Science.gov

Sample records for original layered structure

  1. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    PubMed Central

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L.; Zhang, Qianfan; Zhao, Weisheng

    2015-01-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM. PMID:26656721

  2. Dynamical origins of the community structure of an online multi-layer society

    NASA Astrophysics Data System (ADS)

    Klimek, Peter; Diakonova, Marina; Eguíluz, Víctor M.; San Miguel, Maxi; Thurner, Stefan

    2016-08-01

    Social structures emerge as a result of individuals managing a variety of different social relationships. Societies can be represented as highly structured dynamic multiplex networks. Here we study the dynamical origins of the specific community structures of a large-scale social multiplex network of a human society that interacts in a virtual world of a massive multiplayer online game. There we find substantial differences in the community structures of different social actions, represented by the various layers in the multiplex network. Community sizes distributions are either fat-tailed or appear to be centered around a size of 50 individuals. To understand these observations we propose a voter model that is built around the principle of triadic closure. It explicitly models the co-evolution of node- and link-dynamics across different layers of the multiplex network. Depending on link and node fluctuation probabilities, the model exhibits an anomalous shattered fragmentation transition, where one layer fragments from one large component into many small components. The observed community size distributions are in good agreement with the predicted fragmentation in the model. This suggests that several detailed features of the fragmentation in societies can be traced back to the triadic closure processes.

  3. Origin of Structural Transformation in Mono- and Bi-Layered Molybdenum Disulfide

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Wang, Zhiguo; Li, Zhijie; Fu, Y. Q.

    2016-05-01

    Mono- and multi-layered molybdenum disulfide (MoS2) is considered to be one of the next generation anode materials for rechargeable ion batteries. Structural transformation from trigonal prismatic (2H) to octahedral (1T) upon lithium or sodium intercalation has been in-situ observed experimentally using transmission electron microscope during studies of their electrochemical dynamics processes. In this work, we explored the fundamental mechanisms of this structural transformation in both mono- and bi-layered MoS2 using density functional theory. For the intercalated MoS2, the Li and Na donate their electrons to the MoS2. Based on the theoretical analysis, we confirmed that, for the first time, electron transfer is dominant in initiating this structural transformation, and the results provide an in-depth understanding of the transformation mechanism induced by the electron doping. The critical values of electron concentrations for this structural transformation are decreased with increasing the layer thickness.

  4. Origin of Structural Transformation in Mono- and Bi-Layered Molybdenum Disulfide.

    PubMed

    Sun, Xiaoli; Wang, Zhiguo; Li, Zhijie; Fu, Y Q

    2016-01-01

    Mono- and multi-layered molybdenum disulfide (MoS2) is considered to be one of the next generation anode materials for rechargeable ion batteries. Structural transformation from trigonal prismatic (2H) to octahedral (1T) upon lithium or sodium intercalation has been in-situ observed experimentally using transmission electron microscope during studies of their electrochemical dynamics processes. In this work, we explored the fundamental mechanisms of this structural transformation in both mono- and bi-layered MoS2 using density functional theory. For the intercalated MoS2, the Li and Na donate their electrons to the MoS2. Based on the theoretical analysis, we confirmed that, for the first time, electron transfer is dominant in initiating this structural transformation, and the results provide an in-depth understanding of the transformation mechanism induced by the electron doping. The critical values of electron concentrations for this structural transformation are decreased with increasing the layer thickness. PMID:27225416

  5. Origin of Structural Transformation in Mono- and Bi-Layered Molybdenum Disulfide

    PubMed Central

    Sun, Xiaoli; Wang, Zhiguo; Li, Zhijie; Fu, Y. Q.

    2016-01-01

    Mono- and multi-layered molybdenum disulfide (MoS2) is considered to be one of the next generation anode materials for rechargeable ion batteries. Structural transformation from trigonal prismatic (2H) to octahedral (1T) upon lithium or sodium intercalation has been in-situ observed experimentally using transmission electron microscope during studies of their electrochemical dynamics processes. In this work, we explored the fundamental mechanisms of this structural transformation in both mono- and bi-layered MoS2 using density functional theory. For the intercalated MoS2, the Li and Na donate their electrons to the MoS2. Based on the theoretical analysis, we confirmed that, for the first time, electron transfer is dominant in initiating this structural transformation, and the results provide an in-depth understanding of the transformation mechanism induced by the electron doping. The critical values of electron concentrations for this structural transformation are decreased with increasing the layer thickness. PMID:27225416

  6. Origins of Igneous Layering

    NASA Astrophysics Data System (ADS)

    Marsh, Bruce

    Anyone who has ever seen a photo of a layered intrusion, let alone visited one first hand, or even seen a thin section from one, cannot help but be impressed by the stunning record of crystal growth and deposition. Such bodies stand as majestic monuments of undeniable evidence that intricate magmatic processes exist, processes that couple crystallization, convection, and crystal sorting to form rocks so highly ordered and beautiful that they are a wonder to behold. These are the altars to which petrologists must carry their conceived petrologic processes for approval.Although significant in number, the best layered intrusions seem to be found almost always in remote places. Their names, Bushveld, Muskox, Kiglapait, Stillwater, Duke Island, Skaergaard, Rhum, ring through igneous petrology almost as historic military battles (Saratoga, Antietam, Bull Run, Manassas, Gettysburg) do through American history. People who have worked on such bodies are almost folk heros: Wager, Deer, Brown, Jackson, Hess, Irvine, McBirney, Morse; these names are petrologic household words. Yet with all this fanfare and reverence, layered instrusions are nearly thought of as period pieces, extreme examples of what can happen, but not generally what does. This is now all changing with the increasing realization that these bodies are perhaps highly representative of all magmatic bodies. They are simply more dynamically complete, containing more of the full range of interactions, and of course, exposing a more complete record. They are one end of a spectrum containing lava flows, lava lakes, large sills, plutons, and layered intrusions. This book uniquely covers this range with an abundance of first-hand field observations and a good dose of process conceptualization, magma physics, and crystal growth kinetics.

  7. 'Blueberry' Layers Indicate Watery Origins

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This microscopic image, taken at the outcrop region dubbed 'El Capitan' near the Mars Exploration Rover Opportunity's landing site, reveals millimeter-scale (.04 inch-scale) layers in the lower portion. This same layering is hinted at by the fine notches that run horizontally across the sphere-like grain or 'blueberry' in the center left. The thin layers do not appear to deform around the blueberry, indicating that these geologic features are concretions and not impact spherules or ejected volcanic material called lapilli. Concretions are balls of minerals that form in pre-existing wet sediments. This image was taken by the rover's microscopic imager on the 29th martian day, or sol, of its mission. The observed area is about 3 centimeters (1.2 inches) across.

  8. Structured luminescence conversion layer

    DOEpatents

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  9. On the origin of rhythmic layering in layered gabbros

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Zhang, J.

    2015-12-01

    Rhythmic layering of silicates (plagioclase, pyroxene and olivine), ilmenite and magnitite is a common feature in mafic-ultramafic intrusions. The origin of rhythmic layering has been hotly debated in the literatures. Proposed mechanisms include gravity differentiation, double-diffusive convection, oscillatory crystallization of magma, repeated injection and supplement of magma, etc. Here we provide detailed FTIR and EBSD studies on the water content and deformation microstructure of gabbros from the Panzhihua intrusion and experimentally deformed synthetic gabrros and magnetite aggregates with a volume ratio of 6:4. The FTIR analyses revealed a significant amount of hydroxyls in both clinopyroxene (411-775 ppm) and plagioclase (328-716 ppm), suggesting a high water content mantle plume source. The EBSD analyses show similar fabrics in constitutent minerals of natural and experimental specimens: a weak clinopyroxene fabric of (100) parallel to foliation and [001] parallel to lineation; a strong plagioclase fabric of (010) parallel to foliation and [100] parallel to lineation, a weak ilmenite fabric of (001) parallel to foliation and [hk0] parallel to lieantion; and a near random magnitite fabric. There is an obvious rhythmic layering in sheared gabrros and magnetite aggregates similar to natural observations. Our results revealed strong layer-parallel shearing deformation during the formation of the Panxi layered intructions. There is a significant strength contrast between gabbro and Fe-Ti oxides. We propose that the formation of the rhythmic layering in mafic-ultramafic intrusions is caused mainly by rheological stratification of Fe-Ti oxides and gabbros.

  10. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials.

    PubMed

    Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander; Malik, Rahul; Kang, ShinYoung; Ceder, Gerbrand

    2016-07-01

    Lithium-ion batteries are now reaching the energy density limits set by their electrode materials, requiring new paradigms for Li(+) and electron hosting in solid-state electrodes. Reversible oxygen redox in the solid state in particular has the potential to enable high energy density as it can deliver excess capacity beyond the theoretical transition-metal redox-capacity at a high voltage. Nevertheless, the structural and chemical origin of the process is not understood, preventing the rational design of better cathode materials. Here, we demonstrate how very specific local Li-excess environments around oxygen atoms necessarily lead to labile oxygen electrons that can be more easily extracted and participate in the practical capacity of cathodes. The identification of the local structural components that create oxygen redox sets a new direction for the design of high-energy-density cathode materials. PMID:27325096

  11. Structural Origin of Overcharge-Induced Thermal Instability of Ni-Containing Layered-Cathodes for High-Energy-Density Lithium Batteries

    SciTech Connect

    Wu, L.; Nam, K.-W.; Wang, X.; Zhou, Y.; Zheng, J.-C.; Yang, X.-Q.; Zhu, Y.

    2011-08-04

    Using a combination of time-resolved X-ray diffraction (XRD), in situ transmission electron microscopy (TEM), and first principles calculations, we explore the structural origin of the overcharge induced thermal instability of two cathode materials, LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} and LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2}, which exhibit significant difference in thermal stabilities. Detailed TEM analysis reveals, for the first time, a complex core-shell-surface structure of the particles in both materials that was not previously detected by XRD. Structural comparison indicates that the overcharged Li{sub x}Ni{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} (x < 0.15) particles consist of a rhombohedral core, a spinel shell, and a rock-salt structure at the surface, while the overcharged Li{sub x}Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} consists of a similar core-shell-surface structure but a very different CdI{sub 2}-type surface structure. The thermal instability of Li{sub x}Ni{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} can be attributed to the release of oxygen because of the rapid growth of the rock-salt-type structure on the surface during heating. In contrast, the CdI{sub 2}-type surface structure of the overcharged Li{sub x}Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} particles delays the oxygen-release reaction to a much higher temperature resulting in better stability. These results gave deep insight into the relationship between the local structural changes and the thermal stability of cathode materials, which is vital to the development of new cathode materials for the next generation of lithium-ion batteries.

  12. Planetary Origin Evolution and Structure

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.

    2005-01-01

    This wide-ranging grant supported theoretical modeling on many aspects of the formation, evolution and structure of planets and satellites. Many topics were studied during this grant period, including the evolution of icy bodies; the origin of magnetic fields in Ganymede; the thermal histories of terrestrial planets; the nature of flow inside giant planets (especially the coupling to the magnetic field) and the dynamics of silicate/iron mixing during giant impacts and terrestrial planet core formation. Many of these activities are ongoing and have not reached completion. This is the nature of this kind of research.

  13. Layered tektites - A multiple impact origin for the Australasian tektites

    NASA Astrophysics Data System (ADS)

    Wasson, J. T.

    1991-02-01

    The mechanisms proposed for the origin of tektites from the Australasian field are examined using neutron activation data for twenty layered tektites and six splash tektites of known and widely separated sites of a field greater than 1140 km in length. Evidence is presented indicating that the layered tektites formed as sheets or pools of melt. It is argued that their distribution across a field greater than 1140 km in length is inconsistent with their formation in a single crater, and that many impact craters are required to account for their distribution across such a large field.

  14. Tomographic reconstruction of layered tissue structures

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Azeez-Jan, Mohideen; Bartel, Sebastian

    2001-11-01

    In recent years the interest in the determination of optical properties of layered tissue structure has resurfaced. Applications include, for example, studies on layered skin tissue and underlying muscles, imaging of the brain underneath layers of skin, skull, and meninges, and imaging of the fetal head in utero beneath the layered structures of the maternal abdomen. In this work we approach the problem of layered structures in the framework of model-based iterative image reconstruction schemes. These schemes are currently developed to determine the optical properties inside tissue from measurement on the surface. If applied to layered structure these techniques yield substantial improvements over currently available semi-analytical approaches.

  15. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2010-06-15

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  16. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  17. The origin of rhythmic layering in the Cape Neddick Plutonic Complex, Maine

    SciTech Connect

    Shipley, J. . Dept. of Geology)

    1993-03-01

    The Cape Neddick Plutonic Complex located along the southwestern coast of Maine is a small layered gabbroic body. It contains four concentric gabbros of differing composition, From the center to the exterior these are Cortlandtitic, Anorthositic, Normal, and Pegmatitic gabbros. They vary slightly in the proportion of essential minerals; plagioclase, clinopyroxene, hornblende, and biotite [+-] opaques and olivine. Rhythmic layering is seen in all four gabbros. This layering is also concentric around the center of the complex. The best exposure of the layering is along the coast where non-graded and graded rhythmic layering is seen extensively in the Normal gabbro. Only non-graded layering is seen in the Anorthositic gabbro. Non-graded layers were sampled at two localities. One locality is on Cape Nubble Island in the Normal gabbro. The second locality is in the Anorthositic gabbro along the northern coast. The layers are roughly 5--8 cm in width and are continuous around the complex. They are identified on weathered surfaces as alternating bands of felsic and mafic minerals. Layers are not obvious in hand sample. Approximately 15--20 layers were sampled perpendicular to layering. Petrographic and geochemical studies will help constrain the origin of rhythmic layering in the Cape Neddick Complex. Crystal settling or structural processes seem highly unlikely due to the small distance between the layers and the fact that they are not graded. Possible models include multiple pulses of magma within the same magma chamber, density currents, or in situ fractionation by a nucleation-diffusion process. Modal and chemical analysis of mineral phases within individual layers will allow comparison of the bulk composition of each layer. Analysis of coexisting pyroxene and plagioclase can be used to estimate compositional variations in the parent liquid.

  18. Radiative Impacts of Elevated Aerosol Layers from Different Origins

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Heimerl, K.

    2014-12-01

    Aerosol particles are omnipresent in the Earth's atmosphere and have important impacts on weather and climate by their effects on the atmospheric radiative balance. With the advent of more and more sophisticated representations of atmospheric processes in earth system models, the lack of reliable input data on aerosols leads to significant uncertainties in the prediction of future climate scenarios. In recent years large discrepancies in radiative forcing estimates from aerosol layers in modeling studies have been revealed emphasizing the need for detailed and systematic observations of aerosols. Airborne in-situ measurements represent an important pillar for validating both model results and retrievals of aerosol distributions and properties from remote sensing methods on global scales. However, detailed observations are challenging and therefore are subject to substantial uncertainties themselves. Here we use data from airborne in-situ measurements of elevated aerosol layers from various field experiments in different regions of the world. The data set includes Saharan mineral dust layers over Africa, the Atlantic Ocean and the Caribbean from the SALTRACE and the SAMUM campaigns as well as long-range transported biomass burning aerosol layers from wild fires in the Sahel region and North America measured over the tropical Atlantic Ocean, Europe and the Arctic detected during SAMUM2, CONCERT2011, DC3 and ACCESS 2012. We aim to characterize the effects of the measured aerosol layers, in particular with respect to ageing, mixing state and vertical structure, on the overall atmospheric radiation budget as well as local heating and cooling rates. We use radiative transfer simulations of short and long-wave radiation and aerosol optical properties derived in a consistent way from the in-situ observations of microphysical properties using T-matrix calculations. The results of this characterization will help to improve the parameterization of the effects of elevated

  19. Two layer structure for reinforcing pothole repair

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Yuan, Kuo-Yao; Zou, Linhua; Yang, Jenn-Ming; Ju, Jiann-Wen; Kao, Wei; Carlson, Larry

    2013-04-01

    We have applied dicyclopentadiene (DCPD) resin for reinforcing pothole patch materials due to its unique properties - low cost, low viscosity at beginning and ultra-toughness after curing, chemical compatibility with tar, tunable curing profile through catalyst design. In this paper, we have designed a two layer structure - well compacted base layer and DCPD reinforced 1-1.5" top layer - for pothole repair. By choosing two graded asphalt mixes, a porous top layer and fully compacted base layer was prepared after compaction and ready for DCPD resin infiltration. The DCPD curing and infiltration profile within this porous top layer was measured with thermocouples. The rutting resistance was tested with home-made wheel rutter. The cage effect due to the p-DCPD wrapping was characterized with wheel penetration test. The results showed that this two layer structure pothole repair has greatly improved properties and can be used for pothole repair to increase the service life.

  20. Simulation of Sintering of Layered Structures

    SciTech Connect

    OLEVSKY,EUGENE; TIKARE,VEENA; GARINO,TERRY J.; BRAGINSKY,MICHAEL V.

    2000-11-22

    An integrated approach, combining the continuum theory of sintering and Potts model based mesostructure evolution analysis, is used to solve the problem of bi-layered structure sintering. Two types of bi-layered structures are considered: layers of the same material with different initial porosity, and layers of two different materials. The effective sintering stress for the bi-layer powder sintering is derived, both at the meso- and the macroscopic levels. Macroscopic shape distortions and spatial distributions of porosity are determined as functions of the dimensionless specific time of sintering. The effect of the thickness of the layers on shrinkage, warpage, and pore-grain structure is studied. Ceramic ZnO powders are employed as a model experimental system to assess the model predictions.

  1. Origin of the high conductivity layers in oceanic asthenosphere

    NASA Astrophysics Data System (ADS)

    Katsura, Tomoo; Yoshino, Takashi; Baba, Kiyoshi; Kogiso, Tetsu

    2014-05-01

    Origin of the high-conductivity layer (HCL) in oceanic asthenosphere is a key to understand mechanisms to allow smooth plate motion. Although it has been attributed to either partial melting or hydration, no definitive answer has been provided so far. We have compiled magnetotelluric studies in oceans to summarize the features of the oceanic HCL as follows. Firstly, HCL is observed about 80-100 km depth under juvenile plates, whereas no HCL is detected under mature plates. Secondly, the maximum conductivity of HCL is 3×10^(-2) S/m near normal ridges, whereas larger magnitudes of HCL are observed near ridges with higher volatiles. The first point suggests that the mechanism for HCL is related to high temperature, which declines the hydration hypothesis because of the small activation energy of proton conduction. Moreover, the magnitudes of HCL cannot be explained consistently with conductivity of asthenosphere under the matured plates in view of the proton conduction. The magnitudes of the HCL near the normal ridges are explained by 0.1 % of partial melting of the DMM induced by trace amounts of volatiles. Not hydration but partial melting is thus essential in oceanic asthenosphere.

  2. The Kinematics of Turbulent Boundary Layer Structure

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen Kern

    1991-01-01

    The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.

  3. Structure of the low latitude boundary layer

    NASA Technical Reports Server (NTRS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. O.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.

    1980-01-01

    Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the LASL/MPE fast plasma analyzer onboard the ISEE 1 and 2 spacecraft, revealed a complex quasiperiodic structure of some of the observed boundary layers. A cool tailward streaming boundary layer plasma was seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over one hour or more.

  4. Structure of relaminarizing turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Ramesh, O.; Patwardhan, Saurabh

    2014-11-01

    Relaminarization of a turbulent boundary layer in a strongly accelerated flow has received a great attention in recent times. It has been found that such relaminarization is a general and regularly occurring phenomenon in the leading-edge region of a swept wing of an airplane (van Dam et al., 1993). In this work, we investigate the effect of initial Reynolds number on the process of relaminarization in turbulent boundary layers. The experimental and numerical investigation of relaminarizing turbulent boundary layers undergoing same history reveals that the boundary layer with higher initial Reynolds number relaminarizes at a lower pressure gradient value compared to the one with lower Reynolds number. This effect can be explained on the inviscid theory proposed earlier in the literature. Further, various parameter criteria proposed to predict relaminarization, are assessed and the structure of relaminarizing boundary layers is investigated. A mechanism for stabilization of near-wall low speed streaks is proposed.

  5. Temperature structure in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi

    2010-05-01

    Temperature structure in the atmospheric boundary layer It is well established from experimental and theoretical studies that the temperature structure in the atmospheric boundary layer is depends on stability. During free convection conditions the flow is dominated by circular thermals but when stratification is becoming slightly unstable longitudinal roll structures that extend vertically throughout the entire boundary layer will be present. In close to neutral conditions on the unstable side (the UVCN regime) when the Obukhov length is much greater than the surface layer depth, it is observed that the structure of the surface layer turbulence does not accord with standard similarity theory. In particular the efficiency of the turbulent exchange of sensible and latent heat is observed to be more strongly enhanced than is consistent with the standard model. Also the profiles of dissipation of turbulent kinetic energy and temperature fluctuation variance are found to depend on the structure of the whole boundary layer (i.e. are non-local), indicating that a large-scale transport process is at work. At the same time, co-spectral analysis shows how the large scale eddy motions that determine the heat transport process near the surface are typically 1/5 of the surface layer depth. All these features are found to be similar in measurements at two marine sites, in the Baltic Sea and in Lake Ontario respectively and at several flat land sites ( around Uppsala and at the Island of Gotland), indicating that they are determined by the dynamics of the whole boundary layer rather than being simply dependent on the surface boundary conditions. The observed structures can also be interpreted as possible manifestations of a bifurcation of the large scale eddy structure towards a state in which there are quasi-steady longitudinal rolls and, on a smaller scale, unsteady detached eddies. Our interpretation of the results from the measurements is that, in the UVCN regime, the latter

  6. Nanomanufacturing : nano-structured materials made layer-by-layer.

    SciTech Connect

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto; Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  7. Structure and origin of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Donn, B.; Rahe, J.

    1981-01-01

    There is strong evidence that a comet nucleus consists of a single object whose basic structure is Whipple's icy conglomerate. A number of cometary phenomena indicate that the nucleus is a low density, fragile object with a large degree of radial uniformity in structure and composition. Details of the ice-dust pattern are more uncertain. A working model is proposed which is based on theories of accumulation of larger objects from grains. This nucleus is a distorted spherical aggregate of a hierarchy of ice-dust cometesimals. These cometesimals retain some separate identity which lead to comet fragmentation when larger components break off. The outer layers of new comets were modified by cosmic ray irradiation in the Oort Cloud. The evidence for meteorite-comet association is steill controversial. Current dynamical studies do not seem to require a cometary source of meteorites.

  8. Structural rearrangements in self-assembled surfactant layers at surfaces

    SciTech Connect

    Sushko, Maria L.; Liu, Jun

    2010-03-25

    The transition from compact to extended configuration in ionic surfactant layers under the influence of salt, surfactant surface density and temperature is studied using the classical density functional theory (cDFT). The increase in ionic strength of aqueous salt solution or in surfactant surface density leads to the transition from the hemicylindrical to the perpendicular monolayer configuration of the molecules. Although producing the same structural rearrangement in the surfactant layer the origin of the effect of salt and surface density is different. While the addition of salt increases the out-of-plane attractive interactions with the solvent, the increase in density results in the increase in the in-plane repulsion in surfactant layer. The temperature effects are subtler and are mainly manifested in the reduction of the solution structuring at elevated temperatures.

  9. Some new aspects of the transient ionization layer of comet Siding Spring origin in the Martian upper atmosphere

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, N.; ManasaMohana, P.; Jayaraman, A.; Rao, S. V. B.

    2016-04-01

    The close encounter of comet Siding Spring with Mars resulted in the formation of a dense transient ionization layer in the Martian upper atmosphere at altitudes between 80 and 120 km. Instruments on three spacecraft orbiting Mars detected the presence of this layer, as reported in previous publications. In this study, we reanalyzed the ionograms of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument on Mars Express to get further insight about the recurrence of the layer. For this purpose, data from three periapsis passes of MARSIS that took place 5 h, 12 h, and 19 h after peak dust deposition are used. We found that the transient ionization layer was sustained at least for 19 h on the nightside and 12 h on the dayside. While the peak density of the layer on the nightside gradually decreases from orbit to orbit, it does not change much on the dayside. Some ionograms in all three orbits show two transient ionization layers that are separated by ~60 km in apparent altitude. These double layers occur preferentially in regions of strong vertical magnetic fields. The bottom layer of the double structure is probably an oblique echo due to reflections from ionization bulges (formed in regions of vertical magnetic fields) at altitudes of the transient ionization layer. Horizontal bifurcation of the original layer is considered as another plausible mechanism for explaining the double-layer structure.

  10. Origins of serotonin innervation of forebrain structures

    NASA Technical Reports Server (NTRS)

    Kellar, K. J.; Brown, P. A.; Madrid, J.; Bernstein, M.; Vernikos-Danellis, J.; Mehler, W. R.

    1977-01-01

    The tryptophan hydroxylase activity and high-affinity uptake of (3H) serotonin ((3H)5-HT) were measured in five discrete brain regions of rats following lesions of the dorsal or median raphe nuclei. Dorsal raphe lesions reduced enzyme and uptake activity in the striatum only. Median raphe lesions reduced activities in the hippocampus, septal area, frontal cortex, and, to a lesser extent, in the hypothalamus. These data are consistent with the suggestion that the dorsal and median raphe nuclei are the origins of two separate ascending serotonergic systems - one innervating striatal structures and the other mesolimbic structures, predominantly. In addition, the data suggest that measurements of high-affinity uptake of (3H)5-HT may be a more reliable index of innervation than either 5-HT content or tryptophan hydroxylase activity.

  11. Electronic structure of bacterial surface protein layers

    SciTech Connect

    Maslyuk, Volodymyr V.; Mertig, Ingrid; Bredow, Thomas; Mertig, Michael; Vyalikh, Denis V.; Molodtsov, Serguei L.

    2008-01-15

    We report an approach for the calculation of the electronic density of states of the dried two-dimensional crystalline surface protein layer (S layer) of the bacterium Bacillus sphaericus NCTC 9602. The proposed model is based on the consideration of individual amino acids in the corresponding conformation of the peptide chain which additively contribute to the electronic structure of the entire protein complex. The derived results agree well with the experimental data obtained by means of photoemission (PE), resonant PE, and near-edge x-ray absorption spectroscopy.

  12. Identifying layers in random multiphase structures

    NASA Astrophysics Data System (ADS)

    Mader, Kevin; Stampanoni, Marco

    2016-01-01

    X-Ray microscopic methods, benefiting from the large penetration depth of X-rays in many materials, enable 3D investigation of a wide variety of samples. This allows for a wide variety of physical, chemical, and biological structures to be seen and explored, in some cases even in real time. Such measurements have lead to insights into paleontology, vulcanology, genetics, and material science. The ability to see and visualize complex systems can provide otherwise unobtainable information on structure, interactions, mechanical behavior, and evolution. The field has, however, led to a massive amount of new, heterogenous, difficult to process data. We present a general, model-free approach for characterizing multiphase 3D systems and show how the method can be applied to experimental X-ray microscopy data to better understand and quantify layer structure in two typical systems: investigation of layered fibers and clay samples.

  13. Origin and consequences of silicate glass passivation by surface layers

    NASA Astrophysics Data System (ADS)

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-02-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal.

  14. Origin and consequences of silicate glass passivation by surface layers.

    PubMed

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-02-19

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal.

  15. Origin and consequences of silicate glass passivation by surface layers.

    PubMed

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  16. Origin and consequences of silicate glass passivation by surface layers

    PubMed Central

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  17. Multi-Layer Laminated Thin Films for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Yavrouian, Andre; Plett, Gary; Mannella, Jerami

    2005-01-01

    Special-purpose balloons and other inflatable structures would be constructed as flexible laminates of multiple thin polymeric films interspersed with layers of adhesive, according to a proposal. In the original intended application, the laminate would serve as the envelope of the Titan Aerobot a proposed robotic airship for exploring Titan (one of the moons of Saturn). Potential terrestrial applications for such flexible laminates could include blimps and sails. In the original application, the multi-layered laminate would contain six layers of 0.14-mil (0.0036-mm)-thick Mylar (or equivalent) polyethylene terephthalate film with a layer of adhesive between each layer of Mylar . The overall thickness and areal density of this laminate would be nearly the same as those of 1-mil (0.0254-mm)-thick monolayer polyethylene terephthalate sheet. However, the laminate would offer several advantages over the monolayer sheet, especially with respect to interrelated considerations of flexing properties, formation of pinholes, and difficulty or ease of handling, as discussed next. Most of the damage during flexing of the laminate would be localized in the outermost layers, where the radii of bending in a given bend would be the largest and, hence, the bending stress would be the greatest. The adverse effects of formation of pinholes would be nearly completely mitigated in the laminate because a pinhole in a given layer would not propagate to adjacent layers. Hence, the laminate would tend to remain effective as a barrier to retain gas. Similar arguments can be made regarding cracks: While a crack could form as a result of stress or a defect in the film material, a crack would not propagate into adjacent layers, and the adjacent layer(s) would even arrest propagation of the crack. In the case of the monolayer sheet, surface damage (scratches, dents, permanent folds, pinholes, and the like) caused by handling would constitute or give rise to defects that could propagate through

  18. Plane mixing layer vortical structure kinematics

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.

    1993-01-01

    The objective of the current project was to experimentally investigate the structure and dynamics of the streamwise vorticity in a plane mixing layer. The first part of this research program was intended to clarify whether the observed decrease in mean streamwise vorticity in the far-field of mixing layers is due primarily to the 'smearing' caused by vortex meander or to diffusion. Two-point velocity correlation measurements have been used to show that there is little spanwise meander of the large-scale streamwise vortical structure. The correlation measurements also indicate a large degree of transverse meander of the streamwise vorticity which is not surprising since the streamwise vorticity exists in the inclined braid region between the spanwise vortex core regions. The streamwise convection of the braid region thereby introduces an apparent transverse meander into measurements using stationary probes. These results corroborated with estimated secondary velocity profiles in which the streamwise vorticity produces a signature which was tracked in time.

  19. The origin of consistent protein structure refinement from structural averaging.

    PubMed

    Park, Hahnbeom; DiMaio, Frank; Baker, David

    2015-06-01

    Recent studies have shown that explicit solvent molecular dynamics (MD) simulation followed by structural averaging can consistently improve protein structure models. We find that improvement upon averaging is not limited to explicit water MD simulation, as consistent improvements are also observed for more efficient implicit solvent MD or Monte Carlo minimization simulations. To determine the origin of these improvements, we examine the changes in model accuracy brought about by averaging at the individual residue level. We find that the improvement in model quality from averaging results from the superposition of two effects: a dampening of deviations from the correct structure in the least well modeled regions, and a reinforcement of consistent movements towards the correct structure in better modeled regions. These observations are consistent with an energy landscape model in which the magnitude of the energy gradient toward the native structure decreases with increasing distance from the native state.

  20. Adsorbed layers and the origin of Amontons' laws

    NASA Astrophysics Data System (ADS)

    Robbins, Mark

    2000-03-01

    Three hundred years ago, Amontons wrote down phenomenogical friction laws that are still used today. They state that the friction is proportional to load, and independent of the dimensions of the contacting surfaces. The molecular underpinning of these laws has remained unclear. Indeed, exact analytic results and experiments in ultra-high vacuum indicate that the static friction between clean crystalline surfaces almost always vanishes in the thermodynamic limit. Of course any surface exposed to air is typically coated by a thin layer of hydrocarbons, water and other small molecules. Simulations are presented that show that these layers naturally produce static and kinetic friction forces that are consistent with Amontons' laws and other aspects of macroscopic experiments.(G. He, M. H. Muser and M. O. Robbins, Science 284, 1650 (1999).) For example, the friction is only weakly dependent on parameters that are not controlled in most experiments, such as the areal density of adsorbed molecules, their length, the orientation of the surfaces and the direction of sliding. The kinetic friction is of the same order as the static friction and varies only logarithmically with velocity.

  1. A challenging interpretation of a hexagonally layered protein structure

    SciTech Connect

    Thompson, Michael C.; Yeates, Todd O.

    2014-01-01

    The authors describe the structure determination of a hexagonally layered protein structure that suffered from a complicated combination of translational non-crystallographic symmetry and hemihedral twinning. This case serves as a reminder that broken crystallographic symmetry resulting from doubling of a unit-cell axis often requires a new choice of origin. The carboxysome is a giant protein complex that acts as a metabolic organelle in cyanobacteria and some chemoautotrophs. Its outer structure is formed by the assembly of thousands of copies of hexameric shell protein subunits into a molecular layer. The structure determination of a CcmK1 shell protein mutant (L11K) from the β-carboxysome of the cyanobacterium Synechocystis PCC6803 led to challenges in structure determination. Twinning, noncrystallographic symmetry and packing of hexameric units in a special arrangement led to initial difficulties in space-group assignment. The correct space group was clarified after initial model refinement revealed additional symmetry. This study provides an instructive example in which broken symmetry requires a new choice of unit-cell origin in order to identify the highest symmetry space group. An additional observation related to the packing arrangement of molecules in this crystal suggests that these hexameric shell proteins might have lower internal symmetry than previously believed.

  2. Origin and effect of nonlocality in a layered composite.

    SciTech Connect

    Silling, Stewart Andrew

    2014-01-01

    A simple demonstration of nonlocality in a heterogeneous material is presented. By analysis of the microscale deformation of a two-component layered medium, it is shown that nonlocal interactions necessarily appear in a homogenized model of the system. Explicit expressions for the nonlocal forces are determined. The way these nonlocal forces appear in various nonlocal elasticity theories is derived. The length scales that emerge involve the constituent material properties as well as their geometrical dimen- sions. A peridynamic material model for the smoothed displacement eld is derived. It is demonstrated by comparison with experimental data that the incorporation of non- locality in modeling dramatically improves the prediction of the stress concentration in an open hole tension test on a composite plate.

  3. Flow visualization of turbulent boundary layer structure

    NASA Astrophysics Data System (ADS)

    Head, M. R.; Bandyopadhyay, P.

    1980-01-01

    The results from flow visualization experiments performed using an argon-ion laser to illuminate longitudinal and transverse sections of the smoke filled boundary layer in zero pressure gradient are discussed. Most of the experiments were confined to the range 600 Re sub theta 10,000. Results indicate that the boundary layer consists almost exclusively of vortex loops or hairpins, some of which may extend through the complete boundary layer thickness and all of which are inclined at a more or less constant characteristic angle of approximately 45 deg to the wall. Since the cross-stream dimensions of the hairpins appear to scale roughly with the wall variables U sub tau and nu, while their length is limited only by the boundary layer thickness, there are very large scale effects on the turbulence structure. At high Reynolds numbers (Re sub theta = 10,000) there is little evidence of large-scale coherent motions, other than a slow overturning of random agglomerations of the hairpins just mentioned.

  4. Origin of segmentation in the human structure.

    PubMed

    Ermolenko, Alexander E; Perepada, Elena A

    2006-01-01

    Crystallographic analysis of biological and non-biological minerals does not reveal any significant differences between the two, which is indicative of common crystallization processes. It can be supposed that the human organism is a biocrystalloid in a sense that it is regarded both at the level of the whole organism and individual cells as a composite entity consisting of a crystal-like structure and pericrystalline medium. A similarity can be found between the growing layer of a crystal in the crystal-forming medium and a cell structure with liquid washing it. A mineral organism therefore can be regarded as the active superficial part of a crystal taken together with pericrystalline crystal-forming medium which controls crystal growth and modifies the system depending on the structure of the growing system. Aggregation is one of the fundamental features of minerals as they are found primarily not only as separate objects but also as aggregates, i.e. regular cohesive masses or synmineralogical systems. Ability to aggregation in an orderly way is expressed as self-organization. This feature is inherent not only to compound molecules but also to associates of a higher order. The cell biology has shown that when similar cells touch each other they tend to cohere forming aggregates characteristic of the given cell population. Similar live systems and their components that perform the same function have an ability to integrate and form firstly a conglomerate (colony) and then an organism. Integration explains association of multi-segmented entities into a single organism and the resulting structure would consists of the two groups of segments, i.e. appearance of an organism consisting of two different but of the same type specimens, each of which had different number of segments. Phylogenetically, an early precursor of the man evolved from a simple cell into an integrated multi-segment organism through several stages--initially a simple cell, then a cell colony, then

  5. Modelling apparent low thermal inertia by layered structure

    NASA Astrophysics Data System (ADS)

    Yoshida, Akari; Toyota, Takenori; Kurita, Kei

    2013-04-01

    Thermal inertia of planetary surface is a physical property that controls the diurnal and seasonal cycles in the surface temperature. At the same time it provides a unique window into geologic structure of the surface and the nature of geologic processes that shapes the planetary surface. Especially on Mars, it has been extensively derived from spacecraft remote-sensing observations. It shows existence of the area with very low thermal inertia in the equatorial and middle latitudes, which at the same time display complicated heterogeneous characteristics(Putzig and Mellon, 2007). This is one of the enigma about the surface state of Mars. Physical interpretation about the origin of this heterogeneous nature of the thermal inertia is needed. In this study, we discuss a possibility of apparent low thermal inertia when there exists a layered structure having contrasting thermal conductivities based on laboratory experiments. The layered structure we examined in the experiments are an acrylic plate(3.2mm , 5mm , 10mm in thickness) on top of Polystyrene foam block or vesiculated particle layer. In both cases the lower layer has lower thermal conductivity. They are heated periodically by a infrared lump from above(period from 10 to 600 sec.). We measured the temperature at the surface, bottom of the acrylic plate and inside the lower Polystyrene foam and the granular layer using the thermocouples and infrared thermometer. From amplitude of temperature variation, we estimated the thermal inertia. The important controlling factor in this experimental design is a thermal relaxation time of the surface layer, which is controlled by period of the applied heating cycle and the thickness. At the fixed layer thickness thermal structure changes drastically between the periods below and above the relaxation time. We estimated variation of apparent thermal inertia with period. In a homogeneous semi-infinite layer the amplitude of variation of the surface temperature induced by

  6. Damage modes in dental layer structures.

    PubMed

    Jung, Y G; Wuttiphan, S; Peterson, I M; Lawn, B R

    1999-04-01

    Natural teeth (enamel/dentin) and most restorations are essentially layered structures. This study examines the hypothesis that coating thickness and coating/substrate mismatch are key factors in the determination of contact-induced damage in clinically relevant bilayer composites. Accordingly, we study crack patterns in two model "coating/substrate" bilayer systems conceived to simulate crown and tooth structures, at opposite extremes of elastic/plastic mismatch: porcelain on glass-infiltrated alumina ("soft/hard"); and glass-ceramic on resin composite ("hard/soft"). Hertzian contacts are used to investigate the evolution of fracture damage in the coating layers, as functions of contact load and coating thickness. The crack patterns differ radically in the two bilayer systems: In the porcelain coatings, cone cracks initiate at the coating top surface; in the glass-ceramic coatings, cone cracks again initiate at the top surface, but additional, upward-extending transverse cracks initiate at the internal coating/substrate interface, with the latter dominant. The substrate is thereby shown to have a profound influence on the damage evolution to ultimate failure in the bilayer systems. However, the cracks are highly stabilized in both systems, with wide ranges between the loads to initiate first cracking and to cause final failure, implying damage-tolerant structures. Finite element modeling is used to evaluate the tensile stresses responsible for the different crack types. The clinical relevance of these observations is considered. PMID:10326733

  7. DUAL ORIGIN OF AEROSOLS IN TITAN'S DETACHED HAZE LAYER

    SciTech Connect

    Cours, T.; Burgalat, J.; Rannou, P.; Rodriguez, S.; Brahic, A.

    2011-11-10

    We have analyzed scattered light profiles from the Cassini Imaging Science Subsystem, taken at the limb and at several large phase angles. We also used results from an occultation observed by Ultraviolet Imaging Spectrograph in the ultraviolet. We found that particles responsible for the scattering in the detached haze have an effective radius around 0.15 {mu}m and the aerosol size distribution follows a power law (exponent about -4.5). We discuss these results along with microphysical constraints and thermal equilibrium of the detached haze, and we conclude that only a strong interaction with atmospheric dynamics can explain such a structure.

  8. Layered graphene structure of a hexagonal carbon

    NASA Astrophysics Data System (ADS)

    Zhang, Bin

    2013-06-01

    Experiments show that there is a novel hexagonal carbon polymorph restricted to the space group of P-62c, but the detailed atomic structure is not determined. Here we set carbon atoms occupying P-62c 4f or P-62c 2c and 2d Wyckoff positions, and calculate the total energy of the different cell structures changing the internal parameter by first-principles calculations, which demonstrates that the stable structures in energy (at local minima) are hexagonal carbon (P-62c 2c and 2d) and hexagonal diamond (P-62c 4f, z=1/16). The calculated bulk modulus 437±16 GPa and interlayer distance 2.062 Å of the layered graphene structure P-62c 2c and 2d are in good agreement with those of the proposed new carbon, which indicates that P-62c 2c and 2d is a possible precursor or intermediate hard phase during the structural transformation of carbon.

  9. Structured Water Layers Adjacent to Biological Membranes

    PubMed Central

    Higgins, Michael J.; Polcik, Martin; Fukuma, Takeshi; Sader, John E.; Nakayama, Yoshikazu; Jarvis, Suzanne P.

    2006-01-01

    Water amid the restricted space of crowded biological macromolecules and at membrane interfaces is essential for cell function, though the structure and function of this “biological water” itself remains poorly defined. The force required to remove strongly bound water is referred to as the hydration force and due to its widespread importance, it has been studied in numerous systems. Here, by using a highly sensitive dynamic atomic force microscope technique in conjunction with a carbon nanotube probe, we reveal a hydration force with an oscillatory profile that reflects the removal of up to five structured water layers from between the probe and biological membrane surface. Further, we find that the hydration force can be modified by changing the membrane fluidity. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine gel (Lβ) phase bilayers, each oscillation in the force profile indicates the force required to displace a single layer of water molecules from between the probe and bilayer. In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 60°C and 1,2-dioleoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 24°C seriously disrupt the molecular ordering of the water and result predominantly in a monotonic force profile. PMID:16798815

  10. A challenging interpretation of a hexagonally layered protein structure

    PubMed Central

    Thompson, Michael C.; Yeates, Todd O.

    2014-01-01

    The carboxysome is a giant protein complex that acts as a metabolic organelle in cyanobacteria and some chemoautotrophs. Its outer structure is formed by the assembly of thousands of copies of hexameric shell protein subunits into a molecular layer. The structure determination of a CcmK1 shell protein mutant (L11K) from the β-carboxysome of the cyanobacterium Synechocystis PCC6803 led to challenges in structure determination. Twinning, noncrystallographic symmetry and packing of hexameric units in a special arrangement led to initial difficulties in space-group assignment. The correct space group was clarified after initial model refinement revealed additional symmetry. This study provides an instructive example in which broken symmetry requires a new choice of unit-cell origin in order to identify the highest symmetry space group. An additional observation related to the packing arrangement of molecules in this crystal suggests that these hexameric shell proteins might have lower internal symmetry than previously believed. PMID:24419393

  11. Impact failure mechanisms of layered structures

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Woo

    The response of layered materials to impact is extensively investigated. This study provides a demonstration of failure mechanisms of structures that undergo elastic and plastic deformation and sustain damage ranging in severity from surface plastic deformation and cracks at low velocity, variously developed conical, lateral and radial cracking at intermediate speeds, to catastrophic fragmentation and erosion that cause penetration at sufficiently high velocity. In order to demonstrate cracking fragmentation and penetration during impact in a structure, the cohesive element modeling and element erosion scheme are used, which is based on nonlinear dynamics using corotational scheme that is particularly effective method for handling relatively large deflection and rotations. It will provide a means of design of structure to moderate in impact loading from foreign object to protect safety zone by identifying the failure modes of structures for a wide range of impact. The assessment of the protection efficiency to impact is presented by computer simulation. Extensive results from a parametric study of the effects of confinement on residual strength and effects of interactions between phenomena that are essentially accompanied by impact, are also provided to supplement the statement.

  12. 1. Building #3, original structure and first addition, north side, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Building #3, original structure and first addition, north side, looking south. Photo shows (from left) the original 1911 structure, the 1939 infill addition, and the 1934 structure. - S. W. Shattuck Chemical Company, Incorporated, Building No. 3, 1805 South Bannock Street, Denver, Denver County, CO

  13. Origins of microspherules from the Permian-Triassic boundary event layers in South China

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Shen, Shu-zhong; Cao, Chang-qun; Zheng, Quan-feng

    2014-09-01

    Volcanism and impact scenarios are two of the most plausible ways of interpreting the causes of the largest biological mass extinction at the end-Permian. Microspherules have previously been widely reported from tens of different Permian-Triassic boundary (PTB) sections in South China and some other regions. These microspherules have been interpreted as either the product of volcanic eruptions or an impact event. In order to test these scenarios, we collected 60 samples from 12 intensively-studied PTB sections in South China. In addition, four soil samples close to these PTB layers were also collected for comparison. Our investigation indicates that abundant microspherules with mosaic or dot shape crystals on rounded surface are present in the surface samples in the PTB layers at Meishan, Meili, and Shatian sections and most soil background samples in South China. Those microspherules consist of four different types based on their main chemical composition, surface features, and internal structure including iron, magnetite-silicate, glassy, pyrite microspherules and framboids. In contrast, microspherules have not been found in a few sections in remote areas such as the Selong Xishan section in Tibet and the Dalongkou section in Xinjiang, Northwest China, in the deeply-excavated samples at the Shangsi section and the hard tuff layers around the PTB at the Xiaochehe Section in Guiyang. Microspherules decrease in abundance with depth in PTB clay beds. All these microspherules except the pyrite microspherules and framboids are found in both the PTB layers and the nearby soil background samples. The iron microspherules are pure iron oxides such as magnetite, hematite or maghemite and contain low concentrations of nickel and chromium, and lack an Ni-Fe core and general extraterrestrial mineral wüstite. All these external and chemical characteristics suggest that most of iron microspherules previously reported from PTB sections in South China are modern industrial fly

  14. Fungal catalases: function, phylogenetic origin and structure.

    PubMed

    Hansberg, Wilhelm; Salas-Lizana, Rodolfo; Domínguez, Laura

    2012-09-15

    Most fungi have several monofunctional heme-catalases. Filamentous ascomycetes (Pezizomycotina) have two types of large-size subunit catalases (L1 and L2). L2-type are usually induced by different stressors and are extracellular enzymes; those from the L1-type are not inducible and accumulate in asexual spores. L2 catalases are important for growth and the start of cell differentiation, while L1 are required for spore germination. In addition, pezizomycetes have one to four small-size subunit catalases. Yeasts (Saccharomycotina) do not have large-subunit catalases and generally have one peroxisomal and one cytosolic small-subunit catalase. Small-subunit catalases are inhibited by substrate while large-subunit catalases are activated by H(2)O(2). Some small-subunit catalases bind NADPH preventing inhibition by substrate. We present a phylogenetic analysis revealing one or two events of horizontal gene transfers from Actinobacteria to a fungal ancestor before fungal diversification, as the origin of large-size subunit catalases. Other possible horizontal transfers of small- and large-subunit catalases genes were detected and one from bacteria to the fungus Malassezia globosa was analyzed in detail. All L2-type catalases analyzed presented a secretion signal peptide. Mucorales preserved only L2-type catalases, with one containing a secretion signal if two or more are present. Basidiomycetes have only L1-type catalases, all lacking signal peptide. Fungal small-size catalases are related to animal catalases and probably evolved from a common ancestor. However, there are several groups of small-size catalases. In particular, a conserved group of fungal sequences resemble plant catalases, whose phylogenetic origin was traced to a group of bacteria. This group probably has the heme orientation of plant catalases and could in principle bind NADPH. From almost a hundred small-subunit catalases only one fourth has a peroxisomal localization signal and in fact many fungi lack

  15. THREE POSSIBLE ORIGINS FOR THE GAS LAYER ON GJ 1214b

    SciTech Connect

    Rogers, L. A.; Seager, S.

    2010-06-20

    We present an analysis of the bulk composition of the MEarth transiting super-Earth exoplanet GJ 1214b using planet interior structure models. We consider three possible origins for the gas layer on GJ 1214b: direct accretion of gas from the protoplanetary nebula, sublimation of ices, and outgassing from rocky material. Armed only with measurements of the planet mass (M{sub p} = 6.55 {+-} 0.98 M{sub +}), radius (R{sub p} = 2.678 {+-} 0.13 R{sub +}), and stellar irradiation level, our main conclusion is that we cannot infer a unique composition. A diverse range of planet interiors fits the measured planet properties. Nonetheless, GJ 1214b's relatively low average density ({rho}{sub p} = 1870 {+-} 400 kg m{sup -3}) means that it almost certainly has a significant gas component. Our second major conclusion is that under most conditions we consider GJ 1214b would not have liquid water. Even if the outer envelope is predominantly sublimated water ice, the envelope will likely consist of a super-fluid layer sandwiched between vapor above and plasma (electrically conductive fluid) below at greater depths. In our models, a low intrinsic planet luminosity ({approx_lt}2TW) is needed for a water envelope on GJ 1214b to pass through the liquid phase.

  16. Characteristic Lifelength of Coherent Structure in the Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.

    2006-01-01

    A characteristic lifelength is defined by which a Gaussian distribution is fit to data correlated over a 3 sensor array sampling streamwise sidewall pressure. The data were acquired at subsonic, transonic and supersonic speeds aboard a Tu-144. Lifelengths are estimated using the cross spectrum and are shown to compare favorably with Efimtsov's prediction of correlation space scales. Lifelength distributions are computed in the time/frequency domain using an interval correlation technique on the continuous wavelet transform of the original time data. The median values of the lifelength distributions are found to be very close to the frequency averaged result. The interval correlation technique is shown to allow the retrieval and inspection of the original time data of each event in the lifelength distribution, thus providing a means to locate and study the nature of the coherent structure in the turbulent boundary layer. The lifelength data can be converted to lifetimes using the convection velocity. The lifetime of events in the time/frequency domain are displayed in Lifetime Maps. The primary purpose of the paper is to validate these new analysis techniques so that they can be used with confidence to further characterize coherent structure in the turbulent boundary layer.

  17. The nature and origin of lateral composition modulations in short-period strained-layer superlattices

    SciTech Connect

    NORMAN,A.G.; AHRENKIEL,S.P.; MOUTINHO,H.R.; BALLIF,C.; ALJASSIM,M.M.; MASCARENHAS,A.; FOLLSTAEDT,DAVID M.; LEE,STEPHEN R.; RENO,JOHN L.; JONES,ERIC D.; MIRECKI-MILLUNCHICK,J.; TWESTEN,R.D.

    2000-01-27

    The nature and origin of lateral composition modulations in (AlAs){sub m}(InAs){sub n} SPSs grown by MBE on InP substrates have been investigated by XRD, AFM, and TEM. Strong modulations were observed for growth temperatures between {approx} 540 and 560 C. The maximum strength of modulations was found for SPS samples with InAs mole fraction x (=n/(n+m)) close to {approx} 0.50 and when n {approx} m {approx} 2. The modulations were suppressed at both high and low values of x. For x >0.52 (global compression) the modulations were along the <100> directions in the (001) growth plane. For x < 0.52 (global tension) the modulations were along the two <310> directions rotated {approx} {+-} 27{degree} from [110] in the growth plane. The remarkably constant wavelength of the modulations, between {approx} 20--30 nm, and the different modulation directions observed, suggest that the origin of the modulations is due to surface roughening associated with the high misfit between the individual SPS layers and the InP substrate. Highly uniform unidirectional modulations have been grown, by control of the InAs mole fraction and growth on suitably offcut substrates, which show great promise for application in device structures.

  18. Crystal Structure of the Eukaryotic Origin Recognition Complex

    PubMed Central

    Bleichert, Franziska; Botchan, Michael R.; Berger, James M.

    2015-01-01

    Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. The 3.5 Å resolution crystal structure of Drosophila ORC reveals that the 270 kDa initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ ATPase folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident, including highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighboring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate a ~20 Å wide channel in the center of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the MCM2-7 complex during replicative helicase loading; however, an observed >90° out-of-plane rotation for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions. PMID:25762138

  19. The Levantine Basin—crustal structure and origin

    NASA Astrophysics Data System (ADS)

    Netzeband, G. L.; Gohl, K.; Hübscher, C. P.; Ben-Avraham, Z.; Dehghani, G. A.; Gajewski, D.; Liersch, P.

    2006-06-01

    The origin of the Levantine Basin in the Southeastern Mediterranean Sea is related to the opening of the Neo-Tethys. The nature of its crust has been debated for decades. Therefore, we conducted a geophysical experiment in the Levantine Basin. We recorded two refraction seismic lines with 19 and 20 ocean bottom hydrophones, respectively, and developed velocity models. Additional seismic reflection data yield structural information about the upper layers in the first few kilometers. The crystalline basement in the Levantine Basin consists of two layers with a P-wave velocity of 6.0-6.4 km/s in the upper and 6.5-6.9 km/s in the lower crust. Towards the center of the basin, the Moho depth decreases from 27 to 22 km. Local variations of the velocity gradient can be attributed to previously postulated shear zones like the Pelusium Line, the Damietta-Latakia Line and the Baltim-Hecateus Line. Both layers of the crystalline crust are continuous and no indication for a transition from continental to oceanic crust is observed. These results are confirmed by gravity data. Comparison with other seismic refraction studies in prolongation of our profiles under Israel and Jordan and in the Mediterranean Sea near Greece and Sardinia reveal similarities between the crust in the Levantine Basin and thinned continental crust, which is found in that region. The presence of thinned continental crust under the Levantine Basin is therefore suggested. A β-factor of 2.3-3 is estimated. Based on these findings, we conclude that sea-floor spreading in the Eastern Mediterranean Sea only occurred north of the Eratosthenes Seamount, and the oceanic crust was later subducted at the Cyprus Arc.

  20. Origin and Structure of Dynamic Cooperative Networks

    NASA Astrophysics Data System (ADS)

    Wardil, Lucas; Hauert, Christoph

    2014-07-01

    Societies are built on social interactions among individuals. Cooperation represents the simplest form of a social interaction: one individual provides a benefit to another one at a cost to itself. Social networks represent a dynamical abstraction of social interactions in a society. The behaviour of an individual towards others and of others towards the individual shape the individual's neighbourhood and hence the local structure of the social network. Here we propose a simple theoretical framework to model dynamic social networks by focussing on each individual's actions instead of interactions between individuals. This eliminates the traditional dichotomy between the strategy of individuals and the structure of the population and easily complements empirical studies. As a consequence, altruists, egoists and fair types are naturally determined by the local social structures, while globally egalitarian networks or stratified structures arise. Cooperative interactions drive the emergence and shape the structure of social networks.

  1. Origin and Structure of Dynamic Cooperative Networks

    PubMed Central

    Wardil, Lucas; Hauert, Christoph

    2014-01-01

    Societies are built on social interactions among individuals. Cooperation represents the simplest form of a social interaction: one individual provides a benefit to another one at a cost to itself. Social networks represent a dynamical abstraction of social interactions in a society. The behaviour of an individual towards others and of others towards the individual shape the individual's neighbourhood and hence the local structure of the social network. Here we propose a simple theoretical framework to model dynamic social networks by focussing on each individual's actions instead of interactions between individuals. This eliminates the traditional dichotomy between the strategy of individuals and the structure of the population and easily complements empirical studies. As a consequence, altruists, egoists and fair types are naturally determined by the local social structures, while globally egalitarian networks or stratified structures arise. Cooperative interactions drive the emergence and shape the structure of social networks. PMID:25030202

  2. Structural Characterization of Layered Morphologies in Precise Copolymers

    NASA Astrophysics Data System (ADS)

    Trigg, Edward; Gaines, Taylor; Wagener, Kenneth; Winey, Karen

    2015-03-01

    Layered morphologies have been observed in precise polyethylene-based copolymers that contain acid, charged, or polar functional groups precisely spaced along a linear alkane chain. Sufficiently long alkane segments form structures resembling orthorhombic polyethylene crystals, while the functional groups form 2-D layers that disrupt the alkane crystal structure to varying degrees. Here, layered morphologies in precise copolymers containing acrylic acid, phosphonic acid, imidazolium bromide, and sulfone groups are studied via X-ray scattering. Specifically, the composition profiles of the layered structures are obtained by Fourier synthesis, and the coherence length is investigated using peak width analysis. This analysis indicates that the layers of functional groups are frequently bordered by two crystallites, which suggests different dynamics relative to layers bordered by one crystalline and one amorphous microdomain. Detailed understanding of the structure of the layered morphologies will allow for a systematic investigation of proton and ion conductivity mechanisms, which are expected to occur through the high-dielectric layers.

  3. Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans

    SciTech Connect

    Arbing, Mark A.; Chan, Sum; Shin, Annie; Phan, Tung; Ahn, Christine J.; Rohlin, Lars; Gunsalus, Robert P.

    2012-09-05

    Archaea have a self-assembling proteinaceous surface (S-) layer as the primary and outermost boundary of their cell envelopes. The S-layer maintains structural rigidity, protects the organism from adverse environmental elements, and yet provides access to all essential nutrients. We have determined the crystal structure of one of the two 'homologous' tandem polypeptide repeats that comprise the Methanosarcina acetivorans S-layer protein and propose a high-resolution model for a microbial S-layer. The molecular features of our hexameric S-layer model recapitulate those visualized by medium resolution electron microscopy studies of microbial S-layers and greatly expand our molecular view of S-layer dimensions, porosity, and symmetry. The S-layer model reveals a negatively charged molecular sieve that presents both a charge and size barrier to restrict access to the cell periplasmic-like space. The {beta}-sandwich folds of the S-layer protein are structurally homologous to eukaryotic virus envelope proteins, suggesting that Archaea and viruses have arrived at a common solution for protective envelope structures. These results provide insight into the evolutionary origins of primitive cell envelope structures, of which the S-layer is considered to be among the most primitive: it also provides a platform for the development of self-assembling nanomaterials with diverse functional and structural properties.

  4. Structural origins of diamagnetic anisotropy in proteins.

    PubMed Central

    Worcester, D L

    1978-01-01

    Magnetic anisotropy in proteins and polypeptides can be attributed to the diamagnetic anisotropy of the planar peptide bonds. The alpha helix in particular has large anisotropy due to the axial alignment of the peptide bonds. The regular arrangements of the peptide bonds in beta pleated sheet and collagen structures also produce substantial anisotropy, but less than for alpha helix. The anisotropy permits orientation of small structures of these types in magnetic fields of several kilogauss. PMID:281695

  5. Bloch oscillations in chirped layered structures with metamaterials.

    PubMed

    Davoyan, Arthur R; Shadrivov, Ilya V; Sukhorukov, Andrey A; Kivshar, Yuri S

    2008-03-01

    We analyze the Bloch oscillations of electromagnetic waves in chirped layered structures with alternating layers of negative-index metamaterial and conventional dielectric under the condition of the zero average refractive index. We consider the case when the chirp is introduced by varying the thickness of the layers linearly across the structure. We demonstrate that such structures can support three different types of the Bloch oscillations for electromagnetic waves associated with either propagating or evanescent guided modes. In particular, we predict a novel type of the Bloch oscillations associated with coupling between surface waves excited at the interfaces separating the layers of negative-index metamaterial and the layers of the conventional dielectric.

  6. Hydrogen in magnesium palladium thin layer structures

    NASA Astrophysics Data System (ADS)

    Kruijtzer, G. L.

    2008-02-01

    In this thesis, the study of hydrogen storage, absorption and desorption in magnesium layers is described. The magnesium layers have a thickness of 50-500 nm and are covered by a palladium layer which acts as a hydrogen dissociation/association catalyst. The study was preformed under ultra high vacuum conditions to avoid oxygen contamination. The main analysis techniques were RBS, ERD and TDS.

  7. Origin of ferromagnetism enhancement in bi-layer chromium-doped indium zinc oxides

    SciTech Connect

    Hsu, C. Y.

    2012-08-06

    This work demonstrates that by controlling the rapid thermal annealing temperature, amorphous chromium-doped indium zinc oxide films develop an amorphous-crystalline bi-layer structure and show magnetization up to {approx}30 emu/cm{sup 3}. The crystalline layer arises from significant out-diffusion of Zn from surfaces, leading to a large difference in the Zn:In ratio in amorphous and crystalline layers. Doped Cr ions in amorphous and crystalline layers form different valence configurations, creating a charge reservoir which transfers electrons through amorphous-crystalline interfaces and in turn enhances ferromagnetism.

  8. Mars: New evidence for origin of some Valles Marineris layered deposits

    NASA Technical Reports Server (NTRS)

    Scott, David H.

    1993-01-01

    The discovery of layered deposits in the walls of a deep trough in Lunae Planum has implications for the origin of similar-appearing deposits in some canyons of Valles Marineris. Although layering is visible in the competent, cliff-forming upper walls of the canyons, the dissimilarity in appearance between canyon walls and soft rounded hills of layered deposits on canyon floors, as well as their contrasting patterns of erosion, has been considered strong evidence that their modes of origin were different. Most workers agree that the wall rocks are volcanic flows derived from fissure vents and other volcanic sources in the region. However, several hypotheses have been advanced to account for the softer-appearing stratified floor deposits. Chief among them is the proposal that the floor deposits are waterlaid sediments that accumulated in large lakes within the canyons and include materials eroded from canyon walls, eolian deposits, and subaqueous volcanic eruptives.

  9. Structural origins of morphing in plant tissues

    NASA Astrophysics Data System (ADS)

    Bar-On, Benny; Sui, Xiaomeng; Livanov, Konstantin; Achrai, Ben; Kalfon-Cohen, Estelle; Wiesel, Erica; Daniel Wagner, H.

    2014-07-01

    Plant tissues are able to generate complex movements via shape modifications. These effects are tightly related to distinctive multi-scale composite architectures of the plant material, and can therefore largely be interpreted by composite mechanics principles. Here, we propose a generic framework for the analysis and prediction of the shape morphing of intricate biological composite materials, arising from changes in humidity. We have examined in depth the hierarchical structures of three types of seed pods for which we propose a theoretical scheme that is able to accurately simulate the relevant shape deformations. The validity and generality of this approach are confirmed by means of laboratory scale synthetic models with similar architectures leading to equivalent morphing patterns. Such synthetic configurations could pave the way to future morphing architectures of advanced materials and structures.

