climate and humans on groundwater in New Zealand. Future work will include categorising geological system knowledge (e.g., depositional environment) to allow for 3D mapping and characterisation, compilation and incorporation of nation-wide measured hydraulic conductivity values, including uncertainty, and linking with other national data sets.

  15. Use of geographic information system to display water-quality data from San Juan basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorn, C.R.; Dam, W.L.

    1989-09-01

    The ARC/INFO geographic information system is creating thematic maps of the San Juan basin as part of the USGS Regional Aquifer-System Analysis program. (Use of trade names is for descriptive purposes only and does not constitute endorsement by the US Geological Survey.) Maps created by a Prime version of ARC/INFO, to be published in a series of Hydrologic Investigations Atlas reports for selected geologic units, will include outcrop patters, water-well locations, and water-quality data. The San Juan basin study area, encompassing about 19,400 mi{sup 2}, can be displayed with ARC/INFO at various scales; on the same scale, generated water-quality mapsmore » can be compared and overlain with other maps such as potentiometric surface and depth to top of a geologic or hydrologic unit. Selected water-quality and well data (including latitude and longitude) are retrieved from the USGS National Water Information System data base for a specified geologic unit. Data are formatted by Fortran programs and read into an INFO data base. Two parallel files - an INFO file containing water-quality data and well data and an ARC file containing the site coordinates - are joined to form the ARC/INFO data base. A file containing a series of commands using Prime's Command Procedure language is used to select coverage, display, and position data on the map. Data interpretation is enhanced by displaying water-quality data throughout the basin in combination with other hydrologic and geologic data.« less

  16. Geological Mapping of the Ac-H-12 Toharu Quadrangle of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Mest, Scott; Williams, David; Crown, David; Yingst, Aileen; Buczkowski, Debra; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andres; Hoffmann, Martin; Schaefer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-12 Toharu Quadrangle (21-66°S, 90-180°E). At the time of this writing LAMO images (35 m/pixel) are just becoming available. The current geologic map of Ac-H-12 was produced using ArcGIS software, and is based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital terrain models (for topographic information). Dawn Framing Camera (FC) color images were also used to provide context for map unit identification. The map (to be presented as a poster) will be updated from analyses of LAMO images. The Toharu Quadrangle is named after crater Toharu (86 km diameter; 48.3°S, 156°E), and is dominated by smooth terrain in the north, and more heavily cratered terrain in the south. The quad exhibits ~9 km of relief, with the highest elevations (~3.5-4.6 km) found among the western plateau and eastern crater rims, and the lowest elevation found on the floor of crater Chaminuka. Preliminary geologic mapping has defined three regional units (smooth material, smooth Kerwan floor material, and cratered terrain) that dominate the quadrangle, as well as a series of impact crater material units. Smooth materials form nearly flat-lying plains in the northwest part of the quad, and overlies hummocky materials in some areas. These smooth materials extend over a much broader area outside of the quad, and appear to contain some of the lowest crater densities on Ceres. Cratered terrain forms much of the map area and contains rugged surfaces formed largely by the structures and deposits of impact features. In addition to geologic units, a number of geologic features - including crater rims, furrows, scarps, troughs, and impact crater chains - have been mapped. The Toharu Quadrangle predominantly displays impact craters that exhibit a range of sizes - from the limits of resolution to part of the Kerwan basin (280 km diameter) - and preservation styles. The quad also contains a number large (>20 km across) depressions that are only observable in the topographic data. Smaller craters (<40 km) generally appear morphologically "fresh", and their rims are nearly circular and raised above the surrounding terrain. Larger craters, such as Toharu, appear more degraded, exhibiting irregularly shaped, sometimes scalloped, rim structures, and debris lobes on their floors. Numerous craters (> 20 km) contain central mounds; at current FC resolution, it is difficult to discern if these are primary structures (i.e., central peaks) or secondary features. Support of the Dawn Instrument, Operations, & Science Teams is acknowledged. This work is supported by grants from NASA, DLR and MPG. References: [1] Williams D.A. et al. (2014) Icarus, 244, 1-12. [2] Yingst R.A. et al. (2014) PSS, 103, 2-23.

  17. Geologic mapping of Europa

    USGS Publications Warehouse

    Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W.; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.

    2000-01-01

    Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central, rough inner, and annular massif) and exterior (continuous ejecta) subunits. Structural features and landforms are shown with conventional symbols. Type localities for the units are identified, along with suggestions for portraying the features on geological maps, including colors and letter abbreviations for material units. Implementing these suggestions by the planetary mapping community would facilitate comparisons of maps for different parts of Europa and contribute to an eventual global synthesis of its complex geology. On the basis of initial mapping results, a stratigraphic sequence is suggested in which ridged plains form the oldest unit on Europa, followed by development of band material and individual ridges. Band materials tend to be somewhat older than ridges, but in many areas the two units formed simultaneously. Similarly, the formation of most chaos follows the development of ridged plains; although chaos is among the youngest materials on Europa, some chaos units might have formed contemporaneously with ridged plains. Smooth plains generally embay all other units and are late-stage in the evolution of the surface. C1 craters are superposed on ridged plains but are crosscut by other materials, including bands and ridges. Most c2 craters postdate all other units, but a few c2 craters are cut by ridge material. C3 craters constitute the youngest recognizable material on Europa. Copyright 2000 by the American Geophysical Union.

  18. Geologic Map of the State of Hawai`i

    USGS Publications Warehouse

    Sherrod, David R.; Sinton, John M.; Watkins, Sarah E.; Brunt, Kelly M.

    2007-01-01

    About This Map The State's geology is presented on eight full-color map sheets, one for each of the major islands. These map sheets, the illustrative meat of the publication, can be downloaded in pdf format, ready to print. Map scale is 1:100,000 for most of the islands, so that each map is about 27 inches by 36 inches. The Island of Hawai`i, largest of the islands, is depicted at a smaller scale, 1:250,000, so that it, too, can be shown on 36-inch-wide paper. The new publication isn't limited strictly to its map depictions. Twenty years have passed since David Clague and Brent Dalrymple published a comprehensive report that summarized the geology of all the islands, and it has been even longer since the last edition of Gordon Macdonald's book, Islands in the Sea, was revised. Therefore the new statewide geologic map includes an 83-page explanatory pamphlet that revisits many of the concepts that have evolved in our geologic understanding of the eight main islands. The pamphlet includes simplified page-size geologic maps for each island, summaries of all the radiometric ages that have been gathered since about 1960, generalized depictions of geochemical analyses for each volcano's eruptive stages, and discussion of some outstanding topics that remain controversial or deserving of additional research. The pamphlet also contains a complete description of map units, which enumerates the characteristics for each of the state's many stratigraphic formations shown on the map sheets. Since the late 1980s, the audience for geologic maps has grown as desktop computers and map-based software have become increasingly powerful. Those who prefer the convenience and access offered by Geographic Information Systems (GIS) can also feast on this publication. An electronic database, suitable for most GIS software applications, is available for downloading. The GIS database is in an Earth projection widely employed throughout the State of Hawai`i, using the North American datum of 1983 and the Universal Transverse Mercator system projection to zone 4. 'This digital statewide map allows engineers, consultants, and scientists from many different fields to take advantage of the geologic database,' said John Sinton, a geology professor at the University of Hawai`i, whose new mapping of the Wai`anae Range (West O`ahu) appears on the map. Indeed, when a testing version was first made available, most requests came from biologists, archaeologists, and soil scientists interested in applying the map's GIS database to their ongoing investigations. Another area newly depicted on the map, in addition to the Wai`anae Range, is Haleakala volcano, East Maui. So too for the active lava flows of Kilauea volcano, Island of Hawai`i, where the landscape has continued to evolve in the ten years since publication of the Big Island's revised geologic map. For the other islands, much of the map is compiled from mapping published in the 1930-1960s. This reliance stems partly from shortage of funding to undertake entirely new mapping but is warranted by the exemplary mapping of those early experts. The boundaries of all map units are digitized to show correctly on modern topographic maps.

