An introduction to real-time graphical techniques for analyzing multivariate data
NASA Astrophysics Data System (ADS)
Friedman, Jerome H.; McDonald, John Alan; Stuetzle, Werner
1987-08-01
Orion I is a graphics system used to study applications of computer graphics - especially interactive motion graphics - in statistics. Orion I is the newest of a family of "Prim" systems, whose most striking common feature is the use of real-time motion graphics to display three dimensional scatterplots. Orion I differs from earlier Prim systems through the use of modern and relatively inexpensive raster graphics and microprocessor technology. It also delivers more computing power to its user; Orion I can perform more sophisticated real-time computations than were possible on previous such systems. We demonstrate some of Orion I's capabilities in our film: "Exploring data with Orion I".
An Interface for Biomedical Big Data Processing on the Tianhe-2 Supercomputer.
Yang, Xi; Wu, Chengkun; Lu, Kai; Fang, Lin; Zhang, Yong; Li, Shengkang; Guo, Guixin; Du, YunFei
2017-12-01
Big data, cloud computing, and high-performance computing (HPC) are at the verge of convergence. Cloud computing is already playing an active part in big data processing with the help of big data frameworks like Hadoop and Spark. The recent upsurge of high-performance computing in China provides extra possibilities and capacity to address the challenges associated with big data. In this paper, we propose Orion-a big data interface on the Tianhe-2 supercomputer-to enable big data applications to run on Tianhe-2 via a single command or a shell script. Orion supports multiple users, and each user can launch multiple tasks. It minimizes the effort needed to initiate big data applications on the Tianhe-2 supercomputer via automated configuration. Orion follows the "allocate-when-needed" paradigm, and it avoids the idle occupation of computational resources. We tested the utility and performance of Orion using a big genomic dataset and achieved a satisfactory performance on Tianhe-2 with very few modifications to existing applications that were implemented in Hadoop/Spark. In summary, Orion provides a practical and economical interface for big data processing on Tianhe-2.
Analysis of Compression Pad Cavities for the Orion Heatshield
NASA Technical Reports Server (NTRS)
Thompson, Richard A.; Lessard, Victor R.; Jentink, Thomas N.; Zoby, Ernest V.
2009-01-01
Current results of a program for analysis of the compression pad cavities on the Orion heatshield are reviewed. The program was supported by experimental tests, engineering modeling, and applied computations with an emphasis on the latter presented in this paper. The computational tools and approach are described along with calculated results for wind tunnel and flight conditions. Correlations of the computed results are shown which can produce a credible prediction of heating augmentation due to cavity disturbances. The models developed for use in preliminary design of the Orion heatshield are presented.
Contributions of TetrUSS to Project Orion
NASA Technical Reports Server (NTRS)
Mcmillin, Susan N.; Frink, Neal T.; Kerimo, Johannes; Ding, Djiang; Nayani, Sudheer; Parlette, Edward B.
2011-01-01
The NASA Constellation program has relied heavily on Computational Fluid Dynamics simulations for generating aerodynamic databases and design loads. The Orion Project focuses on the Orion Crew Module and the Orion Launch Abort Vehicle. NASA TetrUSS codes (GridTool/VGRID/USM3D) have been applied in a supporting role to the Crew Exploration Vehicle Aerosciences Project for investigating various aerodynamic sensitivities and supplementing the aerodynamic database. This paper provides an overview of the contributions from the TetrUSS team to the Project Orion Crew Module and Launch Abort Vehicle aerodynamics, along with selected examples to highlight the challenges encountered along the way. A brief description of geometries and tasks will be discussed followed by a description of the flow solution process that produced production level computational solutions. Four tasks conducted by the USM3D team will be discussed to show how USM3D provided aerodynamic data for inclusion in the Orion aero-database, contributed data for the build-up of aerodynamic uncertainties for the aero-database, and provided insight into the flow features about the Crew Module and the Launch Abort Vehicle.
Advances in Orion's On-Orbit Guidance and Targeting System Architecture
NASA Technical Reports Server (NTRS)
Scarritt, Sara K.; Fill, Thomas; Robinson, Shane
2015-01-01
NASA's manned spaceflight programs have a rich history of advancing onboard guidance and targeting technology. In order to support future missions, the guidance and targeting architecture for the Orion Multi-Purpose Crew Vehicle must be able to operate in complete autonomy, without any support from the ground. Orion's guidance and targeting system must be sufficiently flexible to easily adapt to a wide array of undecided future missions, yet also not cause an undue computational burden on the flight computer. This presents a unique design challenge from the perspective of both algorithm development and system architecture construction. The present work shows how Orion's guidance and targeting system addresses these challenges. On the algorithm side, the system advances the state-of-the-art by: (1) steering burns with a simple closed-loop guidance strategy based on Shuttle heritage, and (2) planning maneuvers with a cutting-edge two-level targeting routine. These algorithms are then placed into an architecture designed to leverage the advantages of each and ensure that they function in concert with one another. The resulting system is characterized by modularity and simplicity. As such, it is adaptable to the on-orbit phases of any future mission that Orion may attempt.
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower are undergoing tests to confirm that they are operating correctly. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower will undergo tests to confirm that they are operating correctly. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower will undergo tests to confirm that they are operating correctly. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
Using Numerical Modeling to Simulate Space Capsule Ground Landings
NASA Technical Reports Server (NTRS)
Heymsfield, Ernie; Fasanella, Edwin L.
2009-01-01
Experimental work is being conducted at the National Aeronautics and Space Administration s (NASA) Langley Research Center (LaRC) to investigate ground landing capabilities of the Orion crew exploration vehicle (CEV). The Orion capsule is NASA s replacement for the Space Shuttle. The Orion capsule will service the International Space Station and be used for future space missions to the Moon and to Mars. To evaluate the feasibility of Orion ground landings, a series of capsule impact tests are being performed at the NASA Langley Landing and Impact Research Facility (LandIR). The experimental results derived at LandIR provide means to validate and calibrate nonlinear dynamic finite element models, which are also being developed during this study. Because of the high cost and time involvement intrinsic to full-scale testing, numerical simulations are favored over experimental work. Subsequent to a numerical model validated by actual test responses, impact simulations will be conducted to study multiple impact scenarios not practical to test. Twenty-one swing tests using the LandIR gantry were conducted during the June 07 through October 07 time period to evaluate the Orion s impact response. Results for two capsule initial pitch angles, 0deg and -15deg , along with their computer simulations using LS-DYNA are presented in this article. A soil-vehicle friction coefficient of 0.45 was determined by comparing the test stopping distance with computer simulations. In addition, soil modeling accuracy is presented by comparing vertical penetrometer impact tests with computer simulations for the soil model used during the swing tests.
2014-10-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
EFT-1 Delta IV Heavy lift to vertical
2014-10-01
This close-up view shows the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 being raised into the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.
2014-08-04
CAPE CANAVERAL, Fla. – Preparations are underway to begin mating the United Launch Alliance Delta IV port booster to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
2014-08-04
CAPE CANAVERAL, Fla. – In this close-up photograph, the United Launch Alliance Delta IV port booster is being mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
EFT-1 Delta IV Heavy lift to vertical
2014-10-01
The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.
2014-10-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
EFT-1 Delta IV Heavy lift to vertical
2014-10-01
The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.
2014-08-04
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV port booster is being mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
2014-09-30
CAPE CANAVERAL, Fla. – A United Launch Alliance technicians drives the transporter that carries the Delta IV Heavy rocket to the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – A United Launch Alliance technicians drives the transporter that carries the Delta IV Heavy rocket to the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 arrives at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 has arrived at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – A United Launch Alliance technicians drives the transporter that carries the Delta IV Heavy rocket to the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket exits the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 arrives at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
Experimental Investigation of Project Orion Crew Exploration Vehicle Aeroheating in AEDC Tunnel 9
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Horvath, Thomas J.; Berger, Karen T.; Lillard, Randolph P.; Kirk, Benjamin S.; Coblish, Joseph J.; Norris, Joseph D.
2008-01-01
An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Arnold Engineering Development Center Tunnel 9. The goals of this test were to measure turbulent heating augmentation levels on the heat shield and to obtain high-fidelity heating data for assessment of computational fluid dynamics methods. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the data for the purpose of helping to define uncertainty margins for the computational method. Data from both the wind tunnel test and the computational study are presented herein.
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower are undergoing tests to confirm that they are operating correctly. They are being swung out and closer to the Vertical Integration Facility at the pad. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower are undergoing tests to confirm that they are operating correctly. They are being swung out and closer to the Vertical Integration Facility at the pad. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower are undergoing tests to confirm that they are operating correctly. They are being swung out and closer to the Vertical Integration Facility at the pad. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The swing arm is undergoing a test to confirm that it is operating correcting. During the test, the arm was swung out and closer to the Vertical Integration Facility at the pad. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower are undergoing tests to confirm that they are operating correctly. They are being swung out and closer to the Vertical Integration Facility at the pad. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower are undergoing tests to confirm that they are operating correctly. They are being swung out and closer to the Vertical Integration Facility at the pad. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-04
CAPE CANAVERAL, Fla. – A United Launch Alliance, or ULA, technician monitors the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
EFT-1 Delta IV Heavy lift to vertical
2014-10-01
The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position in the mobile service tower on the pad at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.
2014-08-04
CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
2014-08-04
CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
2014-10-01
CAPE CANAVERAL, Fla. – This close-up view shows the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 being raised into the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-08-04
CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
2014-08-04
CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
2014-08-04
CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
2014-10-01
CAPE CANAVERAL, Fla. – This close-up view shows the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 being raised into the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-08-04
CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
2014-10-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-08-04
CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
2014-10-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position in the mobile service tower on the pad at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-10-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-08-04
CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
EFT-1 Delta IV Heavy lift to vertical
2014-10-01
United Launch Alliance, or ULA, workers monitor the progress as the ULA Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.
2014-09-30
CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, the Delta IV Heavy rocket is ready for rollout to the pad. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – The United Launch Alliance, or ULA, Delta IV Heavy rocket has exited the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. ULA technicians help guide the rocket, secured on the Elevated Platform Transporter, for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, United Launch Alliance technicians prepare the Delta IV Heavy rocket for rollout to the pad. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, United Launch Alliance technicians prepare the Delta IV Heavy rocket for rollout to the pad. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – The United Launch Alliance, or ULA, Delta IV Heavy rocket has exited the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. ULA technicians help guide the rocket, secured on the Elevated Platform Transporter, for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – Launch pad lights give off a golden glow at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, as the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 arrives. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket begins to rollout from the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, United Launch Alliance technicians prepare the Delta IV Heavy rocket for rollout to the pad. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – Launch pad lights give off a golden glow at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, as the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 arrives. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
Employing a Modified Diffuser Momentum Model to Simulate Ventilation of the Orion CEV (DRAFT)
NASA Technical Reports Server (NTRS)
Straus, John; Ball, Tyler; OHara, William; Barido, Richard
2011-01-01
Computational Fluid Dynamics (CFD) is used to model the flow field in the Orion CEV cabin. The CFD model employs a momentum model used to account for the effect of supply grilles on the supply flow. The momentum model is modified to account for non-uniform velocity profiles at the approach of the supply grille. The modified momentum model is validated against a detailed vane-resolved model before inclusion into the Orion CEV cabin model. Results for this comparison, as well as that of a single ventilation configuration are presented.
2014-05-06
CAPE CANAVERAL, Fla. -- After arriving by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida, the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, were offloaded in their containers. They were transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- A barge has arrived at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. The segments are being offloaded in their containers for transport to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- After arriving by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida, the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, were offloaded in their containers. They are being transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- A barge has arrived at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. The segments are being offloaded in their containers for transport to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- After arriving by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida, the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, were offloaded in their containers. They are being transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- The second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have been transported in their containers to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida for uncrating. The segments arrived by barge at the U.S. Army Outpost wharf at Port Canaveral. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- The second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have been transported in their containers to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida for uncrating. The segments arrived by barge at the U.S. Army Outpost wharf at Port Canaveral. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- A barge has arrived at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. They are being offloaded in their containers for transport to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- A barge has arrived at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. They are being offloaded in their containers for transport to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- A barge has arrived at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. They are being offloaded in their containers for transport to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- A barge has arrived at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. They are being offloaded in their containers for transport to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- After arriving by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida, the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, were offloaded in their containers. They are being transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- The second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have been transported in their containers to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The segments arrived by barge at the U.S. Army Outpost wharf at Port Canaveral. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- A barge arrives at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. They will be offloaded in their containers and transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- After arriving by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida, the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, were offloaded in their containers. They are being transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- A barge arrives at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. They will be offloaded in their containers and transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- A barge arrives at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying the second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. They will be offloaded in their containers and transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- The second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have been transported in their containers to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida for uncrating. The segments arrived by barge at the U.S. Army Outpost wharf at Port Canaveral. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-10-01
CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, workers monitor the progress as the ULA Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-08-04
CAPE CANAVERAL, Fla. – All three of the United Launch Alliance, or ULA, Delta IV boosters for Exploration Flight Test-1 are in view inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The port booster is being mated to the core booster. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
2014-08-04
CAPE CANAVERAL, Fla. – All three of the United Launch Alliance, or ULA, Delta IV boosters for Exploration Flight Test-1 are in view inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The port booster is being mated to the core booster. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky
2014-10-01
CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, workers monitor the progress as the ULA Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-09-30
CAPE CANAVERAL, Fla. – The United Launch Alliance, or ULA, Delta IV Heavy rocket for Exploration Flight Test-1 continues its trek to the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. ULA technicians help guide the transporter to the pad. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, United Launch Alliance technicians and engineers prepare the Delta IV Heavy rocket for rollout to the pad. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis
2014-06-18
CAPE CANAVERAL, Fla. – Members of the media listen as NASA Administrator Charlie Bolden marks the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1, during a visit to the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. To his right is Kennedy Director Bob Cabana. To his left are Cleon Lacefield, Lockheed Martin Orion Program manager, and Mark Geyer, NASA Orion Program manager. Behind them is the crew module stacked on the service module in the Final Assembly and System Testing cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Orion Core Stage & Booster Offload, Move to HIF
2014-03-04
CAPE CANAVERAL, Fla. – The core booster for the United Launch Alliance Delta IV heavy for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, was transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The core booster and starboard booster arrived by barge at the U.S. Army Outpost wharf at Port Canaveral. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
Orion Core Stage & Booster Offload, Move to HIF
2014-03-04
CAPE CANAVERAL, Fla. – A barge arrives at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. The core booster and starboard booster will be offloaded and then transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
Orion Core Stage & Booster Offload, Move to HIF
2014-03-04
CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster will be offloaded and then transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
Orion Core Stage & Booster Offload, Move to HIF
2014-03-04
CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster were offloaded and are being transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
Orion Core Stage & Booster Offload, Move to HIF
2014-03-04
CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster have been offloaded and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – Cleon Lacefield, Lockheed Martin Orion Program manager helps mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1, inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The crew module has been stacked on the service module in the Final Assembly and System Testing cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- The second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have been transported in their containers to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. Inside the facility, technicians uncrate the upper stage. The segments arrived by barge at the U.S. Army Outpost wharf at Port Canaveral. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- The second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have been transported in their containers to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. Inside the facility, technicians uncrate the upper stage. The segments arrived by barge at the U.S. Army Outpost wharf at Port Canaveral. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-06
CAPE CANAVERAL, Fla. -- The second stage, port booster and spacecraft adapter, the remaining stages for the United Launch Alliance Delta IV Heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have been transported in their containers to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. Inside the facility, technicians uncrate the port booster. The segments arrived by barge at the U.S. Army Outpost wharf at Port Canaveral. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
Orion Launch Abort Vehicle Separation Analysis Using OVERFLOW
NASA Technical Reports Server (NTRS)
Booth, Tom
2010-01-01
This slide presentation reviews the use of OVERFLOW, a flow solver, to analyze the effect of separation for a launch abort vehicle (i.e., Orion capsule) if required. Included in the presentation are views of the geometry, and the Overset grids, listing of the assumptions, the general run strategy, inputs into the Overflow solver, the required computational resources, the results of the convergence study. Charts and graphics are presented to show the results.
2014-06-18
CAPE CANAVERAL, Fla. – NASA astronauts Rex Walheim, left, and Doug Hurley helped mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1, during a visit to the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Behind them the Orion crew module has been stacked on top of the service module in the Final Assembly and System Test cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – Mark Geyer, NASA Orion Program manager, along with NASA Administrator Charlie Bolden, to his right, and Kennedy Space Center Director Bob Cabana help mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1, inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. At left is Rachel Kraft, NASA Public Affairs Officer. The crew module has been stacked on the service module in the Final Assembly and System Testing cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – NASA astronauts Doug Hurley, left, and Rex Walheim look at the Orion crew module stacked on top of the service module in the Final Assembly and System Test cell inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. An event was held to mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – NASA astronauts Doug Hurley, left, and Rex Walheim look at the Orion crew module stacked on top of the service module in the Final Assembly and System Test cell inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. An event was held to mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – NASA Administrator Charlie Bolden helps mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1, during a visit to the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. To his right is Rachel Kraft, NASA Public Affairs Officer, and standing behind him is Cleon Lacefield, Lockheed Martin Orion Program manager. The crew module has been stacked on the service module in the Final Assembly and System Testing cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the Orion crew module has been stacked on the service module in the Final Assembly and System Testing cell. NASA Administrator Charlie Bolden spoke to the media during an event to mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – Cleon Lacefield, Lockheed Martin Orion Program manager, at right, helps mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1, inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. In view behind him is the crew module stacked on the service module in the Final Assembly and System Testing cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana helps mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1, inside the Operations and Checkout Building high bay at Kennedy Space Center in Florida. To his right is Rachel Kraft, NASA Public Affairs Officer, and standing behind him is Cleon Lacefield, Lockheed Martin Orion Program manager. The crew module has been stacked on the service module in the Final Assembly and System Testing cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the Orion crew module has been stacked on the service module in the Final Assembly and System Testing cell. NASA Administrator Charlie Bolden spoke to the media during an event to mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – NASA astronauts Doug Hurley, left, and Rex Walheim helped mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1, during a visit to the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Behind them, the Orion crew module has been stacked on top of the service module in the Final Assembly and System Test cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-09-12
CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, the second stage of the United Launch Alliance Delta IV Heavy rocket has been mated to the core booster of the three booster stages for the unpiloted Exploration Flight Test-1, or EFT-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-09-12
CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, preparations are underway to mate the second stage of a Delta IV Heavy rocket to the central core booster of the three booster stages for the unpiloted Exploration Flight Test-1, or EFT-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
Orion Core Stage & Booster Offload, Move to HIF
2014-03-04
CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster, shown in this photo, and starboard booster were offloaded and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
Orion Core Stage & Booster Offload, Move to HIF
2014-03-04
CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster are being offloaded and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
Orion Core Stage & Booster Offload, Move to HIF
2014-03-04
CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster, shown in this photo, and starboard booster were offloaded and transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, has been offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and is being transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-08
CAPE CANAVERAL, Fla. -- Inside the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, the upper stage for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is being removed from its transportation container. The upper stage, along with the port booster and spacecraft adapter arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and were transported to the HIF. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is being offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- A transporter for oversize loads carries the port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The upper stage and spacecraft adapter arrived with the booster on a barge at the U.S. Army Outpost wharf at Port Canaveral, and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is being offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-08
CAPE CANAVERAL, Fla. -- Inside the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, the upper stage for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is being prepared for removal from its transportation container. The upper stage, along with the port booster and spacecraft adapter arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and were transported to the HIF. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, has been offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, has been offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and is being transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is being offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is being offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is being offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, has been offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is being offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-08
CAPE CANAVERAL, Fla. -- Inside the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, the upper stage for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is being prepared for removal from its transportation container. The upper stage, along with the port booster and spacecraft adapter arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and were transported to the HIF. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, has been offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is being offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- The port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, has been offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- A transporter for oversize loads carries the port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The upper stage and spacecraft adapter arrived with the booster on a barge at the U.S. Army Outpost wharf at Port Canaveral, and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – Members of the media listen as NASA Orion Program Manager Mark Geyer marks the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1, in the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. To his right is Kennedy Director Bob Cabana. Partially hidden behind him is NASA Administrator Charlie Bolden. To his left is Cleon Lacefield, Lockheed Martin Orion Program manager, and Rachel Kraft, NASA Public Affairs Officer. Behind them is the crew module stacked on the service module in the Final Assembly and System Testing cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – NASA Public Affairs Officer Rachel Kraft welcomes members of the media to the Operations and Checkout Building high at NASA's Kennedy Space Center in Florida to mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1. To her right are NASA Administrator Charlie Bolden and Kennedy Director Bob Cabana. To her left are Cleon Lacefield, Lockheed Martin Orion Program manager, and Mark Geyer, NASA Orion Program manager. Behind them is the crew module stacked on the service module in the Final Assembly and System Testing cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – Members of the media listen as NASA Orion Program Manager Mark Geyer marks the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1, in the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. To his right is Kennedy Director Bob Cabana. Partially hidden behind him is NASA Administrator Charlie Bolden. To his left is Cleon Lacefield, Lockheed Martin Orion Program manager, and Rachel Kraft, NASA Public Affairs Officer. Behind them is the crew module stacked on the service module in the Final Assembly and System Testing cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Gati, Frank; Yuko, James R.; Motil, Brian J.; Lumpkin, Forrest E.
2009-01-01
The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module showed that thermal protection is necessary because of significant heating from the plume.
A NASA technician paints NASA's first Orion full-scale abort flight test crew module.