  10. The structural origin of metabolic quantitative diversity.

    PubMed

    Koshiba, Seizo; Motoike, Ikuko; Kojima, Kaname; Hasegawa, Takanori; Shirota, Matsuyuki; Saito, Tomo; Saigusa, Daisuke; Danjoh, Inaho; Katsuoka, Fumiki; Ogishima, Soichi; Kawai, Yosuke; Yamaguchi-Kabata, Yumi; Sakurai, Miyuki; Hirano, Sachiko; Nakata, Junichi; Motohashi, Hozumi; Hozawa, Atsushi; Kuriyama, Shinichi; Minegishi, Naoko; Nagasaki, Masao; Takai-Igarashi, Takako; Fuse, Nobuo; Kiyomoto, Hideyasu; Sugawara, Junichi; Suzuki, Yoichi; Kure, Shigeo; Yaegashi, Nobuo; Tanabe, Osamu; Kinoshita, Kengo; Yasuda, Jun; Yamamoto, Masayuki

    2016-01-01

    Relationship between structural variants of enzymes and metabolic phenotypes in human population was investigated based on the association study of metabolite quantitative traits with whole genome sequence data for 512 individuals from a population cohort. We identified five significant associations between metabolites and non-synonymous variants. Four of these non-synonymous variants are located in enzymes involved in metabolic disorders, and structural analyses of these moderate non-synonymous variants demonstrate that they are located in peripheral regions of the catalytic sites or related regulatory domains. In contrast, two individuals with larger changes of metabolite levels were also identified, and these individuals retained rare variants, which caused non-synonymous variants located near the catalytic site. These results are the first demonstrations that variant frequency, structural location, and effect for phenotype correlate with each other in human population, and imply that metabolic individuality and susceptibility for diseases may be elicited from the moderate variants and much more deleterious but rare variants. PMID:27528366

  11. The structural origin of metabolic quantitative diversity

    PubMed Central

    Koshiba, Seizo; Motoike, Ikuko; Kojima, Kaname; Hasegawa, Takanori; Shirota, Matsuyuki; Saito, Tomo; Saigusa, Daisuke; Danjoh, Inaho; Katsuoka, Fumiki; Ogishima, Soichi; Kawai, Yosuke; Yamaguchi-Kabata, Yumi; Sakurai, Miyuki; Hirano, Sachiko; Nakata, Junichi; Motohashi, Hozumi; Hozawa, Atsushi; Kuriyama, Shinichi; Minegishi, Naoko; Nagasaki, Masao; Takai-Igarashi, Takako; Fuse, Nobuo; Kiyomoto, Hideyasu; Sugawara, Junichi; Suzuki, Yoichi; Kure, Shigeo; Yaegashi, Nobuo; Tanabe, Osamu; Kinoshita, Kengo; Yasuda, Jun; Yamamoto, Masayuki

    2016-01-01

    Relationship between structural variants of enzymes and metabolic phenotypes in human population was investigated based on the association study of metabolite quantitative traits with whole genome sequence data for 512 individuals from a population cohort. We identified five significant associations between metabolites and non-synonymous variants. Four of these non-synonymous variants are located in enzymes involved in metabolic disorders, and structural analyses of these moderate non-synonymous variants demonstrate that they are located in peripheral regions of the catalytic sites or related regulatory domains. In contrast, two individuals with larger changes of metabolite levels were also identified, and these individuals retained rare variants, which caused non-synonymous variants located near the catalytic site. These results are the first demonstrations that variant frequency, structural location, and effect for phenotype correlate with each other in human population, and imply that metabolic individuality and susceptibility for diseases may be elicited from the moderate variants and much more deleterious but rare variants. PMID:27528366

  12. Structure and dynamics of electrical double layers in organic electrolytes

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Qiao, Rui; Feng, Guang

    2010-01-01

    The organic electrolyte of tetraethylammonium tetrafluoroborate (TEABF{sub 4}) in the aprotic solvent of acetonitrile (ACN) is widely used in electrochemical systems such as electrochemical capacitors. In this paper, we examine the solvation of TEA{sup +} and BF{sub 4}{sup -} in ACN, and the structure, capacitance, and dynamics of the electrical double layers (EDLs) in the TEABF{sub 4}-ACN electrolyte using molecular dynamics simulations complemented with quantum density functional theory calculations. The solvation of TEA+ and BF4- ions is found to be much weaker than that of small inorganic ions in aqueous solutions, and the ACN molecules in the solvation shell of both types of ions show only weak packing and orientational ordering. These solvation characteristics are caused by the large size, charge delocalization, and irregular shape (in the case of TEA+ cation) of the ions. Near neutral electrodes, the double-layer structure in the organic electrolyte exhibits a rich organization: the solvent shows strong layering and orientational ordering, ions are significantly contact-adsorbed on the electrode, and alternating layers of cations/anions penetrate ca. 1.1 nm into the bulk electrolyte. The significant contact adsorption of ions and the alternating layering of cation/anion are new features found for EDLs in organic electrolytes. These features essentially originate from the fact that van der Waals interactions between organic ions and the electrode are strong and the partial desolvation of these ions occurs easily, as a result of the large size of the organic ions. Near charged electrodes, distinct counter-ion concentration peaks form, and the ion distribution cannot be described by the Helmholtz model or the Helmholtz + Poisson-Boltzmann model. This is because the number of counter-ions adsorbed on the electrode exceeds the number of electrons on the electrode, and the electrode is over-screened in parts of the EDL. The computed capacitances of the EDLs are in

  13. Boron-Based Layered Structures for Energy Storage

    SciTech Connect

    Zhao, Y.; Wei, S. H.

    2012-01-01

    Based on Density Functional Theory simulations, we have studied the boron-based graphite-like materials, i.e., LiBC and MgB2 for energy storage. First, when half of the Li-ions in the LiBC are removed, the BC layered structure is still preserved. The Li intercalation potential (equilibrium lithium-insertion voltage of 2.3-2.4 V relative to lithium metal) is significantly higher than that in graphite, allowing Li0.5BC to function as a cathode material. The reversible electrochemical reaction, LiBC = Li0.5BC + 0.5Li, enables a specific energy density of 1088 Wh/kg and a volumetric energy density of 2463 Wh/L. Second, 75% of the Mg ions in MgB2 can be removed and reversibly inserted with the layered boron structures being preserved through an in-plane topological transformation between the hexagonal lattice domains and triangular domains. The mechanism of such a charge-driven transformation originates from the versatile valence state of boron in its planar form.

  14. Structure and morphology of submarine slab slides: clues to origin and behavior

    USGS Publications Warehouse

    O'Leary, D. W.

    1991-01-01

    Geologic features suggest that some slab slides probably result from long-term strength degradation of weak layers deep in the homoclinal section. Time-dependent strain in clay-rich layers can create potential slide surfaces of low frictional strength. Competent layers are weak in tension and probably fragment in the first instance of, or even prior to, translation, and the allochthonous mass is readily transformed into a high-momentum debris flow. The structure and geomorphology of slab slides provide important clues to their origin and behavior. -from Author

  15. Origin of auroral electric potential structures

    NASA Astrophysics Data System (ADS)

    Chiu, Y. T.

    Available observational data and theoretical models of the formation of auroral electric potential structures are reviewed. It is shown that the principle of arc formation in the aurora can also be applied to other geomagnetic configurations, in order to construct a comprehensive theory of discrete auroral arcs. According to the theory, the completion of the field-aligned current circuit in the aurora can lead to downward parallel electric fields in the return current from the central region of discrete arc potential. It is pointed out that evidence for downward parallel electric field signatures has been collected within the last year.

  16. Structure and Capacitance of Electrical Double Layers inside Micropores

    NASA Astrophysics Data System (ADS)

    Feng, Guang; Qiao, Rui; Huang, Jingsong; Sumpter, Bobby G.; Meunier, Vincent

    2010-03-01

    Recent experiments indicate that the specific capacitance of micropores (diameter less than 2nm) increases anomalously as the pore size decreases^[1]. To understand the physical origin of this discovery, we performed a series of molecular dynamics simulations to study the electrical double layers (EDLs) in micropores with different shapes (tube vs slit) and pore sizes (0.668nm - 3.342nm). Several different aqueous electrolytes (K^+, Na^+, Cl^-, and F^- in water) were used in these micropores. We quantified the structure of EDLs inside the pores, and computed the capacitance of EDLs. The scaling of capacitance shows a qualitative agreement with the experimental observations. We attribute the anomalous enhancement of capacitance in micropores to the short-range ionelectrode and ionsolvent interactions.[1] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P.L. Taberna, Science 2006, 313, 1760.

  17. Origin and population structure of the Icelanders.

    PubMed

    Williams, J T

    1993-04-01

    The Norse and Celtic contributions to the founding population of Iceland have been estimated previously on a pan-Icelandic basis using gene frequency data for the entire island. Accounts of the settlement of Iceland, however, suggest that different regions received different proportions of Norse and Celtic settlers, indicating the need to incorporate geographic variation into Icelandic admixture studies. A formal likelihood ratio test rejects the null hypothesis of regional homogeneity in admixture proportions. Here, regional admixture estimates for Iceland are reported; they are in agreement with the settlement pattern inferred from historical accounts. The western, northern, and southern regions of Iceland exhibit a moderate Celtic component, consistent with historical indications that these regions were settled by Norse Vikings from the British Isles, accompanied by Celtic wives and slaves. Eastern Iceland, believed to have been settled chiefly by Vikings from Scandinavia, is characterized by a large Norse component of admixture. The northwestern peninsula is also found to be predominantly Norse. Regional genetic data are used to elucidate the contemporary population structure of Iceland. The observed structure correlates well with patterns of Icelandic geography, history, economy, marriage, urbanization, and internal migration. The northeastern region is strongly isolated, the urbanized areas of the north and southwest are representative of the overall population, and the remaining regions exhibit small-scale variation about the genetic central tendency. A high level of genetic homogeneity is indicated (RST = 0.0005), consistent with the high internal migration rate of the Icelanders. A regression of mean per-locus heterozygosity on distance from the gene frequency centroid reveals a greater than average external gene flow into the eastern region, whereas the northwestern peninsula has received less than average external gene flow. Iceland is compared with

  18. Composite S-layer lipid structures

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2010-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state of the art survey how S-layer proteins, lipids, and polysaccharides may be used as basic building blocks for the assembly of S-layer supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas for application of composite S-layer membrane systems concern sensor systems involving specific membrane functions. PMID:19303933

  19. 76. Photocopy of original structural shop drawing, Passaic Rolling Mill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. Photocopy of original structural shop drawing, Passaic Rolling Mill Company, 1892/1893, (original in possession of New York City Department of Transportation), lattice girder elevation & details - girder G1 - Macombs Dam Bridge, Spanning Harlem River Between 155th Street Viaduct, Jerome Avenue, & East 162nd Street, Bronx, Bronx County, NY

  20. 79. Photocopy of original structural shop drawing, Passaic Rolling Mill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. Photocopy of original structural shop drawing, Passaic Rolling Mill Company, 1892/1893, (original in possession of New York City Department of Transportation), lattice girder elevation & details - girder G2 - Macombs Dam Bridge, Spanning Harlem River Between 155th Street Viaduct, Jerome Avenue, & East 162nd Street, Bronx, Bronx County, NY

  1. 78. Photocopy of original structural shop drawing, Passaic Rolling Mill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. Photocopy of original structural shop drawing, Passaic Rolling Mill Company, 1892/1893, (original in possession of New York City Department of Transportation), lattice girder elevation & details - girder G2 - Macombs Dam Bridge, Spanning Harlem River Between 155th Street Viaduct, Jerome Avenue, & East 162nd Street, Bronx, Bronx County, NY

  2. 77. Photocopy of original structural shop drawing, Passaic Rolling Mill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. Photocopy of original structural shop drawing, Passaic Rolling Mill Company, 1892/1893, (original in possession of New York City Department of Transportation), lattice girder elevation & details - girder G1 - Macombs Dam Bridge, Spanning Harlem River Between 155th Street Viaduct, Jerome Avenue, & East 162nd Street, Bronx, Bronx County, NY

  3. 75. Photocopy of original structural shop drawing, Passaic Rolling Mill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. Photocopy of original structural shop drawing, Passaic Rolling Mill Company, 1892/1893, (original in possession of New York City Department of Transportation), lattice girder elevation & details - girder G1 - Macombs Dam Bridge, Spanning Harlem River Between 155th Street Viaduct, Jerome Avenue, & East 162nd Street, Bronx, Bronx County, NY

  4. 80. Photocopy of original structural shop drawing, Passaic Rolling Mill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. Photocopy of original structural shop drawing, Passaic Rolling Mill Company, 1892/1893, (original in possession of New York City Department of Transportation), lattice girder elevation & details - girder G2 - Macombs Dam Bridge, Spanning Harlem River Between 155th Street Viaduct, Jerome Avenue, & East 162nd Street, Bronx, Bronx County, NY

  5. 2-DE combined with two-layer feature selection accurately establishes the origin of oolong tea.

    PubMed

    Chien, Han-Ju; Chu, Yen-Wei; Chen, Chi-Wei; Juang, Yu-Min; Chien, Min-Wei; Liu, Chih-Wei; Wu, Chia-Chang; Tzen, Jason T C; Lai, Chien-Chen

    2016-11-15

    Taiwan is known for its high quality oolong tea. Because of high consumer demand, some tea manufactures mix lower quality leaves with genuine Taiwan oolong tea in order to increase profits. Robust scientific methods are, therefore, needed to verify the origin and quality of tea leaves. In this study, we investigated whether two-dimensional gel electrophoresis (2-DE) and nanoscale liquid chromatography/tandem mass spectroscopy (nano-LC/MS/MS) coupled with a two-layer feature selection mechanism comprising information gain attribute evaluation (IGAE) and support vector machine feature selection (SVM-FS) are useful in identifying characteristic proteins that can be used as markers of the original source of oolong tea. Samples in this study included oolong tea leaves from 23 different sources. We found that our method had an accuracy of 95.5% in correctly identifying the origin of the leaves. Overall, our method is a novel approach for determining the origin of oolong tea leaves.

  6. Preservation of Archaeal Surface Layer Structure During Mineralization

    PubMed Central

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-01-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record. PMID:27221593

  7. Doubly slanted layer structures in holographic gelatin emulsions: solar concentrators

    NASA Astrophysics Data System (ADS)

    Hung, Jenny; Chan, Po Shan; Sun, Caiming; Wing Ho, Choi; Tam, Wing Yim

    2010-04-01

    We have fabricated doubly slanted layer structures in holographic gelatin emulsions using a double-exposure two-beam interference from two light sources with different wavelengths. The doubly slanted layers, with different spacings and overlapping with each other, are fabricated such that they are slanted in opposite directions making a 30° angle with the holographic plate. The doubly slanted layer structures exhibit photonic stop bands corresponding to the two layered structures. More importantly, diffracted light beams from the slanted layers travel in different directions and emerge, through internal reflections, at the opposite edges of the gelatin plate. The doubly slanted layer structures could be used as solar concentrators such that sunlight is separated into different components and steered directly to photovoltaics with the corresponding wavelength sensitivities to enhance energy conversion efficiency.

  8. Shear-layer structures in near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Johansson, A. V.; Alfredsson, P. H.; Kim, J.

    1987-01-01

    The structure of internal shear layer observed in the near-wall region of turbulent flows is investigated by analyzing flow fields obtained from numerical simulations of channel and boundary-layer flows. It is found that the shear layer is an important contributor to the turbulence production. The conditionally averaged production at the center of the structure was almost twice as large as the long-time mean value. The shear-layer structure is also found to retain its coherence over streamwise distances on the order of a thousand viscous length units, and propagates with a constant velocity of about 10.6 u sub rho throughout the near wall region.

  9. Experimentally excellent beaming in a two-layer dielectric structure

    DOE PAGESBeta

    Tasolamprou, Anna C.; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M.

    2014-09-15

    We demonstrate both experimentally and theoretically that a two-layer dielectric structure can provide collimation and enhanced transmission of a Gaussian beam passing through it. This is due to formation of surface localized states along the layered structure and the coupling of these states to outgoing propagating waves. As a result, a system of multiple cascading two-layers can sustain the beaming for large propagation distances.

  10. Multi-layer laminate structure and manufacturing method

    DOEpatents

    Keenihan, James R.; Cleereman, Robert J.; Eurich, Gerald; Graham, Andrew T.; Langmaid, Joe A.

    2012-04-24

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  11. Multi-layer laminate structure and manufacturing method

    DOEpatents

    Keenihan, James R.; Cleereman, Robert J.; Eurich, Gerald; Graham, Andrew T.; Langmaid, Joe A.

    2013-01-29

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  12. Electroluminescent apparatus having a structured luminescence conversion layer

    DOEpatents

    Krummacher, Benjamin Claus

    2008-09-02

    An apparatus such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains color-changing and non-color-changing regions arranged in a particular pattern.

  13. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors

    PubMed Central

    Wang, Jianwei; Zhang, Yong

    2016-01-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III–V, and II–VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain–low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side. PMID:27090430

  14. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors.

    PubMed

    Wang, Jianwei; Zhang, Yong

    2016-01-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III-V, and II-VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain-low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side. PMID:27090430

  15. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Zhang, Yong

    2016-04-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III–V, and II–VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain–low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side.

  16. Evidence for the biogenic origin of manganese-enriched layers in Lake Superior sediments.

    PubMed

    Palermo, Christine; Dittrich, Maria

    2016-04-01

    Manganese (Mn) and iron (Fe)-enriched sediment layers were discovered in Lake Superior within, above and below the oxic-anoxic interface. While the role of bacteria in redox reactions with Mn is known to be significant, little information exists about indigenous microbial communities in many freshwater environments. This study examined the bacterial communities of Mn-enriched layers in Lake Superior to identify the potential Mn(II) oxidizers responsible for the formation of Mn oxides. Anaerobic Mn(II) oxidation occurring in the Mn-enriched layers at the oxic-anoxic interface was investigated using Mn(II)-enriched cultures. High-resolution microscopic and spectroscopic investigations provided evidence of the biogenic formation of Mn oxides on cell surfaces. Spectroscopic mapping confirmed high levels of Mn in structures resembling biogenic Mn oxides. These structures were observed in enrichment cultures and in Mn-enriched layer sediment samples, indicating the significance of biogenic Mn oxidation occurring in situ. 16S ribosomal DNA pyrosequencing was used to identify the bacteria potentially responsible for Mnoxide formation in the enrichment cultures and Mn-enriched layers, revealing that the Mn-enriched layer contains classes with known Mn(II)-oxidizing members. Pyrosequencing of bacterial cultures suggested that these bacteria may be Bacillus strains, and that anaerobic microbial-mediated Mn(II) oxidation contributes to the formation of the layers.

  17. Endoscopic treatments for small gastric subepithelial tumors originating from muscularis propria layer

    PubMed Central

    Zhang, Yu; Ye, Li-Ping; Mao, Xin-Li

    2015-01-01

    Minimally invasive endoscopic resection has become an increasingly popular method for patients with small (less than 3.5 cm in diameter) gastric subepithelial tumors (SETs) originating from the muscularis propria (MP) layer. Currently, the main endoscopic therapies for patients with such tumors are endoscopic muscularis excavation, endoscopic full-thickness resection, and submucosal tunneling endoscopic resection. Although these endoscopic techniques can be used for complete resection of the tumor and provide an accurate pathological diagnosis, these techniques have been associated with several negative events, such as incomplete resection, perforation, and bleeding. This review provides detailed information on the technical details, likely treatment outcomes, and complications associated with each endoscopic method for treating/removing small gastric SETs that originate from the MP layer. PMID:26327758

  18. Structural responses of the supersonic turbulent boundary layer to expansions

    NASA Astrophysics Data System (ADS)

    Wang, Qian-cheng; Wang, Zhen-guo; Zhao, Yu-xin

    2016-09-01

    Structural responses of the supersonic turbulent boundary layer to the expansions induced by a convex wall and a ramp are experimentally investigated. Relaminarization of part of the turbulent boundary layer in the near wall region is clearly visualized, which has been seldom presented before. The relaminarized layers formed over two test models are different. While a thicker relaminarized layer is observed for the ramp, a longer lasting layer is noticed for the convex wall. The structure angle is found to be increased by the expansions. Increases of turbulence scale and boundary layer thickness are observed. The contribution of the bulk dilatation to the boundary layer growth is stronger than that of the centrifugal force.

  19. Surface double-layer structure in (110) oriented BiFeO{sub 3} thin film

    SciTech Connect

    Yang, Tieying; Zhang, Xingmin; Gao, Xingyu; Li, Zhong; Li, Xiaolong; Wang, Can; Feng, Yu; Guo, Haizhong; Jin, Kuijuan

    2014-11-17

    Surface double-layer structure different from the interior was found in BiFeO{sub 3} thin film grown on SrRuO{sub 3} covered SrTiO{sub 3} (110) substrate by pulsed laser deposition. It was shown that BiFeO{sub 3} film exhibits epitaxial phase with single domain. X-ray reflectivity and X-ray photoelectron spectroscopy results revealed a skin layer of less than 1 nm with a reduced electron density and different surface state. Grazing incidence x-ray diffraction convinced a surface multi-domain structure of several nm beneath the surface skin layer. The double-layer near surface structure would be originated from the large depolarization field produced by the single-domain structure with strain.

  20. High-pressure layered structure of carbon disulfide

    NASA Astrophysics Data System (ADS)

    Naghavi, S. Shahab; Crespo, Yanier; MartoÅák, Roman; Tosatti, Erio

    2015-06-01

    Solid CS2 is superficially similar to CO2, with the same C m c a molecular crystal structure at low pressures, which has suggested similar phases also at high pressures. We carried out an extensive first-principles evolutionary search in order to identify the zero-temperature lowest-enthalpy structures of CS2 for increasing pressure up to 200 GPa. Surprisingly, the molecular C m c a phase does not evolve into β -cristobalite as in CO2 but transforms instead into phases HP2 and HP1, both recently described in high-pressure SiS2. HP1 in particular, with a wide stability range, is a layered P 21/c structure characterized by pairs of edge-sharing tetrahedra and is theoretically more robust than all other CS2 phases discussed so far. Its predicted Raman spectrum and pair correlation function agree with experiment better than those of β -cristobalite, and further differences are predicted between their respective IR spectra. The band gap of HP1-CS2 is calculated to close under pressure, yielding an insulator-metal transition near 50 GPa, in agreement with experimental observations. However, the metallic density of states remains modest above this pressure, suggesting a different origin for the reported superconductivity.

  1. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    SciTech Connect

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigated through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.

  2. Phonon localization in ultrathin layered structures

    NASA Astrophysics Data System (ADS)

    Döring, F.; Eberl, C.; Schlenkrich, S.; Schlenkrich, F.; Hoffmann, S.; Liese, T.; Krebs, H. U.; Pisana, S.; Santos, T.; Schuhmann, H.; Seibt, M.; Mansurova, M.; Ulrichs, H.; Zbarsky, V.; Münzenberg, M.

    2015-04-01

    An efficient way for minimizing phonon thermal conductivity in solids is to nanostructure them by means of reduced phonon mean free path, phonon scattering and phonon reflection at interfaces. A sophisticated approach toward this lies in the fabrication of thin multilayer films of different materials. In this paper, we show by femtosecond-pump-probe reflectivity measurements that in different multilayer systems with varying acoustic mismatch (consisting of metals, semiconductors, oxides and polymers), oscillations due to phonon localization can be observed. For the growth of multilayer films with well-defined layer thicknesses, we used magnetron sputtering, evaporation and pulsed laser deposition. By altering the material combinations and reducing the layer thicknesses down to 3 nm, we observed different mechanisms of phonon blocking, reaching in the frequency regime up to 360 GHz.

  3. Classification of structures in the stable boundary layer

    NASA Astrophysics Data System (ADS)

    Belusic, Danijel

    2015-04-01

    Ubiquitous but generally unknown flow structures populate the stable boundary layer at scales larger than turbulence. They introduce nonstationarity, affect the generation of turbulence and induce fluxes. Classification of the structures into clusters based on a similarity measure could reduce their apparent complexity and lead to better understanding of their characteristics and mechanisms. Here we explore different approaches to detect and classify structures, the usefulness of those approaches, and their potential to provide better understanding of the stable boundary layer.

  4. Failure modes and materials design for biomechanical layer structures

    NASA Astrophysics Data System (ADS)

    Deng, Yan

    Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa

  5. The stratigraphy of Meridiani Planum, Mars, and implications for the layered deposits' origin

    NASA Astrophysics Data System (ADS)

    Hynek, Brian M.; Phillips, Roger J.

    2008-09-01

    Large exposures of water-altered layered deposits have recently been identified on the surface of Mars. The source materials, formation, and aqueous alteration history are presently poorly understood. The Mars Exploration Rover Opportunity has examined a tiny fraction of large-scale layered deposits in Meridiani Planum, and many questions remain about the origin and history of these widespread materials. Here we present the first detailed stratigraphic study of sulfate-bearing layers throughout the region. We used altimetry data to examine the three-dimensional disposition of twenty-two distinct stratigraphic horizons along their exposures. Our results show that most of these benchmark horizons: (1) are planar and coherent over at least a 100-km scale, and (2) have dip azimuth and magnitudes that are similar to the underlying regional slope, which was emplaced by 3.70 Ga. Nearby ancient river valleys, that appear to have been formed by precipitation-fed surface runoff, originally were incised at ~ 3.74 Ga and then reactivated near the Noachian-Hesperian boundary (3.70 Ga). Mapping relations with these valleys suggest that the Meridiani layers formed near and after this time and without significant volumetric contributions of material excavated from the valleys. Thermal infrared data and erosional expressions imply that significant physical compositional differences exist within the stratigraphy, and these likely reflect a changing paleodepositional environment and/or chemical alteration histories. Any hypothesis for the origin of these regional-scale materials must be consistent with all these observations. We conclude that the previously stated hypotheses of aeolian deposition cemented by a fluxing groundwater table and sulfur-rich volcanic processes are both viable possibilities, while other hypotheses are not supported by these observations.

  6. What Are the Origins of Detached Layers of Dust on Mars ? Investigation with Global Climate Model

    NASA Astrophysics Data System (ADS)

    Bertrand, T.; Spiga, A.; Forget, F.

    2014-12-01

    The climate on Mars is strongly controlled by the amount of dust lifted and transported in the atmosphere, which causes fluctuations of air opacity and affects temperatures and winds. Recently, observations of the vertical dust distribution of the Martian atmosphere by the Mars Climate Sounder on board the Mars Reconnaissance Orbiter revealed a phenomenon which is still poorly understood: the formation of detached layers of dust. These detached layers, also confirmed by the Thermal Emission Spectrometer on-board the Mars Global Surveyor, reside above the planetary boundary layer typically at altitudes between 20 and 40 km and have been mostly observed at low latitudes. These detached layers of dust are not reproduced by Global Climate Models (GCM) and different atmospheric processes are discussed and can be combined to explain their origin, such as small-scale lifting, upslope topographic winds, scavenging by water ice clouds, dust storms… Here we use the Martian GCM developed at the Laboratoire de Météorologie Dynamique (LMD) to simulate the formation of detached layers of dust. To start, we developed a new implementation of the water cycle, taking into account nucleation on dust particles, ice particle growth, and scavenging of dust particles due to the condensation of ice. However, this method didn't yield to satisfying results in the GCM. Then, we performed the parameterization in the GCM of the so-called "rocket dust storms", governed by deep convection and able to inject dust at high altitudes in the Martian troposphere. By coupling this new parameterization with general circulation of the GCM, we succeed to model detached layers of dust. Here we present this parameterization and we discuss about the spatial and temporal variability of the detached layers of dust, in comparison with observations.

  7. Elastodynamic behavior of the three dimensional layer-by-layer metamaterial structure

    NASA Astrophysics Data System (ADS)

    Aravantinos-Zafiris, N.; Sigalas, M. M.; Economou, E. N.

    2014-10-01

    In this work, we numerically investigate for the first time the elastodynamic behavior of a three dimensional layer-by-layer rod structure, which is easy to fabricate and has already proved to be very efficient as a photonic crystal. The Finite Difference Time Domain method was used for the numerical calculations. For the rods, several materials were examined and the effects of all the geometric parameters of the structure were also numerically investigated. Additionally, two modifications of the structure were included in our calculations. The results obtained here (for certain geometric parameters), exhibiting a high ratio of longitudinal over transverse sound velocity and therefore a close approach to ideal pentamode behavior over a frequency range, clearly show that the layer-by-layer rod structure, besides being an efficient photonic crystal, is a very serious contender as an elastodynamic metamaterial.

  8. Elastodynamic behavior of the three dimensional layer-by-layer metamaterial structure

    SciTech Connect

    Aravantinos-Zafiris, N.; Sigalas, M. M.; Economou, E. N.

    2014-10-07

    In this work, we numerically investigate for the first time the elastodynamic behavior of a three dimensional layer-by-layer rod structure, which is easy to fabricate and has already proved to be very efficient as a photonic crystal. The Finite Difference Time Domain method was used for the numerical calculations. For the rods, several materials were examined and the effects of all the geometric parameters of the structure were also numerically investigated. Additionally, two modifications of the structure were included in our calculations. The results obtained here (for certain geometric parameters), exhibiting a high ratio of longitudinal over transverse sound velocity and therefore a close approach to ideal pentamode behavior over a frequency range, clearly show that the layer-by-layer rod structure, besides being an efficient photonic crystal, is a very serious contender as an elastodynamic metamaterial.

  9. A New View on Origin, Role and Manipulation of Large Scales in Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Nagib, H. M.; Guezennec, Y. G.

    1982-01-01

    The potential of passive 'manipulators' for altering the large scale turbulent structures in boundary layers was investigated. Utilizing smoke wire visualization and multisensor probes, the experiment verified that the outer scales could be suppressed by simple arrangements of parallel plates. As a result of suppressing the outer scales in turbulent layers, a decrease in the streamwise growth of the boundary layer thickness was achieved and was coupled with a 30 percent decrease in the local wall friction coefficient. After accounting for the drag on the manipulator plates, the net drag reduction reached a value of 20 percent within 55 boundary layer thicknesses downstream of the device. No evidence for the reoccurrence of the outer scales was present at this streamwise distance thereby suggesting that further reductions in the net drag are attainable. The frequency of occurrence of the wall events is simultaneously dependent on the two parameters, Re2 delta sub 2 and Re sub x. As a result of being able to independently control the inner and outer boundary layer characteristics with these manipulators, a different view of these layers emerged.

  10. Oblique along path toward structures at rear of parcel. Original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique along path toward structures at rear of parcel. Original skinny mosaic path along edge of structures was altered (delineation can be seen in concrete) path was widened with a newer mosaic to make access to the site safer. Structures (from right) edge of Round House (with "Spring Garden"), Pencil house, Shell House, School House, wood lattice is attached to chain-link fence along north (rear) property line. These structures were all damaged by the 1994 Northridge earthquake. Camera facing northeast. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA

  11. Novel nanoscroll structures from carbon nitride layers.

    PubMed

    Perim, Eric; Galvao, Douglas S

    2014-08-01

    Nanoscrolls (papyrus-like nanostructures) are very attractive structures for a variety of applications, owing to their tunable diameter and large accessible surface area. They have been successfully synthesized from different materials. In this work, we investigate, through fully atomistic molecular dynamics simulations, the dynamics of scroll formation for a series of graphene-like carbon nitride (CN) two-dimensional systems: g-CN, triazine-based g-C3 N4 , and heptazine-based g-C3 N4 . Our results show that stable nanoscrolls can be formed for each of these structures. Possible synthetic routes to produce these nanostructures are also addressed. PMID:24819427

  12. The origin and characterization of conformational heterogeneity in adsorbed polymer layers

    NASA Astrophysics Data System (ADS)

    Douglas, Jack F.; Schneider, Hildegard M.; Frantz, Peter; Lipman, Robert; Granick, Steve

    1997-09-01

    The equilibration of polymer conformations tends to be sluggish in polymer layers adsorbed onto highly attractive substrates, so the structure of these layers must be understood in terms of the layer growth process rather than equilibrium theory. Initially adsorbed chains adopt a highly flattened configuration while the chains which arrive later must adapt their configurations to the increasingly limited space available for adsorption. Thus, the chains adsorbed in the late stage of deposition are more tenuously attached to the surface. This type of non-equilibrium growth process is studied for polymethylmethacrylate (PMMA) adsorbed on oxidized silicon where the segmental attraction is strong (0953-8984/9/37/005/img7/segment) and for polystyrene (PS) adsorbed on oxidized silicon from a carbon tetrachloride solution where the segmental attraction is relatively weak (0953-8984/9/37/005/img8/segment). Measurements were based on Fourier transform infrared spectroscopy in attenuated total reflection (FTIR - ATR). In both cases, the chains arriving first adsorbed more tightly, became flattened (as measured by the dichroic ratio), and occupied a disproportionately large fraction of the surface. This non-uniform structure persisted indefinitely for the strongly adsorbed PMMA chains, while the PS chains exhibited a gradual evolution, presumably reflecting an equilibration of the adsorbed layer occurring after long times. On the theoretical side, the initial heterogeneity of these adsorbed polymer layers is modelled using a random sequential adsorption (RSA) model where the size of the adsorbing species is allowed to adapt to the surface space available at the time of adsorption. The inhomogeneity in the size of adsorbing species (hemispheres) in this model is similar to the distribution of chain contacts in our measurements on adsorbed polymer layers. Owing to extensive variance around the mean, conformations having the mean number of chain contacts are least probable, which

  13. Layered Structures in Magmatic Systems From Double-Diffusive Convection

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Schmalzl, J.

    2004-05-01

    The evolution of magmatic systems is often influenced by the existence of discrete layers. Such layering can not be explained by gravitational settling and other dynamical mechanisms have been proposed. Double-diffusive convection is considered to be such a mechanism. In the diffusive regime, where the slowly diffusing component (e,g composition) acts to stabilize the system and the fast diffusing component /e.g. heat) provides the destabilizing force, the formation of layers has been observed. Most studies. however, concentrated on the properties of layers and not on the actual formation. In a series of two- and three dimensional numerical experiments, we have investigated the evolution of layers from non-layered initial states. Layer formation is found to depend on the ratio of thermal to compositional diffusivities (the Lewis number). The influence of the Lewis number has been systematically investigated by employing a field approach to monitor the evolution of the composition. Magmatic systems have a very high Lewis number which can hardly be realized with such an approach. We have therefore developed a tracer method, allowing to study the system in the limit of an infinite Lewis number. With both methods we obtain qualitative similar layered structures. In order to better understand layer formation in magmatic systems, we have included effects of temperature-and compositionaly dependent viscosity. Our results show that the viscosity has a strong influence on the temporal evolution of the system and on the resulting type of layering

  14. Chasma Australe Mars: Structural Framework for a Catastrophic Outflow Origin

    NASA Technical Reports Server (NTRS)

    Anguita, F.; Babin, R.; Benito, G.; Collado, A.; Gomez, D.; Rice, J. W.

    1998-01-01

    Chasma Australe is the most remarkable of the martian south pole erosional reentrants carved in the polar layered deposits. Ms chasma originates near the south pole and runs across the polar troughs over a distance of about 500 km. Its width varies between 20 and 80 km and, with a depth up to 1000 m, it reaches the bedrock. Following an idea put forward originally for Chasma Boreale, we propose for the genesis of Chasma Australe a mechanism of catastrophic outflow preceded by a tectonically induced powerful sapping process. A detailed geomorphological analysis of Chasma Australe shows erosional and depositional features that can be interpreted as produced by the motion of a fluid. Like other polar reentrants, Chasma Australe is clearly assymetric, with a steep eastern margin where basal and lateral erosion prevailed, and a gentler western side, where the stepped topography and bedrock spurs favored deposition.

  15. 52. Humbug Creek Diversion Dam showing original masonry structure at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Humbug Creek Diversion Dam showing original masonry structure at right and concrete weir at left added later. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  16. 10. KIDNER BRIDGE STRUCTURAL STEEL DETAIL SHEET (original plan sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. KIDNER BRIDGE STRUCTURAL STEEL DETAIL SHEET (original plan sheet is in possession of Ball State University, Drawings and Documents Archive, COllege of Architecture and Planing, Ball State University, Muncie, Indiana, 47306 - Kidner Bridge, Spanning Mississinewa River at County Road 700 South, Upland, Grant County, IN

  17. Measurements of the streamwise vortical structures in a plane mixing layer

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1992-01-01

    The 3D structure of a plane two-stream mixing layer of velocity ratio 0.6 and originating from laminar initial boundary layers was investigated through direct measurements made in a specially constructed mixing-layer wind tunnel. The main objective of the study was to establish quantitatively the presence and the role of the secondary streamwise vortex structure (of the kind that has been shown in past flow visualization investigations to ride among the primary spanwise vortices) in the development of a plane turbulent mixing layer at relatively high Reynolds numbers. Results indicate that the instability leading to the formation of streamwise vortices is initially amplified just downstream of the first spanwise roll-up. The streamwise vortices, which first appear in clusters containing vorticity of both signs, realign further downstream to form counterrotating pairs. Due to the amalgamation of like-sign vortices, the streamwise vortex spacing increases in a stepwise fashion.

  18. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  19. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  20. Framework structures of interconnected layers in calcium iron arsenides.

    PubMed

    Stürzer, Tobias; Hieke, Christine; Löhnert, Catrin; Nitsche, Fabian; Stahl, Juliane; Maak, Christian; Pobel, Roman; Johrendt, Dirk

    2014-06-16

    The new calcium iron arsenide compounds Ca(n(n+1)/2)(Fe(1-x)M(x))(2+3n)M'(n(n-1)/2)As((n+1)(n+2)/2) (n = 1-3; M = Nb, Pd, Pt; M' = □, Pd, Pt) were synthesized and their crystal structures determined by single-crystal X-ray diffraction. The series demonstrates the structural flexibility of iron arsenide materials, which otherwise prefer layered structures, as is known from the family of iron-based superconductors. In the new compounds, iron arsenide tetrahedral layers are bridged by iron-centered pyramids, giving rise to so far unknown frameworks of interconnected FeAs layers. Channels within the structures are occupied with calcium and palladium or platinum, respectively. Common basic building blocks are identified that lead to a better understanding of the building principles of these structures and their relation to CaFe4As3.

  1. Original size of the Vredefort structure, South Africa

    NASA Technical Reports Server (NTRS)

    Therriault, A. M.; Reid, A. M.; Reimold, W. U.

    1993-01-01

    The Vredefort structure is located approximately 120 km southwest of Johannesburg, South Africa, and is deeply eroded. Controversies remain on the origin of this structure with the most popular hypotheses being: (1) by impact cratering about 2.0 Ga; (2) as a cryptoexplosion structure about 2.0 Ga; and (3) by purely tectonic processes starting at about 3.0 Ga and ending with the Vredefort event at 2.0 Ga. In view of recent work in which the granophyre dikes are interpreted as the erosional remants of a more extensive impact melt sheet, injected downward into the underlying country rocks, the impact origin hypothesis for Vredefort is adopted. In order to estimate the original dimensions of the Vredefort impact structure, it is assumed that the structure was initially circular, that its predeformation center corresponds to the center of the granitic core, and that the pre-Vredefort geology of the area prior to approximately 2.0 Ga ago is as suggested by Fletcher and Reimold. The spatial relationship between shock metamorphic effects, the shock pressures they record, and the morphological features of the crater were established for a number of large terrestrial craters. The principles of crater formation at large complex impact structures comparable in size to Vredefort were also established, although many details remain unresolved. An important conclusion is that the transient crater, which is formed directly by excavation and displacement by the shock-induced cratering flow-field (i.e., the particle velocity flow field existing in the region of the transient crater but behind the initial outgoing shock front), is highly modified during the late stage processes. The original transient crater diameter lies well within the final rim of the crater, which is established by structural movements during late-stage cavity modification.

  2. Impact origin of the Sudbury structure: Evolution of a theory

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.

    1992-01-01

    This paper reviews the origin, development, and present status of the widely accepted theory, proposed by Robert S. Dietz in 1962, that the Sudbury structure was formed by meteoritic or asteroidal impact. The impact theory for the origin of the Sudbury structure seems supported by a nearly conclusive body of evidence. However, even assuming an impact origin to be correct, at least three major questions require further study: (1) the original size and shape of the crater, before tectonic deformation and erosion; (2) the source of the melt now forming the Sudbury Igneous Complex; and (3) the degree, if any, to which the Ni-Cu-platinum group elements are meteoritic. The history of the impact theory illustrates several under-appreciated aspects of scientific research: (1) the importance of cross-fertilization between space research and terrestrial geology; (2) the role of the outsider in stimulating thinking by insiders; (3) the value of small science, at least in the initial stages of an investigation, Dietz's first field work having been at his own expense; and (4) the value of analogies (here, between the Sudbury Igneous Complex and the maria), which although incorrect in major aspects, may trigger research on totally new lines. Finally, the Sudbury story illustrates the totally unpredictable and, by implication, unplannable nature of basic research, in that insight to the origin of the world's then-greatest Ni deposit came from the study of tektites and the Moon.

  3. Origin of Martian Interior Layered Deposits (ILDs) by atmospherically driven processes

    NASA Astrophysics Data System (ADS)

    Michalski, J. R.; Niles, P. B.

    2011-12-01

    Since the first photogeologic exploration of Mars, vast mounds of layered sediments found within the Valles Marineris canyon system (Interior Layered Deposits or ILDs) have remained unexplained. Recent spectroscopic results showing that these materials contain coarse-grained hematite [1] and sulfate [2-8] suggest that they are fundamentally similar to layered sulfate deposits seen elsewhere on Mars [3], and are therefore a key piece of Mars' global aqueous history. Layered sulfate deposits (including ILDs) are often considered to have formed in association with transient, wet surface environments caused by groundwater upwelling [9] in the Hesperian. Here, we use spectroscopic mapping along with geomorphic observations and mass balance calculations to demonstrate that the sulfate-bearing ILDs likely did not form due to groundwater upwelling or any similar playa-lacustrine scenario. Instead, the ILDs likely formed from atmospherically driven processes in a configuration similar to that observed today. We suggest that Hesperian layered sulfate deposits formed in response to massive amounts of pyroclastic volcanism and SO2-outgassing that peaked near 3.5-3.7 Ga in a Martian climate that was largely cold and dry. This origin for the ILDs is also applicable to other layered terrain of similar age and characteristics, including sulphate-bearing crater fill, chaos terrains, and the Meridiani Planum sediments. [1] Weitz, C. M., Lane, M. D., Staid, M. & Dobrea, E. N. Gray hematite distribution and formation in Ophir and Candor chasmata. Journal of Geophysical Research-Planets 113, doi:E02016 10.1029/2007je002930 (2008). [2] Wendt, L. et al. Sulfates and iron oxides in Ophir Chasma, Mars, based on OMEGA and CRISM observations. Icarus 213, 86-103, doi:10.1016/j.icarus.2011.02.013 (2011). [3] Murchie, S. et al. Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. Journal of Geophysical Research-Planets 114, doi

  4. Structure and properties of ITQ-8: a hydrous layer silicate with microporous silicate layers.

    PubMed

    Marler, Bernd; Müller, Melanie; Gies, Hermann

    2016-06-21

    ITQ-8 is a new hydrous layer silicate (HLS) with a chemical composition of [C4H8(C7H13N)2]8 [Si64O128(OH)16]·48H2O per unit cell. The synthesis of ITQ-8 was first described in 2002 by Díaz-Cabañas et al., the structure of this material, however, remained unsolved at that time. Physico-chemical characterization using solid-state NMR spectroscopy, SEM, TG-DTA, and FTIR spectroscopy confirmed that ITQ-8 is a layer silicate. The XRD powder pattern was indexed in the monoclinic system with lattice parameters of a0 = 35.5168(5) Å, b0 = 13.3989(2) Å, c0 = 16.0351(2) Å, β = 106.74(2)°. The crystal structure was solved by simulated annealing. Rietveld refinement of the structure in space group C2/c converged to residual values of RBragg = 0.023, RF = 0.022 and chi(2) = 2.3 confirming the structure model. The structure of ITQ-8 contains silicate layers with a topology that resembles a (11-1) section of the framework of zeolite levyne. So far, this layer topology is unique among layer silicates. The layer can be regarded as made up of 4-, 6-, double-six and 8-rings which are interconnected to form cup-like "half-cages". Unlike other HLSs, which possess impermeable silicate layers, ITQ-8 contains 8-rings pores with a free diameter of 3.5 Å × 3.4 Å and can be regarded as a "small-pore layer silicate". In the crystal structure, the organic cations, 1,4-diquiniclidiniumbutane, used as structure directing agents during synthesis are intercalated between the silicate layers. Clusters (bands) of water molecules which are hydrogen bonded to each other and to the terminal Si-OH/Si-O(-) groups are located between the organic cations and interconnect the silicate layers. ITQ-8 is a very interesting material as precursor for the synthesis of microporous framework silicates by topotactic condensation or interlayer expansion reactions leading to 3D micro-pore systems which may be useful in applications as e.g. catalysts, catalyst supports and adsorbents of for separation. PMID

  5. Manipulation by exchange coupling in layered magnetic structures

    SciTech Connect

    Moskalenko, M. A.; Uzdin, V. M.; Zabel, H.

    2014-02-07

    Exchange coupling in magnetic heterostructures can be modified via introduction of additional magnetic spacer layers at the interfaces. The magnetic characteristics and the spacer layer thickness determine the functional properties of the whole system. We show that the hysteresis loop area of trilayer spring magnets with two different soft magnetic layers (s1, s2) and one hard magnetic layer (h) with the sequence s1/s2/h can be increased as compared to both bilayer structures s1/h and s2/h with the same total thickness of the soft layers and for definite thickness ratios of the soft layers and their sequences. For ferrimagnetic spin valves, the perpendicular exchange bias effect can be tuned via the thickness of non-magnetic spacer layers at the interface, which determine the exchange coupling between ferrimagnets. A simple quasi one-dimensional phenomenological model is able to describe the magnetic hysteresis of even complex layered structures and to predict optimal geometrical and magnetic parameters of such heterostructures.

  6. Impedance of a coil near an imperfectly layered metal structure: The layer approximation

    NASA Astrophysics Data System (ADS)

    Satveli, Radhika; Moulder, John C.; Wang, Bing; Rose, James H.

    1996-03-01

    Changes in the impedance of a coil next to a one-dimensional layered conductor due to three-dimensional changes in the conductivity are studied. Eddy current probes are often used to inspect layered one-dimensional, nonmagnetic metal structures whose electrical conductivity varies primarily with depth beneath the surface. We present a perturbation method, the ``layer approximation,'' which yields simple and readily evaluated formulas for changes in the impedance of a small coil due to localized three-dimensional variations in the conductivity. The layer approximation is constructed to be accurate when the conductivity change due to the defect is small or the defect is nearly one-dimensional. The impedance is calculated and reported for a variety of defects in layered metal structures: voids, inclusions, interfacial roughness, and fasteners. We test the ``robustness'' of the layer approximation using an extreme case, a flat-bottom hole in an aluminum plate, as a ``benchmark.'' Both experimental measurements and more exact theoretical calculations are reported. Impedance measurements were made with a Hewlett-Packard 4194A impedance analyzer for a right-cylindrical flat-bottom hole in a 1-mm-thick 2024 aluminum alloy plate; the hole was on the side opposite to the coil. Frequencies were varied from 2.5 to 50 kHz. We also calculated the change in the impedance for this benchmark problem using the numerically exact volume integral method. For this benchmark problem, the layer approximation is in good agreement with experiment and more exact theory.

  7. Structure analysis of layer-by-layer multilayer films of colloidal particles

    NASA Astrophysics Data System (ADS)

    Batys, Piotr; Nosek, Magdalena; Weroński, Paweł

    2015-03-01

    We have mimicked the layer-by-layer self-assembling process of monodisperse colloidal particles at a solid-liquid interface using the extended random sequential adsorption model of hard spheres. We have studied five multilayer structures of similar thickness, each created at a different single-layer surface coverage. For each multilayer, we have determined its particle volume fraction as a function of distance from the interface. Additionally, we have characterized the film structure in terms of 2D and 3D pair-correlation functions. We have found that the coverage of about 0.3 is optimal for producing a uniform, constant-porosity multilayer in a minimum number of adsorption cycles. The single-layer coverage has also a significant effect on the primary maximum of 2D radial distribution function. In the case of multilayer with the coverage lower than 0.30 the 2D pair-correlation functions of even layers exhibit maxima decreasing with the increase in the layer number. We have verified our theoretical predictions experimentally. We have used fluorescence microscopy to determine the 2D pair-correlation functions for the second, third, and fourth layers of multilayer formed of micron-sized spherical latex particles. We have found a good agreement between our theoretical and experimental results, which confirms the validity of the extended RSA model.

  8. The structure of a three-dimensional turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Smith, F. T.; Walker, J. D. A.

    1993-01-01

    The three-dimensional turbulent boundary layer is shown to have a self-consistent two-layer asymptotic structure in the limit of large Reynolds number. In a streamline coordinate system, the streamwise velocity distribution is similar to that in two-dimensional flows, having a defect-function form in the outer layer which is adjusted to zero at the wall through an inner wall layer. An asymptotic expansion accurate to two orders is required for the cross-stream velocity which is shown to exhibit a logarithmic form in the overlap region. The inner wall-layer flow is collateral to leading order but the influence of the pressure gradient, at large but finite Reynolds numbers, is not negligible and can cause substantial skewing of the velocity profile near the wall. Conditions under which the boundary layer achieves self-similarity and the governing set of ordinary differential equations for the outer layer are derived. The calculated solution of these equations is matched asymptotically to an inner wall-layer solution and the composite profiles so formed describe the flow throughout the entire boundary layer. The effects of Reynolds number and cross-stream pressure gradient on the crossstream velocity profile are discussed and it is shown that the location of the maximum cross-stream velocity is within the overlap region.

  9. Perturbation of the Heat Lateral Diffusion by Interface Resistance in Layered Structures

    NASA Astrophysics Data System (ADS)

    Frétigny, C.; Duquesne, J.-Y.; Fournier, D.

    2015-06-01

    It is well established that interface resistances do usually exist in layered structures, and their values strongly depend on their origin. They may arise from different vibrational properties of the layers, nonharmonic processes at the interface, surface chemical contamination, interfacial defects, etc. Numerous studies have been published to evaluate their values, most of the time, in a perpendicular heat diffusion scheme. In this paper, the effect of interface resistances on the lateral modulated surface temperature of a layered structure for cylindrical symmetry heat diffusion is studied. The thermoreflectance microscope is a particularly convenient tool to record heat lateral diffusion from a surface modulated heated point and thus to evidence the presence of such resistance interfaces. In a first part, the theoretical model of heat diffusion in cylindrical symmetry, in a layered structure exhibiting an interface resistance between the layer and the substrate, is briefly described. In a second part, the C/I configuration (good conductive layer deposited on an insulating substrate, with an interface resistance) is investigated. Experimental results illustrate the theory. In the third part, the reverse case I/C (insulating layer deposited on a conductive substrate, with an interface resistance) is discussed. To conclude, all the cases and the ability of the lateral diffusion to recover interface thermal resistances are compared.

  10. Electromagnetic cloaking by layered structure of homogeneous isotropic materials

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Feng, Yijun; Jiang, Tian

    Electromagnetic invisibility cloak requires material with anisotropic distribution of the constitutive parameters deduced from a geometrical transformation as first proposed by Pendry et al. [Science 312, 1780 (2006)]. In this paper, we proposed a useful method to realize the required radius-dependent, anisotropic material parameters and to construct an electromagnetic cloak through concentric layered structure of thin, alternating layers of homogeneous isotropic materials. With proper design of the permittivity or the thickness ratio of the alternating layers, we demonstrated the low-reflection and power-flow bending properties of the proposed cloaking structure through rigorous analysis of the scattered electromagnetic fields. The proposed cloaking structure does not require anisotropy or inhomogeneity of the material constitutive parameters usually realized by metamaterials with subwavelength structured inclusions, therefore may lead to a practical path to an experimental demonstration of electromagnetic cloaking, especially in the optical range.

  11. The simulation of coherent structures in a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Breuer, Kenny; Landahl, Marten T.; Spalart, Philippe R.

    1987-01-01

    Coherent structures in turbulent shear flows were studied extensively by several techniques, including the VITA technique which selects rapidly accelerating or decelerating regions in the flow. The evolution of a localized disturbance in a laminar boundary layer shows strong similarity to the evolution of coherent structures in a turbulent-wall bounded flow. Starting from a liftup-sweep motion, a strong shear layer develops which shares many of the features seen in conditionally-sampled turbulent velocity fields. The structure of the shear layer, Reynolds stress distribution, and wall pressure footprint are qualitatively the same, indicating that the dynamics responsible for the structure's evolution are simple mechanisms dependent only on the presence of a high mean shear and a wall and independent of the effects of local random fluctuations and outer flow effects. As the disturbance progressed, the development of streak-like-high- and low-speed regions associated with the three-dimensionality.

  12. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    PubMed

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-01

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise. PMID:27295399

  13. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    PubMed

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-01

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  14. Pairwise correlations in layered close-packed structures.

    PubMed

    Riechers, P M; Varn, D P; Crutchfield, J P

    2015-07-01

    Given a description of the stacking statistics of layered close-packed structures in the form of a hidden Markov model, analytical expressions are developed for the pairwise correlation functions between the layers. These may be calculated analytically as explicit functions of model parameters or the expressions may be used as a fast, accurate and efficient way to obtain numerical values. Several examples are presented, finding agreement with previous work as well as deriving new relations. PMID:26131898

  15. Origins of large critical temperature variations in single-layer cuprates

    SciTech Connect

    Palczewski, A.D.; Kondo, T.; Khasanov, R.; Kolesikov, N.N.; Timonina; Rotenberg, E.; Ohta, T.; Bendounan, A.; Sassa, Y.; Fedorov, A.; Paihes, S.; Santander-Syro, A.F.; Chang, J.; Shi, M.; Mesot, J.; Fretwell, H.M.; Kaminski, A.

    2008-08-26

    We study the electronic structures of two single-layer superconducting cuprates, Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} (Tl2201) and (Bi{sub 1.35}Pb{sub 0.85}) (Sr{sub 1.47}La{sub 0.38}) CuO{sub 6+{delta}} (Bi2201) which have very different maximum critical temperatures (90 K and 35 K, respectively) using angular-resolved photoemission spectroscopy (ARPES). We are able to identify two main differences in their electronic properties. First, the shadow band that is present in double-layer and low T{sub c,max} single-layer cuprates is absent in Tl2201. Recent studies have linked the shadow band to structural distortions in the lattice and the absence of these in Tl2201 may be a contributing factor in its T{sub c,max}. Second, Tl2201's Fermi surface (FS) contains long straight parallel regions near the antinode, while in Bi2201 the antinodal region is much more rounded. Since the size of the superconducting gap is largest in the antinodal region, differences in the band dispersion at the antinode may play a significant role in the pairing and therefore affect the maximum transition temperature.

  16. Prediction of Silicon-Based Layered Structures for Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Ma, Yanming; Gong, Xingao; Xiang, Hongjun; CCMG Team

    2015-03-01

    A method based on the particle swarm optimization (PSO) algorithm is presented to design quasi-two-dimensional (Q2D) materials. With this development, various single-layer and bi-layer materials in C, Si, Ge, Sn, and Pb were predicted. A new Si bi-layer structure is found to have a much-favored energy than the previously widely accepted configuration. Both single-layer and bi-layer Si materials have small band gaps, limiting their usages in optoelectronic applications. Hydrogenation has therefore been used to tune the electronic and optical properties of Si layers. We discover two hydrogenated materials of layered Si8H2andSi6H2 possessing quasi-direct band gaps of 0.75 eV and 1.59 eV, respectively. Their potential applications for light emitting diode and photovoltaics are proposed and discussed. Our study opened up the possibility of hydrogenated Si layered materials as next-generation optoelectronic devices.

  17. Origins, structures, and functions of circulating DNA in oncology.

    PubMed

    Thierry, A R; El Messaoudi, S; Gahan, P B; Anker, P; Stroun, M

    2016-09-01

    While various clinical applications especially in oncology are now in progress such as diagnosis, prognosis, therapy monitoring, or patient follow-up, the determination of structural characteristics of cell-free circulating DNA (cirDNA) are still being researched. Nevertheless, some specific structures have been identified and cirDNA has been shown to be composed of many "kinds." This structural description goes hand-in-hand with the mechanisms of its origins such as apoptosis, necrosis, active release, phagocytosis, and exocytose. There are multiple structural forms of cirDNA depending upon the mechanism of release: particulate structures (exosomes, microparticles, apoptotic bodies) or macromolecular structures (nucleosomes, virtosomes/proteolipidonucleic acid complexes, DNA traps, links with serum proteins or to the cell-free membrane parts). In addition, cirDNA concerns both nuclear and/or mitochondrial DNA with both species exhibiting different structural characteristics that potentially reveal different forms of biological stability or diagnostic significance. This review focuses on the origins, structures and functional aspects that are paradoxically less well described in the literature while numerous reviews are directed to the clinical application of cirDNA. Differentiation of the various structures and better knowledge of the fate of cirDNA would considerably expand the diagnostic power of cirDNA analysis especially with regard to the patient follow-up enlarging the scope of personalized medicine. A better understanding of the subsequent fate of cirDNA would also help in deciphering its functional aspects such as their capacity for either genometastasis or their pro-inflammatory and immunological effects.

  18. Origin of the Vredefort structure, South Africa: Impact model

    NASA Technical Reports Server (NTRS)

    Therriault, A. M.; Reid, A. M.; Reimold, W. U.

    1993-01-01

    A model is presented for the evolution of the Vredefort structure, based on reasoned constraints on the original size of the Vredefort structure from observational data and comparison with other terrestrial impact craters. The models for complex craters (ring and multi-ring basins) of Croft, Grieve, and co-workers, and Schultz and co-workers, were used to reconstruct the Vredefort impact event, using a final crater diameter of 300 km, as estimated by Therriault. The sequence of events (stages 2-5) is illustrated diagramatically. The stages are: initial penetration, excavation and compression, dynamic rebound and uplift, maximum radial growth and collapse, and final crater form.

  19. Analysis of the structure of original research papers: an aid to writing original papers for publication.

    PubMed Central

    Skelton, J

    1994-01-01

    BACKGROUND. An increasing number of people involved in medicine are under pressure to publish research, but there is little understanding of how to describe structured writing. AIM. This paper aims to describe the structure of original research papers published in the British Journal of General Practice with a view to providing insight into the nature of such analyses, and particularly to help researchers and trainers to write and teach writing more successfully. METHOD. A sample of 50 original papers published in the Journal between January 1989 and March 1993 were examined. The papers were subjected to a form of 'move structure analysis', a technique used in applied linguistics; move structure analysis assigns a tentative function to a piece of text, and identifies words/phrases associated with it. To be recognized, moves thus identified had to occur in the same section of the paper in 65% of the corpus, and/or appear in the same order relative to other moves in 50%. RESULTS. Fifteen moves were identified, four in the introduction, three in the method, and four each in the results and discussion. These moves functioned, for example in the discussion, to state limitations and defend successes; describe achievements; contextualize procedures and findings; and offer recommendations. Frequency scores ranged from 66% to 100%, and order stability scores from 50% to 80%, with three moves being unordered. CONCLUSION. It is possible to derive from this study a template for structuring academic medical writing. This template may be built up from the exemplary quotations in the text, to provide assistance to educators and less experienced writers. PMID:7748634

  20. Shock-like structures in the tropical cyclone boundary layer

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  1. Origin of weak layer contraction in de Vries smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Agra-Kooijman, Dena M.; Yoon, HyungGuen; Dey, Sonal; Kumar, Satyendra

    2014-03-01

    Structural investigations of the de Vries smectic-A (SmA) and smectic-C (SmC) phases of four mesogens containing a trisiloxane end segment reveal a linear molecular conformation in the SmA phase and a bent conformation resembling a hockey stick in the SmC phase. The siloxane and the hydrocarbon parts of the molecule tilt at different angles relative to the smectic layer normal and are oriented along different directions. For the compounds investigated, the shape of orientational distribution function (ODF) is found to be sugarloaf shaped and not the widely expected volcano like with positive orientational order parameters: ⟨P2⟩ = 0.53-0.78, ⟨P4⟩ = 0.14-0.45, and ⟨P6⟩˜0.10. The increase in the effective molecular length, and consequently in the smectic layer spacing caused by reduced fluctuations and the corresponding narrowing of the ODF, counteracts the effect of molecular tilt and significantly reduces the SmC layer contraction. Maximum tilt of the hydrocarbon part of the molecule lies between approximately 18° and 25° and between 6° and 12° for the siloxane part. The critical exponent of the tilt order parameter, β˜0.25, is in agreement with tricritical behavior at the SmA-SmC transition for two compounds and has lower value for first-order transition in the other compounds with finite enthalpy of transition.

  2. Origin of weak layer contraction in de Vries smectic liquid crystals.

    PubMed

    Agra-Kooijman, Dena M; Yoon, HyungGuen; Dey, Sonal; Kumar, Satyendra

    2014-03-01

    Structural investigations of the de Vries smectic-A (SmA) and smectic-C (SmC) phases of four mesogens containing a trisiloxane end segment reveal a linear molecular conformation in the SmA phase and a bent conformation resembling a hockey stick in the SmC phase. The siloxane and the hydrocarbon parts of the molecule tilt at different angles relative to the smectic layer normal and are oriented along different directions. For the compounds investigated, the shape of orientational distribution function (ODF) is found to be sugarloaf shaped and not the widely expected volcano like with positive orientational order parameters: ⟨P2⟩ = 0.53-0.78, ⟨P4⟩ = 0.14-0.45, and ⟨P6⟩∼0.10. The increase in the effective molecular length, and consequently in the smectic layer spacing caused by reduced fluctuations and the corresponding narrowing of the ODF, counteracts the effect of molecular tilt and significantly reduces the SmC layer contraction. Maximum tilt of the hydrocarbon part of the molecule lies between approximately 18° and 25° and between 6° and 12° for the siloxane part. The critical exponent of the tilt order parameter, β∼0.25, is in agreement with tricritical behavior at the SmA-SmC transition for two compounds and has lower value for first-order transition in the other compounds with finite enthalpy of transition.