  19. Need for new sensors to map lithologic units

    USGS Publications Warehouse

    Rowan, Lawrence C.; Barringer, Anthony R.

    1980-01-01

    One of the most important contributions that remote sensing can make to mineral energy explorations to provide data from satellites to augment regional geological mapping. Geologic maps, which show information on the subsurface, are the main basis for formulating models of resource genesis that guide exploration. However, conventional compilation procedures are time-consuming and therefore often slow the pace of exploration, especially in large, inaccessible areas. Landsat Multispectral Scanner (MSS) images have been applied to a wide variety of specific geological problems, including discrimination of lithologic and delineation of previously unrecognized tectonic features. However, these lithologic distinctions are based on brightness, spectral reflectance, and, less commonly, the morphology of the unit, which in the wavelength region of MSS images are only rarely diagnostic of specific mineralogical content. Limonite is the only lithological material that can be identified be analyzing MSS spectral radiance.

  20. Geology and resource assessment of Costa Rica at 1:500,000 scale; a digital representation of maps of the U.S. Geological Survey's 1987 Folio I-1865

    USGS Publications Warehouse

    Schruben, Paul G.

    1996-01-01

    This CD-ROM contains digital versions of the geology and resource assessment maps of Costa Rica originally published by the U.S. Geological Survey (USGS), the Direccion General de Geologia, Minas e Hidrocarburos, and the Universidad de Costa Rica in 1987 at a scale of 1:500,000 in USGS Folio I-1865. The following layers of the map are available on the CD-ROM: geology, favorable domains for selected deposit types, Bouguer gravity, isostatic gravity, mineral deposits, and rock geochemistry sample points. Some of the layers are provided in the following formats: ArcView 1 for Windows and UNIX, ARC/INFO 6.1.2 Export, Digital Line Graph (DLG) Optional, and Drawing Exchange File (DXF). This CD-ROM was produced in accordance with the ISO 9660 and Apple Computer's HFS standards.

  1. Bedrock geologic map of the Grafton quadrangle, Worcester County, Massachusetts

    USGS Publications Warehouse

    Walsh, Gregory J.; Aleinikoff, John N.; Dorais, Michael J.

    2011-01-01

    The bedrock geology of the 7.5-minute Grafton, Massachusetts, quadrangle consists of deformed Neoproterozoic to early Paleozoic crystalline metamorphic and intrusive igneous rocks. Neoproterozoic intrusive, metasedimentary, and metavolcanic rocks crop out in the Avalon zone, and Cambrian to Silurian intrusive, metasedimentary, and metavolcanic rocks crop out in the Nashoba zone. Rocks of the Avalon and Nashoba zones, or terranes, are separated by the Bloody Bluff fault. The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts. This report presents mapping by G.J. Walsh, geochronology by J.N. Aleinikoff, geochemistry by M.J. Dorais, and consists of a map, text pamphlet, and GIS database. The map and text pamphlet are available in paper format or as downloadable files (see frame at right). The GIS database is available for download. The database includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, and photographs.

  2. Quaternary Geology and Liquefaction Susceptibility, San Francisco, California 1:100,000 Quadrangle: A Digital Database

    USGS Publications Warehouse

    Knudsen, Keith L.; Noller, Jay S.; Sowers, Janet M.; Lettis, William R.

    1997-01-01

    This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There are no paper maps included in the Open-File report. The report does include, however, PostScript plot files containing the images of the geologic map sheets with explanations, as well as the accompanying text describing the geology of the area. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled 'For Those Who Aren't Familiar With Digital Geologic Map Databases' below. This digital map database, compiled from previously unpublished data, and new mapping by the authors, represents the general distribution of surficial deposits in the San Francisco bay region. Together with the accompanying text file (sf_geo.txt or sf_geo.pdf), it provides current information on Quaternary geology and liquefaction susceptibility of the San Francisco, California, 1:100,000 quadrangle. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:100,000 or smaller. The content and character of the database, as well as three methods of obtaining the database, are described below.

  3. Using LANDSAT imagery as a basis for the understanding of the physiographic regions of the United States

    NASA Technical Reports Server (NTRS)

    Blair, R. W., Jr.

    1981-01-01

    An undergraduate level course in regional geology is described in which map exercises using LANDSAT composite images are required. From these exercises, students lean to appreciate LANDSAT imagery, learn elementary skills in imagery reading and interpretation, in addition to making the association of geography, geology, maps, and imagery.

  4. Structure-contour maps on the top of the Mississippian carbonates and on top of the upper Cambrian and lower Ordovician Arbuckle Group, Joplin 1 degree by 2 degrees Quadrangle, Kansas and Missouri

    USGS Publications Warehouse

    Blair, Kevin P.; Berendsen, Pieter; Seeger, Cheryl M.

    1992-01-01

    This publication is a part of the folio of maps of the Joplin 1° X 2° quadrangle, Kansas and Missouri, which was prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio to date include the U.S. Geological Survey Miscellaneous Field Studies Maps MF-2125-A and B (Erickson and others, 1990; Grisafe and Rueff, 1992). Additional maps showing other geologic aspects of the Joplin quadrangle will be published as U.S. Geological Survey maps bearing this same serial number with different letter suffixes (MF-2125-D, -E, and so forth).

  5. Assessment of the Joplin 1 degree by 2 degrees Quadrangle, Kansas and Missouri, for Mississippi Valley-type deposits and other minerals

    USGS Publications Warehouse

    Pratt, Walden P.; Hayes, Timothy S.; Erickson, Ralph L.; Kisvarsanyi, Eva B.

    1993-01-01

    This map is a part of the folio of maps of the Joplin 1° X 2° quadrangle, Kansas and Missouri, which was prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio to date include the U.S. Geological Survey Miscellaneous Field Studies Maps MF-2125-A through D (Erickson and others, 1990; Grisafe and Rueff, 1992; Blair and others, 1992; McCafferty and Cordell, 1992). Additional maps showing other geologic aspects of the Joplin quadrangle will be published as U.S. Geological Survey maps bearing this same serial number with different letter suffixes (MF-2125-F, -G, and so on).