2008-03-31
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-04-01
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2014-05-30
CAPE CANAVERAL, Fla. -- Lockheed Martin technicians and engineers attach the heat shield to the Orion crew module inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Technicians have installed more than 200 instrumentation sensors on the heat shield for Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-06-18
CAPE CANAVERAL, Fla. – NASA Administrator Charlie Bolden helps mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1, during a visit to the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The crew module has been stacked on the service module in the Final Assembly and System Testing cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-05-30
CAPE CANAVERAL, Fla. -- Lockheed Martin technicians and engineers attach the heat shield to the Orion crew module inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Technicians have installed more than 200 instrumentation sensors on the heat shield for Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
Critical Software for Human Spaceflight
NASA Technical Reports Server (NTRS)
Preden, Antonio; Kaschner, Jens; Rettig, Felix; Rodriggs, Michael
2017-01-01
The NASA Orion vehicle that will fly to the moon in the next years is propelled along its mission by the European Service Module (ESM), developed by ESA and its prime contractor Airbus Defense and Space. This paper describes the development of the Propulsion Drive Electronics (PDE) Software that provides the interface between the propulsion hardware of the European Service Module with the Orion flight computers, and highlights the challenges that have been faced during the development. Particularly, the specific aspects relevant to Human Spaceflight in an international cooperation are presented, as the compliance to both European and US standards and the software criticality classification to the highest category A. An innovative aspect of the PDE SW is its Time- Triggered Ethernet interface with the Orion Flight Computers, which has never been flown so far on any European spacecraft. Finally the verification aspects are presented, applying the most exigent quality requirements defined in the European Cooperation for Space Standardization (ECSS) standards such as the structural coverage analysis of the object code and the recourse to an independent software verification and validation activity carried on in parallel by a different team.
2014-09-12
CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, a United Launch Alliance technician on a scissor lift monitors the progress as the second stage of a Delta IV Heavy rocket is mated to the central core booster of the three booster stages for the unpiloted Exploration Flight Test-1, or EFT-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-09-12
CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, United Launch Alliance technicians monitor the progress as the second stage of a Delta IV Heavy rocket is mated to the central core booster of the three booster stages for the unpiloted Exploration Flight Test-1, or EFT-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-09-12
CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, a United Launch Alliance technician on a scissor lift monitors the progress as the second stage of a Delta IV Heavy rocket is mated to the central core booster of the three booster stages for the unpiloted Exploration Flight Test-1, or EFT-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-08-29
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, United Launch Alliance technicians transport the second stage of a Delta IV Heavy rocket to the Horizontal Integration Facility at Space Launch Complex 37. The second stage then will be mated with the Delta IV Heavy booster stages in preparation for the unpiloted Exploration Flight Test-1, or EFT-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – NASA astronaut Doug Hurley talks to a member of the media during an event to mark the T-6 months and counting to the launch of Orion on Exploration Flight Test-1, or EFT-1, inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. In the background is NASA astronaut Rex Walheim. The crew module has been stacked on the service module in the Final Assembly and System Testing cell. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-06-18
CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the Orion crew module has been stacked on the service module in the Final Assembly and System Testing cell in preparation for final system tests for Exploration Flight Test-1, or EFT-1, prior to rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. EFT-1 will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- A transporter for oversize loads carries the port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, into the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The port booster joins the other two boosters of the Delta IV Heavy already in the HIF. The upper stage and spacecraft adapter arrived with the booster on a barge at the U.S. Army Outpost wharf at Port Canaveral, and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- A transporter for oversize loads carries the port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, into the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The port booster joins the other two boosters of the Delta IV Heavy already in the HIF. The upper stage and spacecraft adapter arrived with the booster on a barge at the U.S. Army Outpost wharf at Port Canaveral, and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- A transporter for oversize loads carries the port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, to Space Launch Complex 37 on Cape Canaveral Air Force Station after it was offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The booster will be transported to the Horizontal Integration Facility, or HIF, at the launch complex. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- A transporter for oversize loads carries the port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, to Space Launch Complex 37 on Cape Canaveral Air Force Station after it was offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The booster will be transported to the Horizontal Integration Facility, or HIF, at the launch complex. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- A transporter for oversize loads carries the port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, into the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The port booster joins the other two boosters of the Delta IV Heavy already in the HIF. The upper stage and spacecraft adapter arrived with the booster on a barge at the U.S. Army Outpost wharf at Port Canaveral, and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- A transporter for oversize loads carries the port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, to Space Launch Complex 37 on Cape Canaveral Air Force Station after it was offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The booster will be transported to the Horizontal Integration Facility, or HIF, at the launch complex. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-08
CAPE CANAVERAL, Fla. -- Inside the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, the upper stage for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, has been removed from its transportation container and will be lowered onto a cradle. The upper stage, along with the port booster and spacecraft adapter arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and were transported to the HIF. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-07
CAPE CANAVERAL, Fla. -- A transporter for oversize loads carries the port booster for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, to Space Launch Complex 37 on Cape Canaveral Air Force Station after it was offloaded from the barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The booster will be transported to the Horizontal Integration Facility, or HIF, at the launch complex. The upper stage and spacecraft adapter arrived with the booster and were transported to the HIF on May 6. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
2014-05-08
CAPE CANAVERAL, Fla. -- Inside the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, the upper stage for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, has been removed from its transportation container and will be lowered onto a cradle. The upper stage, along with the port booster and spacecraft adapter arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida and were transported to the HIF. At the HIF, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. The spacecraft adapter will connect Orion to the ULA Delta IV, and also will connect Orion to NASA's new rocket, the Space Launch System, on its first mission in 2017. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett
Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Lumpkin, Forrest E., III; Gati, Frank; Yuko, James R.; Motil, Brian J.
2009-01-01
The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module was performed using MSC Patran/Pthermal. The obtained temperature results showed that thermal protection is necessary because of significant heating from the plume.
2008-04-01
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-04-01
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-03-29
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-03-28
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-03-29
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-03-29
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2014-09-12
CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, a United Launch Alliance technician on a scissor lift watches as mating of the second stage of a Delta IV Heavy rocket to the core booster of the three booster stages is nearly complete. The rocket will launch the unpiloted Exploration Flight Test-1, or EFT-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-08-29
CAPE CANAVERAL, Fla. – Inside the Delta Operations Center at Cape Canaveral Air Force Station, United Launch Alliance technicians lower the second stage of a Delta IV Heavy rocket following testing in preparation for the unpiloted Exploration Flight Test-1, or EFT-1. The second stage will be moved to the Horizontal Integration Facility at Space Launch Complex 37 for mating with the Delta IV Heavy booster stages. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Kim Shiflett
2014-08-29
CAPE CANAVERAL, Fla. – Inside the Delta Operations Center at Cape Canaveral Air Force Station, United Launch Alliance technicians stand by with a transporter to move the second stage of a Delta IV Heavy rocket following testing in preparation for the unpiloted Exploration Flight Test-1, or EFT-1. The second stage will be transported to the Horizontal Integration Facility at Space Launch Complex 37 for mating with the Delta IV Heavy booster stages. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Kim Shiflett
2014-08-29
CAPE CANAVERAL, Fla. – Inside the Delta Operations Center at Cape Canaveral Air Force Station, United Launch Alliance technicians place the second stage of a Delta IV Heavy rocket on a transporter following testing in preparation for the unpiloted Exploration Flight Test-1, or EFT-1. The second stage will be moved to the Horizontal Integration Facility at Space Launch Complex 37 for mating with the Delta IV Heavy booster stages. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Kim Shiflett
Development of the Orion Crew Module Static Aerodynamic Database. Par 2; Supersonic/Subsonic
NASA Technical Reports Server (NTRS)
Bibb, Karen L.; Walker, Eric L.; Brauckmann, Gregory J.; Robinson, Phil
2011-01-01
This work describes the process of developing the nominal static aerodynamic coefficients and associated uncertainties for the Orion Crew Module for Mach 8 and below. The database was developed from wind tunnel test data and computational simulations of the smooth Crew Module geometry, with no asymmetries or protuberances. The database covers the full range of Reynolds numbers seen in both entry and ascent abort scenarios. The basic uncertainties were developed as functions of Mach number and total angle of attack from variations in the primary data as well as computations at lower Reynolds numbers, on the baseline geometry, and using different flow solvers. The resulting aerodynamic database represents the Crew Exploration Vehicle Aerosciences Project's best estimate of the nominal aerodynamics for the current Crew Module vehicle.
Comparison of PLIF and CFD Results for the Orion CEV RCS Jets
NASA Technical Reports Server (NTRS)
Ivey, Christopher B.; Danehy, Paul M.; Bathel, Brett F.; Dyakonov, Artem A.; Inman, Jennifer A.; Jones, Stephen B.
2011-01-01
Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to visualize and measure centerline streamwise velocity of the Orion Crew Exploration Vehicle (CEV) Reaction Control System (RCS) Jets at NASA Langley Research Center's 31-Inch Mach 10 Air wind tunnel. Fluorescence flow visualizations of pitch, roll, and yaw RCS jets were obtained using different plenum pressures and wind tunnel operating stagnation pressures. For two yaw RCS jet test cases, the PLIF visualizations were compared to computational flow imaging (CFI) images based on Langley Aerothermal Upwind Relaxation Algorithm (LAURA) computational fluid dynamics (CFD) simulations of the flowfield. For the same test cases, the streamwise velocity measurements were compared to CFD. The CFD solution, while showing some unphysical artifacts, generally agree with the experimental measurements.
Plume-Free Stream Interaction Heating Effects During Orion Crew Module Reentry
NASA Technical Reports Server (NTRS)
Marichalar, J.; Lumpkin, F.; Boyles, K.
2012-01-01
During reentry of the Orion Crew Module (CM), vehicle attitude control will be performed by firing reaction control system (RCS) thrusters. Simulation of RCS plumes and their interaction with the oncoming flow has been difficult for the analysis community due to the large scarf angles of the RCS thrusters and the unsteady nature of the Orion capsule backshell environments. The model for the aerothermal database has thus relied on wind tunnel test data to capture the heating effects of thruster plume interactions with the freestream. These data are only valid for the continuum flow regime of the reentry trajectory. A Direct Simulation Monte Carlo (DSMC) analysis was performed to study the vehicle heating effects that result from the RCS thruster plume interaction with the oncoming freestream flow at high altitudes during Orion CM reentry. The study was performed with the DSMC Analysis Code (DAC). The inflow boundary conditions for the jets were obtained from Data Parallel Line Relaxation (DPLR) computational fluid dynamics (CFD) solutions. Simulations were performed for the roll, yaw, pitch-up and pitch-down jets at altitudes of 105 km, 125 km and 160 km as well as vacuum conditions. For comparison purposes (see Figure 1), the freestream conditions were based on previous DAC simulations performed without active RCS to populate the aerodynamic database for the Orion CM. Other inputs to the analysis included a constant Orbital reentry velocity of 7.5 km/s and angle of attack of 160 degrees. The results of the study showed that the interaction effects decrease quickly with increasing altitude. Also, jets with highly scarfed nozzles cause more severe heating compared to the nozzles with lower scarf angles. The difficulty of performing these simulations was based on the maximum number density and the ratio of number densities between the freestream and the plume for each simulation. The lowest altitude solutions required a substantial amount of computational resources (up to 1800 processors) to simulate approximately 2 billion molecules for the refined (adapted) solutions.
Orion Exploration Flight Test-1 Contingency Drogue Deploy Velocity Trigger
NASA Technical Reports Server (NTRS)
Gay, Robert S.; Stochowiak, Susan; Smith, Kelly
2013-01-01
As a backup to the GPS-aided Kalman filter and the Barometric altimeter, an "adjusted" velocity trigger is used during entry to trigger the chain of events that leads to drogue chute deploy for the Orion Multi-Purpose Crew Vehicle (MPCV) Exploration Flight Test-1 (EFT-1). Even though this scenario is multiple failures deep, the Orion Guidance, Navigation, and Control (GN&C) software makes use of a clever technique that was taken from the Mars Science Laboratory (MSL) program, which recently successfully landing the Curiosity rover on Mars. MSL used this technique to jettison the heat shield at the proper time during descent. Originally, Orion use the un-adjusted navigated velocity, but the removal of the Star Tracker to save costs for EFT-1, increased attitude errors which increased inertial propagation errors to the point where the un-adjusted velocity caused altitude dispersions at drogue deploy to be too large. Thus, to reduce dispersions, the velocity vector is projected onto a "reference" vector that represents the nominal "truth" vector at the desired point in the trajectory. Because the navigation errors are largely perpendicular to the truth vector, this projection significantly reduces dispersions in the velocity magnitude. This paper will detail the evolution of this trigger method for the Orion project and cover the various methods tested to determine the reference "truth" vector; and at what point in the trajectory it should be computed.
Avionics System Architecture for NASA Orion Vehicle
NASA Technical Reports Server (NTRS)
Baggerman, Clint
2010-01-01
This viewgraph presentation reviews the Orion Crew Exploration Vehicle avionics architecture. The contents include: 1) What is Orion?; 2) Orion Concept of Operations; 3) Orion Subsystems; 4) Orion Avionics Architecture; 5) Orion Avionics-Network; 6) Orion Network Unification; 7) Orion Avionics-Integrity; 8) Orion Avionics-Partitioning; and 9) Orion Avionics-Redundancy.
2014-06-30
CAPE CANAVERAL, Fla. – Inside the Delta Operations Center near Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, the second stage for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is lowered by crane into a cradle for the move to a test cell. At the Horizontal Integration Facility, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Frankie Martin
2014-06-30
CAPE CANAVERAL, Fla. – Inside the Delta Operations Center near Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, the second stage for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is lowered by crane into a cradle for the move to a test cell. At the Horizontal Integration Facility, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Frankie Martin
2014-06-30
CAPE CANAVERAL, Fla. – Inside the Delta Operations Center near Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, the second stage for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is lowered by crane into a cradle for the move to a test cell. At the Horizontal Integration Facility, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Frankie Martin
2014-08-29
CAPE CANAVERAL, Fla. – Inside the Delta Operations Center at Cape Canaveral Air Force Station, United Launch Alliance technicians place the second stage of a Delta IV Heavy rocket on a support fixture following testing in preparation for the unpiloted Exploration Flight Test-1, or EFT-1. The second stage will be placed on a transporter for the move to the Horizontal Integration Facility at Space Launch Complex 37 for mating with the Delta IV Heavy booster stages. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Kim Shiflett
2014-06-30
CAPE CANAVERAL, Fla. – Inside the Delta Operations Center near Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, the second stage for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is lifted high by crane for the move to a test cell. At the Horizontal Integration Facility, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Frankie Martin
2014-06-30
CAPE CANAVERAL, Fla. – Inside the Delta Operations Center near Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, the second stage for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is lifted high by crane into a test cell. At the Horizontal Integration Facility, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Frankie Martin
2014-06-30
CAPE CANAVERAL, Fla. – Inside the Delta Operations Center near Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, the second stage for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is secured in its cradle for the move to a test cell. At the Horizontal Integration Facility, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Frankie Martin
Dynamic Mesh CFD Simulations of Orion Parachute Pendulum Motion During Atmospheric Entry
NASA Technical Reports Server (NTRS)
Halstrom, Logan D.; Schwing, Alan M.; Robinson, Stephen K.
2016-01-01
This paper demonstrates the usage of computational fluid dynamics to study the effects of pendulum motion dynamics of the NASAs Orion Multi-Purpose Crew Vehicle parachute system on the stability of the vehicles atmospheric entry and decent. Significant computational fluid dynamics testing has already been performed at NASAs Johnson Space Center, but this study sought to investigate the effect of bulk motion of the parachute, such as pitching, on the induced aerodynamic forces. Simulations were performed with a moving grid geometry oscillating according to the parameters observed in flight tests. As with the previous simulations, OVERFLOW computational fluid dynamics tool is used with the assumption of rigid, non-permeable geometry. Comparison to parachute wind tunnel tests is included for a preliminary validation of the dynamic mesh model. Results show qualitative differences in the flow fields of the static and dynamic simulations and quantitative differences in the induced aerodynamic forces, suggesting that dynamic mesh modeling of the parachute pendulum motion may uncover additional dynamic effects.
Avionics System Architecture for the NASA Orion Vehicle
NASA Technical Reports Server (NTRS)
Baggerman, Clint; McCabe, Mary; Verma, Dinesh
2009-01-01
It has been 30 years since the National Aeronautics and Space Administration (NASA) last developed a crewed spacecraft capable of launch, on-orbit operations, and landing. During that time, aerospace avionics technologies have greatly advanced in capability, and these technologies have enabled integrated avionics architectures for aerospace applications. The inception of NASA s Orion Crew Exploration Vehicle (CEV) spacecraft offers the opportunity to leverage the latest integrated avionics technologies into crewed space vehicle architecture. The outstanding question is to what extent to implement these advances in avionics while still meeting the unique crewed spaceflight requirements for safety, reliability and maintainability. Historically, aircraft and spacecraft have very similar avionics requirements. Both aircraft and spacecraft must have high reliability. They also must have as much computing power as possible and provide low latency between user control and effecter response while minimizing weight, volume, and power. However, there are several key differences between aircraft and spacecraft avionics. Typically, the overall spacecraft operational time is much shorter than aircraft operation time, but the typical mission time (and hence, the time between preventive maintenance) is longer for a spacecraft than an aircraft. Also, the radiation environment is typically more severe for spacecraft than aircraft. A "loss of mission" scenario (i.e. - the mission is not a success, but there are no casualties) arguably has a greater impact on a multi-million dollar spaceflight mission than a typical commercial flight. Such differences need to be weighted when determining if an aircraft-like integrated modular avionics (IMA) system is suitable for a crewed spacecraft. This paper will explore the preliminary design process of the Orion vehicle avionics system by first identifying the Orion driving requirements and the difference between Orion requirements and those of other previous crewed spacecraft avionics systems. Common systems engineering methods will be used to evaluate the value propositions, or the factors that weight most heavily in design consideration, of Orion and other aerospace systems. Then, the current Orion avionics architecture will be presented and evaluated.
A CFD Analysis of Hydrogen Leakage During On-Pad Purge in the ORION/ARES I Shared Volume
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Edwards, Daryl A.
2011-01-01
A common open volume is created by the stacking of the Orion vehicle onto the Ares I Upper Stage. Called the Shared Volume, both vehicles contribute to its gas, fluid, and thermal environment. One of these environments is related to hazardous hydrogen gas. While both vehicles use inert purge gas to mitigate any hazardous gas buildup, there are concerns that hydrogen gas may still accumulate and that the Ares I Hazardous Gas Detection System will not be sufficient for monitoring the integrated volume. This Computational Fluid Dynamics (CFD) analysis has been performed to examine these topics. Results of the analysis conclude that the Ares I Hazardous Gas Detection System will be able to sample the vent effluent containing the highest hydrogen concentrations. A second conclusion is that hydrogen does not accumulate under the Orion Service Module (SM) avionics ring as diffusion and purge flow mixing sufficiently dilute the hydrogen to safe concentrations. Finally the hydrogen concentrations within the Orion SM engine nozzle may slightly exceed the 1 percent volume fraction when the entire worse case maximum full leak is directed vertically into the engine nozzle.
NASA Technical Reports Server (NTRS)
Prisbell, Andrew; Marichalar, J.; Lumpkin, F.; LeBeau, G.
2010-01-01
Plume impingement effects on the Orion Crew Service Module (CSM) were analyzed for various dual Reaction Control System (RCS) engine firings and various configurations of the solar arrays. The study was performed using a decoupled computational fluid dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) approach. This approach included a single jet plume solution for the R1E RCS engine computed with the General Aerodynamic Simulation Program (GASP) CFD code. The CFD solution was used to create an inflow surface for the DSMC solution based on the Bird continuum breakdown parameter. The DSMC solution was then used to model the dual RCS plume impingement effects on the entire CSM geometry with deployed solar arrays. However, because the continuum breakdown parameter of 0.5 could not be achieved due to geometrical constraints and because high resolution in the plume shock interaction region is desired, a focused DSMC simulation modeling only the plumes and the shock interaction region was performed. This high resolution intermediate solution was then used as the inflow to the larger DSMC solution to obtain plume impingement heating, forces, and moments on the CSM and the solar arrays for a total of 21 cases that were analyzed. The results of these simulations were used to populate the Orion CSM Aerothermal Database.
Influence of ionization on the Gupta and on the Park chemical models
NASA Astrophysics Data System (ADS)
Morsa, Luigi; Zuppardi, Gennaro
2014-12-01
This study is an extension of former works by the present authors, in which the influence of the chemical models by Gupta and by Park was evaluated on thermo-fluid-dynamic parameters in the flow field, including transport coefficients, related characteristic numbers and heat flux on two current capsules (EXPERT and Orion) during the high altitude re-entry path. The results verified that the models, even computing different air compositions in the flow field, compute only slight different compositions on the capsule surface, therefore the difference in the heat flux is not very relevant. In the above mentioned studies, ionization was neglected because the velocities of the capsules (about 5000 m/s for EXPERT and about 7600 m/s for Orion) were not high enough to activate meaningful ionization. The aim of the present work is to evaluate the incidence of ionization, linked to the chemical models by Gupta and by Park, on both heat flux and thermo fluid-dynamic parameters. The present computer tests were carried out by a direct simulation Monte Carlo code (DS2V) in the velocity interval 7600-12000 m/s, considering only the Orion capsule at an altitude of 85 km. The results verified what already found namely when ionization is not considered, the chemical models compute only a slight different gas composition in the core of the shock wave and practically the same composition on the surface therefore the same heat flux. On the opposite, the results verified that when ionization is considered, the chemical models compute different compositions in the whole shock layer and on the surface therefore different heat flux. The analysis of the results relies on a qualitative and a quantitative evaluation of the effects of ionization on both chemical models. The main result of the study is that when ionization is taken into account, the Park model is more reactive than the Gupta model; consequently, the heat flux computed by Park is lower than the one computed by Gupta; using the Gupta model, in the design of a thermal protection system, is recommended.
NASA Astrophysics Data System (ADS)
Kreppel, Samantha
A scaled model of the downstream Orion service module propellant tank was constructed to asses the propellant dynamics under reduced and zero-gravity conditions. Flight and ground data from the experiment is currently being used to validate computational models of propel-lant dynamics in Orion-class propellant tanks. The high fidelity model includes the internal structures of the propellant management device (PMD) and the mass-gauging probe. Qualita-tive differences between experimental and CFD data are understood in terms of fluid dynamical scaling of inertial effects in the scaled system. Propellant configurations in zero-gravity were studied at a range of fill-fractions and the settling time for various docking maneuvers was determined. A clear understanding of the fluid dynamics within the tank is necessary to en-sure proper control of the spacecraft's flight and to maintain safe operation of this and future service modules. Understanding slosh dynamics in partially-filled propellant tanks is essential to assessing spacecraft stability.