  3. Structural templating of multiple polycrystalline layers in organic photovoltaic cells

    SciTech Connect

    Lassiter, Brian E; Lunt, Richard R; Renshaw, Kyle; Forrest, Stephen R.

    2010-09-01

    We demonstrate that organic photovoltaic cell performance is influenced by changes in the crystalline orientation of composite layer structures. A 1.5 nm thick self-organized, polycrystalline template layer of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) orients subsequently deposited layers of a diindenoperylene exciton blocking layer, and the donor, copper phthalocyanine (CuPc). Control over the crystalline orientation of the CuPc leads to changes in its frontier energy levels, absorption coefficient, and surface morphology, resulting in an increase of power conversion efficiency at 1 sun from 1.42 ± 0.04% to 2.19 ± 0.05% for a planar heterojunction and from 1.89 ± 0.05% to 2.49 ± 0.03% for a planar-mixed heterojunction.

  4. The role of groundwater in the origin of the indurated layered deposits of Arabia Terra, Mars

    NASA Astrophysics Data System (ADS)

    Andrews-Hanna, J. C.; Wiseman, S. M.; Arvidson, R. E.

    2008-12-01

    Indurated layered deposits of likely sedimentary origin are widely distributed across the Arabia Terra region of Mars. In situ observations by the MER Opportunity rover of one such deposit in Meridiani Planum have been interpreted to represent grains composed of dirty evaporites that have been extensively reworked by fluvial and aeolian processes in a playa environment and diagenetically modified by a fluctuating water table. Stratigraphic relationships, morphological similarities, and spectral evidence suggest a related origin for the many layered deposits throughout Arabia Terra. Isolated intra-crater deposits, erosional outliers, and pedestal craters suggest that the Arabia Terra deposits were once thicker and more widespread than their current extent. We investigate the origin of these sedimentary deposits using global and regional hydrological models, in which groundwater flow is driven by evaporation where the water table intersects the surface and redistribution of that water as low-latitude precipitation. These models predict focused groundwater upwelling and evaporation in Arabia Terra during the Late Noachian to Early Hesperian, driven by its unique topography relative to the adjacent southern highlands and northern lowlands. This hydrological cycle would have brought a steady flux of groundwater to the surface, which upon evaporation, would concentrate any dissolved solutes as a cementing salt that would indurate aeolian material and allow buildup of thick sedimentary deposits. Groundwater upwelling would first be limited to the large craters in the region, resulting in rapid sedimentary infilling by a combination of evaporites and evaporite-cemented clastic material. As the craters were filled, groundwater upwelling would spread out over broad regions of Arabia Terra, producing widespread deposits covering much of the inter-crater plains. The observed distribution and thickness of the deposits agrees with the predictions from the hydrological models

  5. Impact origin of the Newporte structure, Williston basin, North Dakota

    SciTech Connect

    Forsman, N.F.; Gerlach, T.R.; Anderson, N.L.

    1996-05-01

    The Newporte field is located just south of the United States-Canada border in Renville County, North Dakota, in the north-central portion of the Williston basin. Integration of seismic, well-log, and core data supports the interpretation of an impact origin for the Newporte structure. The structure involves both Precambrian basement and lower Paleozoic sedimentary units. Oil and gas production began in 1977 from brecciated basement rocks along the rim of the 3.2-km-diameter circular structure. Both well logs and seismic data were used to determine thickness changes of sedimentary units overlying the structure. Resulting isopach maps reveal a circular, bowl-shaped feature with a recognizable rim. Microscopic shock metamorphic features in quartz and feldspar are visible in basement clasts that form a mixed breccia with Cambrian Deadwood sandstone within the western rim of the structure. A Late Cambrian-Early Ordovician age is suggested for the structure because of the presence of flatlying Deadwood sandstone overlying mixed basement/sandstone breccia along portions of the rim. Identification of the Newporte structure as an impact crater adds to the growing base of evidence revealing the relevance of impact craters to petroleum exploration.

  6. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  7. Ternary metal-rich sulfide with a layered structure

    DOEpatents

    Franzen, Hugo F.; Yao, Xiaoqiang

    1993-08-17

    A ternary Nb-Ta-S compound is provided having the atomic formula, Nb.sub.1.72 Ta.sub.3.28 S.sub.2, and exhibiting a layered structure in the sequence S-M3-M2-M1-M2-M3-S wherein S represents sulfur layers and M1, M2, and M3 represent Nb/Ta mixed metal layers. This sequence generates seven sheets stacked along the [001] direction of an approximate body centered cubic crystal structure with relatively weak sulfur-to-sulfur van der Waals type interactions between adjacent sulfur sheets and metal-to-metal bonding within and between adjacent mixed metal sheets.

  8. Strained layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J

    2012-10-23

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  9. Origin of coherent structures in a discrete chaotic medium

    SciTech Connect

    Rabinovich, M.I.; Torres, J.J.; Varona, P.; Huerta, R.; Varona, P.; Huerta, R.; Weidman, P.

    1999-08-01

    Using as an example a large lattice of locally interacting Hindmarsh-Rose chaotic neurons, we disclose the origin of ordered structures in a discrete nonequilibrium medium with fast and slow chaotic oscillations. The origin of the ordering mechanism is related to the appearance of a periodic average dynamics in the group of chaotic neurons whose individual slow activity is significantly synchronized by the group mean field. Introducing the concept of a {open_quotes}coarse grain{close_quotes} as a cluster of neuron elements with periodic averaged behavior allows consideration of the dynamics of a medium composed of these clusters. A study of this medium reveals spatially ordered patterns in the periodic and slow dynamics of the coarse grains that are controlled by the average intensity of the fast chaotic pulsation. {copyright} {ital 1999} {ital The American Physical Society}

  10. Scattering properties of PT- symmetric layered periodic structures

    NASA Astrophysics Data System (ADS)

    Shramkova, O. V.; Tsironis, G. P.

    2016-10-01

    The optical properties of PT-symmetric periodic stacks of the layers with balanced loss and gain are examined. We demonstrate that the tunnelling phenomenon in periodic structures is connected with excitation of surface waves at the boundaries separating gain and loss regions within each unit cell and tunnelling conditions for periodic stacks can be reduced to the conditions for one period. Alternatively, it is shown that coherent perfect absorber laser states are mediated by excitation of surface modes localised at all internal boundaries of the structure. The effects of structure parameters, angles, direction of incidence on the resonant phenomena and spontaneous symmetry breaking transition are determined. It is shown that structural periodicity significantly increases the number of resonant phenomena, especially in stacks with high real and imaginary parts of dielectric permittivity of the layers.

  11. Coherent structures in compressible free-shear-layer flows

    SciTech Connect

    Aeschliman, D.P.; Baty, R.S.; Kennedy, C.A.; Chen, J.H.

    1997-08-01

    Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.

  12. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.

    PubMed

    Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2012-07-03

    The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.

  13. 3D outflow jets originating from turbulence in the reconnection current layer

    NASA Astrophysics Data System (ADS)

    Fujimoto, Keizo

    2016-07-01

    Satellite observations in the Earth's magnetosphere and in solar flares have suggested that the reconnection outflow jets are fully three dimensional, consisting of a series of narrow channels. The jet structure is important in evaluating the energy and flux transport in the reconnection process. Previous theoretical models based on fluid simulations have relied on patchy reconnection where reconnection takes place predominantly in patchy portions of the current layer. The problem of the previous models is that the gross reconnection rate is much smaller than that in the 2D reconnection case. The present study shows a large-scale 3D PIC simulation revealing that the 3D outflow jets are generated through the 3D flux ropes formed in the turbulent electron current layer around the x-line. Reconnection proceeds almost uniformly along the x-line, so that the gross reconnection rate is comparable to that in the 2D reconnection case. The flux ropes and resultant outflow channels have a typical current-aligned scale provided by the wavelength of an electron shear mode that is much larger than the typical kinetic scales. It is found that the structure of the 3D outflow jets obtained in the simulation is consistent with the bursty bulk flow observed in the Earth's magnetotail.

  14. Interfacial Atomic Structure of Twisted Few-Layer Graphene.

    PubMed

    Ishikawa, Ryo; Lugg, Nathan R; Inoue, Kazutoshi; Sawada, Hidetaka; Taniguchi, Takashi; Shibata, Naoya; Ikuhara, Yuichi

    2016-02-18

    A twist in bi- or few-layer graphene breaks the local symmetry, introducing a number of intriguing physical properties such as opening new bandgaps. Therefore, determining the twisted atomic structure is critical to understanding and controlling the functional properties of graphene. Combining low-angle annular dark-field electron microscopy with image simulations, we directly determine the atomic structure of twisted few-layer graphene in terms of a moiré superstructure which is parameterized by a single twist angle and lattice constant. This method is shown to be a powerful tool for accurately determining the atomic structure of two-dimensional materials such as graphene, even in the presence of experimental errors. Using coincidence-site-lattice and displacement-shift-complete theories, we show that the in-plane translation state between layers is not a significant structure parameter, explaining why the present method is adequate not only for bilayer graphene but also a few-layered twisted graphene.

  15. Using Layer-Cake Geology to Illustrate Structural Topographic Relationships.

    ERIC Educational Resources Information Center

    Wagner, John Robert

    1987-01-01

    Discusses some of the difficulties of visualizing underlying geologic structural patterns by using maps or wooden blocks. Suggests the use of a modified layer cake to show dipping beds, folds, faults and differential erosion, as well as the relationships of stream valleys to outcrop patterns. (TW)

  16. Interfacial Atomic Structure of Twisted Few-Layer Graphene

    PubMed Central

    Ishikawa, Ryo; Lugg, Nathan R.; Inoue, Kazutoshi; Sawada, Hidetaka; Taniguchi, Takashi; Shibata, Naoya; Ikuhara, Yuichi

    2016-01-01

    A twist in bi- or few-layer graphene breaks the local symmetry, introducing a number of intriguing physical properties such as opening new bandgaps. Therefore, determining the twisted atomic structure is critical to understanding and controlling the functional properties of graphene. Combining low-angle annular dark-field electron microscopy with image simulations, we directly determine the atomic structure of twisted few-layer graphene in terms of a moiré superstructure which is parameterized by a single twist angle and lattice constant. This method is shown to be a powerful tool for accurately determining the atomic structure of two-dimensional materials such as graphene, even in the presence of experimental errors. Using coincidence-site-lattice and displacement-shift-complete theories, we show that the in-plane translation state between layers is not a significant structure parameter, explaining why the present method is adequate not only for bilayer graphene but also a few-layered twisted graphene. PMID:26888259

  17. Original Size and Shape of the Sudbury Structure

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1997-01-01

    This paper presents new evidence bearing on the original size and shape of the Sudbury impact structure. Current opinion is almost unanimous that the structure is a multiring basin with an original diameter of about 200 km and a circular shape that has since been shortened in a northwest-southeast direction by Penokean deformation Evidence for this interpretation, collected chiefly from north of the Sudbury Igneous Complex (SIC), includes supposed outer rings on Landsat imagery, distant occurrences of "Sudbury breccia" (generally defined as pseudotachylite), shatter cone occurrences, and outliers of Huronian sedimentary rock thought to be down-faulted rings. New data from imaging radar and field work north of the SIC, however, contradict this evidence. Radar imagery shows no signs of the supposed outer rings mapped by earlier workers on Landsat images. The most prominent ring has been found to be a chance alignment of two independent fracture sets. Radar imagery from the CCRS Convair 580, with look direction almost normal to the north rim of the SIC, shows no evidence of the rings despite strong look azimuth highlighting. Radar imagery has shown many unmapped diabase dikes north of the SIC. Several exposures of supposed Sudbury breccia are associated with these dikes or with Nipissing diabase intrusions, in some cases actually inside the dikes or directly continuous with them. They appear to be igneous intrusion breccias with no relation to impact. Shock-wave interaction at lithologic contacts cannot be invoked for most of these, because they are part of a northwest trending swarm cutting the SIC in the North Range, and hence too young for an impact origin. Similar diabase-related breccias and pseudotachylite-like veins have been found far outside the Sudbury area between Chapleau and Thessalon. Shatter cones north of the SIC are few and poorly developed, perhaps due to the coarse-grained Footwall rock, and cannot be considered a continuous zone analogous to their

  18. Fabrication of colloidal crystals with defined and complex structures via layer-by-layer transfer.

    PubMed

    Li, Wei; Yang, Bai; Wang, Dayang

    2008-12-01

    A new and versatile way--using poly(dimethylsiloxane) (PDMS) sheets to layer-by-layer (LbL) transfer hexagonal-close-packed particle monolayers from preformed colloidal crystals and stack them on substrates-has been demonstrated to create colloidal crystals. This approach allows LbL control of the thickness of the resulting crystals and especially of the size and the packing structure of the particles in each layer. Furthermore, it also allows fabrication of binary colloidal crystals over large areas by deformation of the PDMS sheets during LbL transfer. Two new binary crystals-one composed of identically sized particles but in different densities and the other of a nonclose-packed monolayer of large particles and a close-packed monolayer of small particles-were created, which are hard grown by other colloidal crystallization techniques developed thus far. PMID:18986179

  19. Turbulent boundary-layer structure of flows over freshwater biofilms

    NASA Astrophysics Data System (ADS)

    Walker, J. M.; Sargison, J. E.; Henderson, A. D.

    2013-12-01

    The structure of the turbulent boundary-layer for flows over freshwater biofilms dominated by the diatom Tabellaria flocculosa was investigated. Biofilms were grown on large test plates under flow conditions in an Australian hydropower canal for periods up to 12 months. Velocity-profile measurements were obtained using LDV in a recirculating water tunnel for biofouled, smooth and artificially sandgrain roughened surfaces over a momentum thickness Reynolds number range of 3,000-8,000. Significant increases in skin friction coefficient of up to 160 % were measured over smooth-wall values. The effective roughnesses of the biofilms, k s, were significantly higher than their physical roughness measured using novel photogrammetry techniques and consisted of the physical roughness and a component due to the vibration of the biofilm mat. The biofilms displayed a k-type roughness function, and a logarithmic relationship was found between the roughness function and roughness Reynolds number based on the maximum peak-to-valley height of the biofilm, R t. The structure of the boundary layer adhered to Townsend's wall-similarity hypothesis even though the scale separation between the effective roughness height and the boundary-layer thickness was small. The biofouled velocity-defect profiles collapsed with smooth and sandgrain profiles in the outer region of the boundary layer. The Reynolds stresses and quadrant analysis also collapsed in the outer region of the boundary layer.

  20. Mixing layers and coherent structures in vegetated aquatic flows

    NASA Astrophysics Data System (ADS)

    Ghisalberti, Marco; Nepf, Heidi M.

    2002-02-01

    To date, flow through submerged aquatic vegetation has largely been viewed as perturbed boundary layer flow, with vegetative drag treated as an extension of bed drag. However, recent studies of terrestrial canopies demonstrate that the flow structure within and just above an unconfined canopy more strongly resembles a mixing layer than a boundary layer. This paper presents laboratory measurements, obtained from a scaled seagrass model, that demonstrate the applicability of the mixing layer analogy to aquatic systems. Specifically, all vertical profiles of mean velocity contained an inflection point, which makes the flow susceptible to Kelvin-Helmholtz instability. This instability leads to the generation of large, coherent vortices within the mixing layer (observed in the model at frequencies between 0.01 and 0.11 Hz), which dominate the vertical transport of momentum through the layer. The downstream advection of these vortices is shown to cause the progressive, coherent waving of aquatic vegetation, known as the monami. When the monami is present, the turbulent vertical transport of momentum is enhanced, with turbulent stresses penetrating an additional 30% of the plant height into the canopy.

  1. Hybrid transfer-matrix FDTD method for layered periodic structures.

    PubMed

    Deinega, Alexei; Belousov, Sergei; Valuev, Ilya

    2009-03-15

    A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.

  2. Stable single-layer honeycomblike structure of silica.

    PubMed

    Özçelik, V Ongun; Cahangirov, S; Ciraci, S

    2014-06-20

    Silica or SiO(2), the main constituent of Earth's rocks has several 3D complex crystalline and amorphous phases, but it does not have a graphitelike layered structure in 3D. Our theoretical analysis and numerical calculations from the first principles predict a single-layer honeycomblike allotrope, hα silica, which can be viewed to be derived from the oxidation of silicene and it has intriguing atomic structure with reentrant bond angles in hexagons. It is a wide band gap semiconductor, which attains remarkable electromechanical properties showing geometrical changes under an external electric field. In particular, it is an auxetic metamaterial with a negative Poisson's ratio and has a high piezoelectric coefficient. While it can form stable bilayer and multilayer structures, its nanoribbons can show metallic or semiconducting behavior depending on their chirality. Coverage of dangling Si orbitals by foreign adatoms can attribute new functionalities to hα silica. In particular, Si(2)O(5), where Si atoms are saturated by oxygen atoms from top and bottom sides alternatingly can undergo a structural transformation to make silicatene, another stable, single layer structure of silica. PMID:24996101

  3. Stable Single-Layer Honeycomblike Structure of Silica

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2014-06-01

    Silica or SiO2, the main constituent of Earth's rocks has several 3D complex crystalline and amorphous phases, but it does not have a graphitelike layered structure in 3D. Our theoretical analysis and numerical calculations from the first principles predict a single-layer honeycomblike allotrope, hα silica, which can be viewed to be derived from the oxidation of silicene and it has intriguing atomic structure with reentrant bond angles in hexagons. It is a wide band gap semiconductor, which attains remarkable electromechanical properties showing geometrical changes under an external electric field. In particular, it is an auxetic metamaterial with a negative Poisson's ratio and has a high piezoelectric coefficient. While it can form stable bilayer and multilayer structures, its nanoribbons can show metallic or semiconducting behavior depending on their chirality. Coverage of dangling Si orbitals by foreign adatoms can attribute new functionalities to hα silica. In particular, Si2O5, where Si atoms are saturated by oxygen atoms from top and bottom sides alternatingly can undergo a structural transformation to make silicatene, another stable, single layer structure of silica.

  4. Origin of weak magnetism in compounds with cubic laves structure.

    PubMed

    Torun, E; Janner, A; de Groot, R A

    2016-02-17

    The origin of the weak itinerant magnetism in materials such as TiBe2 and ZrZn2 is investigated. The huge peak in the density of states at the Fermi energy is attributed to a special symmetry of the C15 structure: no crystal field splitting of the d levels occurs in the case of coordination by spherical ligands. Crystal field splitting is also investigated for the f orbitals in C15 structures such as PuZn2 and ThMg2. It is observed that the situation in f levels is more complicated than the d levels because the characteristics of the crystal field splitting for f levels does not only depend on the the local point symmetry of the compounds.

  5. Structural origin of slow diffusion in protein folding.

    PubMed

    Chung, Hoi Sung; Piana-Agostinetti, Stefano; Shaw, David E; Eaton, William A

    2015-09-25

    Experimental, theoretical, and computational studies of small proteins suggest that interresidue contacts not present in the folded structure play little or no role in the self-assembly mechanism. Non-native contacts can, however, influence folding kinetics by introducing additional local minima that slow diffusion over the global free-energy barrier between folded and unfolded states. Here, we combine single-molecule fluorescence with all-atom molecular dynamics simulations to discover the structural origin for the slow diffusion that markedly decreases the folding rate for a designed α-helical protein. Our experimental determination of transition path times and our analysis of the simulations point to non-native salt bridges between helices as the source, which provides a quantitative glimpse of how specific intramolecular interactions influence protein folding rates by altering dynamics and not activation free energies.

  6. Optimization of SMA layers in composite structures to enhance damping

    NASA Astrophysics Data System (ADS)

    Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.

    2016-04-01

    The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.

  7. Microemulsions: Structures, surfactant layer properties and wetting transitions

    NASA Astrophysics Data System (ADS)

    Abillon, O.; Lee, L. T.; Langevin, D.; Wong, K.

    1991-03-01

    We review briefly the basic known features of microemulsion structures, emphasizing the importance of the surfactant layer bending elasticity. The results for water-alkane-nonionic-surfactant systems, confirming the close relationship between the maximum characteristic size in the microemulsion and the persistence length of the surfactant layer, are presented. We show that microemulsions are formed when the surfactant layer bending moduli are in a well defined range: if the bending modulus is too large, ordered lamellar phases are obtained, while if it is too small, the surfactant film cannot form, and the medium is a structureless molecular mixture. The evolution between microemulsions and molecular mixtures is continuous; its relationship with the wetting transition between the microemulsion and the two excess phases is discussed.

  8. Bound States in the Continuum in double layer structures

    PubMed Central

    Li, LiangSheng; Yin, Hongcheng

    2016-01-01

    We have theoretically investigated the reflectivity spectrums of single- and double-layer photonic crystal slabs and the dielectric multilayer stack. It is shown that light can be perfectly confined in a single-layer photonic crystal slab at a given incident angle by changing the thickness, permittivity or hole radius of the structure. With a tunable double-layer photonic crystal slab, we demonstrate that the occurrence of tunable bound states in the continuum is dependent on the spacing between two slabs. Moreover, by analytically investigating the Drude lossless multilayer stack model, the spacing dependence of bound states in the continuum is characterized as the phase matching condition that illuminates these states can occur at any nonzero incident angles by adjusting the spacing. PMID:27245435

  9. Crystallographic structure and superconductive properties of Nb-Ti films with an artificially layered structure

    SciTech Connect

    Sato, N. )

    1990-06-15

    Artificially layered niobium-titanium (Nb-Ti) films with various thickness ratios (3/1--1/3) and periodicities (2--100 A) are made in an argon or in a mixed argon/nitrogen atmosphere by a dc magnetron sputtering method. Films with small periodicities (less than 30 A) have an artificial superlattice structure (ASL) with crystallographic coherence between constituent layers, where Nb and Ti grow epitaxially on the closest planes. The crystallographic structures of films are bcc with the (110) plane parallel to the film for films with the same or a thicker Nb layer than a Ti layer, and hcp with the (001) plane parallel to the film for films with a thinner Nb layer than a Ti layer. Films with large periodicities have an artificial superstructure (ASS) with only periodic stacking of constituent layers. Films deposited in the Ar/N atmosphere also have the artificially layered structures of ASL or ASS. The artificially layered structure is thermally stable at temperatures up to 500 {degree}C. The superconducting properties of the films depend strongly on the periodicity and thickness ratio of Nb and Ti layers. The dependence of the transition temperature on the periodicity and thickness ratio is qualitatively explained by a proximity effect with a three-region model. Films with periodicities less than 20 A, composed of the same or a thicker Nb layer than a Ti layer, show high transition temperatures (above 9.3 K). The highest {ital T}{sub {ital c}} of about 13.6 K is obtained in the film composed of monatomic layers of constituents deposited in an Ar atmosphere including 30 vol % N.

  10. Nature, Origin, Potential Composition, and Climate Impact of the Asian Tropopause Aerosol Layer (ATAL)

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Vernier, J.-P.; Thomason, L. W.; Natarajan, M.; Bedka, K.; Wienhold, F.; Bian J.; Martinsson, B.

    2015-01-01

    Satellite observations from SAGE II and CALIPSO indicate that summertime aerosol extinction has more than doubled in the Asian Tropopause Aerosol Layer (ATAL) since the late 1990s. Here we show remote and in-situ observations, together with results from a chemical transport model (CTM), to explore the likely composition, origin, and radiative forcing of the ATAL. We show in-situ balloon measurements of aerosol backscatter, which support the high levels observed by CALIPSO since 2006. We also show in situ measurements from aircraft, which indicate a predominant carbonaceous contribution to the ATAL (Carbon/Sulfur ratios of 2- 10), which is supported by the CTM results. We show that the peak in ATAL aerosol lags by 1 month the peak in CO from MLS, associated with deep convection over Asia during the summer monsoon. This suggests that secondary formation and growth of aerosols in the upper troposphere on monthly timescales make a significant contribution to ATAL. Back trajectory calculations initialized from CALIPSO observations provide evidence that deep convection over India is a significant source for ATAL through the vertical transport of pollution to the upper troposphere.

  11. Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides.

    PubMed

    Ang, R; Wang, Z C; Chen, C L; Tang, J; Liu, N; Liu, Y; Lu, W J; Sun, Y P; Mori, T; Ikuhara, Y

    2015-01-27

    Interplay among various collective electronic states such as charge density wave and superconductivity is of tremendous significance in low-dimensional electron systems. However, the atomistic and physical nature of the electronic structures underlying the interplay of exotic states, which is critical to clarifying its effect on remarkable properties of the electron systems, remains elusive, limiting our understanding of the superconducting mechanism. Here, we show evidence that an ordering of selenium and sulphur atoms surrounding tantalum within star-of-David clusters can boost superconductivity in a layered chalcogenide 1T-TaS2-xSex, which undergoes a superconducting transition in the nearly commensurate charge density wave phase. Advanced electron microscopy investigations reveal that such an ordered superstructure forms only in the x area, where the superconductivity manifests, and is destructible to the occurrence of the Mott metal-insulator transition. The present findings provide a novel dimension in understanding the relationship between lattice and electronic degrees of freedom.

  12. Dynamiical layering in mantle convection - impact on the viscoisity structure

    NASA Astrophysics Data System (ADS)

    Hansen, Ulrich; Stein, Claudia; Dude, Sabine

    2016-04-01

    Thermal boundary layers play a key role for the dynamics of the Earth's mantle. They mark the transition between the core and the mantle and , at least locally and transient, the transition between the upper- and the lower mantle at a depth of 670 km. There is much evidence that these boundary layers do not resemble the picture of a simple thermal boundary layer, as known from thermal convection at high Rayleigh number. Especially the lower boundary seems to be of complex structure, possible induced by compositionally dense material. Present models of mantle convection, aiming at simulating the complex structure and dynamics of the lower boundary layer require several ad hoc assumptions. Especially the density excess and the mass of compositionally distinct need to be assumed. Both conditions are critical for the dynamics but hardly constrained. The internal boundary at 670 is usually implemented by specifying a density jump through a phase boundary, We have developed models where the internal boundary as well as a thermochemical CMB , displaying topography which result from compositionally distinct piles , develop self consistently without the named ad hoc assumptions. As a starting condition we assume that a chemically stratified mantle, as resulting from fractional crystallization in an early magma ocean , is heated by the hot core. Double diffusive convection in material with strongly temperature dependent viscosity leads then to layering and, in a later state to the formation of a rough lower thermochemical boundary layer. Especially the viscosity profiles, as emerging from this configuration are investigated and compared with recent results from inversion studies.

  13. Structural transformation of implanted diamond layers during high temperature annealing

    NASA Astrophysics Data System (ADS)

    Rubanov, S.; Fairchild, B. A.; Suvorova, A.; Olivero, P.; Prawer, S.

    2015-12-01

    In the recent years graphitization of ion-beam induced amorphous layers became the basic tool for device fabrication in diamond. The etchable graphitic layers can be removed to form free-standing membranes into which the desired structures can be sculpted using FIB milling. The optical properties of the devices fabricated using this method are assumed on the model of sharp diamond-air interface. The real quality of this interface could depend on degree of graphitization of the amorphous damage layers after annealing. In the present work the graphitization process was studied using conventional and analytical TEM. It was found that annealing at 550 °C results in a partial graphitization of the implanted volume with formation of the nano-crystalline graphitic phase sandwiched between layers of tetrahedral amorphous carbon. Annealing at 1400 °C resulted in complete graphitization of the amorphous layers. The average size of graphite nano-crystals did not exceed 5 nm with predominant orientation of c-planes normal to the sample surface.

  14. An experimental study on the preparation of tochilinite-originated intercalation compounds comprised of Fe 1-xS host layers and various kinds of guest layers

    NASA Astrophysics Data System (ADS)

    Peng, Yiya; Xi, Guangcheng; Zhong, Chang; Wang, Linping; Lu, Jun; Sun, Ximeng; Zhu, Lu; Han, Qikun; Chen, Lin; Shi, Lei; Sun, Mei; Li, Qianrong; Yu, Min; Yin, Mingwen

    2009-08-01

    Tochilinite represents a mineral group of ordered mixed-layer structures containing alternating Fe 1-xS layers with mackinawite-like structure and metal hydroxide layers with Mg(OH) 2-like structure. In this article, we report the preparation of a series of tochilinite-originated (or Fe 1-xS-based) intercalation compounds (ICs). According to their preparation procedures, these ICs can be divided into four kinds. The first kind of IC was sodium tochilinite (Na-tochilinite), which was prepared by the hydrothermal reaction of metallic Fe particles with concentrated Na 2S·9H 2O aqueous solutions. The hydroxide layer of the Na-tochilinite was a mixed hydroxide of Na + ions along with a certain amount of Fe 2+ ions. When the hydroxide layer of the Na-tochilinite completely dissolved in aqueous solutions, a Fe-deficient mackinawite-like phase Fe 1-xS was obtained, which was probably an electron-deficient p-type conductor. The second kind of ICs was prepared by 'low-temperature direct intercalation in aqueous solutions, using Na-tochilinite as a parental precursor. When the Na-tochilinite was ultrasonicated in aqueous solutions containing Lewis basic complexing agents (like NH 3, N 2H 4, 2,2'-bipyridine (bipy), and 1,10-phenanthroline (phen)), the Na + ions of the Na-tochilinite were removed and the Lewis basic complexing agents entered the hydroxide layer of the Na-tochilinite and became coordinated with the Fe 2+ ions, and the second kind of ICs was thus produced. The second kind of ICs includes NH 3 IC, N 2H 4 IC, N 2H 4-NH 3 IC, [Fe(bipy) 3] 2+-containing IC and [Fe(phen) 3] 2+-containing IC. The third kind of ICs, which includes NH 3 IC, N 2H 4-NH 3 IC and N 2H 4-LiOH (NaOH) IC, was prepared by the hydrothermal reaction of metallic Fe particles with (NH 4) 2S aqueous solution, S (elemental) + N 2H 4·H 2O aqueous solution, and S + N 2H 4·H 2O + LiOH (NaOH) aqueous solution, respectively. The third kind of ICs has a close relationship with the second kind of ICs both

  15. Deep structure and origin of active volcanoes in China

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2010-12-01

    Recent geophysical studies have provided important constraints on the deep structure and origin of the active intraplate volcanoes in Mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab (e.g., Zhao et al., 2009a), while the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well (Zhao et al., 2009b). The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate) (Lei et al., 2009a). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and Indian slab's deep subduction in the west down to the lower mantle (Lei et al., 2009b; Zhao, 2009). The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions (Zhao, 2009). References Lei, J., D. Zhao, Y. Su, 2009a. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res. 114, B05302. Lei, J., D. Zhao, B. Steinberger et al., 2009b. New seismic constraints on the upper mantle structure of the Hainan plume. Phys. Earth Planet. Inter. 173, 33-50. Zhao, D., 2009. Multiscale seismic tomography and mantle dynamics. Gondwana Res. 15, 297-323. Zhao, D., Z. Wang, N. Umino, A. Hasegawa, 2009a. Mapping the mantle wedge and interplate thrust zone of the northeast Japan arc. Tectonophysics 467, 89-106. Zhao, D., Y. Tian, J. Lei, L. Liu, 2009b. Seismic

  16. Structure of the outer layers of cool standard stars

    NASA Astrophysics Data System (ADS)

    Dehaes, S.; Bauwens, E.; Decin, L.; Eriksson, K.; Raskin, G.; Butler, B.; Dowell, C. D.; Ali, B.; Blommaert, J. A. D. L.

    2011-09-01

    Context. Among late-type red giants, an interesting change occurs in the structure of the outer atmospheric layers as one moves to later spectral types in the Hertzsprung-Russell diagram: a chromosphere is always present, but the coronal emission diminishes and a cool massive wind steps in. Aims: Where most studies have focussed on short-wavelength observations, this article explores the influence of the chromosphere and the wind on long-wavelength photometric measurements. The goal of this study is to assess wether a set of standard near-infrared calibration sources are fiducial calibrators in the far-infrared, beyond 50 μm. Methods: The observational spectral energy distributions were compared with the theoretical model predictions for a sample of nine K- and M-giants. The discrepancies found are explained using basic models for flux emission originating in a chromosphere or an ionised wind. Results: For seven out of nine sample stars, a clear flux excess is detected at (sub)millimetre and/or centimetre wavelengths, while only observational upper limits are obtained for the other two. The precise start of the excess depends upon the star under consideration. For six sources the flux excess starts beyond 210 μm and they can be considered as fiducial calibrators for Herschel/PACS (60-210 μm). Out of this sample, four sources show no flux excess in the Herschel/SPIRE wavelength range (200-670 μm) and are good calibration sources for this instrument as well. The flux at wavelengths shorter than ~1 mm is most likely dominated by an optically thick chromosphere, where an optically thick ionised wind is the main flux contributor at longer wavelengths. Conclusions: Although the optical to mid-infrared spectrum of the studied K- and M-type infrared standard stars is represented well by a radiative equilibrium atmospheric model, a chromosphere and/or ionised stellar wind at higher altitudes dominates the spectrum in the (sub)millimetre and centimetre wavelength ranges

  17. Origin and deformation of intra-salt sulphate layers: an example from the Dutch Zechstein (Late Permian)

    NASA Astrophysics Data System (ADS)

    Biehl, B. C.; Reuning, L.; Strozyk, F.; Kukla, P. A.

    2014-04-01

    From salt mine galleries and well data it is known that thick rock salt layers can contain anhydrite and carbonate layers with thicknesses on the millimetre to tens of metre scale. The relatively thick Zechstein 3 anhydrite-carbonate layer in the northern Netherlands has been studied previously using 3-D seismic data. Observations from geophysical well logs in this study reveal the presence of thin sulphate layers on the sub-seismic scale imbedded in the Zechstein 2 (Z2) salt. Core samples, thin sections, seismic data and geochemical measurements were used to determine the mineralogy and origin of one of these Z2 sulphate layers. Bromine analyses show that they mark a freshening event in the Z2 salt, which can be correlated over large distances in the northern Netherlands. Their core-calibrated log signature indicates that the Z2 sulphate layers consist either of pure anhydrite or of anhydrite and polyhalite. The mineralogy and thickness of the sulphate layers are interpreted to vary between synsedimentary morphologic lows (thin anhydrite-polyhalite couplets) and highs (thicker anhydrite layers). Such a combination of core observations and well log analysis is a powerful tool to detect lateral trends in evaporite mineralogy and to reconstruct the environmental setting of their formation. Salt internal geometries can further be used to distinguish between different deformation mechanisms. In our study area, the distribution of sulphate layers within the Z2 salt indicates that subjacent salt dissolution was not the dominant process leading to salt-related deformation.

  18. Flattened Multiwalled Carbon Nanotube with Multi-Layered Structure.

    PubMed

    Kohno, Hideo; Hasegawa, Takayuki; Ichikawa, Satoshi

    2015-08-01

    Fabrication of novel nanostructures based on carbon nanotubes has been a focus of recent interest since they are expected to inherit excellent properties of carbon nanotube. To find new nanotube-based nanostructures, it is important to find a new growth mode or process. This paper reports the formation of a multiwalled carbon nanotube that has bi-layered structure and is partly flattened. Transmission electron microscopy observations suggest that the outer multiwalled layer was formed first from a Fe catalyst nanoparticle, and was partly flattened during the growth. Then the catalyst nanoparticle worked again to form the inner multiwalled tube moving inside the outer tube and became flattened at the same position of the outer tube. It is likely that the inner growth gave an expansion stress against the flattened outer tube; nevertheless, the flattened part of the outer tube remained. This observation evidences that the flattening of the nanotube occurred simultaneously during the growth and was stabilized by structural defect.

  19. Electronic structure of the superconducting layered perovskite niobate

    NASA Astrophysics Data System (ADS)

    Hase, Izumi; Nishihara, Yoshikazu

    1998-07-01

    The electronic energy-band structure for RbLaNb2O7, which is closely related to the layered perovskite niobate superconducting KCa2Nb3O10 and metallic KLaNb2O7 with Li intercalation, has been calculated by using the scalar-relativistic full-potential linearized augmented-plane-wave method within the local-density approximation. The result of the calculation shows that this compound is a band insulator with a small gap, and its conduction band is a typical two-dimensional one and the valence band is rather three dimensional. We can conclude that the layered perovskite niobate KCa2Nb3O10 is a band insulator that can be superconducting with electron doping, and have the highly two-dimensional electronic structure.

  20. Layer structure: The oxides A 3Ti 5MO 14

    NASA Astrophysics Data System (ADS)

    Hervieu, M.; Rebbah, H.; Desgardin, G.; Raveau, B.

    1980-11-01

    Five new oxides, K 3Ti 5MO 14, Rb 3Ti 5MO 14 ( M = Ta, Nb), and Tl 3Ti 5NbO 14, have been synthesized. The structure of these oxides consists of octahedral layers similar to those observed for Na 2Ti 3O 7 and held together by monovalent ions; the sheets consist of blocks of 2 × 3 edge-sharing octahedra, which are then joined to each other by the corners of the octahedra. The relative disposition of the layers is similar to that observed for Tl 2Ti 4O 9. These oxides can be considered as the member n = 3 of a series of closely related structures with formula AnB2 nO 4 n+2 , where n indicates the number of octahedra which determines the width of the blocks of 2 × n octahedra.

  1. Four-layer nanocomposite structure as an effective optical waveguide switcher for near-IR regime

    NASA Astrophysics Data System (ADS)

    Panyaev, I. S.; Dadoenkova, N. N.; Dadoenkova, Yu S.; Rozhleys, I. A.; Krawczyk, M.; Lyubchanskii, I. L.; Sannikov, D. G.

    2016-11-01

    We present a theoretical study of the dispersion and energy properties of the eigenwaves (TE- and TM-modes) in a four-layer structure composed of a magneto-optical yttrium iron garnet guiding layer on a dielectric substrate covered by a planar nanocomposite guiding multilayer. The bigyrotropic properties of yttrium-iron garnet are taken into account for obtaining the dispersion equation and an original algorithm for the guided modes identification is proposed. We demonstrated the polarization switching of TE- and TM-modes dependent on the geometrical parameters of the guiding layers. The dispersion diagrams and field profiles are used to illustrate the change of propagation properties with variation of the multilayer thickness ratio of the nanocomposite’s layers. The energy flux distributions across the structure are calculated and the conditions of the optimal guiding regime are obtained. The power switching ratio in the waveguide layers of about 6 dB for the wavelength range of 100 nm is shown to be achieved.

  2. Structural Investigation of Layered Niobates by DFT Calculations

    NASA Astrophysics Data System (ADS)

    Adhikari Subin, Jhashanath

    Layered forms of inorganic niobates have been used for various applications, such as charge transport and storage, photo-catalysis, solid acids, magnetic materials, superconductors, magneto-resistors and photo-luminescence devices. The layered niobates exists in different geometrical forms and composition with variation in the packing of oxide lattice by the constituting monovalent, divalent/trivalent and pentavalent cations. Four different types of lamellar niobates are studied in this research by theoretical methods, namely the all-electron full-potential DFT method using plane wave and periodic boundary conditions. A common feature of all the layered niobates is that the basic building block, NbO6 octahedral units are shared with each other at the corners and edges forming a covalent network and that the sharing is terminated in a particular direction. These octahedral units get modulated along with the geometry of interlayer interface with the change in the composition of the material. The macroscopic structure change is reflected by the alteration of the unit cell axes whereas the local change at various sites in the structure is revealed by the variation of the atomic distances and angles/tilt. The different properties of the layered compounds are a function of these structural variations and thus understanding the mechanism and the characteristics requires atomic level analysis. Calculations reveal the local bonding details and the bulk geometry of a material and can be compared to that obtained from powder diffraction methods. The EFG tensor which is a sensitive probe of the electronic environment around a quadrupolar nucleus can be used to monitor the minor changes in the bond lengths and angles in various structures. Among the configurations lying in the minima of the potential energy surfaces, the one representing the real material would be the one matching with the EFG tensor calculated from DFT methods with that determined from the SSNMR experiments

  3. Origin, genetic diversity, and population structure of Chinese domestic sheep.

    PubMed

    Chen, Shan-Yuan; Duan, Zi-Yuan; Sha, Tao; Xiangyu, Jinggong; Wu, Shi-Fang; Zhang, Ya-Ping

    2006-07-19

    To characterize the origin, genetic diversity, and phylogeographic structure of Chinese domestic sheep, we here analyzed a 531-bp fragment of mtDNA control region of 449 Chinese autochthonous sheep from 19 breeds/populations from 13 geographic regions, together with previously reported 44 sequences from Chinese indigenous sheep. Phylogenetic analysis showed that all three previously defined lineages A, B, and C were found in all sampled Chinese sheep populations, except for the absence of lineage C in four populations. Network profiles revealed that the lineages B and C displayed a star-like phylogeny with the founder haplotype in the centre, and that two star-like subclades with two founder haplotypes were identified in lineage A. The pattern of genetic variation in lineage A, together with the divergence time between the two central founder haplotypes suggested that two independent domestication events have occurred in sheep lineage A. Considerable mitochondrial diversity was observed in Chinese sheep. Weak structuring was observed either among Chinese indigenous sheep populations or between Asian and European sheep and this can be attributable to long-term strong gene flow induced by historical human movements. The high levels of intra-population diversity in Chinese sheep and the weak phylogeographic structuring indicated three geographically independent domestication events have occurred and the domestication place was not only confined to the Near East, but also occurred in other regions.

  4. One-Seeded Fruits in the Core Caryophyllales: Their Origin and Structural Diversity

    PubMed Central

    Sukhorukov, Alexander P.; Mavrodiev, Evgeny V.; Struwig, Madeleen; Nilova, Maya V.; Dzhalilova, Khalima Kh.; Balandin, Sergey A.; Erst, Andrey; Krinitsyna, Anastasiya A.

    2015-01-01

    The core Caryophyllales consist of approximately 30 families (12 000 species) distributed worldwide. Many members evolved one-seeded or conjoined fruits, but their origin and structural diversity have not been investigated. A comparative anatomical investigation of the one-seeded fruits within the core Caryophyllales was conducted. The origin of the one-seeded fruits and the evolutionary reconstructions of some carpological characters were traced using a tree based on rbcl and matK data in order to understand the ancestral characters and their changes. The one-seeded fruit type is inferred to be an ancestral character state in core Caryophyllales, with a subsequent increase in the seed number seen in all major clades. Most representatives of the ‘Earlier Diverging’ clade are distinguished in various carpological traits. The organization of the pericarp is diverse in many groups, although fruits with a dry, many-layered pericarp, consisting of sclerenchyma as outer layers and a thin-walled parenchyma below, with seeds occupying a vertical embryo position, are likely ancestral character states in the core Caryophyllales clade. Several carpological peculiarities in fruit and seed structure were discovered in obligate one-seeded Achatocarpaceae, Chenopodiaceae, Nyctaginaceae, Seguieriaceae and Sarcobataceae. The horizontal embryo evolved in only certain groups of Chenopodiaceae. The bar-thickening of endotegmen cells appears to be an additional character typical of core Caryophyllales. The syncarpy-to-lysicarpy paradigm in Caryophyllaceae needs to be reinterpreted. PMID:25710481

  5. Some new aspects of the transient ionization layer of comet Siding Spring origin in the Martian upper atmosphere

    NASA Astrophysics Data System (ADS)

    Mohana Manasa, P.; Jayaraman, Achuthan; Rao Narukull, Venkateswara; Vijaya Bhaskara Rao, Sarangam

    2016-07-01

    On 19 October 2014, comet Siding Spring passed near to the Mars and deposited a large amount of dust on the Martian upper atmosphere. This resulted in the formation of a dense transient ionization layer on Mars at altitudes between 80 and 120 km. Gurnett et al., [2014] reported the detection of this layer with Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument aboard Mars Express spacecraft. In this study, we re-analyzed the ionograms obtained by this instrument to get further insight on the recurrence of the layer. Data from three orbital passes of MARSIS that took place 5 h, 12 h, and 19 h after peak dust deposition are used in this analysis. We found that the transient ionization layer sustained at least for 19 hours on the nightside and 12 hours on the dayside. While the peak density of the layer on the nightside gradually decreases from orbit-to-orbit, it does not change much on the dayside. Some ionograms in all the three orbits show two transient ionization layers that are separated by several kilometers in apparent altitude. We propose two mechanisms to explain this double layer structure. The first one assumes a horizontal bifurcation of the layer in which specular reflections from the two horizontal parts result in a double layer structure in ionograms. In the second mechanism, we assume specular reflections from ionization bulges (formed in regions of vertical magnetic fields) at altitudes of transient ionization layer give rise to oblique echoes that form the bottom layer of the double layer structure.

  6. Terpenoid hydrocarbons in Hula peat: Structure and origins

    NASA Astrophysics Data System (ADS)

    Venkatesan, M. I.; Ruth, E.; Kaplan, I. R.

    1986-06-01

    Tri- and tetracyclic diterpenoid and pentacyclic triterpenoid hydrocarbons have been identified in the lipid extracts of three peat samples from the Hula Basin, Israel. Tentative structures for the diterpenoids have been proposed based on mass spectral studies and on extrapolation of known mass spectral fragmentation patterns of most probable biological precursors. The identification of ent-kaurenes in one peat sample appears to be a unique observation. Kaurenes most likely originated from higher plant resins. The triterpenoids in the three samples consist mainly of 17β-hopanes and hopenes, derived from recent biogenic activity. The preponderance of the 17β(H)-hopanes indicates the geological immaturity of the samples and implies that they have undergone only a mild thermal history.

  7. Thapsigargin, Origin, Chemistry, Structure-Activity Relationships and Prodrug Development.

    PubMed

    Quynh Doan, Nhu Thi; Christensen, Soren Brogger

    2015-01-01

    Thapsigargin was originally isolated from the roots of the Mediterranean umbelliferous plant Thapsia garganica in order to characterize the skin irritant principle. Characteristic chemical properties and semi-syntheses are reviewed. The biological activity was related to the subnanomolar affinity for the sarco/endoplasmic reticulum calcium ATPase. Prolonged inhibition of the pump afforded collapse of the calcium homeostasis and eventually apoptosis. Structure-activity relationships enabled design of an equipotent analogue containing a linker. Conjugation of the analogue containing the linker with peptides, which only are substrates for either prostate specific antigen (PSA) or prostate specific membrane antigen (PSMA) enabled design of prodrugs targeting a number of cancer diseases including prostate cancer (G115) and hepatocellular carcinoma (G202). Prodrug G202 has under the name of mipsagargin in phase II clinical trials shown promising properties against hepatocellular carcinoma.

  8. Thapsigargin, Origin, Chemistry, Structure-Activity Relationships and Prodrug Development.

    PubMed

    Quynh Doan, Nhu Thi; Christensen, Soren Brogger

    2015-01-01

    Thapsigargin was originally isolated from the roots of the Mediterranean umbelliferous plant Thapsia garganica in order to characterize the skin irritant principle. Characteristic chemical properties and semi-syntheses are reviewed. The biological activity was related to the subnanomolar affinity for the sarco/endoplasmic reticulum calcium ATPase. Prolonged inhibition of the pump afforded collapse of the calcium homeostasis and eventually apoptosis. Structure-activity relationships enabled design of an equipotent analogue containing a linker. Conjugation of the analogue containing the linker with peptides, which only are substrates for either prostate specific antigen (PSA) or prostate specific membrane antigen (PSMA) enabled design of prodrugs targeting a number of cancer diseases including prostate cancer (G115) and hepatocellular carcinoma (G202). Prodrug G202 has under the name of mipsagargin in phase II clinical trials shown promising properties against hepatocellular carcinoma. PMID:26429715

  9. Plasmon and exciton superconductivity mechanisms in layered structures

    NASA Technical Reports Server (NTRS)

    Gabovich, A. M.; Pashitskiy, E. A.; Uvarova, S. K.

    1977-01-01

    Plasmon and exciton superconductivity mechanisms are discussed. Superconductivity in a three layer metal semiconductor metal and insulator semimetal insulator sandwich structure was described in terms of the temperature dependent Green function of the longitudinal (Coulomb) field. The dependences of the superconducting transition temperature on structure parameters were obtained. In a semiconducting film, as a result of interactions of degenerate free carriers with excitons, superconductivity exists only in a certain range of parameter values, and the corresponding critical temperature is much lower than in the plasmon mechanism of superconductivity.

  10. Acoustic structure and propagation in highly porous, layered, fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.; Tesar, J. S.

    1984-01-01

    The acoustic structure and propagation of sound in highly porous, layered, fine fiber materials is examined. Of particular interest is the utilization of the Kozeny number for determining the static flow resistance and the static structure factor based on flow permeability measurements. In this formulation the Kozeny number is a numerical constant independent of volume porosity at high porosities. The other essential parameters are then evaluated employing techniques developed earlier for open cell foams. The attenuation and progressive phase characteristics in bulk samples are measured and compared with predicted values. The agreements on the whole are very satisfactory.

  11. Seismic Structure and Origin of the Hainan Plume

    NASA Astrophysics Data System (ADS)

    Huang, J.

    2012-12-01

    This study presents P and S wave tomographic image and mantle transition zone structure beneath the Hainan and adjacent areas. The teleseismic events used in this study were recorded by Eighty-eight seismic stations which belong to three regional seismic networks of Hainan, Guangdong , and Guangxi, respectively . We used 165 teleseismic events with magnitudes larger than M 5.4 and manually picked up 10873 P and 9147 S arrivals. Prior to inversion we made the crustal corrections using the crustal model CRUST2.0. We then applied the tomgoraphic method of Zhao et al. (1994) to the corrected relative travel time residuals for determining the three dimensional P and S wave velocity structure down to 700 km beneath the study region. Our results show obvious low-velocity (low-V) anomaly is visible beneath Hainan hotspot and northeast portion, such a pattern extends down to 700 km depth though the amplitude of the velocity anomaly is reduced at the bottom of the model. From surface to mantle transition zone, this low-V anomaly gradually extents toward northeast direction and may represent high temperature or even partial melt materials under Hainan hotspot, its diameter ranges from about 100km in shallow depth to 200km in the mantle transition zone. We also analyze teleseismic waveform by using receive function and obtained the upper mantle discontinuities structure and mantle transition zone thickness beneath the Hainan and adjacent areas. These results revealed a relatively complicated 410, which depress to 447km locally, but a structurally simple 660 beneath the region, with the depth around 670km. The mantle transition zone is thinned anomalously by 25±5km within an area approximately 200km in diameter centered, this anomaly is equivalent to an excess temperature of 180 degrees. The area of mantle transition zone thinning is roughly consistent with scope of low-V zone from seismic tomography in the upper mantle. After a comprehensive analysis results from seismic

  12. Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition.

    PubMed

    Sobel, Nicolas; Hess, Christian

    2015-12-01

    Controlled structuring of surfaces is interesting for a wide variety of areas, including microelectronic device fabrication, optical devices, bio(sensing), (electro-, photo)catalysis, batteries, solar cells, fuel cells, and sorption. A unique feature of atomic layer deposition (ALD) is the possibility to form conformal uniform coatings on arbitrarily shaped materials with controlled atomic-scale thickness. In this Minireview, we discuss the potential of ALD for the nanoscale structuring of surfaces, highlighting its versatile application to structuring both planar substrates and powder materials. Recent progress in the application of ALD to porous substrates has even made the nanoscale structuring of high-surface-area materials now feasible, thereby enabling novel applications, such as those in the fields of catalysis and alternative energy.

  13. Two new barium sulfonates with pillared layered structures

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Li, Li; Ma, Jian-Fang; Liu, Ying-Ying; Ma, Ji-Cheng

    2006-05-01

    The reactions of BaCl 2·2H 2O with NaHL a and K 3L b (H 2L a=4-hydroxybenzenesulfonic acid, H 3L b=4-hydroxy-5-nitro-1,3-benzenedisulfonic acid) gave two pillared layered coordination polymers: Ba(HL a)(Cl) 1 and KBaL b(H 2O) 32, respectively. The crystal structures were determined by X-ray diffraction method and refined by full-matrix least-squares methods to R=0.0509 and wR=0.1216 using 1455 reflections with I>2 σ( I) for 1; and R=0.0288 and wR=0.0727 using 2661 reflections with I>2 σ( I) for 2. The interesting feature of compound 1 is the coordination actions of chloride anions, which help to form the polymeric layers by bridging barium cations. In compound 2 the Lb3- anion acts as an unusual dodecadente ligand to form a coordination polymer with pillared layered structure.

  14. Two new barium sulfonates with pillared layered structures

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Li, Li; Ma, Jian-Fang; Liu, Ying-Ying; Ma, Ji-Cheng

    2006-08-01

    The reactions of BaCl 2·2H 2O with NaHL a and K 3L b (H 2L a=4-hydroxybenzenesulfonic acid, H 3L b=4-hydroxy-5-nitro-1,3-benzenedisulfonic acid) gave two pillared layered coordination polymers: Ba(HL a)(Cl) 1 and KBaL b(H 2O) 32, respectively. The crystal structures were determined by X-ray diffraction method and refined by full-matrix least-squares methods to R=0.0509 and wR=0.1216 using 1455 reflections with I>2 σ( I) for 1; and R=0.0288 and wR=0.0727 using 2661 reflections with I>2 σ( I) for 2. The interesting feature of compound 1 is the coordination actions of chloride anions, which help to form the polymeric layers by bridging barium cations. In compound 2 the Lb3- anion acts as an unusual dodecadente ligand to form a coordination polymer with pillared layered structure.

  15. Origins.

    ERIC Educational Resources Information Center

    Online-Offline, 1999

    1999-01-01

    Provides an annotated list of resources dealing with the theme of origins of life, the universe, and traditions. Includes Web sites, videos, books, audio materials, and magazines with appropriate grade levels and/or subject disciplines indicated; professional resources; and learning activities. (LRW)

  16. The motor origins of human and avian song structure

    PubMed Central

    Tierney, Adam T.; Russo, Frank A.; Patel, Aniruddh D.

    2011-01-01

    Human song exhibits great structural diversity, yet certain aspects of melodic shape (how pitch is patterned over time) are widespread. These include a predominance of arch-shaped and descending melodic contours in musical phrases, a tendency for phrase-final notes to be relatively long, and a bias toward small pitch movements between adjacent notes in a melody [Huron D (2006) Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, Cambridge, MA)]. What is the origin of these features? We hypothesize that they stem from motor constraints on song production (i.e., the energetic efficiency of their underlying motor actions) rather than being innately specified. One prediction of this hypothesis is that any animals subject to similar motor constraints on song will exhibit similar melodic shapes, no matter how distantly related those animals are to humans. Conversely, animals who do not share similar motor constraints on song will not exhibit convergent melodic shapes. Birds provide an ideal case for testing these predictions, because their peripheral mechanisms of song production have both notable similarities and differences from human vocal mechanisms [Riede T, Goller F (2010) Brain Lang 115:69–80]. We use these similarities and differences to make specific predictions about shared and distinct features of human and avian song structure and find that these predictions are confirmed by empirical analysis of diverse human and avian song samples. PMID:21876156

  17. Structural origin of resistance drift in amorphous GeTe

    NASA Astrophysics Data System (ADS)

    Zipoli, Federico; Krebs, Daniel; Curioni, Alessandro

    2016-03-01

    We used atomistic simulations to study the origin of the change of resistance over time in the amorphous phase of GeTe, a prototypical phase-change material (PCM). Understanding the cause of resistance drift is one of the biggest challenges to improve multilevel storage technology. For this purpose, we generated amorphous structures via classical molecular-dynamics simulations under conditions as close as possible to the experimental operating ones of such memory devices. Moreover, we used the replica-exchange technique to generate structures comparable with those obtained in the experiment after long annealing that show an increase of resistance. This framework allowed us to overcome the main limitation of previous simulations, based on density-functional theory, that suffered from being computationally too expensive therefore limited to the nanosecond time scale. We found that resistance drift is caused by consumption of Ge atom clusters in which the coordination of at least one Ge atom differs from that of the crystalline phase and by removal of stretched bonds in the amorphous network, leading to a shift of the Fermi level towards the middle of the band gap. These results show that one route to design better memory devices based on current chalcogenide alloys is to reduce the resistance drift by increasing the rigidity of the amorphous network.

  18. Carbide cluster metallofullerenes: structure, properties, and possible origin.

    PubMed

    Lu, Xing; Akasaka, Takeshi; Nagase, Shigeru

    2013-07-16

    properties. We emphasize structural issues, features that are fundamental for understanding their intrinsic properties. Finally, we discuss the formation mechanism and possible origin of cluster EMFs, not just CCMFs.

  19. Crystal structure of britvinite [Pb{sub 7}(OH){sub 3}F(BO{sub 3}){sub 2}(CO{sub 3})][Mg{sub 4.5}(OH){sub 3}(Si{sub 5}O{sub 14})]: A new layered silicate with an original type of silicon-oxygen networks

    SciTech Connect

    Yakubovich, O. V. Massa, W.; Chukanov, N. V.

    2008-03-15

    The crystal structure of a new mineral britvinite Pb{sub 7.1}Mg{sub 4.5}(Si{sub 4.8}Al{sub 0.2}O{sub 14})(BO{sub 3})(CO{sub 3})[(BO{sub 3}){sub 0.7}(SiO{sub 4}){sub 0.3}]= (OH, F){sub 6.7} from the Langban iron-manganese skarn deposit (Vaermland, Sweden) is determined at T = 173 K using X-ray diffraction (Stoe IPDS diffractometer, {lambda}MoK{alpha}, graphite monochromator, 2{theta}{sub max} = 58.43{sup o}, R = 0.052 for 6262 reflections). The main crystal data are as follows: a = 9.3409(8) A, b = 9.3579(7) A, c = 18.8333(14) A, {alpha} = 80.365(6) deg., {beta} = 75.816(6) deg., {gamma} = 59.870(5) deg., V = 1378.7(2) A{sup 3}, space group P1, Z = 2, and {rho}{sub calcd} = 5.42 g/cm{sup 3}. The idealized structural formula of the mineral is represented as [Pb{sub 7}(OH){sub 3}F(BO{sub 3}){sub 2}(CO{sub 3})][Mg{sub 4.5}(OH){sub 3}(Si{sub 5}O{sub 14})]. It is demonstrated that the mineral britvinite is a new representative of the group of mica-like layered silicates with structures in which three-layer (2: 1) 'sandwiches' composed of tetrahedra and octahedra alternate with blocks of other compositions, such as oxide, oxide-carbonate, oxide-carbonate-sulfate, and other blocks. The tetrahedral networks (Si{sub 5}O{sub 14}){sub {infinity}}{sub {infinity}} consisting of twelve-membered rings are fragments of the britvinite structure. Similar networks also form crystal structures of the mineral zeophyllite and the synthetic phase Rb{sub 6}Si{sub 10}O{sub 23}. In the crystal structures under consideration, the tetrahedral networks differ in the rotation of tetrahedra with respect to the layer plane.

  20. Crystal structure of britvinite [Pb{sub 7}(OH){sub 3}F(BO{sub 3}){sub 2}(CO{sub 3})][Mg{sub 4.5}(OH){sub 3}(Si{sub 5}O{sub 14})]: A new layered silicate with an original type of silicon-oxygen networks

    SciTech Connect

    Yakubovich, O. V.; Massa, W.; Chukanov, N. V.

    2008-03-15

    The crystal structure of a new mineral britvinite Pb{sub 7.1}Mg{sub 4.5}(Si{sub 4.8}Al{sub 0.2}O{sub 14})(BO{sub 3})(CO{sub 3})[(BO{sub 3}){sub 0.7}(SiO{sub 4}){sub 0.3}](OH, F){sub 6.7} from the Langban iron-manganese skarn deposit (Vaermland, Sweden) is determined at T = 173 K using X-ray diffraction (Stoe IPDS diffractometer, {lambda}MoK{alpha}, graphite monochromator, 2{theta}{sub max} = 58.43 Degree-Sign , R = 0.052 for 6262 reflections). The main crystal data are as follows: a = 9.3409(8) Angstrom-Sign , b = 9.3579(7) Angstrom-Sign , c = 18.8333(14) Angstrom-Sign , {alpha} = 80.365(6) Degree-Sign , {beta} = 75.816(6) Degree-Sign , {gamma} = 59.870(5) Degree-Sign , V = 1378.7(2) Angstrom-Sign {sup 3}, space group P1, Z = 2, and {rho}{sub calcd} = 5.42 g/cm{sup 3}. The idealized structural formula of the mineral is represented as [Pb{sub 7}(OH){sub 3}F(BO{sub 3}){sub 2}(CO{sub 3})][Mg{sub 4.5}(OH){sub 3}(Si{sub 5}O{sub 14})]. It is demonstrated that the mineral britvinite is a new representative of the group of mica-like layered silicates with structures in which three-layer (2: 1) 'sandwiches' composed of tetrahedra and octahedra alternate with blocks of other compositions, such as oxide, oxide-carbonate, oxide-carbonate-sulfate, and other blocks. The tetrahedral networks (Si{sub 5}O{sub 14}){sub {infinity}{infinity}} consisting of twelve-membered rings are fragments of the britvinite structure. Similar networks also form crystal structures of the mineral zeophyllite and the synthetic phase Rb{sub 6}Si{sub 10}O{sub 23}. In the crystal structures under consideration, the tetrahedral networks differ in the rotation of tetrahedra with respect to the layer plane.

  1. Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides.

    PubMed

    Ang, R; Wang, Z C; Chen, C L; Tang, J; Liu, N; Liu, Y; Lu, W J; Sun, Y P; Mori, T; Ikuhara, Y

    2015-01-01

    Interplay among various collective electronic states such as charge density wave and superconductivity is of tremendous significance in low-dimensional electron systems. However, the atomistic and physical nature of the electronic structures underlying the interplay of exotic states, which is critical to clarifying its effect on remarkable properties of the electron systems, remains elusive, limiting our understanding of the superconducting mechanism. Here, we show evidence that an ordering of selenium and sulphur atoms surrounding tantalum within star-of-David clusters can boost superconductivity in a layered chalcogenide 1T-TaS2-xSex, which undergoes a superconducting transition in the nearly commensurate charge density wave phase. Advanced electron microscopy investigations reveal that such an ordered superstructure forms only in the x area, where the superconductivity manifests, and is destructible to the occurrence of the Mott metal-insulator transition. The present findings provide a novel dimension in understanding the relationship between lattice and electronic degrees of freedom. PMID:25625438

  2. LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells

    NASA Astrophysics Data System (ADS)

    Zhu, Bin; Fan, Liangdong; Deng, Hui; He, Yunjune; Afzal, Muhammad; Dong, Wenjing; Yaqub, Azra; Janjua, Naveed K.