  6. Geologic Mapping of V-19, V-28, and V-53

    NASA Technical Reports Server (NTRS)

    Stofan, E. R.; Martin, P.; Guest, J. E.

    2008-01-01

    The Sedna Planitia Quadrangle (V-19) extend from 25 deg N - 50 deg N latitude, 330 deg - 0 deg longitude. The quadrangle contains the northern-most portion of western Eistla Regio and the Sedna Planitia lowlands. Geologic maps of Sedna Planitia (V-199), Hecate Chasma (V-28) quadrangles have been completed at the 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. All quadrangles (V-53, V-28 and V-19) have been reviewed at lease once and will be resubmitted. In V-28 and V-53, more plains materials units have been mapped than in previously mapped quadrangles V-46 and V-39. V-19 is more comparable to these latter maps in terms of numbers of plains units. In V-28, all of the plains materials units to the south of the rift have an unusually high concentration of volcanic edifices, which both predate and postdate the units. A similar situation is seen in V-53 and V-19, where small edifice formation is not confined to any specific time period. In the two chasma-related quadrangles, coronae are located along the rift, as well as to the north and the south of the rifts. Coronae in both quadrangles exhibit all forms of corona topographic shapes, including depressions, rimmed depressions, plateaus and domes. In V-28 and V-53, some coronae along the rift do not have much associated volcanism; coronae with the most volcanism in these quadrangles are located at least 500 km off the rifts or on the Themis Regio highland. All three quadrangles have very horizontal stratigraphic columns, as limited contact between units prevents clear age determinations. While this results in the appearance that all units formed at the same time, the use of hachured columns for each unit illustrates the limited nature of our stratigraphic knowledge in these quadrangles, allowing for numerous possible geologic histories. The scale of resurfacing in these quadrangles is on the scale of 100s of kilometers, consistent with the fact that they lie in the most volcanic region of Venus.

  7. Comparing and Reconciling Traditional Field and Photogeologic Mapping Techniques: Lessons from the San Francisco Volcanic Field, Arizona

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Eppler, D. B.; Bleacher, J. E.; Evans, C. A.; Feng, W.; Gruener, J.; Hurwitz, D. M.; Janoiko, B.; Whitson, P.

    2014-01-01

    Cartographic products and - specifically - geologic maps provide critical assistance for establishing physical and temporal frameworks of planetary surfaces. The technical methods that result in the creation of geologic maps vary depending on how observations are made as well as the overall intent of the final products [1-3]. These methods tend to follow a common linear work flow, including the identification and delineation of spatially and temporally discrete materials (units), the documentation of their primary (emplacement) and secondary (erosional) characteristics, analysis of the relative and absolute age relationships between these materials, and the collation of observations and interpretations into an objective map product. The "objectivity" of a map is critical cross comparison with overlapping maps and topical studies as well as its relevance to scientific posterity. However, the "accuracy" and "correctness" of a geologic map is very subject to debate. This can be evidenced by comparison of existing geologic maps at various scales, particularly those compiled through field- and remote-based mapped efforts. Our study focuses on comparing the fidelity of (1) "Apollo-style" geologic investigations, where typically non-geologist crew members follow static traverse routes established through pre-mission planning, and (2) "traditional" field-based investigations, where geologists are given free rein to observe without preplanned routes. This abstract summarizes the regional geology wherein our study was conducted, presents the geologic map created from traditional field mapping techniques, and offers basic insights into how geologic maps created from different tactics can be reconciled in support of exploratory missions. Additional abstracts [4-6] from this study discuss various exploration and science results of these efforts.

  8. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be determined primarily by information on landforms and soils (obtained by analysis of stream dissection and drainage and stream-divide patterns, land use patterns, etc.). Maps showing the Quaternary geologic-terrain units that can be distinguished on the ERTS-1 images are being prepared for study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Preliminary maps of 1:1,000,000 scale are included for three of the study areas: the Grand Island and Fremont, Nebraska, and the Davenport, Iowa-Illinois, 1 deg x 2 deg quadrangles. These maps exemplify the first phase of investigations, which consists of identifying and mapping landform and land use characteristics and geologic-surficial materials directly from the ERTS-1 images alone, with no additional information. These maps show that commonly the boundaries of geologic-terrain units can be delineated more accurately on ERTS-1 images than on topographic maps at 1:250,000 scale.

  9. Ontological Encoding of GeoSciML and INSPIRE geological standard vocabularies and schemas: application to geological mapping

    NASA Astrophysics Data System (ADS)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario; Fubelli, Giandomenico; Giardino, Marco

    2016-04-01

    Encoding of geologic knowledge in formal languages is an ambitious task, aiming at the interoperability and organic representation of geological data, and semantic characterization of geologic maps. Initiatives such as GeoScience Markup Language (last version is GeoSciML 4, 2015[1]) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013[2]), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG[3]) have been promoting information exchange of the geologic knowledge. There have also been limited attempts to encode the knowledge in a machine-readable format, especially in the lithology domain (see e.g. the CGI_Lithology ontology[4]), but a comprehensive ontological model that connect the several knowledge sources is still lacking. This presentation concerns the "OntoGeonous" initiative, which aims at encoding the geologic knowledge, as expressed through the standard vocabularies, schemas and data models mentioned above, through a number of interlinked computational ontologies, based on the languages of the Semantic Web and the paradigm of Linked Open Data. The initiative proceeds in parallel with a concrete case study, concerning the setting up of a synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap" (developed by the CNR Institute of Geosciences and Earth Resources, CNR IGG, Torino), where the description and classification of GeologicUnits has been supported by the modeling and implementation of the ontologies. We have devised a tripartite ontological model called OntoGeonous that consists of: 1) an ontology of the geologic features (in particular, GeologicUnit, GeomorphologicFeature, and GeologicStructure[5], modeled from the definitions and UML schemata of CGI vocabularies[6], GeoScienceML and INSPIRE, and aligned with the Planetary realm of NASA SWEET ontology[7]), 2) an ontology of the Earth materials (as defined by the SimpleLithology CGI vocabulary and aligned as a subclass of the Substance class in NASA SWEET ontology), and 3) an ontology of the MappedFeatures (as defined in the Representation sub-taxonomy of the NASA SWEET ontology). The latter correspond to the concrete elements of the map, with their geometry (polygons, lines) and geographical coordinates. The ontology model has been developed by taking into account applications primarily concerning the needs of geological mapping; nevertheless, the model is general enough to be applied to other contexts. In particular, we show how the automatic reasoning capabilities of the ontology system can be employed in tasks of unit definition and input filling of the map database and for supporting geologists in thematic re-classification of the map instances (e.g. for coloring tasks). ---------------------------------------- [1] http://www.geosciml.org [2] http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf [3] http://www.cgi-iugs.org/tech_collaboration/geoscience_terminology_working_group.html [4] https://www.seegrid.csiro.au/subversion/CGI_CDTGVocabulary/trunk/OwlWork/CGI_Lithology.owl [5] We are currently neglecting the encoding of the geologic events, left as a future work. [6] http://resource.geosciml.org/vocabulary/cgi/201211/ [7] Web site: https://sweet.jpl.nasa.gov, Di Giuseppe et al., 2013, SWEET ontology coverage for earth system sciences, http://www.ics.uci.edu/~ndigiuse/Nicholas_DiGiuseppe/Research_files/digiuseppe14.pdf; S. Barahmand et al. 2009, A Survey on SWEET Ontologies and their Applications, http://www-scf.usc.edu/~taheriya/reports/csci586-report.pdf

  10. Preliminary Aeromagnetic Map of Joshua Tree National Park and Vicinity, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Hill, P.L.