Aerothermal Testing for Project Orion Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Lillard, Randolph P.; Kirk, Benjamin S.; Fischer-Cassady, Amy
2009-01-01
The Project Orion Crew Exploration Vehicle aerothermodynamic experimentation strategy, as it relates to flight database development, is reviewed. Experimental data has been obtained to both validate the computational predictions utilized as part of the database and support the development of engineering models for issues not adequately addressed with computations. An outline is provided of the working groups formed to address the key deficiencies in data and knowledge for blunt reentry vehicles. The facilities utilized to address these deficiencies are reviewed, along with some of the important results obtained thus far. For smooth wall comparisons of computational convective heating predictions against experimental data from several facilities, confidence was gained with the use of algebraic turbulence model solutions as part of the database. For cavities and protuberances, experimental data is being used for screening various designs, plus providing support to the development of engineering models. With the reaction-control system testing, experimental data were acquired on the surface in combination with off-body flow visualization of the jet plumes and interactions. These results are being compared against predictions for improved understanding of aftbody thermal environments and uncertainties.
Orion Passive Thermal: Control Overview
NASA Technical Reports Server (NTRS)
Alvarez-Hermandez, Angel; Miller, Stephen W.
2009-01-01
A general overview of the NASA Orion Passive Thermal Control System (PTCS) is presented. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; and 3) Orion PTCS Overview.
Overview of C/C-SiC Composite Development for the Orion Launch Abort System
NASA Technical Reports Server (NTRS)
Allen, Lee R.; Valentine, Peter G.; Schofield, Elizabeth S.; Beshears, Ronald D.; Coston, James E.
2012-01-01
Past and present efforts by the authors to further understanding of the ceramic matrix composite (CMC) material used in the valve components of the Orion Launch Abort System (LAS) Attitude Control Motor (ACM) will be presented. The LAS is designed to quickly lift the Orion Crew Exploration Vehicle (CEV) away from its launch vehicle in emergency abort scenarios. The ACM is a solid rocket motor which utilizes eight throttleable nozzles to maintain proper orientation of the CEV during abort operations. Launch abort systems have not been available for use by NASA on manned launches since the last Apollo ]Saturn launch in 1975. The CMC material, carbon-carbon/silicon-carbide (C/C-SiC), is manufactured by Fiber Materials, Inc. and consists of a rigid 4-directional carbon-fiber tow weave reinforced with a mixed carbon plus SiC matrix. Several valve and full system (8-valve) static motor tests have been conducted by the motor vendor. The culmination of these tests was the successful flight test of the Orion LAS Pad Abort One (PA ]1) vehicle on May 6, 2010. Due to the fast pace of the LAS development program, NASA Marshall Space Flight Center assisted the LAS community by performing a series of material and component evaluations using fired hardware from valve and full ]system development motor tests, and from the PA-1 flight ACM motor. Information will be presented on the structure of the C/C-SiC material, as well as the efficacy of various non ]destructive evaluation (NDE) techniques, including but not limited to: radiography, computed tomography, nanofocus computed tomography, and X-ray transmission microscopy. Examinations of the microstructure of the material via scanning electron microscopy and energy dispersive spectroscopy will also be discussed. The findings resulting from the subject effort are assisting the LAS Project in risk assessments and in possible modifications to the final ACM operational design.
Orion Scripted Interface Generator (OrionSIG)
NASA Technical Reports Server (NTRS)
Dooling, Robert J.
2013-01-01
The Orion spacecraft undergoing development at NASA and Lockheed Martin aims to launch the first humans to set foot on asteroids and Mars.' Sensors onboard Orion must transmit back to Earth astronomical amounts of data recording almost everything in 50,231 lb. (22,784 kg)2 of spacecraft, down to the temperatures, voltages, or torsions of even the most minor components. This report introduces the new Orion Scripted Interface Generator (OrionSIG) software created by summer 2013 NASA interns Robert Dooling and Samuel Harris. OrionSIG receives a list of Orion variables and produces a script to graph these measurements regardless of their size or type. The program also accepts many other input options to manipulate displays, such as limits on the graph's range or commands to graph different values in a reverse sawtooth wave. OrionSIG paves the way for monitoring stations on Earth to process, display, and test Orion data much more efficiently, a helpful asset in preparation for Orion's first test mission in 2014. Figure I.
NASA Technical Reports Server (NTRS)
Wadhams, T.P.; MacLean, M.; Holden, M.S.; Cassady, A.M.
2009-01-01
An experimental program has been completed by CUBRC exploring laminar, transitional, and turbulent flows over a 7.0% scale model of the Project ORION CEV geometry. This program was executed primarily to answer questions concerning the increase in heat transfer on the windward, or "hot shoulder" of the CEV heat shield from laminar to turbulent flow. To answer these questions CUBRC constructed and instrumented a 14.0 inch diameter Project ORION CEV model and ran a range of Reynolds numbers based on diameter from 1.0 to over 40 million at a Mach number of 8.0. These Reynolds numbers were selected to cover laminar to turbulent heating data on the "hot shoulder". Data obtained during these runs will be used to guide design decisions as they apply to heat shield thickness and extent. Several experiments at higher enthalpies were achieved to obtain data for code validation with real gas effects and transition. CUBRC also performed computation studies of these experiments to aid in the data reduction process and study turbulence modeling.
Fluid-Structure Interaction Modeling of the Reefed Stages of the Orion Spacecraft Main Parachutes
NASA Astrophysics Data System (ADS)
Boswell, Cody W.
Spacecraft parachutes are typically used in multiple stages, starting with a "reefed" stage where a cable along the parachute skirt constrains the diameter to be less than the diameter in the subsequent stage. After a certain period of time during the descent, the cable is cut and the parachute "disreefs" (i.e. expands) to the next stage. Computing the parachute shape at the reefed stage and fluid-structure interaction (FSI) modeling during the disreefing involve computational challenges beyond those we have in FSI modeling of fully-open spacecraft parachutes. These additional challenges are created by the increased geometric complexities and by the rapid changes in the parachute geometry. The computational challenges are further increased because of the added geometric porosity of the latest design, where the "windows" created by the removal of panels and the wider gaps created by the removal of sails compound the geometric and flow complexity. Orion spacecraft main parachutes will have three stages, with computation of the Stage 1 shape and FSI modeling of disreefing from Stage 1 to Stage 2 being the most challenging. We present the special modeling techniques we devised to address the computational challenges and the results from the computations carried out. We also present the methods we devised to calculate for a parachute gore the radius of curvature in the circumferential direction. The curvature values are intended for quick and simple engineering analysis in estimating the structural stresses.
2017-09-25
Water impact test of an 18,000-pound (8,165 kilogram) test version of the Orion spacecraft at NASA's Langley Research Center. NASA is swing drop testing this Orion capsule mock-up at Langley's Hydro Impact Basin to certify the actual Orion spacecraft for water landings. In a series of tests, Orion is being dropped in a variety of different conditions to help fine-tune NASA's predictions of Orion's landing loads.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-20
A test version of the Orion crew module and an inflatable model of NASA’s Space Launch System rocket, Orion spacecraft and mobile launcher are on display at Naval Base San Diego in California, for viewing by service members, base employees and their families before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Passive Thermal Control Overview
NASA Technical Reports Server (NTRS)
Miller, Stephen W.
2007-01-01
An viewgraph presentation of Orion's passive thermal control system is shown. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; 3) Module Descriptions and Images; 4) Orion PTCS Overview; 5) Requirements/Interfaces; 6) Design Reference Missions; 7) Natural Environments; 8) Thermal Models; 9) Challenges/Issues; and 10) Testing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
... Formerly Known as General Motors Corporation, Orion Assembly Plant Including On-Site Leased Workers From... Motors Corporation, Orion Assembly Plant, Lake Orion, Michigan. The notice was published in the Federal..., Michigan location of General Motors Company, formerly known as General Motors Corporation, Orion Assembly...
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-20
A service member and his family check out a test version of the Orion crew module on display at Naval Base San Diego in California, before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-20
A test version of the Orion crew module is on display for viewing by service members, base employees and their families at Naval Base San Diego in California, before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-20
A base employee and his family check out a test version of the Orion crew module at Naval Base San Diego in California before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-20
A base employee checks out an inflatable scale model of NASA’s Space Launch System rocket with Orion on the mobile launcher at Naval Base San Diego in California. Service members, base employees and their families had the opportunity to view a test version of the Orion crew module before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Design of a Reliable Computing System for the Petite Amateur Navy Satellite (PANSAT)
1989-03-01
S6 vi LIST OF TABLES TFable I. ISO SE’.VE.-N LAYER MO D EL.................. 9 TFable 2. SATELLITFE PROCESSOR SUM...the ORION project with the additional groundwork and data to serve as a baseline on which to build. 2. Mission The primary mission of PANSAT is to...seven layer ISO model for computer communication (see Table 1), which layers are handled in software and which in hardware? The physical layer, which
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
The test version of the Orion crew module has been transported into the well deck of the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
The test version of the Orion crew module is transported to the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
The test version of the Orion crew module is transported into the well deck of the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
NASA and contractor team members monitor the progress as the test version of the Orion crew module arrives in the well deck of the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
The test version of the Orion crew module is secured on its fixture inside the well deck of the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
Preparations are underway to transport the test version of the Orion crew module onto the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
Team members monitor the progress as the test version of the Orion crew module is transported into the well deck of the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2009-01-01
An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Langley Research Center 20-Inch Mach 6 Air Tunnel. Data were measured on a approx.3.5% scale model (0.1778-m/7-inch diameter) of the vehicle using coaxial thermocouples at free stream Reynolds numbers of 2.0 10(exp 6)/ft to 7.30 10(exp 6)/ft and computational predictions were generated for all test conditions. The primary goals of this test were to obtain convective heating data for use in assessing the accuracy of the computational technique and to validate test methodology and heating data from a test of the same wind tunnel model in the Arnold Engineering Development Center Tunnel 9. Secondary goals were to determine the extent of transitional/turbulent data which could be produced on a CEV model in this facility, either with or without boundary-layer trips, and to demonstrate continuous pitch-sweep operation in this tunnel for heat transfer testing.
Orion Launch Abort Vehicle Attitude Control Motor Testing
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared
2011-01-01
Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
A contract of light and shadow. The test version of the Orion crew module has been transported into the well deck of the USS San Diego at Naval Base San Diego in California, as viewed from inside the ship. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Stargazing at 'Husband Hill Observatory' on Mars
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Mars Exploration Rover Spirit continues to take advantage of extra solar energy by occasionally turning its cameras upward for night sky observations. Most recently, Spirit made a series of observations of bright star fields from the summit of 'Husband Hill' in Gusev Crater on Mars. Scientists use the images to assess the cameras' sensitivity and to search for evidence of nighttime clouds or haze. The image on the left is a computer simulation of the stars in the constellation Orion. The next three images are actual views of Orion captured with Spirit's panoramic camera during exposures of 10, 30, and 60 seconds. Because Spirit is in the southern hemisphere of Mars, Orion appears upside down compared to how it would appear to viewers in the Northern Hemisphere of Earth. 'Star trails' in the longer exposures are a result of the planet's rotation. The faintest stars visible in the 60-second exposure are about as bright as the faintest stars visible with the naked eye from Earth (about magnitude 6 in astronomical terms). The Orion Nebula, famous as a nursery of newly forming stars, is also visible in these images. Bright streaks in some parts of the images aren't stars or meteors or unidentified flying objects, but are caused by solar and galactic cosmic rays striking the camera's detector. Spirit acquired these images with the panoramic camera on Martian day, or sol, 632 (Oct. 13, 2005) at around 45 minutes past midnight local time, using the camera's broadband filter (wavelengths of 739 nanometers plus or minus 338 nanometers).Algorithm for Determination of Orion Ascent Abort Mode Achievability
NASA Technical Reports Server (NTRS)
Tedesco, Mark B.
2011-01-01
For human spaceflight missions, a launch vehicle failure poses the challenge of returning the crew safely to earth through environments that are often much more stressful than the nominal mission. Manned spaceflight vehicles require continuous abort capability throughout the ascent trajectory to protect the crew in the event of a failure of the launch vehicle. To provide continuous abort coverage during the ascent trajectory, different types of Orion abort modes have been developed. If a launch vehicle failure occurs, the crew must be able to quickly and accurately determine the appropriate abort mode to execute. Early in the ascent, while the Launch Abort System (LAS) is attached, abort mode selection is trivial, and any failures will result in a LAS abort. For failures after LAS jettison, the Service Module (SM) effectors are employed to perform abort maneuvers. Several different SM abort mode options are available depending on the current vehicle location and energy state. During this region of flight the selection of the abort mode that maximizes the survivability of the crew becomes non-trivial. To provide the most accurate and timely information to the crew and the onboard abort decision logic, on-board algorithms have been developed to propagate the abort trajectories based on the current launch vehicle performance and to predict the current abort capability of the Orion vehicle. This paper will provide an overview of the algorithm architecture for determining abort achievability as well as the scalar integration scheme that makes the onboard computation possible. Extension of the algorithm to assessing abort coverage impacts from Orion design modifications and launch vehicle trajectory modifications is also presented.
A Comparison Between Orion Automated and Space Shuttle Rendezvous Techniques
NASA Technical Reports Server (NTRS)
Ruiz, Jose O,; Hart, Jeremy
2010-01-01
The Orion spacecraft will replace the space shuttle and will be the first human spacecraft since the Apollo program to leave low earth orbit. This vehicle will serve as the cornerstone of a complete space transportation system with a myriad of mission requirements necessitating rendezvous to multiple vehicles in earth orbit, around the moon and eventually beyond . These goals will require a complex and robust vehicle that is, significantly different from both the space shuttle and the command module of the Apollo program. Historically, orbit operations have been accomplished with heavy reliance on ground support and manual crew reconfiguration and monitoring. One major difference with Orion is that automation will be incorporated as a key element of the man-vehicle system. The automated system will consist of software devoted to transitioning between events based on a master timeline. This effectively adds a layer of high level sequencing that moves control of the vehicle from one phase to the next. This type of automated control is not entirely new to spacecraft since the shuttle uses a version of this during ascent and entry operations. During shuttle orbit operations however many of the software modes and hardware switches must be manually configured through the use of printed procedures and instructions voiced from the ground. The goal of the automation scheme on Orion is to extend high level automation to all flight phases. The move towards automation represents a large shift from current space shuttle operations, and so these new systems will be adopted gradually via various safeguards. These include features such as authority-to-proceed, manual down modes, and functional inhibits. This paper describes the contrast between the manual and ground approach of the space shuttle and the proposed automation of the Orion vehicle. I will introduce typical orbit operations that are common to all rendezvous missions and go on to describe the current Orion automation architecture and contrast it with shuttle rendezvous techniques and circumstances. The shuttle rendezvous profile is timed to take approximately 3 days from orbit insertion to docking at the International Space Station (ISS). This process can be divided into 3 phases: far-field, mid-field and proximity operations. The far-field stage is characterized as the most quiescent phase. The spacecraft is usually too far to navigate using relative sensors and uses the Inertial Measurement Units (IMU s) to numerically solve for its position. The maneuvers are infrequent, roughly twice per day, and are larger than other burns in the profile. The shuttle uses this opportunity to take extensive ground based radar updates and keep high fidelity orbit states on the ground. This state is then periodically uplinked to the shuttle computers. The targeting solutions for burn maneuvers are also computed on the ground and uplinked. During the burn the crew is responsible for setting the shuttle attitude and configuring the propulsion system for ignition. Again this entire process is manually driven by both crew and ground activity. The only automatic processes that occur are associated with the real-time execution of the burn. The Orion automated functionality will seek to relieve the workload of both the crew and ground during this phase
AFRL Research in Plasma-Assisted Combustion
2013-10-23
Scramjet propulsion Non-equilibrium flows Diagnostics for scramjet controls Boundary-layer transition Structural sciences for...hypersonic vehicles Computational sciences for hypersonic flight 3 DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Overview Research...within My Division HIFiRE-5 Vehicle Launched 23 April 2012 can payload transition section Orion S-30 Focus on hypersonic flight: scalability
NASA Technical Reports Server (NTRS)
Tabiei, Al; Lawrence, Charles; Fasanella, Edwin L.
2009-01-01
A series of crash tests were conducted with dummies during simulated Orion crew module landings at the Wright-Patterson Air Force Base. These tests consisted of several crew configurations with and without astronaut suits. Some test results were collected and are presented. In addition, finite element models of the tests were developed and are presented. The finite element models were validated using the experimental data, and the test responses were compared with the computed results. Occupant crash data, such as forces, moments, and accelerations, were collected from the simulations and compared with injury criteria to assess occupant survivability and injury. Some of the injury criteria published in the literature is summarized for completeness. These criteria were used to determine potential injury during crew impact events.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
..., Formerly Known as General Motors Corporation, Orion Assembly Plant, Including On-Site Leased Workers From... of General Motors Company, formerly known as General Motors Corporation, Orion Assembly Plant, Lake... General Motors Company, formerly known as General Motors Corporation, Orion Assembly Plant. The Department...
Kennedy Space Center Orion Processing Team Planning for Ground Operations
NASA Technical Reports Server (NTRS)
Letchworth, Gary; Schlierf, Roland
2011-01-01
Topics in this presentation are: Constellation Ares I/Orion/Ground Ops Elements Orion Ground Operations Flow Orion Operations Planning Process and Toolset Overview, including: 1 Orion Concept of Operations by Phase 2 Ops Analysis Capabilities Overview 3 Operations Planning Evolution 4 Functional Flow Block Diagrams 5 Operations Timeline Development 6 Discrete Event Simulation (DES) Modeling 7 Ground Operations Planning Document Database (GOPDb) Using Operations Planning Tools for Operability Improvements includes: 1 Kaizen/Lean Events 2 Mockups 3 Human Factors Analysis
Orion Underway Recovery Test 5 (URT-5)
2016-10-26
The USS San Diego departs Naval Base San Diego in California on its way out to sea in the Pacific Ocean for the Orion Underway Recovery Test 5. NASA's Ground Systems Development and Operations Program and the U.S. Navy will practice recovery techniques using the well deck of the ship and a test version of the Orion crew module to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
2015-05-06
OVERSEEING ORION HEAT SHIELD WORK IN MARSHALL'S SEVEN-AXIS MILLING AND MACHINING FACILITY ARE, FROM LEFT, JOHN KOWAL, MANAGER OF ORION'S THERMAL PROTECTION SYSTEM AT JOHNSON SPACE CENTER; NICHOLAS CROWLEY, AN AMES ENGINEERING TECHNICIAN; AND ROB KORNIENKO, AMES ENGINEERING BRANCH CHIEF. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALE FLIGHT TEST OF ORION IN DECEMBER, 2014
2008-05-20
Surrounded by work platforms, NASA's first full-scale Orion abort flight test (AFT) crew module (center) is undergoing preparations at the NASA Dryden Flight Research Center in California for the first flight test of Orion's launch abort system.
Orion Underway Recovery Test 5 (URT-5) Trip - "Genius in the Hou
2016-10-22
NASA’s Ground Systems Development and Operations Program (GSDO) participated in the “Genius in the House” event at the Reuben H. Fleet Science Center in San Diego, California. GSDO participated in several outreach events to students and the general public before the start of the Orion Underway Recovery Test 5 (URT-5) using a test version of the Orion crew module in the Pacific Ocean off the coast of California. URT-5 will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA’s Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) Trip - "Genius in the Hou
2016-10-22
Visitors talk to representatives from NASA’s Ground Systems Development and Operations Program (GSDO) at the Reuben H. Fleet Science Center in San Diego, California. GSDO participated in the “Genius in the House” event at the science center before the start of the Orion Underway Recovery Test 5 (URT-5) using a test version of the Orion crew module in the Pacific Ocean off the coast of California. URT-5 will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA’s Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Stage Adapter move to Redstone Airfield
2018-04-03
NASA's Super Guppy aircraft arrives to the U.S. Army’s Redstone Airfield in Huntsville, Alabama, April 2, to pick up flight hardware for NASA’s Space Launch System – its new, deep-space rocket that will enable astronauts to begin their journey to explore destinations far into the solar system. The Guppy will depart on Tuesday, April 3 to deliver the Orion stage adapter to NASA’s Kennedy Space Center in Florida for flight preparations. On Exploration Mission-1, the first integrated flight of the SLS and the Orion spacecraft, the adapter will connect Orion to the rocket and carry 13 CubeSats as secondary payloads. Rumaasha Maasha stands in front of the Orion stage adapter in the cargo hold of NASA's Super Guppy aircraft. The Orion stage adapter, the top of the rocket that connects the Space Lauch System to Orion, will carry 13 CubeSats as secondary payloads on Exploration Mission-1, the first integrated flight of SLS and the Orion spacecraft. Guppy transported the adapter to Kennedy Space Center April 3.
Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database
NASA Technical Reports Server (NTRS)
Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.
2011-01-01
Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.
NASA Planning for Orion Multi-Purpose Crew Vehicle Ground Operations
NASA Technical Reports Server (NTRS)
Letchworth, Gary; Schlierf, Roland
2011-01-01
The NASA Orion Ground Processing Team was originally formed by the Kennedy Space Center (KSC) Constellation (Cx) Project Office's Orion Division to define, refine and mature pre-launch and post-landing ground operations for the Orion human spacecraft. The multidisciplined KSC Orion team consisted of KSC civil servant, SAIC, Productivity Apex, Inc. and Boeing-CAPPS engineers, project managers and safety engineers, as well as engineers from Constellation's Orion Project and Lockheed Martin Orion Prime contractor. The team evaluated the Orion design configurations as the spacecraft concept matured between Systems Design Review (SDR), Systems Requirement Review (SRR) and Preliminary Design Review (PDR). The team functionally decomposed prelaunch and post-landing steps at three levels' of detail, or tiers, beginning with functional flow block diagrams (FFBDs). The third tier FFBDs were used to build logic networks and nominal timelines. Orion ground support equipment (GSE) was identified and mapped to each step. This information was subsequently used in developing lower level operations steps in a Ground Operations Planning Document PDR product. Subject matter experts for each spacecraft and GSE subsystem were used to define 5th - 95th percentile processing times for each FFBD step, using the Delphi Method. Discrete event simulations used this information and the logic network to provide processing timeline confidence intervals for launch rate assessments. The team also used the capabilities of the KSC Visualization Lab, the FFBDs and knowledge of the spacecraft, GSE and facilities to build visualizations of Orion pre-launch and postlanding processing at KSC. Visualizations were a powerful tool for communicating planned operations within the KSC community (i.e., Ground Systems design team), and externally to the Orion Project, Lockheed Martin spacecraft designers and other Constellation Program stakeholders during the SRR to PDR timeframe. Other operations planning tools included Kaizen/Lean events, mockups and human factors analysis. The majority of products developed by this team are applicable as KSC prepares 21st Century Ground Systems for the Orion Multi-Purpose Crew Vehicle and Space Launch System.