    2016-06-01

    A layered structure metal oxide, LiNi0.1Fe0.90O2-δ (LNF), is explored for the advanced single layer fuel cells (SLFCs). The temperature dependent impedance profiles and concentration cells (hydrogen concentration, oxygen concentration, and H2/air atmospheres) tests prove LNF to be an intrinsically electronic conductor in air while mixed electronic and proton conductor in H2/air environment. SLFCs constructed by pure LNF materials show significant short circuiting reflected by a low device OCV and power output (175 mW cm-2 at 500 °C) due to high intrinsic electronic conduction. The power output is improved up to 640 and 760 mW cm-2, respectively at 500 and 550 °C by compositing LNF with ion conducting material, e.g., samarium doped ceria (SDC), to balance the electronic and ionic conductivity; both reached at 0.1 S cm-1 level. Such an SLFC gives super-performance and simplicity over the conventional 3-layer (anode, electrolyte and cathode) FCs, suggesting strong scientific and commercial impacts.

  3. Thermodynamic and radiative structure of stratocumulus-topped boundary layers*

    SciTech Connect

    Ghate, Virendra P.; Miller, Mark A.; Albrecht, Bruce A.; Fairall, Christopher W.

    2015-01-05

    Stratocumulus Topped Boundary Layers (STBL) observed in three different regions with distinctive environments are described in the context of their thermodynamic and radiative properties. Here, the primary data set consisted of 131 soundings from the South East Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic and 83 soundings from the US Southern Great Plains (SGP). A new technique that preserves the depths of the sub-layers within a STBL is proposed for averaging the profiles of thermodynamic and radiative variables. The STBL was deepest over SEP and had the strongest radiative cooling rates near cloud top among the three locations. Although the radiative cooling rates were comparable over GRW and SGP, the STBL was deeper over GRW compared to that over SGP. On average the STBL inversion was strongest over SEP (11.7 k and -5.43 g kg-1) and weakest over the SGP (6.89 k and -0.41 g kg-1). Significantly larger liquid water path, integrated water vapor, and variability in these two properties was found over GRW and evidence presented suggests that conditions at cloud top may play a lesser role in determining the resident cloud structure over GRW than over SEP. A modal analysis revealed ~26% of the STBL to be well-mixed, ~20% of STBL to be stable and ~30% STBL having a stable layer in-between a surface mixed layer and the cloud layer. Over all the three locations, the STBL was shallowest in well-mixed mode and deepest in the stable mode.

  4. Thermodynamic and radiative structure of stratocumulus-topped boundary layers*

    DOE PAGESBeta

    Ghate, Virendra P.; Miller, Mark A.; Albrecht, Bruce A.; Fairall, Christopher W.

    2015-01-05

    Stratocumulus Topped Boundary Layers (STBL) observed in three different regions with distinctive environments are described in the context of their thermodynamic and radiative properties. Here, the primary data set consisted of 131 soundings from the South East Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic and 83 soundings from the US Southern Great Plains (SGP). A new technique that preserves the depths of the sub-layers within a STBL is proposed for averaging the profiles of thermodynamic and radiative variables. The STBL was deepest over SEP and had the strongest radiative cooling rates near cloudmore » top among the three locations. Although the radiative cooling rates were comparable over GRW and SGP, the STBL was deeper over GRW compared to that over SGP. On average the STBL inversion was strongest over SEP (11.7 k and -5.43 g kg-1) and weakest over the SGP (6.89 k and -0.41 g kg-1). Significantly larger liquid water path, integrated water vapor, and variability in these two properties was found over GRW and evidence presented suggests that conditions at cloud top may play a lesser role in determining the resident cloud structure over GRW than over SEP. A modal analysis revealed ~26% of the STBL to be well-mixed, ~20% of STBL to be stable and ~30% STBL having a stable layer in-between a surface mixed layer and the cloud layer. Over all the three locations, the STBL was shallowest in well-mixed mode and deepest in the stable mode.« less

  5. 3D multi-layered fibrous cellulose structure using an electrohydrodynamic process for tissue engineering.

    PubMed

    Kim, Minseong; Kim, GeunHyung

    2015-11-01

    Micro/nanofibrous structures have been applied widely in various tissue-engineering applications because the topological structures are similar to the extracellular matrix (ECM), which encourages a high degree of cell adhesion and growth. However, it has been difficult to produce a three-dimensional (3D) fibrous structure using controllable macro-pores. Recently, cellulose has been considered a high-potential natural-origin biomaterial, but its use in 3D biomedical structures has been limited due to its narrow processing window. Here, we suggest a new 3D cellulose scaffold consisting of multi-layered struts made of submicron-sized entangled fibers that were fabricated using an electrohydrodynamic direct jet (EHDJ) process that is spin-printing. By optimizing processing conditions (electric field strength, cellulose feeding rate, and distance between nozzle and target), we can achieve a multi-layered cellulose structure consisting of the cylindrically entangled cellulose fibers. To compare the properties of the fabricated 3D cellulose structure, we used a PCL fibrous scaffold, which has a similar fibrous morphology and pore geometry, as a control. The physical and in vitro biocompatibilities of both fibrous scaffolds were assessed using human dermal fibroblasts, and the cellulose structure showed higher cell adhesion and metabolic activities compared with the control. These results suggest the EHDJ process to be an effective fabricating tool for tissue engineering and the cellulose scaffold has high potential as a tissue regenerative material.

  6. Origins.

    PubMed

    Weinberg, S

    1985-10-01

    The farthest of the galaxies that can be seen through the large ground-based telescopes of modern astronomy, such as those on La Palma in the Canary Islands, are so far away that they appear as they did close to the time of the origin of the universe, perhaps some 10 billion years ago. Much has been learned, and much has still to be learned, about the young universe from optical and radio telescopes, but these instruments cannot be used to look directly at the universe in its first few hundred thousand years. Instead, they are used to search the relatively recent past for relics of much earlier times. Together with experiments planned for the next generation of elementary particle accelerators, astronomical observations should continue to extend what is known about the universe backward in time to the Big Bang and may eventually help to reveal the origins of the physical laws that govern the universe.

  7. The structure of orange HgI2. I. Polytypic layer structure.

    PubMed

    Hostettler, Marc; Birkedal, Henrik; Schwarzenbach, Dieter

    2002-12-01

    The metastable orange crystals of HgI(2) comprise three different crystal structures, all of which are built from corner-linked Hg(4)I(10) supertetrahedra. Two of them are end members with the maximum degree of order (MDO) of a polytypic layer structure; the third shows a three-dimensional linkage. This paper presents the determination from X-ray diffraction data of the tetragonal polytypic structures and their stacking disorder. Diffraction patterns show sharp Bragg reflections and rods of diffuse intensity with pronounced maxima. In a first step, the diffuse intensity was neglected and all maxima were treated as Bragg reflections. The crystal was supposed to be a conglomerate of the two MDO structures diffracting independently, and their parameters and volume ratio were refined against the single data set. The geometries and anisotropic displacement parameters of the layers in the two structures are shown to be nearly identical. Layer contacts in the two stacking modes are identical. The structures are fractal complications of the stable red form of HgI(2). In a second step, the stacking disorder has been quantitatively analyzed with a Markov chain model. Two probabilities describing next-nearest-layer interactions were visually adjusted to observed intensity profiles extracted from image-plate detector data. Results consistently show that the crystal comprises nearly equal volumes of MDO structures with an average domain thickness of about 5 layers or 30 A

  8. Modeling a Possible Volcanic Origin for Interior Layered Deposits on Mars

    NASA Astrophysics Data System (ADS)

    Chapman, M. G.; Kneissl, T.

    2011-12-01

    This study was undertaken to examine the valid range of temperatures required for sub-ice volcanic origin of interior layered deposits (ILDs) in Valles Marineris. To this end, using GIS the volume estimates of Ophir Chasma and its 4 ILDs were mapped and measured. The GIS volumes in this study are based on high-res HRSC topography overlain on MOLA. We determined the void space of Ophir Chasma sans ILDs to be 92,319 km3. Volumes for each ILD mound were determined to be 6,185 km3, 4,833 km3, 2,628 km3, and 0.2 km3 (negligible); totaling 13,642 km3. A sub-ice volcano requires eruption beneath an existing ice sheet or ponded ice. If during the formation of a sub-ice volcano the associated unstable englacial meltwater lake is drained by jökulhlaups or if the volcano rises above the meltwater, effused subaerial lava will cap the tuff cone forming resistant sheet lavas. Hence, the lava cap horizon can be used to estimate the minimum height of ice. Three resistant ILD caprock locales (found only on the 2 largest ILDs) were mapped and the hypothetical ice volumes measured beneath their elevations are 77,391 km3, 79,899 km3, and 51,695 km3. Following the equation from Chapman et al. (2003), if the known ILDs in Ophir are assumed to be basaltic subice volcanoes, calorimetry can be used to estimate the volumes of meltwater generated by their eruption [Allen, 1980; Björnsson, 1988; Gudmundsson and Björnsson, 1991; Gudmundsson et al., 1997; Höskuldsson and Sparks, 1997]. These estimates are based on (1) the volume and likely mound density, (2) the heat content of basaltic magmas, and (3) the specific heat capacity and the latent heat of fusion for ice. The ice that can be melted by a mass of magma as it solidifies and cools can be calculated by equating the heat content of the magma with the heat used for melting. Two possible end member cases were used. In the first case it is assumed that the chasma contained ice at its melting point of 273 K and in the other case the

  9. Characterization of structural response to hypersonic boundary-layer transition

    DOE PAGESBeta

    Riley, Zachary B.; Deshmukh, Rohit; Miller, Brent A.; McNamara, Jack J.; Casper, Katya M.

    2016-05-24

    The inherent relationship between boundary-layer stability, aerodynamic heating, and surface conditions makes the potential for interaction between the structural response and boundary-layer transition an important and challenging area of study in high-speed flows. This paper phenomenologically explores this interaction using a fundamental two-dimensional aerothermoelastic model under the assumption of an aluminum panel with simple supports. Specifically, an existing model is extended to examine the impact of transition onset location, transition length, and transitional overshoot in heat flux and fluctuating pressure on the structural response of surface panels. Transitional flow conditions are found to yield significantly increased thermal gradients, and theymore » can result in higher maximum panel temperatures compared to turbulent flow. Results indicate that overshoot in heat flux and fluctuating pressure reduces the flutter onset time and increases the strain energy accumulated in the panel. Furthermore, overshoot occurring near the midchord can yield average temperatures and peak displacements exceeding those experienced by the panel subject to turbulent flow. Lastly, these results suggest that fully turbulent flow does not always conservatively predict the thermo-structural response of surface panels.« less

  10. Platinum-induced structural collapse in layered oxide polycrystalline films

    SciTech Connect

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran E-mail: yllu@ustc.edu.cn; Zhai, Xiaofang; Lu, Yalin E-mail: yllu@ustc.edu.cn

    2015-03-30

    Effect of a platinum bottom electrode on the SrBi{sub 5}Fe{sub 1−x}Co{sub x}Ti{sub 4}O{sub 18} layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO{sub 2}, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO{sub 2} at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO{sub 2}, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  11. Changes in the turbulent boundary layer structure associated with net drag reduction by outer layer manipulators

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Falco, R. E.

    1987-01-01

    A specially designed wind tunnel was used to examine the effects of tandemly arranged parallel plate manipulators (TAPPMs) on a turbulent boundary-layer structure and the associated drag. Momentum balances, as well as measurements of the local shear stress from the velocity gradient near the wall, were used to obtain the net drag and local skin friction changes. Two TAPPMs, identical except for the thickness of their plates, were used in the study. Results with .003 inch plates were a maximum net drag reduction of 10 percent at 58 beta sub o (using a momentum balance). At 20 beta sub o, simultaneous laser sheet flow visualization and hot-wire anemometry data showed that the Reynolds stress in the large eddies was significantly reduced, as were the streamwise and normal velocity components. Using space-time correlations the reductions were again identified. Furthermore, quantitative flow visualization showed that the outward normal velocity of the inner region was also significantly decreased in the region around 20 beta sub o. However, throughout the first 130 beta sub o, the measured sublayer thickness with the TAPPMs in place was 15 to 20 percent greater. The data showed that the skin friction, as well as the structure of the turbulence, was strongly modified in the first 35 beta sub o, but that they both significantly relaxed toward unmanipulated boundary layer values by 50 beta sub o.

  12. Nanosized Ni–Al layered double hydroxides—Structural characterization

    SciTech Connect

    Jitianu, Mihaela; Gunness, Darren C.; Aboagye, Doreen E.; Zaharescu, Maria; Jitianu, Andrei

    2013-05-15

    Highlights: ► The takovite anionic clays were obtained using the sol–gel method. ► The effect of samples’ composition on the structural and textural characteristics has been investigated. ► X-ray analysis. ► FTIR spectroscopy evidenced a disordered interlayer structure. ► FESEM and TEM analysis showed that the samples have high porosity. - Abstract: Takovite, a natural mineral with the formula Ni{sub 6}Al{sub 2}(OH){sub 6}CO{sub 3}·5H{sub 2}O belongs to the large class of layered double hydroxides (LDHs) and contains positively charged Ni(II) and Al(III) layers alternating with layers containing carbonate ions and water molecules. Mesoporous takovite-type layered double hydroxides (LDH) of the general formula [Ni{sub 1−x}Al{sub x}(OH){sub 2}]{sup x+}(CO{sub 3}{sup 2−}){sub x/2}·nH{sub 2}O with different Ni/Al molar ratios (1.9–2.8) have been successfully synthesized by the sol–gel method, followed by anionic exchange using nickel acetylacetonate and aluminum isopropylate as cation precursors. A single LDH phase and an anisotropic growth of very small crystallites (below 4 nm) have been evidenced by X-ray diffraction. The effect of samples’ composition on their structural and textural characteristics has been investigated. The BET surface area values are in the range of 100–122 m{sup 2}/g. BJH pore radius decreased with increase in the Al(III) content in the LDHs. FESEM micrographs show large aggregates of highly porous LDH particles, while TEM analysis reveals irregular agglomerates of crystallites, among which some of them displayed a developing hexagonal shape. The average particle size variation with the Al(III) content in the samples follows the same trend as the pore radius, the sample with the highest Ni/Al ratio displaying also the smallest particle size. This sample becomes even more interesting, since TEM analysis shows agglomerates with inside circular structures, feature not observed for the other Ni/Al ratios investigated.

  13. Electronic structure and properties of layered gallium telluride

    NASA Astrophysics Data System (ADS)

    Shenoy, U. Sandhya; Gupta, Uttam; Narang, Deepa S.; Late, Dattatray J.; Waghmare, Umesh V.; Rao, C. N. R.

    2016-05-01

    Layer-dependent electronic structure and properties of gallium monochalcogenides, GaX where X = S, Se, Te, have been investigated using first-principles calculations based on various functionals, with a motivation to assess their use in photocatalytic water splitting. Since hydrogen evolution by water splitting using visible light provides a promising way for solar energy conversion, both theoretical and experimental studies have been carried out on the photochemical hydrogen evolution by GaTe. We also present the Raman spectra of GaTe examined by both theory and experiment.

  14. Plasma resonant terahertz photomixers based on double graphene layer structures

    NASA Astrophysics Data System (ADS)

    Ryzhii, Maxim; Shur, Michael S.; Mitin, Vladimir; Satou, Akira; Ryzhii, Victor; Otsuji, Taiichi

    2014-03-01

    We propose terahertz (THz) photomixers based on double graphene layer (DGL) structures, utilizing the interband absorption of modulated optical radiation, tunneling or thermionic inter-GL transitions, and resonant excitation of plasma oscillations. Using the developed device model, we substantiate the operation of the photomixers and calculate their characteristics. We demonstrate that the output frequency-dependent power of THz radiation exhibits pronounced resonant peaks at the plasmonic resonant frequencies. The proposed THz photomixer can surpass the pertinent devices based on the standard heterostructures.

  15. Compressive failure of delamination-embedded layered structures

    NASA Astrophysics Data System (ADS)

    Wu, Li-Chun

    1997-11-01

    Various failure mechanisms involving both local and global deformation mechanisms of layered structures, consisting of differently oriented orthotropic laminae, are investigated with a large deformation finite element analysis. The aim of this study is to identify the dominant mode which leads to the structural failure under a given boundary condition and geometrical shape. It is assumed that these structures contain initial interlaminar flaws represented by embedded delaminations. Such flaws can play a significant role in defining overall structural integrity and deformation mechanisms. The energy release rate, mixed-mode stress intensity factors and phase angle are computed to quantify the crack driving force and used to measure likelihood of delamination growth in two-dimensional and three- dimensional composite structures. In the first part, two composite structures with distinguished shapes, consisting of four laminae are considered in two-dimensional analysis. One is a flat panel under compressive load and the other structure is a cylindrical shell subjected to external pressure. In the flat panel model, two buckling modes, a global and a local ligament, are observed under quasi-static loading conditions. The interaction of these two modes produces an unstable post-buckling behavior. It is found that the energy release rate exceeds experimentally estimated fracture toughness values only after buckling occurs. In the cylindrical shell study, lower critical buckling loads are observed for models with longer interlaminar delamination as in the flat panel model. However, unlike the flat panel case, the energy release rate surpasses the critical toughness well before the applied pressure reaches the buckling load of the flawed cylindrical shell. This behavior implies that a shell containing an embedded defect along an interface can fail by delamination growth and therefore has a failure load lower than its critical buckling load. Also for thicker cylindrical

  16. Layers

    NASA Astrophysics Data System (ADS)

    Hong, K. J.; Jeong, T. S.; Youn, C. J.

    2014-09-01

    The temperature-dependent photoresponse characteristics of MnAl2S4 layers have been investigated, for the first time, by use of photocurrent (PC) spectroscopy. Three peaks were observed at all temperatures. The electronic origin of these peaks was associated with band-to-band transitions from the valence-band states Γ4( z), Γ5( x), and Γ5( y) to the conduction-band state Γ1( s). On the basis of the relationship between PC-peak energy and temperature, the optical band gap could be well expressed by the expression E g( T) = E g(0) - 2.80 × 10-4 T 2/(287 + T), where E g(0) was estimated to be 3.7920 eV, 3.7955 eV, and 3.8354 eV for the valence-band states Γ4( z), Γ5( x), and Γ5( y), respectively. Results from PC spectroscopy revealed the crystal-field and spin-orbit splitting were 3.5 meV and 39.9 meV. The gradual decrease of PC intensity with decreasing temperature can be explained on the basis of trapping centers associated with native defects in the MnAl2S4 layers. Plots of log J ph, the PC current density, against 1/ T, revealed a dominant trap level in the high-temperature region. By comparing PC and the Hall effect results, we confirmed that this trap level is a shallow donor 18.9 meV below the conduction band.

  17. Thickness-induced structural phase transformation of layered gallium telluride.

    PubMed

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W

    2016-07-28

    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications. PMID:27198938

  18. Thickness-induced structural phase transformation of layered gallium telluride.

    PubMed

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W

    2016-07-28

    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications.

  19. Toward the origin of exciton electronic structure in phycobiliproteins

    NASA Astrophysics Data System (ADS)

    Womick, Jordan M.; Miller, Stephen A.; Moran, Andrew M.

    2010-07-01

    Femtosecond laser spectroscopies are used to examine the electronic structures of two proteins found in the phycobilisome antenna of cyanobacteria, allophycocyanin (APC) and C-phycocyanin (CPC). The wave function composition involving the pairs of phycocyanobilin pigments (i.e., dimers) found in both proteins is the primary focus of this investigation. Despite their similar geometries, earlier experimental studies conducted in our laboratory and elsewhere observe clear signatures of exciton electronic structure in APC but not CPC. This issue is further investigated here using new experiments. Transient grating (TG) experiments employing broadband quasicontinuum probe pulses find a redshift in the signal spectrum of APC, which is almost twice that of CPC. Dynamics in the TG signal spectra suggest that the sub-100 fs dynamics in APC and CPC are respectively dominated by internal conversion and nuclear relaxation. A specialized technique, intraband electronic coherence spectroscopy (IECS), photoexcites electronic and nuclear coherences with nearly full suppression of signals corresponding to electronic populations. The main conclusion drawn by IECS is that dephasing of intraband electronic coherences in APC occurs in less than 25 fs. This result rules out correlated pigment fluctuations as the mechanism enabling exciton formation in APC and leads us to propose that the large Franck-Condon factors of APC promote wave function delocalization in the vibronic basis. For illustration, we compute the Hamiltonian matrix elements involving the electronic origin of the α84 pigment and the first excited vibronic level of the β84 pigment associated with a hydrogen out-of-plane wagging mode at 800 cm-1. For this pair of vibronic states, the -51 cm-1 coupling is larger than the 40 cm-1 energy gap, thereby making wave function delocalization a feasible prospect. By contrast, CPC possesses no pair of vibronic levels for which the intermolecular coupling is larger than the energy

  20. Toward the origin of exciton electronic structure in phycobiliproteins.

    PubMed

    Womick, Jordan M; Miller, Stephen A; Moran, Andrew M

    2010-07-14

    Femtosecond laser spectroscopies are used to examine the electronic structures of two proteins found in the phycobilisome antenna of cyanobacteria, allophycocyanin (APC) and C-phycocyanin (CPC). The wave function composition involving the pairs of phycocyanobilin pigments (i.e., dimers) found in both proteins is the primary focus of this investigation. Despite their similar geometries, earlier experimental studies conducted in our laboratory and elsewhere observe clear signatures of exciton electronic structure in APC but not CPC. This issue is further investigated here using new experiments. Transient grating (TG) experiments employing broadband quasicontinuum probe pulses find a redshift in the signal spectrum of APC, which is almost twice that of CPC. Dynamics in the TG signal spectra suggest that the sub-100 fs dynamics in APC and CPC are respectively dominated by internal conversion and nuclear relaxation. A specialized technique, intraband electronic coherence spectroscopy (IECS), photoexcites electronic and nuclear coherences with nearly full suppression of signals corresponding to electronic populations. The main conclusion drawn by IECS is that dephasing of intraband electronic coherences in APC occurs in less than 25 fs. This result rules out correlated pigment fluctuations as the mechanism enabling exciton formation in APC and leads us to propose that the large Franck-Condon factors of APC promote wave function delocalization in the vibronic basis. For illustration, we compute the Hamiltonian matrix elements involving the electronic origin of the alpha84 pigment and the first excited vibronic level of the beta84 pigment associated with a hydrogen out-of-plane wagging mode at 800 cm(-1). For this pair of vibronic states, the -51 cm(-1) coupling is larger than the 40 cm(-1) energy gap, thereby making wave function delocalization a feasible prospect. By contrast, CPC possesses no pair of vibronic levels for which the intermolecular coupling is larger than

  1. S4 : A free electromagnetic solver for layered periodic structures

    NASA Astrophysics Data System (ADS)

    Liu, Victor; Fan, Shanhui

    2012-10-01

    We describe S4, a free implementation of the Fourier modal method (FMM), which has also been commonly referred to as rigorous coupled wave analysis (RCWA), for simulating electromagnetic propagation through 3D structures with 2D periodicity. We detail design aspects that allow S4 to be a flexible platform for these types of simulations. In particular, we highlight the ability to select different FMM formulations, user scripting, and extensibility of program capabilities for eigenmode computations. Program summary Program title: S4 Catalogue identifier: AEMO_v1_0. Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMO_v1_0..html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 56910 No. of bytes in distributed program, including test data, etc.: 433883 Distribution format: Programming language: C, C++. Computer: Any computer with a Unix-like environment and a C++ compiler. Developed on 2.3 GHz AMD Phenom 9600. Operating system: Any Unix-like environment; developed under MinGW32 on Windows 7. Has the code been vectorized or parallelized?: Yes. Parallelized using MPI. RAM: Problem dependent (linearly proportional to number of layers and quadratic in number of Fourier components). A single layer calculation with approximately 100 Fourier components uses approximately 10 MB. Classification: 10. Electrostatics and Electromagnetics. External routines: Lua [1] and optionally exploits additional free software packages: FFTW [2], CHOLMOD [3], MPI message-passing interface [4], LAPACK and BLAS linear-algebra software [5], and Kiss FFT [6]. Nature of problem: Time-harmonic electromagnetism in layered bi-periodic structures. Solution method: The Fourier modal method (rigorous coupled wave analysis) and the scattering matrix method. Running time: Problem dependent and highly dependent on quality of the BLAS

  2. Structure of polymer layers adsorbed from concentrated solutions

    NASA Astrophysics Data System (ADS)

    Auvray, Loïc; Auroy, Philippe; Cruz, Margarida

    1992-06-01

    We study by neutron scattering the interfacial strucuture of poly(dimethylsiloxane) layers irreversibly adsorbed from concentrated solutions or melts. We first measure the thickness h of the layers swollen by a good solvent as a function of the chain polymerisation index N and of the polymer volume fraction in the initial solution Φ. The relation h ≈ N^{0.8}Φ^{0.3}, recently predicted from an analogy between irreversibly adsorbed layers and grafted polymer brushes, describes well our results. We can therefore deduce that there is at least one large loop of about N monomers per adsorbed chain. We also study the shape of the polymer concentration profile in the layers by measuring on two samples the polymer-solid partial structure factor, that is proportional to the Fourier transform of the profile. The model of pseudobrushes predicts a concentration decay varying with the distance of the wall z as z^{-2/5}. This power law profile accounts quantitatively for the angular variation of the polymer-solid cross structure factor but it is difficult to distinguish it without anbiguity from less singular profiles. It implies that the adsorption of PDMS onto silica is sufficiently strong and fast to quench completely the loop distribution in the initial layer. Nous étudions par diffusion de neutrons la structure interfaciale de couches de poly(diméthylsiloxane) irréversiblement adsorbées sur de la silice à partir de solutions semidiluées et de fondus. Nous mesurons d'abord l'épaisseur h des couches gonflées par un bon solvant en fonction du degré de polymérisation des chaînes N et de la fraction volumique dans la solution initiale Φ. La relation h≈ N^{0.8}Φ^{0.3} récemment prédite à partir de l'analogie entre couches irréversiblement adsorbées et brosses de polymères greffés décrit bien nos résultats. Nous en déduisons qu'il existe au moins une grande boucle d'environ N monomères par chaîne adsorbée. Nous étudions aussi la forme du profil de

  3. Vertical structure of aeolian turbulence in a boundary layer with sand transport

    NASA Astrophysics Data System (ADS)

    Lee, Zoe S.; Baas, Andreas C. W.

    2016-04-01

    Recently we have found that Reynolds shear stress shows a significant variability with measurement height (Lee and Baas, 2016), and so an alternative parameter for boundary layer turbulence may help to explain the relationship between wind forcing and sediment transport. We present data that were collected during a field study of boundary layer turbulence conducted on a North Atlantic beach. High-frequency (50 Hz) 3D wind velocity measurements were collected using ultrasonic anemometry at thirteen different measurement heights in a tight vertical array between 0.11 and 1.62 metres above the surface. Thanks to the high density installation of sensors a detailed analysis of the boundary layer flow can be conducted using methods more typically used in studies where data is only available from one or just a few measurement heights. We use quadrant analysis to explore the vertical structure of turbulence and track the changes in quadrant signatures with measurement elevation and over time. Results of quadrant analysis, at the 'raw' 50 Hz timescale, demonstrates the tendency for event clustering across all four quadrants, which implies that at-a-point quadrant events are part of larger-scale turbulent structures. Using an HSV colour model, applied to the quadrant analysis data and plotted in series, we create colour maps of turbulence, which can provide a clear visualisation of the clustering of event activity at each height and illustrate the shape of the larger coherent flow structures that are present within the boundary layer. By including a saturation component to the colour model, the most significant stress producing sections of the data are emphasised. This results in a 'banded' colour map, which relates to clustering of quadrant I (Outward Interaction) and quadrant IV (Sweep) activity, separate from clustering of quadrant II (Burst) and quadrant III (Inward Interaction). Both 'sweep-type' and 'burst-type' sequences are shown to have a diagonal structure

  4. Model-based damage evaluation of layered CFRP structures

    NASA Astrophysics Data System (ADS)

    Munoz, Rafael; Bochud, Nicolas; Rus, Guillermo; Peralta, Laura; Melchor, Juan; Chiachío, Juan; Chiachío, Manuel; Bond, Leonard J.

    2015-03-01

    An ultrasonic evaluation technique for damage identification of layered CFRP structures is presented. This approach relies on a model-based estimation procedure that combines experimental data and simulation of ultrasonic damage-propagation interactions. The CFPR structure, a [0/90]4s lay-up, has been tested in an immersion through transmission experiment, where a scan has been performed on a damaged specimen. Most ultrasonic techniques in industrial practice consider only a few features of the received signals, namely, time of flight, amplitude, attenuation, frequency contents, and so forth. In this case, once signals are captured, an algorithm is used to reconstruct the complete signal waveform and extract the unknown damage parameters by means of modeling procedures. A linear version of the data processing has been performed, where only Young modulus has been monitored and, in a second nonlinear version, the first order nonlinear coefficient β was incorporated to test the possibility of detection of early damage. The aforementioned physical simulation models are solved by the Transfer Matrix formalism, which has been extended from linear to nonlinear harmonic generation technique. The damage parameter search strategy is based on minimizing the mismatch between the captured and simulated signals in the time domain in an automated way using Genetic Algorithms. Processing all scanned locations, a C-scan of the parameter of each layer can be reconstructed, obtaining the information describing the state of each layer and each interface. Damage can be located and quantified in terms of changes in the selected parameter with a measurable extension. In the case of the nonlinear coefficient of first order, evidence of higher sensitivity to damage than imaging the linearly estimated Young Modulus is provided.

  5. Composite structure of plumes in stratus-topped boundary layers

    SciTech Connect

    Moeng, C.H. ); Schumann, U. )

    1991-10-15

    Knowledge of convective plumes within the clear convective boundary layer (CBL) is quite advanced owing to direct measurements, tank experiments, and large-eddy simulation studies. As a result, modeling of the CBL is relatively successful. Progress for the stratus-topped boundary layer (STBL), however, is slow. This study compares the plume structure of the surface-heated CBL with that of the cloud-top-cooled STBL in the hope of extending knowledge of the CBL to the STBL. A conditional sampling technique is applied to the STBL flow fields that are generated through large-eddy simulations, so that the structures of typical updrafts and downdrafts may be derived. For the purpose of comparing the surface-heated CBL and the cloud-top-cooled STBL, an idealized STBL, the compensating updrafts are nearly as strong as the top-cooling-generated downdrafts, and they contribute a significant amount to the heat, moisture, and momentum transports. This differs very much from the CBL, where the compensating downdrafts are much weaker than the surface-heating-generated updrafts and contribute much less to the transports. The mechanism that results in such an asymmetry between the CBL and STBL is examined, and suggestions on how the asymmetry affects the entrainment process are made. 25 refs., 26 figs.

  6. Radial transmission line analysis of multi-layer structures

    SciTech Connect

    Hahn, H.; Hammons, L.

    2011-03-28

    The analysis of multi-layer beam tubes is a standard problem and involves axially propagating waves. This treatment is ill suited to a short multi-layer structure such as the present example of a ferrite covered ceramic break in the beam tube at the ERL photo-cathode electron gun. This paper demonstrates that such structure can better be treated by radial wave propagation. The theoretical method is presented and numerical results are compared with measured network analyser data and Microwave Studio generated simulations. The results confirm the concept of radial transmission lines as a valid analytical method. An Energy Recovery Linac (ERL) is being constructed at this laboratory for the purpose of research towards an envisioned Electron Ion Collider. One of the pertinent topics is damping of Higher Order Modes (HOM). In this ERL, the damping is provided by ferrite absorbers in the beam tube. A modified version thereof, a ceramic break surrounded by ferrite, is planed for the superconducting electron gun. The damper here is located at room temperature just outside of the gun. If used in a cavity chain, the ceramic break is in the vacuum tube at helium temperature whereas the ferrite is moved into the cryostat insulating vacuum allowing higher temperatures. The general properties of the ferrite HOM dampers have been published but are more detailed in this paper.

  7. Structural distortions in few-layer graphene creases.

    PubMed

    Robertson, Alex W; Bachmatiuk, Alicja; Wu, Yimin A; Schäffel, Franziska; Büchner, Bernd; Rümmeli, Mark H; Warner, Jamie H

    2011-12-27

    Folds and creases are frequently found in graphene grown by chemical vapor deposition (CVD), due to the differing thermal expansion coefficients of graphene from the growth catalyst and the flexibility of the sheet during transfer from the catalyst. The structure of a few-layer graphene (FLG) crease is examined by aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM). A study of 2D fast Fourier transforms (FFTs) taken about the region of the crease allowed for the crystal stacking structure of the system to be elucidated. It was found that strain-induced stacking faults were created in the AB Bernal-stacked FLG bulk around the region proximal to the crease termination; this is of interest as the stacking order of FLG is known to have an effect on its electronic properties and thus should be considered when transferring CVD-grown FLG to alternate substrates for electronic device fabrication. The FFTs, along with analysis of the real space images, were used to determine the configuration of the layers in the crease itself and were corroborated by multislice atomistic TEM simulations. The termination of the crease part way through the FLG sheet is also examined and is found to show strong out of plane distortions in the area about it. PMID:22122696

  8. Structure change, layer sliding, and metallization in high-pressure MoS2

    NASA Astrophysics Data System (ADS)

    Tosatti, Erio; Hromadova, Liliana; Martonak, Roman

    2013-03-01

    Based on ab initio calculations and metadynamics simulations, we predict that 2H-MoS2, a layered insulator, will metallize under pressures in excess of 20-30 GPa. In the same pressure range, simulations and enthalpy optimization predict a structural transition. Reminiscent of this material's frictional properties, free mutual sliding of layers takes place at this transition, where the original 2Hc stacking changes to a 2Ha stacking typical of 2H-NbSe2, a transformation which explains for the first time previously mysterious X-ray diffraction data. Phonon and electron phonon calculations suggest that metallic pristine MoS2 will require ultrahigh pressures in order to develop superconductivity. Supported by EU-Japan Project LEMSUPER, by a SNF Sinergia Project, and by the Slovak Research and Development Agency

  9. Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.

    PubMed

    Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C

    2016-08-10

    Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics. PMID:27419265

  10. Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.

    PubMed

    Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C

    2016-08-10

    Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics.

  11. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes

    NASA Astrophysics Data System (ADS)

    Ogawa, Tasuku; Ding, Bin; Sone, Yuji; Shiratori, Seimei

    2007-04-01

    We have recently fabricated super-hydrophobic membrane surfaces based on the inspiration of self-cleaning silver ragwort leaves. This biomimetic super-hydrophobic surface was composed of fluoroalkylsilane (FAS)-modified layer-by-layer (LBL) structured film-coated electrospun nanofibrous membranes. The rough fibre surface caused by the electrostatic LBL coating of TiO2 nanoparticles and poly(acrylic acid) (PAA) was used to imitate the rough surface of nanosized grooves along the silver ragwort leaf fibre axis. The results showed that the FAS modification was the key process for increasing the surface hydrophobicity of the fibrous membranes. Additionally, the dependence of the hydrophobicity of the membrane surfaces upon the number of LBL coating bilayers was affected by the membrane surface roughness. Moreover, x-ray photoelectron spectroscopy (XPS) results further indicated that the surface of LBL film-coated fibres absorbed more fluoro groups than the fibre surface without the LBL coating. A (TiO2/PAA)10 film-coated cellulose acetate nanofibrous membrane with FAS surface modification showed the highest water contact angle of 162° and lowest water-roll angle of 2°.

  12. Origin of the Mackenzie large igneous province and sourcing of flood basalts from layered intrusions

    NASA Astrophysics Data System (ADS)

    Day, J. M.; Pearson, D.

    2013-12-01

    The 1.27 Ga Coppermine continental flood basalt (CFB) in northern Canada represents the extrusive manifestation of the Mackenzie large igneous province (LIP) that includes the Mackenzie dyke swarm and the Muskox layered intrusion. New Re-Os isotope and highly siderophile element (HSE: Re, Pd, Pt, Ru, Ir, Os) abundance data are reported together with whole-rock major- and trace-element abundances and Nd isotopes to examine the behaviour of the HSE during magmatic differentiation and to place constraints on the extent of crustal interaction with mantle-derived melts. Mineral-chemical data are also reported for an unusual andesite glass flow (4.9 wt.% MgO) found in proximity to newly recognised picrites (>20 wt.% MgO) in the lowermost stratigraphy of the Coppermine CFB. Compositions of mineral phases in the andesite are similar to equivalent phases found in Muskox Intrusion chromitites and the melt composition is identical to Muskox chromite melt inclusions. Elevated HSE contents (e.g., 3.8 ppb Os) and the mantle-like initial Os isotope composition of this andesitic glass contrast strongly with oxygen isotope and lithophile element evidence for extensive crustal contamination. These signatures implicate an origin for the glass as a magma mingling product formed within the Muskox Intrusion during chromitite genesis. The combination of crust and mantle signatures define roles for both these reservoirs in chromitite genesis, but the HSE appear to be dominantly mantle-sourced. Combined with Nd isotope data that places the feeder for lower Coppermine CFB picrites and basalts within the Muskox Intrusion, this provides the strongest evidence yet for direct processing of some CFB within upper-crustal magma chambers. Modeling of absolute and relative HSE abundances in CFB reveal that HSE concentrations decrease with increasing fractionation for melts with <8×1 wt.% MgO in the Coppermine CFB, with picrites (>13.5wt.% MgO) from CFB having higher Os abundances than ocean island

  13. The Electronic Structure of Single-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Siegel, David Alan

    Single-layer graphene has been widely researched in recent years due to its perceived technological applicability and its scientific importance as a unique model system with relativistic Dirac Fermions. Because of its unique geometric and electronic structure, the properties of graphene can be tuned or manipulated in several ways. This tunability is important for technological applications in its own right, and it also allows us to study the fundamental properties of Dirac Fermions, including unique many-body interactions and the nature of the quasiparticles at half-filling. This thesis is a detailed examination of the electronic and structural properties of graphene, studied with angle-resolved photoemission spectroscopy (ARPES) and other surface science techniques like low-energy electron microscopy and diffraction. This thesis is organized as follows. Chapter 1 gives an introduction to the electronic and structural properties of single-layer graphene. It provides a brief historical overview of major theoretical and experimental milestones and sets the stage for the important theoretical and experimental questions that this thesis addresses. Chapters 2 and 3 describe the experimental setup. Chapter 2 discusses the experimental techniques used in this thesis with particular focus on the mechanics of ARPES. Chapter 3 discusses the different graphene growth techniques that were used to create our sample with particular focus on our characterization of epitaxial graphene on SiC(0001). Chapters 4 and 5 form the meat of this thesis: they provide a thorough discussion of the electronic properties of graphene as studied by ARPES. Chapter 4 describes how various perturbations can result in the manipulation of the bare electronic band structure, including the deposition of atomic or molecular species on top of an epitaxial graphene sheet as well as the interactions between graphene and its substrate. Chapter 5 describes the many-body physics in single-layer graphene. It

  14. Growth of high quality GaN layer on carbon nanotube-graphene network structure as intermediate layer

    NASA Astrophysics Data System (ADS)

    Seo, Taeo Hoon; Park, Ah Hyun; Park, Sungchan; Kim, Myung Jong; Suh, Eun-Kyung

    2015-03-01

    In general, high-quality GaN layers are synthesized on low-temperature (LT) GaN buffer layer on a single crystal sapphire substrate. However, large differences in fundamental properties such as lattice constants and thermal expansion coefficients between GaN layer and sapphire substrate generate high density of threading dislocation (TD) that leads to deterioration of optical and structural properties. Graphene has been attracting much attention due to its excellent physical properties However, direct epitaxial growth of GaN film onto graphene layer on substrates is not easily accessible due to the lack of chemical reactivity on graphene which consisted of C-C bond of sp2 hexagonally arranged carbon atoms with no dangling bonds. In this work, an intermediate layer for the GaN growth on sapphire substrate was constructed by inserting carbon nanotubes and graphene hybrid structure (CGH) Optical and structural properties of GaN layer grown on CGH were compared with those of GaN layer directly grown on sapphire CNTs act as nucleation sites and play a crucial role in the growth of single crystal high-quality GaN on graphene layer. Also, graphene film acts as a mask for epitaxial lateral overgrowth of GaN layer, which can effectively reduce TD density. A grant from the Korea Institute of Science and Technology (KIST) institutional program.

  15. Propagation of longitudinal thermoplastic waves in layered structures

    NASA Astrophysics Data System (ADS)

    Li, Chen; Cetinkaya, Cetin

    2000-05-01

    The recent advances in photonics and laser instrumentation have been creating a favorable environment for thermal-based elastic wave generation techniques and their applications in various fields, such as nondestructive testing and smart structures. The main advantages of laser-based NDE include noncontact evaluation, freedom for complex surface geometry, high spatial and temporal resolution, easy access to cavities, and fast scanning. Two disadvantages are that the laser-based method requires a good physical understanding of thermoelastic wave propagation in solids, which is considerably more complicated than elastic wave propagation, and more complicated instrumentation needed for data collection. In an idealized solid, thermal energy is transported by two different mechanisms: by quantized electronic excitations, which are called free electrons, and the quanta of lattice vibrations, which are called phonons. These quanta undergo collisions of a dissipative nature, giving rise to thermal resistance in the medium. A relaxation time is associated with the average communication time between these collisions for the commencement of resistive flow. There are a number of optical methods available for elastic wave generation and detection. The most commonly utilized techniques include interferometric and noninterferometric techniques, optical heterodyning, differential interferometry, and time-delay interferometry. In the current work, a transfer matrix formulation including the second sound effect is developed for a thermoelastic layer. The second sound effect is included to eliminate the thermal wave travelling with infinite velocity as predicted by the diffusion heat transfer model, and, consequently, the immediate arrival of waves. Utilizing this formulation and the periodic systems framework, the attenuation and propagation properties of one-dimensional thermoelastic wave in both continuum and layered structures are studied. A perturbation analysis is carried out

  16. Modified silicas with different structure of grafted methylphenylsiloxane layer.

    PubMed

    Bolbukh, Yuliia; Terpiłowski, Konrad; Kozakevych, Roman; Sternik, Dariusz; Deryło-Marczewska, Anna; Tertykh, Valentin

    2016-12-01

    The method of a chemical assembly of the surface polymeric layer with high contents of the modifying agent was developed. Powders of nanodispersed silica with chemisorbed polymethylphenylsiloxane (PMPS) were synthesized by solvent-free chemical assembly technique with a dimethyl carbonate (DMC) as scission agent. Samples were characterized using FTIR spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), and elemental analysis (CHN analysis). Coating microstructure, morphology, and hydrophilic-hydrophobic properties of nanoparticles were estimated. The results indicate a significant effect of the PMPS/DMC ratio at each modification stage on hydrophobic properties of modified silicas. Modification with a similar composition of the PMPS/DMC mixture, even with different polymer amount at each stage, provides the worst hydrophobicity. Results suggest that the highest hydrophobicity (contact angle θ = 135°-140°) is achieved in the case when silica modified with the PMPS/DMC mixture using multistage approach that providing a formation of the monomolecular layer of polysiloxane at the first modification step. The characteristics of surface structure were interpreted in terms of density of polymer-silica bonds at the interfaces that, usually, are reduced for modified surfaces, in a coupling with conformation model that accented the shape of chains (arch- and console-like) adsorbed on solid surfaces. PMID:27295258

  17. Modified silicas with different structure of grafted methylphenylsiloxane layer

    NASA Astrophysics Data System (ADS)

    Bolbukh, Yuliia; Terpiłowski, Konrad; Kozakevych, Roman; Sternik, Dariusz; Deryło-Marczewska, Anna; Tertykh, Valentin

    2016-06-01

    The method of a chemical assembly of the surface polymeric layer with high contents of the modifying agent was developed. Powders of nanodispersed silica with chemisorbed polymethylphenylsiloxane (PMPS) were synthesized by solvent-free chemical assembly technique with a dimethyl carbonate (DMC) as scission agent. Samples were characterized using FTIR spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), and elemental analysis (CHN analysis). Coating microstructure, morphology, and hydrophilic-hydrophobic properties of nanoparticles were estimated. The results indicate a significant effect of the PMPS/DMC ratio at each modification stage on hydrophobic properties of modified silicas. Modification with a similar composition of the PMPS/DMC mixture, even with different polymer amount at each stage, provides the worst hydrophobicity. Results suggest that the highest hydrophobicity (contact angle θ = 135°-140°) is achieved in the case when silica modified with the PMPS/DMC mixture using multistage approach that providing a formation of the monomolecular layer of polysiloxane at the first modification step. The characteristics of surface structure were interpreted in terms of density of polymer-silica bonds at the interfaces that, usually, are reduced for modified surfaces, in a coupling with conformation model that accented the shape of chains (arch- and console-like) adsorbed on solid surfaces.

  18. Contrasting Vertical Structures of the Stable Boundary Layer

    NASA Astrophysics Data System (ADS)

    Mahrt, L.; Vickers, Dean

    2002-01-01

    Wyngaard (1973) introduced the concept of z-less stratification for cases where the stratification is sufficiently strong, that the turbulence no longer is in significant communication with the surface (see also Holtslag and Nieuwstadt, 1986). Then z is no longer a primary scaling variable, nor is the boundary-layer depth. The eddies are vertically constrained by strong stratification. However, the z-less concept implies more than small eddies, since vertically continuous turbulence can still organize according to z even if the eddies at any level are small compared to z. For example, with local similarity where the relevant Obukhov length must be recast in terms of local fluxes at level z instead of surface fluxes (Nieuwstadt, 1984), the overall vertical structure is still posed in terms of z/h even if the eddy size is small compared to z. In this sense, local similarity still satisfies the criteria for traditional boundary layers. On the other hand, continuous turbulence between the surface and level z might still qualify as primarily z-less turbulence if the principal source of turbulence is detached from the surface and the distance above the ground surface is only a secondary influence.

  19. Bose-Einstein condensation in low dimensional layered structures

    NASA Astrophysics Data System (ADS)

    Salas, Patricia; Solis, M. A.

    2008-03-01

    Bose-Einstein condensation critical temperature, among other thermodynamic properties are reported for an ideal boson gas inside layered structures created by trapping potential of the Kronig-Penney type. We start with a big box where we introduce the Kronig-Penney potential in three directions to get a honey comb of cubes of side a size and walls of variable penetrability (P=mV0ab/^2), with bosons instead of bees. We are able to reduce the dimensions of the cubes to simulate bosons inside quantum dots. The critical temperature, starting from that of an ideal boson gas inside the big box, decreases as the small cube wall impenetrability increases arriving to a tiny but different from zero when the penetrability is zero (P-->∞). We also calculate the internal energy and the specific heat, and compare them to the ones obtained for the case of the same Kronig-Penney potential in one direction (simulating layers), and two directions (nanotubes).

  20. Identifying the origin of groundwater samples in a multi-layer aquifer system with Random Forest classification

    NASA Astrophysics Data System (ADS)

    Baudron, Paul; Alonso-Sarría, Francisco; García-Aróstegui, José Luís; Cánovas-García, Fulgencio; Martínez-Vicente, David; Moreno-Brotóns, Jesús

    2013-08-01

    Accurate identification of the origin of groundwater samples is not always possible in complex multilayered aquifers. This poses a major difficulty for a reliable interpretation of geochemical results. The problem is especially severe when the information on the tubewells design is hard to obtain. This paper shows a supervised classification method based on the Random Forest (RF) machine learning technique to identify the layer from where groundwater samples were extracted. The classification rules were based on the major ion composition of the samples. We applied this method to the Campo de Cartagena multi-layer aquifer system, in southeastern Spain. A large amount of hydrogeochemical data was available, but only a limited fraction of the sampled tubewells included a reliable determination of the borehole design and, consequently, of the aquifer layer being exploited. Added difficulty was the very similar compositions of water samples extracted from different aquifer layers. Moreover, not all groundwater samples included the same geochemical variables. Despite of the difficulty of such a background, the Random Forest classification reached accuracies over 90%. These results were much better than the Linear Discriminant Analysis (LDA) and Decision Trees (CART) supervised classification methods. From a total of 1549 samples, 805 proceeded from one unique identified aquifer, 409 proceeded from a possible blend of waters from several aquifers and 335 were of unknown origin. Only 468 of the 805 unique-aquifer samples included all the chemical variables needed to calibrate and validate the models. Finally, 107 of the groundwater samples of unknown origin could be classified. Most unclassified samples did not feature a complete dataset. The uncertainty on the identification of training samples was taken in account to enhance the model. Most of the samples that could not be identified had an incomplete dataset.

  1. Coherent structures in the Es layer and neutral middle atmosphere

    NASA Astrophysics Data System (ADS)

    Mošna, Zbyšek; Knížová, Petra Koucká; Potužníková, Kateřina

    2015-12-01

    The present paper shows results from the summer campaign performed during geomagnetically quiet period from June 1 to August 31, 2009. Within time-series of stratospheric and mesospheric temperatures at pressure levels 10-0.1 hPa, mesospheric winds measured in Collm, Germany, and the sporadic E-layer parameters foEs and hEs measured at the Pruhonice station we detected specific coherent wave-bursts in planetary wave domain. Permanent wave-like activity is observed in all analyzed data sets. However, the number of wave-like structures persistent in large range of height from the stratosphere to lower ionosphere is limited. The only coherent modes that are detected on consequent levels of the atmosphere are those corresponding to eigenmodes of planetary waves.

  2. Homogeneous optical cloak constructed with uniform layered structures.

    PubMed

    Zhang, Jingjing; Liu, Liu; Luo, Yu; Zhang, Shuang; Mortensen, Niels Asger

    2011-04-25

    The prospect of rendering objects invisible has intrigued researchers for centuries. Transformation optics based invisibility cloak design is now bringing this goal from science fictions to reality and has already been demonstrated experimentally in microwave and optical frequencies. However, the majority of the invisibility cloaks reported so far have a spatially varying refractive index which requires complicated design processes. Besides, the size of the hidden object is usually small relative to that of the cloak device. Here we report the experimental realization of a homogenous invisibility cloak with a uniform silicon grating structure. The design strategy eliminates the need for spatial variation of the material index, and in terms of size it allows for a very large obstacle/cloak ratio. A broadband invisibility behavior has been verified at near-infrared frequencies, opening up new opportunities for using uniform layered medium to realize invisibility at any frequency ranges, where high-quality dielectrics are available. PMID:21643114

  3. The role of layer structure in tin oxidation kinetics

    NASA Astrophysics Data System (ADS)

    Duhalde, S.; Arcondo, B.; Sirkin, H.

    1991-11-01

    Tin exhibits different oxidation kinetics which are composition dependent, when it forms intermetallic compounds with the chalcogenides S and Se. This phenomenon is related to the layer compounds SnS2 and SnSe2 crystalline structure. These minerals have anisotropic bonding characteristics, due to Van der Waals bonds presence between chalcogenides adjoining planes. The mentioned weak bonds allow the oxygen diffusion to the bulk, favouring the reaction with the inner tin atoms. In this work we study samples of Sn-S alloy with different thermal treatment by XRD and Mössbauer spectroscopy. Results are discussed and compared with those obtained for Sn-Se alloy in an early work [1].

  4. Origin of Noise in Layered MoTe₂ Transistors and its Possible Use for Environmental Sensors.

    PubMed

    Lin, Yen-Fu; Xu, Yong; Lin, Che-Yi; Suen, Yuen-Wuu; Yamamoto, Mahito; Nakaharai, Shu; Ueno, Keiji; Tsukagoshi, Kazuhito

    2015-11-01

    Low-frequency current fluctuations are monitored and the mechanism of electric noise investigated in layered 2H-type α-molybdenum ditelluride transistors. The charge transport mechanism of electric noise in atomically thin transition-metal dichalcogenides is studied under different environments; the development of a new sensing functionality may be stimulated. PMID:26414685

  5. Corrosion detection in multi-layered rotocraft structures

    SciTech Connect

    ROACH,DENNIS P.; WALKINGTON,PHILLIP D.; HOHMAN,ED; MARSHALL,GREG

    2000-04-25

    Rotorcraft structures do not readily lend themselves to quantifiable inspection methods due to airframe construction techniques. Periodic visual inspections are a common practice for detecting corrosion. Unfortunately, when the telltale signs of corrosion appear visually, extensive repair or refurbishment is required. There is a need to nondestructively evaluate airframe structures in order to recognize and quantify corrosion before visual indications are present. Nondestructive evaluations of rotorcraft airframes face inherent problems different from those of the fixed wing industry. Most rotorcraft lap joints are very narrow, contain raised fastener heads, may possess distortion, and consist of thinner gage materials ({approximately}0.012--0.125 inches). In addition the structures involve stack-ups of two and three layers of thin gage skins that are separated by sealant of varying thickness. Industry lacks the necessary data techniques, and experience to adequately perform routine corrosion inspection of rotorcraft. In order to address these problems, a program is currently underway to validate the use of eddy current inspection on specific rotorcraft lap joints. Probability of detection (POD) specimens have been produced that simulate two lap joint configurations on a model TH-57/206 helicopter. The FAA's Airworthiness Assurance Center (AANC) at Sandia Labs and Bell Helicopter have applied single and dual frequency eddy current (EC) techniques to these test specimens. The test results showed enough promise to justify beta site testing of the eddy current methods evolved in this study. The technique allows users to distinguish between corrosion signals and those caused by varying gaps between the assembly of skins. Specific structural joints were defined as prime corrosion areas and a series of corrosion specimens were produced with 5--20% corrosion distributed among the layers of each joint. Complete helicopter test beds were used to validate the laboratory

  6. Structure Identification Within a Transitioning Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Chapman, Keith; Glauser, Mark

    1996-01-01

    Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use Linear Stochastic Estimation (LSE) and Proper Orthogonal Decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using

  7. Structure of the upper mantle boundaries in North Eurasia and their origin

    NASA Astrophysics Data System (ADS)

    Pavlenkova, Ninel

    2016-04-01

    confirms such origin of the lower velocity layers and seismic boundaries: in many regions they are characterized by higher electrical conductivity. In the Siberian craton the most xenoliths come from the depths of these boundaries. That characterizes these boundaries as high strain zones. These xenoliths have often indications of film melting. At the boundaries N and L the clear changes are observed in the lithosphere mechanical properties. In many regions above the N boundary the lithosphere has complex block structure, which disappears at the larger depth. That indicates the lithosphere to be more plastic at the depth over 100 km and cannot preserve its own inhomogeneity. The change of the rheology, which may be interpreted as the lithosphere bottom, is visible beneath the L boundary where the Q factor and the velocity-depth gradient decrease.

  8. Fabrication of luminescent porous silicon with stain etches and evidence that luminescence originates in amorphous layers

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Lin, T. L.; Pike, W. T.; Vasquez, R. P.; Wu, Z.-C.

    1992-01-01

    Simple immersion of Si in stain etches of HF:HNO3:H2O or NaNO2 in aqueous HF was used to produce films exhibiting luminescence in the visible similar to that of anodically-etched porous Si. All of the luminescent samples consist of amorphous porous Si in at least the near surface region. No evidence was found for small crystalline regions within these amorphous layers.

  9. Origin and reduction of impurities at GaAs epitaxial layer-substrate interfaces

    NASA Astrophysics Data System (ADS)

    Kanber, H.; Yang, H. T.; Zielinski, T.; Whelan, J. M.

    1988-09-01

    Surface cleaning techniques used for semi-insulating GaAs substrates prior to epitaxial growth can have an important and sometimes detrimental effect on the quality and characteristics of epitaxial layers that are grown on them. We observe that a HF rinse followed by a 5:1:1 H 2SO 4:H 2O 2:H 2O etch and H 2O rinse drastically reduced the maximum concentrations and total amount of both SIMS detected S and Si for MOCVD grown GaAs undoped epitaxial layers. Subsequent final HCl and H 2O reduced the S interfacial residues to the SIMS detection limit. Total amounts of residual Si are estimated to be equivalent to 10 -2 to 10 -3 monolayers. Residual S is less. Alternately the S residue can be comparable reduced by a HF rinse followed by a NH 4OH:H 2O 2:H 2O etch and H 2O rinse. Hot aqueous HCl removes S but not Si residues. The Si residue is not electrically active and most likely exists as islands of SiO 2. The relative significance of the impurity residues is most pronounced for halide VPE, smaller for MBE and least for MOCVD grown GaAs epitaxial layers.

  10. Origin of photogenerated carrier recombination at the metal-active layer interface in polymer solar cells.

    PubMed

    Kumar, Mukesh; Dubey, Ashish; Reza, Khan Mamun; Adhikari, Nirmal; Qiao, Qiquan; Bommisetty, Venkat

    2015-11-01

    The role of the metal-active layer interface in photogenerated recombination has been investigated using nanoscale current sensing atomic force microscopy (CS-AFM) and intensity modulated photocurrent spectroscopy (IMPS) in as-deposited, pre-annealed and post-annealed bulk heterojunction (BHJ) solar cells. Aluminum (Al) confined post-annealed BHJ solar cells exhibited a significantly improved device efficiency compared to pre-annealed BHJ solar cells having similar photocarrier harvesting ability in the active layer. The nanoscale topography and CS-AFM results indicate a uniform PCBM rich phase at the metal-active layer interface in the post-annealed cells, but PCBM segregation in the pre-annealed cells. These two different annealing processes showed different carrier dynamics revealed using IMPS under various light intensities. The IMPS results suggest reduced photo generated carrier recombination in uniform PCBM rich post-annealed BHJ solar cells. This study reveals the importance of the metal-bend interface in BHJ solar cells in order to obtain efficient charge carrier extraction for high efficiency. PMID:26431263

  11. Stratigraphy, Structure, and Origin; A Geophysical Survey of the Mendeleev Ridge

    NASA Astrophysics Data System (ADS)

    Dove, D.; Coakley, B.; Hopper, J.

    2006-12-01

    The Mendeleev Ridge is a broad, aseismic ridge that extends from the Siberian Shelf into the central Arctic Ocean. While it is continuous with the Alpha Ridge and is inferred to be an oceanic plateau, it may have had a distinct and separate history. The origin of the Mendeleev ridge has only rarely been visited and, as a result, understanding the history of this region has largely been based on the presumption of a common origin for both features. In late summer 2005, a geophysical survey was conducted from USCGC Healy over the Mendeleev Ridge as part of a trans-arctic crossing. During this survey ~730 km of seismic reflection data was recovered over the ridge along with co-registered gravity and bathymetry data and seismic refraction profiles. The seismic source was two 250 cu in G-guns. The streamer length was limited by ice conditions to 300 meters. Wear and tear caused by towing the streamer through the ice pack eliminated hydrophones, so the number of active channels ranged from 24 to as few as 11. The seismic reflection data requires significant trace editing to eliminate random electrical noise and frequency-wave number filtering to eliminate low velocity noise caused by the streamer traveling through heavy ice. After trace editing the data are stacked and migrated with constant water velocity. Stacking velocities are used as input into initial ray tracing models. Derived boundary velocities from ray tracing models will be reapplied to the migration of reflection data and are converted through empirical relationships into densities, and used as input into gravity models. Brute stacked reflection images of the Mendeleev Ridge reveal pervasive extensional faulting of the basement and lower sediment layers, and a continuous, undeformed pelagic sediment layer mantling the ridge, indicative of recent tectonic inactivity. The age of the unconformity underlying this layer should date the end of significant deformation of the Alpha and Mendeleev Ridges. Consistency

  12. Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Loizeau, D.; Mangold, N.; Le Mouélic, S.; Carter, J.; Poulet, F.; Dromart, G.; Lucas, A.; Bibring, J.-P.; Gendrin, A.; Gondet, B.; Langevin, Y.; Masson, Ph.; Murchie, S.; Mustard, J. F.; Neukum, G.

    2011-01-01

    The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km 3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km 3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently

  13. Characteristics and Origin of Martian Low-Aspect-Ratio Layered Ejecta (LARLE) Craters

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; Boyce, J. M.

    2013-10-01

    An unusual crater morphology is found primarily at high latitudes on Mars. These craters display an extensive outer deposit beyond the normal layered ejecta blanket. This outer deposit extends up to 20 crater radii from the rim, terminates in a sinuous flame-like edge, and is extremely thin, leading to a low aspect ratio (A = thickness/length). These craters are thus called Low-Aspect-Ratio Layered Ejecta (LARLE) craters. We have conducted a survey of all LARLE craters 1-km-diameter and larger on Mars. We find 139 LARLE craters ranging in diameter from 1.0 to 12.2 km with a median of 2.8 km. Most (97%) are found poleward of 35N and 40S, with the remainder primarily found in the equatorial Medusae Fossae Formation. The surfaces of the freshest LARLE layers commonly exhibit radial, curvilinear ridges and dune-like landforms, and the LARLE deposit typically drapes over pre-existing terrain. We propose that the LARLE deposit is formed by a different mechanism than that responsible for the normal layered ejecta patterns. We suggest that impact into relatively-thick fine-grained ice-rich mantles enhances the formation of a base surge that is deposited after formation of the inner layered ejecta deposits. This base surge is similar to the density-driven, turbulent cloud of suspended fine-grained particles produced by impact erosion and mobilization of the surrounding surface material by ejecta from shallow-depth-of-burst nuclear and high-explosion craters. We have applied a base surge equation developed for terrestrial explosive events to two fresh LARLE craters. After adjustment of the equation for Martian conditions, it predicts runout distances that are within 99% of the observed values. All Martian craters likely produce a base surge during formation, but the presence of the obvious LARLE deposit is attributed to crater formation in thick, fine-grained, sedimentary deposits. These sediments are the source of the extra particulate debris incorporated into and deposited

  14. Intercalation of cellulase enzyme into a hydrotalcite layer structure

    NASA Astrophysics Data System (ADS)

    Zou, N.; Plank, J.