    2010-01-01

    This aeromagnetic map of Joshua Tree National Park and vicinity is intended to promote further understanding of the geology and structure in the region by serving as a basis for geophysical interpretations and by supporting geological mapping, water-resource investigations, and various topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals commonly mark lithologic or structural boundaries. Bodies of mafic and ultramafic rocks tend to produce the most intense magnetic anomalies, but such generalizations must be applied with caution because rocks with more felsic compositions, or even some sedimentary units, also can cause measurable magnetic anomalies. The database includes two ASCII files containing new aeromagnetic data and two ASCII files with point locations of the local maximum horizontal gradient derived from the aeromagnetic data. This metadata file describes the horizontal gradient locations derived from new and existing aeromagnetic data. This aeromagnetic map identifies magnetic features as a basis for geophysical interpretations; the gradients help define the edges of magnetic sources. This database updates geophysical information originally presented in smaller-scale formats and includes detailed aeromagnetic data collected by EON Geosciences, Inc.

  11. Preliminary geologic map of the Black Mountain area northeast of Victorville, San Bernardino County, California

    USGS Publications Warehouse

    Stone, Paul

    2006-01-01

    The Black Mountain area is in the Mojave Desert about 20 km northeast of Victorville, California. The geology of this area is of interest primarily for its excellent exposures of the early Mesozoic Fairview Valley Formation, a sequence of weakly metamorphosed sedimentary rocks including a thick, commercially important unit of limestone conglomerate that has been mined for cement at Black Mountain Quarry for several decades. Recent geochronologic work has shown that the Fairview Valley Formation is probably of Early Jurassic age. This preliminary geologic map of the Black Mountain area depicts the stratigraphic and structural relations of the Fairview Valley Formation and the associated rocks, most notably the overlying Sidewinder Volcanics of Early(?), Middle, and Late(?) Jurassic age. The map is based on new field studies by the author designed to clarify details of the stratigraphy and structure unresolved by previous investigations. The map is considered preliminary because the ages of some geologic units critical for a satisfactory understanding of the stratigraphic and structural framework remain unknown. The map area also includes a segment of the Helendale Fault, one of several faults of known or inferred late Cenozoic right-lateral displacement that make up the Eastern California Shear Zone. The fault is marked by aligned northeast-facing scarps in Pleistocene or older alluvial deposits and the underlying bedrock units. Relations in the map area suggest that right-lateral displacement on the Helendale Fault probably does not exceed 2 km, a conclusion compatible with previous estimates of displacement on this fault based on relations both within and outside the Black Mountain area.

  12. Application of PALSAR-2 remote sensing data for structural geology and topographic mapping in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    Natural hazards of geological origin are one of major problem during heavy monsoons rainfall in Kelantan state, peninsular Malaysia. Several landslides occur in this region are obviously connected to geological and topographical features, every year. Satellite synthetic aperture radar (SAR) data are particularly applicable for detection of geological structural and topographical features in tropical conditions. In this study, Phased Array type L-band Synthetic Aperture Radar (PALSAR-2), remote sensing data were used to identify high potential risk and susceptible zones for landslide in the Kelantan river basin. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulate drainage pattern and metamorphic and Quaternary units. Consequently, geologic structural map were produced for Kelantan river basin using recent PALSAR-2 data, which could be broadly applicable for landslide hazard assessment and delineation of high potential risk and susceptible areas. Landslide mitigation programmes could be conducted in the landslide recurrence regions for reducing catastrophes leading to economic losses and death.

  13. Toward digital geologic map standards: a progress report

    USGS Publications Warehouse

    Ulrech, George E.; Reynolds, Mitchell W.; Taylor, Richard B.

    1992-01-01

    Establishing modern scientific and technical standards for geologic maps and their derivative map products is vital to both producers and users of such maps as we move into an age of digital cartography. Application of earth-science data in complex geographic information systems, acceleration of geologic map production, and reduction of population costs require that national standards be developed for digital geologic cartography and computer analysis. Since December 1988, under commission of the Chief Geologic of the U.S. Geological Survey and the mandate of the National Geologic Mapping Program (with added representation from the Association of American State Geologists), a committee has been designing a comprehensive set of scientific map standards. Three primary issues were: (1) selecting scientific symbology and its digital representation; (2) creating an appropriate digital coding system that characterizes geologic features with respect to their physical properties, stratigraphic and structural relations, spatial orientation, and interpreted mode of origin; and (3) developing mechanisms for reporting levels of certainty for descriptive as well as measured properties. Approximately 650 symbols for geoscience maps, including present usage of the U.S Geological Survey, state geological surveys, industry, and academia have been identified and tentatively adopted. A proposed coding system comprises four-character groupings of major and minor codes that can identify all attributes of a geologic feature. Such a coding system allows unique identification of as many as 105 geologic names and values on a given map. The new standard will track closely the latest developments of the Proposed Standard for Digital Cartographic Data soon to be submitted to the National Institute of Standards and Technology by the Federal Interagency Coordinating Committee on Digital Cartography. This standard will adhere generally to the accepted definitions and specifications for spatial data transfer. It will require separate specifications of digital cartographic quality relating to positional accuracy and ranges of measured and interpreted values such as geologic age and rock composition. Provisional digital geologic map standards will be published for trial implementation. After approximately two years, when comments on the proposed standards have been solicited and modifications made, formal adoption of the standards will be recommended. Widespread acceptance of the new standards will depend on their applicability to the broadest range of earth-science map products and their adaptability to changing cartographic technology.

  14. Geology, tephrochronology, radiometric ages, and cross sections of the Mark West Springs 7.5' quadrangle, Sonoma and Napa counties, California

    USGS Publications Warehouse

    McLaughlin, R.J.; Sarna-Wojicki, A. M.; Fleck, R.J.; Wright, W.H.; Levin, V.R.G.; Valin, Z.C.

    2004-01-01

    The purpose of this geologic map is to provide a context within which to interpret the Neogene evolution of the active strike-slip fault system traversing the Mark West Springs 7.5' quadrangle and adjacent areas. Based on this geologic framework, the timing and total amounts of displacement and the Neogene rates of slip for faults of the right-stepover area between the Healdsburg and Maacama Faults are addressed.The Mark West Springs quadrangle is located in the northern California Coast Ranges north of San Francisco Bay. It is underlain by Mesozoic rocks of the Franciscan Complex, the Coast Range ophiolite, and the Great Valley sequence, considered here to be the pre-Tertiary basement of the northern Coast Ranges. These rocks are overlain by a complexly interstratified and mildly to moderately deformed sequence of Pleistocene to late Miocene marine and nonmarine sedimentary and largely subaerial volcanic rocks. These rocks and unconformably overlying, less-deformed Holocene and Pleistocene strata are cut by the active right-lateral Healdsburg and Maacama Fault Zones.Mapping of the Mark West Springs quadrangle began in 1996 and was completed in October 2002. Most of the mapping presented here is original, although a few other sources of existing geologic mapping were also utilized. Funding for the project was provided by the National Cooperative Geologic Mapping and Earthquake Hazards Reduction programs of the U.S. Geological Survey, in cooperation with geologic hazards mapping investigations of the California Geological Survey.