Orion EFT-1 Cavity Heating Tile Experiments and Environment Reconstruction
NASA Technical Reports Server (NTRS)
Salazar, Giovanni; Amar, Adam; Oliver, Brandon; Hyatt, Andrew; Rezin, Marc
2016-01-01
Developing aerothermodynamic environments for deep cavities, such as those produced by micrometeoroids and orbital debris impacts, poses a great challenge for engineers. In order to assess existing cavity heating models, two one-inch diameter cavities were flown on the Orion Multi-Purpose Crew Vehicle during Exploration Flight Test 1 (EFT1). These cavities were manufactured with depths of 1.0 in and 1.4 in, and they were both instrumented. Instrumentation included surface thermocouples upstream, downstream and within the cavities, and additional thermocouples at the TPS-structure interface. This paper will present the data obtained, and comparisons with computational predictions will be shown. Additionally, the development of a 3D material thermal model will be described, which will be used to account for the three-dimensionality of the problem when interpreting the data. Furthermore, using a multi-dimensional inverse heat conduction approach, a reconstruction of a time- and space-dependent flight heating distribution during EFT1 will be presented. Additional discussions will focus on instrumentation challenges and calibration techniques specific to these experiments. The analysis shown will highlight the accuracies and/or deficiencies of current computational techniques to model cavity flows during hypersonic re-entry.
Test Vehicle Forebody Wake Effects on CPAS Parachutes
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2017-01-01
Parachute drag performance has been reconstructed for a large number of Capsule Parachute Assembly System (CPAS) flight tests. This allows for determining forebody wake effects indirectly through statistical means. When data are available in a "clean" wake, such as behind a slender test vehicle, the relative degradation in performance for other test vehicles can be computed as a Pressure Recovery Fraction (PRF). All four CPAS parachute types were evaluated: Forward Bay Cover Parachutes (FBCPs), Drogues, Pilots, and Mains. Many tests used the missile-shaped Parachute Compartment Drop Test Vehicle (PCDTV) to obtain data at high airspeeds. Other tests used the Orion "boilerplate" Parachute Test Vehicle (PTV) to evaluate parachute performance in a representative heatshield wake. Drag data from both vehicles are normalized to a "capsule" forebody equivalent for Orion simulations. A separate database of PCDTV-specific performance is maintained to accurately predict flight tests. Data are shared among analogous parachutes whenever possible to maximize statistical significance.
A photometric study of the Orion OB 1 association. 1: Observational data
NASA Technical Reports Server (NTRS)
Warren, W. H., Jr.; Hesser, J. E.
1976-01-01
An extensive catalog of observational data is presented for stars in the region of the young stellar association Orion OB 1. In addition to new photoelectric observations obtained on the uvbyB and UBV systems, photoelectric and spectroscopic data were compiled for the stars observed and for several bright members of the association having available photometric indices. Mean weighted values were computed for the uvbyB and UBV data and are tabulated in summary tables which include all references for individual values. These tables are expected to be reasonably complete for association members earlier than spectral type A0. From an analysis of currently available proper motion, radial velocity, and photometric data, membership criteria were derived and qualitative membership probabilities for 526 stars were summarized. A set of charts is included for assistance in identification of the program stars in all regions of the association.
Orion GN and C Overview and Architecture
NASA Technical Reports Server (NTRS)
Hu, Howard; Straube, Tim
2007-01-01
The Crew Exploration Vehicle, named Orion, is a critical element in the Constellation Program to develop the transportation system needed to send humans back to the moon and then beyond. Lockheed Martin is the prime contractor for the Orion spacecraft, which is managed by the Johnson Space Center. The Orion GN&C sub-system is being jointly developed by NASA and Lockheed Martin through a mode team approach. The GN&C is a critical element of the Orion mission to carry astronauts to low earth orbit to service the International Space Station and then on later flights to transfer and return a crew of four to the moon. The Orion GN&C system must perform monitoring and abort functions during ascent, rendezvous and docking in both low earth and lunar orbits, perform uncrewed lunar loiter operations, perform trans earth injection and atmospheric entry and landing. The Orion also must be integrated with the Ares I Crew Launch Vehicle, the Earth Departure Stage of the Ares V and the Lunar Surface Access Module. This paper provides an overview of the Orion GN&C system. The functional capabilities of the Orion GN&C will be provided in the context of Constellation architecture, the key GN&C requirements will be summarized, the GN&C architecture will be presented, the development schedule and plans will summarized and finally conclusions will be presented.
The Orion Pad Abort 1 (PA-1) Flight Test: A Propulsion Success
NASA Technical Reports Server (NTRS)
Jones, Daniel S.
2015-01-01
This poster provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.
Orion Launch Abort System (LAS) Propulsion on Pad Abort 1 (PA-1)
NASA Technical Reports Server (NTRS)
Jones, Daniel S.
2015-01-01
This presentation provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.
Orion Underway Recovery Test 5 (URT-5) Trip - "Genius in the Hou
2016-10-22
Melissa Jones, left, Landing and Recovery director with NASA’s Ground Systems Development and Operations Program speaks to visitors to the Reuben H. Fleet Science Center in San Diego, California, during a “Genius in the House” event. GSDO participated in several outreach events to students and the general public before the start of the Orion Underway Recovery Test 5 (URT-5) using a test version of the Orion crew module in the Pacific Ocean off the coast of California. URT-5 will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA’s Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) Trip - "Genius in the Hou
2016-10-22
Melissa Jones, right, Landing and Recovery director with NASA’s Ground Systems Development and Operations Program speaks to visitors to the Reuben H. Fleet Science Center in San Diego, California, during a “Genius in the House” event. GSDO participated in several outreach events to students and the general public before the start of the Orion Underway Recovery Test 5 (URT-5) using a test version of the Orion crew module in the Pacific Ocean off the coast of California. URT-5 will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA’s Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) Trip - "Genius in the Hou
2016-10-22
Visitors talk to representatives from NASA’s Ground Systems Development and Operations Program (GSDO) at the Reuben H. Fleet Science Center in San Diego, California. Melissa Jones, seated in blue, GSDO Landing and Recovery director, speaks to visitors during the “Genius in the House” event. GSDO participated in outreach events before the start of the Orion Underway Recovery Test 5 (URT-5) using a test version of the Orion crew module in the Pacific Ocean off the coast of California. URT-5 will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA’s Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Exploration Flight Test 1 (EFT-1) Best Estimated Trajectory Development
NASA Technical Reports Server (NTRS)
Holt, Greg N.; Brown, Aaron
2016-01-01
The Orion Exploration Flight Test 1 (EFT-1) mission successfully flew on Dec 5, 2014 atop a Delta IV Heavy launch vehicle. The goal of Orions maiden flight was to stress the system by placing an uncrewed vehicle on a high-energy trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. The Orion navigation team combined all trajectory data from the mission into a Best Estimated Trajectory (BET) product. There were significant challenges in data reconstruction and many lessons were learned for future missions. The team used an estimation filter incorporating radar tracking, onboard sensors (Global Positioning System and Inertial Measurement Unit), and day-of-flight weather balloons to evaluate the true trajectory flown by Orion. Data was published for the entire Orion EFT-1 flight, plus objects jettisoned during entry such as the Forward Bay Cover. The BET customers include approximately 20 disciplines within Orion who will use the information for evaluating vehicle performance and influencing future design decisions.
2009-04-08
CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing release a flotation collar around the mockup Orion crew exploration vehicle at the Trident Basin at Port Canaveral, Fla. On top of Orion are additional flotation devices. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Dimitri Gerondidakis
ECLSS and Thermal Systems Integration Challenges Across the Constellation Architecture
NASA Technical Reports Server (NTRS)
Carrasquillo, Robyn
2010-01-01
As the Constellation Program completes its initial capability Preliminary Design Review milestone for the Initial Capability phase, systems engineering of the Environmental Control and Life Support (ECLS) and Thermal Systems for the various architecture elements has progressed from the requirements to design phase. As designs have matured for the Ares, Orion, Ground Systems, and Extravehicular (EVA) System, a number of integration challenges have arisen requiring analyses and trades, resulting in changes to the design and/or requirements. This paper will address some of the key integration issues and results, including the Orion-to-Ares shared compartment venting and purging, Orion-to-EVA suit loop integration issues with the suit system, Orion-to-ISS and Orion-to-Altair intermodule ventilation, and Orion and Ground Systems impacts from post-landing environments.
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Mark Geyer, NASA Orion Program manager. Also participating in the news conference are Bryan Austin, Lockheed Martin mission manager, center, and Jeremy Graeber, Orion Recovery Director in Ground Systems Development and Operations at Kennedy. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2014-12-05
NASA's Orion spacecraft floats in the Pacific Ocean after splashdown from its first flight test in Earth orbit. The spacecraft completed a two-orbit, four-and-a-half-hour mission in Earth orbit. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion, the forward bay cover and main parachutes. Orion will be towed in and secure in the well deck of the nearby USS Anchorage. Orion's mission tested systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts.
2014-12-05
U.S. Navy personnel aboard the USS Anchorage prepare for recovery of NASA's Orion spacecraft from the Pacific Ocean about 600 miles off the coast of San Diego, California. Orion splashed down after its first flight test in Earth orbit. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts.
2014-12-05
U.S. Navy personnel aboard a rigid hull inflatable boat help recover NASA's Orion spacecraft following its splashdown in the Pacific Ocean after its first flight test in Earth orbit. Orion is towed into the flooded well deck of the USS Anchorage. NASA, the U.S. Navy and Lockheed Martin coordinated efforts to recover Orion, the forward bay cover and main parachutes. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts.
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Mark Geyer, NASA Orion Program manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2014-12-05
CAPE CANAVERAL, Fla. -- In the Kennedy Space Center’s Press Site auditorium, agency leaders spoke to members of the news media about the successful Orion Flight Test. From left are: Bill Gerstenmaier, NASA associate administrator for Human Exploration and Operations, Mark Geyer, Orion program manager, Mike Hawes, Lockheed Martin Orion Program manager, and NASA astronaut Rex Walheim. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
Orion Handling Qualities During ISS Rendezvous and Docking
NASA Technical Reports Server (NTRS)
Hart, Jeremy J.; Stephens, J. P.; Spehar, P.; Bilimoria, K.; Foster, C.; Gonzalex, R.; Sullivan, K.; Jackson, B.; Brazzel, J.; Hart, J.
2011-01-01
The Orion spacecraft was designed to rendezvous with multiple vehicles in low earth orbit (LEO) and beyond. To perform the required rendezvous and docking task, Orion must provide enough control authority to perform coarse translational maneuvers while maintaining precision to perform the delicate docking corrections. While Orion has autonomous docking capabilities, it is expected that final approach and docking operations with the International Space Station (ISS) will initially be performed in a manual mode. A series of evaluations was conducted by NASA and Lockheed Martin at the Johnson Space Center to determine the handling qualities (HQ) of the Orion spacecraft during different docking and rendezvous conditions using the Cooper-Harper scale. This paper will address the specifics of the handling qualities methodology, vehicle configuration, scenarios flown, data collection tools, and subject ratings and comments. The initial Orion HQ assessment examined Orion docking to the ISS. This scenario demonstrates the Translational Hand Controller (THC) handling qualities of Orion. During this initial assessment, two different scenarios were evaluated. The first was a nominal docking approach to a stable ISS, with Orion initializing with relative position dispersions and a closing rate of approximately 0.1 ft/sec. The second docking scenario was identical to the first, except the attitude motion of the ISS was modeled to simulate a stress case ( 1 degree deadband per axis and 0.01 deg/sec rate deadband per axis). For both scenarios, subjects started each run on final approach at a docking port-to-port range of 20 ft. Subjects used the THC in pulse mode with cues from the docking camera image, window views, and range and range rate data displayed on the Orion display units. As in the actual design, the attitude of the Orion vehicle was held by the automated flight control system at 0.5 degree deadband per axis. Several error sources were modeled including Reaction Control System (RCS) jet angular and position misalignment, RCS thrust magnitude uncertainty, RCS jet force direction uncertainty due to self plume impingement, and Orion center of mass uncertainty.
Orion revisited. III. The Orion Belt population
NASA Astrophysics Data System (ADS)
Kubiak, K.; Alves, J.; Bouy, H.; Sarro, L. M.; Ascenso, J.; Burkert, A.; Forbrich, J.; Großschedl, J.; Hacar, A.; Hasenberger, B.; Lombardi, M.; Meingast, S.; Köhler, R.; Teixeira, P. S.
2017-02-01
Aims: This paper continues our study of the foreground population to the Orion molecular clouds. The goal is to characterize the foreground population north of NGC 1981 and to investigate the star formation history in the large Orion star-forming region. We focus on a region covering about 25 square degrees, centered on the ɛ Orionis supergiant (HD 37128, B0 Ia) and covering the Orion Belt asterism. Methods: We used a combination of optical (SDSS) and near-infrared (2MASS) data, informed by X-ray (XMM-Newton) and mid-infrared (WISE) data, to construct a suite of color-color and color-magnitude diagrams for all available sources. We then applied a new statistical multiband technique to isolate a previously unknown stellar population in this region. Results: We identify a rich and well-defined stellar population in the surveyed region that has about 2000 objects that are mostly M stars. We infer the age for this new population to be at least 5 Myr and likely 10 Myr and estimate a total of about 2500 members, assuming a normal IMF. This new population, which we call the Orion Belt population, is essentially extinction-free, disk-free, and its spatial distribution is roughly centered near ɛ Ori, although substructure is clearly present. Conclusions: The Orion Belt population is likely the low-mass counterpart to the Ori OB Ib subgroup. Although our results do not rule out Blaauw's sequential star formation scenario for Orion, we argue that the recently proposed blue streams scenario provides a better framework on which one can explain the Orion star formation region as a whole. We speculate that the Orion Belt population could represent the evolved counterpart of an Orion nebula-like cluster. The catalog (Full Table A.1) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A124
Orion FSW V and V and Kedalion Engineering Lab Insight
NASA Technical Reports Server (NTRS)
Mangieri, Mark L.
2010-01-01
NASA, along with its prime Orion contractor and its subcontractor s are adapting an avionics system paradigm borrowed from the manned commercial aircraft industry for use in manned space flight systems. Integrated Modular Avionics (IMA) techniques have been proven as a robust avionics solution for manned commercial aircraft (B737/777/787, MD 10/90). This presentation will outline current approaches to adapt IMA, along with its heritage FSW V&V paradigms, into NASA's manned space flight program for Orion. NASA's Kedalion engineering analysis lab is on the forefront of validating many of these contemporary IMA based techniques. Kedalion has already validated many of the proposed Orion FSW V&V paradigms using Orion's precursory Flight Test Article (FTA) Pad Abort 1 (PA-1) program. The Kedalion lab will evolve its architectures, tools, and techniques in parallel with the evolving Orion program.
NASA Technical Reports Server (NTRS)
Ascoli, Peter A.; Haddock, Michael H.
2014-01-01
An Orion Crew Module Service Module Structural Weight and Center of Gravity Simulator and a Vehicle Motion Simulator Hoist Structure for Orion Service Module Umbilical Testing were designed during a summer 2014 internship in Kennedy Space Centers Structures and Mechanisms Design Branch. The simulator is a structure that supports ballast, which will be integrated into an existing Orion mock-up to simulate the mass properties of the Exploration Mission-1 flight vehicle in both fueled and unfueled states. The simulator mimics these configurations through the use of approximately 40,000 lbf of steel and water ballast, and a steel support structure. Draining four water tanks, which house the water ballast, transitions the simulator from the fueled to unfueled mass properties. The Ground Systems Development and Operations organization will utilize the simulator to verify and validate equipment used to maneuver and transport the Orion spacecraft in its fueled and unfueled configurations. The second design comprises a cantilevered tripod hoist structure that provides the capability to position a large Orion Service Module Umbilical in proximity to the Vehicle Motion Simulator. The Ground Systems Development and Operations organization will utilize the Vehicle Motion Simulator, with the hoist structure attached, to test the Orion Service Module Umbilical for proper operation prior to installation on the Mobile Launcher. Overall, these two designs provide NASA engineers viable concepts worthy of fabricating and placing into service to prepare for the launch of Orion in 2017.
Orion Absolute Navigation System Progress and Challenges
NASA Technical Reports Server (NTRS)
Holt, Greg N.; D'Souza, Christopher
2011-01-01
The Orion spacecraft is being designed as NASA's next-generation exploration vehicle for crewed missions beyond Low-Earth Orbit. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudorange and deltarange, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, pad alignment, cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.
2008-05-20
Surrounded by work platforms, NASA's first full-scale Orion abort flight test (AFT) crew module (center) is undergoing preparations at the NASA Dryden Flight Research Center in California for the first flight test of Orion's launch abort system. To the left is a space shuttle orbiter purge vehicle sharing the hangar.
2014-12-05
CAPE CANAVERAL, Fla. -- In the Kennedy Space Center’s Press Site auditorium, agency leaders spoke to members of the news media about the successful Orion Flight Test. From left are: Rachel Kraft, of NASA Public Affairs, Bill Gerstenmaier, NASA associate administrator for Human Exploration and Operations, Mark Geyer, Orion program manager, Mike Hawes, Lockheed Martin Orion Program manager, and NASA astronaut Rex Walheim. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
jsc2017m000738_NASA Tests Orion Crew Egress_July 2017
2017-07-18
NASA Tests Orion Crew Exit Plans in Gulf of Mexico A NASA and Department of Defense team evaluated the techniques that will be used to make sure astronauts can exit Orion in a variety of scenarios upon splashdown after deep space missions, using the waters off the coast of Galveston, Texas, to test their procedures in July. The team used a mockup of the spacecraft to examine how crew will get out of Orion with assistance and alone. The testing is helping NASA prepare for Orion and Space Launch System missions with crew beginning with Exploration Mission-2 in the early 2020s.
2014-12-05
NASA's Orion spacecraft is on rubber bumpers in the flooded well deck of the USS Anchorage in the Pacific Ocean about 600 miles off the coast of San Diego, California. Orion splashed down after its first flight test in Earth orbit. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts.
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Jeremy Graeber, Orion Recovery Director in Ground Systems Development and Operations at Kennedy. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Third Day of Loading Equipment for the Orion Recovery.
2014-11-19
The Orion crew module recovery fixture is being loaded into the well deck of the USS Anchorage at Naval Base San Diego in California. The equipment will be used during recovery of the Orion crew module after its first flight test. Before launch of Orion on a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, NASA, Lockheed Martin and U.S. Navy personnel will head out to sea in the USS Anchorage and the USNS Salvor, a salvage ship, and wait for splashdown of the Orion crew module in the Pacific Ocean. The Ground Systems Development and Operations Program will lead the recovery efforts. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket.
Third Day of Loading Equipment for the Orion Recovery.
2014-11-19
The Orion crew module recovery fixture has been loaded into the well deck of the USS Anchorage at Naval Base San Diego in California. The equipment will be used during recovery of the Orion crew module after its first flight test. Before launch of Orion on a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, NASA, Lockheed Martin and U.S. Navy personnel will head out to sea in the USS Anchorage and the USNS Salvor, a salvage ship, and wait for splashdown of the Orion crew module in the Pacific Ocean. The Ground Systems Development and Operations Program will lead the recovery efforts. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket.
Third Day of Loading Equipment for the Orion Recovery.
2014-11-19
The Orion crew module recovery fixture and other ground support equipment have been loaded into the well deck of the USS Anchorage at Naval Base San Diego in California. The equipment will be used during recovery of the Orion crew module after its first flight test. Before launch of Orion on a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, NASA, Lockheed Martin and U.S. Navy personnel will head out to sea in the USS Anchorage and the USNS Salvor, a salvage ship, and wait for splashdown of the Orion crew module in the Pacific Ocean. The Ground Systems Development and Operations Program will lead the recovery efforts. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket.
Orion Underway Recovery Test 5 (URT-5) Trip - "52 Weeks of Scien
2016-10-19
Students visit the displays at the Logan Heights Library in San Diego, California, during the “52 Weeks of Science” celebration. The Ground Systems Development and Operations (GSDO) Program is participating in the special event with a Journey to Mars display before the start of Underway Recovery Test 5 using a test version of the Orion spacecraft in the Pacific Ocean off the coast of California. The test will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) Trip - "52 Weeks of Scien
2016-10-19
Students prepare to participate in hands-on science activities at the Logan Heights Library in San Diego, California, during the “52 Weeks of Science” celebration. The Ground Systems Development and Operations (GSDO) Program is participating in the special event with a Journey to Mars display before the start of Underway Recovery Test 5 using a test version of the Orion spacecraft in the Pacific Ocean off the coast of California. The test will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) Trip - "52 Weeks of Scien
2016-10-19
Melissa Jones, center, Ground Systems Development and Operation Program (GSDO) Landing and Recovery director, speaks to a student during the “52 Weeks of Science” celebration at the Logan Heights Library in San Diego, California. GSDO is participating in the special event before the start of Underway Recovery Test 5 using a test version of the Orion spacecraft in the Pacific Ocean off the coast of California. The test will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) Trip - "52 Weeks of Scien
2016-10-19
A banner celebrating “52 Weeks of Science” is positioned outside of the Logan Heights Library in San Diego, California. The Ground Systems Development and Operations (GSDO) Program is participating in the special event for students with a Journey to Mars display. GSDO’s participation before the start of Underway Recovery Test 5 using a test version of the Orion spacecraft in the Pacific Ocean off the coast of California. The test will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) Trip - "52 Weeks of Scien
2016-10-19
A young student visits the displays at the Logan Heights Library in San Diego, California, during the “52 Weeks of Science” celebration. The Ground Systems Development and Operations (GSDO) Program is participating in the special event with a Journey to Mars display before the start of Underway Recovery Test 5 using a test version of the Orion spacecraft in the Pacific Ocean off the coast of California. The test will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) Trip - "52 Weeks of Scien
2016-10-19
Students and parents visit the displays at the Logan Heights Library in San Diego, California, during the “52 Weeks of Science” celebration. The Ground Systems Development and Operations (GSDO) Program is participating in the special event with a Journey to Mars display before the start of Underway Recovery Test 5 using a test version of the Orion spacecraft in the Pacific Ocean off the coast of California. The test will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) Trip - "52 Weeks of Scien
2016-10-19
The Logan Heights Library in San Diego, California is the site of the “52 Weeks of Science” celebration for students. The Ground Systems Development and Operations (GSDO) Program is participating in the special event with a Journey to Mars display. GSDO’s participation before the start of Underway Recovery Test 5 using a test version of the Orion spacecraft in the Pacific Ocean off the coast of California. The test will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
NASA Technical Reports Server (NTRS)
Milenkovic, Zoran; DSouza, Christopher; Huish, David; Bendle, John; Kibler, Angela
2012-01-01
The exploration goals of Orion / MPCV Project will require a mature Rendezvous, Proximity Operations and Docking (RPOD) capability. Ground testing autonomous docking with a next-generation sensor such as the Vision Navigation Sensor (VNS) is a critical step along the path of ensuring successful execution of autonomous RPOD for Orion. This paper will discuss the testing rationale, the test configuration, the test limitations and the results obtained from tests that have been performed at the Lockheed Martin Space Operations Simulation Center (SOSC) to evaluate and mature the Orion RPOD system. We will show that these tests have greatly increased the confidence in the maturity of the Orion RPOD design, reduced some of the latent risks and in doing so validated the design philosophy of the Orion RPOD system. This paper is organized as follows: first, the objectives of the test are given. Descriptions of the SOSC facility, and the Orion RPOD system and associated components follow. The details of the test configuration of the components in question are presented prior to discussing preliminary results of the tests. The paper concludes with closing comments.