    2015-01-01

    A new inorganic-organic hybrid material whereby cellulase enzyme is incorporated into a hydrotalcite type layered double hydroxide (LDH) structure is reported. The Mg2Al-cellulase-LDH was synthesized via co-precipitation from Mg/Al nitrate at pH=9.6. Characterization was performed using X-ray powder diffraction (XRD), small angle X-ray scattering (SAXS), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). From XRD and SAXS measurements, a d-value of ~5.0 nm was identified for the basal spacing of the Mg2Al-cellulase-LDH. Consequently, the cellulase enzyme (hydrodynamic diameter ~6.6 nm) attains a slightly compressed conformation when intercalated. Formation of the LDH hybrid was also confirmed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mg2Al-cellulase-LDH phases appear as ~20 nm thin foils which are intergrown to flower-like aggregates. Activity of the enzyme was retained after deintercalation from the Mg2Al-LDH framework using anion exchange. Accordingly, cellulase is not denatured during the intercalation process, and LDH presents a suitable host structure for time-controlled release of the biomolecule.

  15. Geophysical characterization of two circular structures at Bajada del Diablo (Patagonia, Argentina): Indication of impact origin

    NASA Astrophysics Data System (ADS)

    Prezzi, Claudia B.; Orgeira, María Julia; Acevedo, Rogelio D.; Ponce, Juan Federico; Martinez, Oscar; Rabassa, Jorge O.; Corbella, Hugo; Vásquez, Carlos; González-Guillot, Mauricio; Subías, Ignacio

    2012-02-01

    An impact origin has been proposed for the circular structures found in Bajada del Diablo, Patagonia, Argentina. Taking into account its extension and the number of impact structures, Bajada del Diablo would be the largest meteoritic impact areas known on Earth, being an extremely interesting area for the research of impact events and processes. Moreover, the global distribution of known impact structures shows a surprising asymmetry. Particularly, South America has only seven described areas. It is evident that this situation is an artifact, highlighting the importance of intensifying the research in the least studied areas such as Argentina. Circular structures in Bajada del Diablo have been identified on two rock types: the Quiñelaf eruptive complex and Pampa Sastre Formation. In the first case, circular structures are placed in olivine basalts. On the other hand, Pampa Sastre Formation (late Pliocene/early Pleistocene) corresponds to conglomerate layers with basalt clasts boulder and block in size in a coarse sandy matrix. With the aim of further the investigation of the proposed impact origin for these circular structures, we carried out detailed topographic, magnetic and electromagnetic ground surveys in two circular structures ("8" and "A") found in Pampa Sastre conglomerates. Both circular structures are simple, bowl-shaped with rim diameters of 300 m and maximum depths of 10 m. They have been partially filled in by debris flows from the rims and wind-blown sands. Two preliminary magnetic profiles have also been carried out in circular structure "G" found in Quiñelaf basalts. The magnetic anomalies show a circular pattern with a slightly negative and relatively flat signal in the circular structures' bases. Furthermore in the circular structures' rims, high-amplitude, conspicuous and localized (short wavelength) anomalies are observed. Such large amplitude and short wavelength anomalies are not detected outside the circular structures. For all used

  16. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    SciTech Connect

    Kevin Jerome Sutherland

    2001-05-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  17. Computer-originated polarizing holographic optical element recorded in photopolymerizable layers.

    PubMed

    Carré, C; Habraken, S; Roose, S

    1993-05-01

    The photosensitive system that is used in most cases to produce holographic optical holograms is dichromated gelatin. Other materials may be used, in particular, photopolymerizable layers. In the present investigation, we set out to use the polymer developed in the Laboratoire de Photochimie Générale in Mulhouse in order to duplicate a computer-generated hologram. Our technique is intended to generate polarizing properties. We took into account the fact that no wet chemistry processing is required; grating fringe spacings are not distorted through chemical development. PMID:19802257

  18. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    SciTech Connect

    Kevin Jerome Sutherland

    2001-06-27

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the

  19. Noise and vibration level reduction by covering metal structures with layers of damping materials. [considering viscoelastic insulation layers

    NASA Technical Reports Server (NTRS)

    Rugina, I.; Paven, H. T. O.

    1974-01-01

    One of the most important methods of reducing the noise and vibration level is the damping of the secondary sources, such as metal plates, often used in vehicle structures, by means of covering materials with high internal viscosity. Damping layers are chosen at an optimum thickness corresponding to the frequency and temperature range in which a certain structure works. The structure's response corresponding to various real situations is analyzed by means of a measuring chain including electroacoustical or electromechanical transducers. The experimental results provide the dependence of the loss factor and damping transmission coefficient as a function of the damping layer thickness or of the frequency for various viscoelastic covering materials.

  20. Aliphatic structure of humic acids; a clue to their origin

    USGS Publications Warehouse

    Hatcher, P.G.; Maciel, G.E.; Dennis, L.W.

    1981-01-01

    Nuclear magnetic resonance spectra (both 1H and 13C) of humic acids from diverse depositional environments indicate the presence of aromatic chemical structures, most likely derived from lignin of vascular plants, and complex, paraffinic structures, most likely derived from algal or microbial sources. The latter components account for a major fraction of humic acid structures in both terrestrial and aquatic environments, suggesting that algae or microbes play a large role in humification of organic remains from both systems. ?? 1981.

  1. Unexpected strong magnetism of Cu doped single-layer MoS₂ and its origin.

    PubMed

    Yun, Won Seok; Lee, J D

    2014-05-21

    The magnetism of the 3d transition-metal (TM) doped single-layer (1L) MoS2, where the Mo atom is partially replaced by the 3d TM atom, is investigated using the first-principles density functional calculations. In a series of 3d TM doped 1L-MoS2's, the induced spin polarizations are negligible for Sc, Ti, and Cr dopings, while the induced spin polarizations are confirmed for V, Mn, Fe, Co, Ni, Cu, and Zn dopings and the systems become magnetic. Especially, the Cu doped system shows unexpectedly strong magnetism although Cu is nonmagnetic in its bulk state. The driving force is found to be a strong hybridization between Cu 3d states and 3p states of neighboring S, which results in an extreme unbalanced spin-population in the spin-split impurity bands near the Fermi level. Finally, we also discuss further issues of the Cu induced magnetism of 1L-MoS2 such as investigation of additional charge states, the Cu doping at the S site instead of the Mo site, and the Cu adatom on the layer (i.e., 1L-MoS2). PMID:24695769

  2. Unexpected strong magnetism of Cu doped single-layer MoS₂ and its origin.

    PubMed

    Yun, Won Seok; Lee, J D

    2014-05-21

    The magnetism of the 3d transition-metal (TM) doped single-layer (1L) MoS2, where the Mo atom is partially replaced by the 3d TM atom, is investigated using the first-principles density functional calculations. In a series of 3d TM doped 1L-MoS2's, the induced spin polarizations are negligible for Sc, Ti, and Cr dopings, while the induced spin polarizations are confirmed for V, Mn, Fe, Co, Ni, Cu, and Zn dopings and the systems become magnetic. Especially, the Cu doped system shows unexpectedly strong magnetism although Cu is nonmagnetic in its bulk state. The driving force is found to be a strong hybridization between Cu 3d states and 3p states of neighboring S, which results in an extreme unbalanced spin-population in the spin-split impurity bands near the Fermi level. Finally, we also discuss further issues of the Cu induced magnetism of 1L-MoS2 such as investigation of additional charge states, the Cu doping at the S site instead of the Mo site, and the Cu adatom on the layer (i.e., 1L-MoS2).

  3. Substrate Structures For Growth Of Highly Oriented And/Or Epitaxial Layers Thereon

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Jia, Quanxi

    2005-07-26

    A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc's of 2.3×106 A/cm2 have been demonstrated with projected Ic's of 320 Amperes across a sample 1 cm wide for a superconducting article including a flexible polycrystalline metallic substrate, an inert oxide material layer upon the surface of the flexible polycrystalline metallic substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the layer of the inert oxide material, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer, a layer of a buffer material upon the oriented cubic oxide material layer, and, a top-layer of a high temperature superconducting material upon the layer of a buffer material.

  4. Structure and response to flow of the glycocalyx layer.

    PubMed

    Cruz-Chu, Eduardo R; Malafeev, Alexander; Pajarskas, Tautrimas; Pivkin, Igor V; Koumoutsakos, Petros

    2014-01-01

    The glycocalyx is a sugar-rich layer located at the luminal part of the endothelial cells. It is involved in key metabolic processes and its malfunction is related to several diseases. To understand the function of the glycocalyx, a molecular level characterization is necessary. In this article, we present large-scale molecular-dynamics simulations that provide a comprehensive description of the structure and dynamics of the glycocalyx. We introduce the most detailed, to-date, all-atom glycocalyx model, composed of lipid bilayer, proteoglycan dimers, and heparan sulfate chains with realistic sequences. Our results reveal the folding of proteoglycan ectodomain and the extended conformation of heparan sulfate chains. Furthermore, we study the glycocalyx response under shear flow and its role as a flypaper for binding fibroblast growth factors (FGFs), which are involved in diverse functions related to cellular differentiation, including angiogenesis, morphogenesis, and wound healing. The simulations show that the glycocalyx increases the effective concentration of FGFs, leading to FGF oligomerization, and acts as a lever to transfer mechanical stimulus into the cytoplasmic side of endothelial cells.

  5. Crustal Structure of Salton Trough using Deformable Layer Tomography

    NASA Astrophysics Data System (ADS)

    Yuan, F.

    2012-12-01

    Salton Trough is an important geologic structure to understand the active rift between Imperial Fault and San Andreas Fault. To determine the underground geometry of Salton Trough and its nearby faults, we analyzed seismic phase data recorded by Southern California Earthquake Data Center (SCEDC). Both 2-D and 3-D models have been made to refine the velocity model so as to determine the basin and moho geometry beneath Salton Trough region. Here three inline and five cross-line velocity profiles were built by using 2D Deformable Layer Tomography (DLT) method. From these 2D profiles, we can see that the velocity gradient is very small in the low velocity zone. The low velocity anomaly can be detected beneath the axis of the Salton Trough around the depth of 19-21 km, and the relatively high velocity can be seen beneath the San Andreas faults. Within 100*150*40 km3 model volume, 90,180 P-wave and S-wave first arrival picks from 27,663 local events (from 2001 to 2012), which were obtained from 44 stations, were used to build 3D seismic velocity model of the crust. During the iterations of velocity updating, full 3-D ray tracing is implemented. From these 3-D velocity models with different sizes of grids, low velocity anomalies are present under the southwest of Salton Sea, while high velocity zone is present across Southern San Andreas Fault throughout all the depths. Profiles from 2-D velocity models compared to 3-D velocity models show similar geometry. 3-D crustal structure, which is determined from 3-D DLT, helps to better understand the divergent boundary between the North American and the Pacific tectonic plates

  6. Dynamics of generalized Gaussian polymeric structures in random layered flows

    NASA Astrophysics Data System (ADS)

    Katyal, Divya; Kant, Rama

    2015-04-01

    We develop a formalism for the dynamics of a flexible branched polymer with arbitrary topology in the presence of random flows. This is achieved by employing the generalized Gaussian structure (GGS) approach and the Matheron-de Marsily model for the random layered flow. The expression for the average square displacement (ASD) of the center of mass of the GGS is obtained in such flow. The averaging is done over both the thermal noise and the external random flow. Although the formalism is valid for branched polymers with various complex topologies, we mainly focus here on the dynamics of the flexible star and dendrimer. We analyze the effect of the topology (the number and length of branches for stars and the number of generations for dendrimers) on the dynamics under the influence of external flow, which is characterized by their root-mean-square velocity, persistence flow length, and flow exponent α . Our analysis shows two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The influence of the topology of the GGS is unraveled in the intermediate-time regime, while the long-time regime is only weakly dependent on the topology of the polymer. With the decrease in the value of α , the magnitude of the ASD decreases, while the temporal exponent of the ASD increases in both the time regimes. Also there is an increase in both the magnitude of the ASD and the crossover time (from the subdiffusive to the superdiffusive regime) with an increase in the total mass of the polymeric structure.

  7. Molecular analysis of neocortical layer structure in the ferret

    PubMed Central

    Rowell, Joanna J.; Mallik, Atul K.; Dugas-Ford, Jennifer; Ragsdale, Clifton W.

    2010-01-01

    Molecular markers that distinguish specific layers of rodent neocortex are increasingly employed to study cortical development and the physiology of cortical circuits. The extent to which these markers represent general features of neocortical cell type identity across mammals is, however, unknown. To assess the conservation of layer markers more broadly, we isolated orthologs for fifteen layer-enriched genes in the ferret, a carnivore with a large, gyrencephalic brain, and analyzed their patterns of neocortical gene expression. Our major findings are: (1) Many but not all layer markers tested show similar patterns of layer-specific gene expression between mouse and ferret cortex, supporting the view that layer-specific cell type identity is conserved at a molecular level across mammalian superorders; (2) Our panel of deep layer markers (ER81/ETV1, SULF2, PCP4, FEZF2/ZNF312, CACNA1H, KCNN2/SK2, SYT6, FOXP2, CTGF) provides molecular evidence that the specific stratifications of layer 5 and 6 into 5a, 5b, 6a and 6b are also conserved between rodents and carnivores. (3) Variations in layer-specific gene expression are more pronounced across areas of ferret cortex than between homologous areas of mouse and ferret cortex; (4) This variation of area gene expression was clearest with the superficial layer markers studied (SERPINE2, MDGA1, CUX1, UNC5D, RORB/NR1F2, EAG2/KCNH5). Most dramatically, the layer 4 markers RORB and EAG2 disclosed a molecular sublamination to ferret visual cortex and demonstrated a molecular dissociation among the so-called agranular areas of the neocortex. Our findings establish molecular markers as a powerful complement to cytoarchitecture for neocortical layer and cell-type comparisons across mammals. PMID:20575059

  8. A non-magnetic spacer layer effect on spin layers (7/2,3) in a bi-layer ferromagnetic dendrimer structure: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Tahiri, N.; Bahmad, L.; Benyoussef, A.

    2016-11-01

    A bi-layer system consisting of layers of spins (7/2, 3) in a ferromagnetic dendrimer structure, separated by a non-magnetic spacer, is studied by Monte Carlo simulations. The effect of the RKKY interactions is investigated and discussed for such system. It is shown that the magnetic properties in the two magnetic layers depend strongly on the thickness of the magnetic and non-magnetic layers. The total magnetizations and susceptibilities are studied as a function of the reduced temperature. The effect of the reduced exchange interactions as well as the reduced crystal field is outlined. On other hand, the critical temperature is discussed as a function of the magnetic layer values. To complete this study we presented and discussed the magnetic hysteresis cycles.

  9. Cosmology: The Origin and Evolution of Cosmic Structure, Second Edition

    NASA Astrophysics Data System (ADS)

    Coles, Peter; Lucchin, Francesco

    2002-07-01

    This is the 2nd edition of a highly successful title on this fascinating and complex subject. Concentrating primarily on the theory behind the origin and the evolution of the universe, and where appropriate relating it to observation, the new features of the this addition include: An overall introduction to the book Two new chapters: Gravitational Lensing and Gravitational Waves Each part has a collection of exercises with solutions to numerical parts at the end of the book Contains a table of physical constants The addition of a consolidated bibilography

  10. Origin of structure in the universe: quantum cosmology reconsidered

    NASA Astrophysics Data System (ADS)

    Anderson, Edward

    2015-09-01

    Based on a more careful canonical analysis, we motivate a reduced quantization—in the sense of superspace quantization—of slightly inhomogeneous cosmology in place of the Dirac quantization in the existing literature, and provide it in the vacuum case. This is attained through consideration of configuration space geometries at various levels of reduction. Some of these have the good fortunate of being flat. Geometrically natural coordinates for these are interpreted in terms of the original redundant formulation's well-known mode expansion coefficients.

  11. The Structure and Origin of Solar Plumes: Network Plumes

    NASA Astrophysics Data System (ADS)

    Gabriel, A.; Bely-Dubau, F.; Tison, E.; Wilhelm, K.

    2009-07-01

    This study is based upon plumes seen close to the solar limb within coronal holes in the emission from ions formed in the temperature region of 1 MK, in particular, the band of Fe IX 171 Å from EIT on the Solar and Heliospheric Observatory. It is shown, using geometric arguments, that two distinct classes of structure contribute to apparently similar plume observations. Quasi-cylindrical structures are anchored in discrete regions of the solar surface (beam plumes), and faint extended structures require integration along the line of sight (LOS) in order to reproduce the observed brightness. This second category, sometimes called "curtains," are ubiquitous within the polar holes and are usually more abundant than the beam plumes, which depend more on the enhanced magnetic structures detected at their footpoints. It is here proposed that both phenomena are based on plasma structures in which emerging magnetic loops interact with ambient monopolar fields, involving reconnection. The important difference is in terms of physical scale. It is proposed that curtains are composed of a large number of microplumes, distributed along the LOS. The supergranule network provides the required spatial structure. It is shown by modeling that the observations can be reproduced if microplumes are concentrated within some 5 Mm of the cell boundaries. For this reason, we propose to call this second population "network plumes." The processes involved could represent a major contribution to the heating mechanism of the solar corona.

  12. Quantification of layered patterns with structural anisotropy: a comparison of biological and geological systems.

    PubMed

    Smolyar, I; Bromage, T; Wikelski, M

    2016-03-01

    Large-scale patterns evident from satellite images of aeolian landforms on Earth and other planets; those of intermediate scale in marine and terrestrial sand ripples and sediment profiles; and small-scale patterns such as lamellae in the bones of vertebrates and annuli in fish scales are each represented by layers of different thicknesses and lengths. Layered patterns are important because they form a record of the state of internal and external factors that regulate pattern formation in these geological and biological systems. It is therefore potentially possible to recognize trends, periodicities, and events in the history of the formation of these systems among the incremental sequences. Though the structures and sizes of these 2-D patterns are typically scale-free, they are also characteristically anisotropic; that is, the number of layers and their absolute thicknesses vary significantly during formation. The aim of the present work is to quantify the structure of layered patterns and to reveal similarities and differences in the processing and interpretation of layered landforms and biological systems. To reach this goal we used N-partite graph and Boolean functions to quantify the structure of layers and plot charts for "layer thickness vs. layer number" and "layer area vs. layer number". These charts serve as a source of information about events in the history of formation of layered systems. The concept of synchronization of layer formation across a 2-D plane is introduced to develop the procedure for plotting "layer thickness vs. layer number" and "layer area vs. layer number", which takes into account the structural anisotropy of layered patterns and increase signal-to-noise ratio in charts. Examples include landforms on Mars and Earth and incremental layers in human and iguana bones.

  13. Quantification of layered patterns with structural anisotropy: a comparison of biological and geological systems.

    PubMed

    Smolyar, I; Bromage, T; Wikelski, M

    2016-03-01

    Large-scale patterns evident from satellite images of aeolian landforms on Earth and other planets; those of intermediate scale in marine and terrestrial sand ripples and sediment profiles; and small-scale patterns such as lamellae in the bones of vertebrates and annuli in fish scales are each represented by layers of different thicknesses and lengths. Layered patterns are important because they form a record of the state of internal and external factors that regulate pattern formation in these geological and biological systems. It is therefore potentially possible to recognize trends, periodicities, and events in the history of the formation of these systems among the incremental sequences. Though the structures and sizes of these 2-D patterns are typically scale-free, they are also characteristically anisotropic; that is, the number of layers and their absolute thicknesses vary significantly during formation. The aim of the present work is to quantify the structure of layered patterns and to reveal similarities and differences in the processing and interpretation of layered landforms and biological systems. To reach this goal we used N-partite graph and Boolean functions to quantify the structure of layers and plot charts for "layer thickness vs. layer number" and "layer area vs. layer number". These charts serve as a source of information about events in the history of formation of layered systems. The concept of synchronization of layer formation across a 2-D plane is introduced to develop the procedure for plotting "layer thickness vs. layer number" and "layer area vs. layer number", which takes into account the structural anisotropy of layered patterns and increase signal-to-noise ratio in charts. Examples include landforms on Mars and Earth and incremental layers in human and iguana bones. PMID:27441261

  14. Tunable Photonic Devices in Ferroelectric-Based Layered Structures

    NASA Astrophysics Data System (ADS)

    Xin, Jianzhuo

    This thesis presents the studies on the optical properties of perovskite ferroelectric thin films, as well as the preparation and applications of ferroelectrics in tunable photonic devices. Ba(Zr,Ti)O3 (BZT) thin films with different Zr concentration were grown on MgO substrates by pulsed laser deposition, and their structural and optical properties in the visible range were systematically characterized, including the out-of-plane lattice constant, grain size, refractive index, optical band gap energy, electro-optic coefficient, optical loss and absorption coefficient. The obtained results provide information for the design of BZT thin film-based optical devices. One-dimensional photonic crystal filter working in the terahertz (THz) range was studied. The transmission properties of SrTiO3 (STO) crystals were first characterized by THz time-domain spectroscopy. Si/STO multilayers with different STO defect thicknesses were designed by the transfer matrix method and then constructed by polishing and stacking. The shift of defect mode was observed and comparable with the calculations. Two-dimensional photonic structures in the optical and infra-red range were then attempted. A combination of nanoimprint lithography and inductively coupled plasma etching were investigated on (Ba,Sr)TiO3 thin films. Then, in order to simplify the nanoimprint process and allow thick metal sacrificial layer deposition for high aspect-ratio etching, a transfer imprint lithography technique was developed. Finally, surface plasmon resonance (SPR) tuning via thermally-induced refractive index changes in ferroelectrics was investigated. Ag stripes with periodicity 750 nm were fabricated on flat BST surface by nanoimprint lithography and subsequent lift-off. (-1), (2) and (-2) SP modes from Ag/BST interface were observed in visible range. Red shift of the modes up to 3.9 nm was obtained with increasing temperature. Then continuous Au film on corrugated BST surface with periodicity of 1 mum was

  15. The Origin of a Layer of Subcircular Mudflakes in the Ross Sandstone Formation of County Clare, Ireland

    NASA Astrophysics Data System (ADS)

    Robinson, K. H.; Kackstaetter, U. R.

    2015-12-01

    The west coast of Ireland in County Clare is famous for its Paleozoic stratigraphy containing spectacular exposures of deposits from carbonate shelf, deep marine, slope and deltaic environments, exposed at several distinctive and well-known locations including the Burren, Cliffs of Moher, and Bridges of Ross. Underlying the silty sandstones of the Gull Island Formation and overlying the Clare Shale, the Carboniferous Ross Sandstone Formation comprises a series of fine-grained sandstone and mudstone deep water turbidite deposits. Approximately a half-kilometer northeast of the Bridges of Ross and about 15 meters below the upper boundary of the Ross Formation is a particular stratum exhibiting an assemblage of unique circular to ovoid impressions. These features densely cover an exposed horizontal surface of approximately 100 square meters, positioned about 5 meters above and adjacent to a cluster of sand volcanoes. The impressions frequently overlap and completely cover the exposed surface of the rock unit and continue along the same plane of the buried portion of the stratum. Diameters of the impressions range between 2 and 20 centimeters, and many contain clasts of pale grey shale or claystone material. Samples were collected from the layer of interest as well as from subjacent and superjacent strata, spanning a total thickness of just over 1 meter. Thin sections were created and analyzed to determine both composition and estimated porosity of the rock in a continuous vertical cross-section through the series of strata surrounding the impressions. Characteristics of each stratum were examined to explore possible depositional relationships of each layer to the others and to indicate likely diagenetic processes of the subcircular features. Two broad possible origins are discussed: a primary sedimentary origin, i.e. turbidite channel mudflake conglomerate; or a post-depositional soft sediment deformation origin due to either (i) sediment loading and dewatering, (ii

  16. Enhancement of perpendicular magnetic anisotropy and transmission of spin-Hall-effect-induced spin currents by a Hf spacer layer in W/Hf/CoFeB/MgO layer structures

    SciTech Connect

    Pai, Chi-Feng; Nguyen, Minh-Hai; Vilela-Leão, Luis Henrique; Buhrman, R. A.; Belvin, Carina; Ralph, D. C.

    2014-02-24

    We report that strong perpendicular magnetic anisotropy of the ferromagnetic layer in a W/CoFeB/MgO multilayer structure can be established by inserting a Hf layer as thin as 0.25 nm between the W and CoFeB layers. The Hf spacer also allows transmission of spin currents generated by an in-plane charge current in the W layer to apply strong spin torque on the CoFeB, thereby enabling current-driven magnetic switching. The antidamping-like and field-like components of the spin torque exerted on a 1 nm CoFeB layer are of comparable magnitudes in this geometry. Both components originate from the spin Hall effect in the underlying W layer.

  17. A structural origin for the cantaloupe terrain of Triton

    NASA Technical Reports Server (NTRS)

    Boyce, Joseph M.

    1993-01-01

    Cantaloupe terrain is unique to Triton. It is Triton's oldest terrain and includes about 250,000 km sq. region displaying sparsely cratered, closely spaced, nearly circular dimples about 30-40 km across. This terrain is found on no other planet because, only on Triton the final major global thermal pulse (1) caused completed (or nearly) interior melting resulting in a cooling history where large thermal stresses shattered and contorted a thin, weak lithosphere, and (2) occurred after heavy bombardment so that the surface features were preserved. The cantaloupe terrain is composed of intersecting sets of structures (folds and/or faults) that have developed as a result of global compression generated by volumetric changes associated with cooling of Triton's interior. Further, it is proposed that these structures developed after the period of heavy bombardment, and resulted from the last major global thermal epoch in Triton's unique history (either caused by tidal or radio metric heating). Initially, as the body cooled and the structures formed, their surface topography was most likely modified by thermal relaxation of the warm surface ices. In other bodies like Mercury, thermal stresses generated from global cooling and contraction have resulted in widely spaced thrust faults, whereas on Triton, thermal stresses produced more closely-spaced folds and faults sets. This difference in structural style is probably due to differences in lithospheric properties (thickness, strength, etc.), the magnitude of stress (directly dependent on the thermal history), and when the structures formed, relative to the period of heavy bombardment.

  18. Dynamical Origin and the Pole Structure of X(3872)

    SciTech Connect

    Danilkin, I. V.; Simonov, Yu. A.

    2010-09-03

    The dynamical mechanism of channel coupling with the decay channels is applied to the case of coupled charmonium--DD{sup *} states with J{sup PC}=1{sup ++}. A pole analysis is done and the DD{sup *} production cross section is calculated in qualitative agreement with experiment. The sharp peak at the D{sub 0}D{sub 0}{sup *} threshold and flat background are shown to be due to Breit-Wigner resonance, shifted by channel coupling from the original position of 3954 MeV for the 2{sup 3}P{sub 1}, QQ state. A similar analysis, applied to the n=2, {sup 3}P{sub 2}, {sup 1}P{sub 1}, {sup 3}P{sub 0}, allows us to associate the first one with the observed Z(3930) J=2 and explains the destiny of {sup 3}P{sub 0}.

  19. Error, population structure and the origin of diverse sign systems.

    PubMed

    Grassly, N C; Von Haeseler, A; Krakauer, D C

    2000-10-01

    Evolutionary models of communication are used to shed some light on the selective pressures involved in the evolution of simple referential signals, and the constraints hindering the emergence of signs. Error-prone communication results from errors in transmission (in which individuals learn the wrong associations) and communication (in which signs are mistaken for one another). We demonstrate how both classes of errors are required to generate diversity and subsequently impose limits on the sign repertoire within a population. We then explore the influence of geographic structuring of a population on the evolution of a shared sign system and the importance of such structure for the maintenance of sign diversity. Deceit tends to erode conventional signs systems thereby reducing signal diversity, we demonstrate that population structure can act as a hedge against deceit, thereby ensuring the persistence of sign systems. PMID:10988022

  20. The structural origin of anomalous properties of liquid water

    PubMed Central

    Nilsson, Anders; Pettersson, Lars G. M.

    2015-01-01

    Water is unique in its number of unusual, often called anomalous, properties. When hot it is a normal simple liquid; however, close to ambient temperatures properties, such as the compressibility, begin to deviate and do so increasingly on further cooling. Clearly, these emerging properties are connected to its ability to form up to four well-defined hydrogen bonds allowing for different local structural arrangements. A wealth of new data from various experiments and simulations has recently become available. When taken together they point to a heterogeneous picture with fluctuations between two classes of local structural environments developing on temperature-dependent length scales. PMID:26643439

  1. Effect of low-temperature annealing on the electronic- and band-structures of (Ga,Mn)As epitaxial layers

    SciTech Connect

    Yastrubchak, O. Gluba, L.; Żuk, J.; Wosinski, T. Andrearczyk, T.; Domagala, J. Z.; Sadowski, J.

    2014-01-07

    The effect of outdiffusion of Mn interstitials from (Ga,Mn)As epitaxial layers, caused by post-growth low-temperature annealing, on their electronic- and band-structure properties has been investigated by modulation photoreflectance (PR) spectroscopy. The annealing-induced changes in structural and magnetic properties of the layers were examined with high-resolution X-ray diffractometry and superconducting quantum interference device magnetometry, respectively. They confirmed an outdiffusion of Mn interstitials from the layers and an enhancement in their hole concentration, which were more efficient for the layer covered with a Sb cap acting as a sink for diffusing Mn interstitials. The PR results demonstrating a decrease in the band-gap-transition energy in the as-grown (Ga,Mn)As layers, with respect to that in the reference GaAs one, are interpreted by assuming a merging of the Mn-related impurity band with the GaAs valence band. Whereas an increase in the band-gap-transition energy caused by the annealing treatment of the (Ga,Mn)As layers is interpreted as a result of annealing-induced enhancement of the free-hole concentration and the Fermi level location within the valence band. The experimental results are consistent with the valence-band origin of itinerant holes mediating ferromagnetic ordering in (Ga,Mn)As, in agreement with the Zener model for ferromagnetic semiconductors.

  2. The origin and development of the ice pahse in frontal layer clouds (Invited)

    NASA Astrophysics Data System (ADS)

    Choularton, T.; Scientific Team Of Appraise Clouds Programme

    2010-12-01

    In this paper we investigate the aerosol indirect effect in mixed phase layer clouds, and present an overview of a number of case studies in clouds of varying depth and temperature range. We consider the roles of the aerosol in both droplet and ice crystal nucleation and secondary ice particle production which all have a major impact on the ice crystals properties in the different clouds. During winter 2007-2008 and 2009-2010 flights were made in the vicinity of Chilbolton, using the FAAM BAe146 research aircraft. This was equipped with a comprehensive range of instrumentation to measure the ice and liquid phase microphysics of the cloud and the size distribution and size resolved chemical composition of the aerosols entering cloud. The aircraft flew horizontal legs below cloud, in cloud and above cloud top on a radial towards and away from Chilbolton observatory. The vertical separation of in-clouds legs was selected so as to investigate key regions of interest for the cloud microphysics of the system, features which were determined from an initial profile through the cloud system and from the simultaneous observations of the radars and lidars. Passes below cloud base were undertaken in order to investigate the aerosol entering the cloud whilst passes above cloud top were used to investigate any ice crystal seeding that was occurring from above and for the effects of entrainment including entrainment of aerosol. When temperatures at cloud top were significantly colder than -35deg C, and there was evidence that ice crystal formation had occurred following the freezing of haze droplets. Observations using the CPI (Cloud Particle Imager) probe and the 2D-S showed the presence of a large concentration of small pristine Bullet Rosette crystals, the preferred habit of ice growing at these ambient temperatures and humidities. When cloud top temperatures were warmer than this extensive supercooled liquid water was often found near cloud top and ice initiation appeared to

  3. Charge carrier transport properties in layer structured hexagonal boron nitride

    SciTech Connect

    Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2014-10-15

    Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (~ 6.4 eV), hexagonal boron nitride (hBN) has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K). The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T{sub 0}){sup −α} with α = 3.02, satisfying the two-dimensional (2D) carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm{sup -1}), which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  4. Inner Plasma Structure of the Low-Latitude Reconnection Layer

    NASA Technical Reports Server (NTRS)

    Zhang, Q.-H.; Dunlop, M. W.; Lockwood, M.; Lavraud, B.; Bogdanova, Y. V.; Hasegawa, H.; Yang, H. -G.; Liu, R. -Y.; Hu, H. -Q.; Zhang, B. -C.; Pu, Z. -Y.; Yang, Z. -W.; Wang, J.; Taylor, M. G. G. T.; Berchem, J.; Constantinescu, D.; Volwerk, M.; Frey, H.; Fazakerley, A. N.; Shen, C.; Shi, J. -K.; Sibeck, D.; Escoubet, P.; Wild, J. A.

    2012-01-01

    We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.

  5. Localised Ag(+) vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2.

    PubMed

    Damay, F; Petit, S; Rols, S; Braendlein, M; Daou, R; Elkaïm, E; Fauth, F; Gascoin, F; Martin, C; Maignan, A

    2016-01-01

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K(-1).m(-1) at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag(+) ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag(+) oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid. PMID:27000414

  6. Localised Ag+ vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2

    PubMed Central

    Damay, F.; Petit, S.; Rols, S.; Braendlein, M.; Daou, R.; Elkaïm, E.; Fauth, F.; Gascoin, F.; Martin, C.; Maignan, A.

    2016-01-01

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K−1.m−1 at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag+ ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag+ oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid. PMID:27000414

  7. Localised Ag+ vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2

    NASA Astrophysics Data System (ADS)

    Damay, F.; Petit, S.; Rols, S.; Braendlein, M.; Daou, R.; Elkaïm, E.; Fauth, F.; Gascoin, F.; Martin, C.; Maignan, A.

    2016-03-01

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K‑1.m‑1 at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag+ ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag+ oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid.

  8. Structure of turbulence in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.

    1993-01-01

    This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.

  9. Adularia in epithermal veins, Queensland: morphology, structural state and origin

    NASA Astrophysics Data System (ADS)

    Dong, G.; Morrison, G. W.

    1995-02-01

    Four types of adularia (i.e. sub-rhombic, rhombic, tabular and pseudo-acicular) are recognised from examination of samples from ten epithermal vein deposits and prospects in Queensland, based on morphology of the individual crystals. Further investigation of the structural state of adularia reveals that each group has some specific features in terms of the degree of Al/Si disordering, which can be related to various crystallisation conditions and the thermal history. Sub-rhombic adularia is commonly 2 4 mm in size and subhedral with more or less rhombic outlines, and has a relatively ordered Al/Si distribution (2t1 > 0.84), reflecting slow crystallisation conditions. Adularia of this type, in association with coarse-grained quartz, is predominant at deep levels of epithermal systems where boiling is initiated in an environment of low permeability and the fluid is slightly supersaturated with respect to adularia and quartz. Tabular adularia, characterised by its lath-shape and disordered structure (2t1 values ranging from 0.64 to 0.74), is likely to have formed when the fluid moves up to a more permeable environment and starts boiling violently. Relatively high temperatures and rapidly changing conditions account for its special morphology and disordered structure. Rhombic adularia, showing very small crystal size (< 0.2 mm) with euhedral rhombic form, has an intermediate degree of Al/Si ordering. Pseudo-acicular adularia is interpreted as pseudomorphs after carbonate, and its high Al/Si ordered structure is attributed to the presence of a carbonate precursor. These two types of adularia commonly occur within crustiform and colloform bands in association with high grade ore, and chalcedony or fine-grained quartz which often displays various recrystallisation textures. It is most likely that adularias of these two types are formed when extensive boiling is protracted. Microprobe analyses indicate the composition of all adularia types close to pure KAlSi3O8. Sericite

  10. The Origins of Magnetic Structure in the Corona and Wind

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro K.

    2010-01-01

    One of the most important and most puzzling features of the coronal magnetic field is that it appears to have smooth magnetic structure with little evidence for non-potentiality except at two special locations: photospheric polarity inversions lines. (non-potentiality observed as a filament channel) and coronal hole boundaries, (observed as the slow solar wind). This characteristic feature of the closed-field corona is highly unexpected given that its magnetic field is continuously tangled by photospheric motions. Although reconnection can eliminate some of the injected structure, it cannot destroy the helicity, which should build up to produce observable complexity. I propose that an inverse cascade process transports the injected helicity from the interior of closed flux regions to their boundaries inversion lines and coronal holes, creating both filament channels and the slow wind. We describe how the helicity is injected and transported and calculate the relevant rates. I argue that one process, helicity transport, can explain both the observed lack and presence of structure in the coronal magnetic field. This work has been supported by the NASA HTP, SR&T, and LWS programs.

  11. Observing the Origins of Galaxy Structure in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Snyder, Greg

    2014-10-01

    Many processes affect the appearance of galaxies, and it has recently become possible to predict how these processes set internal galaxy structure in significant populations. Such calculations are poised to clarify the physics of star formation quenching, the cosmological formation of bulges and disks, and the observability of galaxy mergers. To advance these goals, we propose to build and analyze a very large set of mock HST images based on the Illustris Project. This accurate continuous-volume hydrodynamical simulation formed thousands of structurally diverse Milky Way-mass galaxies in {106.5 Mpc}^3 with detail comparable to the resolution of HST at many cosmic times. We will mock-observe 41,000 model galaxies at 0 < z < 5 in broadband filters used by ACS, WFC3, and JWST/NIRCAM, and measure automated morphology diagnostics from each image. This will constitute a timely and effective tool to advance two key goals of observational cosmology with HST: linking the building blocks of galaxies across cosmic time, and understanding the implications of galaxy morphology and structure. It will allow us to study the emergence of the Hubble Sequence, estimate merger rates and consequences, and interpret star formation patterns in distant galaxies. Therefore this model dataset is ideally suited to enhance results from HST Treasury and Archival Legacy surveys, the Ultra Deep Fields, and Frontier Fields. To increase the science return, we will publicly release our model images and morphology catalogs, providing a tool that can directly link physical mechanisms to high redshift galaxy data.

  12. The current structure of stratified tidal planetary boundary layer flow

    SciTech Connect

    Myrhaug, D.; Slaattelid, O.H.

    1995-12-31

    The paper presents the bottom shear stress and velocity profiles in stratified tidal planetary boundary layer flow by using similarity theory. For a given seabed roughness length, free stream current velocity components, frequency of tidal oscillation, Coriolis parameter and stratification parameter the maximum bottom shear stress is determined for flow conditions in the rough, smooth and transitional smooth-to-rough turbulent regime. Further, the direction of the bottom shear stress and the velocity profiles are given. Comparison is made with data from field measurements of time-independent as well as tidal planetary boundary layer flow for neutral conditions, and the agreement between the predictions and the data is generally good. Further, an example of application for stable stratification is given, and qualitatively the predictions show, as expected, that the bottom shear stress and the thickness of the boundary layer become smaller for stable than for neutral stratification. Other features of the tidal planetary boundary layer flow are also discussed.

  13. Surface ozone-aerosol behaviour and atmospheric boundary layer structure in Saharan dusty scenario

    NASA Astrophysics Data System (ADS)

    Adame, Jose; Córdoba-Jabonero, Carmen; Sorrribas, Mar; Gil-Ojeda, Manuel; Toledo, Daniel; Yela, Margarita

    2016-04-01

    A research campaign was performed for the AMISOC (Atmospheric Minor Species relevant to the Ozone Chemistry) project at El Arenosillo observatory (southwest Spain) in May-June 2012. The campaign focused on the impact of Saharan dust intrusions at the Atmospheric Boundary Layer (ABL) and ozone-aerosol interactions. In-situ and remote-sensing techniques for gases and aerosols were used moreover to modelling analyses. Meteorology features, ABL structures and evolution, aerosol profiling distributions and aerosol-ozone interactions on the surface were analysed. Two four-day periods were selected according to non-dusty (clean conditions) and dusty (Saharan dust) situations. In both scenarios, sea-land breezes developed in the lower atmosphere, but differences were found in the upper levels. Results show that surface temperatures were greater than 3°C and humidity values were lower during dusty conditions than non-dusty conditions. Thermal structures on the surface layer (estimated using an instrument on a 100 m tower) show differences, mainly during nocturnal periods with less intense inversions under dusty conditions. The mixing layer during dusty days was 400-800 m thick, less than observed on non-dusty days. Dust also disturbed the typical daily ABL evolution. Stable conditions were observed during the early evening during intrusions. Aerosol extinction on dusty days was 2-3 times higher, and the dust was confined between 1500 and 5500 m. Back trajectory analyses confirmed that the dust had an African origin. On the surface, the particle concentration was approximately 3.5 times higher during dusty events, but the local ozone did not exhibit any change. The arrival of Saharan dust in the upper levels impacted the meteorological surface, inhibited the daily evolution of the ABL and caused an increase in aerosol loading on the surface and at higher altitudes; however, no dust influence was observed on surface ozone.

  14. Structure and Growth of the Marine Boundary Layer

    NASA Technical Reports Server (NTRS)

    Mccumber, M.

    1984-01-01

    LANDSAT visible imagery and a one-dimensional Lagrangian boundary layer model were used to hypothesize the nature and the development of the marine boundary layer during a winter episode of strong seaward cold air advection. Over-water heating and moistening of the cold, dry continental air is estimable from linear relations involving horizontal gradients of the near-surface air temperature and humidity. A line of enhanced convection paralleling the Atlantic U.S. coast from south of New York Bay to the vicinity of Virginia Beach, VA was attributed to stronger convergence at low levels. This feature was characterized as a mesoscale front. With the assistance of a three-dimensional mesoscale boundary layer model, initialized with data obtained from the MASEX, the marine boundary layer can be mapped over the entire Atlantic coastal domain and the evolution of the boundary layer can be studied as a function of different characteristics of important surface level forcings. The effects on boundary layer growth due to the magnitude and pattern of sea surface temperature, to the shape of the coastline, and to atmospheric conditions, such as the orientation of the prevailing wind are examined.

  15. Recall and validation of phobia origins as a function of a structured interview versus the Phobia Origins Questionnaire.

    PubMed

    Kheriaty, E; Kleinknecht, R A; Hyman, I E

    1999-01-01

    Memory for fear onset events was examined in 43 dog-fearful and 48 blood/injection-fearful participants. Half of each fear type was administered the Phobia Origins Questionnaire (POQ), and half the Phobia Origins Structured Interview (POSI). Written accounts of recalled onset experiences were sent to participants' parents for verification. More participants assessed by the POQ reported a phobia onset event (93%) than did those assessed by the POSI (54%). A majority in both methods recalled conditioning-like experiences. The POQ resulted in more reports of vicarious and informational onset reports than did the POSI. Parents confirmed more onset event reports obtained by the POSI (81%) than those obtained by the POQ, (50%). In addition, in 21% of cases where a child recalled an event, a parent reported an onset event that predated the one provided by the child. Results are discussed in terms of memory mechanisms operative in autobiographical memories.

  16. Active Structural Acoustic Control in an Original A400M Aircraft Structure

    NASA Astrophysics Data System (ADS)

    Koehne, C.; Sachau, D.; Renger, K.

    2016-09-01

    Low frequency noise has always been a challenge in propeller driven aircraft. At low frequencies passive noise treatments are not as efficient as active noise reduction systems. The Helmut-Schmidt-University has built up a full-scale test rig with an original A400M aircraft structure. This provides a good opportunity to develop and test active noise reduction systems in a realistic environment. The currently installed system consists of mechanical actuators and acoustical sensors. The actuators are called TVAs (Tuneable Vibration Absorber) and contain two spring-mass systems whose natural frequencies are adjusted to the BPFs (Blade Passage Frequency) of the propellers. The TVAs are mounted to the frames and the force direction is normal to the skin. The sensors are condenser microphones which are attached to the primary structure of the airframe. The TVAs are equipped with signal processing devices. These components carry out Fourier transforms and signal amplification for the sensor data and actuator signals. The communication between the TVAs and the central control unit is implemented by the CAN Bus protocol and mainly consists of complex coefficients for the sensor and actuator data. This paper describes the basic structure of the system, the hardware set-up and function tests of the controller.

  17. Structural origin of low temperature glassy relaxation in magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Laha, Suvra; Regmi, Rajesh; Lawes, Gavin

    2013-03-01

    Magnetic nanoparticles often exhibit glass-like relaxation features at low temperatures. Here we discuss the effects of doping boron, cobalt, gadolinium and lanthanum on the low temperature magnetic properties of Fe3O4 nanoparticles. We investigated the structure of the nanoparticles using both X-ray diffraction and Raman studies, and find evidence for secondary phase formation in certain samples. We acquired Transmission Electron Microscopic images to give direct information on the morphology and microstructure of these doped nanoparticles. We measured the ac out-of-phase susceptibility (χ//) vs temperature (T) to parameterize the low temperature glassy magnetic relaxation. All samples show low temperature magnetic relaxation, but the amplitude of the signal increases dramatically for certain dopants. We attribute these low temperature frequency-dependent magnetic relaxation features to structural defects, which are enhanced in some of the doped Fe3O4 nanoparticles. These studies also confirm that the low temperature relaxation in nanoparticles arises from single particle effects and are not associated with interparticle interactions.

  18. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; Mahmood, S.

    2011-11-01

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  19. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    SciTech Connect

    Akhtar, N.; Mahmood, S.

    2011-11-15

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  20. Mirror instability and origin of morningside auroral structure

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Schulz, M.; Fennell, J. F.; Kishi, A. M.

    1983-01-01

    Auroral optical imagery shows marked differences between auroral features of the evening and morning sectors: the separation between diffuse and discrete auroras in the evening sector is not distinct in the morning sector, which is dominated by auroral patches and multiple banded structures aligned along some direction. Plasma distribution function signatures also show marked differences: downward electron beams and inverted-V signatures prefer the evening sector, while the electron spectra on the morning sector are similar to the diffuse aurora. A theory of morningside auroras consistent with these features was constructed. The theory is based on modulation of the growth rates of electron cyclotron waves by the mirror instability, which is in turn driven by inward-convected ions that have become anisotropic. This modulation produces alternating bands of enhanced and reduced electron precipitation which approximate the observed multiple auroral bands and patches of the morning sector.

  1. Structural origin of circularly polarized iridescence in jeweled beetles

    NASA Astrophysics Data System (ADS)

    Crne, Matija; Sharma, Vivek; Park, Jung O.; Srinivasarao, Mohan

    2010-03-01

    The iridescent metallic green beetle, Chrysina gloriosa, selectively reflects left circularly polarized light. The exoskeleton is decorated by hexagonal cells (˜10 micron) that coexist with pentagons and heptagons. We find that the fraction of hexagons decreases with an increase in curvature. In bright field microscopy, each cell contains a bright yellow core, placed in a greenish cell with yellowish border, but the core disappears in the dark field. Using confocal microscopy, we observe that these cells consist of nearly concentric, nested arcs that lie on surface of a shallow cone. We infer that the patterns are structurally and optically analogous to the focal conic domains formed spontaneously on the free surface of a cholesteric liquid crystal. The microstructure provides the bases for the morphogenesis as well as key insights for emulating the intricate optical response the exoskeleton of scarab beetles.

  2. Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Crne, Matija; Park, Jung Ok; Srinivasarao, Mohan

    2009-07-01

    The iridescent metallic green beetle, Chrysina gloriosa, which selectively reflects left circularly polarized light, possesses an exoskeleton decorated by hexagonal cells (~10 μm) that coexist with pentagons and heptagons. The fraction of hexagons decreases with an increase in curvature. In bright field microscopy, each cell contains a bright yellow core, placed in a greenish cell with yellowish border, but the core disappears in dark field. With use of confocal microscopy, we observe that these cells consist of nearly concentric nested arcs that lie on the surface of a shallow cone. We infer that the patterns are structurally and optically analogous to the focal conic domains formed spontaneously on the free surface of a cholesteric liquid crystal. These textures provide the basis for the morphogenesis as well as key insights for emulating the intricate optical response of the exoskeleton of scarab beetles.

  3. Mirror instability and the origin of morningside auroral structure

    SciTech Connect

    Chiu, Y.T.; Schulz, M.; Fennell, J.F.; Kishi, A.M.

    1983-05-01

    Auroral optical imagery shows marked differences between auroral features of the evening and morning sectors: The separation between diffuse and discrete auroras in the evening sector is not distinct in the morning sector, which is dominated by auroral patches and multiple banded structures aligned along some direction. Plasma distribution function signatures also show marked differences: downward electron beams and inverted-V signatures prefer the evening sector, while the electron spectra on the morning sector are similar to the diffuse aurora. We have constructed a theory of morningside auroras consistent with these features. The theory is based on modulation of the growth rates of electron cyclotron waves by the mirror instability, which is in turn driven by inward-convected ions that have become anisotropic. This modulation produces alternating bands of enhanced and reduced electron precipitation which approximate the observed multiple auroral bands and patches of the morning sector.

  4. Origin of the coloration and structure of azobenzene chromogen

    NASA Astrophysics Data System (ADS)

    Mikheev, Yu. A.; Guseva, L. N.; Ershov, Yu. A.

    2015-11-01

    Enhancement of the visible (VIS) absorption band intensity of trans-azobenzene ( t-AB) in solutions containing water and hydrogen ions is established. This contradicts the current belief that it is part of the n → π* transition. At the same time, it qualitatively reflects the properties of the π → π* bands of protonated azobenzene (ABH+). It is concluded that t-AB molecules display an autopolarization property and exist in the form of two individual electronic (e) tautomers. One of these is nonpolar and has the canonical chemical structure; its content considerably exceeds that of the polar e-tautomer. The polar e-tautomer forms as a result of the reversible transfer of an electron from the nonbonding donor sp 2 orbital of nitrogen to the nonbonding acceptor Rydberg's 3 S orbital ( R 3 S ) of the local N=N chromophore within the molecule. The positively charged chromogen corresponding to it displays a π → π* transition in the visible spectral region, and the π→π* transition (not the traditionally postulated n → π* transition) is clearly responsible for the orange color of AB. A model of transient e-configurations with the participation of R 3 S and explaining the previous poorly understood experimental results from optical absorption, fluorescent, raman spectroscopic, and photoionization femtosecond kinetic studies is considered. It is shown that famous ideas about the violation of Kasha's rule in t-AB fluorescence and photoisomerization processes are incorrect. The reasons for the increased intensity of the VIS band of cis-azobenzene ( c-AB) are explained. It is concluded that there is an equilibrium between nonpolar and polarized e-tautomers in cis-azobenzene as well, but it is shifted more toward the polar tautomer in c-AB due to its structural features, making the VIS band more intense.

  5. Origin of Permeability and Structure of Flows in Fractured Media

    NASA Astrophysics Data System (ADS)

    De Dreuzy, J.; Darcel, C.; Davy, P.; Erhel, J.; Le Goc, R.; Maillot, J.; Meheust, Y.; Pichot, G.; Poirriez, B.

    2013-12-01

    After more than three decades of research, flows in fractured media have been shown to result from multi-scale geological structures. Flows result non-exclusively from the damage zone of the large faults, from the percolation within denser networks of smaller fractures, from the aperture heterogeneity within the fracture planes and from some remaining permeability within the matrix. While the effect of each of these causes has been studied independently, global assessments of the main determinisms is still needed. We propose a general approach to determine the geological structures responsible for flows, their permeability and their organization based on field data and numerical modeling [de Dreuzy et al., 2012b]. Multi-scale synthetic networks are reconstructed from field data and simplified mechanical modeling [Davy et al., 2010]. High-performance numerical methods are developed to comply with the specificities of the geometry and physical properties of the fractured media [Pichot et al., 2010; Pichot et al., 2012]. And, based on a large Monte-Carlo sampling, we determine the key determinisms of fractured permeability and flows (Figure). We illustrate our approach on the respective influence of fracture apertures and fracture correlation patterns at large scale. We show the potential role of fracture intersections, so far overlooked between the fracture and the network scales. We also demonstrate how fracture correlations reduce the bulk fracture permeability. Using this analysis, we highlight the need for more specific in-situ characterization of fracture flow structures. Fracture modeling and characterization are necessary to meet the new requirements of a growing number of applications where fractures appear both as potential advantages to enhance permeability and drawbacks for safety, e.g. in energy storage, stimulated geothermal energy and non-conventional gas productions. References Davy, P., et al. (2010), A likely universal model of fracture scaling and

  6. Communication: Origin of the contributions to DNA structure in phages.

    PubMed

    Myers, Christopher G; Pettitt, B Montgomery

    2013-02-21

    Cryo electron microscopy (cryo-EM) data of the interior of phages show ordering of the interior DNA that has been interpreted as a nearly perfectly ordered polymer. We show surface-induced correlations, excluded volume, and electrostatic forces are sufficient to predict most of the major features of the current structural data for DNA packaged within viral capsids without additional ordering due to elastic bending forces for the polymer. Current models assume highly-ordered, even spooled, hexagonally packed conformations based on interpretation of cryo-EM density maps. We show herein that the surface induced packing of short (6mer), unconnected DNA polymer segments is the only necessary ingredient in creating ringed densities consistent with experimental density maps. This implies the ensemble of possible conformations of polymeric DNA within the capsid that are consistent with cryo-EM data may be much larger than implied by traditional interpretations where such rings can only result from highly-ordered spool-like conformations. This opens the possibility of a more disordered, entropically-driven view of phage packaging thermodynamics. We also show the electrostatics of the DNA contributes a large portion of the internal hydrostatic and osmotic pressures of a phage virion, suggesting that nonlinear elastic anomalies might reduce the overall elastic bending enthalpy of more disordered conformations to have allowable free energies.

  7. THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS

    SciTech Connect

    Chiar, J. E.; Ricca, A.; Tielens, A. G. G. M.; Adamson, A. J. E-mail: Alessandra.Ricca@1.nasa.gov E-mail: aadamson@gemini.edu

    2013-06-10

    Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 {mu}m) and aliphatic (3.4 {mu}m) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp {sup 2} bonds can be measured in astronomical spectra using the 6.2 {mu}m CC aromatic stretch feature, whereas the 3.4 {mu}m aliphatic feature can be used to quantify the fraction of sp {sup 3} bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp {sup 3} content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

  8. Structural molecular components of septate junctions in cnidarians point to the origin of epithelial junctions in eukaryotes.

    PubMed

    Ganot, Philippe; Zoccola, Didier; Tambutté, Eric; Voolstra, Christian R; Aranda, Manuel; Allemand, Denis; Tambutté, Sylvie

    2015-01-01

    Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals.

  9. Porous Materials with Tunable Structure and Mechanical Properties via Templated Layer-by-Layer Assembly.

    PubMed

    Ziminska, Monika; Dunne, Nicholas; Hamilton, Andrew R

    2016-08-31

    The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer-nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials. PMID:27513218

  10. Origin, Internal Structure and Evolution of 4 Vesta

    NASA Astrophysics Data System (ADS)

    Zuber, Maria T.; McSween, Harry Y.; Binzel, Richard P.; Elkins-Tanton, Linda T.; Konopliv, Alexander S.; Pieters, Carle M.; Smith, David E.

    2011-12-01

    Asteroid 4 Vesta is the only preserved intact example of a large, differentiated protoplanet like those believed to be the building blocks of terrestrial planet accretion. Vesta accreted rapidly from the solar nebula in the inner asteroid belt and likely melted due to heat released due to the decay of 26Al. Analyses of meteorites from the howardite-eucrite-diogenite (HED) suite, which have been both spectroscopically and dynamically linked to Vesta, lead to a model of the asteroid with a basaltic crust that overlies a depleted peridotitic mantle and an iron core. Vesta’s crust may become more mafic with depth and might have been intruded by plutons arising from mantle melting. Constraints on the asteroid’s moments of inertia from the long-wavelength gravity field, pole position and rotation, informed by bulk composition estimates, allow tradeoffs between mantle density and core size; cores of up to half the planetary radius can be consistent with plausible mantle compositions. The asteroid’s present surface is expected to consist of widespread volcanic terrain, modified extensively by impacts that exposed the underlying crust or possibly the mantle. Hemispheric heterogeneity has been observed by poorly resolved imaging of the surface that suggests the possibility of a physiographic dichotomy as occurs on other terrestrial planets. Vesta might have had an early magma ocean but details of the early thermal structure are far from clear owing to model uncertainties and paradoxical observations from the HEDs. Petrological analysis of the eucrites coupled with thermal evolution modeling recognizes two possible mechanisms of silicate-metal differentiation leading to the formation of the basaltic achondrites: equilibrium partial melting or crystallization of residual liquid from the cooling magma ocean. A firmer understanding the plethora of complex physical and chemical processes that contribute to melting and crystallization will ultimately be required to

  11. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure

    DOEpatents

    Campbell; Christian X. , Morrison; Jay A.

    2011-12-20

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  12. Origin of non-spherical particles in the boundary layer over Beijing, China: based on balloon-borne observations.

    PubMed

    Chen, Bin; Yamada, Maromu; Iwasaka, Yasunobu; Zhang, Daizhou; Wang, Hong; Wang, Zhenzhu; Lei, Hengchi; Shi, Guangyu

    2015-10-01

    Vertical structures of aerosols from the ground to about 1,000 m altitude in Beijing were measured with a balloon-borne optical particle counter. The results showed that, in hazy days, there were inversions at approximately 500-600 m, below which the particulate matters were well mixed vertically, while the concentration of particles decreased sharply above the mixing layer. Electron microscopic observation of the particles collected with the balloon-borne impactor indicates that the composition of particles is different according to weather conditions in the boundary mixing layer of Beijing city and suggests that dust particles are always dominant in coarse-mode particles. Interestingly, sea-salt particles are frequently identified, suggesting the importance of marine air inflow to the Beijing area even in summer. The Ca-rich spherical particles are also frequently identified, suggesting chemical modification of dust particle by NOx or emission of CaO and others from local emission. Additionally, those types of particles showed higher concentration above the mixing layer under the relatively calm weather condition of summer, suggesting the importance of local-scale convection found in summer which rapidly transported anthropogenic particles above the mixing layer. Lidar extinction profiles qualitatively have good consistency with the balloon-borne measurements. Attenuation effects of laser pulse intensity are frequently observed due to high concentration of particulate matter in the Beijing atmosphere, and therefore quantitative agreement of lidar return and aerosol concentration can be hardly observed during dusty condition. Comparing the depolarization ratio obtained from the lidar measurements with the balloon-borne measurements, the contribution of the dry sea-salt particles, in addition to the dust particles, is suggested as an important factor causing depolarization ratio in the Beijing atmosphere.

  13. Origin of non-spherical particles in the boundary layer over Beijing, China: based on balloon-borne observations.

    PubMed

    Chen, Bin; Yamada, Maromu; Iwasaka, Yasunobu; Zhang, Daizhou; Wang, Hong; Wang, Zhenzhu; Lei, Hengchi; Shi, Guangyu

    2015-10-01

    Vertical structures of aerosols from the ground to about 1,000 m altitude in Beijing were measured with a balloon-borne optical particle counter. The results showed that, in hazy days, there were inversions at approximately 500-600 m, below which the particulate matters were well mixed vertically, while the concentration of particles decreased sharply above the mixing layer. Electron microscopic observation of the particles collected with the balloon-borne impactor indicates that the composition of particles is different according to weather conditions in the boundary mixing layer of Beijing city and suggests that dust particles are always dominant in coarse-mode particles. Interestingly, sea-salt particles are frequently identified, suggesting the importance of marine air inflow to the Beijing area even in summer. The Ca-rich spherical particles are also frequently identified, suggesting chemical modification of dust particle by NOx or emission of CaO and others from local emission. Additionally, those types of particles showed higher concentration above the mixing layer under the relatively calm weather condition of summer, suggesting the importance of local-scale convection found in summer which rapidly transported anthropogenic particles above the mixing layer. Lidar extinction profiles qualitatively have good consistency with the balloon-borne measurements. Attenuation effects of laser pulse intensity are frequently observed due to high concentration of particulate matter in the Beijing atmosphere, and therefore quantitative agreement of lidar return and aerosol concentration can be hardly observed during dusty condition. Comparing the depolarization ratio obtained from the lidar measurements with the balloon-borne measurements, the contribution of the dry sea-salt particles, in addition to the dust particles, is suggested as an important factor causing depolarization ratio in the Beijing atmosphere. PMID:25537163

  14. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius.

    PubMed

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2016-09-01

    Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein's secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a "cold" transition, at about -3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications. PMID:26992716

  15. A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (Mollusca, Bivalvia).

    PubMed

    Dauphin, Y; Brunelle, A; Cotte, M; Cuif, J P; Farre, B; Laprévote, O; Meibom, A; Salomé, M; Williams, C T

    2010-02-01

    The organic interprismatic layers of the mollusc Pinctada margaritifera are studied using a variety of highly spatially-resolved techniques to establish their composition and structure. Our results show that both the interlamellar sheets of the nacre and interprismatic envelopes form layered structures. Additionally, these organic layers are neither homogeneous in composition, nor continuous in their structure. Both structures play a major role in the biomineralization process and act as a boundary between mineral units.

  16. Local structure of Fe in Fe-doped misfit-layered calcium cobaltite: An X-ray absorption spectroscopy study

    SciTech Connect

    Prasoetsopha, Natkrita; Pinitsoontorn, Supree; Bootchanont, Atipong; Kidkhunthod, Pinit; Srepusharawoot, Pornjuk; Kamwanna, Teerasak; Amornkitbamrung, Vittaya; Kurosaki, Ken; Yamanaka, Shinsuke

    2013-08-15

    Polycrystalline Ca{sub 3}Co{sub 4−x}Fe{sub x}O{sub 9+δ} ceramics (x=0, 0.01, 0.03, 0.05) were fabricated using a simple thermal hydro-decomposition method and a spark plasma sintering technique. Thermoelectric property measurements showed that increasing Fe concentration resulted in a decrease in electrical resistivity, thermopower and thermal conductivity, leading to an improvement in the dimensionless figure-of-merit, >35% for x=0.05 at 1073 K. An X-ray absorption spectroscopy technique was used to investigate the local structure of Fe ions in the Ca{sub 3}Co{sub 4−x}Fe{sub x}O{sub 9+δ} structure for the first time. By fitting data from the extended X-ray absorption fine structure (EXAFS) spectra and analyzing the X-ray absorption near-edge structure (XANES) spectra incorporated with first principle simulation, it was shown that Fe was substituted for Co in the the Ca{sub 2}CoO{sub 3} (rocksalt, RS) layer rather than in the CoO{sub 2} layer. Variation in the thermoelectric properties as a function of Fe concentration was attributed to charge transfer between the CoO{sub 2} and the RS layers. The origin of the preferential Fe substitution site was investigated considering the ionic radii of Co and Fe and the total energy of the system. - Graphical abstract: The Fe K-edge XANES spectra of: (a) experimental result in comparison to the simulated spectra when Fe atoms were substituted in the RS layer; (b) with magnetic moment; (c) without magnetic moment, and in the CoO{sub 2} layer; (d) with magnetic moment and (e) without magnetic moment. Highlights: • Synthesis, structural studies, and thermoelectric properties of Ca{sub 3}Co{sub 4−x}Fe{sub x}O{sub 9+δ}. • Direct evidence for the local structure of the Fe ions in the Ca{sub 3}Co{sub 4−x}Fe{sub x}O{sub 9+δ} using XAS analysis. • EXAFS and XANES analysis showed that Fe was likely to be situated in the RS layer structure. • Changes in TE property with Fe content was due to charge transfer between

  17. Transverse surface waves in a layered structure with a functionally graded piezoelectric substrate and a hard dielectric layer.