  15. 3D Stratigraphic Modeling of Central Aachen

    NASA Astrophysics Data System (ADS)

    Dong, M.; Neukum, C.; Azzam, R.; Hu, H.

    2010-05-01

    Since 1980s, advanced computer hardware and software technologies, as well as multidisciplinary research have provided possibilities to develop advanced three dimensional (3D) simulation software for geosciences application. Some countries, such as USA1) and Canada2) 3), have built up regional 3D geological models based on archival geological data. Such models have played huge roles in engineering geology2), hydrogeology2) 3), geothermal industry1) and so on. In cooperating with the Municipality of Aachen, the Department of Engineering Geology of RWTH Aachen University have built up a computer-based 3D stratigraphic model of 50 meter' depth for the center of Aachen, which is a 5 km by 7 km geologically complex area. The uncorrelated data from multi-resources, discontinuous nature and unconformable connection of the units are main challenges for geological modeling in this area. The reliability of 3D geological models largely depends on the quality and quantity of data. Existing 1D and 2D geological data were collected, including 1) approximately 6970 borehole data of different depth compiled in Microsoft Access database and MapInfo database; 2) a Digital Elevation Model (DEM); 3) geological cross sections; and 4) stratigraphic maps in 1m, 2m and 5m depth. Since acquired data are of variable origins, they were managed step by step. The main processes are described below: 1) Typing errors of borehole data were identified and the corrected data were exported to Variowin2.2 to distinguish duplicate points; 2) The surface elevation of borehole data was compared to the DEM, and differences larger than 3m were eliminated. Moreover, where elevation data missed, it was read from the DEM; 3) Considerable data were collected from municipal constructions, such as residential buildings, factories, and roads. Therefore, many boreholes are spatially clustered, and only one or two representative points were picked out in such areas; After above procedures, 5839 boreholes with -x, -y, -z coordinates, down-hole depth, and stratigraphic information are available. 4) We grouped stratigraphic units into four main layers based on analysis of geological settings of the modeling area. The stratigraphic units extend from Quaternary, Cretaceous, Carboniferous to Devonian. In order to facilitate the determination of each unit boundaries, a series of standard code was used to integrate data with different descriptive attributes. 5) The Quaternary and Cretaceous units are characterized by subhorizontal layers. Kriging interpolation was processed to the borehole data in order to estimate data distribution and surface relief for the layers. 6) The Carboniferous and Devonian units are folded. The lack of software support, concerning simulating folds and the shallow depth of boreholes and cross sections constrained the determination of geological boundaries. A strategy of digitalizing the fold surfaces from cross sections and establishing them as inclined strata was followed. The modeling was simply subdivided into two steps. The first step consisted of importing data into the modeling software. The second step involved the construction of subhorizontal layers and folds, which were constrained by geological maps, cross sections and outcrops. The construction of the 3D stratigraphic model is of high relevance to further simulation and application, such as 1) lithological modeling; 2) answering simple questions such as "At which unit is the water table?" and calculating volume of groundwater storage during assessment of aquifer vulnerability to contamination; and 3) assigned by geotechnical properties in grids and providing them for user required application. Acknowledgements: Borehole data is kindly provided by the Municipality of Aachen. References: 1. Janet T. Watt, Jonathan M.G. Glen, David A. John and David A. Ponce (2007) Three-dimensional geologic model of the northern Nevada rift and the Beowawe geothermal system, north-central Nevada. Geosphere, v. 3; no. 6; p. 667-682 2. Martin Ross, Michel Parent and René Lefebvre (2005) 3D geologic framework models for regional hydrogeology and land-use management: a case study from a Quaternary basin of southwestern Quebec, Canada. Hydrogeology Journal, 13:690-707 3. Martin Ross, Richard Martel, René Lefebvre, Michel Parent and Martine M. Savard (2004) Assessing rock aquifer vulnerability using downward advective times from a 3D model of surficial geology: A case study from the St. Lawrence Lowlands, Canada. Geofísica Internacional Vol. 43, Num. 4, pp. 591-602

  16. The United States Geological Survey in Alaska: Organization and status of programs in 1977

    USGS Publications Warehouse

    Blean, Kathleen M.

    1977-01-01

    United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)

  17. Geologic Map and Engineering Properties of the Surficial Deposits of the Tok Area, East-Central Alaska

    USGS Publications Warehouse

    Carrara, Paul E.

    2007-01-01

    The Tok area 1:100,000-scale map, through which the Alaska Highway runs, is in east-central Alaska about 160 km west of the Yukon border. The surficial geologic mapping in the map area is in support of the 'Geologic Mapping in support of land, resources, and hazards issues in Alaska' Project of the USGS National Cooperative Geologic Mapping Program. The Tok map area contains parts of three physiographic provinces, the Alaska Range, the Yukon-Tanana Upland, and the Northway-Tanana Lowland. The high, rugged, glaciated landscape of the eastern Alaska Range dominates the southwestern map area. The highest peak, an unnamed summit at the head of Cathedral Rapids Creek No. 2, rises to 2166 m. The gently rolling hills of the Yukon-Tanana Upland, in the northern map area, rise to about 1000 m. The Northway-Tanana Lowland contains the valley of the westerly flowing Tanana River. Elevations along the floor of the lowland generally range between 470 and 520 m. The dominant feature within the map is the Tok fan, which occupies about 20 percent of the map area. This large (450 km2), nearly featureless fan contains a high percentage of volcanic clasts derived from outside the present-day drainage of the Tok River. Because the map area is dominated by various surficial deposits, the map depicts 26 different surficial units consisting of man-made, alluvial, colluvial, eolian, lacustrine, organic, glaciofluvial, glacial, and periglacial deposits. The accompanying table provides information concerning the various units including their properties, characteristics, resource potential, and associated hazards in this area of the upper Tanana valley.

  18. Probabilistic seismic hazard estimates incorporating site effects - An example from Indiana, U.S.A

    USGS Publications Warehouse

    Hasse, J.S.; Park, C.H.; Nowack, R.L.; Hill, J.R.