4th Day of Equipment Being Loaded for Recovery of Orion
2014-11-20
The Orion handling fixture, special bumpers and other ground support equipment are secured in the well deck of the USS Anchorage at Naval Base San Diego in California. The equipment will be used during recovery of the Orion crew module after its first flight test. Before launch of Orion on a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, NASA, Lockheed Martin and U.S. Navy personnel will head out to sea in the USS Anchorage and the USNS Salvor, a salvage ship, and wait for splashdown of the Orion crew module in the Pacific Ocean. The Ground Systems Development and Operations Program will lead the recovery efforts. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket.
4th Day of Equipment Being Loaded for Recovery of Orion
2014-11-20
The Orion handling fixture and other ground support equipment is secured in the well deck of the USS Anchorage at Naval Base San Diego in California. The equipment will be used during recovery of the Orion crew module after its first flight test. Before launch of Orion on a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, NASA, Lockheed Martin and U.S. Navy personnel will head out to sea in the USS Anchorage and the USNS Salvor, a salvage ship, and wait for splashdown of the Orion crew module in the Pacific Ocean. The Ground Systems Development and Operations Program will lead the recovery efforts. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket.
2006-08-15
This image composite shows a part of the Orion constellation surveyed by NASA Spitzer Space Telescope. The shape of the main image was designed by astronomers to roughly follow the shape of Orion cloud A, an enormous star-making factory.
Orion Post Scrub Press Conference
2014-12-04
In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders spoke to members of the news media about the postponement of the Orion Flight Test launch due to an issue related to fill and drain valves on the Delta IV Heavy rocket. From left are: Brandi Dean of NASA Public Affairs, Mark Geyer, NASA's Orion program manager, Mike Hawes, Lockheed Martin Orion Program manager, and Dan Collins, United Launch Alliance chief operating officer.
2013-05-14
CAPE CANAVERAL, Fla. -- Inside the Launch Equipment Test Facility at NASA’s Kennedy Space in Florida, a second firing of the escape hold down post has occurred during a pyrotechnic bolt test on the Orion ground test vehicle. Lockheed Martin performed tests over a series of days on the explosive bolts that separate Orion from the launch abort system. Data was collected on the effect of shock waves on Orion during the explosive bolt separation. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
Orion Underway Recovery Test 5 (URT-5)
2016-11-01
The USS San Diego approaches Naval Base San Diego in California after completion of Underway Recovery Test 5 in the Pacific Ocean. NASA's Ground Systems Development and Operations Program and the U.S. Navy conducted a series of tests using the ship's well deck and a test version of the Orion crew module to prepare for recovery of Orion on its return from deep space missions. The testing allowed the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-11-01
The USS San Diego approaches the coast of San Diego, California after completion of Underway Recovery Test 5 in the Pacific Ocean. NASA's Ground Systems Development and Operations Program and the U.S. Navy conducted a series of tests, called Underway Recovery Test 5, using the ship's well deck and a test version of the Orion crew module to prepare for recovery of Orion on its return from deep space missions. The testing allowed the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
2014-11-06
CAPE CANAVERAL, Fla. – In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Mark Geyer, NASA Orion Program manager. Also participating in the news conference are Bryan Austin, Lockheed Martin mission manager, center, and Jeremy Graeber, Orion Recovery Director in Ground Systems Development and Operations at Kennedy. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
Orion Move to Pad Press Conference
2014-11-10
In the Kennedy Space Center’s Press Site auditorium, agency leaders spoke to members of the news media as the completed Orion spacecraft was being prepared for its trip from the Launch Abort System Facility to Launch Complex 37 at Cape Canaveral Air Force Station. From left are: Mike Curie of NASA Public Affairs, Kennedy Director Bob Cabana, Johnson Space Center Director Ellen Ochoa, NASA Orion Program manager Mark Geyer, and Lockheed Martin Orion Program manager Mike Hawes. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
PIV Measurements of the CEV Hot Abort Motor Plume for CFD Validation
NASA Technical Reports Server (NTRS)
Wernet, Mark; Wolter, John D.; Locke, Randy; Wroblewski, Adam; Childs, Robert; Nelson, Andrea
2010-01-01
NASA s next manned launch platform for missions to the moon and Mars are the Orion and Ares systems. Many critical aspects of the launch system performance are being verified using computational fluid dynamics (CFD) predictions. The Orion Launch Abort Vehicle (LAV) consists of a tower mounted tractor rocket tasked with carrying the Crew Module (CM) safely away from the launch vehicle in the event of a catastrophic failure during the vehicle s ascent. Some of the predictions involving the launch abort system flow fields produced conflicting results, which required further investigation through ground test experiments. Ground tests were performed to acquire data from a hot supersonic jet in cross-flow for the purpose of validating CFD turbulence modeling relevant to the Orion Launch Abort Vehicle (LAV). Both 2-component axial plane Particle Image Velocimetry (PIV) and 3-component cross-stream Stereo Particle Image Velocimetry (SPIV) measurements were obtained on a model of an Abort Motor (AM). Actual flight conditions could not be simulated on the ground, so the highest temperature and pressure conditions that could be safely used in the test facility (nozzle pressure ratio 28.5 and a nozzle temperature ratio of 3) were used for the validation tests. These conditions are significantly different from those of the flight vehicle, but were sufficiently high enough to begin addressing turbulence modeling issues that predicated the need for the validation tests.
2009-04-08
CAPE CANAVERAL, Fla. – The mockup Orion crew exploration vehicle floats in the water at the Trident Basin at Port Canaveral, Fla. On top of Orion are additional flotation devices. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. The mockup vehicle is undergoing testing in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Kim Shiflett
2009-04-08
CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing get ready to release a flotation collar around the mockup Orion crew exploration vehicle at the Trident Basin at Port Canaveral, Fla. On top of Orion are additional flotation devices. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Dimitri Gerondidakis
2014-12-05
SAN DIEGO, Calif. -- U.S. Navy personnel aboard the USS Anchorage prepare for recovery of NASA's Orion spacecraft from the Pacific Ocean about 600 miles off the coast of San Diego, California. Orion splashed down after its first flight test in Earth orbit. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kenny Allen
2014-12-05
SAN DIEGO, Calif. -- NASA's Orion spacecraft floats in the Pacific Ocean after splashdown from its first flight test in Earth orbit. The spacecraft completed a two-orbit, four-and-a-half-hour mission in Earth orbit. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion, the forward bay cover and main parachutes. Orion will be towed in and secure in the well deck of the nearby USS Anchorage. Orion's mission tested systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts. For more information, visit www.nasa.gov/orion Photo credit: NASA/Tony Gray
2014-12-03
CAPE CANAVERAL, Fla. -- In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders spoke to members of the news media as the Orion spacecraft and its Delta IV Heavy rocket were being prepared for launch. From left are: Brandi Dean of NASA Public Affairs, Mark Geyer, Orion program manager, Mike Hawes, Lockheed Martin Orion Program manager, Jeff Angermeier, Exploration Flight Test-1 Ground Systems Development and Operations mission manager, Ron Fortson, United Launch Alliance director of mission management, and Kathy Winters, U.S. Air Force 45th Space Wing Launch Weather officer. On the right, Mike Sarafin, Orion flight director, participated via video from the Johnson Space Center. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
2014-11-11
At NASA's Kennedy Space Center in Florida, the agency's Orion is transported to Launch Complex 37 at Cape Canaveral Air Force Station. After arrival at the launch pad, United Launch Alliance engineers and technicians will lift Orion and mount it atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Bill Hill, NASA deputy associate administrator for Exploration Systems Development. Mark Geyer, NASA Orion Program manager, is on the right. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
2014-09-14
SAN DIEGO, Calif. – On the third day of Underway Recovery Test 4A, the Orion boilerplate test vehicle floats in the Pacific Ocean near the USS Salvor, a safeguard-class rescue and salvage ship. Orion was lowered into the water with a stationary crane from the ship. Tether lines from the ship have been attached to Orion for a towing test. Nearby, Navy divers in Zodiac boats monitor Orion and practice recovery procedures. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allows the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Starfleet Deferred: Project Orion in the 1962 Air Force Space Program
NASA Astrophysics Data System (ADS)
Ziarnick, B.
Project Orion, the Cold War American program (1957-1965) studying nuclear pulse propulsion for space applications, has long interested space enthusiasts for what it was and what it might have been, but it has long been believed that neither the United States government nor the US Air Force took the program very seriously. However, recently declassified US Air Force documents shed more light on the classified history of Project Orion. Far from being ignored by Air Force leadership, through the efforts of the Strategic Air Command, Air Force leaders like General Curtis LeMay were convinced that Project Orion should be funded as a major weapons system. The high water mark of Project Orion was the 1962 Air Force Space Program proposal by the Air Force Chief of Staff to devote almost twenty percent of the Air Force space budget from 1962-1967 to Orion development before the program was cancelled by the civilian Secretary of the Air Force under pressure from the Department of Defense. This paper details the history of Project Orion in the 1962 Air Force Space Program proposal, and concludes with a few lessons learned for use by modern interstellar advocates.
2014-09-17
SAN DIEGO, Calif. – During the third day of Orion Underway Recovery Test 3 on the USS Anchorage in the Pacific Ocean, two Zodiac boats with U.S. Navy divers aboard, at left, and two rigid hull inflatable boats with Navy and other team personnel aboard, prepare for recovery of the Orion boilerplate test vehicle. NASA, Lockheed Martin and U.S. Navy personnel are conducting recovery tests using the Orion boilerplate test vehicle to prepare for recovery of the Orion crew module on its return from a deep space mission. The test allows the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
GSE is Being Readied to Load onto the Ship for Orion Recovery
2014-11-17
NASA Orion Recovery Director Jeremy Graeber, with the Ground Systems Development and Operations Program at Kennedy Space Center in Florida, reviews Orion recovery procedures with NASA, Lockheed Martin and U.S. Navy personnel aboard the USS Anchorage at Naval Base San Diego in California. Before the launch of Orion on its first flight test atop a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, NASA, Lockheed Martin and U.S. Navy personnel will head out to sea in the USS Anchorage and the USNS Salvor, a salvage ship, and wait for splashdown of the Orion crew module in the Pacific Ocean. The GSDO Program will lead the recovery efforts. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket.
GSE is Being Readied to Load onto the Ship for Orion Recovery
2014-11-17
NASA Orion Recovery Director Jeremy Graeber, with the Ground Systems Development and Operations Program at Kennedy Space Center in Florida, reviews Orion recovery procedures with NASA, Lockheed Martin and U.S. Navy personnel aboard the USS Anchorage at Naval Base San Diego in California. Before the launch of Orion on its first flight test atop a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, NASA, Lockheed Martin and the U.S. Navy personnel will head out to sea in the USS Anchorage and the USNS Salvor, a salvage ship, and wait for splashdown of the Orion crew module in the Pacific Ocean. The GSDO Program will lead the recovery efforts. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket.
Goddard Monitors Orions EFT-1 Test Flight
2017-12-08
NASA's Goddard Space Flight Center in Greenbelt, Maryland, played a critical role in the test flight of the #Orion spacecraft on Dec. 5, 2014. Goddard's Networks Integration Center, pictured here, coordinated the communications support for both the Orion vehicle and the Delta IV rocket, ensuring complete communications coverage through NASA's Space Network and Tracking and Data Relay Satellite. The Orion spacecraft lifted off from Cape Canaveral Air Force Station's Space Launch Complex 37 in Florida at 7:05 a.m. EST. The Orion capsule splashed down about four and a half hours later, at 11:29 a.m. EST, about 600 miles off the coast of San Diego, California. While no humans were aboard Orion for this test flight, in the future, Orion will allow humans to travel deeper in to space than ever before, including an asteroid and Mars. Credit: NASA/Goddard/Amber Jacobson Credit: NASA/Goddard/Amber Jacobson NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Orion URT EFT-1 load capsule onto ship
2014-02-15
SAN DIEGO, Calif. – The Orion boilerplate test vehicle arrived at the U.S. Naval Base San Diego in California, and is loaded aboard the USS San Diego. Orion was transported in the ship’s well deck about 100 miles offshore for an underway recovery test. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. The Ground Systems Development and Operations Program Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
Orion URT EFT-1 load capsule onto ship
2014-02-15
SAN DIEGO, Calif. – The Orion boilerplate test vehicle arrived at the U.S. Naval Base San Diego in California, and was loaded aboard the USS San Diego. Orion was transported in the ship’s well deck about 100 miles offshore for an underway recovery test. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. The Ground Systems Development and Operations Program Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
Orion URT EFT-1 load capsule onto ship
2014-02-15
SAN DIEGO, Calif. – The Orion boilerplate test vehicle arrived at the U.S. Naval Base San Diego in California, and is being loaded aboard the USS San Diego. Orion was transported in the ship’s well deck about 100 miles offshore for an underway recovery test. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. The Ground Systems Development and Operations Program Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
4th Day of Equipment Being Loaded for Recovery of Orion
2014-11-20
A forklift is used to set the Orion handling fixture down in the well deck of the USS Anchorage at Naval Base San Diego in California. The fixture and other ground support equipment will be used during recovery of the Orion crew module after its first flight test. Before launch of Orion on a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, NASA, Lockheed Martin and U.S. Navy personnel will head out to sea in the USS Anchorage and the USNS Salvor, a salvage ship, and wait for splashdown of the Orion crew module in the Pacific Ocean. The Ground Systems Development and Operations Program will lead the recovery efforts. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket.
Orion Launch Abort System Jettison Motor Performance During Exploration Flight Test 1
NASA Technical Reports Server (NTRS)
McCauley, Rachel J.; Davidson, John B.; Winski, Richard G.
2015-01-01
This paper presents an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System performing Orion nominal flight mission critical objectives. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Selected Launch Abort System flight test data is presented and discussed in the paper. Through flight test data, Launch Abort System performance trends have been derived that will prove valuable to future flights as well as the manned space program.
2014-12-05
NASA's Orion spacecraft floats in the Pacific Ocean after splashdown from its first flight test in Earth orbit. The USS Anchorage is nearby. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts.
Design, Integration, Certification and Testing of the Orion Crew Module Propulsion System
NASA Technical Reports Server (NTRS)
McKay, Heather; Coffman, Eric; May, Sarah; Freeman, Rich; Cain, George; Albright, John; Schoenberg, Rich; Delventhal, Rex
2014-01-01
The Orion Crew Module Propulsion Reaction Control System is currently complete and ready for flight as part of the Orion program's first flight test, Exploration Flight Test One (EFT-1). As part of the first article design, build, test, and integration effort, several key lessons learned have been noted and are planned for incorporation into the next build of the system. This paper provides an overview of those lessons learned and a status on the Orion propulsion system progress to date.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a worker monitors the progress as a crane lowers the Orion heat shield from Exploration Flight Test-1 onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress as a crane lowers the Orion heat shield from Exploration Flight Test-1 onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a crane is attached to the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1, secured on a transporter, arrives at the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers help prepare the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a worker helps prepare the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
YSOVAR: Six Pre-main-sequence Eclipsing Binaries in the Orion Nebula Cluster
2012-06-25
reserved. Printed in the U.S.A. YSOVAR: SIX PRE-MAIN-SEQUENCE ECLIPSING BINARIES IN THE ORION NEBULA CLUSTER M. Morales-Calderón1,2, J. R. Stauffer1, K. G...multi-color light curves for∼2400 candidate Orion Nebula Cluster (ONC) members from our Warm Spitzer Exploration Science Program YSOVAR, we have...readable tables 1. INTRODUCTION The Orion Nebula Cluster (ONC) contains several thousand members, and since it is nearby, it provides an excellent em
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on a transporter and ready for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being loaded onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, a crane lowers the Orion heat shield from Exploration Flight Test-1 onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1, secured on a transporter, departs the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being prepared for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
2014-12-04
CAPE CANAVERAL, Fla. -- In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders spoke to members of the news media about the postponement of the Orion Flight Test launch due to an issue related to fill and drain valves on the Delta IV Heavy rocket. From left are: Brandi Dean of NASA Public Affairs, Mark Geyer, NASA's Orion program manager, Mike Hawes, Lockheed Martin Orion Program manager, and Dan Collins, United Launch Alliance chief operating officer. For more information, visit www.nasa.gov/orion Photo credit: NASA/Frankie Martin
2009-04-08
CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing secure a flotation collar around the mockup Orion crew exploration vehicle at the Trident Basin at Port Canaveral, Fla. On top of Orion are additional flotation devices. The mockup vehicle will undergo testing in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Kim Shiflett
2009-04-08
CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing release a flotation collar around the mockup Orion crew exploration vehicle at the Trident Basin at Port Canaveral, Fla. On top of Orion are additional flotation devices. The mockup vehicle will undergo testing in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Kim Shiflett
2009-04-08
CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing release a flotation collar around the mockup Orion crew exploration vehicle at the Trident Basin at Port Canaveral, Fla. On top of Orion are additional flotation devices. The mockup vehicle will undergo testing in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Kim Shiflett
2014-12-05
SAN DIEGO, Calif. -- NASA's Orion spacecraft is on rubber bumpers in the flooded well deck of the USS Anchorage in the Pacific Ocean about 600 miles off the coast of San Diego, California. Orion splashed down after its first flight test in Earth orbit. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kenny Allen
Optical Navigation for the Orion Vehicle
NASA Technical Reports Server (NTRS)
Crain, Timothy; Getchius, Joel; D'Souza, Christopher
2008-01-01
The Orion vehicle is being designed to provide nominal crew transport to the lunar transportation stack in low Earth orbit, crew abort prior during transit to the moon, and crew return to Earth once lunar orbit is achieved. One of the design requirements levied on the Orion vehicle is the ability to return to the vehicle and crew to Earth in the case of loss of communications and command with the Mission Control Center. Central to fulfilling this requirement, is the ability of Orion to navigate autonomously. In low-Earth orbit, this may be solved with the use of GPS, but in cis-lunar and lunar orbit this requires optical navigation. This paper documents the preliminary analyses performed by members of the Orion Orbit GN&C System team.
Orion is Taken From Ship & Put in Shipping Container
2014-12-10
The Orion crew module is being lowered onto the crew module transportation fixture at the Mole Pier at Naval Base San Diego in California. The fixture has been secured on the back of a flatbed truck. Orion is being prepared for the overland trip back to NASA's Kennedy Space Center in Florida. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. NASA, the U.S. Navy and Lockheed Martin coordinated efforts to recover Orion. The Ground Systems Development and Operations Program led the recovery, offload and pre-transportation efforts.
Orion is on Pad 37 Prior to Hoist & Mate
2014-11-12
The Orion spacecraft and its transporter stand at the base of the service structure at Space Launch Complex 37. A crane inside the structure will lift Orion off its transporter to hoist it into place atop the Delta IV Heavy rocket that is already assembled at the pad. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014, atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Mark Geyer, NASA Orion Program manager. Also participating in the news conference are Bill Hill, NASA deputy associate administrator for Exploration Systems Development, left, and Bryan Austin, Lockheed Martin mission manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion Underway Recovery Test 5 (URT-5)
2016-10-29
NASA, contractor and U.S. Navy personnel are on the deck of the USS San Diego as the sun sets on the fourth day of Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy practiced retrieving and securing a test version of the Orion crew module in the well deck of the ship using tethers and a winch system to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-29
A test version of the Orion crew module floats outside the well deck of the USS San Diego on the fourth day of Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy are practicing retrieving and securing the crew module in the well deck of the ship using tethers and a winch system to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-31
U.S. Navy divers and other personnel in a small Zodiac boat secure a tether line to an attach point on a test version of the Orion crew module during Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests using the USS San Diego's well deck, the test module, various watercraft and equipment to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-27
U.S. Navy divers and other personnel in a rigid hull Zodiac boat have attached tether lines to a test version of the Orion crew module during Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests using the USS San Diego, various watercraft and equipment to practice for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-28
U.S. Navy divers and other personnel in a Zodiac boat secure a harness around a test version of the Orion crew module during Underway Recovery Test 5 in the Pacific Ocean off the coast of California. Tether lines will be attached to the test module to help guide it back to the well deck of the USS San Diego. NASA's Ground Systems Development and Operations Program and the U.S. Navy are practicing recovery techniques to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-28
Several rigid hull and inflatable Zodiac boats are in the water near a test version of the Orion crew module during the third day of Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests using the USS San Diego, various watercraft and equipment to prepare for recovery of Orion on its return from deep space missions. The test will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
NASA Astrophysics Data System (ADS)
Da Rio, Nicola; SDSS Apogee IN-SYNC ancillary program Team
2015-01-01
I will present the results of our characterization of the dynamical status of the young stellar population in the Orion A star forming region. This is based on radial velocity measurements obtained within the SDSS-III Apogee IN-SYNC Orion Survey, which obtained high-resolution spectroscopy of ~3000 objects in the region, from the dense Orion Nebula Cluster - the prototypical nearby region of active massive star formation - to the low-density environments of the L1641 region. We find evidence for kinematic subclustering along the star forming filament, where the stellar component remains kinematically associated to the gas; in the ONC we find that the stellar population is supervirial and currently expanding. We rule out the existence of a controversial candidate foreground cluster to the south of the ONC. These results, complemented with an analysis of the spatial structure of the population, enables critical tests of theories that describe the formation and early evolution of Orion and young clusters in general.