    PubMed

    Qian, Zheng-Hua; Jin, Feng; Lu, Tianjian; Kishimoto, Kikuo

    2009-03-01

    As to an ideally layered structure with a functionally graded piezoelectric substrate (material parameters change continuously along the thickness direction) and a hard dielectric layer, the existence and propagation behavior of transverse surface waves is studied by analytical technique. The dispersion equations for the existence of the transverse surface waves with respect to phase velocity are obtained for electrically open and short circuit conditions, respectively. A detailed investigation of the effect of gradient coefficient on dispersion relation, electromechanical coupling factor and penetration depth is carried out. It is found by numerical examples that adjusting gradient coefficient makes the electromechanical coupling factor of the transverse surface waves achieve quite high values at some appropriate ratio values of the layer thickness to the wavelength, and at the same time, the penetration depth can be reduced to the same order as the wavelength.

  18. Origin and evolution of protein fold designs inferred from phylogenomic analysis of CATH domain structures in proteomes.

    PubMed

    Bukhari, Syed Abbas; Caetano-Anollés, Gustavo

    2013-01-01

    The spatial arrangements of secondary structures in proteins, irrespective of their connectivity, depict the overall shape and organization of protein domains. These features have been used in the CATH and SCOP classifications to hierarchically partition fold space and define the architectural make up of proteins. Here we use phylogenomic methods and a census of CATH structures in hundreds of genomes to study the origin and diversification of protein architectures (A) and their associated topologies (T) and superfamilies (H). Phylogenies that describe the evolution of domain structures and proteomes were reconstructed from the structural census and used to generate timelines of domain discovery. Phylogenies of CATH domains at T and H levels of structural abstraction and associated chronologies revealed patterns of reductive evolution, the early rise of Archaea, three epochs in the evolution of the protein world, and patterns of structural sharing between superkingdoms. Phylogenies of proteomes confirmed the early appearance of Archaea. While these findings are in agreement with previous phylogenomic studies based on the SCOP classification, phylogenies unveiled sharing patterns between Archaea and Eukarya that are recent and can explain the canonical bacterial rooting typically recovered from sequence analysis. Phylogenies of CATH domains at A level uncovered general patterns of architectural origin and diversification. The tree of A structures showed that ancient structural designs such as the 3-layer (αβα) sandwich (3.40) or the orthogonal bundle (1.10) are comparatively simpler in their makeup and are involved in basic cellular functions. In contrast, modern structural designs such as prisms, propellers, 2-solenoid, super-roll, clam, trefoil and box are not widely distributed and were probably adopted to perform specialized functions. Our timelines therefore uncover a universal tendency towards protein structural complexity that is remarkable. PMID:23555236

  19. Natural layer-by-layer photonic structure in the scales of Hoplia coerulea (Coleoptera)

    NASA Astrophysics Data System (ADS)

    Vigneron, Jean Pol; Lousse, Virginie; Colomer, Jean-François; Vigneron, Nathalie

    2006-08-01

    Hoplia coerulea is known for its spectacular blue-violet iridescence. The blue coloration is caused by the presence of a photonic structure inside the scales which cover the dorsal parts of the insect's body, including the head, the thorax, and the wing cases. The structure can be described by a stack of chitin plates wearing arrays of parallel rods. This arrangement leads to a multilayer structure which only uses a single solid material. The shift of the reflected wavelength to the ultraviolet (passing through violet iridescence) is described and explained on the basis of the optical properties of this structured metamaterial.

  20. Optical and field emission properties of layer-structure GaN nanowires

    SciTech Connect

    Cui, Zhen; Li, Enling; Shi, Wei; Ma, Deming

    2014-08-15

    Highlights: • The layer-structure GaN nanowires with hexagonal-shaped cross-sections are produced via a process based on the CVD method. • The diameter of the layer-structure GaN nanowire gradually decreases from ∼500 nm to ∼200 nm along the wire axis. • The layer-structure GaN nanowire film possesses good field emission property. - Abstract: A layer-structure gallium nitride (GaN) nanowires, grown on Pt-coated n-type Si (1 1 1) substrate, have been synthesized using chemical vapor deposition (CVD). The results show: (1) SEM indicates that the geometry structure is layer-structure. HRTEM indicates that GaN nanowire’s preferential growth direction is along [0 0 1] direction. (2) The room temperature PL emission spectrum of the layer-structure GaN nanowires has a peak at 375 nm, which proves that GaN nanowires have potential application in light-emitting nano-devices. (3) Field-emission measurements show that the layer-structure GaN nanowires film has a low turn-on field of 4.39 V/μm (at room temperature), which is sufficient for electron emission devices, field emission displays and vacuum nano-electronic devices. The growth mechanism for GaN nanowires has also been discussed briefly.

  1. Structural basis of DNA replication origin recognition by an ORC protein.

    PubMed

    Gaudier, Martin; Schuwirth, Barbara S; Westcott, Sarah L; Wigley, Dale B

    2007-08-31

    DNA replication in archaea and in eukaryotes share many similarities. We report the structure of an archaeal origin recognition complex protein, ORC1, bound to an origin recognition box, a DNA sequence that is found in multiple copies at replication origins. DNA binding is mediated principally by a C-terminal winged helix domain that inserts deeply into the major and minor grooves, widening them both. However, additional DNA contacts are made with the N-terminal AAA+ domain, which inserts into the minor groove at a characteristic G-rich sequence, inducing a 35 degrees bend in the duplex and providing directionality to the binding site. Both contact regions also induce substantial unwinding of the DNA. The structure provides insight into the initial step in assembly of a replication origin and recruitment of minichromosome maintenance (MCM) helicase to that origin.

  2. Ferromagnetism and the electronic band structure in (Ga,Mn)(Bi,As) epitaxial layers

    NASA Astrophysics Data System (ADS)

    Yastrubchak, O.; Sadowski, J.; Gluba, L.; Domagala, J. Z.; Rawski, M.; Żuk, J.; Kulik, M.; Andrearczyk, T.; Wosinski, T.

    2014-08-01

    Impact of Bi incorporation into (Ga,Mn)As layers on their electronic- and band-structures as well as their magnetic and structural properties has been studied. Homogenous (Ga,Mn)(Bi,As) layers of high structural perfection have been grown by the low-temperature molecular-beam epitaxy technique. Post-growth annealing treatment of the layers results in an improvement of their structural and magnetic properties and an increase in the hole concentration in the layers. The modulation photoreflectance spectroscopy results are consistent with the valence-band model of hole-mediated ferromagnetism in the layers. This material combines the properties of (Ga,Mn)As and Ga(Bi,As) ternary compounds and offers the possibility of tuning its electrical and magnetic properties by controlling the alloy composition.

  3. Ferromagnetism and the electronic band structure in (Ga,Mn)(Bi,As) epitaxial layers

    SciTech Connect

    Yastrubchak, O.; Sadowski, J.; Domagala, J. Z.; Andrearczyk, T.; Wosinski, T.

    2014-08-18

    Impact of Bi incorporation into (Ga,Mn)As layers on their electronic- and band-structures as well as their magnetic and structural properties has been studied. Homogenous (Ga,Mn)(Bi,As) layers of high structural perfection have been grown by the low-temperature molecular-beam epitaxy technique. Post-growth annealing treatment of the layers results in an improvement of their structural and magnetic properties and an increase in the hole concentration in the layers. The modulation photoreflectance spectroscopy results are consistent with the valence-band model of hole-mediated ferromagnetism in the layers. This material combines the properties of (Ga,Mn)As and Ga(Bi,As) ternary compounds and offers the possibility of tuning its electrical and magnetic properties by controlling the alloy composition.

  4. Dynamics of coherent structures in a plane mixing layer

    NASA Technical Reports Server (NTRS)

    Hussain, Fazle; Moser, R. D.; Colonius, T.; Moin, P.; Rogers, M. M.

    1988-01-01

    An incompressible, time developing 3-D mixing layer with idealized initial conditions was simulated numerically. Consistent with the suggestions from experimental measurements, the braid region between the dominant spanwise vortices or rolls develops longitudinal vortices or ribs, which are aligned upstream and downstream of a roll and produce spanwise distortion of the rolls. The process by which this distortion occurs is explained by studying a variety of quantities of dynamic importance (e.g., production of enstrophy, vortex stretching). Other quantities of interest (dissipation, helicity density) are also computed and discussed. The currently available simulation only allows the study of the early evolution (before pairing) of the mixing layer. New simulations in progress will relieve this restriction.

  5. Dichotomy of the electronic structure and superconductivity between single-layer and double-layer FeSe/SrTiO3 films.

    PubMed

    Liu, Xu; Liu, Defa; Zhang, Wenhao; He, Junfeng; Zhao, Lin; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2014-09-23

    The latest discovery of possible high-temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate has generated much attention. Initial work found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer film shows an insulating behaviour. Such a marked layer-dependent difference is surprising and the underlying origin remains unclear. Here we report a comparative angle-resolved photoemission study between the single-layer and double-layer FeSe/SrTiO3 films annealed in vacuum. We find that, different from the single-layer FeSe/SrTiO3 film, the double-layer FeSe/SrTiO3 film is hard to get doped and remains in the semiconducting/insulating state under an extensive annealing condition. Such a behaviour originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the doping mechanism and the origin of superconductivity in the FeSe/SrTiO3 films.

  6. Spectral and total temperature-dependent emissivities of few-layer structures on a metallic substrate.

    PubMed

    Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe

    2016-01-25

    We investigate the thermal radiative emission of few-layer structures deposited on a metallic substrate and its dependence on temperature with the Fluctuational Electrodynamics approach. We highlight the impact of the variations of the optical properties of metallic layers on their temperature-dependent emissivity. Fabry-Pérot spectral selection involving at most two transparent layers and one thin reflective layer leads to well-defined peaks and to the amplification of the substrate emission. For a single Fabry-Pérot layer on a reflective substrate, an optimal thickness that maximizes the emissivity of the structure can be determined at each temperature. A thin lossy layer deposited on the previous structure can enhance interference phenomena, and the analysis of the participation of each layer to the emission shows that the thin layer is the main source of emission. Eventually, we investigate a system with two Fabry-Pérot layers and a metallic thin layer, and we show that an optimal architecture can be found. The total hemispherical emissivity can be increased by one order of magnitude compared to the substrate emissivity.

  7. Spectral and total temperature-dependent emissivities of few-layer structures on a metallic substrate.

    PubMed

    Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe

    2016-01-25

    We investigate the thermal radiative emission of few-layer structures deposited on a metallic substrate and its dependence on temperature with the Fluctuational Electrodynamics approach. We highlight the impact of the variations of the optical properties of metallic layers on their temperature-dependent emissivity. Fabry-Pérot spectral selection involving at most two transparent layers and one thin reflective layer leads to well-defined peaks and to the amplification of the substrate emission. For a single Fabry-Pérot layer on a reflective substrate, an optimal thickness that maximizes the emissivity of the structure can be determined at each temperature. A thin lossy layer deposited on the previous structure can enhance interference phenomena, and the analysis of the participation of each layer to the emission shows that the thin layer is the main source of emission. Eventually, we investigate a system with two Fabry-Pérot layers and a metallic thin layer, and we show that an optimal architecture can be found. The total hemispherical emissivity can be increased by one order of magnitude compared to the substrate emissivity. PMID:26832589

  8. Ferromagnetic GaAs structures with single Mn delta-layer fabricated using laser deposition.

    PubMed

    Danilov, Yuri A; Vikhrova, Olga V; Kudrin, Alexey V; Zvonkov, Boris N

    2012-06-01

    The new technique combining metal-organic chemical vapor epitaxy with laser ablation of solid targets was used for fabrication of ferromagnetic GaAs structures with single Mn delta-doped layer. The structures demonstrated anomalous Hall effect, planar Hall effect, negative and anisotropic magnetoresistance in temperature range of 10-35 K. In GaAs structures with only single Mn delta-layer (without additional 2D hole gas channel or quantum well) ferromagnetism was observed for the first time.

  9. Key Role of Rutile Structure for Layered Magnetism in Chromium Compounds

    NASA Astrophysics Data System (ADS)

    Kondo, Yasuhiro; Hotta, Takashi

    CrCl2 and CrF2 with the distorted Rutile-type crystal structure are known to exhibit different antiferromagnetic (AF) structures at low temperatures. CrF2 has a simple N_eel structure in common with other uorides, whereas CrCl2 exhibits a characteristic layered AF structure. We provide a simple scenario to understand the emergence of such layered AF structure on the basis of an orbital degenerate double-exchange model on the Rutile-type structure lattice.

  10. Solvent-free synthesis of new metal phosphites with double-layered, pillared-layered, and framework structures

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhang, Wei; Shi, Zhonghua; Chen, Yaoqiang; Lin, Zhien

    2014-12-01

    Three new metal phosphites, formulated as (H3O)2·Mn2(HPO3)3 (1), Co(bpy) (H2O) (HPO3) (2), and H2tmpda·Zn3(HPO3)4 (3), have been synthesized under solvent-free conditions, where bpy = 4,4‧-bipyridine, and tmpda = N,N,N‧,N‧-tetramethyl-1,3-propanediamine. Compound 1 has a double-layered structure with a thickness of 5.68 Å. Compound 2 has an inorganic-organic hybrid framework with cobalt phosphite layers pillared by bpy ligands. Compound 3 has a three-dimensional open-framework structure containing 8-ring channels. The temperature dependence of the magnetic susceptibility of compounds 1 and 2 were also investigated.

  11. HIGH-Tc Superconductivity in Electron-Doped Layer Structured Nitrides

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shoji

    2000-08-01

    A new series of superconductors based on layer structured nitrides has been developed. The general compositions of the nitrides are MNX (M = Zr, Hf; X = Cl, Br, I). The beta-type polymorph consists of MN double layers sandwiched between close-packed halogen layers, which are characterized as semiconductors with a band gap of 3-4 eV. Electrons can be doped to the nitride layers by intercalation of alkali metals between the layers. Upon the intercalation, the compounds become superconductors with the transition temperatures (Tcs) as high as 13 and 25.5 K for beta-ZrNCl and beta-HfNCl systems, respectively. The Tc of the electron doped beta-HfNCl is higher than that observed in any intermetallic compound and suggests that layered nitrides may exhibit Tcs comparable to those observed in layer structured complex copper oxide superconductors. The layer structured nitrides can be variously modified by the amounts of doping, the types of alkali metals, and the interlayer separation, which can be controlled by co-intercalation of organic molecules with alkali metals. This article dicusses topics including the synthesis and structure of the transition metal nitride halides, intercalation, superconductivity, and band structures.

  12. Direct intervention of hairpin structures for turbulent boundary-layer control

    NASA Astrophysics Data System (ADS)

    Kang, Yong-Duck; Choi, Kwing-So; Chun, Ho Hwan

    2008-10-01

    Direct intervention of large-scale, outer-layer structures of a turbulent boundary layer has been carried out by counteracting the upwash motion of hairpin vortices with jets issued from a nozzle placed outside the boundary layer. The methodology of this turbulent boundary-layer control is similar in concept to the opposition control of near-wall turbulence, where the induced velocity field of vortical motion during the turbulence activities is opposed by suction and blowing at the wall. Unlike wall-based turbulence control techniques whose time and length scales reduce with an increase in the Reynolds number, scales of the proposed control are those of the outer layer, making this control technique highly practical. Here we show some results from a direct intervention of hairpin structures in a turbulent boundary layer, demonstrating that this is a promising technique for turbulence control.

  13. Electronic structure of a dual-layered organic charge transfer salt

    NASA Astrophysics Data System (ADS)

    Jeschke, Harald; Altmeyer, Michaela; Valenti, Roser

    2015-03-01

    We examine the electronic properties of polymorphs of (BEDT-TTF)2Ag(CF3)4(TCE) (1,1,2-trichloroethane) within density functional theory (DFT). While a phase with low superconducting transition temperature Tc = 2 . 6 K exhibits a κ packing motif, two high Tc phases are layered structures consisting of α' and κ packed layers. We determine the electronic structures and discuss the influence of the insulating α' layer on the conducting κ layer. We find that the stripes of high and low charge in the α' layer correspond to a stripe pattern of hopping parameters in the κ layer. This finding is the basis for studying the effect of the different underlying Hamiltonians on the superconducting properties. Research funded within DFG Transregio 49.

  14. The origin of oil in the Cretaceous succession from the South Pars Oil Layer of the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Rahmani, Omeid; Aali, Jafar; Junin, Radzuan; Mohseni, Hassan; Padmanabhan, Eswaran; Azdarpour, Amin; Zarza, Sahar; Moayyed, Mohsen; Ghazanfari, Parviz

    2013-07-01

    The origin of the oil in Barremian-Hauterivian and Albian age source rock samples from two oil wells (SPO-2 and SPO-3) in the South Pars oil field has been investigated by analyzing the quantity of total organic carbon (TOC) and thermal maturity of organic matter (OM). The source rocks were found in the interval 1,000-1,044 m for the Kazhdumi Formation (Albian) and 1,157-1,230 m for the Gadvan Formation (Barremian-Hauterivian). Elemental analysis was carried out on 36 samples from the source rock candidates (Gadvan and Kazhdumi formations) of the Cretaceous succession of the South Pars Oil Layer (SPOL). This analysis indicated that the OM of the Barremian-Hauterivian and Albian samples in the SPOL was composed of kerogen Types II and II-III, respectively. The average TOC of analyzed samples is less than 1 wt%, suggesting that the Cretaceous source rocks are poor hydrocarbon (HC) producers. Thermal maturity and Ro values revealed that more than 90 % of oil samples are immature. The source of the analyzed samples taken from Gadvan and Kazhdumi formations most likely contained a content high in mixed plant and marine algal OM deposited under oxic to suboxic bottom water conditions. The Pristane/nC17 versus Phytane/nC18 diagram showed Type II-III kerogen of mixture environments for source rock samples from the SPOL. Burial history modeling indicates that at the end of the Cretaceous time, pre-Permian sediments remained immature in the Qatar Arch. Therefore, lateral migration of HC from the nearby Cretaceous source rock kitchens toward the north and south of the Qatar Arch is the most probable origin for the significant oils in the SPOL.

  15. Effects of interfacial layer structures on crystal structural properties of ZnO films

    SciTech Connect

    Park, J. S.; Minegishi, T.; Lee, S. H.; Im, I. H.; Park, S. H.; Hanada, T.; Goto, T.; Cho, M. W.; Yao, T.; Hong, S. K.; Chang, J. H.

    2008-01-15

    Single crystalline ZnO films were grown on Cr compound buffer layers on (0001) Al{sub 2}O{sub 3} substrates by plasma assisted molecular beam epitaxy. In terms of lattice misfit reduction between ZnO and substrate, the CrN and Cr{sub 2}O{sub 3}/CrN buffers are investigated. The structural and optical qualities of ZnO films suggest the feasibility of Cr compound buffers for high-quality ZnO films growth on (0001) Al{sub 2}O{sub 3} substrates. Moreover, the effects of interfacial structures on selective growth of different polar ZnO films are investigated. Zn-polar ZnO films are grown on the rocksalt CrN buffer and the formation of rhombohedral Cr{sub 2}O{sub 3} results in the growth of O-polar films. The possible mechanism of polarity conversion is proposed. By employing the simple patterning and regrowth procedures, a periodical polarity converted structure in lateral is fabricated. The periodical change of the polarity is clearly confirmed by the polarity sensitive piezo response microscope images and the opposite hysteretic characteristic of the piezo response curves, which are strict evidences for the validity of the polarity controlling method as well as the successful fabrication of the periodical polarity controlled ZnO structure.

  16. Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures

    NASA Astrophysics Data System (ADS)

    Waxenegger, Jürgen; Trügler, Andreas; Hohenester, Ulrich

    2015-08-01

    Within the MNPBEM toolbox, developed for the simulation of plasmonic nanoparticles using a boundary element method approach, we show how to include substrate and layer structure effects. We develop the methodology for solving Maxwell's equations using scalar and vector potentials within the inhomogeneous dielectric environment of a layer structure. We show that the implementation of our approach allows for fast and efficient simulations of plasmonic nanoparticles situated on top of substrates or embedded in layer structures. The new toolbox provides a number of demo files which can be also used as templates for other simulations.

  17. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials

    PubMed Central

    Tan, Chaoliang; Zhang, Hua

    2015-01-01

    Non-layer structured nanomaterials with single- or few-layer thickness have two-dimensional sheet-like structures and possess intriguing properties. Recent years have seen major advances in development of a host of non-layer structured ultrathin two-dimensional nanomaterials such as noble metals, metal oxides and metal chalcogenides. The wet-chemical synthesis has emerged as the most promising route towards high-yield and mass production of such nanomaterials. These nanomaterials are now finding increasing applications in a wide range of areas including catalysis, energy production and storage, sensor and nanotherapy, to name but a few. PMID:26303763

  18. Numerical simulation of multi-layer graphene structures based on quantum-chemical model

    NASA Astrophysics Data System (ADS)

    Kasper, Y.; Tuchin, A.; Bokova, A.; Bityutskaya, L.

    2016-08-01

    The electronic structure of the multi-layer graphene has been studied using the density functional theory (DFT). The dependence of the average interlayer distance on the number of layers (n = 2 ÷ 6) has been determined. The analysis of the charge redistribution and the electron density of the bi- and three-layer graphene under the external pressure up to 50 GPa has been performed. The model of the interlayer conductivity of compressed multigraphene was offered

  19. Differential PIXE for investigating the layer structure of paintings

    NASA Astrophysics Data System (ADS)

    Mandò, P. A.; Fedi, M. E.; Grassi, N.; Migliori, A.

    2005-09-01

    This paper reports an example of how the differential PIXE technique can be successfully applied to the investigation of wood or canvas paintings. The work analysed is a famous wood painting by Leonardo da Vinci, the "Madonna dei fusi" (ex-Reford version, 1501), chosen for a pilot study in a wide international project aimed at analysing Leonardo's works of art by means of non-destructive techniques. While illustrating the results obtained concerning the identification of pigments and the discrimination of the stratigraphy of layers, the merits and limits of differential PIXE in general are pointed out.

  20. Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows.

    PubMed

    Suttle, L G; Hare, J D; Lebedev, S V; Swadling, G F; Burdiak, G C; Ciardi, A; Chittenden, J P; Loureiro, N F; Niasse, N; Suzuki-Vidal, F; Wu, J; Yang, Q; Clayson, T; Frank, A; Robinson, T S; Smith, R A; Stuart, N

    2016-06-01

    We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities. PMID:27314720

  1. Turbulent structure of scalars in the eddy surface layer over land and sea

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Sahlee, Erik

    2015-04-01

    Turbulent structure of scalars in the 'eddy surface layer' over land and sea. In a study of the kinematic structure of the near neutral atmospheric surface layer, Högström, Hunt and Smedman, 2002, it was demonstrated that a model with detached eddies from above the surface layer impinging on to the surface (Hunt and Morison, 2000) could explain some of the observed features in the neutral atmospheric boundary layer. Thus the detached eddy model proved successful in explaining the dynamic structure of the near neutral atmospheric surface layer (eddy surface layer), especially the shape of the spectra of the wind components and corresponding fluxes. However, the structure of temperature and humidity fluctuations in the eddy surface layer shows quite different behaviour. In particular the efficiency of turbulent exchange of sensible and latent heat is observed to be more strongly enhanced than is consistent with standard similarity theory. Also the profiles of dissipation of turbulent kinetic energy and temperature fluctuation variance are found to depend on the height of the eddy surface layer and not the height above the surface. All these features are found to be similar in measurements at a marine site, a flat land site and during hurricane conditions (hurricane Fabian and Isabel). Hunt, J.C.R and Morrison, J.F., 2000: Eddy structure in turbulent boundary layers, Euro. J. Mech. B-Fluids, 19, 673-694.. Högström, U., Hunt, J.C.R., and Smedman, A., 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer, Bound.-Layer Meteorol., 103,101-124.

  2. Origin of eclogite-bearing, domed, layered metamorphic complexes ("core complexes") in the D'entrecasteaux Islands, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Davies, Hugh L.; Warren, R. G.

    1988-02-01

    Compositionally layered metamorphic rocks of the D'Entrecasteaux Islands, Papua New Guinea, are folded into domes and antiforms bounded by faults parallel to metamorphic layering and foliation. The structures are broadly similar to the metamorphic "core complexes" of western North America. Lenses of ultramafic rock lie on the bounding faults, and the same faults have served as loci for Quaternary andesitic volcanic activity. Metamorphic grade in the northern islands (Goodenough and Fergusson) is amphibolite facies, with pockets of eclogite (Fergusson Island only) and granulite, and is greenschist facies in the southern island (Normanby). In all three islands there is a characteristic tectonostratigraphic sequence (FMU sequence) from felsic metamorphic rocks at base, or internally, through mafic metamorphic rocks to ultramafic rocks at top, or externally. The association of metamorphic and ultramafic rocks apparently developed in a north dipping Paleogene subduction system and was exhumed to upper crustal level in the Oligocene--Early Miocene, possibly by reversal of movement on faults in the former subduction system. Vigorous uplift and development of domes and antiforms in the Pliocene was triggered by westward propagation of the Woodlark Basin spreading ridge and was accompanied by rifting, rift-related magmatism, rapid erosion, and deposition of coarse sediment in the adjacent Trobriand Basin.

  3. Surface damping effect of anchored constrained viscoelastic layers on the flexural response of simply supported structures

    NASA Astrophysics Data System (ADS)

    Karim, K. R.; Chen, G. D.

    2012-02-01

    Viscoelastic (VE) materials are commonly used to control vibration-induced fatigue in airframes and to suppress general vibration in various structures. This study investigates the effects of anchored constrained VE layers on the flexural response of simply supported Euler beams or plate strips under base excitations. Emphasis is placed on the development of two surface damping treatments: one VE layer anchored at one end, and two VE layers anchored at their different ends. Each anchorage is realized with a thin stiff layer in tension, such as a fiber reinforced polymer sheet, bonded to the surface of a VE layer and anchored to one end of the beam for maximum shear deformation in the constrained VE layer. Non-uniform shear deformation in VE layers is taken into account in the new solution formulation. Sensitivity analyses are performed to understand and quantify the effects of various parameters on flexural responses of the structures. The minimum thickness of VE layers is mainly bounded by the relative stiffness between the VE layers and the constraining face layer. The performances of various configurations are compared and the two-end anchored configuration is found most effective in vibration suppression.

  4. Boundary layer structure over areas of heterogeneous heat fluxes

    SciTech Connect

    Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.

    1993-04-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations within the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moveover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations? To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discuses some initial findings from those campaigns.

  5. Boundary layer structure over areas of heterogeneous heat fluxes

    SciTech Connect

    Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.

    1993-01-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moreover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations? To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discusses some initial findings from those campaigns.

  6. Boundary layer structure over areas of heterogeneous heat fluxes

    SciTech Connect

    Doran, J.C. ); Barnes, F.J. ); Coulter, R.L. ); Crawford, T.L. . Air Resources Lab. Atmospheric Turbulence and Diffusion Div.)

    1993-01-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations within the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moveover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discuses some initial findings from those campaigns.

  7. Boundary layer structure over areas of heterogeneous heat fluxes

    SciTech Connect

    Doran, J.C. ); Barnes, F.J. ); Coulter, R.L. ); Crawford, T.L. . Air Resources Lab. Atmospheric Turbulence and Diffusion Div.)

    1993-01-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moreover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discusses some initial findings from those campaigns.

  8. Towards a unified model of passive drug permeation I: origins of the unstirred water layer with applications to ionic permeation.

    PubMed

    Ghosh, Avijit; Scott, Dennis O; Maurer, Tristan S

    2014-02-14

    In this work, we provide a unified theoretical framework describing how drug molecules can permeate across membranes in neutral and ionized forms for unstirred in vitro systems. The analysis provides a self-consistent basis for the origin of the unstirred water layer (UWL) within the Nernst-Planck framework in the fully unstirred limit and further provides an accounting mechanism based simply on the bulk aqueous solvent diffusion constant of the drug molecule. Our framework makes no new assumptions about the underlying physics of molecular permeation. We hold simply that Nernst-Planck is a reasonable approximation at low concentrations and all physical systems must conserve mass. The applicability of the derived framework has been examined both with respect to the effect of stirring and externally applied voltages to measured permeability. The analysis contains data for 9 compounds extracted from the literature representing a range of permeabilities and aqueous diffusion coefficients. Applicability with respect to ionized permeation is examined using literature data for the permanently charged cation, crystal violet, providing a basis for the underlying mechanism for ionized drug permeation for this molecule as being due to mobile counter-current flow.

  9. Role of metallic substrate on the plasmon modes in double-layer graphene structures

    NASA Astrophysics Data System (ADS)

    Cruz, G. Gonzalez de la

    2015-07-01

    Novel heterostructures combining different layered materials offer new opportunities for applications and fundamental studies of collective excitations driven by interlayer Coulomb interactions. In this work, we have investigated the influence of the metallic-like substrate on the plasmon spectrum of a double layer graphene system and a structure consisting of conventional two-dimensional electron gas (2DEG) immersed in a semiconductor quantum well and a graphene sheet with an interlayer separation of d. Long-range Coulomb interactions between substrate and graphene layered systems lead a new set of spectrum plasmons. At long wavelengths (q→0) the acoustic modes (ω~q) depend, besides on the carrier density in each layer, on the distance between the first carrier layer and the substrate in both structures. Furthermore, in the relativistic/nonrelativistic layered structure an undamped acoustic mode emerges for a certain interlayer critical distance dc. On the other hand, the optical plasmon modes emerging from the coupling of the double-layer systems and the substrate, both start at finite frequency at q=0 in contrast to the collective excitation spectrum ω~q1/2 reported in the literature for double-layer graphene structures.

  10. A class of unsteady, three-dimensional flow structures in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Ash, R. L.

    1981-01-01

    A restricted class of mathematically admissible, unsteady, three dimensional flows was identified which may constitute part of the structure observed in turbulent boundary layers. The development of the model and some general results are discussed. The resulting solution has characteristics which suggest how upwelling low speed flow can trigger a downward jetting of irrotational high speed fluid into the boundary layer.

  11. Effects of physical processes on structure and transport of thin zooplankton layers in the coastal ocean

    USGS Publications Warehouse

    McManus, M.A.; Cheriton, O.M.; Drake, P.J.; Holliday, D.V.; Storlazzi, C.D.; Donaghay, P.L.; Greenlaw, C.F.

    2005-01-01

    Thin layers of plankton are recurrent features in a variety of coastal systems. These layers range in thickness from a few centimeters to a few meters. They can extend horizontally for kilometers and have been observed to persist for days. Densities of organisms found within thin layers are far greater than those above or below the layer, and as a result, thin layers may play an important role in the marine ecosystem. The paramount objective of this study was to understand the physical processes that govern the dynamics of thin layers of zooplankton in the coastal ocean. We deployed instruments to measure physical processes and zooplankton distribution in northern Monterey Bay; during an 11 d period of persistent upwelling-favorable winds, 7 thin zooplankton layers were observed. These zooplankton layers persisted throughout daylight hours, but were observed to dissipate during evening hours. These layers had an average vertical thickness of 1.01 m. No layers were found in regions where the Richardson number was <0.25. In general, when the Richardson number is <0.25 the water column is unstable, and incapable of supporting thin layers. Thin zooplankton layers were also located in regions of reduced flow. In addition, our observations show that the vertical depth distribution of thin zooplankton layers is modulated by high-frequency internal waves, with periods of 18 to 20 min. Results from this study clearly show an association between physical structure, physical processes and the presence of thin zooplankton layers in Monterey Bay. With this new understanding we may identify other coastal regions that have a high probability of supporting thin layers. ?? Inter-Research 2005.

  12. Keratin-lipid structural organization in the corneous layer of snake.

    PubMed

    Ripamonti, Alberto; Alibardi, Lorenzo; Falini, Giuseppe; Fermani, Simona; Gazzano, Massimo

    2009-12-01

    The shed epidermis (molt) of snakes comprises four distinct layers. The upper two layers, here considered as beta-layer, contain essentially beta-keratin. The following layer, known as mesos-layer, is similar to the human stratum corneum, and is formed by thin cells surrounded by intercellular lipids. The latter layer mainly contains alpha-keratin. In this study, the molecular assemblies of proteins and lipids contained in these layers have been analyzed in the scale of two species of snakes, the elapid Tiger snake (TS, Notechis scutatus) and the viperid Gabon viper (GV, Bitis gabonica). Scanning X-ray micro-diffraction, FTIR and Raman spectroscopies, thermal analysis, and scanning electron microscopy experiments confirm the presence of the three layers in the GV skin scale. Conversely, in the TS molt a typical alpha-keratin layer appears to be absent. In the latter, experimental data suggest the presence of two domains similar to those found in the lipid intercellular matrix of stratum corneum. X-ray diffraction data also allow to determine the relative orientation of keratins and lipids. The keratin fibrils are randomly oriented inside the layers parallel to the surface of scales while the lipids are organized in lamellar structures having aliphatic chains normal to the scale surface. The high ordered lipid organization in the mature mesos layer probably increases its effectiveness in limiting water-loss. PMID:19280640

  13. Structure of a mushy layer at the inner core boundary

    NASA Astrophysics Data System (ADS)

    Deguen, R.; Huguet, L.; Bergman, M. I.; Labrosse, S.; Alboussiere, T.

    2015-12-01

    We present experimental results on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone, under hyper-gravity. A commercial centrifuge has been equipped with a slip-ring so that electric power, temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. A Peltier element provides cooling at the bottom of the cell. Probes monitor the temperature along the height of the cell. Ultrasound measurements (2 to 6 MHz) is used to detect the position of the front of the mushy zone and to determine attenuation in the mush. A significant increase of solid fraction (or decrease of mushy layer thickness) and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core, which has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in solid fraction and a decrease in attenuation. It is hence possible that surface seismic velocity

  14. Metallic layered composite materials produced by explosion welding: Structure, properties, and structure of the transition zone

    NASA Astrophysics Data System (ADS)

    Mal'tseva, L. A.; Tyushlyaeva, D. S.; Mal'tseva, T. V.; Pastukhov, M. V.; Lozhkin, N. N.; Inyakin, D. V.; Marshuk, L. A.

    2014-10-01

    The structure, morphology, and microhardness of the transition zone in multilayer metallic composite joints are studied, and the cohesion strength of the plates to be joined, the mechanical properties of the formed composite materials, and fracture surfaces are analyzed. The materials to be joined are plates (0.1-1 mm thick) made of D16 aluminum alloy, high-strength maraging ZI90-VI (03Kh12N9K4M2YuT) steel, BrB2 beryllium bronze, and OT4-1 titanium alloy. Composite materials made of different materials are shown to be produced by explosion welding. The dependence of the interface shape (smooth or wavelike) on the physicomechanical properties of the materials to be joined is found. The formation of a wavelike interface is shown to result in the formation of intense-mixing regions in transition zones. Possible mechanisms of layer adhesion are discussed.

  15. Deriving Lifetime Maps in the Time/Frequency Domain of Coherent Structures in the Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan

    2008-01-01

    The lifetimes of coherent structures are derived from data correlated over a 3 sensor array sampling streamwise sidewall pressure at high Reynolds number (> 10(exp 8)). The data were acquired at subsonic, transonic and supersonic speeds aboard a Tupolev Tu-144. The lifetimes are computed from a variant of the correlation length termed the lifelength. Characteristic lifelengths are estimated by fitting a Gaussian distribution to the sensors cross spectra and are shown to compare favorably with Efimtsov s prediction of correlation space scales. Lifelength distributions are computed in the time/frequency domain using an interval correlation technique on the continuous wavelet transform of the original time data. The median values of the lifelength distributions are found to be very close to the frequency averaged result. The interval correlation technique is shown to allow the retrieval and inspection of the original time data of each event in the lifelength distributions, thus providing a means to locate and study the nature of the coherent structure in the turbulent boundary layer. The lifelength data are converted to lifetimes using the convection velocity. The lifetime of events in the time/frequency domain are displayed in Lifetime Maps. The primary purpose of the paper is to validate these new analysis techniques so that they can be used with confidence to further characterize the behavior of coherent structures in the turbulent boundary layer.

  16. Modeling basic features of biogeochemical structure of water column, bottom boundary layer and benthic boundary layer in changeable redox conditions

    NASA Astrophysics Data System (ADS)

    Yakushev, Evgeniy

    2013-04-01

    Climate Change affects oxygen depletion and leads to spreading of the bottom areas with hypoxic and anoxic conditions in the coastal areas of the seas and inland waters. This work aimed in estimation of a role of changes of redox conditions in the biogeochemical structure there. We use a 1-dimensional C-N-P-Si-O-S-Mn-Fe vertical transport-reaction model describing the water column, bottom boundary layer and benthic boundary layer with biogeochemical block simulating redox conditions changeability. A biogeochemical block is based on ROLM (RedOx Layer Model), that was constructed to simulate basic features of the water column biogeochemical structure changes in oxic, anoxic and changeable conditions (Yakushev et al., 2007). Organic matter formation and decay, reduction and oxidation of species of nitrogen, sulfur, manganese, iron, and the transformation of phosphorus species are parameterized in the model. ROLM includes a simplified ecological model with phytoplankton, zooplankton, aerobic autotrophic and heterotrophic bacteria, anaerobic autotrophic and heterotrophic bacteria. We simulate changes in the parameters distributions and fluxes connected with the vertical displacement of redox interface from the sediments to the water.

  17. Photovoltaic structures having a light scattering interface layer and methods of making the same

    SciTech Connect

    Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj

    2015-10-13

    Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.

  18. Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite

    SciTech Connect

    Black, Jennifer M; Walters, Deron; Labuda, Aleksander; Feng, Guang; Hillesheim, Patrick C; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Proksch, Roger; Balke, Nina

    2013-01-01

    Bias-dependent structure of electrochemical double layers at liquid-solid interfaces underpin a multitude of phenomena in virtually all areas of scientific enquiry ranging from energy storage and conversion systems, biology, to geophysics and geochemistry. Here we report the bias-evolution of the electric double layer structure of an ionic liquid on highly ordered pyrolytic graphite as a model system for carbon-based electrodes for electrochemical supercapacitors measured by atomic force microscopy. Matching the observed structures to molecular dynamics simulations allows us to resolve steric effects due to cation and anion layers. We observe reconfiguration under applied bias and the orientational transitions in the Stern layer. The synergy between molecular dynamics simulation and experiment provides a comprehensive picture of structural phenomena and long- and short range interactions. This insight will improve understanding of the mechanism of charge storage in electrochemical capacitors on a molecular level which can be used to enhance their electrochemical performance.

  19. First-principles study of homologous series of layered Bi-Sb-Te-Se and Sn-O structures

    NASA Astrophysics Data System (ADS)

    Govaerts, Kirsten

    In the first part of the thesis, we present a systematic study of the stable layered structures at T = 0 K for the Bi-Sb-Te-Se system by means of a combination of the Cluster Expansion (CE) method and first-principles electronic structure calculations. In order to account for the existence of long-periodic layered structures and the strong structural relaxations we have developed a one-dimensional CE with occupation variables explicitly accounting for the fact that Bi or Sb atoms are part of an even or odd number of layers. For the binary systems A1-xQx (A = Sb, Bi; Q = Te, Se) the resulting (meta)stable structures are the homologous series (A2) n(A2Q3)m built up from successive bilayers A 2 and quintuple units A2Q3. The Bi1-xSb x system is found to be an almost ideal solution. The CE for the ternary Bi-Sb-Te system not only reproduces the binary stable structures but also finds stable ternary layered compounds with an arbitrary stacking of Sb 2Te3, Bi2Te3 and Te-Bi-Te-Sb-Te quintuple units, optionally separated by mixed Bi/Sb bilayers. We also investigate the electronic properties of the newly found ground state structures, and in particular the effect of Bi bilayers on the electronic structure of the topological insulator Bi2Se3. Due to the charge transfer from the Bi bilayers to the quintuple layers, the top- and bottom-surface Dirac cones shift down in energy. Also the Rashba-split conduction band states shift down, resulting in a new Dirac cone. The bands of the additional Bi bilayer are just ordinary Rashba-split states originating from the dipole built up by the charge transfer. These results offer new insight in experimental results, where cones are not always correctly identified. In a second part of the thesis, we investigate the Sn-O system. First we show that a combination of current van der Waals-corrected functionals and many-body calculations within the GW approximation provide accurate values for both structural and electronic properties of Sn

  20. Intrusive origin of the Sudbury Igneous Complex: Structural and sedimentological evidence

    NASA Technical Reports Server (NTRS)

    Cowan, E. J.; Schwerdtner, W. M.

    1992-01-01

    In recent years, many geoscientists have come to believe that the Sudbury event was exogenic rather than endogenic. Critical to a recent exogenic hypothesis is the impact melt origin of the Sudbury Igneous Complex (SIC). Such origin implies that the SIC was emplaced before deposition of the Whitewater Group, in contrast to origins in which the SIC postdates the lithification of the Onaping Formation. Structural and sedimentological evidence is summarized herein that supports an intrusion of the SIC after lithification of all Whitewater Group strata, and conflicts with the hypothesis advanced by other researchers.

  1. Origin of degradation phenomenon under drain bias stress for oxide thin film transistors using IGZO and IGO channel layers.

    PubMed

    Bak, Jun Yong; Kang, Youngho; Yang, Shinhyuk; Ryu, Ho-Jun; Hwang, Chi-Sun; Han, Seungwu; Yoon, Sung-Min

    2015-01-20

    Top-gate structured thin film transistors (TFTs) using In-Ga-Zn-O (IGZO) and In-Ga-O (IGO) channel compositions were investigated to reveal a feasible origin for degradation phenomenon under drain bias stress (DBS). DBS-driven instability in terms of V(TH) shift, deviation of the SS value, and increase in the on-state current were detected only for the IGZO-TFT, in contrast to the IGO-TFT, which did not demonstrate V(TH) shift. These behaviors were visually confirmed via nanoscale transmission electron microscopy and energy-dispersive x-ray spectroscopy observations. To understand the degradation mechanism, we performed ab initio molecular dynamic simulations on the liquid phases of IGZO and IGO. The diffusivities of Ga and In atoms were enhanced in IGZO, confirming the degradation mechanism to be increased atomic diffusion.

  2. Fabrication of multi-layered absorption structure for high quantum efficiency photon detectors

    SciTech Connect

    Fujii, Go; Fukuda, Daiji; Numata, Takayuki; Yoshizawa, Akio; Tsuchida, Hidemi; Fujino, Hidetoshi; Ishii, Hiroyuki; Itatani, Taro; Zama, Tatsuya; Inoue, Shuichiro

    2009-12-16

    We report on some efforts to improve a quantum efficiency of titanium-based optical superconducting transition edge sensors using the multi-layered absorption structure for maximizing photon absorption in the Ti layer. Using complex refractive index values of each film measured by a Spectroscopic Ellipsometry, we designed and optimized by a simulation code. An absorption measurement of fabricated structure was in good agreement with the design and was higher than 99% at optimized wavelength of 1550 nm.

  3. Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite.

    PubMed

    Black, Jennifer M; Walters, Deron; Labuda, Aleksander; Feng, Guang; Hillesheim, Patrick C; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Proksch, Roger; Balke, Nina

    2013-01-01

    Here we report the bias-evolution of the electrical double layer structure of an ionic liquid on highly ordered pyrolytic graphite measured by atomic force microscopy. We observe reconfiguration under applied bias and the orientational transitions in the Stern layer. The synergy between molecular dynamics simulation and experiment provides a comprehensive picture of structural phenomena and long and short-range interactions, which improves our understanding of the mechanism of charge storage on a molecular level.

  4. Ovarian carcinoma patient derived xenografts reproduce their tumor of origin and preserve an oligoclonal structure

    PubMed Central

    Colombo, Pierre-Emmanuel; du Manoir, Stanislas; Orsetti, Béatrice; Bras-Gonçalves, Rui; Lambros, Mario B.; MacKay, Alan; Nguyen, Tien-Tuan; Boissiére, Florence; Pourquier, Didier; Bibeau, Frédéric; Reis-Filho, Jorge S.; Theillet, Charles

    2015-01-01

    Advanced Epithelial Ovarian Cancer (EOC) patients frequently relapse by 24 months and develop resistant disease. Research on EOC therapies relies on cancer cell lines established decades ago making Patient Derived Xenografts (PDX) attractive models, because they are faithful representations of the original tumor. We established 35 ovarian cancer PDXs resulting from the original graft of 77 EOC samples onto immuno-compromised mice. PDXs covered the diversity of EOC histotypes and graft take was correlated with early patient death. Fourteen PDXs were characterized at the genetic and histological levels. PDXs reproduced phenotypic features of the ovarian tumors of origin and conserved the principal characteristics of the original copy number change (CNC) profiles over several passages. However, CNC fluctuations in specific subregions comparing the original tumor and the PDXs indicated the oligoclonal nature of the original tumors. Detailed analysis by CGH, FISH and exome sequencing of one case, for which several tumor nodules were sampled and grafted, revealed that PDXs globally maintained an oligoclonal structure. No overgrowth of a particular subclone present in the original tumor was observed in the PDXs. This suggested that xenotransplantation of ovarian tumors and growth as PDX preserved at least in part the clonal diversity of the original tumor. We believe our data reinforce the potential of PDX as exquisite tools in pre-clinical assays. PMID:26334103

  5. Cooperation in group-structured populations with two layers of interactions

    PubMed Central

    Zhang, Yanling; Fu, Feng; Chen, Xiaojie; Xie, Guangming; Wang, Long

    2015-01-01

    Recently there has been a growing interest in studying multiplex networks where individuals are structured in multiple network layers. Previous agent-based simulations of games on multiplex networks reveal rich dynamics arising from interdependency of interactions along each network layer, yet there is little known about analytical conditions for cooperation to evolve thereof. Here we aim to tackle this issue by calculating the evolutionary dynamics of cooperation in group-structured populations with two layers of interactions. In our model, an individual is engaged in two layers of group interactions simultaneously and uses unrelated strategies across layers. Evolutionary competition of individuals is determined by the total payoffs accrued from two layers of interactions. We also consider migration which allows individuals to move to a new group within each layer. An approach combining the coalescence theory with the theory of random walks is established to overcome the analytical difficulty upon local migration. We obtain the exact results for all “isotropic” migration patterns, particularly for migration tuned with varying ranges. When the two layers use one game, the optimal migration ranges are proved identical across layers and become smaller as the migration probability grows. PMID:26632251

  6. Fuselage Structure Response to Boundary Layer, Tonal Sound, and Jet Noise

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    2004-01-01

    Experiments have been conducted to study the response of curved aluminum and graphite-epoxy fuselage structures to flow and sound loads from turbulent boundary layer, tonal sound, and jet noise. Both structures were the same size. The aluminum structure was reinforced with tear stoppers, while the graphite-epoxy structure was not. The graphite-epoxy structure weighed half as much as the aluminum structure. Spatiotemporal intermittence and chaotic behavior of the structural response was observed, as jet noise and tonal sound interacted with the turbulent boundary layer. The fundamental tone distributed energy to other components via wave interaction with the turbulent boundary layer. The added broadband sound from the jet, with or without a shock, influenced the responses over a wider range of frequencies. Instantaneous spatial correlation indicates small localized spatiotemporal regions of convected waves, while uncorrelated patterns dominate the larger portion of the space. By modifying the geometry of the tear stoppers between panels and frame, the transmitted and reflected waves of the aluminum panels were significantly reduced. The response level of the graphite-epoxy structure was higher, but the noise transmitted was nearly equal to that of the aluminum structure. The fundamental shock mode is between 80 deg and 150 deg and the first harmonic is between 20 deg and 80 deg for the underexpanded supersonic jet impinging on the turbulent boundary layer influencing the structural response. The response of the graphite-epoxy structure due to the fundamental mode of the shock impingement was stabilized by an externally fixed oscillator.

  7. Sperm yield after single layer centrifugation with Androcoll-E is related to the potential fertility of the original ejaculate.

    PubMed

    Morrell, J M; Stuhtmann, G; Meurling, S; Lundgren, A; Winblad, C; Macias Garcia, B; Johannisson, A

    2014-05-01

    Many attempts have been made to identify laboratory tests that are predictive of sperm fertility, both to improve the quality of stallion semen doses for artificial insemination (AI) and to identify potential breeding sires if no fertility data are available. Sperm quality at the stud is mostly evaluated by assessing subjective motility, although this parameter can be poorly indicative of fertility. Sperm morphology and chromatin integrity in Swedish stallions are correlated to pregnancy rate after AI. Because single layer centrifugation (SLC) selects for spermatozoa with normal morphology and good chromatin, retrospective analysis was carried out to investigate whether sperm yield after SLC is linked to potential fertility. Commercial semen doses for AI from 24 stallions (five stallions with four ejaculates each, 19 stallions with three ejaculates each; n = 77) obtained during the breeding season were cooled, and sent overnight to the Swedish University of Agricultural Sciences in an insulated box for evaluation, with other doses being sent to studs for commercial AI. On arrival at Swedish University of Agricultural Sciences, the semen was used for SLC and also for evaluation of sperm motility, membrane integrity, chromatin integrity, and morphology. The seasonal pregnancy rates for each stallion were available. The yield of progressively motile spermatozoa after SLC (calculated as a proportion of the initial load) was found to be highly correlated with pregnancy rate (r = 0.75; P < 0.001). Chromatin damage was highly negatively correlated with pregnancy rate (r = -0.69; P < 0.001). Pregnancy rate was also correlated with membrane integrity (r = 0.58; P < 0.01), progressive motility (r = 0.63; P < 0.01), and normal morphology (r = 0.45; P < 0.05). In conclusion, these preliminary results show that sperm yield after SLC is related to the potential fertility of the original ejaculate, and could be an alternative indicator of stallion fertility if breeding data are

  8. Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows

    NASA Astrophysics Data System (ADS)

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; Swadling, G. F.; Burdiak, G. C.; Ciardi, A.; Chittenden, J. P.; Loureiro, N. F.; Niasse, N.; Suzuki-Vidal, F.; Wu, J.; Yang, Q.; Clayson, T.; Frank, A.; Robinson, T. S.; Smith, R. A.; Stuart, N.

    2016-06-01

    We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (Ti˜Z ¯ Te , with average ionization Z ¯=7 ). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.

  9. Effect of electron collecting metal oxide layer in normal and inverted structure polymer solar cells

    SciTech Connect

    Ng, A.; Liu, X.; Sun, Y. C.; Djurišić, A. B.; Ng, A. M. C.; Chan, W. K.

    2013-12-04

    We performed a systematic study of the effect of electron collecting metal oxide layer on the performance of P3HT: PCBM solar cells. Zinc oxide (ZnO) or titanium dioxide (TiO{sub 2}) buffer layers were prepared by either e-beam evaporation or solution processing method. We also compared the photovoltaic performance of inserting the buffer layer between indium tin oxide (ITO) and the polymer layer for the inverted structure (ITO/ ZnO or TiO{sub 2}/P3HT:PCBM/V{sub 2}O{sub 5}/Au) as well as inserting the buffers layers between the polymer and the aluminum electrode for the conventional structure (ITO/V{sub 2}O{sub 5}/P3HT:PCBM/ZnO or TiO{sub 2}/Al). The results are shown in detail.

  10. Comparison of different structures of niobium oxide blocking layer for dye-sensitized solar cells.

    PubMed

    Chun, Jae Hwan; Kim, Jong Sung

    2014-08-01

    In this study, four different types of Nb2O5 thin layers were prepared using sol-gel process to improve energy conversion efficiency of dye sensitized solar cells (DSSCs). Nb2O5 layer was prepared on the fluorine-doped tin oxide (FTO) layer, TiO2 electrode layer, and inside of TiO2 layer, respectively. The Nb2O5 layer was used to reduce the recombination of photo induced electrons and holes. The DSSCs were assembled with platinum (Pt) coated counter electrode, ruthenium dye, and iodine based electrolyte. The photocurrent-voltage (I-V) characteristics of DSSCs with different types of Nb2O5 were studied. The efficiency depends not only on the structure of DSSCs but also on the initial compositions for the preparation of Nb2O5.

  11. Multi-layer woven preforms for composite structures

    SciTech Connect

    Herszberg, I.; Bannister, M.

    1995-12-31

    The manufacture of composite structures from textile preforms impregnated using a liquid moulding process, has the potential to produce low-cost high-quality components with improved resistance to delamination. A program is under way at the Cooperative Research Centre for Aerospace Structures (CRC-AS) to develop the capability to design and manufacture such structures. This paper will concentrate on the manufacture and analysis of multilayer, integrally woven preforms made from polyester, glass and carbon fibres. The structural performance of composites made from such preforms depends upon the fibre architecture, which in turn is a function of the weave parameters and the compaction during the consolidation process. The effect of weaving design and compaction parameters on the resulting architecture for multilayer woven preforms has been examined and will be discussed in this paper. The mechanical performance of composite panels manufactured with a variety of multilayer woven preforms is currently under investigation and preliminary results will be presented in this paper. A procedure will also be briefly described for using images of preform cross sections to produce a geometric model, which may be used to visualise the architecture and to quantify geometric characteristics for use in further analysis.

  12. The investigation of hydrogenation influence on structure changes of zirconium with nickel layer

    NASA Astrophysics Data System (ADS)

    Kudiiarov, V. N.; Bordulev, Yu S.; Laptev, R. S.; Pushilina, N. S.; Kashkarov, E. B.; Syrtanov, M. S.

    2016-06-01

    The results of experimental investigation of hydrogenation influence on structure changes of zirconium alloy (Zr-1%Nb) with thin nickel layer have presented in this work. Nickel layer was formed by magnetron sputter deposition. Hydrogenation was carried out at gas atmosphere at constant temperature. Different hydrogen concentrations were obtained by varying time of hydrogenation. Defect and phase structure was studied by means of X-ray diffraction, glow discharge optical emission spectroscopy, positron lifetime and Doppler broadening spectroscopies. New experimental data about the evolution of the positron annihilation parameters depending on hydrogen concentration in Zr-1Nb alloy with nickel layer was obtained.

  13. A Long-Lived Tracer Perspective on the Origin of Air in the Tropical Tropopause Layer during ATTREX

    NASA Astrophysics Data System (ADS)

    Hintsa, E. J.; Moore, F.; Dutton, G. S.; Hall, B. D.; Nance, J. D.; Elkins, J. W.; Gao, R.; Rollins, D. W.; Thornberry, T. D.; Watts, L.; Fahey, D. W.; Daube, B. C.; Pittman, J. V.; Wofsy, S. C.; Atlas, E. L.; Navarro, M. A.; Dessler, A. E.; Mahoney, M.

    2013-12-01

    The origin of air in the tropical tropopause layer (TTL) and the subsequent transport pathways of these air masses play a critical role in the delivery of trace gases, including ozone depleting substances and water vapor, to the stratosphere. The Airborne Tropical Tropopause Experiment (ATTREX) is designed to study this transport and processing in the TTL over the Pacific Ocean, including how dehydration occurs in this region and how trace gases involved in ozone depletion and climate reach the tropical lower stratosphere. For this mission, the NASA Global Hawk aircraft is carrying a suite of in situ and remote sensing instruments for trace gases, aerosols, radiation, and meteorology. Two deployments have occurred from NASA/Dryden Flight Research Center, with flights to the eastern and central tropical Pacific. Two more deployments, targeting the western equatorial Pacific, are planned for 2014 from Guam and one other location. Over 100 vertical profiles from about 14 to 18 km have now been obtained from the tropics to midlatitudes, as well as long sections at nearly constant altitude. Results are shown here from the UAS Chromatograph for Atmospheric Trace Species (UCATS) instrument and other sensors. UCATS was configured to measure the long-lived tracers N2O, SF6, H2, and CH4, as well as water vapor, CO, and ozone. Results thus far have shown a mix of midlatitude and tropical air in the tropical and subtropical lower stratosphere, particularly for flights in November 2011. Recent results from February 2013 indicate much more homogeneous air masses in the TTL during this period. This homogeneity may be related to fact that these flights occurred in the middle of (northern) winter rather than fall, or to the 'sudden stratospheric warming' in January 2013, with sinking motion in the Arctic polar region and a corresponding rising motion and cooling in the tropics. Data will be presented in the context of trajectory model calculations of the origin and fate of the air

  14. Atomistic Simulation Of Stability Properties And Growth Of Strained Layer Structures

    NASA Astrophysics Data System (ADS)

    Taylor, Paul A.; Dodson, Brian W.

    1987-04-01

    Monte Carlo based microscopic techniques were used to study the stability and metastability of thin coherently strained layers of mismatched silicon-like semi-conductor material grown on the (111) silicon surface. The structural energy was calculated using three-body empirical potentials. For layers greater than roughly 20 A in thickness, the critical layer thickness associated with thermodynamic stability agrees quantitatively with continuum theory. For thinner layers, however, considerable variations from the continuum theory are found. For a strained layer six monolayers thick, the test system is found to be metastable against the nucleation of misfit dislocations to a lattice mismatch of approximately 11%, compared to the 4% equilibrium stability limit. Additionally, simulation of strained layer growth of two-dimensional Lennard-Jones crystal lattices has been performed using x.)lecular dynamics. In particular, we have studied the influences of lattice mismatch and substrate temperature on the growth, from the vapor phase, of overlayer material possessing a different bulk lattice constant than that of the substrate material. Simulation results predict that at substrate temperatures less than 50% of melting, epitaxial growth occurs for mismatch values less than 14% whereas above this value, defective growth is observed. At temperatures above 50% of the melt temperature, mass transport occurs across the layer interface and rapid diffusion is observed in the top-most atomic layers, resulting in liquid-like behavior in a thin layer over ordered strained layer crystal.

  15. Structural diagnostics of the tropopause inversion layer and its evolution

    NASA Astrophysics Data System (ADS)

    Gettelman, A.; Wang, T.

    2015-01-01

    The Tropopause Inversion Layer (TIL) is marked by a peak in static stability directly above the tropopause. The TIL is quantitatively defined with new diagnostics using Global Positioning System Radio Occultation temperature soundings and reanalysis data. A climatology of the TIL is developed from reanalysis data (1980-2011) using diagnostics for the position, depth, and strength of the TIL based on the TIL peak in static stability. TIL diagnostics have defined relationships to the synoptic situation in the Upper Troposphere and Lower Stratosphere. The TIL is present nearly all the time. The TIL becomes hard to define in the subtropics where tropical air overlies midlatitude air, in a region of complex static stability profiles. The mean position of the subtropical TIL gradient is sharp and is co-located with the subtropical tropopause break. Over the period 1980-2011 the TIL depth below the tropopause has decreased by 5% per decade and increased above the tropical tropopause by a similar percentage. Furthermore, the latitude of the abrupt change in the TIL from tropical to extratropical in the lower stratosphere appears to have shifted poleward in each hemisphere by ˜1° latitude per decade, depending on the diagnostic examined. Reanalysis trends should be treated with caution.

  16. Sliding contact fatigue damage in layered ceramic structures.

    PubMed

    Kim, J-W; Kim, J-H; Thompson, V P; Zhang, Y

    2007-11-01

    Porcelain-veneered restorations often chip and fracture from repeated occlusal loading, making fatigue studies relevant. Most fatigue studies are limited to uni-axial loading without sliding motion. We hypothesized that bi-axial loading (contact-load-slide-liftoff, simulating a masticatory cycle), as compared with uni-axial loading, accelerates the fatigue of layered ceramics. Monolithic glass plates were epoxy-joined to polycarbonate substrates as a transparent model for an all-ceramic crown on dentin. Uni-and bi-axial cyclic contact was applied through a hard sphere in water, by means of a mouth-motion simulator apparatus. The uni-axial (contact-load-hold-liftoff) and traditional R-ratio fatigue (indenter never leaves the specimen surface) produced similar lifespans, while bi-axial fatigue was more severe. The accelerated crack growth rate in bi-axial fatigue is attributed to enhanced tensile stresses at the trailing edges of a moving indenter. Fracture mechanics descriptions for damage evolution in brittle materials loaded repeatedly with a sliding sphere are provided. Clinical relevance is addressed.

  17. Origin of interfacial nanoscopic gaseous domains and formation of dense gas layer at hydrophobic solid-water interface.

    PubMed

    Peng, Hong; Birkett, Greg R; Nguyen, Anh V

    2013-12-10

    Interfacial gas enrichment (IGE) covering the entire area of hydrophobic solid-water interface has recently been detected by atomic force microscopy (AFM) and hypothesized to be responsible for the unexpected stability and anomalous contact angle of gaseous nanobubbles and the significant change from DLVO to non-DLVO forces. In this paper, we provide further proof of the existence of IGE in the form of a dense gas layer (DGL) by molecular dynamic simulation. Nitrogen gas adsorption at the water-graphite interface is investigated using molecular dynamic simulation at 300 K and 1 atm normal pressure. The results show that a DGL with a density equivalent to a gas at pressure of 500 atm is formed and equilibrated with a normal pressure of 1 atm. By varying the number of gas molecules in the system, we observe several types of dense gas domains: aggregates, cylindrical caps, and DGLs. Spherical cap gas domains form during the simulation but are unstable and always revert to another type of gas domain. Furthermore, the calculated surface potential of the DGL-water interface, -17.5 mV, is significantly closer to 0 than the surface potential, -65 mV, of normal gas bubble-water interface. This result supports our previously stated hypothesis that the change in surface potential causes the switch from repulsion to attraction for an AFM tip when the graphite surface is covered by an IGE layer. The change in surface potential comes from the structure change of water molecules at the DGL-water interface as compared with the normal gas-water interface. In addition, the contact angle of the cylindrical cap high density nitrogen gas domains is 141°. This contact angle is far greater than 85° observed for water on graphite at ambient conditions and much closer to the 150° contact angle observed for nanobubbles in experiments.