    2010-01-01

    The U.S. Geological Survey (USGS) has published probabilistic earthquake hazard maps for the United States based on current knowledge of past earthquake activity and geological constraints on earthquake potential. These maps for the central and eastern United States assume standard site conditions with Swave velocities of 760 m/s in the top 30 m. For urban and infrastructure planning and long-term budgeting, the public is interested in similar probabilistic seismic hazard maps that take into account near-surface geological materials. We have implemented a probabilistic method for incorporating site effects into the USGS seismic hazard analysis that takes into account the first-order effects of the surface geologic conditions. The thicknesses of sediments, which play a large role in amplification, were derived from a P-wave refraction database with over 13, 000 profiles, and a preliminary geology-based velocity model was constructed from available information on S-wave velocities. An interesting feature of the preliminary hazard maps incorporating site effects is the approximate factor of two increases in the 1-Hz spectral acceleration with 2 percent probability of exceedance in 50 years for parts of the greater Indianapolis metropolitan region and surrounding parts of central Indiana. This effect is primarily due to the relatively thick sequence of sediments infilling ancient bedrock topography that has been deposited since the Pleistocene Epoch. As expected, the Late Pleistocene and Holocene depositional systems of the Wabash and Ohio Rivers produce additional amplification in the southwestern part of Indiana. Ground motions decrease, as would be expected, toward the bedrock units in south-central Indiana, where motions are significantly lower than the values on the USGS maps.

  19. Digital Geologic Map of the Wallace 1:100,000 Quadrangle, Idaho

    USGS Publications Warehouse

    Lewis, Reed S.; Burmester, Russell F.; McFaddan, Mark D.; Derkey, Pamela D.; Oblad, Jon R.

    1999-01-01

    The geology of the Wallace 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 primarily from published materials including 1983 data from Foster, Harrison's unpublished mapping done from 1975 to 1985, Hietenan's 1963, 1967, 1968, and 1984 mapping, Hobbs and others 1965 mapping, and Vance's 1981 mapping, supplemented by eight weeks of field mapping by Reed S. Lewis, Russell F. Burmester, and Mark D. McFaddan in 1997 and 1998. This geologic map information was inked onto a 1:100,000-scale greenline mylar of the topographic base map for input into a geographic information system (GIS). The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The map area is located in north Idaho. The primary sources of map data are shown in figure 2 and additional sources are shown in figure 3. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the Arc/Info GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Mapping and compilation was completed by the Idaho Geological Survey under contract with the U.S. Geological Survey (USGS) office in Spokane, Washington. The authors would like to acknowledge the help of the following field assistants: Josh Goodman, Yvonne Issak, Jeremy Johnson and Kevin Myer. Don Winston provided help with our ongoing study of Belt stratigraphy, and Tom Frost assisted with logistical problems and sample collection. Manuscript reviews by Steve Box, Tom Frost, and Brian White are greatly appreciated. We wish to thank Karen S. Bolm of the USGS for reviewing the digital files.

  20. Investigations on indoor Radon in Austria, part 2: Geological classes as categorical external drift for spatial modelling of the Radon potential.

    PubMed

    Bossew, Peter; Dubois, Grégoire; Tollefsen, Tore

    2008-01-01

    Geological classes are used to model the deterministic (drift or trend) component of the Radon potential (Friedmann's RP) in Austria. It is shown that the RP can be grouped according to geological classes, but also according to individual geological units belonging to the same class. Geological classes can thus serve as predictors for mean RP within the classes. Variability of the RP within classes or units is interpreted as the stochastic part of the regionalized variable RP; however, there does not seem to exist a smallest unit which would naturally divide the RP into a deterministic and a stochastic part. Rather, this depends on the scale of the geological maps used, down to which size of geological units is used for modelling the trend. In practice, there must be a sufficient number of data points (measurements) distributed as uniformly as possible within one unit to allow reasonable determination of the trend component.

  1. Digital geologic map of the Coeur d'Alene 1:100,000 quadrangle, Idaho and Montana

    USGS Publications Warehouse

    digital compilation by Munts, Steven R.

    2000-01-01

    Between 1961 and 1969, Alan Griggs and others conducted fieldwork to prepare a geologic map of the Spokane 1:250,000 map (Griggs, 1973). Their field observations were posted on paper copies of 15-minute quadrangle maps. In 1999, the USGS contracted with the Idaho Geological Survey to prepare a digital version of the Coeur d’Alene 1:100,000 quadrangle. To facilitate this work, the USGS obtained the field maps prepared by Griggs and others from the USGS Field Records Library in Denver, Colorado. The Idaho Geological Survey (IGS) digitized these maps and used them in their mapping program. The mapping focused on field checks to resolve problems in poorly known areas and in areas of disagreement between adjoining maps. The IGS is currently in the process of preparing a final digital spatial database for the Coeur d’Alene 1:100,000 quadrangle. However, there was immediate need for a digital version of the geologic map of the Coeur d’Alene 1:100,000 quadrangle and the data from the field sheets along with several other sources were assembled to produce this interim product. This interim product is the digital geologic map of the Coeur d’Alene 1:100,000 quadrangle, Idaho and Montana. It was compiled from the preliminary digital files prepared by the Idaho Geological, and supplemented by data from Griggs (1973) and from digital databases by Bookstrom and others (1999) and Derkey and others (1996). The resulting digital geologic map (GIS) database can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The digital geologic map graphics (of00-135_map.pdf) that are provided are representations of the digital database. The map area is located in north Idaho. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.

  2. Vegetative and geologic mapping of the western Seward Peninsula, Alaska, based on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Anderson, J. H.; Shapiro, L. H.; Belon, A. E.

    1973-01-01

    ERTS-1 scene 1009-22095 (Western Seward Peninsula, Alaska) has been studied, partly as a training exercise, to evaluate whether direct visual examination of individual and custom color-composite prints can provide new information on the vegetation and geology of this relatively well known area of Alaska. The vegetation analysis reveals seven major vegetation types, only four of which are described on existing vegetation maps. In addition, the ERTS analysis provides greater detail than the existing maps on the areal distribution of vegetation types. The geologic analysis demonstrates that most of the major rock units and geomorphic boundaries shown on the available geologic maps could also be identified on the ERTS data. Several major high-angle faults were observed, but the zones of thrust faults which are much less obvious.

  3. Lithospheric magnetic field modelling of the African continent

    NASA Astrophysics Data System (ADS)

    Hemant, K.; Maus, S.

    2003-04-01

    New magnetic satellite missions in low-earth orbit are providing increasingly accurate maps of the lithospheric magnetic field. These maps can be used to infer the geological structure of regions hidden by Phanerozoic cover, taking into account our knowledge of crustal structure from surface geology and seismic methods. A GIS based modelling technique has been developed to model the various geological units of the continents using the UNESCO geological map of the world, supported by background geological information from various sources. Geological units of each region are assigned a susceptibility value based on laboratory values of the constituent rock types. Then, using the 3SMAC seismic crustal structure, a vertically integrated susceptibility (VIS) model is computed at each point of the region. Starting with this VIS model, the total field anomaly is computed at an altitude of 400 km and compared with the MF2 lithospheric magnetic field model derived from CHAMP data. The modelling results of the Precambrian units of the West African cratons agree well with MF2. The anomaly in the Central African cratonic region also correlates well, although part of it is unaccounted for as yet. Furthermore, the anomalies over the Tanzanian craton and surrounding region agree very well. Most of the regions around the South African cratons are hidden by Phanerozoic cover, yet the results above the Kaapvaal craton and the southern Zimbabwe craton around the Limpopo belt show good correspondence with the observed anomaly map. The results also suggest a probable extension of the Precambrian units below the sediments of younger age. In general, the lower crust is likely to be more mafic than presumed in our current understanding of Central Africa. Deviations in the magnitude of the anomalies in some regions are likely to be due to incomplete seismic information in those regions. Thus, the thickness of crustal layers derived from magnetic anomalies for these locations may help to constrain future geophysical models in the less explored regions of Africa.