2014-08-19
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians prepare to do a fit check of the forward bay cover for the Orion crew module. The cover is a shell that fits over Orion's crew module to protect the spacecraft during launch, orbital flight and re-entry into Earth's atmosphere. When Orion returns from space, the cover must be jettisoned high above the ground so that the parachutes can deploy and unfurl. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-08-19
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians prepare to do a fit check of the forward bay cover for the Orion crew module. The cover is a shell that fits over Orion's crew module to protect the spacecraft during launch, orbital flight and re-entry into Earth's atmosphere. When Orion returns from space, the cover must be jettisoned high above the ground so that the parachutes can deploy and unfurl. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-08-19
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians prepare to do a fit check of the forward bay cover for the Orion crew module. The cover is a shell that fits over Orion's crew module to protect the spacecraft during launch, orbital flight and re-entry into Earth's atmosphere. When Orion returns from space, the cover must be jettisoned high above the ground so that the parachutes can deploy and unfurl. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
Mapping young stellar populations towards Orion with Gaia DR1
NASA Astrophysics Data System (ADS)
Zari, Eleonora; Brown, Anthony G. A.
2018-04-01
OB associations are prime sites for the study of star formation processes and of the interaction between young massive stars with the interstellar medium. Furthermore, the kinematics and structure of the nearest OB associations provide detailed insight into the properties and origin of the Gould Belt. In this context, the Orion complex has been extensively studied. However, the spatial distribution of the stellar population is still uncertain: in particular, the distances and ages of the various sub-groups composing the Orion OB association, and their connection to the surrounding interstellar medium, are not well determined. We used the first Gaia data release to characterize the stellar population in Orion, with the goal to obtain new distance and age estimates of the numerous stellar groups composing the Orion OB association. We found evidence of the existence of a young and rich population spread over the entire region, loosely clustered around some known groups. This newly discovered population of young stars provides a fresh view of the star formation history of the Orion region.
Orion Heat Shield Foam Blocks Prefitting
2016-10-24
Tile blocks have been prefitted around the heat shield for the Orion crew module inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The heat shield is one of the most critical elements of Orion and protects it and the future astronauts inside from searing temperatures experienced during reentry through Earth's atmosphere when they return home. For Exploration Mission-1, the top layer of Orion's heat shield that is primarily responsible for helping the crew module endure reentry heat will be composed of approximately 180 blocks, which are made of an ablative material called Avcoat designed to wear away as it heats up. Orion is being prepared for its flight on the agency's Space Launch System for Exploration Mission-1 in late 2018. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities.
Overview of Orion Crew Module and Launch Abort Vehicle Dynamic Stability
NASA Technical Reports Server (NTRS)
Owens, Donald B.; Aibicjpm. Vamessa V.
2011-01-01
With the retirement of the Space Shuttle, NASA is designing a new spacecraft, called Orion, to fly astronauts to low earth orbit and beyond. Characterization of the dynamic stability of the Orion spacecraft is important for the design of the spacecraft and trajectory construction. Dynamic stability affects the stability and control of the Orion Crew Module during re-entry, especially below Mach = 2.0 and including flight under the drogues. The Launch Abort Vehicle is affected by dynamic stability as well, especially during the re-orientation and heatshield forward segments of the flight. The dynamic stability was assessed using the forced oscillation technique, free-to-oscillate, ballistic range, and sub-scale free-flight tests. All of the test techniques demonstrated that in heatshield-forward flight the Crew Module and Launch Abort Vehicle are dynamically unstable in a significant portion of their flight trajectory. This paper will provide a brief overview of the Orion dynamic aero program and a high-level summary of the dynamic stability characteristics of the Orion spacecraft.
2014-11-10
CAPE CANAVERAL, Fla. – In the Kennedy Space Center’s Press Site auditorium, agency leaders spoke to members of the news media as the completed Orion spacecraft was being prepared for its trip from the Launch Abort System Facility to Launch Complex 37 at Cape Canaveral Air Force Station. From left are: Mike Curie of NASA Public Affairs, Kennedy Director Bob Cabana, Johnson Space Center Director Ellen Ochoa, NASA Orion Program manager Mark Geyer, and Lockheed Martin Orion Program manager Mike Hawes. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
2012-08-06
CAPE CANAVERAL, Fla. – Mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground is the Launch Abort System. In the background is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
Hydrocode and Molecular Dynamics modelling of uniaxial shock wave experiments on Silicon
NASA Astrophysics Data System (ADS)
Stubley, Paul; McGonegle, David; Patel, Shamim; Suggit, Matthew; Wark, Justin; Higginbotham, Andrew; Comley, Andrew; Foster, John; Rothman, Steve; Eggert, Jon; Kalantar, Dan; Smith, Ray
2015-06-01
Recent experiments have provided further evidence that the response of silicon to shock compression has anomalous properties, not described by the usual two-wave elastic-plastic response. A recent experimental campaign on the Orion laser in particular has indicated a complex multi-wave response. While Molecular Dynamics (MD) simulations can offer a detailed insight into the response of crystals to uniaxial compression, they are extremely computationally expensive. For this reason, we are adapting a simple quasi-2D hydrodynamics code to capture phase change under uniaxial compression, and the intervening mixed phase region, keeping track of the stresses and strains in each of the phases. This strain information is of such importance because a large number of shock experiments use diffraction as a key diagnostic, and these diffraction patterns depend solely on the elastic strains in the sample. We present here a comparison of the new hydrodynamics code with MD simulations, and show that the simulated diffraction taken from the code agrees qualitatively with measured diffraction from our recent Orion campaign.
Assessment of Fencing on the Orion Heatshield
NASA Technical Reports Server (NTRS)
Alunni, Antonella I.; Gokcen, Tahir
2016-01-01
This paper presents recent experimental results from arc-jet tests of the Orion heatshield that were conducted at NASA Ames Research Center. Test conditions that simulated a set of heating profiles in time representative of the Orion flight environments were used to observe their effect on Orion's block architecture in terms of differential recession or fencing. Surface recession of arc-jet models was characterized during and after testing to derive fencing profiles used for the baseline sizing of the heatshield. Arc-jet test data show that the block architecture produces varying degrees of fencing.
2014-12-05
NASA's Orion spacecraft splashed down in the Pacific Ocean after its first flight test atop a Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. U.S. Navy divers in Zodiac boats prepare to recover Orion and tow her in to the well deck of the USS Anchorage. NASA's Orion spacecraft completed a two-orbit, four-and-a-half hour mission to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, prepares to back into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a crane lifts the Orion heat shield from Exploration Flight Test-1 up off its transporter. It will be lowered onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, backs into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
2018-04-09
Mark Nurge, Ph.D., a physicist in the Applied Physics Lab with the Exploration Research and Technology Programs at NASA's Kennedy Space Center in Florida, looks at data during the first optical quality test on a full window stack that is ready for installation in the docking hatch of NASA's Orion spacecraft. The data from the tests will help improve the requirements for manufacturing tolerances on Orion's windows and verify how the window should perform in space. Orion is being prepared for its first integrated uncrewed flight atop NASA's Space Launch System rocket on Exploration Mission-1.
2014-12-03
In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders spoke to members of the news media as the Orion spacecraft and its Delta IV Heavy rocket were being prepared for launch. From left are: Brandi Dean of NASA Public Affairs, Mark Geyer, Orion program manager, Mike Hawes, Lockheed Martin Orion Program manager, Jeff Angermeier, Exploration Flight Test-1 Ground Systems Development and Operations mission manager, Ron Fortson, United Launch Alliance director of mission management, and Kathy Winters, U.S. Air Force 45th Space Wing Launch Weather officer.
NASA Technical Reports Server (NTRS)
Davis, D. S.; Larson, H. P.; Hofmann, R.
1986-01-01
A near-infrared (1.8 to 3.5) microns extinction curve for the Orion molecular cloud is presented. The curve is derived from high-resolution spectra of the Orion H2 source recorded from the Kuiper Airborne Observatory. The data reveal that the Orion extinction law is indistinguishable from a 1/lambda form in the near-infrared, except for strongly enhanced extinction near a wavelength of about 3 microns. The implications of these results, in the context of current interstellar grain models, are discussed.
Orion Returns to KSC after Successful Mission
2014-12-18
NASA's Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck nears the entrance gate to Kennedy Space Center in Florida. Orion made the overland trip from Naval Base San Diego in California. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) is being moved to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) into a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) toward a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
2015-01-06
CAPE CANAVERAL, Fla. -- NASA Administrator Charlie Bolden looked over the agency's Orion spacecraft this morning for the first time since it returned to Kennedy Space Center following the successful Orion flight test on Dec. 5. Orion's processing team of Lockheed Martin and NASA workers posed for a photograph with the NASA administrator. Bearing the marks of a spacecraft that has returned to Earth through a searing plunge into the atmosphere, Orion is perched on a pedestal inside the Launch Abort System Facility at Kennedy where it is going through post-mission processing. Although the spacecraft Bolden looked over did not fly with a crew aboard during the flight test, Orion is designed to carry astronauts into deep space in the future setting NASA and the nation firmly on the journey to Mars. Photo credit: NASA/Cory Huston
2014-04-10
CAPE CANAVERAL, Fla. - A container carrying the first set of Ogive panels for the Orion Launch Abort System is transferred into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-05-09
CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians check the Orion crew module before it is lifted from a test stand. Activities are underway to lift Orion and prepare it for future installation of the heat shield. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2014-05-09
CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians monitor the progress as the Orion crew module is lifted by crane from a test stand. Activities are underway to prepare Orion for future installation of the heat shield. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2014-04-10
CAPE CANAVERAL, Fla. - Containers carrying the first set of Ogive panels for the Orion Launch Abort System are being offloaded for transfer into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - The first set of Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - Containers carrying the first set of Ogive panels for the Orion Launch Abort System aretransferred into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - The first set of Ogive panels for the Orion Launch Abort System arrives by truck at NASA’s Kennedy Space Center in Florida. The Ogive panels will be delivered to the Launch Abort System Facility. During processing, the panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - Containers carrying the first set of Ogive panels for the Orion Launch Abort System have been transferred into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - The first set of Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - A container carrying the first set of Ogive panels for the Orion Launch Abort System is offloaded for transfer into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - The first set of Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-05-09
CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, a crane is being moved into position to lift the Orion crew module from a test stand. Activities are underway to prepare Orion for future installation of the heat shield. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
Orion is Taken From Ship & Put in Shipping Container
2014-12-10
The Orion crew module has been lowered and secured in the crew module transportation fixture at the Mole Pier at Naval Base San Diego in California. The fixture has been secured on the back of a flatbed truck and the cover is being lowered over the spacecraft. Orion is being prepared for the overland trip back to NASA's Kennedy Space Center in Florida. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. NASA, the U.S. Navy and Lockheed Martin coordinated efforts to recover Orion. The Ground Systems Development and Operations Program led the recovery, offload and pre-transportation efforts.
Orion is Taken From Ship & Put in Shipping Container
2014-12-10
The Orion crew module has been secured in the crew module transportation fixture at the Mole Pier at Naval Base San Diego in California. The fixture has been secured on the back of a flatbed truck and the cover has been lowered over the spacecraft. Orion is being prepared for the overland trip back to NASA's Kennedy Space Center in Florida. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. NASA, the U.S. Navy and Lockheed Martin coordinated efforts to recover Orion. The Ground Systems Development and Operations Program led the recovery, offload and pre-transportation efforts.
2014-11-11
At NASA's Kennedy Space Center in Florida, the agency's Orion spacecraft passes the spaceport's iconic Vehicle Assembly Building as it is transported to Launch Complex 37 at Cape Canaveral Air Force Station. After arrival at the launch pad, United Launch Alliance engineers and technicians will lift Orion and mount it atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2011-07-14
CAPE CANAVERAL, Fla. -- In the Delta turn basin at Cape Canaveral Air Force Station in Florida, United Space Alliance (USA) divers and boat crew monitor an Orion test article while waiting for its lift bags to inflate. The uprighting tests are part of USA's research and development program to help develop ground operations support equipment that could be used to reorient and recover an uncrewed Orion flight test capsule after splashdown. USA is a major subcontractor to Lockheed Martin for the Orion spacecraft. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft designed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. Orion's first uncrewed orbital flight test is slated for 2013. For more information, visit http://www.nasa.gov/exploration/systems/mpcv/. Photo credit: NASA/Frankie Martin
2011-07-14
CAPE CANAVERAL, Fla. -- In the Delta turn basin at Cape Canaveral Air Force Station in Florida, United Space Alliance (USA) divers and boat crew tend an Orion test article while waiting for its lift bags to inflate. The uprighting tests are part of USA's research and development program to help develop ground operations support equipment that could be used to reorient and recover an uncrewed Orion flight test capsule after splashdown. USA is a major subcontractor to Lockheed Martin for the Orion spacecraft. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft designed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. Orion's first uncrewed orbital flight test is slated for 2013. For more information, visit http://www.nasa.gov/exploration/systems/mpcv/. Photo credit: NASA/Frankie Martin
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Jeremy Graeber, Orion Recovery Director in Ground Systems Development and Operations at Kennedy. Also participating in the news conference are Bryan Austin, Lockheed Martin mission manager, left, and Ron Fortson, United Launch Alliance director of Mission Management. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion Exploration Flight Test Post-Flight Inspection and Analysis
NASA Technical Reports Server (NTRS)
Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.
2017-01-01
The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight.
2014-09-14
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean during Underway Recovery Test 4A. Orion was lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship. Nearby, U.S. Navy personnel in a Zodiac boat have attached a flotation collar and tether lines to Orion to bring the test vehicle closer to the ship. NASA, Lockheed Martin and the U.S. Navy are conducting crane recovery tests to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-17
SAN DIEGO, Calif. – A Zodiac boat containing U.S. Navy divers approaches the Orion boilerplate test vehicle floating in the Pacific Ocean, a distance away from the USS Anchorage, during the third day of Orion Underway Recovery Test 3. Orange stabilizers on the top of the test vehicle were inflated to simulate the system that will be used to upright Orion in the water after splashdown. NASA, Lockheed Martin and U.S. Navy personnel are conducting the recovery test using the test vehicle to prepare for recovery of the Orion crew module on its return from a deep space mission. The test allows the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-09-14
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean during the third day of Underway Recovery Test 4A. Orion was lowered into the water from the USS Salvor, a safeguard-class rescue and salvage ship, using a stationary crane. Tether lines were attached to the test vehicle from the ship for a towing test. Navy divers in a Zodiac boat practice recovery procedures and monitor Orion. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allows the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-09-16
SAN DIEGO, Calif. – A mock-up of the Orion forward bay cover is lowered by crane from the USS Anchorage into the water during the second day of Orion Underway Recovery Test 3 in the Pacific Ocean. Nearby, U.S. navy divers in two Zodiac boats and other team members in a rigid hull inflatable boat, wait to practice recovery procedures. NASA, Lockheed Martin and U.S. Navy personnel are conducting the recovery test using the Orion boilerplate test vehicle and mock-up forward bay cover to prepare for recovery of the Orion crew module on its return from a deep space mission. The test allows the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-09-14
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean during Underway Recovery Test 4A. Orion was lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship. Nearby, Navy divers in two Zodiac boats practice recovery procedures. An orange stabilization collar has been attached around Orion to prepare for lift by stationary crane back onto the USS Salvor. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Aerodynamic Analysis of Simulated Heat Shield Recession for the Orion Command Module
NASA Technical Reports Server (NTRS)
Bibb, Karen L.; Alter, Stephen J.; Mcdaniel, Ryan D.
2008-01-01
The aerodynamic effects of the recession of the ablative thermal protection system for the Orion Command Module of the Crew Exploration Vehicle are important for the vehicle guidance. At the present time, the aerodynamic effects of recession being handled within the Orion aerodynamic database indirectly with an additional safety factor placed on the uncertainty bounds. This study is an initial attempt to quantify the effects for a particular set of recessed geometry shapes, in order to provide more rigorous analysis for managing recession effects within the aerodynamic database. The aerodynamic forces and moments for the baseline and recessed geometries were computed at several trajectory points using multiple CFD codes, both viscous and inviscid. The resulting aerodynamics for the baseline and recessed geometries were compared. The forces (lift, drag) show negligible differences between baseline and recessed geometries. Generally, the moments show a difference between baseline and recessed geometries that correlates with the maximum amount of recession of the geometry. The difference between the pitching moments for the baseline and recessed geometries increases as Mach number decreases (and the recession is greater), and reach a value of -0.0026 for the lowest Mach number. The change in trim angle of attack increases from approx. 0.5deg at M = 28.7 to approx. 1.3deg at M = 6, and is consistent with a previous analysis with a lower fidelity engineering tool. This correlation of the present results with the engineering tool results supports the continued use of the engineering tool for future work. The present analysis suggests there does not need to be an uncertainty due to recession in the Orion aerodynamic database for the force quantities. The magnitude of the change in pitching moment due to recession is large enough to warrant inclusion in the aerodynamic database. An increment in the uncertainty for pitching moment could be calculated from these results and included in the development of the aerodynamic database uncertainty for pitching moment.
Thermochemical Ablation Analysis of the Orion Heatshield
NASA Technical Reports Server (NTRS)
Sixel, William
2015-01-01
The Orion Multi-Purpose Crew Vehicle will one day carry astronauts to the Moon and beyond, and Orion's heatshield is a critical component in ensuring their safe return to Earth. The Orion heatshield is the structural component responsible for absorbing the intense heating environment caused by re-entry to Earth's atmosphere. The heatshield is primarily composed of Avcoat, an ablative material that is consumed during the re-entry process. Ablation is primarily characterized by two processes: pyrolysis and recession. The decomposition of in-depth virgin material is known as pyrolysis. Recession occurs when the exposed surface of the heatshield reacts with the surrounding flow. The Orion heatshield design was changed from an individually filled Avcoat honeycomb to a molded block Avcoat design. The molded block Avcoat heatshield relies on an adhesive bond to keep it attached to the capsule. In some locations on the heatshield, the integrity of the adhesive bond cannot be verified. For these locations, a mechanical retention device was proposed. Avcoat ablation was modelled in CHAR and the in-depth virgin material temperatures were used in a Thermal Desktop model of the mechanical retention device. The retention device was analyzed and shown to cause a large increase in the maximum bondline temperature. In order to study the impact of individual ablation modelling parameters on the heatshield sizing process, a Monte Carlo simulation of the sizing process was proposed. The simulation will give the sensitivity of the ablation model to each of its input parameters. As part of the Monte Carlo simulation, statistical uncertainties on material properties were required for Avcoat. Several properties were difficult to acquire uncertainties for: the pyrolysis gas enthalpy, non-dimensional mass loss rate (B´c), and Arrhenius equation parameters. Variability in the elemental composition of Avcoat was used as the basis for determining the statistical uncertainty in pyrolysis gas enthalpy and B´c. A MATLAB program was developed to allow for faster, more accurate and automated computation of Arrhenius reaction parameters. These parameters are required for a material model to be used in the CHAR ablation analysis program. This MATLAB program, along with thermogravimetric analysis (TGA) data, was used to generate uncertainties on the Arrhenius parameters for Avcoat. In addition, the TGA fitting program was developed to provide Arrhenius parameters for the ablation model of the gap filler material, RTV silicone.
Orion Underway Recovery Test for EFT-1
2014-02-18
SAN DIEGO, Calif. – Using a rigid hull inflatable boat, NASA and the U.S. Navy practice retrieving the Orion forward bay cover from the Pacific Ocean as part of the Orion underway recovery test. The Orion boilerplate test vehicle and other hardware are secured in the well deck of the USS San Diego nearby in preparation for the test about 100 miles off the coast of San Diego, California. NASA and the U.S. Navy conducted tests to prepare for the recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. During the testing, the tether lines were unable to support the tension caused by crew module motion that was driven by wave turbulence in the well deck of the ship. NASA and the U.S. Navy called off the week’s remaining testing to allow engineers to evaluate the next steps The Ground Systems Development and Operations Program conducted the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
Orion Underway Recovery Test for EFT-1
2014-02-18
SAN DIEGO, Calif. – NASA and U.S. Navy personnel practice retrieving the Orion forward bay cover from the water during the Orion underway recovery test. The Orion boilerplate test vehicle and other hardware are secured in the well deck of the USS San Diego nearby in preparation for the test about 100 miles off the coast of San Diego, California. NASA and the U.S. Navy conducted tests to prepare for the recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. During the testing, the tether lines were unable to support the tension caused by crew module motion that was driven by wave turbulence in the well deck of the ship. NASA and the U.S. Navy are reviewing the testing data collected to evaluate the next steps. The Ground Systems Development and Operations Program conducted the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
Orion Underway Recovery Test for EFT-1
2014-02-18
SAN DIEGO, Calif. – The Orion forward bay cover is lowered into the water using a crane and tether lines as part of the Orion underway recovery test. The Orion boilerplate test vehicle and other hardware are secured in the well deck of the USS San Diego in preparation for the test about 100 miles off the coast of San Diego, California. NASA and the U.S. Navy conducted tests to prepare for the recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. During the testing, the tether lines were unable to support the tension caused by crew module motion that was driven by wave turbulence in the well deck of the ship. NASA and the U.S. Navy are reviewing the testing data collected to evaluate the next steps. The Ground Systems Development and Operations Program conducted the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
Implementation of an Autonomous Multi-Maneuver Targeting Sequence for Lunar Trans-Earth Injection
NASA Technical Reports Server (NTRS)
Whitley, Ryan J.; Williams, Jacob
2010-01-01
Using a fully analytic initial guess estimate as a first iterate, a targeting procedure that constructs a flyable burn maneuver sequence to transfer a spacecraft from any closed Moon orbit to a desired Earth entry state is developed and implemented. The algorithm is built to support the need for an anytime abort capability for Orion. Based on project requirements, the Orion spacecraft must be able to autonomously calculate the translational maneuver targets for an entire Lunar mission. Translational maneuver target sequences for the Orion spacecraft include Lunar Orbit Insertion (LOI), Trans-Earth Injection (TEI), and Trajectory Correction Maneuvers (TCMs). This onboard capability is generally assumed to be supplemental to redundant ground computation in nominal mission operations and considered as a viable alternative primarily in loss of communications contingencies. Of these maneuvers, the ability to accurately and consistently establish a flyable 3-burn TEI target sequence is especially critical. The TEI is the sole means by which the crew can successfully return from the Moon to a narrowly banded Earth Entry Interface (EI) state. This is made even more critical by the desire for global access on the lunar surface. Currently, the designed propellant load is based on fully optimized TEI solutions for the worst case geometries associated with the accepted range of epochs and landing sites. This presents two challenges for an autonomous algorithm: in addition to being feasible, the targets must include burn sequences that do not exceed the anticipated propellant load.