  18. Ab initio study of the origin of the dead magnetic Ni layers at the Ni/Pt( 1 1 1 ) interface

    NASA Astrophysics Data System (ADS)

    Lounis, S.; Benakki, M.; Bouarab, S.; Demangeat, C.

    2002-10-01

    Two recent experimental works based on X-ray magnetic circular dichroism and superconducting quantum interference on Ni/Pt(1 1 1) superlattices have displayed very different magnetic behavior. One reports evidence of magnetically "dead" layers whereas in further work, no magnetically dead Ni layers were found. These magnetically different behavior can be explained by density functional calculations on various structural configurations at the interface. One Ni buried layer at the interface gives a good description of the magnetic profile reported experimentally on one hand, whereas two or three NiPt alloyed layers at the interface confirm the magnetic dead Ni atoms measured on the other hand.

  19. An experimental study of combustion: The turbulent structure of a reacting shear layer formed at a rearward-facing step. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.

    1981-01-01

    A premixed propane-air flame is stabilized in a turbulent free shear layer formed at a rearward-facing step. The mean and rms averages of the turbulent velocity flow field were determined by LDV for both reacting and non-reacting flows. The reaching flow was visualized by high speed schlieren photography. Large scale structures dominate the reacting shear layer. The growth of the large scale structures is tied to the propagation of the flame. The linear growth rate of the reacting shear layer defined by the mean velocity profiles is unchanged by combustion but the virtual origin is shifted downstream. The reacting shear layer based on the mean velocity profiles is shifted toward the recirculation zone and the reattachments lengths are shortened by 30%.

  20. A parametric analysis of radiative structure in aerobrake shock layers

    NASA Technical Reports Server (NTRS)

    Greendyke, Robert B.

    1992-01-01

    A broad-spectrum version of the NEQAIR code was modified to account for self-absorption and applied to AFE flowfields calculated by the LAURA code with a variety of kinetic models. The resulting radiative fluxes were obtained in a decoupled fashion from the flowfield solver along the vehicle's stagnation streamline. The radiative flux obtained was broken down by causative process to study the radiative structure of the AFE's flowfield for the various kinetic models. In addition, the radiative fluxes for several points on a typical AFE trajectory were analyzed to examine how the radiative structure changes as the vehicle completes its aeropass. Only two radiative processes dominated the stagnation radiative flux, and the flow field conditions near the wal were found to exert considerable influence over the radiative flux to the wall.

  1. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Jung-San; Chang, I.-Ling; Huang, Wan-Ting; Chen, Lien-Wen; Huang, Guan-Hua

    2016-09-01

    This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  2. A review of quasi-coherent structures in a numerically simulated turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Robinson, S. K.; Kline, S. J.; Spalart, P. R.

    1989-01-01

    Preliminary results of a comprehensive study of the structural aspects of a numerically simulated number turbulent boundary layer are presented. A direct Navier-Stokes simulation of a flat-plate, zero pressure gradient boundary layer at Re0 = 670 was used. Most of the known nonrandom, coherent features of turbulent boundary layers are confirmed in the simulation, and several new aspects of their spatial character are reported. The spatial relationships between many of the various structures are described, forming the basis for a more complete kinematical picture of boundary layer physics than has been previously known. In particular, the importance of vortex structures of various forms to the generation of Reynolds shear stress is investigated.

  3. Coherent structures in a turbulent mixing layer - A comparison between direct numerical simulations and experiments

    NASA Technical Reports Server (NTRS)

    Metcalfe, R. W.; Menon, S.; Hussain, A. K. M. F.

    1985-01-01

    An eduction scheme has been developed in an attempt to determine the characteristics of large-scale vortical structures in a turbulent mixing layer. This analysis scheme has been applied to a set of experimental data taken in a new, larger mixing layer facility designed to minimize boundary and resonance effects. A similar scheme has been developed to apply to the results of a direct numerical simulation of a temporally growing mixing layer. A comparison of the two approaches shows important similarities in the coherent structures. The numerical simulations indicate that low levels of coherent forcing can dramatically change the evolution of the mixing layer. In the absence of such forcing, the numerical simulations and experiments show a lack of regularity in the transverse position, spacing, amplitude, shape and spanwise coherence of the large-scale vortical structures.

  4. Turbulent Structures and Coherence in the Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Träumner, K.; Damian, Th.; Stawiarski, Ch.; Wieser, A.

    2015-01-01

    Organized structures in turbulent flow fields are a well-known and still fascinating phenomenon. Although these so-called coherent structures are obvious from visual inspection, quantitative assessment is a challenge and many aspects e.g., formation mechanisms and contribution to turbulent fluxes, are discussed controversially. During the "High Definition Clouds and Precipitation for Advancing Climate Prediction" Observational Prototype Experiment (HOPE) from April to May 2013, an advanced dual Doppler lidar technique was used to image the horizontal wind field near the surface for approximately 300 h. A visual inspection method, as well as a two-dimensional integral length scale analysis, were performed to characterize the observations qualitatively and quantitatively. During situations with forcing due to shear, the wind fields showed characteristic patterns in the form of clearly bordered, elongated areas of enhanced or reduced wind speed, which can be associated with near-surface streaks. During calm situations with strong buoyancy forcing, open cell patterns in the horizontal divergence field were observed. The measurement technique used enables the calculation of integral length scales of both horizontal wind components in the streamwise and cross-stream directions. The individual length scales varied considerably during the observation period but were on average shorter during situations with compared to strongly stable situations. During unstable situations, which were dominated by wind fields with structures, the streamwise length scales increased with increasing wind speed, whereas the cross-stream length scales decreased. Consequently, the anisotropy increased from 1 for calm situations to values of 2-3 for wind speeds of 8-10. During neutral to stable situations, the eddies were on average quite isotropic in the horizontal plane.

  5. A spatial interaction model with spatially structured origin and destination effects

    NASA Astrophysics Data System (ADS)

    LeSage, James P.; Llano, Carlos

    2013-07-01

    We introduce a Bayesian hierarchical regression model that extends the traditional least-squares regression model used to estimate gravity or spatial interaction relations involving origin-destination flows. Spatial interaction models attempt to explain variation in flows from n origin regions to n destination regions resulting in a sample of N = n 2 observations that reflect an n by n flow matrix converted to a vector. Explanatory variables typically include origin and destination characteristics as well as distance between each region and all other regions. Our extension introduces latent spatial effects parameters structured to follow a spatial autoregressive process. Individual effects parameters are included in the model to reflect latent or unobservable influences at work that are unique to each region treated as an origin and destination. That is, we estimate 2 n individual effects parameters using the sample of N = n 2 observations. We illustrate the method using a sample of commodity flows between 18 Spanish regions during the 2002 period.

  6. Structure and friction-reducing property of the sulfide layer produced by ion sulfuration

    SciTech Connect

    Ning, Z.; Da-Ming, Z.; Yan-Hua, W.; Jia-Jun, L.; Xiao-Dong, F.; Ming-Xi, G.

    2000-04-01

    Sulfide layers with a certain thickness were made on the surface of 1045 and 52100 steels by means of the low-temperature ion sulfuration technique. Metallography, scanning electron microscope (SEM) + energy-dispersive x-ray analysis (EDX), and x-ray diffraction (XRD) were adopted to analyze the structure of sulfide layers; the tribological properties of the layers lubricated by paraffin oil were also investigated on a reciprocating tester. The results showed that sulfide layer is porous, and its structure is mainly composed of FeS, FeS{sub 2}, and substrate phases. The sulfide layer possessed a remarkable friction-reducing effect; its friction coefficient was lower on average, by about 50%, than that of the surface without layer. With the increase of layer thickness, its friction coefficient was unchanged, and under low load conditions, its operational period was prolonged. Under the same experimental conditions, the operational period of sulfide layer on 52100 steel was longer than that on 1045 steel, and its friction coefficient was lower as well.

  7. Origin of vesicle layering and double imbrication by endogenous growth in the Birkett basalt flow (Columbia river plateau)

    NASA Astrophysics Data System (ADS)

    Walker, George P. L.; Cañón-Tapia, Edgardo; Herrero-Bervera, Emilio

    1999-01-01

    The 40-m thick Birkett basalt pahoehoe flow at Sentinel Gap in the Columbia River Plateau has an unusually thick (≥15 m) upper vesicular zone. This zone includes a striking layering in which the layers have contrasted vesicle abundances and sizes. Most layers show a reverse grading of vesicle size and abundance. The layering is interpreted to have grown endogenously by the cyclic injection of vesicular lava layers under the growing top crust, accommodated by uplift of that crust. Grading of the layers resulted from vesicle growth and ascent. Each injection occurred at or near the boundary between vesicular and non-vesicular lava of the preceding layer and split that layer into an upper vesicular part and a lower non-vesicular part. Critical to this interpretation are (1) a pervasive foliation and lineation, defined by the parallelism of strongly flattened and elongate vesicles, transects the vesicle layers obliquely; and (2) the magnetic fabric (the anisotropy of magnetic susceptibility) is oriented similarly to the vesicle foliation, and also defines a cryptic foliation in the non-vesicular zone having a dip opposed to that in the layered zone. These foliations are interpreted to be opposed imbrications and indicate the flow azimuth of the lava. They strongly support the concept of lava growth by successive thin sill-like insertions of fresh vesicular lava between hot but static and effectively solid floor and roof.

  8. Original GaN-based LED structure on ZnO template by MOCVD

    NASA Astrophysics Data System (ADS)

    Lin, Ray-Ming; Yu, Sheng-Fu; Chen, Miin-Jang; Hsu, Wen-Ching

    2010-03-01

    In this study, we have successfully grown blue LED structure on ZnO template (deposited on sapphire substrate by atomic layer deposition, ALD) by atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD). Although GaN semiconductor material is very similar to ZnO in many ways, i.e. relatively small lattice mismatch ~1.8 % compared with traditional sapphire substrate~16 %, it still has a big challenge when GaN-based LEDs grow on ZnO template at usually growth temperature near 1100°C. With too high a temperature and a long deposited time, it would cause reaction at GaN/ZnO interface which is a vital reason that degrades the GaN crystalline quality. In view of this, we introduced an optimized thin AlN cover layer on ZnO template protecting the underneath ZnO layer and then obtained a real work LED structure. Meanwhile, the TEM measurement characterized the epilayer crystalline structure. The optical properties also were carried out by photoluminescence and electroluminescence analysis. Finally, with a suitable fabrication of LED processing, the ZnO template may has the potential as a sacrificial layer by chemical etching technical instead of conventional laser lifted-off.

  9. Internal structure of event layers preserved on the Andaman Sea continental shelf, Thailand: tsunami vs. storm and flash flood deposits

    NASA Astrophysics Data System (ADS)

    Sakuna-Schwartz, D.; Feldens, P.; Schwarzer, K.; Khokiattiwong, S.; Stattegger, K.

    2014-12-01

    Tsunami, storm and flash event layers, which have been deposited over the last century on the shelf offshore from Khao Lak (Thailand, Andaman Sea), are identified in sediment cores based on sedimentary structures, grain size compositions, Ti / Ca ratios and 210Pb activity. Individual offshore tsunami deposits are 12 to 30 cm in thickness and originate from the 2004 Indian Ocean tsunami. They are characterized by (1) the appearance of sand layers enriched in shells and shell debris, (2) cross lamination and (3) the appearance of rip-up clasts. Storm deposits found in core depths between 5 and 82 cm could be attributed to individual storm events by using 210Pb dating in conjunction with historical data of typhoons and tropical storms and could thus be securely differentiated from tsunami deposits. Massive sand layers enriched in shells and shell debris characterize the storm deposits. The last classified type of event layer represents flash floods, which is characterized by a fining-upward sequence of muddy sediment. The most distinct difference between the storm and tsunami deposits is the lack of rip-up clasts, mud, and terrigenous material within the storm deposits. Terrigenous material transported offshore during the tsunami backwash is therefore an important indicator to distinguish between offshore storm and tsunami deposits.

  10. Instantaneous Wavenumber Estimation for Damage Quantification in Layered Plate Structures

    NASA Technical Reports Server (NTRS)

    Mesnil, Olivier; Leckey, Cara A. C.; Ruzzene, Massimo

    2014-01-01

    This paper illustrates the application of instantaneous and local wavenumber damage quantification techniques for high frequency guided wave interrogation. The proposed methodologies can be considered as first steps towards a hybrid structural health monitoring/ nondestructive evaluation (SHM/NDE) approach for damage assessment in composites. The challenges and opportunities related to the considered type of interrogation and signal processing are explored through the analysis of numerical data obtained via EFIT simulations of damage in CRFP plates. Realistic damage configurations are modeled from x-ray CT scan data of plates subjected to actual impacts, in order to accurately predict wave-damage interactions in terms of scattering and mode conversions. Simulation data is utilized to enhance the information provided by instantaneous and local wavenumbers and mitigate the complexity related to the multi-modal content of the plate response. Signal processing strategies considered for this purpose include modal decoupling through filtering in the frequency/wavenumber domain, the combination of displacement components, and the exploitation of polarization information for the various modes as evaluated through the dispersion analysis of the considered laminate lay-up sequence. The results presented assess the effectiveness of the proposed wavefield processing techniques as a hybrid SHM/NDE technique for damage detection and quantification in composite, plate-like structures.

  11. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M. ); Schultz, J.A. ); Schmidt, H.K. ); Chang, R.P.H. . Dept. of Materials Science)

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 [Angstrom]), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 [Angstrom] of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films.

  12. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-11-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 {Angstrom}), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 {Angstrom} of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films.

  13. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures

    NASA Astrophysics Data System (ADS)

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-11-01

    We present an algorithm ‘Layers’ to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main.

  14. Magnetic structure and origin of counter-streaming mass flows in solar prominences

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng

    2015-08-01

    The magnetic structure and origin of counter-streaming mass flows in solar prominences are hitherto unknown, however, these issues are vitally important for understanding the instability and eruption of solar and stellar prominences, as well as the associated coronal mass ejections (CMEs). Here we report high-resolution observations of a quiescent solar prominence that clearly manifests the magnetic structure and origin of counter-streaming mass flows in solar prominences. Based on the observational results, we propose a new prominence model in the present paper, which can reconcile many discrepancies in previous studies, for example, the distribution of magnetic fields in solar prominences, the relationship between the photospheric magnetic fields and the ends of prominence feet, as well as the origin of counterstreaming mass flows in solar prominences. In addition, we also find that the photospheric pressure-driven three and five minutes oscillations can effectively modulate the kinematics of solar prominences.

  15. Calculation of ultrasonic reflection and transmission in anisotropic austenitic layered structures

    NASA Astrophysics Data System (ADS)

    Weber, Michael; Mirwald-Schulz, Birgit; Neumann, Eberhard

    2000-05-01

    The theory of plane wave propagation in layered structures has been applied in the formulation of Nayfeh in order to calculate scattering coefficients due to reflection and transmission at the grain boundaries in austenitic weld metal and cast material. Each layer is assumed to be a cubic homogeneous mono-crystal. Lower symmetries of the layer down to the triclinic case may also be assumed, e.g., transverse isotropy of the columnar grained texture in austenitic weld metal. The layers are rigidly bonded and the multi-layer package embedded in water or between solid substrates. Scattering coefficients are calculated by a transfer matrix approach. Ultrasonic properties of the single layers are algebraically linked together resulting in a simple operator for calculation of reflection and transmission coefficients at the multi-layer package boundaries. Critical angle phenomena may cause failure of solution and are limiting the range of application of the transfer matrix approach, as they cause the matrix numerical condition to decrease down to singularity. This is handled by using complex algebra. The transfer matrix method has been applied to multi-layer packages immersed in water. In case of solid substrates of the multi-layer package transmission is occurring at a larger range of incidence angles.

  16. 11. 22'X34' original blueprint, VariableAngle Launcher, 'CONTROL STATION STRUCTURAL DETAILS' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. 22'X34' original blueprint, Variable-Angle Launcher, 'CONTROL STATION STRUCTURAL DETAILS' drawn at 1 1/2'=1'-0'. (BUORD Sketch # 208401). - Variable Angle Launcher Complex, Control Station, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  17. Structure A, steel shelving. Drawing no. H3300. Original drawing by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Structure A, steel shelving. Drawing no. H3-300. Original drawing by Black & Veatch, Consulting Engineers, Kansas City, Missouri, prepared for the U.S. Department of the Army, Office of Engineers, Military Construction Division, Washington D.C. dated November 5, 1951. - Travis Air Force Base, Building No. 925, W Street, Fairfield, Solano County, CA

  18. Structure A, reinforcing details. Drawing No. H2302, as built, Original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Structure A, reinforcing details. Drawing No. H2-302, as built, Original drawing by Black & Veatch, Consulting Engineers, Kansas City, Missouri, prepared for the U.S. Department of the Army, Office of Engineers, Military Construction Division, Washington, D.C. dated October 1, 1951. - Travis Air Force Base, Building No. 925, W Street, Fairfield, Solano County, CA

  19. Protein folding, protein structure and the origin of life: Theoretical methods and solutions of dynamical problems

    NASA Technical Reports Server (NTRS)

    Weaver, D. L.

    1982-01-01

    Theoretical methods and solutions of the dynamics of protein folding, protein aggregation, protein structure, and the origin of life are discussed. The elements of a dynamic model representing the initial stages of protein folding are presented. The calculation and experimental determination of the model parameters are discussed. The use of computer simulation for modeling protein folding is considered.

  20. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    NASA Astrophysics Data System (ADS)

    Jabbari, Iraj; Poursaleh, Ali Mohammad; Khalafi, Hossein

    2016-08-01

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  1. Polar cap F layer patches: structure and dynamics

    SciTech Connect

    Weber, E.J.; Klobuchar, J.A.; Buchau, J.; Carlson, H.C.; Livingston, R.C.

    1986-11-01

    Coordinated measurements of F-region plasma patches were conducted on February 3/4, 1984, from Thule and Sondrestrom, Greenland. Optical, ionsonde, amplitude scintillation, total electron content (TEC), and incoherent scatter radar measurements were combined to reveal several new aspects of the structure and transport of these localized regions of enhanced F region ionization. For the first time, these patches were directly tracked flowing in the antisunward direction over distances of 3000 km from the center of the polar cap to the poleward edge of the auroral oval. Quantative measurements of TEC show increases of 10-15 TEC units within the patches, above a background polar cap value of 5 TEC units. Amplitude scintillation measurements show the presence of ionospheric irregularities through the entire patch, with a weak indication of stronger scintillation on the trailing (or E x B unstable) edge.

  2. Polar cap F layer patches: structure and dynamics

    SciTech Connect

    Weber, E.J.; Klobuchar, J.A.; Buchau, J.; Carlson H.C. Jr.; Livingston, R.C.; De La Beaujardiere, O.; McCready, M.; Moore, J.G.; Bishop, G.J.

    1986-11-01

    Coordinated measurements of F region plasma patches were conducted on February 3/4, 1984, from Thule and Sondrestrom, Greenland. Optical, ionosonde, amplitude scintillation, total electron content (TEC), and incoherent scatter radar measurements were combined to reveal several new aspects of the structure and transport of these localized regions of enhanced F region ionization. For the first time these patches were directly tracked flowing in the antisunward direction over distances of 3000 km from the center of the polar cap to the poleward edge of the auroral oval. Quantitative measurements of TEC show increases of 10--15 TEC units within the patches, above a background polar cap value of 5 TEC units. Amplitude scintillation measurements show the presence of ionospheric irregularities through the entire patch, with a weak indication of stronger scintillation on the trailing (or E x B unstable) edge.

  3. Analysis of mixed-layer clay mineral structures

    USGS Publications Warehouse

    Bradley, W.F.

    1953-01-01

    Among the enormously abundant natural occurrences of clay minerals, many examples are encountered in which no single specific crystallization scheme extends through a single ultimate grain. The characterization of such assemblages becomes an analysis of the distribution of matter within such grains, rather than the simple identification of mineral species. It having become established that the particular coordination complex typified by mica is a common component of many natural subcrystalline assemblages, the opportunity is afforded to analyze scattering from random associations of these complexes with other structural units. Successful analyses have been made of mixed hydration states of montmorillonite, of montmorillonite with mica, of vermiculite with mica, and of montmorillonite with chlorite, all of which are variants of the mica complex, and of halloysite with hydrated halloysite.

  4. Saturn layered structure and homogeneous evolution models with different EOSs

    NASA Astrophysics Data System (ADS)

    Nettelmann, Nadine; Püstow, Robert; Redmer, Ronald

    2013-07-01

    The core mass of Saturn is commonly assumed to be 10-25M⊕ as predicted by interior models with various equations of state (EOSs) and the Voyager gravity data, and hence larger than that of Jupiter (0-10M⊕). We here re-analyze Saturn's internal structure and evolution by using more recent gravity data from the Cassini mission and different physical equations of state: the ab initio LM-REOS which is rather soft in Saturn's outer regions but stiff at high pressures, the standard Sesame-EOS which shows the opposite behavior, and the commonly used SCvH-i EOS. For all three EOS we find similar core mass ranges, i.e. of 0-20M⊕ for SCvH-i and Sesame EOS and of 0-17M⊕ for LM-REOS. Assuming an atmospheric helium mass abundance of 18%, we find maximum atmospheric metallicities, Zatm of 7× solar for SCvH-i and Sesame-based models and a total mass of heavy elements, MZ of 25-30M⊕. Some models are Jupiter-like. With LM-REOS, we find MZ = 16-20M⊕, less than for Jupiter, and Zatm ≲ 3× solar. For Saturn, we compute moment of inertia values λ = 0.2355(5). Furthermore, we confirm that homogeneous evolution leads to cooling times of only ˜2.5 Gyr, independent on the applied EOS. Our results demonstrate the need for accurately measured atmospheric helium and oxygen abundances, and of the moment of inertia for a better understanding of Saturn's structure and evolution.

  5. Cation Effects on the Layer Structure of Biogenic Mn-Oxides

    SciTech Connect

    Zhu, M.; Ginder-Vogel, M; Parikh, S; Feng, X; Sparks, D

    2010-01-01

    Biologically catalyzed Mn(II) oxidation produces biogenic Mn-oxides (BioMnO{sub x}) and may serve as one of the major formation pathways for layered Mn-oxides in soils and sediments. The structure of Mn octahedral layers in layered Mn-oxides controls its metal sequestration properties, photochemistry, oxidizing ability, and topotactic transformation to tunneled structures. This study investigates the impacts of cations (H{sup +}, Ni(II), Na{sup +}, and Ca{sup 2+}) during biotic Mn(II) oxidation on the structure of Mn octahedral layers of BioMnO{sub x} using solution chemistry and synchrotron X-ray techniques. Results demonstrate that Mn octahedral layer symmetry and composition are sensitive to previous cations during BioMnO{sub x} formation. Specifically, H{sup +} and Ni(II) enhance vacant site formation, whereas Na{sup +} and Ca{sup 2+} favor formation of Mn(III) and its ordered distribution in Mn octahedral layers. This study emphasizes the importance of the abiotic reaction between Mn(II) and BioMnO{sub x} and dependence of the crystal structure of BioMnO{sub x} on solution chemistry.

  6. Cation effects on the layer structure of biogenic Mn-oxides.

    PubMed

    Zhu, Mengqiang; Ginder-Vogel, Matthew; Parikh, Sanjai J; Feng, Xiong-Han; Sparks, Donald L

    2010-06-15

    Biologically catalyzed Mn(II) oxidation produces biogenic Mn-oxides (BioMnO(x)) and may serve as one of the major formation pathways for layered Mn-oxides in soils and sediments. The structure of Mn octahedral layers in layered Mn-oxides controls its metal sequestration properties, photochemistry, oxidizing ability, and topotactic transformation to tunneled structures. This study investigates the impacts of cations (H(+), Ni(II), Na(+), and Ca(2+)) during biotic Mn(II) oxidation on the structure of Mn octahedral layers of BioMnO(x) using solution chemistry and synchrotron X-ray techniques. Results demonstrate that Mn octahedral layer symmetry and composition are sensitive to previous cations during BioMnO(x) formation. Specifically, H(+) and Ni(II) enhance vacant site formation, whereas Na(+) and Ca(2+) favor formation of Mn(III) and its ordered distribution in Mn octahedral layers. This study emphasizes the importance of the abiotic reaction between Mn(II) and BioMnO(x) and dependence of the crystal structure of BioMnO(x) on solution chemistry. PMID:20469850

  7. Layered structure and related magnetic properties for annealed Fe/Ir(111) ultrathin films

    SciTech Connect

    Jiang, Pei-Cheng; Chen, Wei-Hsiang; Hsieh, Chen-Yuan; Tsay, Jyh-Shen

    2015-05-07

    After annealing treatments for fcc-Fe/Ir(111) below 600 K, the surface layers remain pseudomorphic. The Ir(111) substrate plays an important role on the expanded Fe lattice. At temperatures between 750 and 800 K, the surface composition shows a stable state and a c(2 × 4) structure is observed. We discover a layered structure composed of some Fe atoms on the top of a Fe{sub 0.5}Ir{sub 0.5} interfacial alloy supported on the Ir(111) substrate. The competition between the negative formation heat of Fe{sub 0.5}Ir{sub 0.5} and surface free energy of Fe causes the formation of layered structure. The existence of ferromagnetic dead layer coincides with the formation of fcc-Fe for ultrathin Fe on Fe{sub 0.5}Ir{sub 0.5}/Ir(111). For Fe films thicker than three monolayers, the linear increase of the Kerr intensity versus the Fe coverage is related to the growing of bcc-Fe on the surface where the Fe layer is incoherent to the underlying Fe{sub 0.5}Ir{sub 0.5}/Ir(111). These results emphasize the importance of the substrate induced strain and layered structure of Fe/Fe{sub 0.5}Ir{sub 0.5}/Ir(111) on the magnetic properties and provide valuable information for future applications.

  8. The formation and evolution of layered structures in porous media: effects of porosity and mechanical dispersion

    NASA Astrophysics Data System (ADS)

    Schoofs, Stan; Trompert, Ron A.; Hansen, Ulrich

    2000-03-01

    Horizontally layered structures can develop in porous or partially molten environments, such as hydrothermal systems, magmatic intrusions and the early Earth's mantle. The porosity φ of these natural environments is typically small. Since dissolved chemical elements unlike heat cannot diffuse through the solid rocks, heat and solute influence the interstitial fluid density in a different manner: heat advects slower than solute through the liquid by the factor φ, while diffusion of heat through the bulk porous medium is larger by the factor φ-1 times the ratio between the thermal and chemical diffusivities. By performing numerical experiments in which a rigid low-porosity medium is heated from below, we have studied the formation and evolution of layers in an initially stably stratified liquid. Growth of a convective layer through convective entrainment, the formation of a stable density interface on top of the layer and destabilization of the next layer are intimately linked. By monitoring the heat (solute) fluxes, it is observed that the transport of heat (solute) across the interface changes from convective entrainment towards a regime in which transfer is purely diffusive (dispersive). Because this transition occurs before the stage at which the lower layer arrives at the thermal equilibrium, we conclude that the layer growth stops when the density interface on top has grown sufficiently strong to keep the ascending plumes in the lower layer from convectively entraining more fluid from above. A simple balance between the most important forces, exerted on a fluid parcel in the lower layer, is proposed to determine this transition. This force balance also indicates whether a density interface keeps intact, migrates upwards or breaks down during the further evolution of the layered sequence. Finally, mechanical dispersion tends to increase transport of chemically dissolved elements across the density interface. Since this reduces the density difference between

  9. S-layers at second glance? Altiarchaeal grappling hooks (hami) resemble archaeal S-layer proteins in structure and sequence

    PubMed Central

    Perras, Alexandra K.; Daum, Bertram; Ziegler, Christine; Takahashi, Lynelle K.; Ahmed, Musahid; Wanner, Gerhard; Klingl, Andreas; Leitinger, Gerd; Kolb-Lenz, Dagmar; Gribaldo, Simonetta; Auerbach, Anna; Mora, Maximilian; Probst, Alexander J.; Bellack, Annett; Moissl-Eichinger, Christine

    2015-01-01

    The uncultivated “Candidatus Altiarchaeum hamiconexum” (formerly known as SM1 Euryarchaeon) carries highly specialized nano-grappling hooks (“hami”) on its cell surface. Until now little is known about the major protein forming these structured fibrous cell surface appendages, the genes involved or membrane anchoring of these filaments. These aspects were analyzed in depth in this study using environmental transcriptomics combined with imaging methods. Since a laboratory culture of this archaeon is not yet available, natural biofilm samples with high Ca. A. hamiconexum abundance were used for the entire analyses. The filamentous surface appendages spanned both membranes of the cell, which are composed of glycosyl-archaeol. The hami consisted of multiple copies of the same protein, the corresponding gene of which was identified via metagenome-mapped transcriptome analysis. The hamus subunit proteins, which are likely to self-assemble due to their predicted beta sheet topology, revealed no similiarity to known microbial flagella-, archaella-, fimbriae- or pili-proteins, but a high similarity to known S-layer proteins of the archaeal domain at their N-terminal region (44–47% identity). Our results provide new insights into the structure of the unique hami and their major protein and indicate their divergent evolution with S-layer proteins. PMID:26106369

  10. Enhanced Magnetoelectric Coupling in Layered Structure of Piezoelectric Bimorph and Metallic Alloy

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.; Bichurin, M. I.; Lavrentyeva, K. V.; Leontiev, V. S.

    2016-08-01

    We have investigated the enhanced magnetoelectric (ME) coupling in a layered structure of piezoelectric bimorph and magnetostrictive metallic alloy. The observed ME coefficient in the piezoelectric bimorph-based structure was found to be two times higher than in the traditional piezoelectric/magnetostrictive bilayer. The observed enhancement in ME coupling strength is related to equal signs of induced voltage in both lead zirconate titanate layers with opposite poling directions due to the flexural deformations. The piezoelectric bimorph-based structure has promising potential for sensor and technological applications.

  11. Layers and tubes of fluorographene C4F: Stability, structural and electronic properties from DFTB calculations

    NASA Astrophysics Data System (ADS)

    Enyashin, A. N.; Ivanovskii, A. L.

    2013-06-01

    By means of the DFTB band structure calculations we have explored the layers' isomerism of fluorographene C4F. The relative stability, structural and electronic properties of the C4F layers and nanotubes have been revealed depending on the possible types of fluorine coverage: single-sided, double-sided or so-called non-uniform variants. Our main finding is that the aforementioned types of fluorine coverage are crucial for the morphology of these materials. At the non-uniform or single-sided coverage types the C4F structures aspire to the spontaneous folding in order to minimize their surface tension.

  12. Effects of precipitation on the thermodynamic structure of the trade wind boundary layer

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.

    1993-01-01

    A model of the thermodynamic structure of the trade wind boundary layer is formulated to include the parameterization of precipitation in relatively shallow clouds. Although the area-averaged simulated precipitation rates are relatively small (less than 1 mm/day), the inclusion of precipitation has an appreciable effect on the predicted thermodynamic structure. The cloud layer structure simulated with precipitation is warmer, drier, and more stable than that simulated without precipitation. The simulated inversion height is lowered by as much as 60 mbar when precipitation is included.

  13. Electronic Structure and the Properties of Phosphorene and Few-Layer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Fukuoka, Shuhei; Taen, Toshihiro; Osada, Toshihito

    2015-12-01

    A single atomic layer of black phosphorus, phosphorene, was experimentally realized in 2014. It has a puckered honeycomb lattice structure and a semiconducting electronic structure. In the first part of this paper, we use a simple LCAO model, and qualitatively discuss the electronic structure of phosphorene systems under electric and magnetic fields, especially noting their midgap edge states. The next part is devoted to the review of the progress in research on phosphorene over the past one year since its realization in 2014. Phosphorene has been a typical material to study the semiconductor physics in atomic layers.

  14. Wavevector filtering through single-layer and bilayer graphene with magnetic barrier structures

    NASA Astrophysics Data System (ADS)

    Masir, M. Ramezani; Vasilopoulos, P.; Peeters, F. M.

    2008-12-01

    We show that the angular range of the transmission through magnetic barrier structures can be efficiently controlled in single-layer and bilayer graphenes and this renders the structure's efficient wavevector filters. As the number of magnetic barriers increases, this range shrinks, the gaps in the transmission versus energy become wider, and the conductance oscillates with the Fermi energy.

  15. Structure and physical properties for a new layered pnictide-oxide: BaTi₂As₂O.

    PubMed

    Wang, X F; Yan, Y J; Ying, J J; Li, Q J; Zhang, M; Xu, N; Chen, X H

    2010-02-24

    We have successfully synthesized a new layered pnictide-oxide: BaTi(2)As(2)O. It shares similar characteristics with Na(2)Ti(2)Sb(2)O. The crystal has a layered structure with a tetragonal P4/nmm group (a = 4.047(3) Å, c = 7.275(4) Å). The resistivity shows an anomaly at 200 K, which should be ascribed to an SDW or structural transition. The SDW or structural transition is confirmed by magnetic susceptibility and heat capacity measurements. These behaviors are very similar to those observed in parent compounds of high-T(c) iron-based pnictide superconductors, in which the superconductivity shows up when the anomaly due to the SDW or structural transition is suppressed. Therefore, the new layered pnictide-oxide, BaTi(2)As(2)O, could be a potential parent compound for superconductivity. It is found that Li( + ) doping significantly suppresses the anomaly, but no superconductivity emerges so far.

  16. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1992-01-01

    A microporous structure with layered interstitial surface treatments, and the method and apparatus for its preparation are disclosed. The structure is prepared by sequentially subjecting a uniformly surface treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  17. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1994-01-01

    A microporous structure with layered interstitial surface treatments, and method and apparatus for preparation thereof is presented. The structure is prepared by sequentially subjecting a uniformly surface-treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  18. Strengthening of polymer ordered porous materials based on a layered nanocomposite internal structure.

    PubMed

    Heng, Liping; Guo, Xieyou; Guo, Tianqi; Wang, Bin; Jiang, Lei

    2016-07-21

    Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on. PMID:27355160

  19. Resonance magnetoelectric interactions in an asymmetric ferromagnetic-ferroelectric layered structure

    NASA Astrophysics Data System (ADS)

    Fetisov, L. Y.; Perov, N. S.; Fetisov, Y. K.; Srinivasan, G.; Petrov, V. M.

    2011-03-01

    Strain mediated magnetoelectric (ME) interactions have been investigated in a sample consisting of oppositely poled lead zirconate titanate (PZT) and asymmetric magnetostrictive layers. A thin layer of Ni with negative magnetostriction and amorphous ferromagnetic Metglas with positive magnetostriction are bonded to the PZT layers. It is shown that the magnetic layers facilitate effective excitation of bending oscillations in the structure, whereas the use of oppositely poled PZT layers results in an increase in the ME voltage at the bending resonance frequency, suppression of the voltage at the longitudinal electromechanical resonance frequency, and cancellation of thermal fluctuation in the voltage. The ME voltage coefficient at resonance is 18 V/(cm Oe); that is an order of magnitude higher than the value measured for a Ni-PZT bilayer of similar dimensions. Theoretical estimates of the ME voltage and resonance frequency are in good agreement with the data.

  20. Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation.

    PubMed

    Taylor, Dane; Shai, Saray; Stanley, Natalie; Mucha, Peter J

    2016-06-01

    Many systems are naturally represented by a multilayer network in which edges exist in multiple layers that encode different, but potentially related, types of interactions, and it is important to understand limitations on the detectability of community structure in these networks. Using random matrix theory, we analyze detectability limitations for multilayer (specifically, multiplex) stochastic block models (SBMs) in which L layers are derived from a common SBM. We study the effect of layer aggregation on detectability for several aggregation methods, including summation of the layers' adjacency matrices for which we show the detectability limit vanishes as O(L^{-1/2}) with increasing number of layers, L. Importantly, we find a similar scaling behavior when the summation is thresholded at an optimal value, providing insight into the common-but not well understood-practice of thresholding pairwise-interaction data to obtain sparse network representations. PMID:27314740

  1. Tuning the magnetic anisotropy in single-layer crystal structures

    NASA Astrophysics Data System (ADS)

    Torun, E.; Sahin, H.; Bacaksiz, C.; Senger, R. T.; Peeters, F. M.

    2015-09-01

    The effect of an applied electric field and the effect of charging are investigated on the magnetic anisotropy (MA) of various stable two-dimensional (2D) crystals such as graphene, FeCl2, graphone, fluorographene, and MoTe2 using first-principles calculations. We found that the magnetocrystalline anisotropy energy of Co-on-graphene and Os-doped-MoTe2 systems change linearly with electric field, opening the possibility of electric field tuning MA of these compounds. In addition, charging can rotate the easy-axis direction of Co-on-graphene and Os-doped-MoTe2 systems from the out-of-plane (in-plane) to in-plane (out-of-plane) direction. The tunable MA of the studied materials is crucial for nanoscale electronic technologies such as data storage and spintronics devices. Our results show that controlling the MA of the mentioned 2D crystal structures can be realized in various ways, and this can lead to the emergence of a wide range of potential applications where the tuning and switching of magnetic functionalities are important.

  2. Multi-layered population structure in Island Southeast Asians

    PubMed Central

    Ricaut, Francois-Xavier; Yngvadottir, Bryndis; Harney, Eadaoin; Castillo, Cristina; Hoogervorst, Tom; Antao, Tiago; Kusuma, Pradiptajati; Razafindrazaka, Harilanto; Cardona, Alexia; Pierron, Denis; Letellier, Thierry; Wee, Joseph; Abdullah, Syafiq; Metspalu, Mait; Kivisild, Toomas

    2016-01-01

    The history of human settlement in Southeast Asia has been complex and involved several distinct dispersal events. Here we report the analyses of 1825 individuals from Southeast Asia including new genome-wide genotype data for 146 individuals from three Mainland Southeast Asian (Burmese, Malay and Vietnamese) and four Island Southeast Asian (Dusun, Filipino, Kankanaey and Murut) populations. While confirming the presence of previously recognized major ancestry components in the Southeast Asian population structure, we highlight the Kankanaey Igorots from the highlands of the Philippine Mountain Province as likely the closest living representatives of the source population that may have given rise to the Austronesian expansion. This conclusion rests on independent evidence from various analyses of autosomal data and uniparental markers. Given the extensive presence of trade goods, cultural and linguistic evidence of Indian influence in Southeast Asia starting from 2.5kya we also detect traces of a South Asian signature in different populations in the region dating to the last couple of thousand years. PMID:27302840

  3. Strengthening of polymer ordered porous materials based on a layered nanocomposite internal structure

    NASA Astrophysics Data System (ADS)

    Heng, Liping; Guo, Xieyou; Guo, Tianqi; Wang, Bin; Jiang, Lei

    2016-07-01

    Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on.Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on. Electronic supplementary information (ESI) available: SEM image of hexagonal silicon pillar templates, AFM images of clay platelets on a silicon substrate, photographs of free-standing gels, X-ray diffraction profiles for dried materials, FTIR and TGA of the samples, and

  4. Structure prediction of an S-layer protein by the mean force method

    NASA Astrophysics Data System (ADS)

    Horejs, C.; Pum, D.; Sleytr, U. B.; Tscheliessnig, R.

    2008-02-01

    S-layer proteins have a wide range of application potential due to their characteristic features concerning self-assembling, assembling on various surfaces, and forming of isoporous structures with functional groups located on the surface in an identical position and orientation. Although considerable knowledge has been experimentally accumulated on the structure, biochemistry, assemble characteristics, and genetics of S-layer proteins, no structural model at atomic resolution has been available so far. Therefore, neither the overall folding of the S-layer proteins—their tertiary structure—nor the exact amino acid or domain allocations in the lattices are known. In this paper, we describe the tertiary structure prediction for the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2. This calculation was based on its amino acid sequence using the mean force method (MF method) achieved by performing molecular dynamic simulations. This method includes mainly the thermodynamic aspects of protein folding as well as steric constraints of the amino acids and is therefore independent of experimental structure analysis problems resulting from biochemical properties of the S-layer proteins. Molecular dynamic simulations were performed in vacuum using the simulation software NAMD. The obtained tertiary structure of SbsB was systematically analyzed by using the mean force method, whereas the verification of the structure is based on calculating the global free energy minimum of the whole system. This corresponds to the potential of mean force, which is the thermodynamically most favorable conformation of the protein. Finally, an S-layer lattice was modeled graphically using CINEMA4D and compared with scanning force microscopy data down to a resolution of 1nm. The results show that this approach leads to a thermodynamically favorable atomic model of the tertiary structure of the protein, which could be verified by both the MF Method and the lattice model.

  5. Synthesis, structure and electrochemical properties of novel Li-Co-Mn-O epitaxial thin-film electrode using layer-by-layer deposition process

    NASA Astrophysics Data System (ADS)

    Lim, Jaemin; Lee, Soyeon; Suzuki, Kota; Kim, KyungSu; Kim, Sangryun; Taminato, Sou; Hirayama, Masaaki; Oshima, Yoshifumi; Takayanagi, Kunio; Kanno, Ryoji

    2015-04-01

    A novel epitaxial thin-film electrode for lithium batteries, with a composition of Li0.92Co0.65Mn1.35O4 and a cubic spinel structure, is fabricated on a SrTiO3(111) single-crystal substrate. Fabrication is carried out by layer-by-layer pulsed laser deposition of LiCoO2 with a layered rock-salt structure and LiMn2O4 with a spinel structure. The electrode is found to exhibit unique disordering of the lithium (8a) and transition-metal (16d) sites, leading to a higher rate capability and cycle retention ratio than those for a thin-film electrode with the same composition prepared by a conventional single-step deposition process. The proposed layer-by-layer deposition method allows an expanded range of compositional and structural variations for lithium battery electrode materials.

  6. Structural-acoustic optimization of structures excited by turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Shepherd, Micah R.

    In order to reduce noise radiation of aircraft or marine panels, a general structural-acoustic optimization technique is presented. To compute the structural-acoustic response, a modal approach based on finite element / boundary element analysis is used which can easily incorporate fluid loading, added structures and static pre-loads. Simple deterministic or complex random forcing functions are included in the analysis by transforming their cross-spectral density matrices to modal space. Particular emphasis is placed in this dissertation on structures excited by the fluctuating pressures due to turbulent boundary layer (TBL) flow. An efficient frequency-spacing is also used to minimize evaluation time but ensure accuracy. The response from the structural-acoustic analysis is coupled to an evolutionary strategy with covariance matrix adaptation (CMA-ES) to find the best design for low noise and weight. CMA-ES, a stochastic optimizer with robust search properties, samples candidate solutions from a multi-variate normal distribution and adapts the covariance matrix to favor good solutions. The optimization procedure is validated by minimizing the sound radiated by a point-driven ribbed panel and comparing the optimization results to an exhaustive search of the design space. Structural-acoustic optimization is then performed on a curved marine panel with heavy fluid loading excited by slow TBL flow. A weighted combination of noise radiation and mass are minimized by changing the thickness of strips and patches of elements. An uncorrelated pressure approximation is used to estimate the modal force due to TBL flow thus reducing the evaluation time required to compute the objective function. The results show that the best noise reduction is achieved by minimizing the modal acceptance of energy by the panel. This is equivalent to pushing the structural modes away from the peak frequency range of the forcing function. Additionally, the Pareto trade-off curve between total

  7. Modular structural elements in the replication origin region of Tetrahymena rDNA.

    PubMed Central

    Du, C; Sanzgiri, R P; Shaiu, W L; Choi, J K; Hou, Z; Benbow, R M; Dobbs, D L

    1995-01-01

    Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication. Images PMID:7784181

  8. Origin of chert layers associated with some Middle Ordovician K-bentonite beds from the southern Appalachians and the eastern mid-continent

    SciTech Connect

    Krekeler, M.P.S.; McVey, D.E.; Huff, W.D. . Dept. of Geology)

    1994-03-01

    Chert layers associated with the Middle Ordovician Deicke, Millibrig, and V-7 K-bentonite beds have been examined in thin-section to determine their origin. Textural evidence indicate that the chert layers are inorganic in origin. Complex diagenetic features include abundant chalcedony veinlets, replacement textures, and preservation of primary CO[sub 3] cements. The model the authors propose for the formation of these chert layers incorporates both silica release associated with the devitrification of volcanic glass and silica precipitation from a migrating regional brine. Precipitation from a brine is the dominant mechanism of silicification based on stoichiometric calculations of silica release during illite/smectite (I/S) transformations, petrography of the chert layers, and work by previous authors. However, multiple generations of silica observed in the rock suggest that other contributing small scale sources of silica may also exist. Brine derived silica preferentially replaces low Mg calcite that has high surface area, such as micrite and fossil debris. Some dolomite rhombs preserved in the chert may have formed during primary sedimentary dolomitization yet textural comparisons indicate this is unlikely for most samples. Birdseye and brachiopod cements are typically well preserved in the cherts. Cherts that have been subjected to elevated burial temperatures (150--200 C) have significant amounts of authigenic clay minerals. Pyrite mineralization exhibits cross cutting relationships with chert and micrite. Clay and pyrite mineralization suggest the presence of significant porosity early in the history of formation of the chert layers.

  9. Paleocene and Early Eocene volcanic ash layers in the Schlieren Flysch, Switzerland: U-Pb dating and Hf-isotopes of zircons, pumice geochemistry and origin

    NASA Astrophysics Data System (ADS)

    Koch, Simone; Winkler, Wilfried; Von Quadt, Albrecht; Ulmer, Peter

    2015-11-01

    Thin mm to cm thick bentonite layers of Paleocene to Early Eocene age in the Tonsteinschichten of the Schlieren Flysch represent volcanic ash layers. Heavy mineral analysis of the layers indicates basic to acidic volcanic sources. U/Pb dating of single zircon crystals of a Paleocene layer (WW1948) by LA-ICP-MS points to an eruption at 59.87 ± 0.41 Ma, whereas ID-TIMS shows an eruption age of 60.96 ± 0.07 Ma. Taking into account the external precision of LA-ICP-MS analyses of 1-2% both ages are overlapping and indicate an apparent minimal durations of zircon crystallization of 350 ka. Hf-isotope analysis of the same zircon crystals reveals the hybrid character of the source magma. The geochemical composition of the pumice grains of all bentonite layers is strongly affected by alteration. Nevertheless, the original character of the volcanic source can be evaluated. The Paleocene ashes (Lower Tonsteinschichten, LT) show a more fractionated multi-element pattern than the ashes of Early Eocene (Upper Tonsteinschichten, UT). The LT ash series are of rhyodacite to dacite character whereas the UT ashes fall in the field of alkali basalts. Both ash series seem to originate from a within-plate volcanic setting according to their trace element concentrations. Geochemical and temporary counterparts can be found in ash layers from Anthering (Austria) and the Danish Basin. As proposed for those ashes, volcanism connected to the opening of the North Atlantic might be the source as well for the ashes in the Schlieren Flysch. By comparison of the composition of rocks from the British Paleogene Igneous Province BPIP and the Schlieren Flysch ashes many correlations can be drawn which supports the suggestion of a North Atlantic origin of the Alpine ashes.

  10. Fine-scale radar observations of boundary layer structures in landfalling hurricanes

    NASA Astrophysics Data System (ADS)

    Kosiba, K.; Wurman, J.; Robinson, P.

    2012-04-01

    The hurricane boundary layer is comprised of coherent structures that are potentially responsible for significant transport of turbulent fluxes throughout the hurricane boundary layer as well as regions of enhanced damage at the surface. These coherent structures are not well understood and consequently their effects are poorly represented in numerical models. Consequently, an understanding of the flow modulating processes in the hurricane boundary layer is necessary to improve hurricane intensity forecasts. Further, enhanced regions of turbulent momentum transport are hypothesized to cause areas of enhanced damage at the surface. In order to characterize these turbulent processed and quantify their effects, the Doppler on Wheels radars (DOWs) have deployed in several hurricanes, obtaining both dual-Doppler and rapid single-Doppler observations in the boundary layer of landfalling hurricanes. Results will be presented from Hurricanes Frances (2004), Gustav (2008), and Ike (2008). During Hurricane Frances, high-resolution, dual-Doppler radar observations of the lowest hundred meters of the boundary layer allowed for the four-dimensional (time and space) analysis of the boundary layer velocity structure and for the quantification of the turbulent fluxes as Frances transitioned from ocean to land. These results will be discussed in the context of current turbulent parameterization schemes used in numerical models. In Hurricanes Gustav and Ike, rapid, single-Doppler observations were obtained of the boundary layers. This allowed for the two-dimensional quantification rapidly evolving of boundary layer structures. Further an array of surface based instruments were deployed in Hurricanes Gustav and Ike in order to correlate observations at radar level with surface observations. Through turbulent considerations, a reduction factor was derived for the radar winds, which allowed for the comparison between radar level winds and winds observed at 1, 2, and 10 m. These results

  11. Structure of Protein Layers in Polyelectrolyte Matrices Studied by Neutron Reflectivity

    SciTech Connect

    Kozlovskaya, Veronika; Ankner, John Francis; O'Neill, Hugh Michael; Zhang, Qiu; Kharlampieva, Eugenia

    2011-01-01

    Polyelectrolyte multilayer films obtained by localized incorporation of Green Fluorescent Protein (GFP) within electrostatically assembled matrices of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) via spin-assisted layer-by-layer growth were discovered to be highly structured, with closely packed monomolecular layers of the protein within the bio-hybrid films. The structure of the films was evaluated in both vertical and lateral directions with neutron reflectometry, using deuterated GFP as a marker for neutron scattering contrast. Importantly, the GFP preserves its structural stability upon assembly as confirmed by circular dichroism (CD) and in situ attenuated total reflection Fourier Transform Infrared spectroscopy (ATR-FTIR). Atomic force microscopy was complimented with X-ray reflectometry to characterize the external roughness of the biohybrid films. Remarkably, films assembled with a single GFP layer confined at various distances from the substrate exhibit a strong localization of the GFP layer without intermixing into the LbL matrix. However, partial intermixing of the GFP layers with polymeric material is evidenced in multiple-GFP layer films with alternating protein-rich and protein-deficient regions. We hypothesize that the polymer-protein exchange observed in the multiple-GFP layer films suggests the existence of a critical protein concentration which can be accommodated by the multilayer matrix. Our results yield new insights into the mechanism of GFP interaction with a polyelectrolyte matrix and open opportunities for fabrication of bio-hybrid films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.

  12. Self-Sustained Localized Structures in a Boundary-Layer Flow

    NASA Astrophysics Data System (ADS)

    Duguet, Yohann; Schlatter, Philipp; Henningson, Dan S.; Eckhardt, Bruno

    2012-01-01

    When a boundary layer starts to develop spatially over a flat plate, only disturbances of sufficiently large amplitude survive and trigger turbulence subcritically. Direct numerical simulation of the Blasius boundary-layer flow is carried out to track the dynamics in the region of phase space separating transitional from relaminarizing trajectories. In this intermediate regime, the corresponding disturbance is fully localized and spreads slowly in space. This structure is dominated by a robust pair of low-speed streaks, whose convective instabilities spawn hairpin vortices evolving downstream into transient disturbances. A quasicyclic mechanism for the generation of offspring is unfolded using dynamical rescaling with the local boundary-layer thickness.

  13. Electronic band structure imaging of three layer twisted graphene on single crystal Cu(111)

    SciTech Connect

    Marquez Velasco, J.; Kelaidis, N.; Xenogiannopoulou, E.; Tsoutsou, D.; Tsipas, P.; Speliotis, Th.; Pilatos, G.; Likodimos, V.; Falaras, P.; Dimoulas, A.; Raptis, Y. S.

    2013-11-18

    Few layer graphene (FLG) is grown on single crystal Cu(111) by Chemical Vapor Deposition, and the electronic valence band structure is imaged by Angle-Resolved Photo-Emission Spectroscopy. It is found that graphene essentially grows polycrystalline. Three nearly ideal Dirac cones are observed along the Cu Γ{sup ¯}K{sup ¯} direction in k-space, attributed to the presence of ∼4° twisted three layer graphene with negligible interlayer coupling. The number of layers and the stacking order are compatible with Raman data analysis demonstrating the complementarity of the two techniques for a more accurate characterization of FLG.

  14. Sound transmission through finite lightweight multilayered structures with thin air layers.

    PubMed

    Dijckmans, A; Vermeir, G; Lauriks, W

    2010-12-01

    The sound transmission loss (STL) of finite lightweight multilayered structures with thin air layers is studied in this paper. Two types of models are used to describe the vibro-acoustic behavior of these structures. Standard transfer matrix method assumes infinite layers and represents the plane wave propagation in the layers. A wave based model describes the direct sound transmission through a rectangular structure placed between two reverberant rooms. Full vibro-acoustic coupling between rooms, plates, and air cavities is taken into account. Comparison with double glazing measurements shows that this effect of vibro-acoustic coupling is important in lightweight double walls. For infinite structures, structural damping has no significant influence on STL below the coincidence frequency. In this frequency region, the non-resonant transmission or so-called mass-law behavior dominates sound transmission. Modal simulations suggest a large influence of structural damping on STL. This is confirmed by experiments with double fiberboard partitions and sandwich structures. The results show that for thin air layers, the damping induced by friction and viscous effects at the air gap surfaces can largely influence and improve the sound transmission characteristics. PMID:21218884

  15. On the structural origins of ferroelectricity in HfO{sub 2} thin films

    SciTech Connect

    Sang, Xiahan; Grimley, Everett D.; LeBeau, James M.; Schenk, Tony; Schroeder, Uwe

    2015-04-20

    Here, we present a structural study on the origin of ferroelectricity in Gd doped HfO{sub 2} thin films. We apply aberration corrected high-angle annular dark-field scanning transmission electron microscopy to directly determine the underlying lattice type using projected atom positions and measured lattice parameters. Furthermore, we apply nanoscale electron diffraction methods to visualize the crystal symmetry elements. Combined, the experimental results provide unambiguous evidence for the existence of a non-centrosymmetric orthorhombic phase that can support spontaneous polarization, resolving the origin of ferroelectricity in HfO{sub 2} thin films.

  16. First-principles study of the structure of water layers on flat and stepped Pb electrodes

    PubMed Central

    Lin, Xiaohang; Evers, Ferdinand

    2016-01-01

    Summary On the basis of perodic density functional theory (DFT) calculations, we have addressed the geometric structures and electronic properties of water layers on flat and stepped Pb surfaces. In contrast to late d-band metals, on Pb(111) the energy minimum structure does not correspond to an ice-like hexagonal arrangement at a coverage of 2/3, but rather to a distorted structure at a coverage of 1 due to the larger lattice constant of Pb. At stepped Pb surfaces, the water layers are pinned at the step edge and form a complex network consisting of rectangles, pentagons and hexagons. The thermal stability of the water layers has been studied by using ab initio molecular dynamics simulations (AIMD) at a temperature of 140 K. Whereas the water layer on Pb(111) is already unstable at this temperature, the water layers on Pb(100), Pb(311), Pb(511) and Pb(711) exhibit a higher stability because of stronger water–water interactions. The vibrational spectra of the water layers at the stepped surfaces show a characteristic splitting into three modes in the O–H stretch region. PMID:27335744

  17. Crystalline Structure of the Pb/Si(111)7x7 Stable Wetting Layer

    NASA Astrophysics Data System (ADS)

    Gramlich, M.; Hayden, S. T.; Chen, Yiyao; Kim, C.; Tringides, M. C.; Miceli, P. F.

    2012-02-01

    The wetting layer formation in the Pb/Si(111)7x7 system has attracted extensive interest because of anomalously fast kinetics, which enables the formation of quantum size effect (QSE) nanoislands [Jeffrey et al. PRL 96, 106105 (2006)]. However, previous studies of the wetting layer by x-ray diffraction and scanning-probes have led to inconsistent structural models; thus, the structure of this wetting layer has been unsolved. Furthermore, a recent investigation has revealed that the wetting layer is out-of-equilibrium over a surprisingly broad temperature range [Gramlich et al., PRB 84, 075433 (2011)]. Using in situ x-ray scattering methods, we have solved the stable, low temperature annealed structure of the wetting layer. It exhibits a strained atomic layer where Pb atoms are in transition, from Si-7x7 sites towards 8x8-sites, with some Pb-atoms vertically closer to the Si-7x7. Interestingly, the Si adatoms shift to the edges of the unit cell. Funding is acknowledged from NSF DMR-0706278 (PFM, MWG, STH, YC, and the Ministry of Knowledge Economy of Korea 2009-F014-01 (CK). The experiments were performed on the 6IDC beam line, supported by the US-DOE (through Ames Lab, W-7405-Eng-82), at the Advanced Photon Source (US-DOE, W-31-109-Eng-38) located at Argonne National Laboratory.

  18. First-principles study of the structure of water layers on flat and stepped Pb electrodes.

    PubMed

    Lin, Xiaohang; Evers, Ferdinand; Groß, Axel

    2016-01-01

    On the basis of perodic density functional theory (DFT) calculations, we have addressed the geometric structures and electronic properties of water layers on flat and stepped Pb surfaces. In contrast to late d-band metals, on Pb(111) the energy minimum structure does not correspond to an ice-like hexagonal arrangement at a coverage of 2/3, but rather to a distorted structure at a coverage of 1 due to the larger lattice constant of Pb. At stepped Pb surfaces, the water layers are pinned at the step edge and form a complex network consisting of rectangles, pentagons and hexagons. The thermal stability of the water layers has been studied by using ab initio molecular dynamics simulations (AIMD) at a temperature of 140 K. Whereas the water layer on Pb(111) is already unstable at this temperature, the water layers on Pb(100), Pb(311), Pb(511) and Pb(711) exhibit a higher stability because of stronger water-water interactions. The vibrational spectra of the water layers at the stepped surfaces show a characteristic splitting into three modes in the O-H stretch region.

  19. X-ray CT image segmentation: automatic sandwich structure layer separation using reduced dimension Hough transformation

    NASA Astrophysics Data System (ADS)

    Xu, J.; Liu, T.; Kakarala, R.; Yin, X. M.

    2010-03-01

    Many structures in aerospace, semiconductor and precision engineering are multi-layer in nature. Examples include Low Temperature Co-Fire Ceramic (LTCC), PCBA, stacked IC, Through-Silicon-Via and composite materials for aircraft wings. Segmentation of each internal layer in any orientation is essential for layer alignment as well as delamination, disbond and warpage analysis. In this paper we propose a RDHT (Reduced Dimension Hough Transformation) for automatic layer detection. Instead of segmenting internal surfaces at voxel level, correlation based edge operator is applied to extract features in 3D space whereby the likelihood of any planar structure is associated with the number of features on a specific plane. We use Randomized Hough Transform to map 3D features in three one dimensional accumulators plus one verification accumulator to reduce Hough space dimension. The RDHT has been successfully applied to various objects to reveal internal planar structures. For a CT result with a 512×512×512 cube, the feature detection takes 30 seconds and the subsequent layer separation takes 12 seconds (laptop with Intel dual core 1.6G). We demonstrate that the algorithm can segment all 16 layers of a stacked IC with an accuracy of 0.5 voxel.

  20. X-ray CT image segmentation: automatic sandwich structure layer separation using reduced dimension Hough transformation

    NASA Astrophysics Data System (ADS)

    Xu, J.; Liu, T.; Kakarala, R.; Yin, X. M.

    2009-12-01

    Many structures in aerospace, semiconductor and precision engineering are multi-layer in nature. Examples include Low Temperature Co-Fire Ceramic (LTCC), PCBA, stacked IC, Through-Silicon-Via and composite materials for aircraft wings. Segmentation of each internal layer in any orientation is essential for layer alignment as well as delamination, disbond and warpage analysis. In this paper we propose a RDHT (Reduced Dimension Hough Transformation) for automatic layer detection. Instead of segmenting internal surfaces at voxel level, correlation based edge operator is applied to extract features in 3D space whereby the likelihood of any planar structure is associated with the number of features on a specific plane. We use Randomized Hough Transform to map 3D features in three one dimensional accumulators plus one verification accumulator to reduce Hough space dimension. The RDHT has been successfully applied to various objects to reveal internal planar structures. For a CT result with a 512×512×512 cube, the feature detection takes 30 seconds and the subsequent layer separation takes 12 seconds (laptop with Intel dual core 1.6G). We demonstrate that the algorithm can segment all 16 layers of a stacked IC with an accuracy of 0.5 voxel.

  1. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    DOEpatents

    Spahn, Olga B.; Lear, Kevin L.

    1998-01-01

    A semiconductor structure. The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g. Al.sub.2 O.sub.3), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3-1.6 .mu.m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation.

  2. Fabrication and Mechanical Evaluation of Anatomically-Inspired Quasilaminate Hydrogel Structures with Layer-Specific Formulations

    PubMed Central

    Tseng, Hubert; Cuchiara, Maude L.; Durst, Christopher A.; Cuchiara, Michael P.; Lin, Chris J.; West, Jennifer L.; Grande-Allen, K. Jane

    2012-01-01

    A major tissue engineering challenge is the creation of multilaminate scaffolds with layer-specific mechanical properties representative of native tissues, such as heart valve leaflets, blood vessels, and cartilage. For this purpose, poly(ethylene glycol) diacrylate (PEGDA) hydrogels are attractive materials due to their tunable mechanical and biological properties. This study explored the fabrication of trilayer hydrogel quasilaminates. A novel sandwich method was devised to create quasilaminates with layers of varying stiffnesses. The trilayer structure was comprised of two “stiff” outer layers and one “soft” inner layer. Tensile testing of bilayer quasilaminates demonstrated that these scaffolds do not fail at the interface. Flexural testing showed that the bending modulus of acellular quasilaminates fell between the bending moduli of the “stiff” and “soft” hydrogel layers. The bending modulus and swelling of trilayer scaffolds with the same formulations were not significantly different than single layer gels of the same formulation. The encapsulation of cells and the addition of phenol red within the hydrogel layers decreased bending modulus of the trilayer scaffolds. The data presented demonstrates that this fabrication method can make quasilaminates with robust interfaces, integrating layers of different mechanical properties and biofunctionalization, and thus forming the foundation for a multilaminate scaffold that more accurately represents native tissue. PMID:23053300

  3. Enhancement of effective electromechanical coupling factor by mass loading in layered surface acoustic wave device structures

    NASA Astrophysics Data System (ADS)

    Tang, Gongbin; Han, Tao; Teshigahara, Akihiko; Iwaki, Takao; Hashimoto, Ken-ya

    2016-07-01

    This paper describes a drastic enhancement of the effective coupling factor K\\text{e}2 by mass loading in layered surface acoustic wave (SAW) device structures such as the ScAlN film/Si substrate structure. This phenomenon occurs when the piezoelectric layer exhibits a high acoustic wave velocity. The mass loading decreases the SAW velocity and causes SAW energy confinement close to the top surface where an interdigital transducer is placed. It is shown that this phenomenon is obvious even when an amorphous SiO2 film is deposited on the top surface for temperature compensation. This K\\text{e}2 enhancement was also found in various combinations of electrode, piezoelectric layer, and/or substrate materials. The existence of this phenomenon was verified experimentally using the ScAlN film/Si substrate structure.