  4. Evaluation of SIR-A space radar for geologic interpretation: United States, Panama, Colombia, and New Guinea

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W. P.; Kaupp, V. H.; Bridges, L. C.; Storm, M.

    1983-01-01

    Comparisons between LANDSAT MSS imagery, and aircraft and space radar imagery from different geologic environments in the United States, Panama, Colombia, and New Guinea demonstrate the interdependence of radar system geometry and terrain configuration for optimum retrieval of geologic information. Illustrations suggest that in the case of space radars (SIR-A in particular), the ability to acquire multiple look-angle/look-direction radar images of a given area is more valuable for landform mapping than further improvements in spatial resolution. Radar look-angle is concluded to be one of the most important system parameters of a space radar designed to be used for geologic reconnaissance mapping. The optimum set of system parameters must be determined for imaging different classes of landform features and tailoring the look-angle to local topography.

  5. Publications of the Western Earth Surface Processes Team 2006

    USGS Publications Warehouse

    Powell, Charles L.; Stone, Paul

    2007-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping, earth-surface process investigations, and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2006 included southern California, the San Francisco Bay region, the Mojave Desert, the Colorado Plateau region of northern Arizona, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. This compilation gives the bibliographical citations for 123 new publications, most of which are available online using the hyperlinks provided.

  6. 2001 Mars Odyssey: Geologic Questions for Global Geochemical and Mineralogical Mapping

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Meyer, M. A.

    2001-01-01

    2001 Mars Odyssey has three experiments. GRS will map the surface elemental composition. MARIE will characterize the Mars radiation environment for risk to humans. THEMIS will map the mineralogy and morphology with a camera and thermal IR imaging. Additional information is contained in the original extended abstract.

  7. Geology of the Palo Alto 30 x 60 minute quadrangle, California: A digital database

    USGS Publications Warehouse

    Brabb, Earl E.; Graymer, R.W.; Jones, David Lawrence

    1998-01-01

    This map database represents the integration of previously published and unpublished maps by several workers (see Sources of Data index map on Sheet 2 and the corresponding table below) and new geologic mapping and field checking by the authors with the previously published geologic map of San Mateo County (Brabb and Pampeyan, 1983) and Santa Cruz County (Brabb, 1989, Brabb and others, 1997), and various sources in a small part of Santa Clara County. These new data are released in digital form to provide an opportunity for regional planners, local, state, and federal agencies, teachers, consultants, and others interested in geologic data to have the new data long before a traditional paper map is published. The new data include a new depiction of Quaternary units in the San Francisco Bay plain emphasizing depositional environment, important new observations between the San Andreas and Pilarcitos faults, and a new interpretation of structural and stratigraphic relationships of rock packages (Assemblages).

  8. Geologic mapping of the Bauru Group in Sao Paulo state by LANDSAT images. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Godoy, A. M.

    1983-01-01

    The occurrence of the Bauru Group in Sao Paulo State was studied, with emphasis on the western plateau. Regional geological mapping was carried out on a 1:250.000 scale with the help of MSS/LANDSAT images. The visual interpretation of images consisted basically of identifying different spectral characteristics of the geological units using channels 5 and 7. Complementary studies were made for treatment of data with an Interative Image (I-100) analyser in order to facilitate the extraction of information, particularly for areas where visual interpretation proved to be difficult. Regional characteristics provided by MSS/LANDSAT images, coupled with lithostratigraphic studies carried out in the areas of occurrence of Bauru Group sediments, enabled the homogenization of criteria for the subdivision of this group. A spatial distribution of the mapped units was obtained for the entire State of Sao Paulo and results were correlated with proposed stratigraphic divisions.

  9. Map and map database of susceptibility to slope failure by sliding and earthflow in the Oakland area, California

    USGS Publications Warehouse

    Pike, R.J.; Graymer, R.W.; Roberts, Sebastian; Kalman, N.B.; Sobieszczyk, Steven

    2001-01-01

    Map data that predict the varying likelihood of landsliding can help public agencies make informed decisions on land use and zoning. This map, prepared in a geographic information system from a statistical model, estimates the relative likelihood of local slopes to fail by two processes common to an area of diverse geology, terrain, and land use centered on metropolitan Oakland. The model combines the following spatial data: (1) 120 bedrock and surficial geologic-map units, (2) ground slope calculated from a 30-m digital elevation model, (3) an inventory of 6,714 old landslide deposits (not distinguished by age or type of movement and excluding debris flows), and (4) the locations of 1,192 post-1970 landslides that damaged the built environment. The resulting index of likelihood, or susceptibility, plotted as a 1:50,000-scale map, is computed as a continuous variable over a large area (872 km2) at a comparatively fine (30 m) resolution. This new model complements landslide inventories by estimating susceptibility between existing landslide deposits, and improves upon prior susceptibility maps by quantifying the degree of susceptibility within those deposits. Susceptibility is defined for each geologic-map unit as the spatial frequency (areal percentage) of terrain occupied by old landslide deposits, adjusted locally by steepness of the topography. Susceptibility of terrain between the old landslide deposits is read directly from a slope histogram for each geologic-map unit, as the percentage (0.00 to 0.90) of 30-m cells in each one-degree slope interval that coincides with the deposits. Susceptibility within landslide deposits (0.00 to 1.33) is this same percentage raised by a multiplier (1.33) derived from the comparative frequency of recent failures within and outside the old deposits. Positive results from two evaluations of the model encourage its extension to the 10-county San Francisco Bay region and elsewhere. A similar map could be prepared for any area where the three basic constituents, a geologic map, a landslide inventory, and a slope map, are available in digital form. Added predictive power of the new susceptibility model may reside in attributes that remain to be explored?among them seismic shaking, distance to nearest road, and terrain elevation, aspect, relief, and curvature.

  10. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be differentiated, primarily by information on landforms and soils. Maps showing the Quaternary geologic-terrain units that can be differentiated from the ERTS-1 images are being prepared for study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Preliminary maps at 1:1 million scale are given of two of the study areas, the Peoria and Decatur, Illinois, 1 deg x 2 quadrangles. These maps exemplify the first phase of investigations, which consists of identifying and mapping landform and land use characteristics and geologic-surficial materials directly from ERTS-1 images alone, without input of additional data. These maps shown that commonly the boundaries of geologic-terrain units can be identified more accurately on ERTS-1 images than on topographic maps of 1:250,000 scale. From analysis of drainage patterns, stream-divide relations, and tone and textural variations on the ERTS-1 images, the trends of numerous moraines of Wisconsinan and possibly some of Illinoian age were mapped. In the Peoria study area the trend of a buried valley of the Mississippi River is revealed.