2015-05-06
ENGINEERS FROM AMES RESEARCH CENTER AND MARSHALL SPACE FLIGHT CENTER REMOVE AVCOAT SEGMENTS FROM THE SURFACE OF THE ORION HEAT SHIELD, THE PROTECTIVE SHELL DESIGNED TO HELP THE NEXT GENERATION CREW MODULE WITHSTAND THE HEAT OF ATMOSPHERIC REENTRY. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALL FLIGHT TEST OF ORION IN DECEMBER 2014
Media at the Press Site for the Orion Launch
2014-12-04
At NASA's Kennedy Space Center in Florida, the new countdown clock at the spaceport's Press Site is used for the first time as preparations were underway for the Orion Flight Test. News media representatives gather in anticipation of the launch of NASA's Orion spacecraft atop a United Launch Alliance Delta IV Heavy rocket.
Design and Flight Performance of the Orion Pre-Launch Navigation System
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2016-01-01
Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to test the prelaunch and entry components of the system. Orion's pre-launch absolute navigation design is presented, together with its EFT-1 performance.
2014-08-10
LOS ANGELES, Calif. – Andy Quiett, Detachment 3 deputy operations lead for the Orion program and DoD liaison for NASA, answers questions about the Orion boilerplate test vehicle from visitors touring the well deck of the USS Anchorage during the Science, Technology, Engineering and Mathematics, or STEM, Expo for L.A. Navy Days at the Port of Los Angeles in California. A combined team from NASA’s Ground Systems Development and Operations Program and the U.S. Navy were in San Diego to practice recovering Orion from the ocean, as they will do in December following the spacecraft's first trip to space during Exploration Flight Test-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-08-10
LOS ANGELES, Calif. – Andy Quiett, Detachment 3 deputy operations lead for the Orion program and DoD liaison for NASA, answers questions about the Orion boilerplate test vehicle from visitors touring the well deck of the USS Anchorage during the Science, Technology, Engineering and Mathematics, or STEM, Expo for L.A. Navy Days at the Port of Los Angeles in California. A combined team from NASA’s Ground Systems Development and Operations Program and the U.S. Navy were in San Diego to practice recovering Orion from the ocean, as they will do in December following the spacecraft's first trip to space during Exploration Flight Test-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-08-10
LOS ANGELES, Calif. – Andy Quiett, Detachment 3 deputy operations lead for the Orion program and DoD liaison for NASA, answers questions about the Orion boilerplate test vehicle from visitors touring the well deck of the USS Anchorage during the Science, Technology, Engineering and Mathematics, or STEM, Expo for L.A. Navy Days at the Port of Los Angeles in California. A combined team from NASA’s Ground Systems Development and Operations Program and the U.S. Navy were in San Diego to practice recovering Orion from the ocean, as they will do in December following the spacecraft's first trip to space during Exploration Flight Test-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Orion Underway Recovery Test 5 (URT-5)
2016-10-28
U.S. Navy divers in an inflatable Zodiac boat approach a test version of the Orion crew module in the Pacific Ocean off the coast of California during the third day of Underway Recovery Test 5. NASA, Navy and contractor personnel monitor the recovery procedures from the deck of the USS San Diego. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests using the ship, various watercraft and equipment to prepare for recovery of Orion on its return from deep space missions. The test will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
2014-09-16
SAN DIEGO, Calif. – Two Zodiac boats containing U.S. Navy divers are positioned at the entrance to the well deck of the USS Anchorage on the second day of Orion Underway Recover Test 3 in the Pacific Ocean. NASA, Lockheed Martin and U.S. Navy personnel are conducting the recovery test using the Orion boilerplate test vehicle to prepare for recovery of the Orion crew module on its return from a deep space mission. The test allows the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
Orion Underway Recovery Test 5 (URT-5)
2016-10-30
U.S. Navy divers and other personnel in several rigid hull inflatable and Zodiac boats have surrounded a test version of the Orion crew module during Underway Recovery Test 5 in the Pacific Ocean off the coast of California. An orange winch line has been attached to the test module to pull it into the well deck of the USS San Diego. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests using the Navy ship, various watercraft and equipment to practice for recovery of Orion on its return from deep space missions. The testing allows the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-30
U. S. Navy divers and other personnel enter the well deck of the USS San Diego after another day of Underway Recovery Test 5 using a test version of the Orion crew module and several rigid hull inflatable and Zodiac boats in the Pacific Ocean off the coast of California. The test module is secured at the far end of the well deck. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests to prepare for recovery of Orion on its return from deep space missions. The testing allows the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-28
U.S. Navy divers and other personnel in a rigid hull inflatable boat are handling tether lines attached to a test version of the Orion crew module during Underway Recovery Test 5 in the Pacific Ocean off the coast of California. U.S. Navy divers in a smaller watercraft called a Zodiac boat are farther away. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests using the well deck of the USS San Diego, several watercraft and personnel to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Third Day of Loading Equipment for the Orion Recovery.
2014-11-19
Ground support equipment is being loaded into the well deck of the USS Anchorage at Naval Base San Diego in California. The equipment will be used during recovery of the Orion crew module after its first flight test. Before launch of Orion on a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, NASA, Lockheed Martin and U.S. Navy personnel will head out to sea in the USS Anchorage and the USNS Salvor, a salvage ship, and wait for splashdown of the Orion crew module in the Pacific Ocean. The Ground Systems Development and Operations Program will lead the recovery efforts. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket.
Third Day of Loading Equipment for the Orion Recovery.
2014-11-19
A forklift is used to carry ground support equipment into the well deck of the USS Anchorage at Naval Base San Diego in California. The equipment will be used during recovery of the Orion crew module after its first flight test. Before launch of Orion on a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, NASA, Lockheed Martin and U.S. Navy personnel will head out to sea in the USS Anchorage and the USNS Salvor, a salvage ship, and wait for splashdown of the Orion crew module in the Pacific Ocean. The Ground Systems Development and Operations Program will lead the recovery efforts. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket.
2013-06-27
CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, members of the media receive an on activities in NASA’s Ground Systems Development and Operations, or GSDO, Program, Space Launch System and Orion crew module for Exploration Test Flight 1. Speaking to the media, from left are Scott Wilson, manager of Orion Production Operations at Kennedy Larry Price, Lockheed Martin deputy program manager for Orion Tom Erdman, from Marshall Space Flight Center’s Kennedy resident office Jules Schneider, Lockheed Martin manager of Orion Production Operations and Jeremy Parsons, chief of the GSDO Operations Integration Office at Kennedy. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
2014-08-19
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians monitor the progress as a crane lifts the forward bay cover for a fit check on the Orion crew module. The cover is a shell that fits over Orion's crew module to protect the spacecraft during launch, orbital flight and re-entry into Earth's atmosphere. When Orion returns from space, the cover must be jettisoned high above the ground so that the parachutes can deploy and unfurl. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-08-19
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians on a work platform monitor the progress as a crane lowers the forward bay cover onto the Orion crew module for a fit check. The cover is a shell that fits over Orion's crew module to protect the spacecraft during launch, orbital flight and re-entry into Earth's atmosphere. When Orion returns from space, the cover must be jettisoned high above the ground so that the parachutes can deploy and unfurl. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles
NASA Technical Reports Server (NTRS)
Jones, Daniel S.; Koelfgen, Syri J.; Barnes, Marvin W.; McCauley, Rachel J.; Wall, Terry M.; Reed, Brian D.; Duncan, C. Miguel
2012-01-01
The NASA Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This paper provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicles.
2014-04-22
CAPE CANAVERAL, Fla. - Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module is positioned on a special portable test chamber and prepared for a multi-point random vibration test. Accelerometers and strain gages have been attached to Orion in various locations. During a series of tests, each lasting only 30 seconds, Orion will be subjected to gradually increasing levels of vibrations that represent levels the vehicle would experience during launch, orbit and descent. The data is reviewed in order to assess the health of the crew module. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-08-13
SAN DIEGO, Calif. – The USS Anchorage returns to Naval Base San Diego after completion of the Orion Underway Recovery Test 2 in the Pacific Ocean. The ship is framed by the skyline of the city of San Diego. NASA, Lockheed Martin and the U.S. Navy conducted the test on the Orion boilerplate test vehicle to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allowed the team to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program conducted the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-08-13
SAN DIEGO, Calif. – The USS Anchorage returns to Naval Base San Diego after completion of the Orion Underway Recovery Test 2 in the Pacific Ocean. The ship is framed by the skyline of the city of San Diego. NASA, Lockheed Martin and the U.S. Navy conducted the test on the Orion boilerplate test vehicle to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allowed the team to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program conducted the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
4th Day of Equipment Being Loaded for Recovery of Orion
2014-11-20
Ground support equipment is being secured in the well deck of the USS Anchorage at Naval Base San Diego in California. The equipment will be used during recovery of the Orion crew module after its first flight test. Before launch of Orion on a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, NASA, Lockheed Martin and U.S. Navy personnel will head out to sea in the USS Anchorage and the USNS Salvor, a salvage ship, and wait for splashdown of the Orion crew module in the Pacific Ocean. The Ground Systems Development and Operations Program will lead the recovery efforts. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket.
4th Day of Equipment Being Loaded for Recovery of Orion
2014-11-20
Ground support equipment is secured in the well deck of the USS Anchorage at Naval Base San Diego in California. The equipment will be used during recovery of the Orion crew module after its first flight test. Before launch of Orion on a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, NASA, Lockheed Martin and U.S. Navy personnel will head out to sea in the USS Anchorage and the USNS Salvor, a salvage ship, and wait for splashdown of the Orion crew module in the Pacific Ocean. The Ground Systems Development and Operations Program will lead the recovery efforts. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket.
2012-08-06
CAPE CANAVERAL, Fla. – Mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground are the Launch Abort System and the aerodynamic shell that will cover the capsule during launch. To the right is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-08-06
CAPE CANAVERAL, Fla. – Seen from overhead, mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground is the Launch Abort System and the aerodynamic shell that will cover the capsule during launch. To the right is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-08-06
CAPE CANAVERAL, Fla. – Seen from overhead, mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground is the Launch Abort System and the aerodynamic shell that will cover the capsule during launch. To the right is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2016-10-24
Tile blocks have been prefitted around the heat shield for the Orion crew module inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. The heat shield is one of the most critical elements of Orion and protects it and the future astronauts inside from searing temperatures experienced during reentry through Earth’s atmosphere when they return home. For Exploration Mission-1, the top layer of Orion’s heat shield that is primarily responsible for helping the crew module endure reentry heat will be composed of approximately 180 blocks, which are made of an ablative material called Avcoat designed to wear away as it heats up. Orion is being prepared for its flight on the agency’s Space Launch System for Exploration Mission-1 in late 2018. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA’s Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. For more information, visit http://www.nasa.gov/orion.
2012-10-19
CAPE CANAVERAL, Fla. – An Orion mockup spacecraft atop its service module simulator is lifted in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Orion mockup is exact in details on the outside, but mostly empty on the inside. The work in the VAB is crucial to making sure the designs are accurate. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-10-19
CAPE CANAVERAL, Fla. – An Orion mockup spacecraft atop its service module simulator is lowered onto a transporter in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Orion mockup is exact in details on the outside, but mostly empty on the inside. The work in the VAB is crucial to making sure the designs are accurate. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
Guidance, Navigation, and Control System Design in a Mass Reduction Exercise
NASA Technical Reports Server (NTRS)
Crain, Timothy; Begly, Michael; Jackson, Mark; Broome, Joel
2008-01-01
Early Orion GN&C system designs optimized for robustness, simplicity, and utilization of commercially available components. During the System Definition Review (SDR), all subsystems on Orion were asked to re-optimize with component mass and steady state power as primary design metrics. The objective was to create a mass reserve in the Orion point of departure vehicle design prior to beginning the PDR analysis cycle. The Orion GN&C subsystem team transitioned from a philosophy of absolute 2 fault tolerance for crew safety and 1 fault tolerance for mission success to an approach of 1 fault tolerance for crew safety and risk based redundancy to meet probability allocations of loss of mission and loss of crew. This paper will discuss the analyses, rationale, and end results of this activity regarding Orion navigation sensor hardware, control effectors, and trajectory design.
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard A.; Cross, Cynthia D.; Rains, George Edward
2013-01-01
The Orion Multi-Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely beyond Earth orbit. This year, the vehicle focused on building the Exploration Flight Test 1 (EFT1) vehicle to be launched in 2014. The development of the Orion Environmental Control and Life Support (ECLS) System, focused on the completing the components which are on EFT1. Additional development work has been done to keep the remaining component progressing towards implementation for a flight tests in of EM1 in 2017 and in and EM2 in 2020. This paper covers the Orion ECLS development from April 2012 to April 2013.
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The Ogive panels are being uncrated for storage inside the LASF. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The Ogive panels will be uncrated inside the LASF. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The Ogive panels will be uncrated inside the LASF. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived by truck at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The Ogive panels will be uncrated inside the LASF. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
ORION laser target diagnostics.
Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P
2012-10-01
The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.
Orion Multi Purpose Crew Vehicle Environmental Control and Life Support Development Status
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard A.; Cross, Cynthia D.; Carrasquillo, Robyn; Rains, George Edward
2012-01-01
The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely from the Earth beyond Earth orbit. This year, the vehicle focused on building the Exploration Flight Test 1 (EFT1) vehicle to be launched in 2014. The development of the Orion Environmental Control and Life Support (ECLS) System, focused on the components which are on EFT1 which includes pressure control and active thermal control systems, is progressing through the design stage into manufacturing. Additional development work was done to keep the remaining component progressing towards implementation for a flight tests in 2017 and in 2020. This paper covers the Orion ECLS development from April 2011 to April 2012.
2014-12-10
SAN DIEGO, Calif. -- The Orion crew module has been secured in the crew module transportation fixture at the Mole Pier at Naval Base San Diego in California. The fixture has been secured on the back of a flatbed truck and the cover has been lowered over the spacecraft. Orion is being prepared for the overland trip back to NASA's Kennedy Space Center in Florida. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. NASA, the U.S. Navy and Lockheed Martin coordinated efforts to recover Orion. The Ground Systems Development and Operations Program led the recovery, offload and pre-transportation efforts. For more information, visit www.nasa.gov/orion Photo credit: NASA/Cory Huston
2014-12-10
SAN DIEGO, Calif. -- The Orion crew module has been lowered and secured in the crew module transportation fixture at the Mole Pier at Naval Base San Diego in California. The fixture has been secured on the back of a flatbed truck and the cover is being lowered over the spacecraft. Orion is being prepared for the overland trip back to NASA's Kennedy Space Center in Florida. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. NASA, the U.S. Navy and Lockheed Martin coordinated efforts to recover Orion. The Ground Systems Development and Operations Program led the recovery, offload and pre-transportation efforts. For more information, visit www.nasa.gov/orion Photo credit: NASA/Cory Huston
2014-11-06
CAPE CANAVERAL, Fla. – In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Mark Geyer, NASA Orion Program manager. Also participating in the news conference are Bill Hill, NASA deputy associate administrator for Exploration Systems Development, left, and Bryan Austin, Lockheed Martin mission manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
2014-11-12
CAPE CANAVERAL, Fla. - The Orion spacecraft and its transporter stand at the base of the service structure at Space Launch Complex 37. A crane inside the structure will lift Orion off its transporter to hoist it into place atop the Delta IV Heavy rocket that is already assembled at the pad. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014, atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: Photo credit: NASA/Frankie Martin
Multi Purpose Crew Vehicle Environmental Control and Life Support Development Status
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard A.; Cross, Cynthia D.; Carrasquillo, Robyn; Rains, George Edward
2011-01-01
The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely from the Earth beyond Earth orbit. This year, the vehicle focused on building the Orion Flight Test 1 (OFT1) vehicle to be launched in 2013. The development of the Orion Environmental Control and Life Support (ECLS) System, focused on the components which are on OFT1 which includes pressure control and active thermal control systems, is progressing through the design stage into manufacturing. Additional development work was done to keep the remaining component progressing towards implementation for a flight test in 2017. This paper covers the Orion ECLS development from April 2011 to April 2012.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Extended Orion Nebula Cloud This image composite shows a part of the Orion constellation surveyed by NASA's Spitzer Space Telescope. The shape of the main image was designed by astronomers to roughly follow the shape of Orion cloud A, an enormous star-making factory containing about 1,800 young stars. This giant cloud includes the famous Orion nebula (bright circular area in 'blade' part of hockey stick-shaped box at the bottom), which is visible to the naked eye on a clear, dark night as a fuzzy star in the hunter constellation's sword. The region that makes up the shaft part of the hockey stick box stretches 70 light-years beyond the Orion nebula. This particular area does not contain massive young stars like those of the Orion nebula, but is filled with 800 stars about the same mass as the sun. These sun-like stars don't live in big 'cities,' or clusters, of stars like the one in the Orion nebula; instead, they can be found in small clusters (right inset), or in relative isolation (middle insert). In the right inset, developing stars are illuminating the dusty cloud, creating small wisps that appear greenish. The stars also power speedy jets of gas (also green), which glow as the jets ram into the cloudy material. Since infrared light can penetrate through dust, we see not only stars within the cloud, but thousands of stars many light-years behind it, which just happen to be in the picture like unwanted bystanders. Astronomers carefully separate the young stars in the Orion cloud complex from the bystanders by looking for their telltale infrared glow. The infrared image shows light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
NASA Technical Reports Server (NTRS)
Ross, James C.; Schuster, David M.
2014-01-01
During descent after re-entry into the Earth's atmosphere, the Orion CM deploys its drogue parachutes at approximately Mach 0.7. Accurately predicting the dynamic pressure experienced by the drogue parachutes at deployment is critical to properly designing the parachutes. This NASA Engineering and Safety Center assessment was designed to provide a complete set of flowfield measurements on and around an idealized Orion Crew Module shape with the most appropriate wind tunnel simulation of the Orion flight conditions prior to parachute deployment. This document contains the details of testing and the outcome of the assessment.
2009-04-08
CAPE CANAVERAL, Fla. – The mockup Orion crew exploration vehicle is lowered into the water at the Trident Basin at Port Canaveral, Fla., for testing in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Kim Shiflett
2009-04-08
CAPE CANAVERAL, Fla. – The mockup Orion crew exploration vehicle is on the dock at the Trident Basin at Port Canaveral, Fla., waiting to be tested in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Kim Shiflett
2009-04-08
CAPE CANAVERAL, Fla. – The mockup Orion crew exploration vehicle is on the dock at the Trident Basin at Port Canaveral, Fla., waiting to be tested in open waters. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Dimitri Gerondidakis
2009-04-08
CAPE CANAVERAL, Fla. – The mockup Orion crew exploration vehicle is lowered toward the water at the Trident Basin at Port Canaveral, Fla., for testing. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Dimitri Gerondidakis
2009-04-08
CAPE CANAVERAL, Fla. – The mockup Orion crew exploration vehicle is lowered into the water at the Trident Basin at Port Canaveral, Fla., for testing. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Dimitri Gerondidakis
2009-04-08
CAPE CANAVERAL, Fla. – The mockup Orion crew exploration vehicle is prepared to be lifted into the water at the Trident Basin at Port Canaveral, Fla., for testing. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Dimitri Gerondidakis
Expedition_55_Education_In-Flight_Oakland_CC_Lake_Orion_HS_2018_107_1025_641759
2018-04-18
SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH MICHIGAN STUDENTS----- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Ricky Arnold of NASA discussed life and research on the orbital outpost during an in-flight educational event April 17 with students from the Lake Orion (pron: OH-ree-on) High School and the Oakland Community College in Lake Orion, Michigan. Feustel, who is a native of Lake Orion, and Arnold, who is a former educator, launched to the station in late March for their mission on the orbital outpost.
2014-12-05
NASA's Orion spacecraft floats in the Pacific Ocean after splashdown from its first flight test in Earth orbit. An H60-S Seahawk helicopter hovers above to communicate the spacecraft's location back to the USS Anchorage, in the distance. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts.
2014-12-05
NASA's Orion spacecraft floats in the Pacific Ocean after splashdown from its first flight test in Earth orbit. An H60-S Seahawk helicopter hovers above to communicate the spacecraft's location back to the USS Anchorage. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts.
2018-04-09
The first optical quality testing on a full window stack that is ready for installation in the docking hatch of NASA's Orion spacecraft is underway inside a laboratory in the Neil Armstrong Operations and Checkout Building at the agency's Kennedy Space Center in Florida. The test is being performed by a team from the center's Exploration Research and Technology Programs. The data from the tests will help improve the requirements for manufacturing tolerances on Orion's windows and verify how the window should perform in space. Orion is being prepared for its first integrated uncrewed flight atop NASA's Space Launch System rocket on Exploration Mission-1.