  4. Fabrication and atomic structure of size-selected, layered MoS2 clusters for catalysis

    NASA Astrophysics Data System (ADS)

    Cuddy, Martin J.; Arkill, Kenton P.; Wang, Zhi Wei; Komsa, Hannu-Pekka; Krasheninnikov, Arkady V.; Palmer, Richard E.

    2014-10-01

    Well defined MoS2 nanoparticles having a layered structure and abundant edges would be of considerable interest for applications including photocatalysis. We report the atomic structure of MoS2 size-selected clusters with mass in a range all the way from 50 to ~2000 MoS2 units. The clusters were prepared by magnetron sputtering and gas condensation prior to size selection and soft landing on carbon supports. Aberration-corrected scanning transmission electron microscopy (STEM) in high-angle annular dark-field (HAADF) mode reveals a layered structure and Mo-Mo spacing similar to the bulk material. The mean number of layers in these lamellar clusters increases from one to three with increasing mass, consistent with density functional theory calculations of the balance between edge energies and interlayer binding.

  5. Chlorine adlayer-templated growth of a hybrid inorganic-organic layered structure on Au(111)

    NASA Astrophysics Data System (ADS)

    Rzeźnicka, I. I.; Horino, H.; Yagyu, K.; Suzuki, T.; Kajimoto, S.; Fukumura, H.

    2016-10-01

    Growth of a hybrid inorganic-organic layered structure on the Au(111) surface using a one-step solution growth is reported. The hybrid structure is consist of 4,4‧-bipyridine [4,4‧-BiPyH2]2 + cations, Cl anions and Au adatoms, provided from substrate by means of the adsorbate-induced surface phase transition of a surface reconstruction. Its surface and bulk structures were characterized by scanning tunneling microscopy (STM), secondary ion mass spectrometry (SIMS), and Raman spectroscopy. STM results reveal growth of the first [4,4‧-BiPyH2]2 + layer on top of the p(√{ 3} ×√{ 3})" separators=", R 30 ° chlorine overlayer formed on the Au(111) surface. These two layers are found to provide a platform for a following three-dimensional growth facilitated by hydrogen bonding, aurophilic and π-π stacking interactions.

  6. Morphology and atomic-scale structure of single-layer WS2 nanoclusters.

    PubMed

    Füchtbauer, Henrik G; Tuxen, Anders K; Moses, Poul G; Topsøe, Henrik; Besenbacher, Flemming; Lauritsen, Jeppe V

    2013-10-14

    Two-dimensional sheets of transition metal (Mo and W) sulfides are attracting strong attention due to the unique electronic and optical properties associated with the material in its single-layer form. The single-layer MoS2 and WS2 are already in widespread commercial use in catalytic applications as both hydrotreating and hydrocracking catalysts. Consequently, characterization of the morphology and atomic structure of such particles is of utmost importance for the understanding of the catalytic active phase. However, in comparison with the related MoS2 system only little is known about the fundamental properties of single-layer WS2 (tungstenite). Here, we use an interplay of atom-resolved Scanning Tunneling Microscopy (STM) studies of Au(111)-supported WS2 nanoparticles and calculated edge structures using Density Functional Theory (DFT) to reveal the equilibrium morphology and prevalent edge structures of single-layer WS2. The STM results reveal that the single layer S-W-S sheets adopt a triangular equilibrium shape under the sulfiding conditions of the synthesis, with fully sulfided edges. The predominant edge structures are determined to be the (101[combining macron]0) W-edge, but for the smallest nanoclusters also the (1[combining macron]010) S-edges become important. DFT calculations are used to construct phase diagrams of the WS2 edges, and describe their sulfur and hydrogen coordination under different conditions, and in this way shed light on the catalytic role of WS2 edges.

  7. Understanding the Internal Structure of Layered Organic Compounds deposited on mineral surface using Neutron Reflectivity

    NASA Astrophysics Data System (ADS)

    Ambaye, Haile; Jagadamma, Sindhu; Petridis, Loukas; Mayes, Melanie; Lauter, Valeria

    2013-03-01

    Organic carbon (OC) stabilization in soils plays a significant role in the global C cycle, therefore the understanding of the structure and function of the OC-soil mineral interface is of high importance. To study the internal structure, films with different combination of simple OC compounds, natural organic matter (NOM), Bi-layers of SA (Stearic Acid) on Glucose and NOM/Hydrophilic-NOM/Hydrophobic-NOM were deposited onto sapphire using spin coating. The phobic and phylic fractions of the NOM are operationally separated by exchange resins. We obtained detailed structural depth profile of the films using the depth-sensitive technique of the neutron reflectometry. The neutron reflectivity data were collected at the MAGICS Reflectometer at Spallation Neutron Source at the ORNL. Self-assembled ordering of SA in a repeating bi-layer structure was observed when it was deposited on NOM, phylic-NOM and Glucose. However, when SA was added to phobic-NOM no ordering of SA was detected. The formation of distinct, immiscible layers is due to insolubility of SA with NOM/Hydrophilic-NOM and Glucose. Our results reveal that the OC-mineral interface form complex layering and that the sequence of the layering depends on the compounds. The work was supported by ORNL (LDRD), BES and DOE.

  8. Fatigue crack growth monitoring in multi-layered structures using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Kostson, E.; Fromme, P.

    2009-11-01

    This contribution investigates the application of low frequency guided ultrasonic waves for monitoring fatigue crack growth at fastener holes in the 2nd layer of multi-layered plate structures, a common problem in aerospace industry. The model multi-layered structure investigated consists of two aluminum plate-strips adhesively bonded using a structural paste adhesive. Guided ultrasonic waves were excited using multiple piezoelectric discs bonded to the surface of the multi-layered structure. The wave propagation in the tensile specimen was measured using a laser interferometer and compared to numerical simulations. Thickness and width mode shapes of the excited flexural waves were identified from Semi-Analytical Finite Element (SAFE) calculations. Experiments and 3D Finite Element (FE) simulations show a change in the scattered field around fastener holes caused by a defect in the 2nd layer. The amplitude of the guided ultrasonic wave was monitored during fatigue experiments at a single point. The measured changes in the amplitude of the ultrasonic signal due to fatigue crack growth agree well with FE simulations.

  9. A Comparison of Aerosol-Layer and Convective Boundary-Layer Structure over a Mountain Range during STAAARTE '97

    SciTech Connect

    De Wekker, Stephan; Steyn, D. G.; Nyeki, Stephan

    2004-11-01

    The temporal evolution and spatial structure of the aerosol layer (AL) height as observed with an airborne downlooking lidar over the Swiss Alps was investigated with a three dimensional mesoscale numerical model and a particle dispersion model. Convective boundary layer (CBL) heights were derived from the mesoscale model output, and the behavior of surface-released particles was investigated with the particle dispersion model. While a previous investigation, using data from the same field study, equated the observed AL height with the CBL height, the results of the current investigation indicate that there is a considerable difference between AL and CBL heights caused by mixing and transport processes between the CBL and the free atmosphere. CBL heights show a more terrain-following behavior and are lower than AL heights. We argue that processes causing the difference between AL and CBL heights are common over mountainous terrain and that the AL height is a length scale that needs t o be considered in air pollution studies in mountainous terrain.

  10. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting.

    PubMed

    Liu, Jian; Li, Xi-Bo; Wang, Da; Lau, Woon-Ming; Peng, Ping; Liu, Li-Min

    2014-02-01

    The family of bulk metal phosphorus trichalcogenides (APX3, A = M(II), M(I)(0.5)M(III)(0.5); X = S, Se; M(I), M(II), and M(III) represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functional theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX3 should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe3, CdPSe3, Ag0.5Sc0.5PSe3, and Ag0.5In0.5PX3 (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag0.5Sc0.5PSe3 is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting.

  11. Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex.

    PubMed

    Tocker, Gilad; Barak, Omri; Derdikman, Dori

    2015-12-01

    Navigation requires integration of external and internal inputs to form a representation of location. Part of this integration is considered to be carried out by the grid cells network in the medial entorhinal cortex (MEC). However, the structure of this neural network is unknown. To shed light on this structure, we measured noise correlations between 508 pairs of simultaneous previously recorded grid cells. We differentiated between pure grid and conjunctive cells (pure grid in Layers II, III, and VI vs. conjunctive in Layers III and V--only Layer III was bi-modal), and devised a new method to classify cell pairs as belonging/not-belonging to the same module. We found that pairs from the same module show significantly more correlations than pairs from different modules. The correlations between pure grid cells decreased in strength as their relative spatial phase increased. However, correlations were mostly at 0 time-lag, suggesting that the source of correlations was not only synaptic, but rather resulted mostly from common input. Given our measured correlations, the two functional groups of grid cells (pure vs. conjunctive), and the known disorganized recurrent connections within Layer II, we propose the following model: conjunctive cells in deep layers form an attractor network whose activity is governed by velocity-controlled signals. A second manifold in Layer II receives organized feedforward projections from the deep layers, giving rise to pure grid cells. Numerical simulations indicate that organized projections induce such correlations as we measure in superficial layers. Our results provide new evidence for the functional anatomy of the entorhinal circuit-suggesting that strong phase-organized feedforward projections support grid fields in the superficial layers.

  12. Coherent structures in a zero-pressure-gradient and a strongly decelerated boundary layer

    NASA Astrophysics Data System (ADS)

    Simens, Mark P.; Gungor, Ayse G.; Maciel, Yvan

    2016-04-01

    Coherent structures in a strongly decelerated large-velocity-defect turbulent boundary layer (TBL) and a zero pressure gradient (ZPG) boundary layer are analysed by direct numerical simulation (DNS). The characteristics of the one-point velocity stastistics are also considered. The adverse pressure gradient (APG) TBL simulation is a new one carried out by the present authors. The APG TBL begins as a zero pressure gradient boundary layer, decelerates under a strong adverse pressure gradient, and separates near the end of the domain in the form of a very thin separation bubble. The one-point velocity statistics in the outer region of this large-defect boundary layer are compared to those of two other large-velocity-defect APG TBLs (one in dynamic equilibrium, the other in disequilibrium) and a mixing layer. In the upper half of the large-defect boundary layers, the velocity statistics are similar to those of the mixing layer. The dominant peaks of turbulence production and Reynolds stresses are located in the middle of the boundary layers. Three-dimensional spatial correlations of (u, u) and (u, v) show that coherence is lost in the streamwise and spanwise directions as the velocity defect increases. Near-wall streaks tend to disappear in the large-defect zone of the flow to be replaced by more disorganized u motions. Near-wall sweeps and ejections are also less numerous. In the outer region, the u structures tend to be shorter, less streaky, and more inclined with respect to the wall than in the ZPG TBL. The sweeps and ejections are generally bigger with respect to the boundary layer thickness in the large-defect boundary layer, even if the biggest structures are found in the ZPG TBL. Large sweeps and ejections that reach the wall region (wall-attached) are less streamwise elongated and they occupy less space than in the ZPG boundary layer. The distinction between wall-attached and wall-detached structures is not as pronounced in the large-defect TBL.

  13. Engineering meniscus structure and function via multi-layered mesenchymal stem cell-seeded nanofibrous scaffolds.

    PubMed

    Fisher, Matthew B; Henning, Elizabeth A; Söegaard, Nicole; Bostrom, Marc; Esterhai, John L; Mauck, Robert L

    2015-06-01

    Despite advances in tissue engineering for the knee meniscus, it remains a challenge to match the complex macroscopic and microscopic structural features of native tissue, including the circumferentially and radially aligned collagen bundles essential for mechanical function. To mimic this structural hierarchy, this study developed multi-lamellar mesenchymal stem cell (MSC)-seeded nanofibrous constructs. Bovine MSCs were seeded onto nanofibrous scaffolds comprised of poly(ε-caprolactone) with fibers aligned in a single direction (0° or 90° to the scaffold long axis) or circumferentially aligned (C). Multi-layer groups (0°/0°/0°, 90°/90°/90°, 0°/90°/0°, 90°/0°/90°, and C/C/C) were created and cultured for a total of 6 weeks under conditions favoring fibrocartilaginous tissue formation. Tensile testing showed that 0° and C single layer constructs had stiffness values several fold higher than 90° constructs. For multi-layer groups, the stiffness of 0°/0°/0° constructs was higher than all other groups, while 90°/90°/90° constructs had the lowest values. Data for collagen content showed a general positive interactive effect for multi-layers relative to single layer constructs, while a positive interaction for stiffness was found only for the C/C/C group. Collagen content and cell infiltration occurred independent of scaffold alignment, and newly formed collagenous matrix followed the scaffold fiber direction. Structural hierarchies within multi-lamellar constructs dictated biomechanical properties, and only the C/C/C constructs with non-orthogonal alignment within layers featured positive mechanical reinforcement as a consequence of the layered construction. These multi-layer constructs may serve as functional substitutes for the meniscus as well as test beds to understand the complex mechanical principles that enable meniscus function.

  14. The Origins and Pathways of RADON-222 Entering Into Basement Structures

    NASA Astrophysics Data System (ADS)

    Gadd, Milan Steven

    The entry rate of ^{222} Rn into a basement structure was measured continuously. These measurements demonstrated that radon entry did not vanish even when the structure was slightly pressurized. This persistent entry has been determined to be dominated by diffusion through the floor and walls and a combination of diffusion and convection through the floor-wall joint. The highest indoor radon concentrations occurred during calm periods when the pressure differentials between the inside and outside of the structure were small. The objectives of this work were to identify the origins of the radon and investigate the entry pathways. The radon could originate either in the concrete or in the soil surrounding the structure. Entry pathways into the basement were through the concrete floor and walls as well as through the floor-wall joint. The contributions of the origins and entry pathways were determined by continuously measuring the radon entry rate into the basement, using a trace gas system, and the flux density through portions of the floor and walls. Radon entry through the floor-wall joint could be controlled using a baseboard barrier system. Results indicated that, during calm conditions with wind speeds less than 1 m s^{ -1}, 25% of the radon enters through the floor -wall joint and 75% enters through the concrete. About 30% of the radon originated in the concrete floor and walls. A method for in-situ determination of the diffusion length and emanation fraction of radon in concrete was developed. For the concrete used in the structure, the average diffusion length and emanation fraction were 27 +/- 4 cm and 0.19 +/- 0.02 respectively.

  15. Sensitivity of the structure of untripped mixing layers to small changes in initial conditions

    NASA Technical Reports Server (NTRS)

    Plesniak, M. W.; Bell, J. H.; Mehta, R. D.

    1992-01-01

    An experimental study was conducted concerning the influence of small changes in initial conditions on the near- and far-field evolution of the three-dimensional structure of a plan mixing layer. A two-stream mixing layer with a velocity ratio of 0.6 was generated with the initial boundary layers on the splitter plate laminar and was nominally two-dimensional. The initial conditions were changed slightly by interchanging the high- and low-speed sides of the wind tunnel, while maintaining the same velocities, and hence velocity ratio. This resulted in small changes in the initial boundary layer properties, and the perturbations present in the boundary layers were interchanged between the high- and low-speed sides for the two cases. The results indicate that, even with this relatively minor change in initial conditions, the near-field regions of the two cases differ significantly. The peak Reynolds stress levels in the near-field differ by up to 100 percent, and this is attributed to a difference in the location of the initial spanwise vortex roll-up. In addition, the positions and shapes of the individual streamwise vortical structures differ for the two cases, although the overall structures differ for the two cases, although the overall qualitative description of these structures is comparable. The subsequent reorganization and decay of the streamwise vortical structures is very similar for the two cases. As a result, in the far field, both mixing layers achieve similar structure, yielding comparable growth rates, Reynolds stress, distribution, and spectral content.

  16. Study of the structural quality of GaN epitaxial layers obtained by hydride vapor phase epitaxy using a low-temperature buffer layer

    NASA Astrophysics Data System (ADS)

    Belogorohov, I. A.; Donskov, A. A.; Knyazev, S. N.; Kozlova, Yu. P.; Pavlov, V. F.; Yugova, T. G.

    2015-11-01

    The structural quality and surface morphology of low-temperature (LT) buffer layers after deposition and high-temperature (HT) annealing and HT GaN layers grown on LT buffer layers by hydride vapor phase epitaxy have been investigated. The HCl flow rate through the Ga source varied from 0.3 to 2 L/h, and the carrier gas N2 flow rate was either 18 or 60 L/h. It is established that the structural quality of LT GaN buffer is determined to a great extent by the HCl and N2 flow rates; the best results are obtained at HCl and N2 flow rates of 0.3 and 18 L/h, respectively. These GaN layers are characterized by a mirror surface and a rocking curve half-width of 360". It is suggested that the layer structure is improved due to the increase in the lateral growth rate.

  17. Formation of the seed layers for layer-transfer process silicon solar cells by zone-heating recrystallization of porous silicon structures

    NASA Astrophysics Data System (ADS)

    Lukianov, A.; Murakami, K.; Takazawa, C.; Ihara, M.

    2016-05-01

    Thin-film crystalline silicon is promising for photovoltaic application to reduce the cost of photovoltaic energy. Porous silicon structures have been intensively studied as a seed layer for epitaxial growth of thin Si film and layer-transfer process (LTP). In this article, another approach for LTP has been proposed. The seed layers for epitaxial silicon growth have been formed by zone-heating recrystallization of double-layer por-Si structures. The influence of annealing parameters on porous silicon structures was studied. The transformation of por-Si layer to crystalline Si was observed with the formation of smooth continuous surface with the roughness 0.3 nm, peak-to-valley distance around 3.5 nm, and reduced density of pores. The mechanism of the transformation of por-Si surface due to the action of hydrogen in the passivated pores with preventing surface oxidation was proposed.

  18. The plasma structure of coronal hole solar wind: Origins and evolution

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.

    2016-06-01

    Whereas slow solar wind is known to be highly structured, the fast (coronal hole origin) wind is usually considered to be homogeneous. Using measurements from Helios 1 + 2, ACE, Wind, and Ulysses, structure in the coronal hole origin solar wind is examined from 0.3 AU to 2.3 AU. Care is taken to collect and analyze intervals of "unperturbed coronal hole plasma." In these intervals, solar wind structure is seen in the proton number density, proton temperature, proton specific entropy, magnetic field strength, magnetic field to density ratio, electron heat flux, helium abundance, heavy-ion charge-state ratios, and Alfvenicity. Typical structure amplitudes are factors of 2, far from homogeneous. Variations are also seen in the solar wind radial velocity. Using estimates of the motion of the solar wind origin footpoint on the Sun for the various spacecraft, the satellite time series measurements are converted to distance along the photosphere. Typical variation scale lengths for the solar wind structure are several variations per supergranule. The structure amplitude and structure scale sizes do not evolve with distance from the Sun from 0.3 to 2.3 AU. An argument is quantified that these variations are the scale expected for solar wind production in open magnetic flux funnels in coronal holes. Additionally, a population of magnetic field foldings (switchbacks, reversals) in the coronal hole plasma is examined: this population evolves with distance from the Sun such that the magnetic field is mostly Parker spiral aligned at 0.3 AU and becomes more misaligned with distance outward.

  19. Mointoring Thickness Deviations in Planar Multi-Layered Elastic Structures Using Impedance Signatures

    SciTech Connect

    Fisher, K A

    2007-01-26

    In this letter, a low frequency ultrasonic resonance technique that operates in the (20 - 80 kHz) regime is presented that demonstrates detection of thickness changes on the order of +/- 10{micro}m. This measurement capability is a result of the direct correlation between the electrical impedance of an electro-acoustic transducer and the mechanical loading it experiences when placed in contact with a layered elastic structure. The relative frequency shifts of the resonances peaks can be estimated through a simple one-dimensional transmission model. Separate experimental measurements confirm this technique to be sensitive to subtle changes in the underlying layered elastic structure.

  20. Method for remote diagnostics of the internal structure of layered media

    SciTech Connect

    Lychagov, V V; Kal'yanov, A L; Ryabukho, V P; Lyakin, D V

    2008-06-30

    The method of autocorrelation low coherence interferometry is proposed for diagnostics of inhomogeneities and the internal structure of layered technical and biological samples. In this method the low coherence optical field reflected from the layered sample is analysed by using a Michelson interferometer. Because the object is outside the interferometer, the distance between the interferometer and the object under study is not limited and thus the object can move during the measurements. Theoretical substantiation of the autocorrelation method for media with discrete and continuous optical structure modifications is presented. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  1. The structure and chemical layering of Proterozoic stromatolites in the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Douglas, Susanne; Perry, Meredith E.; Abbey, William J.; Tanaka, Zuki; Chen, Bin; McKay, Christopher P.

    2015-07-01

    The Proterozoic carbonate stromatolites of the Pahrump Group from the Crystal Spring formation exhibit interesting layering patterns. In continuous vertical formations, there are sections of chevron-shaped stromatolites alternating with sections of simple horizontal layering. This apparent cycle of stromatolite formation and lack of formation repeats several times over a vertical distance of at least 30 m at the locality investigated. Small representative samples from each layer were taken and analysed using X-ray diffraction (XRD), X-ray fluorescence (XRF), environmental scanning electron microscopy - energy dispersive X-ray spectrometry, and were optically analysed in thin section. Optical and spectroscopic analyses of stromatolite and of non-stromatolite samples were undertaken with the objective of determining the differences between them. Elemental analysis of samples from within each of the four stromatolite layers and the four intervening layers shows that the two types of layers are chemically and mineralogically distinct. In the layers that contain stromatolites the Ca/Si ratio is high; in layers without stromatolites the Ca/Si ratio is low. In the high Si layers, both K and Al are positively correlated with the presence and levels of Si. This, together with XRD analysis, suggested a high K-feldspar (microcline) content in the non-stromatolitic layers. This variation between these two types of rocks could be due to changes in biological growth rates in an otherwise uniform environment or variations in detrital influx and the resultant impact on biology. The current analysis does not allow us to choose between these two alternatives. A Mars rover would have adequate resolution to image these structures and instrumentation capable of conducting a similar elemental analysis.

  2. Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures.

    PubMed

    Xu, Hockin H K; Burguera, Elena F; Carey, Lisa E

    2007-09-01

    Calcium phosphate cement (CPC) is highly promising for clinical uses due to its in situ-setting ability, excellent osteoconductivity and bone-replacement capability. However, the low strength limits its use to non-load-bearing applications. The objectives of this study were to develop a layered CPC structure by combining a macroporous CPC layer with a strong CPC layer, and to investigate the effects of porosity and layer thickness ratios. The rationale was for the macroporous layer to accept tissue ingrowth, while the fiber-reinforced strong layer would provide the needed early-strength. A biopolymer chitosan was incorporated to strengthen both layers. Flexural strength, S (mean+/-sd; n=6) of CPC-scaffold decreased from (9.7+/-1.2) to (1.8+/-0.3) MPa (p<0.05), when the porosity increased from 44.6% to 66.2%. However, with a strong-layer reinforcement, S increased to (25.2+/-6.7) and (10.0+/-1.4) MPa, respectively, at these two porosities. These strengths matched/exceeded the reported strengths of sintered porous hydroxyapatite implants and cancellous bone. Relationships were established between S and the ratio of strong layer thickness/specimen thickness, a/h:S=(17.6 a/h+3.2) MPa. The scaffold contained macropores with a macropore length (mean+/-sd; n=147) of (183+/-73) microm, suitable for cell infiltration and tissue ingrowth. Nano-sized hydroxyapatite crystals were observed to form the scaffold matrix of CPC with chitosan. In summary, a layered CPC implant, combining a macroporous CPC with a strong CPC, was developed. Mechanical strength and macroporosity are conflicting requirements. However, the novel functionally graded CPC enabled a relatively high strength and macroporosity to be simultaneously achieved. Such an in situ-hardening nano-apatite may be useful in moderate stress-bearing applications, with macroporosity to enhance tissue ingrowth and implant resorption.

  3. The ancient history of the structure of ribonuclease P and the early origins of Archaea

    PubMed Central

    2010-01-01

    Background Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. Results To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. Conclusions The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms. PMID:20334683

  4. Spatial properties of entangled photon pairs generated in nonlinear layered structures

    NASA Astrophysics Data System (ADS)

    Peřina, Jan, Jr.

    2011-11-01

    A spatial quantum model of spontaneous parametric down-conversion in nonlinear layered structures is developed expanding the interacting vectorial fields into monochromatic plane waves. A two-photon spectral amplitude depending on the signal- and idler-field frequencies and propagation directions is used to derive transverse profiles of the emitted fields as well as their spatial correlations. Intensity spatial profiles and their spatial correlations are mainly determined by the positions of transmission peaks formed in these structures with photonic bands. A method for geometry optimization of the structures with respect to efficiency of the nonlinear process is suggested. Several structures composed of GaN/AlN layers are analyzed as typical examples. They allow the generation of photon pairs correlated in several emission directions. Photon-pair generation rates increasing better than the second power of the number of layers can be reached. Also, structures efficiently generated photon pairs showing antibunching and anticoalescence can be obtained. Three reasons for splitting the correlated area in photonic-band-gap structures are revealed: zig-zag movement of photons inside the structure, spatial symmetry, and polarization-dependent properties. Also, spectral splitting can be observed in these structures.

  5. Vertical structure of boundary layer convection during cold-air outbreaks at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Geerts, Bart; Chen, Yaosheng

    2016-01-01

    Boundary layer convection (BLC) is common over high-latitude oceans and adjacent coastal regions when a cold airmass becomes exposed to a sufficient fetch of open water. The vertical structure of mixed-phase BLC clouds and precipitation is examined using the Atmospheric Radiation Measurement Program data set collected at the North Slope of Alaska (NSA) site at Barrow, Alaska. BLC may occur at this location in autumn, when cold air masses originating at higher latitudes advect southward over the still ice-free coastal waters north of Alaska. This study identifies such BLC and documents its occurrence and characteristics. Instruments used for this study include profiling Ka band radars, a depolarization backscatter profiling lidar, a scanning X band radar, a microwave radiometer, a ceilometer, surface meteorological probes, and radiosondes. Six criteria are applied to objectively identify the BLC events, using data collected between 2004 and 2013. BLC episodes are relatively common at the NSA site, but almost exclusively in the month of October, and most episodes are relatively short, less than 10 h in duration. Liquid water is commonly found in these mixed-phase BLC clouds, with a typical liquid water path of 150 g/m2, and snowfall rates average ~3 mm h-1 (water equivalent), in some cases over 10 mm h-1, notwithstanding the low cloud echo tops (~1.0-1.5 km). In one rather weak but persistent episode fall speed estimates derived from the profiling Ka band radar indicates the presence of rimed particles, confirming the convective nature of this precipitation.

  6. The Accretion Flow and Boundary Layer Structure in the Dwarf Nova SS Aur

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Armin; Balman, Solen; Godon, Patrick; Sion, Edward; Hertfelder, Marius

    2016-07-01

    We present X-ray analysis of dwarf novae SS Aur (51 ksec) using XMM-Newton Observatory archival data obtained in quiescence for a better understanding of the accretion flow structure. We find X-ray orbital modulations. We report power spectral analysis for EPIC (X-ray) and OM (UV) light curves suggesting high levels of red noise with no significant QPO or periodicities. We simultaneously fitted EPIC pn, MOS1 and MOS2 data using a model for interstellar medium absorption (tbabs) and a multi-temperature plasma emission model (cevmkl) as expected from low accretion rate quiescent dwarf novae. However, the composite model fit yields unacceptable reduced χ ^{2} values due to the existence of soft excess. The soft excess is well modeled using a blackbody model (kT˜˜24 eV) giving a better reduced χ ^{2} value over 3σ significance level. This may indicate the existence of optically thick boundary layer emission. We will discuss the origin of this excess. The best fitting model is a combination of a blackbody, a cevmkl and a power law with an interstellar absorption which yields a reduced χ ^{2} of 1.05. The fit also shows some oxygen and iron over abundances. SS Aur has a maximum thermal plasma temperature of ˜22 keV. The X-ray luminosity in the 0.1 to 50.0 keV energy band is ˜2.0×10 ^{33} ergs ^{-1}. Finally, we discuss these characteristics in the light of standard disk models and accretion flows and geometry in nonmagnetic cataclysmic variables.

  7. Columnar structured FePt films epitaxially grown on large lattice mismatched intermediate layer

    PubMed Central

    Dong, K. F.; Deng, J. Y.; Peng, Y. G.; Ju, G.; Chow, G. M.; Chen, J. S.

    2016-01-01

    The microstructure and magnetic properties of the FePt films grown on large mismatched ZrN (15.7%) intermediate layer were investigated. With using ZrN intermediate layer, FePt 10 nm films exhibited (001) texture except for some weaker FePt (110) texture. Good epitaxial relationships of FePt (001) <100>//ZrN (001) <100>//TiN (001) <100> among FePt and ZrN/TiN were revealed from the transmission electron microscopy (TEM) results. As compared with TiN intermediate layer, although FePt-SiO2-C films grown on ZrN/TiN intermediate layer showed isotropic magnetic properties, the large interfacial energy and lattice mismatch between FePt and ZrN would lead to form columnar structural FePt films with smaller grain size and improved isolation. By doping ZrN into the TiN layer, solid solution of ZrTiN was formed and the lattice constant is increased comparing with TiN and decreased comparing with ZrN. Moreover, FePt-SiO2-C films grown on TiN 2 nm-20 vol.% ZrN/TiN 3 nm intermediate layer showed an improved perpendicular magnetic anisotropy. Simultaneously, columnar structure with smaller grain size retained. PMID:27686046

  8. The azimuthally averaged boundary layer structure of a numerically simulated major hurricane

    NASA Astrophysics Data System (ADS)

    Abarca, Sergio F.; Montgomery, Michael T.; McWilliams, James C.

    2015-09-01

    This work examines the azimuthally averaged boundary layer structure of a numerically simulated hurricane. We nominally define the hurricane boundary layer as the layer in which the effects of surface friction are associated with significant departures from gradient wind balance. The boundary layer in the intensifying primary and forming secondary eyewalls is found to be nonlinear. At large radii, exterior to the eyewalls, Ekman-like balance as traditionally defined, is found to hold true. Where significant departures from Ekman-like balance are found, the departures are characterized by large vertical advection of horizontal velocity through the depth of the boundary layer. Shock-like structures are not found to be prominent in the azimuthally averaged view of the vortex boundary layer, with the largest azimuthally averaged radial gradients of the radial and tangential velocities being on the order of only a few meters per second per kilometer. Also, in the radial regions of the eyewalls, at the height where the averaged tangential wind is a maximum, the radial advection of radial velocity is an order of magnitude smaller than the agradient force per unit mass. Some physical implications of these findings are discussed.

  9. Thermal properties of composite two-layer systems with a fractal inclusion structure

    NASA Astrophysics Data System (ADS)

    Reyes-Salgado, J. J.; Dossetti, V.; Bonilla-Capilla, B.; Carrillo, J. L.

    2015-01-01

    In this work, we study the thermal transport properties of platelike composite two-layer samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy and thermal relaxation, their effective thermal diffusivity and conductivity were experimentally measured. The composite layers were prepared under the action of a static magnetic field, resulting in anisotropic (fractal) inclusion structures with the formation of chain-like magnetite aggregates parallel to the faces of the layers. In one kind of the bilayers, a composite layer was formed on top of a resin layer while their relative thickness was varied. These samples can be described by known models. In contrast, bilayers with the same concentration of inclusions and the same thickness on both sides, where only the angle between their inclusion structures was systematically varied, show a nontrivial behaviour of their thermal conductivity as a function of this angle. Through a multifractal and lacunarity analysis, we explain the observed thermal response in terms of the complexity of the interface between the layers.

  10. Inner Structure of Atmospheric Inversion Layers over Haifa Bay in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Haikin, N.; Galanti, E.; Reisin, T. G.; Mahrer, Y.; Alpert, P.

    2015-09-01

    Capping inversions act as barriers to the vertical diffusion of pollutants, occasionally leading to significant low-level air pollution episodes in the lower troposphere. Here, we conducted two summer campaigns where global positioning system radiosondes were operated in Haifa Bay on the eastern Mediterranean coast, a region of steep terrain with significant pollution. The campaigns provided unique high resolution measurements related to capping inversions. It was found that the classical definition of a capping inversion was insufficient for an explicit identification of a layer; hence additional criteria are required for a complete spatial analysis of inversion evolution. Based on the vertical temperature derivative, an inner fine structure of inversion layers was explored, and was then used to track inversion layers spatially and to investigate their evolution. The exploration of the inner structure of inversion layers revealed five major patterns: symmetric peak, asymmetric peak, double peak, flat peak, and the zig-zag pattern. We found that the symmetric peak is related to the strongest inversions, double peak inversions tended to break apart into two layers, and the zig-zag pattern was related to the weakest inversions. Employing this classification is suggested for assistance in following the evolution of inversion layers.

  11. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    DOEpatents

    Spahn, O.B.; Lear, K.L.

    1998-03-10

    The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.

  12. Characterization of cake layer structure on the microfiltration membrane permeability by iron pre-coagulation.

    PubMed

    Wang, Jin; Pan, Siru; Luo, Dongping

    2013-02-01

    A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based coagulants, such as charge, size, fractal dimension and compressibility, have an effect on the cake layer structure. At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation, at the point of charge neutralization for near zero zeta potential, the aggregate particles produced possess the greatest size and highest fractal dimension, which contributes to the cake layer being most loose with high porosity and low compressibility. Thus the membrane filterability is better. At a low or high iron dose of FC and PFS, a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility. Therefore the membrane fouling is accelerated and MF permeability becomes worse. The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are, the lower the porosity and the tighter the cake layer conformation. This also explains the MF membrane flux variation visually and accurately.

  13. Internal deformation in layered Zechstein-III K-Mg salts. Structures formed by complex deformation and high contrasts in viscosity observed in drill cores.

    NASA Astrophysics Data System (ADS)

    Raith, Alexander; Urai, Janos L.

    2016-04-01

    During the evaporation of a massive salt body, alternations of interrupted and full evaporation sequences can form a complex layering of different lithologies. Viscosity contrasts of up to five orders of magnitude between these different lithologies are possible in this environment. During the late stage of an evaporation cycle potassium and magnesium (K-Mg) salts are precipitated. These K-Mg salts are of economic interest but also a known drilling hazard due to their very low viscosity. How up to 200m thick layers of these evaporites affect salt deformation at different scales is not well known. A better understanding of salt tectonics with extreme mechanical stratification is needed for better exploration and production of potassium-magnesium salts and to predict the internal structure of potential nuclear waste repositories in salt. To gain a better understanding of the internal deformation of these layers we analyzed K-Mg salt rich drill cores out of the Zechstein III-1b subunit from the Veendam Pillow 10 km southeast of Groningen, near the city Veendam in the NE Netherlands. The study area has a complex geological history with multiple tectonic phases of extension and compression forming internal deformation in the pillow but also conserving most of the original layering. Beside halite the most common minerals in the ZIII-1b are carnallite, kieserite, anhydrite and bischofite alternating in thin layers of simple composition. Seismic interpretation revealed that the internal structure of the Veendam Pillow shows areas, in which the K-Mg salt rich ZIII 1b layer is much thicker than elsewhere, as a result of salt deformation. The internal structure of the ZIII-1b on the other hand, remains unknown. The core analysis shows a strong strain concentration in the weaker Bischofite (MgCl2*6H20) and Carnallite (KMgCl3*6H20) rich layers producing tectonic breccias and highly strained layers completely overprinting the original layering. Layers formed by alternating beds

  14. Characteristics of Spontaneous Emission of Polarized Atoms in Metal Dielectric Multiple Layer Structures

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Ming; Gu, Ben-Yuan; Zhou, Yun-Song

    2007-11-01

    The spontaneous emission (SE) progress of polarized atoms in a stratified structure of air-dielectric(D0)-metal(M)-dielectric(D1)-air can be controlled effectively by changing the thickness of the D1 layer and rotating the polarized direction of atoms. It is found that the normalized SE rate of atoms located inside the D0 layer crucially depends on the atomic position and the thickness of the D1 layer. When the atom is located near the D0-M interface, the normalized atomic SE rate as a function of the atomic position is abruptly onset for the thin D1 layer. However, with the increasing thickness of the D1 layer, the corresponding curve profile exhibits plateau and stays nearly unchanged. The substantial change of the SE rate stems from the excitation of the surface plasmon polaritons in metal-dielectric interface, and the feature crucially depends on the thickness of D1 layer. If atoms are positioned near the D0-air interface, the substantial variation of the normalized SE rate appears when rotating the polarized direction of atoms. These findings manifest that the atomic SE processes can be flexibly controlled by altering the thickness of the dielectric layer D1 or rotating the orientation of the polarization of atoms.

  15. Computing the origin and evolution of the ribosome from its structure — Uncovering processes of macromolecular accretion benefiting synthetic biology

    PubMed Central

    Caetano-Anollés, Gustavo; Caetano-Anollés, Derek

    2015-01-01

    Accretion occurs pervasively in nature at widely different timeframes. The process also manifests in the evolution of macromolecules. Here we review recent computational and structural biology studies of evolutionary accretion that make use of the ideographic (historical, retrodictive) and nomothetic (universal, predictive) scientific frameworks. Computational studies uncover explicit timelines of accretion of structural parts in molecular repertoires and molecules. Phylogenetic trees of protein structural domains and proteomes and their molecular functions were built from a genomic census of millions of encoded proteins and associated terminal Gene Ontology terms. Trees reveal a ‘metabolic-first’ origin of proteins, the late development of translation, and a patchwork distribution of proteins in biological networks mediated by molecular recruitment. Similarly, the natural history of ancient RNA molecules inferred from trees of molecular substructures built from a census of molecular features shows patchwork-like accretion patterns. Ideographic analyses of ribosomal history uncover the early appearance of structures supporting mRNA decoding and tRNA translocation, the coevolution of ribosomal proteins and RNA, and a first evolutionary transition that brings ribosomal subunits together into a processive protein biosynthetic complex. Nomothetic structural biology studies of tertiary interactions and ancient insertions in rRNA complement these findings, once concentric layering assumptions are removed. Patterns of coaxial helical stacking reveal a frustrated dynamics of outward and inward ribosomal growth possibly mediated by structural grafting. The early rise of the ribosomal ‘turnstile’ suggests an evolutionary transition in natural biological computation. Results make explicit the need to understand processes of molecular growth and information transfer of macromolecules. PMID:27096056

  16. Incoherent scatter radar observations of irregular structure in mid-latitude sporadic E layers

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Smith, L. G.

    1978-01-01

    The basic experiments used phase-coded pulses to record electron density profiles with a resolution of 600 m in range and 300 m in horizontal extent, while scanning in azimuth. Data from incoherent scatter radar were compared with simultaneous ionosonde observations. Observations of sporadic E layers by incoherent scatter radar were discussed in terms of the effects of the neutral wind system acting on metallic ions. Several features were noted in the data, which support the wind shear mechanism of layer formation. The sporadic E layers often contained a pronounced small-scale structure, especially at times when partially transparent echoes were observed by the ionosonde. Under specific conditions, the ions in a meteor trail can be converged by a shear in the neutral wind into a relatively small irregularity at the center of a sporadic E layer.

  17. A review of vortex structures and associated coherent motions in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen K.

    1990-01-01

    The experimental and computational evidence for the existence and role of vortices in turbulent boundary layers is briefly reviewed. Quasi-streamwise and transverse vortices are considered, and various published conceptual models for horseshoe-like vortical structures are compared. The causes for upright and inverted horseshoe-shaped vorticity lines are discussed, and the distinction between vorticity lines and vortices is demonsrated. Finally, results from a numerically-simulated turbulent boundary layer are used to compute distributions of diameter, height, and strength for quasi-streamwise and spanwise vortices. These results confirm that quasi-streamwise vortices are clustered near the wall, while spanwise vortices are distributed throughout the layer. The variation of spanwise vortex core diameter with distance from the wall is found to be consistent with the mixing-length distribution for a boundary layer.

  18. Can we neglect the multi-layer structure of functional networks?

    NASA Astrophysics Data System (ADS)

    Zanin, Massimiliano

    2015-07-01

    Functional networks, i.e. networks representing dynamic relationships between the components of a complex system, have been instrumental for our understanding of, among others, the human brain. Due to limited data availability, the multi-layer nature of numerous functional networks has hitherto been neglected, and nodes are endowed with a single type of links even when multiple relationships coexist at different physical levels. A relevant problem is the assessment of the benefits yielded by studying a multi-layer functional network, against the simplicity guaranteed by the reconstruction and use of the corresponding single layer projection. Here, I tackle this issue by using as a test case, the functional network representing the dynamics of delay propagation through European airports. Neglecting the multi-layer structure of a functional network has dramatic consequences on our understanding of the underlying system, a fact to be taken into account when a projection is the only available information.

  19. Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses.

    PubMed

    Sirc, Jakub; Kubinova, Sarka; Hobzova, Radka; Stranska, Denisa; Kozlik, Petr; Bosakova, Zuzana; Marekova, Dana; Holan, Vladimir; Sykova, Eva; Michalek, Jiri

    2012-01-01

    Polyvinyl alcohol nanofibers incorporating the wide spectrum antibiotic gentamicin were prepared by Nanospider™ needleless technology. A polyvinyl alcohol layer, serving as a drug reservoir, was covered from both sides by polyurethane layers of various thicknesses. The multilayered structure of the nanofibers was observed using scanning electron microscopy, the porosity was characterized by mercury porosimetry, and nitrogen adsorption/desorption measurements were used to determine specific surface areas. The stability of the gentamicin released from the electrospun layers was proved by high-performance liquid chromatography (HPLC) and inhibition of bacterial growth. Drug release was investigated using in vitro experiments with HPLC/MS quantification, while the antimicrobial efficacy was evaluated on Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. Both experiments proved that the released gentamicin retained its activity and showed that the retention of the drug in the nanofibers was prolonged with the increasing thickness of the covering layers. PMID:23071393

  20. Terahertz time-gated spectral imaging for content extraction through layered structures

    PubMed Central

    Redo-Sanchez, Albert; Heshmat, Barmak; Aghasi, Alireza; Naqvi, Salman; Zhang, Mingjie; Romberg, Justin; Raskar, Ramesh

    2016-01-01

    Spatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer. To demonstrate, occluding textual content was successfully extracted from a packed stack of paper pages down to nine pages without human supervision. The method provides over an order of magnitude enhancement in the signal contrast and can impact inspection of structural defects in wooden objects, plastic components, composites, drugs and especially cultural artefacts with subwavelength or wavelength comparable layers. PMID:27610926

  1. Terahertz time-gated spectral imaging for content extraction through layered structures

    NASA Astrophysics Data System (ADS)

    Redo-Sanchez, Albert; Heshmat, Barmak; Aghasi, Alireza; Naqvi, Salman; Zhang, Mingjie; Romberg, Justin; Raskar, Ramesh

    2016-09-01

    Spatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer. To demonstrate, occluding textual content was successfully extracted from a packed stack of paper pages down to nine pages without human supervision. The method provides over an order of magnitude enhancement in the signal contrast and can impact inspection of structural defects in wooden objects, plastic components, composites, drugs and especially cultural artefacts with subwavelength or wavelength comparable layers.

  2. Terahertz time-gated spectral imaging for content extraction through layered structures.

    PubMed

    Redo-Sanchez, Albert; Heshmat, Barmak; Aghasi, Alireza; Naqvi, Salman; Zhang, Mingjie; Romberg, Justin; Raskar, Ramesh

    2016-01-01

    Spatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer. To demonstrate, occluding textual content was successfully extracted from a packed stack of paper pages down to nine pages without human supervision. The method provides over an order of magnitude enhancement in the signal contrast and can impact inspection of structural defects in wooden objects, plastic components, composites, drugs and especially cultural artefacts with subwavelength or wavelength comparable layers. PMID:27610926

  3. Investigation on the influences of layer structure and nanoporosity of light scattering TiO2 layer in DSSC

    NASA Astrophysics Data System (ADS)

    Apriani, T.; Arsyad, W. S.; Wulandari, P.; Hidayat, R.

    2016-08-01

    Dye-sensitized solar cell (DSSC) is one of promising photovoltaic materials due to its simplicity in fabrication process and rich variety of possible sensitizer molecules. DSSC cell is commonly constructed of TiO2 layer as photoelectrode, dye as photosensitizer, electrolyte as redox mediator, and platinum layer as counter electrode. TiO2 layer is often constructed from different types of layers, such as blocking layer, transparent layer, microchannel or light scattering layer, which is made usually by successive layer-by-layer process. In this work, different TiO2 layers with different thickness and heat treatment were prepared and then used to build a complete sandwich-type DSSC. The characterization results show that the power conversion efficiency (PCE) is slightly reduced when using TiO2 layer with multiple scattering layers. This reduction is caused by an increase in the resistance from charge transport and charge transfer inside the mesoporous TiO2 layer, as revealed from the electrochemical impedance spectroscopy measurement results. Additional heat treatment introduced at the final step in the TiO2 layer preparation process, however, slightly improve the cell performance. Although this heat treatment does not produce significant change in porosity or pore size distribution of the TiO2 layer, it might be able to improve the contact between the TiO2 nanoparticles. The best PCE achieved in this work is about 5.3%, which was observed in the cell using TiO2 layer with one scattering layer and additional heat treatment.

  4. On the influence of interfacial properties to the bending rigidity of layered structures

    NASA Astrophysics Data System (ADS)

    Peng, Shenyou; Wei, Yujie

    2016-07-01

    Layered structures are ubiquitous, from one-atom thick layers in two-dimensional materials, to nanoscale lipid bi-layers, and to micro and millimeter thick layers in composites. The mechanical behavior of layered structures heavily depends on the interfacial properties and is of great interest in engineering practice. In this work, we give an analytical solution of the bending rigidity of bilayered structures as a function of the interfacial shear strength. Our results show that while the critical bending stiffness when the interface starts to slide plastically is proportional to the interfacial shear strength, there is a strong nonlinearity between the rigidity and the applied bending after interfacial plastic shearing. We further give semi-analytical solutions to the bending of bilayers when both interfacial shearing and pre-existing crack are present in the interface of rectangular and circular bilayers. The analytical solutions are validated by using finite element simulations. Our analysis suggests that interfacial shearing resistance, interfacial stiffness and preexisting cracks dramatically influence the bending rigidity of bilayers. The results can be utilized to understand the significant stiffness difference in typical biostructures and novel materials, and may also be used for non-destructive detection of interfacial crack in composites when stiffness can be probed through vibration techniques.

  5. The vertical turbulence structure of the coastal marine atmospheric boundary layer

    SciTech Connect

    Tjernstroem, M.; Smedman, A.S. )

    1993-03-15

    The vertical turbulence structure in the marine atmosphere along a shoreline has been investigated using data from tower and aircraft measurements performed along the Baltic coast in the southeast of Sweden. Two properties make the Baltic Sea particularly interesting. It is surrounded by land in all directions within moderate advection distances, and it features a significant annual lag in sea surface temperature as compared with inland surface temperature. The present data were collected mostly during spring or early summer, when the water is cool, i.e., with a stably or neutrally stratified marine boundary layer usually capped by an inversion. Substantial daytime heating over the land area results in a considerable horizontal thermal contrast. Measurements were made on a small island, on a tower with a good sea fetch, and with an airborne instrument package. The profile data from the aircraft is from 25 slant soundings performed in connection to low level boundary layer flights. The results from the profiles are extracted through filtering techniques on individual time (space) series (individual profiles), applying different normalization and finally averaging over all or over groups of profiles. The land-based data are from a low tower situated on the shoreline of a small island with a wide sector of unobstructed sea fetch. Several factors are found that add to the apparent complexity of the coastal marine environment: the state of the sea appears to have a major impact on the turbulence structure of the surface layer, jet-shaped wind speed profiles were very common at the top of the boundary layer (in about 50% of the cases) and distinct layers with increased turbulence were frequently found well above the boundary layer (in about 80% of the cases). The present paper will concentrate on a description of the experiment, the analysis methods, and a general description of the boundary layer turbulence structure over the Baltic Sea. 40 refs., 16 figs., 2 tabs.

  6. Structural and electronic properties of the transition layer at the SiO{sub 2}/4H-SiC interface

    SciTech Connect

    Li, Wenbo; Wang, Dejun; Zhao, Jijun

    2015-01-15

    Using first-principles methods, we generate an amorphous SiO{sub 2}/4H-SiC interface with a transition layer. Based this interface model, we investigate the structural and electronic properties of the interfacial transition layer. The calculated Si 2p core-level shifts for this interface are comparable to the experimental data, indicating that various SiC{sub x}O{sub y} species should be present in this interface transition layer. The analysis of the electronic structures reveals that the tetrahedral SiC{sub x}O{sub y} structures cannot introduce any of the defect states at the interface. Interestingly, our transition layer also includes a C-C=C trimer and SiO{sub 5} configurations, which lead to the generation of interface states. The accurate positions of Kohn-Sham energy levels associated with these defects are further calculated within the hybrid functional scheme. The Kohn-Sham energy levels of the carbon trimer and SiO{sub 5} configurations are located near the conduction and valence band of bulk 4H-SiC, respectively. The result indicates that the carbon trimer occurred in the transition layer may be a possible origin of near interface traps. These findings provide novel insight into the structural and electronic properties of the realistic SiO{sub 2}/SiC interface.

  7. Permanent dissipative structures in water: the matrix of life? Experimental evidences and their quantum origin.

    PubMed

    Elia, V; Germano, R; Napoli, E

    2015-01-01

    This paper presents a short review of the evidence - both experimental and theoretical - of the formation of dissipative structures in liquid water induced by three kinds of physical perturbations having a low energy content: extremely diluted solution (EDS), iteratively filtered water (IFW), and iteratively nafionated water (INW). Particular attention is devoted to the very recent discovery that such structures are tremendously persistent even in the solid phase: large ponderal quantities of supramolecular aggregates of water (with each nucleus hundreds of nanometers in size) have been observed - at ambient pressure and temperature - using easily-reproducible experimental methods. The nature of these dissipative structures is analyzed and explained in terms of the thermodynamics of far-from-equilibrium systems and irreversible processes, showing their spontaneous quantum origin. Are these kinds of structures the matrix itself of life?.

  8. A Highly Water-Tolerant Magnesium(II) Coordination Polymer Derived from a Flexible Layered Structure.

    PubMed

    Ochi, Rika; Noro, Shin-Ichiro; Kamiya, Yuichi; Kubo, Kazuya; Nakamura, Takayoshi

    2016-07-25

    A two-dimensional (2D) layered Mg(II) coordination polymer (CP) with a high tolerance for H2 O was designed, synthesised, and crystallographically characterised. The synthesis was achieved by the introduction of a flexible 2D layered structure composed of Mg(II) ions and isonicotinate N-oxide ligands. Owing to its high H2 O tolerance, the obtained 2D layered structure has the flexibility to repeatedly adsorb a large amount of H2 O associated with interlayer expansion and enable the removal of H2 O from a H2 O/2-propanol mixed vapour. These results indicate that the CP could be an excellent dehydrating agent. PMID:27373696

  9. Mg intercalation in layered and spinel host crystal structures for Mg batteries.

    PubMed

    Emly, Alexandra; Van der Ven, Anton

    2015-05-01

    We investigate electrochemical properties of Mg in layered and spinel intercalation compounds from first-principles using TiS2 as a model system. Our calculations predict that Mg(x)TiS2 in both the layered and spinel crystal structures exhibits sloping voltage profiles with steps at stoichiometric compositions due to Mg-vacancy ordering. Mg ions are predicted to occupy the octahedral sites in both layered and spinel TiS2 with diffusion mediated by hops between octahedral sites that pass through adjacent tetrahedral sites. Predicted migration barriers are substantially higher than typical Li-migration barriers in intercalation compounds. The migration barriers are shown to be very sensitive to lattice parameters of the host crystal structure. We also discuss the possible role of rehybridization between the transition metal and the anion in affecting migration barriers.

  10. Theoretical and experimental investigation of coherent structure in the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Abbott, D. E.; Smith, C. R.; Walker, J. D. A.

    1981-06-01

    This project combines both experimental video flow visualization studies and theoretical investigations of a series of phenomenological and theoretical models based upon the three dimensional details of convected, coherent structural elements of a turbulent flow as it interacts with a solid surface. The experimental program has considered a range of sub-problems including high Reynolds Number (4 million) turbulent flows, the effect of surface modification on low-speed streak formation, and the effect of vortex loop interaction with a solid boundary. To augment the visualization pictures, a computerized video-digitizing system has been implemented. Results show promise for obtaining quantitative data from low visualization pictures. The specific thrust of the theoretical studies has been focussed on three areas: how two and three dimensional vortex structures interact with wall boundary layers, the development of a new type of prediction method for two dimensional turbulent boundary-layer flows, and improvement in numerical techniques for solving parabolic, boundary-layer equations.

  11. Theoretical and experimental investigation of coherent structure in the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Smith, C. R.; Walker, J. D. A.; Abbott, D. E.

    1983-06-01

    This program combines both experimental flow visualization studies with analytical investigations of a series of phenomenological and theoretical models based upon three-dimensional, vortical flow structures developing and interacting in proximity to a solid surface. The experimental program considered a range of sub-problems including the effect of surface modifications on low-speed streak formation and drag, and the effect of vortex loop inter-action with a solid boundary. To augment visual studies, a computerized interface with the video system has been developed which allows quantitative data to be obtained from flow visualization pictures. The specific thrust of the theoretical studies has been focussed on three areas: (1) how two and three-dimensional vortex structures interact with wall boundary layers; (2) the development of a new type of prediction method for two-dimensional turbulent boundary-layer flows; and (3) improvement in numerical techniques for solving parabolic, boundary-layer equations.

  12. Strained-layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K.; Carroll, Malcolm S.; Gin, Aaron; Marsh, Phillip F.; Young, Erik W.; Cich, Michael J.

    2010-07-13

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  13. The Performance of RAMS in Representing the Convective Boundary Layer Structure in a Very Steep Valley

    SciTech Connect

    De Wekker, Stephan; Steyn, D. G.; Fast, Jerome D.; Rotach, Mathias W.; Zhong, Shiyuan

    2005-04-01

    Data from a comprehensive field study in the Riviera Valley of Southern Switzerland are used to investigate convective boundary layer structure in a steep valley and to evaluate wind and temperature fields, convective boundary layer height, and surface sensible heat fluxes as predicted by the mesoscale model RAMS. Current parameterizations of surface and boundary layer processes in RAMS, as well as in other mesoscale models, are based on scaling laws strictly valid only for flat topography and uniform land cover. Model evaluation is required to investigate whether this limits the applicability of RAMS in steep, inhomogeneous terrain. One clear-sky day with light synoptic winds is selected from the field study. Observed temperature structure across and along the valley is nearly homogeneous while wind structure is complex with a wind speed maximum on one side of the valley. Upvalley flows are not purely thermally driven and mechanical effects near the valley entrance also affect the wind structure. RAMS captured many of the observed boundary layer characteristics within the steep valley. The wind field, temperature structure, and convective boundary layer height in the valley are qualitatively simulated by RAMS, but the horizontal temperature structure across and along the valley is less homogeneous in the model than in the observations. The model reproduced the observed net radiation, except around sunset and sunrise when RAMS does not take into account the shadows cast by the surrounding topography. The observed sensible heat fluxes fall within the range of simulated values at grid points surrounding the measurement sites. Some of the scatter between observed and simulated turbulent sensible heat fluxes are due to sub-grid scale effects related to local topography.

  14. On functional potentiality of photodiode structures with a high-resistance layer

    NASA Astrophysics Data System (ADS)

    Khudaverdyan, S. Kh.; Dokholyan, J. G.; Kocharyan, A. A.; Kechiyantz, A. M.; Khudaverdyan, D. S.

    2005-04-01

    The paper considers the functional potentiality of structures with a high-resistance thin layer between two opposite directed potential barriers and the photoelectric and electro-physical processes in them. The linear character of the dependence of the depletion region width of both barriers on the external bias voltage is revealed. For the structures in question analytical expressions of I- V and spectral characteristics are obtained describing the mechanism of the passage of the photocurrents through them. Layers of polycrystalline silicon, recrystallized by a laser beam, were used as initial material for the receiver structures. In similar structures the inversion of the spectral photocurrent sign with the section of the linear dependence of the inversion point on the external voltage was observed. The results of the research are very promising for creating selective sensitive solid-state photodetectors with spectrophotometrical properties.

  15. Spectroscopic and computational investigations on the origin of charge transfer between included neutral guest molecules and a functionalized anionic layered host.

    PubMed

    Dutta, Dipak; Tummanapelli, Anil Kumar

    2016-08-10

    Layered double hydroxides (LDHs) or anionic clays are an important class of ion-exchange materials, well known for drug and gene delivery and several other applications including catalysis, bioactive nanocomposite, electroactive and photoactive materials. Their structure is based on positively charged brucite-like inorganic sheets with the interlamellar space being occupied by charge-compensating exchangeable anions. In spite of having a vast scope many of the applications of LDHs are restricted as their host-guest chemistry is limited to ion-exchange reactions. Recently we have shown for the first time that charge-transfer interactions can be used as a driving force for the insertion of neutral guest molecules (ortho- and para-chloranil) within the galleries of an Mg-Al LDH by forming a charge-transfer complex with aniline pre-intercalated as p-aminobenzoate anion. Here, we have performed quantum chemical calculations in combination with molecular dynamics simulations to elucidate the nature of interactions, arrangement and the evaluation of electronic and Raman spectral signatures of the chloranil charge-transfer complex included within the galleries of the Mg-Al LDH. The natural bond orbital (NBO) analysis has been used to understand the nature and origin of the unidirectional charge-transfer that lead to the unusual insertion of chloranil in the galleries of the Mg-Al LDH. The NBO analysis reveals that a considerable amount of electronic charge redistribution occurs from the p-aminobenzoate to the chloranil during latter's insertion within the LDH galleries with a very negligible amount of back donation. This work is expected to pave the way for understanding the host-guest chemistry and targeted and controlled delivery of poorly soluble drugs. PMID:27461409

  16. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium

    SciTech Connect

    Tsai, Ming-Hung; Haung, Chiung-Fang; Shyu, Shih-Shiun; Chou, Yen-Ru; Lin, Ming-Hong; Peng, Pei-Wen; and others

    2015-08-15

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples. The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.

  17. Synthesis and single crystal structure refinement of the one-layer hydrate of sodium brittle mica

    SciTech Connect

    Kalo, Hussein; Milius, Wolfgang; Braeu, Michael; Breu, Josef

    2013-02-15

    A sodium brittle mica with the ideal composition [Na{sub 4}]{sup inter}[Mg{sub 6}]{sup oct}[Si{sub 4}Al{sub 4}]{sup tet}O{sub 20}F{sub 4} was synthesized via melt synthesis in a gas tight crucible. This mica is unusual inasmuch as the known mica structure holds only room for two interlayer cations per unit cell and inasmuch as it readily hydrates despite the high layer charge while ordinary micas and brittle micas are non-swelling. The crystal structure of one-layer hydrate sodium brittle mica was determined and refined from single crystal X-ray data. Interlayer cations reside at the center of the distorted hexagonal cavities and are coordinated by the three inner basal oxygen atoms. The coordination of the interlayer cation is completed by three interlayer water molecules residing at the center of the interlayer region. The relative position of adjacent 2:1-layers thus is fixed by these octahedrally coordinated interlayer cations. Pseudo-symmetry leads to extensive twinning. In total five twin operations generate the same environment for the interlayer species and are energetically degenerate. - Graphical abstract: The sodium brittle mica has been successfully synthesized by melt synthesis and the crystal structure of the one-layer hydrate of sodium brittle mica was determined from single crystal X-ray diffraction data. Highlights: Black-Right-Pointing-Pointer Melt synthesis yielded coarse grained sodium brittle mica which showed little disorder. Black-Right-Pointing-Pointer Sodium brittle mica hydrated completely to the state of one-layer hydrate. Black-Right-Pointing-Pointer Structure of one-layer hydrate of sodium brittle mica could therefore be determined and refined. Black-Right-Pointing-Pointer Arrangement of upper and lower tetrahedral sheet encompassing interlayer cation were clarified.

  18. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    DOE PAGESBeta

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; et al

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunablemore » transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less

  19. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    PubMed Central

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-01-01

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ∼60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides. PMID:26088416

  20. Form and structure factors for impedance and reflection from periodic layers.

    PubMed

    Pan, Janet L

    2007-01-20

    In an exact treatment of the Maxwell equations, we derive form and structure factors for reflection from periodic layers, and we show that these factors are significantly different from their analogs in kinematic x-ray diffraction. Quite generally, we show that reflection and impedance can be written precisely as the sum of an additive form factor and the product of a structure factor and a second form factor. This additive form factor does not have an analog in kinematic x-ray diffraction. It is demonstrated that the form factors are found by analytic continuation to an arbitrary wavelength of expressions for the impedance both at long wavelengths and at quarter wavelengths. A correction to the Bragg law relating fringe spacing to the total structure thickness is derived. We go beyond previous numerical work by deriving simple analytic exact expressions for reflection and impedance of periodic layers for all frequencies within the reflection passband, and for an arbitrary number of periods in the structure, an arbitrary index profile within each period, arbitrary layer thicknesses (not just quarter-wave layers), and for arbitrary sizes of the refractive index differences.