  11. Preliminary Geologic Map of the North-Central Part of the Alamosa 30' x 60' Quadrangle, Alamosa, Conejos and Costilla Counties, Colorado

    USGS Publications Warehouse

    Machette, Michael N.; Thompson, Ren A.; Brandt, Theodore R.

    2008-01-01

    This geologic map presents new polygon (geologic map unit contacts) and line (terrace and lacustrine spit/barrier bar) vector data for a map comprised of four 7.5' quadrangles in the north-central part of the Alamosa, Colorado, 30' x 60' quadrangle. The quadrangles include Baldy, Blanca, Blanca SE, and Lasauses. The map database, compiled at 1:50,000 scale from new 1:24,000-scale mapping, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The mapped area is located primarily in Costilla County, but contains portions of Alamosa and Conejos Counties, and includes the town of Blanca in its northeastern part. The map area is mainly underlain by surficial geologic materials (fluvial and lacustrine deposits, and eolian sand), but Tertiary volcanic and volcaniclastic rocks crop out in the San Luis Hills, which are in the central and southern parts of the mapped area. The surficial geology of this area has never been mapped at any scale greater than 1:250,000 (broad reconnaissance), so this new map provides important data for ground-water assessments, engineering geology, and the Quaternary geologic history of the San Luis Basin. Newly discovered shoreline deposits are of particular interest (sands and gravels) that are associated with the high-water stand of Lake Alamosa, a Pliocene to middle Pleistocene lake that occupied the San Luis basin prior to its overflow and cutting of a river gorge through the San Luis Hills. After the lake drained, the Rio Grande system included Colorado drainages for the first time since the Miocene (>5.3 Ma). In addition, Servilleta Basalt, which forms the Basaltic Hills on the east margin of the map area, is dated at 3.79+or-0.17 Ma, consistent with its general age range of 3.67-4.84 Ma. This map provides new geologic information for better understanding ground-water flow paths in and adjacent to the Rio Grande system. The map abuts U.S. Geological Survey Open File Report 2005-1392 (a map of the northwestern part of the Alamosa 30' x 60' quadrangle map) to the west and U.S. Geological Survey Scientific Investigations Map 2965 (Fort Garland 7.5' quadrangle) to the east.

  12. Topographic Maps and Coal Mining.

    ERIC Educational Resources Information Center

    Raitz, Karl B.

    1984-01-01

    Geography teachers can illustrate the patterns associated with mineral fuel production, especially coal, by using United States Geological Survey topographic maps, which are illustrated by symbols that indicate mine-related features, such as shafts and tailings. Map reading exercises are presented; an interpretative map key that can facilitate…

  13. Hydrologic framework of Long Island, New York

    USGS Publications Warehouse

    Smolensky, Douglas A.; Buxton, Herbert T.; Shernoff, Peter K.

    1990-01-01

    Long Island, N.Y., is underlain by a mass of unconsolidated geologic deposits of clay, silt, sand, and gravel that overlie southward-sloping consolidated bedrock. These deposits are thinnest in northern Queens County (northwestern Long Island), where bedrock crops out, and increase to a maximum thickness of 2,000 ft in southeastern Long Island. This sequence of unconsolidated deposits consists of several distinct geologic units ranging in age from late Cretaceous through Pleistocene, with some recent deposits near shores and streams. These units are differentiated by age, depositional environment, and lithology in table 1. Investigations of ground-water availability and flow patterns may require information on the internal geometry of the hydrologic system that geologic correlations and interpretation alone cannot provide; hydrologic interpretations in which deposits are differentiated on the basis of water-transmitting properties are generally needed also. This set of maps and vertical sections depicts the hydrogeologic framework of the unconsolidated deposits that form Long Island's ground-water system. These deposits can be classified into eight major hydrogeologic units (table 1). The hydrogeologic interpretations presented herein are not everywhere consistent with strict geologic interpretation owing to facies changes and local variations in the water-transmitting properties within geologic units. These maps depict the upper-surface altitude of seven of the eight hydrogeologic units, which, in ascending order, are: consolidated bedrock, Lloyd aquifer, Raritan confining unit, Magothy aquifer, Monmouth greensand, Jameco aquifer, and Gardiners Clay. The upper glacial aquifer—the uppermost unit—is at land surface over most of Long Island and is, therefore, not included. The nine north-south hydrogeologic sections shown below depict the entire sequence of unconsolidated deposits and, together with the maps, provide a detailed three-dimensional interpretation of Long Island's hydrogeologic framework. The structure-contour map that shows the upper-surface altitude of the Cretaceous deposits is included to illustrate the erosional unconformity between the Cretaceous and overlying Pleistocene deposits. Pleistocene erosion played a major role in determining the shape and extent of the Lloyd aquifer, the Raritan confining unit, and the Magothy aquifer, and thus partly determined their hydrogeologic relation with subsequent (post-Cretaceous) deposits.

  14. Karst in the United States: a digital map compilation and database

    USGS Publications Warehouse

    Weary, David J.; Doctor, Daniel H.

    2014-01-01

    This report describes new digital maps delineating areas of the United States, including Puerto Rico and the U.S. Virgin Islands, having karst or the potential for development of karst and pseudokarst. These maps show areas underlain by soluble rocks and also by volcanic rocks, sedimentary deposits, and permafrost that have potential for karst or pseudokarst development. All 50 States contain rocks with potential for karst development, and about 18 percent of their area is underlain by soluble rocks having karst or the potential for development of karst features. The areas of soluble rocks shown are based primarily on selection from State geologic maps of rock units containing significant amounts of carbonate or evaporite minerals. Areas underlain by soluble rocks are further classified by general climate setting, degree of induration, and degree of exposure. Areas having potential for volcanic pseudokarst are those underlain chiefly by basaltic-flow rocks no older than Miocene in age. Areas with potential for pseudokarst features in sedimentary rocks are in relatively unconsolidated rocks from which pseudokarst features, such as piping caves, have been reported. Areas having potential for development of thermokarst features, mapped exclusively in Alaska, contain permafrost in relatively thick surficial deposits containing ground ice. This report includes a GIS database with links from the map unit polygons to online geologic unit descriptions.

  15. Evaluation of EREP techniques for geological mapping. [southern Pyrenees and Ebro basin in Spain

    NASA Technical Reports Server (NTRS)

    Vandermeermohr, H. E. C.; Srivastava, G. S. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Skylab photographs may be successfully utilized for preparing a reconnaissance geological map in the areas where no maps or semi-detailed maps exist. Large coverage of area and regional perspective from Skylab photographs can help better coordination in regional mapping. It is possible to delineate major structural trends and other features like mega-lineaments, geofractures, and faults, which have evaded their detection by conventional methods. The photointerpretability is better in areas dominated by sedimentary rocks. Rock units of smaller extent and having poor geomorphic expressions are difficult to map. Demarcation of quaternary river alluvium can be made with better precision and ease with the Skylab photographs. Stereoscopic viewing greatly helps in interpretation of area structures. Skylab photographs are not good for preparing geological maps larger than 1:270,000 scale.

  16. Topographic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. Topographic Map of Quadrangle 3468, Chak Wardak Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. Topographic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Topographic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. Topographic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

Top