2014-12-05
SAN DIEGO, Calif. -- NASA's Orion spacecraft floats in the Pacific Ocean after splashdown from its first flight test in Earth orbit. The USS Anchorage is nearby. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts. For more information, visit www.nasa.gov/orion Photo credit: NASA/Tony Gray
2014-12-03
CAPE CANAVERAL, Fla. -- In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders spoke to members of the news media as the Orion spacecraft and its Delta IV Heavy rocket were being prepared for launch. From left are: Brandi Dean of NASA Public Affairs, Mark Geyer, Orion program manager, Mike Hawes, Lockheed Martin Orion Program manager, Jeff Angermeier, Exploration Flight Test-1 Ground Systems Development and Operations mission manager, Ron Fortson, United Launch Alliance director of mission management, and Kathy Winters, U.S. Air Force 45th Space Wing Launch Weather officer. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
2014-12-05
U.S. Navy personnel aboard a rigid hull inflatable boat help recover NASA's Orion spacecraft following its splashdown in the Pacific Ocean after its first flight test in Earth orbit. The USS Anchorage is in the background. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians begin to move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a Lockheed Martin technician secures a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a protective cover is installed around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians are preparing the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for the move into a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media listen as NASA and contractor officials plans for the upcoming Orion flight test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Bryan Austin, Lockheed Martin mission manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2018-04-03
NASA's Super Guppy aircraft touches down at the Shuttle Landing Facility at the agency's Kennedy Space Center in Florida. The Super Guppy is carrying the Orion Stage Adapter (OSA), the second flight-hardware section of NASA's Space Launch System (SLS) rocket that has arrived at Kennedy. The OSA will connect the Orion spacecraft to the upper part of the SLS rocket, the interim cryogenic propulsion stage (ICPS). Both the OSA and ICPS are being stored for processing in the center's Space Station Processing Facility in preparation for Exploration Mission-1, the first uncrewed, integrated launch of the SLS rocket and Orion spacecraft.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) is in a clean room with protective walls secured around it. The adapter will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
2018-04-03
NASA's Super Guppy aircraft taxies onto the tarmac after touching down at the Shuttle Landing Facility at the agency's Kennedy Space Center in Florida. The Super Guppy is carrying the Orion Stage Adapter (OSA), the second flight-hardware section of NASA's Space Launch System (SLS) rocket that has arrived at Kennedy. The OSA will connect the Orion spacecraft to the upper part of the SLS rocket, the interim cryogenic propulsion stage (ICPS). Both the OSA and ICPS are being stored for processing in the center's Space Station Processing Facility in preparation for Exploration Mission-1, the first uncrewed, integrated launch of the SLS rocket and Orion spacecraft.
2018-04-03
NASA's Super Guppy aircraft glides to a stop at the Shuttle Landing Facility at the agency's Kennedy Space Center in Florida. The Super Guppy is carrying the Orion Stage Adapter (OSA), the second flight-hardware section of NASA's Space Launch System (SLS) rocket that has arrived at Kennedy. The OSA will connect the Orion spacecraft to the upper part of the SLS rocket, the interim cryogenic propulsion stage (ICPS). Both the OSA and ICPS are being stored for processing in the center's Space Station Processing Facility in preparation for Exploration Mission-1, the first uncrewed, integrated launch of the SLS rocket and Orion spacecraft.
2018-04-03
NASA's Super Guppy aircraft prepares to touch down at the Shuttle Landing Facility at the agency's Kennedy Space Center in Florida. The Super Guppy is carrying the Orion Stage Adapter (OSA), the second flight-hardware section of NASA's Space Launch System (SLS) rocket that has arrived at Kennedy. The OSA will connect the Orion spacecraft to the upper part of the SLS rocket, the interim cryogenic propulsion stage (ICPS). Both the OSA and ICPS are being stored for processing in the center's Space Station Processing Facility in preparation for Exploration Mission-1, the first uncrewed, integrated launch of the SLS rocket and Orion spacecraft.
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.
2008-01-01
As NASA moves towards developing technologies needed to implement its new Exploration program, studies conducted for Apollo in the 1960's to understand the rollover stability of capsules landing are being revisited. Although rigid body kinematics analyses of the roll-over behavior of capsules on impact provided critical insight to the Apollo problem, extensive ground test programs were also used. For the new Orion spacecraft being developed to implement today's Exploration program, new air-bag designs have improved sufficiently for NASA to consider their use to mitigate landing loads to ensure crew safety and to enable re-usability of the capsule. Simple kinematics models provide only limited understanding of the behavior of these air bag systems, and more sophisticated tools must be used. In particular, NASA and its contractors are using the LS-Dyna nonlinear simulation code for impact response predictions of the full Orion vehicle with air bags by leveraging the extensive air bag prediction work previously done by the automotive industry. However, even in today's computational environment, these analyses are still high-dimensional, time consuming, and computationally intensive. To alleviate the computational burden, this paper presents an approach that uses deterministic sampling techniques and an adaptive response surface method to not only use existing LS-Dyna solutions but also to interpolate from LS-Dyna solutions to predict the stability boundaries for a capsule on airbags. Results for the stability boundary in terms of impact velocities, capsule attitude, impact plane orientation, and impact surface friction are discussed.
2014-08-06
LOS ANGELES, Calif. – Visitors tour the well deck of the USS Anchorage and view the Orion boilerplate test vehicle secured in its recovery cradle during the Science, Technology, Engineering and Mathematics, or STEM, Expo for L.A. Navy Days at the Port of Los Angeles in California. At left is a mockup of NASA’s Space Launch System and Orion spacecraft. NASA, Lockheed Martin and the U.S. Navy completed Underway Recovery Test 2 on the Orion test vehicle in the Pacific Ocean off the coast of San Diego to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allowed the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program conducted the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 on Exploration Flight Test-1, or EFT-1, atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-08-06
LOS ANGELES, Calif. – Visitors tour the well deck of the USS Anchorage and view the Orion boilerplate test vehicle secured in its recovery cradle during the Science, Technology, Engineering and Mathematics, or STEM, Expo for L.A. Navy Days at the Port of Los Angeles in California. Near the front of the well deck, at left, is a mockup of NASA’s Space Launch System and Orion spacecraft. NASA, Lockheed Martin and the U.S. Navy completed Underway Recovery Test 2 on the Orion test vehicle in the Pacific Ocean off the coast of San Diego to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allowed the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program conducted the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 on Exploration Flight Test-1, or EFT-1, atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
Orion Underway Recovery Test for EFT-1
2014-02-18
SAN DIEGO, Calif. – The Orion boilerplate test vehicle is secured in the well deck of the USS San Diego at the U.S. Naval Base San Diego in California. Orion was transported about 100 miles offshore for an underway recovery test. NASA and the U.S. Navy conducted tests to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. During the testing, the tether lines were unable to support the tension caused by crew module motion that was driven by wave turbulence in the well deck of the ship. NASA and the U.S. Navy are reviewing the testing data collected to evaluate the next steps. The Ground Systems Development and Operations Program conducted the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-07-28
SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, NASA Public Affairs Officer Amber Philman describes the Space Launch System and Orion spacecraft to visitors during an outreach event at the naval base. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The Orion boilerplate test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-07-28
SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, NASA's Orion boilerplate test vehicle is on display during an outreach event at the naval base. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The Orion boilerplate test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-07-28
SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, children pick up Orion posters from U.S. Navy personnel during an outreach event at the naval base. The Orion boilerplate test vehicle is on display. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Orion Underway Recovery Test for EFT-1
2014-02-20
SAN DIEGO, Calif. – U.S. Navy personnel board a rigid hull inflatable boat near the USS San Diego to conduct an Orion underway recovery test with the Orion boilerplate test vehicle and other hardware. Earlier in the week, NASA and the U.S. Navy conducted tests about 100 miles offshore to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test allowed the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. During the testing, the tether lines were unable to support the tension caused by crew module motion that was driven by wave turbulence in the well deck of the ship. NASA and the U.S. Navy are reviewing the testing data collected to evaluate the next steps. The Ground Systems Development and Operations Program conducted the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... Martin Corporation for the Reentry of the Orion Multi-Purpose Crew Vehicle (MPCV) From Earth Orbit to a... reentry license to Lockheed Martin Corporation for the reentry of the Orion MPCV from Earth orbit to a.... SUPPLEMENTARY INFORMATION: The potential environmental consequences of the Orion MPCV reentering the Earth's...
Orion Pad Abort 1 Flight Test: Simulation Predictions Versus Flight Data
NASA Technical Reports Server (NTRS)
Stillwater, Ryan Allanque; Merritt, Deborah S.
2011-01-01
The presentation covers the pre-flight simulation predictions of the Orion Pad Abort 1. The pre-flight simulation predictions are compared to the Orion Pad Abort 1 flight test data. Finally the flight test data is compared to the updated simulation predictions, which show a ove rall improvement in the accuracy of the simulation predictions.
2012-08-06
CAPE CANAVERAL, Fla. – The Orion mockup spacecraft sits atop its service module simulator in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-08-06
CAPE CANAVERAL, Fla. – The Orion mockup spacecraft sits atop its service module simulator in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. To the left is the aerodynamic shell that will cover the capsule during launch. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-08-06
CAPE CANAVERAL, Fla. – The Orion mockup spacecraft sits atop its service module simulator in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2014-12-03
SAN DIEGO, Calif. – On the third day of preparations for recovery of Orion, U.S. Navy divers in two rigid hull inflatable boats and two Zodiac boats practice recovery procedures nearby the USS Anchorage in the Pacific Ocean about 600 miles off the coast of Baja, California. NASA, Lockheed Martin and U.S. Navy personnel are preparing for recovery of the Orion crew module, forward bay cover and parachutes after its return from space and splashdown in the Pacific Ocean. The Ground Systems Development and Operations Program is leading the recovery efforts. The first unpiloted flight test of Orion is scheduled to launch Dec. 4 atop a United Launch Alliance Delta IV Heavy rocket. During its two-orbit, 4.5-hour flight, Orion will venture 3,600 miles in altitude and travel nearly 60,000 miles before returning to Earth for a splashdown in the Pacific Ocean. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard A.; Boehm, Paul; Cross, Cynthia D.; Rains, George Edward
2014-01-01
The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely beyond Earth orbit. This year, the vehicle focused on building the Exploration Flight Test 1 (EFT1) vehicle to be launched in September of 2014. The development of the Orion Active Thermal Control (ATCS) and Environmental Control and Life Support (ECLS) System, focused on the integrating the components into the EFT1 vehicle and preparing them for launch. Work also has started on preliminary design reviews for the manned vehicle. Additional development work is underway to keep the remaining component progressing towards implementation on the flight tests of EM1 in 2017 and of EM2 in 2020. This paper covers the Orion ECLS development from April 2013 to April 2014.
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, all four ogive panels have been installed on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-10-30
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Orion ground test vehicle is being prepared for installation of the ogive panels in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-08-22
CAPE CANAVERAL, Fla. – NASA astronauts tour the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. From left, are Scott Tingle, Jack Fischer, Mark Vande Hei and Katie Rubins. They are standing near the Ogive panels for the Orion Launch Abort System. During processing, the Ogive panels will enclose and protect the Orion spacecraft for Exploration Flight Test-1 and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians attach the fourth ogive panel on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. Both panels were moved by crane and lowered onto a storage stand at the far end of the facility. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels is being lifted by crane for the move to a storage stand at the other end of the facility. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The first panel is secured on a storage stand while the second panel is being lowered by crane onto the storage stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the Ogive panels has been uncrated and is being lifted by crane for placement on a work stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels has been lifted by crane and technicians are preparing it for the move to a storage stand at the other end of the facility. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels is being lifted by crane for the move to a storage stand at the other end of the facility. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the Ogive panels has been uncrated and is being lifted by crane for placement on a work stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The second panel is being lifted by crane and technicians are monitoring the progress as it is being moved to join the first panel on the storage stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-11-06
CAPE CANAVERAL, Fla. – In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Jeremy Graeber, Orion Recovery Director in Ground Systems Development and Operations at Kennedy. Also participating in the news conference are Bryan Austin, Lockheed Martin mission manager, left, and Ron Fortson, United Launch Alliance director of Mission Management. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
2015-11-12
Offloading of the Orion Crew Module Adapter, CMA, at Plum Brook Station. The adapter will connect Orion’s crew module to a service module provided by ESA (European Space Agency). NASA is preparing for a series of tests that will check out the Orion European Service Module, a critical part of the spacecraft that will be launched on future missions to an asteroid and on toward Mars.
Orion EFT-1 Wet Dress Rehearsal
2014-11-05
In the Hangar A&E control room, displays are seen during a dress rehearsal for the launch of the United Launch Alliance Delta IV Heavy rocket for the upcoming Orion Flight Test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2013-07-26
CAPE CANAVERAL, Fla. – The Orion crew module for Exploration Flight Test 1 sits inside a clean room processing cell in the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2013-07-26
CAPE CANAVERAL, Fla. – The Orion crew module for Exploration Flight Test 1 sits inside a clean room processing cell in the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
2009-04-08
CAPE CANAVERAL, Fla. – The mockup Orion crew exploration vehicle floats in the water at the Trident Basin at Port Canaveral, Fla. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. The mockup vehicle will undergo testing in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Dimitri Gerondidakis
2009-04-08
CAPE CANAVERAL, Fla. – The mockup Orion crew exploration vehicle is prepared to be lifted into the water at the Trident Basin at Port Canaveral, Fla., for testing in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program. Photo credit: NASA/Kim Shiflett
2015-01-13
CAPE CANAVERAL, Fla. -- Workers take photographs of NASA's Orion spacecraft during a viewing at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion's back shell panels have been removed. The spacecraft completed the first flight test in December, was retrieved from the Pacific Ocean, and transported 2,700 miles overland to Kennedy from Naval Base San Diego in California. Analysis of data obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. Orion will be transported to the Payload Hazardous Servicing Facility for deservicing. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2015-01-13
CAPE CANAVERAL, Fla. -- Workers take photographs of NASA's Orion spacecraft during a viewing at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion's back shell panels have been removed. The spacecraft completed the first flight test in December, was retrieved from the Pacific Ocean, and transported 2,700 miles overland to Kennedy from Naval Base San Diego in California. Analysis of data obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. Orion will be transported to the Payload Hazardous Servicing Facility for deservicing. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2015-01-13
CAPE CANAVERAL, Fla. -- Workers take photographs of NASA's Orion spacecraft during a viewing at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion's back shell panels have been removed. The spacecraft completed the first flight test in December, was retrieved from the Pacific Ocean, and transported 2,700 miles overland to Kennedy from Naval Base San Diego in California. Analysis of data obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. Orion will be transported to the Payload Hazardous Servicing Facility for deservicing. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2015-01-13
CAPE CANAVERAL, Fla. -- Workers take photographs of NASA's Orion spacecraft during a viewing at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion's back shell panels have been removed. The spacecraft completed the first flight test in December, was retrieved from the Pacific Ocean, and transported 2,700 miles overland to Kennedy from Naval Base San Diego in California. Analysis of data obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. Orion will be transported to the Payload Hazardous Servicing Facility for deservicing. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2015-01-13
CAPE CANAVERAL, Fla. -- Workers take photographs of NASA's Orion spacecraft during a viewing at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion's back shell panels have been removed. The spacecraft completed the first flight test in December, was retrieved from the Pacific Ocean, and transported 2,700 miles overland to Kennedy from Naval Base San Diego in California. Analysis of data obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. Orion will be transported to the Payload Hazardous Servicing Facility for deservicing. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to lift the agency's Orion spacecraft for mounting atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians begin lifting the agency's Orion spacecraft for mounting atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2014-12-05
NASA's Orion spacecraft floats in the Pacific Ocean after splashdown from its first flight test in Earth orbit. In the background is the USNS Salvor. This U.S. Navy salvage ship was there as a backup in case it was needed. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts.
NASA Technical Reports Server (NTRS)
Christian, John A.; Patangan, Mogi; Hinkel, Heather; Chevray, Keiko; Brazzel, Jack
2012-01-01
The Orion Multi-Purpose Crew Vehicle is a new spacecraft being designed by NASA and Lockheed Martin for future crewed exploration missions. The Vision Navigation Sensor is a Flash LIDAR that will be the primary relative navigation sensor for this vehicle. To obtain a better understanding of this sensor's performance, the Orion relative navigation team has performed both flight tests and ground tests. This paper summarizes and compares the performance results from the STS-134 flight test, called the Sensor Test for Orion RelNav Risk Mitigation (STORRM) Development Test Objective, and the ground tests at the Space Operations Simulation Center.
Orion Washdown & Arrival at LASF
2014-12-18
NASA's Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck, leaves the Multi-Operation Support Building and is being transported to the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion was transported 2,700 miles overland from Naval Base San Diego in California. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.
Orion Returns to KSC after Successful Mission
2014-12-18
NASA's Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck passes by the Space Shuttle Atlantis building at the Kennedy Space Center Visitor Complex on its way to the entrance gate to Kennedy Space Center in Florida. Orion made the overland trip from Naval Base San Diego in California. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.
Orion Stage Adapter (OSA) Offload
2018-04-04
NASA Kennedy Space Center security officers prepare to escort the Orion Stage Adapter (OSA), secured on a flatbed transporter, along State Road 3 to the Space Station Processing Facility (SSPF) at NASA's Kennedy Space Center in Florida. The OSA is the second flight-hardware section of the agency's Space Launch System (SLS) rocket to arrive at Kennedy. The OSA will connect the Orion spacecraft to the upper part of the SLS, the interim cryogenic propulsion stage (ICPS). Both the OSA and ICPS are being stored for processing in the SSPF in preparation for Exploration Mission-1, the first uncrewed, integrated launch of the SLS rocket and Orion spacecraft.
2014-12-18
CAPE CANAVERAL, Fla. -- NASA's Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck nears the entrance gate to Kennedy Space Center in Florida. Orion made the 2,700 mile overland trip from Naval Base San Diego in California. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2014-12-05
SAN DIEGO, Calif. -- NASA's Orion spacecraft floats in the Pacific Ocean after splashdown from its first flight test in Earth orbit. The USS Anchorage is in the background. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts. For more information, visit www.nasa.gov/orion Photo credit: NASA/Tony Gray
2014-12-19
NASA's Orion spacecraft is viewed by members of the media at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Speaking to the media during the viewing opportunity is Glenn Chin, Orion Production Operations. To his right is Phil Weber, with the Ground Systems Development and Operations Program, or GSDO. Orion made the 8-day, 2,700 mile overland trip back to Kennedy from Naval Base San Diego in California. Analysis of date obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers with detailed information on how the spacecraft fared. GSDO led the recovery, offload and transportation efforts.
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Ron Fortson, United Launch Alliance director of Mission Management. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion Stage Adapter move to Redstone Airfield
2018-04-03
NASA's Super Guppy aircraft arrives to the U.S. Army’s Redstone Airfield in Huntsville, Alabama, April 2, to pick up flight hardware for NASA’s Space Launch System – its new, deep-space rocket that will enable astronauts to begin their journey to explore destinations far into the solar system. The Guppy will depart on Tuesday, April 3 to deliver the Orion stage adapter to NASA’s Kennedy Space Center in Florida for flight preparations. On Exploration Mission-1, the first integrated flight of the SLS and the Orion spacecraft, the adapter will connect Orion to the rocket and carry 13 CubeSats as secondary payloads.
Orion Stage Adapter move to Redstone Airfield
2018-04-02
Caption: NASA's Super Guppy aircraft arrives to the U.S. Army’s Redstone Airfield in Huntsville, Alabama, April 2, to pick up flight hardware for NASA’s Space Launch System – its new, deep-space rocket that will enable astronauts to begin their journey to explore destinations far into the solar system. The Guppy will depart on Tuesday, April 3 to deliver the Orion stage adapter to NASA’s Kennedy Space Center in Florida for flight preparations. On Exploration Mission-1, the first integrated flight of the SLS and the Orion spacecraft, the adapter will connect Orion to the rocket and carry 13 CubeSats as secondary payloads.
SLS Test Hardware Taken to Redstone Arsenal Airfield for Guppy Loading
2017-07-10
A structural test article of the Orion Stage Adapter for NASA’s Space Launch System, built at NASA's Marshall Space Flight Center, is transported and prepared to be loaded onto NASA's Super Guppy aircraft. With integrated structural testing complete at Marshall, the stage adapter will soon be transported to Lockheed Martin in Denver for further testing with NASA's Orion spacecraft. The Guppy -- a plane large enough to carry cargo weighing more than 26 tons -- arrived at the U.S. Army's Redstone Arsenal Airfield July 10 to transport the stage adapter. On SLS's first integrated flight with Orion, the OSA will connect Orion to the Interim Cryogenic Propulsion Stage.
Distances, Kinematics, And Structure Of The Orion Complex
NASA Astrophysics Data System (ADS)
Kounkel, Marina; Hartmann, Lee
2018-01-01
I present an analysis of the structure and kinematics of the Orion Molecular Cloud Complex in an effort to better characterize the dynamical state of the closest region of ongoing massive star formation. I measured stellar parallax and proper motions with <5% uncertainty using radio VLBI observations of non-thermally-emitting sources located in various star forming regions within the Orion Complex. This includes the first direct distance measurements for sources that are located outside of the Orion Nebula. I identified a number of binary systems in the VLBI dataset and fitted their orbital motion, which allows for the direct measurement of the masses of the individual components. Additionally, I have identified several stars that have been ejected from the Orion Nebula due to strong gravitational interactions with the most massive members. I complemented the parallax and proper motion measurements with the observations of optical radial velocities of the stars toward the Orion Complex, probing the histories of both dynamic evolution and star formation in the region, providing a 6-dimensional model of the Complex. These observations can serve as a baseline for comparison of the upcoming results from the Gaia space telescope
2014-09-10
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, members of the Brevard Police and Fire Pipes and Drums lead NASA and Lockheed Martin workers toward the Orion crew module, stacked atop its service module. A ceremony will begin to officially turn over the Orion spacecraft for Exploration Flight Test-1 to Lockheed Martin Ground Operations from Orion Assembly, Integration and Production. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida in December to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-09-10
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, members of the Brevard Police and Fire Pipes and Drums lead NASA and Lockheed Martin workers toward the Orion crew module, stacked atop its service module. A ceremony will begin to officially turn over the Orion spacecraft for Exploration Flight Test-1 to Lockheed Martin Ground Operations from Orion Assembly, Integration and Production. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida in December to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-09-15
SAN DIEGO, Calif. – Helicopter Sea Combat Squadron 8, or HSC 8, prepare two H60-S helicopters for flight on the deck of the USS Anchorage during the first day of Orion Underway Recovery Test 3. The helicopters will be used during recovery of the Orion boilerplate test article. NASA, Lockheed Martin and U.S. Navy personnel are conducting recovery tests to prepare for recovery of the Orion crew module on its return from a deep space mission. The test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston